WO2020047763A1 - 呼吸模拟器、医学人体模拟器及模拟呼吸场景的方法 - Google Patents

呼吸模拟器、医学人体模拟器及模拟呼吸场景的方法 Download PDF

Info

Publication number
WO2020047763A1
WO2020047763A1 PCT/CN2018/104060 CN2018104060W WO2020047763A1 WO 2020047763 A1 WO2020047763 A1 WO 2020047763A1 CN 2018104060 W CN2018104060 W CN 2018104060W WO 2020047763 A1 WO2020047763 A1 WO 2020047763A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
airway
breathing
heat exchanger
refrigerant
Prior art date
Application number
PCT/CN2018/104060
Other languages
English (en)
French (fr)
Inventor
刘雁飞
刘朝群
周继彬
N. 布鲁萨尔•大卫•
G. 米勒•查尔斯•
伍兹•杰里
D. 奥姆斯特德•克利福德•
Original Assignee
天津天堰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津天堰科技股份有限公司 filed Critical 天津天堰科技股份有限公司
Priority to CN201880095937.8A priority Critical patent/CN113056777A/zh
Priority to PCT/CN2018/104060 priority patent/WO2020047763A1/zh
Publication of WO2020047763A1 publication Critical patent/WO2020047763A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B27/00Methods or devices for testing respiratory or breathing apparatus for high altitudes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine

Definitions

  • the invention belongs to the field of medical simulation education, and relates to a breathing simulation device and a breathing scene simulation method.
  • Traditional breathing simulators can provide inspiratory and expiratory movements that mimic the human body, helping medical staff to perform operations such as CPR.
  • the exhaled gas in the normal breathing cycle has a certain temperature, and due to the limitation of traditional equipment and methods, the existing breathing simulation device cannot perform temperature simulation, so it cannot provide a real breathing scene.
  • heating the gas in a sealed silicone rubber to simulate the temperature of the exhaled gas has very high requirements on the hardware, which may cause the electronic components to fall into a thermal runaway state during operation and cause damage.
  • the present invention aims to overcome one or more of the above problems.
  • the invention relates to a breathing simulator capable of simulating inhalation and exhalation, a medical human simulator having a complete or partial torso simulation human anatomy, and a method for simulating a breathing scene.
  • the present invention provides a breathing simulator comprising: an airway having an airway opening; and a gas extraction device connected to the airway, the gas extraction device being configured to cause air from the gas
  • the airway inhales and discharges the airway to simulate the inhalation and exhalation of the human body;
  • the heat exchanger is configured to transfer heat to the air in the airway before the air is discharged from the airway to simulate the human body Exhaled air temperature.
  • the breathing simulator further includes a control module connected to the heat exchanger, and the control module is configured to control the gas extraction device to generate a simulated breathing scene and transmit to the heat exchanger Heat.
  • the heat exchanger is connected to the control module and is configured to receive heat from the control module.
  • the heat exchanger includes a refrigerant circuit configured to allow refrigerant to flow within the heat exchanger.
  • the heat exchanger further includes a power unit connected to the refrigerant circuit, the power unit is connected to the control module, and is configured to drive the refrigerant in the refrigerant circuit. Internal circulation flow.
  • the airway further includes a tube connected to the airway opening to simulate a human airway
  • the air passage and the refrigerant pipe form an air passage heat exchange area, and the refrigerant passage is configured to move the refrigerant in The air in the airway transfers heat.
  • the air passage is connected to the refrigerant circuit.
  • the air passage is adjacent or close to the refrigerant circuit.
  • the airway further comprises at least one simulated lung.
  • the at least one simulated lung is configured to expand as the air is inhaled to expand an elastic bladder that is contracted as the air is expelled, to simulate lung activity during a human inhalation and exhalation.
  • the invention also provides a medical human simulator including any breathing simulator disclosed in this example.
  • the invention also provides a method for simulating a breathing scene, the method comprising providing a breathing simulator configured to draw air into an airway to simulate breathing inhalation and expel air from the airway To simulate breathing and exhaling.
  • the method includes controlling breathing in and breathing out using a control module.
  • the method includes using a heat exchanger to transfer heat from the control module to the air. In some embodiments, the transfer of heat can reduce the temperature of the control module and increase the temperature of the air.
  • increasing the temperature of the air involves increasing the temperature of the air in the airway and increasing the temperature of the air as it exits the airway.
  • the breathing simulator includes an airway with an airway opening, an extraction device connected to the airway, a heat exchanger, and a control module.
  • the control module controls the extraction device to draw air into the airway through the airway opening.
  • exhaust airways to simulate the inhalation and exhalation of the human body; there is a refrigerant pipe in the heat exchanger, allowing the refrigerant to flow in the refrigerant pipe, passing through or near the area of the control module, the refrigerant absorption control module generates The heat is transferred to the air in the airway, so that the temperature rises before the air is discharged from the airway, in order to simulate the temperature of the human exhaled air.
  • the invention not only simulates the breathing movement of the human body, but also simulates the temperature of the human exhaled gas, providing a more realistic training scene for medical students, and reducing the temperature of the control module and other electronic components during operation, ensuring hardware components Normal operation and service life.
  • FIG. 1 is a schematic diagram of an embodiment of a medical human simulator having a breathing simulator.
  • Embodiments of the present invention include a medical human simulator of the breathing simulator 100, the purpose of which is to provide a simulated breathing scenario for medical training.
  • the breathing simulator 100 is configured to generate a simulated breathing scene for observation and analysis by a doctor.
  • the simulated breathing scenario includes inhaling and exhaling air from the breathing simulator 100. Inhalation and exhalation can be performed at different rates, different volumes, different frequencies, etc. to provide a simulated breathing scenario.
  • the breathing simulator 100 may include a heat exchanger 112 that heats the air before it is discharged from the breathing simulator 100 to simulate the temperature of the human exhaled breath and provide a more realistic training environment for the user.
  • the breathing simulator 100 may include an airway 102 having an airway port 106.
  • the air passage 102 is connected to a gas extraction device 104.
  • the gas extraction device 104 may be a pump, a diaphragm pump, and / or other devices that can control the intake and discharge of air from the airway port 106 to and from the airway 102.
  • the airway opening 106 may be the oral cavity.
  • the airway port 106 may be a nasal cavity.
  • the airway 102 may include at least one simulated lung 108.
  • the simulated lung 108 can be an elastic sac. When air is sucked in and out of the simulated lung 108, it can expand and contract like a lung.
  • the breathing simulator 100 may include a control module 110.
  • the control module 110 may be configured to control operations of various components of the breathing simulator 100.
  • the control module 110 may be connected to the gas extraction device 104 mechanically and electrically, and may send a command signal to the gas extraction device 104 to control the intake and discharge of air through the airway port 106.
  • the control module 110 may include electronic components such as a processor, non-transitory and non-volatile memory, integrated circuits, circuit boards, and the like.
  • the memory may store software that causes the processor to execute commands based on the desired breathing scenario.
  • the breathing simulator 100 may include a heat exchanger 112, and the heat exchanger 112 may be a shell and tube heat exchanger, a plate heat exchanger, a fluid heat exchanger, a waste heat exchanger, or other Equipment for heat transfer.
  • the heat exchanger 112 may be configured to exchange heat within a portion of the breathing simulator 100.
  • the heat exchanger 112 may also be configured to absorb the heat generated by the control module 110 and transfer the absorbed heat into the air of the air passage 102.
  • the heat exchanger 112 may include a refrigerant line 116 configured to allow refrigerant to flow within the heat exchanger 112.
  • the areas of the refrigerant pipeline 116 near the control module 110 and the air passage 102 form a heat exchange area, respectively.
  • the areas near the control module 110 form a first heat exchange area 124 to allow heat to be transferred from the control module 110 to the refrigerant and close to the air passage
  • the area of 102 forming a second heat exchange area 114, allows heat to be transferred from the refrigerant to the air in the air passage 102.
  • the heat exchanger 112 may use a refrigerant (such as liquid or air) as a heat transfer medium. When the refrigerant having the temperature T R1 flows in the refrigerant pipeline 116 of the heat exchanger 112, passes through or approaches the control module 110.
  • the heat generated by the control module 110 can be transferred to the refrigerant, so that the temperature of the refrigerant is changed to T R2 , and T R2 > T R1 . Due to the heat transfer, the temperature of the control module 110 can be changed from T CM2 drops to T CM1 .
  • the refrigerant having the temperature T R2 passes through the refrigerant pipe 116 and reaches the second heat exchange zone 114, the heat of the refrigerant can be transferred to the air entering the air passage 102, thereby increasing the temperature of the air from T A1 to T A2 .
  • the air having the temperature T A2 flows in the air passage 102 and is then discharged through the air passage opening 106.
  • the airway 102 is configured as a tube connected to the airway port 106 to simulate the human respiratory tract, which may include simulated nasal cavity, simulated oral cavity, simulated pharynx, simulated trachea, and simulated bronchi.
  • the air passage 102 is configured to be connected to the refrigerant pipe 116, and the gas extraction device 104 allows air to enter the air passage 102 from the air passage opening 106, enter the refrigerant pipe 116, and pass through or approach In module 110, air absorbs heat from the control module 110, the temperature of the control module 110 decreases, the temperature of the air in the air passage rises, the air continues to flow, enters the air passage 102 through the refrigerant pipe 116, and is discharged through the air passage opening 106.
  • the air passage 102 is configured to be adjacent to or close to the refrigerant pipe 116, and the gas extraction device 104 causes air from the air passage opening 106 to enter the air passage 102 and into the second heat exchange zone 114,
  • the refrigerant transmits heat to the air in the air passage 102, the temperature of the refrigerant decreases, the temperature of the air in the air passage 102 rises, and is discharged through the air passage opening 106.
  • the airway 102 may also include at least one simulated lung 108.
  • the simulated lung 108 is configured as an elastic bladder that expands and contracts as air flows in and out to simulate human lung activity.
  • the air passing through the simulated lung 108 can pass through the second heat exchange zone 114 again, so that the air can absorb more heat before being discharged through the airway port 106.
  • the temperature of the air can rise to T A3 .
  • T A2 the air of temperature
  • T A3 the air of temperature T A2 circulates in the simulated respiratory airway, some heat will be lost before passing through the second heat exchange zone 114 again. This loss of heat may or may not cause the air to pass through the second heat exchange zone 114 again.
  • the temperature is lower than T A1 , so T A3 can be greater than T A1 and / or greater than T A2 .
  • the heat exchanger 112 may be provided with a power device (such as a pump) to drive the refrigerant to circulate in the refrigerant pipeline 116.
  • the power device (such as a pump) is electrically and mechanically connected to the control module 110.
  • the module 110 can control the pumping function of the refrigerant, thereby controlling the circulation of the refrigerant.
  • the heat exchanger 112 may be configured to operate without the need for a pump to move the refrigerant.
  • the heat exchanger 112 may be configured to circulate the refrigerant passively.
  • the end of the closed refrigerant pipeline 116 near the control module 110 is configured as a high-temperature end 120
  • the end near the air passage 102 is configured as a low-temperature end 118.
  • the heat of the high-temperature end 120 is transferred to the refrigerant by the control module
  • the heat of the low-temperature end 118 is The refrigerant is transferred to the air in the air passage 102.
  • the temperature difference of the refrigerant in the circuit will cause a difference in the thermal expansion of the refrigerant at the high-temperature end 120, which will cause a difference in the pressure of the refrigerant at the low-temperature end 118.
  • This pressure difference causes the refrigerant to circulate in the refrigerant line 116.
  • the difference in thermal expansion will cause the density of the refrigerant at the high temperature end 120 and the low temperature end 118 to be different, which can cause the high density refrigerant at the low temperature end to sink to the high temperature end 120 (eg, the low temperature end 118 is higher than the high temperature end 120 in the gravity field), This forces the low-density refrigerant to move toward the low-temperature end 118.
  • the breathing simulator 100 may include an airway 102 that is connected to a gas extraction device 104 that is configured to inhale and exhaust air from the airway port 106 to simulate inhalation of a human body And call out. Air entering the airway port 106 may pass through a pair of simulated lungs 108 and then be discharged through the airway port 106.
  • the breathing simulator 100 may include a control module 110 that is electromechanically connected to the gas extraction device 104.
  • the control module 110 may be used to control the gas extraction device 104 to suck air into and out of the airway 102 from the airway opening 106.
  • the breathing simulator 100 may include a heat exchanger 112 through which refrigerant is circulated through a refrigerant line 116.
  • the refrigerant pipe 116 may be configured to pass through or be close to the second heat exchange region 114 of the air passage 102 within the range of the low temperature end 118 of the refrigerant pipe 116.
  • the refrigerant pipe 116 may be configured to pass through or be close to the first heat exchange region 124 of the control module 110 within the high-temperature end 120.
  • the refrigerant pipeline 116 may be configured as a continuous closed circulation pipeline having a low temperature end 118 and a high temperature end 120.
  • the refrigerant line 116 is near the second heat exchange area 114 at the low temperature end 118, and the refrigerant line 116 is at a high temperature.
  • the end 120 is close to the first heat exchange area 124.
  • the low-temperature end 118 may be located above the high-temperature end 120 so that the acceleration of gravity occurs in a direction from the low-temperature end 118 to the high-temperature end 120.
  • the breathing simulator 100 may be integrated into the medical human simulator 122.
  • the medical human body simulator 122 may be a simulated human body model, or at least a part of a human (for example, a torso model).
  • the breathing simulator 100 may be used as a simulator of the breathing system of the medical human simulator 122.
  • the components of the breathing simulator 100 may be placed on the chest, throat, and oral area of the medical human simulator 122.
  • the airway opening 106 may form part of the nose and mouth of the medical human simulator 122
  • the airway 102 and the simulated lung 108 may form part of the respiratory circulatory system
  • the heat exchanger 112 and the control module 110 may be placed in the chest area of the medical human simulator 122 Inside.
  • the medical human body simulator 122 may also be configured to be controlled by software, and the control module 110 is driven to execute commands according to a required breathing scene.
  • the simulated breathing scenario can be used to provide training scenarios for doctors. It should also be understood that the locations and interconnections of the various components described and illustrated in this document are only best practices. For example, the components of the breathing simulator 100 may be placed in other locations and in other configurations of the medical human simulator 122.
  • transferring heat from the control module 110 can cool the electronic components and other components of the control module 110 while warming the air before being discharged from the airway port 106.
  • the heated air can simulate the temperature of human exhaled air, providing doctors with a more realistic training environment.
  • control module 110 the heat exchanger 112
  • gas extraction device 104 the gas extraction device 104
  • / or other components or parameters may be used to meet a particular goal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Mathematical Physics (AREA)
  • Pulmonology (AREA)
  • Emergency Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Instructional Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明提供了一种呼吸模拟器,包括具有气道口的气道;与所述气道连接的气体抽排装置,所述气体抽排装置被配置为使空气从所述气道口吸入和排出所述气道,以模拟人体的吸气和呼气;热交换器,被配置为在空气被排出所述气道前,将热量传递给所述气道内的空气,以模拟人体呼出气体的温度。本发明还提供了一种包括呼吸模拟器的医学人体模拟器。本发明还提供了一种模拟呼吸场景的方法。通过本发明进行热量的传递,不仅可以冷却电子器件及其他部件,还能模拟人体呼吸及呼出空气的温度,为医学生提供了更真实的培训环境,确保了硬件组件的正常运作及使用寿命。

Description

呼吸模拟器、医学人体模拟器及模拟呼吸场景的方法 技术领域
本发明属于医学模拟教育领域,涉及呼吸模拟装置及呼吸场景模拟方法。
背景技术
传统的呼吸模拟装置可以提供模拟人体的吸气和呼气运动,帮助医务人员进行CPR等操作的训练。
技术问题
由于人体本身的温度,正常的呼吸循环中呼出的气体具有一定的温度,而受传统设备和方法的限制,现有的呼吸模拟装置并不能进行温度的模拟,因此不能提供真实的呼吸场景。
此外,在密闭的硅橡胶内进行气体的加热以模拟呼出气体的温度对硬件的要求也非常高,可能导致电子元件工作时陷入热失控状态从而发生损坏。
本发明旨在克服一个或多个上述问题。
技术解决方案
本发明涉及一个能够模拟吸气和呼气的呼吸模拟器、一个具有完整的或者局部躯干仿真人体解剖的医学人体模拟器及模拟呼吸场景的方法。
本发明提供了一种呼吸模拟器,该呼吸模拟器包括:具有气道口的气道;与所述气道连接的气体抽排装置,所述气体抽排装置被配置为使空气从所述气道口吸入和排出所述气道,以模拟人体的吸气和呼气;热交换器,被配置为在空气被排出所述气道前,将热量传递给所述气道内的空气,以模拟人体呼出气体的温度。
在某些实施例中,该呼吸模拟器还包括控制模块,与所述热交换器相连,所述控制模块被配置为控制所述气体抽排装置产生模拟呼吸场景和向所述热交换器传递热量。
在某些实施例中,所述热交换器与所述控制模块连接,被配置为接收来自所述控制模块的热量。
在某些实施例中,所述热交换器包括制冷剂管路,被配置为允许制冷剂在所述热交换器内流动。
在某些实施例中,所述热交换器还包括与所述制冷剂管路连接的动力装置,所述动力装置与所述控制模块连接,被配置为驱动制冷剂在所述制冷剂管路内循环流动。
在某些实施例中,所述气道还包括与所述气道口相连的管路,以模拟人体的呼吸道,
在某些实施例中,所述气道与所述制冷剂管路形成气道热交换区,被配置为在所述气道热交换区所述制冷剂管路内的所述制冷剂向所述气道内的空气传递热量。
在某些实施例中,所述气道与所述制冷剂管路相连。
在某些实施例中,所述气道与所述制冷剂管路相邻或靠近。
在某些实施例中,所述气道还包括至少一个模拟肺。
在某些实施例中,所述至少一个模拟肺被配置为随着空气的吸入而扩张随着空气的排出而收缩的弹性囊,以模拟人体吸气和呼气时的肺部活动。
本发明还提供了一种医学人体模拟器,该医学人体模拟器包括本例中披露的任何呼吸模拟器。
本发明还提供了一种模拟呼吸场景的方法,该方法包括提供一个呼吸模拟器,所述呼吸模拟器配置为将空气吸入气道,以模拟呼吸吸气,并将空气从所述气道排出,以模拟呼吸呼气。该方法包括使用控制模块控制呼吸吸气和呼吸呼气。该方法包括使用热交换器将热量从所述控制模块传递到空气。在某些实施例中,热量的传递可以降低所述控制模块的温度,增加空气的温度。
在一些实施例中,所述增加空气的温度涉及增加空气在所述气道中的温度和增加空气从所述气道排出时的温度。
有益效果
本发明的有益效果:呼吸模拟器包括具有气道口的气道、与所述气道连接的抽排装置、热交换器及控制模块,控制模块控制抽排装置将空气通过气道口抽入气道和排出气道,以模拟人体的吸气和呼气;热交换器内具有制冷剂管路,允许制冷剂在制冷剂管路内流动,通过或靠近控制模块的区域,制冷剂吸收控制模块产生的热量并将该热量传递给气道内的空气,使空气排出气道前温度升高,以模拟人体呼出气体的温度。通过本发明,不仅模拟了人体的呼吸运动,还模拟了人体呼出气体的温度,为医学生提供了更真实的训练场景,同时降低了控制模块及其他电子元件工作时的温度,确保了硬件组件的正常运作及使用寿命。
附图说明
图1为一个具有呼吸模拟器的医学人体模拟器的实施例示意图。
本发明的实施方式
下列描述是目前为实施本发明而设想的示范实施例。这种描述不能作为一种限制,而只是为了描述本发明的一般原则和特征。本发明的范围不受本实施例的限制。
本发明的实施例包括呼吸模拟器100的医学人体模拟器,其目的是为医疗训练提供模拟呼吸场景。例如,呼吸模拟器100被配置为生成供医生观察和分析的模拟呼吸场景。模拟呼吸场景包括使空气从呼吸模拟器100吸入和呼出。吸入和呼出可以以不同的速率、不同的体积、不同的频率等进行,以提供模拟的呼吸场景。根据本发明,呼吸模拟器100可包括一个热交换器112,它在空气被排出呼吸模拟器100之前对空气进行加热,以模拟人体呼出气体的温度,为用户提供更真实的训练环境。
在至少一个实施例中,呼吸模拟器100可以包括具有气道口106的气道102。气道102与气体抽排装置104连接。气体抽排装置104可以是泵、隔膜泵和/或其他可以控制空气从气道口106吸入和排出气道102的设备。在某些实施例中,气道口106可以是口腔。在某些实施例中,气道口106可以是鼻腔。在某些实施例中,气道102可以包括至少一个模拟肺108。模拟肺108可以是一个弹性囊,当空气被吸入和排出模拟肺108时,它能像肺一样扩张和收缩。
在至少一个实施例中,呼吸模拟器100可以包括控制模块110。控制模块110可被配置为控制呼吸模拟器100的各个组件的操作。例如,控制模块110可与气体抽排装置104进行机电连接,并可向气体抽排装置104发送指令信号,以控制空气通过气道口106的吸入和排出。控制模块110可包括电子元件,如处理器、非短暂和非易失性存储器、集成电路、电路板等。在某些实施例中,存储器可以存储使处理器根据所需的呼吸场景执行命令的软件。
在至少一个实施例中,呼吸模拟器100可以包括热交换器112,热交换器112可以是管壳式换热器、板式换热器、流体换热器、废物回收换热器或者其他可以进行热量传递的设备。热交换器112可被配置为在呼吸模拟器100的一部分内交换热量。热交换器112还可以被配置为吸收控制模块110产生的热量和将吸收的热量转移到气道102的空气中。热交换器112可包括制冷剂管路116,被配置为允许制冷剂在热交换器112内流动。制冷剂管路116靠近控制模块110及气道102的区域分别形成热交换区,靠近控制模块110的区域,形成第一热交换区124,允许热量从控制模块110传递到制冷剂,靠近气道102的区域,形成第二热交换区114,允许热量从制冷剂传递到气道102内的空气。例如,热交换器112可以采用制冷剂(如液体或空气)作为传热介质,当温度为T R1的制冷剂在热交换器112的制冷剂管路116中流动,经过或靠近控制模块110时,即到达第一热交换区124,控制模块110产生的热量可转移给制冷剂,从而使制冷剂温度改变至T R2,且T R2>T R1,由于热量转移,控制模块110的温度可以从T CM2降到 T CM1。当温度为T R2的制冷剂经过制冷剂管路116,到达第二热交换区114,制冷剂的热量可转移到进入到气道102中的空气中,从而使空气的温度从T A1上升到T A2。温度为T A2的空气在气道102内流动,然后通过气道口106排出。
在某些实施例中,气道102被配置为与所述气道口106相连的管路,以模拟人体的呼吸道,可以包括模拟鼻腔、模拟口腔、模拟咽、模拟气管、模拟支气管。
在某些实施例中,气道102被配置为与所述制冷剂管路116相连,气体抽排装置104使空气从气道口106进入气道102,进入制冷剂管路116,经过或靠近控制模块110,空气从控制模块110吸收热量,控制模块110温度下降,气道内的空气温度上升,空气继续流动,通过制冷剂管路116进入气道102,并经由气道口106排出。
在某些实施例中,气道102被配置为与所述制冷剂管路116相邻或靠近,气体抽排装置104使空气从气道口106进入气道102,进入第二热交换区114,制冷剂向气道102内的空气传递热量,制冷剂温度下降,气道102内的空气温度上升,并经由气道口106排出。
在某些实施例中,气道102还可以包括至少一个模拟肺108。
在某些实施例中,模拟肺108被配置为弹性囊,可随着空气的流入和排出进行扩张和收缩,以模拟人体肺部的活动。
在某些实施例中,通过模拟肺108的空气还可以再次通过第二热交换区114,这样可以使空气经由气道口106排出前吸收更多的热量。在这种情况下,空气的温度可以上升到T A3。考虑到温度为T A2的空气在模拟呼吸气道中循环,在再次经过第二热交换区114前会流失部分热量,这种热量的损失可能或者不会导致空气再次通过第二热交换区114时的温度低于T A1,因此,T A3可以大于T A1和/或大于T A2
在某些实施例中,热交换器112可以设置动力装置(例如泵)来驱动制冷剂在制冷剂管路116中循环流动,动力装置(例如泵)与控制模块110进行机电连接,这样,控制模块110就可以控制制冷剂的泵送功能,从而实现制冷剂的循环受控。
在某些实施例中,热交换器112可以配置为无需泵移动制冷剂即可工作。例如,热交换器112可以被配置为被动地循环制冷剂。其中,闭合的制冷剂管路116靠近控制模块110的一端配置为高温端120,靠近气道102的一端配置为低温端118,高温端120热量由控制模块向制冷剂传递,低温端118热量由制冷剂向气道102中的空气传递。回路中制冷剂的温度差会导致制冷剂在高温端120的热膨胀差异,从而导致制冷剂在低温端118的压力差异。这种压差会使制冷剂在制冷剂管路116中循环。或者,热膨胀差异会导致制冷剂在高温端120和低温端118的密度不同,这样可以使低温端的高密度制冷剂沉向高温端120(如在重力场内低温端118高于高温端120),从而迫使低密度制冷剂向低温端118移动。
优选实施例中,呼吸模拟器100可包括气道102,该气道102与一个气体抽排装置104连接,该气体抽排装置104配置为使空气从气道口106吸入和排出以模拟人体的吸入和呼出。进入气道口106的空气可以通过一对模拟肺108,然后通过气道口106排出。呼吸模拟器100可以包括一个控制模块110,与气体抽排装置104的机电连接。控制模块110可用于控制气体抽排装置104将空气从气道口106吸入和排出气道102。呼吸模拟器100可包括一个热交换器112,其制冷剂通过一个制冷剂管路116循环。制冷剂管路116可配置为在制冷剂管路116的低温端118范围内通过或靠近气道102的第二热交换区114。制冷剂管路116可配置为在高温端120内通过或靠近控制模块110的第一热交换区124。例如,该制冷剂管路116可配置为具有低温端118和高温端120的连续封闭循环管道,其中制冷剂管路116在低温端118靠近第二热交换区114,制冷剂管路116在高温端120靠近第一热交换区124。在重力场中,低温端118可以位于高温端120之上,从而使重力加速度发生在从低温端118到高温端120的方向上。
在至少一个实施例中,呼吸模拟器100可以被整合到医学人体模拟器122中。医学人体模拟器122可以是一个仿真人体模型,或者至少是人的一部分(例如躯干模型)。例如,呼吸模拟器100可用作医学人体模拟器122的呼吸***的模拟器。呼吸模拟器100的各组成部分可以放在医学人体模拟器122的胸部、咽喉和口腔区域。例如,气道口106可构成医学人体模拟器122口鼻的一部分,气道102和模拟肺108可构成呼吸循环***的一部分,热交换器112和控制模块110可置于医学人体模拟器122胸部区域内。该医学人体模拟器122还可以被配置为通过软件控制,根据需要的呼吸场景驱动控制模块110执行命令。模拟的呼吸场景可以用来为医生提供训练场景。还应理解的是,本文件所述和说明的各组成部分的位置和相互联系仅为最佳实施方式。例如,呼吸模拟器100的各组成部分可放置在其他位置,并置于医学人体模拟器122的其他配置中。
在进行呼吸时,从控制模块110转移热量可以冷却控制模块110的电子元件和其他部件,同时使空气升温,然后再从气道口106排出。加热的空气可以模拟人体呼出气体的温度,为医生提供更真实的训练环境。
应当理解的是,可以对此处披露的发明进行修改,以满足特定的一套设计标准。例如,可以使用控制模块110、热交换器112、气体抽排装置104和/或其他部件或参数的数目或配置来满足特定目标。
对于那些本领域技术人员来说,根据上述披露的教导,上述例子和发明的许多修改和变化是可能的。所公开的示例和发明仅用于说明。其他替代发明可以包括本例所披露的各种发明的部分或全部特征。例如,设想单独或作为发明的一部分所描述的特定特征可以与其他单独所描述的特征或其他发明的部分相结合。因此,可以将本文所述各种发明的元素和行为合并,以提供进一步的发明。
因此,本发明的意图是涵盖本发明真正范围内的所有这些修改和替代发明,而本发明的全部范围都要考虑在内。此外,披露一系列数值就是披露该范围内的每一数值,包括终点。因此,虽然本文已经讨论和说明了设备的某些示范发明以及制造和使用这些设备的方法,但要清楚地理解,本发明的内容不限于此。

Claims (12)

  1. 呼吸模拟器,其特征在于,包括:
    具有气道口的气道;
    气体抽排装置,与所述气道相连,被配置为使空气从所述气道口吸入和排出所述气道,以模拟人体的吸气和呼气;和
    热交换器,被配置为在空气被排出所述气道前,将热量传递给所述气道内的空气,以模拟人体呼出气体的温度。
  2. 根据权利要求1所述的呼吸模拟器,其特征在于,还包括控制模块,与所述热交换器连接,所述控制模块被配置为控制所述气体抽排装置产生模拟呼吸场景和向所述热交换器传递热量。
  3. 根据权利要求1所述的呼吸模拟器,其特征在于,所述热交换器包括制冷剂管路,其被配置为允许制冷剂在所述热交换器内流动。
  4. 根据权利要求3所述的呼吸模拟器,其特征在于,所述热交换器还包括与所述制冷剂管路连接的动力装置,所述动力装置同时与所述控制模块连接,被配置为驱动制冷剂在所述制冷剂管路内循环流动。
  5. 根据权利要求1所述的呼吸模拟器,其特征在于,所述气道包括与所述气道口相连的管路,以模拟人体的呼吸道。
  6. 根据权利要求5所述的呼吸模拟器,其特征在于,所述气道与所述制冷剂管路相连。
  7. 根据权利要求5所述的呼吸模拟器,其特征在于,所述气道与所述制冷剂管路相邻或靠近。
  8. 根据权利要求5所述的呼吸模拟器,其特征在于,所述气道还包括至少一个模拟肺。
  9. 根据权利要求8所述的呼吸模拟器,其特征在于,所述至少一个模拟肺被配置为弹性囊,吸入空气时扩张,排出空气时收缩,以模拟人体吸气和呼气时的肺部活动。
  10. 一种医学人体模拟器,其特征在于,包括权利要求1-9中任一项所述的呼吸模拟器。
  11. 模拟呼吸场景的方法,其特征在于,包括:
    提供呼吸模拟器,其被配置成将空气吸入气道中以模拟吸气以及将空气从气道排出以模拟呼气;
    使用控制模块来控制吸气和呼气;以及
    使用热交换器将热量从所述控制模块传递到空气,其中,热量的传递可以降低所述控制模块的温度,增加空气的温度。
  12. 根据权利要求11所述的模拟呼吸场景的方法,其特征在于,所述增加空气的温度包括当空气被吸入所述气道时增加空气的温度,以及当空气从所述气道排出时增加空气的温度。
     
     
     
PCT/CN2018/104060 2018-09-05 2018-09-05 呼吸模拟器、医学人体模拟器及模拟呼吸场景的方法 WO2020047763A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880095937.8A CN113056777A (zh) 2018-09-05 2018-09-05 呼吸模拟器、医学人体模拟器及模拟呼吸场景的方法
PCT/CN2018/104060 WO2020047763A1 (zh) 2018-09-05 2018-09-05 呼吸模拟器、医学人体模拟器及模拟呼吸场景的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104060 WO2020047763A1 (zh) 2018-09-05 2018-09-05 呼吸模拟器、医学人体模拟器及模拟呼吸场景的方法

Publications (1)

Publication Number Publication Date
WO2020047763A1 true WO2020047763A1 (zh) 2020-03-12

Family

ID=69721495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104060 WO2020047763A1 (zh) 2018-09-05 2018-09-05 呼吸模拟器、医学人体模拟器及模拟呼吸场景的方法

Country Status (2)

Country Link
CN (1) CN113056777A (zh)
WO (1) WO2020047763A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029906A (zh) * 2021-03-15 2021-06-25 华东师范大学 一种人体呼出气模拟装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114495670B (zh) * 2022-02-18 2023-04-11 山东大学 一种模拟人体呼吸装置及模拟方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2905089Y (zh) * 2005-12-26 2007-05-30 煤炭科学研究总院抚顺分院 仿人呼吸检验装置
WO2009125539A1 (en) * 2008-04-09 2009-10-15 Furrex Co., Ltd. Heat and moisture exchanger, heat and moisture exchanging device, and mask
CN104977390A (zh) * 2015-07-08 2015-10-14 天津大学 一种模拟真实人体呼吸装置及方法
CN107967853A (zh) * 2016-10-18 2018-04-27 湖北百水居水产品有限公司 人工呼吸训练人体模具

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626194B2 (ja) * 2010-12-21 2014-11-19 株式会社デンソー 熱交換システム
CN102394023A (zh) * 2011-09-08 2012-03-28 中国人民解放军第四军医大学 一种模拟人体呼吸功能的仿真人装置
CN102663947B (zh) * 2012-03-29 2014-03-19 中国医科大学附属第一医院 一种体外主动模拟人体自主呼吸的装置及气体分析方法
CN103021247B (zh) * 2012-12-26 2015-04-22 中国科学技术大学 一种模拟人体呼吸的仿真器
CN103366625B (zh) * 2013-07-25 2016-01-20 中山大学 一种模拟人肺自主呼吸运动装置及控制方法
CN204698752U (zh) * 2015-05-20 2015-10-14 中国人民解放军***总医院 一种动物实验用气体温度可控吸入装置
CN204759879U (zh) * 2015-06-15 2015-11-11 天津市圣宁生物科技有限公司 一种新型模拟呼吸装置
CN205388595U (zh) * 2015-07-08 2016-07-20 天津大学 一种模拟真实人体呼吸装置
CN105427723B (zh) * 2015-12-09 2018-03-06 天津天堰科技股份有限公司 人工呼吸训练模型
CN107631446A (zh) * 2017-09-08 2018-01-26 珠海格力电器股份有限公司 一种空调控制器散热装置和空调器
CN108022471A (zh) * 2018-01-30 2018-05-11 营口市贵东医疗器械制造有限公司 高仿真全自动人体生命体征-心肺听诊触诊训练模型

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2905089Y (zh) * 2005-12-26 2007-05-30 煤炭科学研究总院抚顺分院 仿人呼吸检验装置
WO2009125539A1 (en) * 2008-04-09 2009-10-15 Furrex Co., Ltd. Heat and moisture exchanger, heat and moisture exchanging device, and mask
CN104977390A (zh) * 2015-07-08 2015-10-14 天津大学 一种模拟真实人体呼吸装置及方法
CN107967853A (zh) * 2016-10-18 2018-04-27 湖北百水居水产品有限公司 人工呼吸训练人体模具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029906A (zh) * 2021-03-15 2021-06-25 华东师范大学 一种人体呼出气模拟装置

Also Published As

Publication number Publication date
CN113056777A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
Naftali et al. The air-conditioning capacity of the human nose
JP6588526B2 (ja) 知能バイオニクス排痰システム
CN101505820B (zh) 正压和负压通气的给送
CN206388419U (zh) 一种自动心肺复苏训练***
CN104822408A (zh) 具有辅助按压的自动呼吸机
JP2017515549A (ja) 患者インタフェースにおいて湿度を保持する装置
WO2020047763A1 (zh) 呼吸模拟器、医学人体模拟器及模拟呼吸场景的方法
CN103619392A (zh) 用于辅助进行气道清除的方法和装置
CN103781507A (zh) 用于控制通气治疗装置的方法和设备
CN104936643A (zh) 与通气机集成的用于肺内叩击通气的***和方法
JP2018501066A (ja) 機械式人工呼吸器におけるイノベーション
CN104203320A (zh) 用于在吹排气期间控制吹气压力的***与方法
CN206325086U (zh) 一种呼吸机的控制装置
CN103656819B (zh) 一种储气囊输氧鼻套
CN207734439U (zh) 便携式主动加温加湿呼吸过滤器
Baird et al. Out-of-hospital noninvasive ventilation: epidemiology, technology and equipment
Winkler et al. Passive continuous positive airway pressure ventilation during cardiopulmonary resuscitation: a randomized cross-over manikin simulation study
CN210409405U (zh) 一种儿科肺功能康复训练器
Yamamoto et al. Flow visualization for nasal cavity flow in aerosol exhalation through nose treatment
CN208081764U (zh) 一种医用呼吸内科康复训练设备
CN209137652U (zh) 心肺复苏口对口人工呼吸装置
WO2022133657A1 (zh) 一种支持语音功能的呼吸组件及其通气方法和呼吸机
CN217246087U (zh) 温控混流呼吸过滤器
Barneck et al. Flow dynamics in pediatric rigid bronchoscopes using computer‐aided design modeling software
CN210324826U (zh) 用于大型动物离体肺支气管镜辅助练习装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932473

Country of ref document: EP

Kind code of ref document: A1