WO2020047725A1 - 一种高钠含量普鲁士蓝正极材料及其制备方法和应用与钠离子电池 - Google Patents

一种高钠含量普鲁士蓝正极材料及其制备方法和应用与钠离子电池 Download PDF

Info

Publication number
WO2020047725A1
WO2020047725A1 PCT/CN2018/103863 CN2018103863W WO2020047725A1 WO 2020047725 A1 WO2020047725 A1 WO 2020047725A1 CN 2018103863 W CN2018103863 W CN 2018103863W WO 2020047725 A1 WO2020047725 A1 WO 2020047725A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
container
prussian blue
mixed solution
cathode material
Prior art date
Application number
PCT/CN2018/103863
Other languages
English (en)
French (fr)
Inventor
侴术雷
王晚林
李用成
李东祥
宫毅涛
李亚书
Original Assignee
辽宁星空钠电电池有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辽宁星空钠电电池有限公司 filed Critical 辽宁星空钠电电池有限公司
Priority to CN201880004524.4A priority Critical patent/CN110235292B/zh
Priority to PCT/CN2018/103863 priority patent/WO2020047725A1/zh
Publication of WO2020047725A1 publication Critical patent/WO2020047725A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/12Simple or complex iron cyanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of new energy storage materials, and more particularly, relates to a high sodium content Prussian blue cathode material, a preparation method and application thereof, and a sodium ion battery.
  • the research of sodium ion battery materials is mainly divided into the research of positive electrode, negative electrode and electrolyte.
  • the stable anode materials are mainly hard carbon, and many Japanese companies have achieved industrialization.
  • the composition type of the electrolyte of the sodium ion battery is very similar to that of the lithium ion electrolyte, and is mainly an ester organic electrolyte containing a sodium salt.
  • the radius of sodium ions is large, and the instability of the cathode material during charging and discharging has become a key factor restricting the development of sodium ion batteries.
  • Prussian blue cathode materials have a more stable frame structure, wider sodium ion de-embedding channels, and better electrochemical performance than other layered oxides and polyanionic materials. It is stable and therefore attracts the attention of a large number of researchers. Another significant advantage is that the synthesis process is simple. Compared with traditional other types of cathode materials, Prussian blue material does not require high temperature sintering, so it can greatly reduce the material production cost.
  • Prussian blue sodium-ion battery cathode materials can be synthesized mainly by thermal decomposition method, hydrothermal method, and co-precipitation method.
  • the thermal decomposition method and hydrothermal method have low production efficiency and yield, and it is easy to cause the decomposition of ferrocyanide and generate toxic gas during the synthesis process.
  • the co-precipitation method can be regarded as a safe and environmentally-friendly method capable of preparing such materials on a large scale.
  • the method of preparing the Prussian blue anode material by the co-precipitation method currently reported in patent documents mainly includes: a method for preparing a Prussian blue anode material and a sodium ion battery (CN107364875A), a method for preparing low-defect nano-Prussian blue and its application (CN106745068A).
  • the above synthesis method simply mixes the transition metal salt and the sodium ferrocyanide solution, the reaction rate is difficult to control, making the material poor in crystallinity, and the sodium content is not high.
  • the nano-sized Prussian blue material will also make the solid-liquid during the production process. Difficult separation and low production efficiency, meanwhile, the size of the nanoparticles will also make the coating process of the pole pieces difficult, which will affect the electrochemical performance.
  • the sodium content of the Prussian blue cathode material for sodium ion batteries plays a vital role in its electrochemical performance.
  • High sodium content can significantly improve the capacity and structural stability of Prussian blue materials.
  • the key to the level of sodium in Prussian blue materials is the concentration of sodium ions in the solution and the reaction speed of the transition metal ions and ferrocyanide during the synthesis of the material. The appropriate sodium concentration and slow reaction speed have become the preparation of high sodium Prussian blue anodes.
  • micron-sized materials enable fast solid-liquid separation during production and high production efficiency. Compared with nano-sized particles, micron-sized materials have a higher tap density and the fabrication of battery pole pieces is relatively simple. Therefore, how to realize large-scale preparation of Prussian blue cathode materials with high sodium content and micron size has become a direction of future development.
  • the object of the present invention is to provide a Prussian blue cathode material with a high sodium content and a preparation method thereof.
  • the cathode material has a micrometer-sized cubic shape and excellent electrochemical performance.
  • the preparation method makes the material slowly crystallize, has a high sodium content, and is simple and easy. It has high production efficiency and yield, and the raw materials used are cheap, which makes it easy to realize industrial expansion.
  • the high sodium content Prussian blue cathode material has a cubic shape and a particle size of 1-30 microns.
  • the particle size refers to a size of a body diagonal of a cube of Prussian blue cathode material with a high sodium content.
  • a second aspect of the present invention provides a method for preparing a high sodium content Prussian blue cathode material, the preparation method includes the following steps:
  • the first mixed solution and the second mixed solution are added dropwise to a container with a protective atmosphere and a certain temperature, followed by stirring, standing, and then washing, filtering or centrifuging, spraying and vacuum drying to obtain The high sodium content Prussian blue cathode material.
  • the pH of the first mixed solution and the second mixed solution are both between 5.5 and 7.5.
  • the transition metal salt is selected from at least one of a chloride, a sulfate, a carbonate, a nitrate, a phosphate, and an acetate of a transition metal, and the transition metal At least one selected from the group consisting of Fe, Co, Mn, Ni, Cu, Zn, Cr, V, Zr, and Ti.
  • the concentration of the transition metal salt in the first mixed solution is 0.01 to 10 mol / L, preferably 0.01 to 5 mol / L, and still more preferably 0.01 to 1 mol / L.
  • the complexing agent is at least one selected from the group consisting of citric acid, maleic acid, medlar acid, ethylenediaminetetraacetic acid, and ammonia water.
  • the amount of the complexing agent used is 1 to 20 times, preferably 1 to 5 times, the molar amount of the transition metal salt in step (1).
  • the concentration of the sodium ferrocyanide in the second mixed solution is 0.01 to 10 mol / L, preferably 0.01 to 5 mol / L, and still more preferably 0.01 to 1 mol / L.
  • the antioxidants are each independently selected from at least one of ascorbic acid, erythorbic acid, hydrazine hydrate, ferrous sulfate, sodium sulfite, and sodium borohydride.
  • the concentration of the antioxidant is 0.01 to 5 mol / L, preferably 0.01 to 5 mol / L, and still more preferably 0.01 to 1 mol / L.
  • the pH adjusting agents are each independently selected from at least sulfuric acid, hydrochloric acid, nitric acid, citric acid, ascorbic acid, ammonia water, sodium hydroxide, sodium carbonate, and sodium bicarbonate.
  • the sodium salts are each independently selected from sodium chloride, sodium sulfate, sodium nitrate, sodium acetate, trisodium citrate, disodium ethylenediamine tetraacetate, and ethyl acetate. At least one of tetrasodium diamine tetraacetate.
  • the content of the sodium salt in the first mixed solution and the second mixed solution are both 0.01 to 10 mol / L, preferably 0.01 to 5 mol / L, and still more preferably 0.01 to 1.5 mol / L.
  • the amount of each functional component is counted separately.
  • the dropping rates of the first mixed solution and the second mixed solution are both 1 to 500 ml / min, preferably 1 to 10 ml / min; the dropwise addition can be performed by This is done conventionally in the art, such as a peristaltic pump.
  • the stirring speed is 100 to 1200 rpm, preferably 800 to 1200 rpm, and the stirring time is 6 to 72 hours.
  • step (3) the standing time is 1 to 48 hours.
  • step (3) the temperature of the spraying and vacuum drying is between 60-300 ° C.
  • the protective atmosphere is selected from at least one of argon, nitrogen, and hydrogen.
  • the certain temperature is between 0 and 80 ° C.
  • a high sodium content Prussian blue cathode material prepared by the above preparation method is provided.
  • a fourth aspect of the present invention provides the application of the above-mentioned high sodium content Prussian blue cathode material.
  • a fifth aspect of the present invention provides a sodium ion battery, including a negative electrode material, a glass fiber separator, an organic electrolyte, and a positive electrode material, wherein the negative electrode material is a metal sodium or a hard carbon material, and the positive electrode material is the foregoing High sodium content Prussian blue cathode material.
  • the present invention Compared with the Prussian blue sodium ion battery cathode material synthesized by the existing co-precipitation technology, the present invention has the following excellent effects:
  • the Prussian blue cathode material of the present invention has high sodium content, stable material structure, and excellent electrochemical performance, mainly due to the slow crystallization of the control material.
  • the addition of a complexing agent makes the transition metal ions react slowly with ferrocyanide. In order to avoid the direct mixing of the transition metal salt solution and the sodium ferrocyanide solution, the reaction speed is too fast. Slowly mixing the two in the third container also Can effectively reduce the reaction concentration to slow down the reaction speed.
  • the adjustment of pH can increase the complexing ability of the complexing agent and inhibit the hydrolysis effect of transition metal ions.
  • the addition of sodium salt makes the solution have sufficient sodium source, thereby increasing the sodium content in the Prussian blue material.
  • the purpose of adding antioxidants and using a protective atmosphere is to keep the transition metal ions at a low price, thereby ensuring a higher sodium content in the final product.
  • the preparation method of the high sodium content Prussian blue cathode material provided by the present invention is simple and easy to operate, the material exhibits a micrometer-sized cube shape, and the production efficiency is high. By adjusting the reactant concentration ratio, temperature, pH, speed and other parameters, the material production yield and output are high, and it is easy to achieve industrial scale-up production.
  • FIG. 1 is an X-ray diffraction pattern of a high sodium content Prussian blue cathode material prepared in Example 6 of the present invention.
  • FIG. 2 is a scanning electron microscope image of a high sodium content Prussian blue cathode material prepared in Example 6 of the present invention.
  • FIG. 3 is a 0.5C first charge-discharge curve diagram of the high sodium content Prussian blue cathode material prepared in Example 6 of the present invention.
  • FIG. 4 is a 0.5C charge-discharge cycle performance diagram of the high sodium content Prussian blue cathode material prepared in Example 6 of the present invention.
  • Nitrogen is introduced into the container C at 25 ° C, and then the solutions in the container A and the container B are simultaneously added dropwise to the container C at a rate of 2 ml / min by a peristaltic pump.
  • the stirring speed in the container C is 1000. Turn / hour, after all the solutions in container A and container B are added to container C, stirring is continued for 12 hours.
  • An electrode sheet was prepared from the obtained Prussian blue positive electrode material, and the electrode sheet was assembled with a glass fiber separator, sodium metal, and an organic electrolytic solution to obtain a sodium ion battery.
  • Nitrogen is introduced into the container C at 25 ° C, and then the solutions in the container A and the container B are simultaneously added dropwise to the container C at a rate of 2 ml / min by a peristaltic pump.
  • the stirring speed in the container C is 1000. Turn / hour, after all the solutions in container A and container B are added to container C, stirring is continued for 12 hours.
  • An electrode sheet was prepared from the obtained Prussian blue positive electrode material, and the electrode sheet was assembled with a glass fiber separator, sodium metal, and an organic electrolytic solution to obtain a sodium ion battery.
  • An electrode sheet was prepared from the obtained Prussian blue positive electrode material, and the electrode sheet was assembled with a glass fiber separator, sodium metal, and an organic electrolytic solution to obtain a sodium ion battery.
  • Nitrogen is introduced into the container C at 25 ° C, and then the solutions in the container A and the container B are simultaneously added dropwise to the container C at a rate of 2 ml / min by a peristaltic pump.
  • the stirring speed in the container C is 1000. Turn / hour, after all the solutions in container A and container B are added to container C, stirring is continued for 12 hours.
  • An electrode sheet was prepared from the obtained Prussian blue positive electrode material, and the electrode sheet was assembled with a glass fiber separator, sodium metal, and an organic electrolytic solution to obtain a sodium ion battery.
  • Nitrogen is introduced into the container C at 25 ° C, and then the solutions in the container A and the container B are simultaneously added dropwise to the container C at a rate of 2 ml / min by a peristaltic pump.
  • the stirring speed in the container C is 1000. Turn / hour, after all the solutions in container A and container B are added to container C, stirring is continued for 12 hours.
  • An electrode sheet was prepared from the obtained Prussian blue positive electrode material, and the electrode sheet was assembled with a glass fiber separator, sodium metal, and an organic electrolytic solution to obtain a sodium ion battery.
  • Nitrogen is introduced into the container C at 25 ° C, and then the solutions in the container A and the container B are simultaneously added dropwise to the container C at a rate of 2 ml / min by a peristaltic pump.
  • the stirring speed in the container C is 1000. Turn / hour, after all the solutions in container A and container B are added to container C, stirring is continued for 12 hours.
  • the obtained Prussian blue positive electrode material was made into an electrode sheet, and it was assembled with a glass fiber separator, sodium metal, and an organic electrolyte to obtain a sodium ion battery.
  • Nitrogen was introduced into container A at 25 ° C, 100 ml of deionized water was added, and then 0.2 g of ascorbic acid, 6 mmol of ferrous sulfate heptahydrate, 6 mmol of manganese sulfate monohydrate, and 24 mmol of trisodium citrate dihydrate were dissolved in this order.
  • container A the pH of the solution in container A was 6.9.
  • Nitrogen was bubbled into container B at 25 ° C, and 100 ml of deionized water was added. Then, 0.2 g of ascorbic acid, 8 mmol of sodium ferrocyanate decahydrate, and 24 mmol of trisodium citrate dihydrate were sequentially dissolved in container B. The pH of the solution was 6.9.
  • Nitrogen is introduced into the container C at 25 ° C, and then the solutions in the container A and the container B are simultaneously added dropwise to the container C at a rate of 2 ml / min by a peristaltic pump.
  • the stirring speed in the container C is 1000. Turn / hour, after all the solutions in container A and container B are added to container C, stirring is continued for 12 hours.
  • An electrode sheet was prepared from the obtained Prussian blue positive electrode material, and the electrode sheet was assembled with a glass fiber separator, sodium metal, and an organic electrolytic solution to obtain a sodium ion battery.
  • An electrode sheet was prepared from the obtained Prussian blue positive electrode material, and the electrode sheet was assembled with a glass fiber separator, sodium metal, and an organic electrolytic solution to obtain a sodium ion battery.
  • An electrode sheet was prepared from the obtained Prussian blue positive electrode material, and the electrode sheet was assembled with a glass fiber separator, sodium metal, and an organic electrolytic solution to obtain a sodium ion battery.
  • Nitrogen gas was introduced into container A at 60 ° C, 100 ml of deionized water was added, and then 0.5 g of ascorbic acid, 45 mmol of manganese sulfate monohydrate, and 90 mmol of trisodium citrate dihydrate were sequentially dissolved in container A.
  • the pH of the solution was 7.
  • Nitrogen was introduced into container B at 60 ° C, and 100 ml of deionized water was added. Then, 0.5 g of ascorbic acid, 30 mmol of sodium ferrocyanate decahydrate, and 90 mmol of trisodium citrate dihydrate were sequentially dissolved in container B.
  • the pH of the solution was 7.
  • An electrode sheet was prepared from the obtained Prussian blue positive electrode material, and the electrode sheet was assembled with a glass fiber separator, sodium metal, and an organic electrolytic solution to obtain a sodium ion battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于储能新材料技术领域,涉及一种高钠含量普鲁士蓝正极材料及其制备方法和应用与钠离子电池。所述高钠含量普鲁士蓝正极材料的分子式为NaxMaNbFe(CN)6,其中,M和N为相同或不同的过渡金属,各自独立地选自Fe、Co、Mn、Ni、Cu、Zn、Cr、V、Zr或Ti,1.8<x<2,0<a<1,0<b<1,a+b=1。该正极材料呈微米级立方体形貌,电化学性能优异,该制备方法使得材料缓慢结晶,钠含量高,且简单易行,生产效率及产率高,所用原料价格低廉,容易实现工业扩大生产。

Description

一种高钠含量普鲁士蓝正极材料及其制备方法和应用与钠离子电池 技术领域
本发明属于储能新材料技术领域,更具体地,涉及一种高钠含量普鲁士蓝正极材料及其制备方法和应用,以及一种钠离子电池。
背景技术
由于近年以来温室效应和环境问题的不断加剧,开发利用清洁能源成为了改善环境的有效手段,风能、太阳能、潮汐能等可以通过电池储能器件来实现能量的存储与利用。过去二十年以来,锂离子电池已经占据了主要市场。然而,全球范围内的锂资源有限,且价格不断升高,开发利用资源丰富且价格低廉的钠离子电池成为了接下来的目标与任务,由于钠和锂相似的化学性质,钠离子电池有望成为未来最具潜力的电池储能器件。
目前钠离子电池材料的研究主要分为正极、负极及电解液的研究。其中,性能比较稳定的负极材料主要以硬碳为主,日本多家公司已实现产业化。钠离子电池电解液的成分类型与锂离子电解液极为相似,主要为含有钠盐的酯类有机电解液。然而钠离子半径较大,充放电过程中正极材料的不稳定性成为了制约钠离子电池发展的关键因素。在众多钠离子电池正极材料中,普鲁士蓝类正极材料相比于其他层状氧化物和聚阴离子型等类型材料,具有更加稳定的框架结构,较宽的钠离子脱嵌通道,电化学性能较为稳定,因此吸引了大量研究者的关注,其另一个显著优势是合成过程简单,与传统其他类型的正极材料相比,普鲁士蓝材料不需要高温烧结,因此可以大大降低材料生产成本。
普鲁士蓝类钠离子电池正极材料主要可以通过热分解法、水热法、共沉淀法合成。其中热分解法和水热法生产效率和产率较低,且合成过程中 容易造成亚铁氰根分解,产生毒气。共沉淀法可以视为安全环保且能够大规模制备此类材料的方法,目前专利文献报道的共沉淀法制备普鲁士蓝正极材料的方法主要包括:一种制备普鲁士蓝正极材料的方法及钠离子电池(CN107364875A),一种低缺陷的纳米普鲁士蓝的制备方法及其应用(CN106745068A)。以上合成方法简单的将过渡金属盐和亚铁***溶液进行混合,反应速度难以控制,使得材料结晶度差,钠含量不高,纳米小颗粒的普鲁士蓝材料也会使得生产过程中固液分离困难,生产效率低,同时纳米颗粒尺寸也会造成极片涂布过程困难,进而影响电化学性能。
钠离子电池普鲁士蓝正极材料中的钠含量对其电化学性能起到至关重要的作用,高钠含量可以显著提高普鲁士蓝材料的容量及结构稳定性。普鲁士蓝材料中钠含量的高低关键在于材料合成时溶液中的钠离子浓度以及过渡金属离子与亚铁氰根的反应速度,合适的钠浓度以及缓慢的反应速度成为了制备高钠含量普鲁士蓝正极材料的必要条件。此外,微米尺寸的材料能够使得生产过程中固液分离快,生产效率高。相比纳米小颗粒,微米级尺寸的材料具有更高的振实密度且电池极片制作相对简单。因此,如何实现大规模制备高钠含量微米尺寸的普鲁士蓝类正极材料成为的未来的发展的一个方向。
发明内容
本发明的目的是提供一种高钠含量普鲁士蓝正极材料及其制备方法,该正极材料呈微米级立方体形貌,电化学性能优异,该制备方法使得材料缓慢结晶,钠含量高,且简单易行,生产效率及产率高,所用原料价格低廉,容易实现工业扩大生产。
为了实现上述目的,本发明的第一方面提供一种高钠含量普鲁士蓝正极材料,所述高钠含量普鲁士蓝正极材料的分子式为Na xM aN bFe(CN) 6,其中,M和N为相同或不同的过渡金属,各自独立地选自Fe、Co、Mn、Ni、 Cu、Zn、Cr、V、Zr或Ti,优选为Fe、Co或Mn,1.8<x<2,0<a<1,0<b<1,a+b=1。
进一步地,所述高钠含量普鲁士蓝正极材料呈立方体形貌,粒径为1-30微米。本发明中,所述粒径是指高钠含量普鲁士蓝正极材料立方体的体对角线的尺寸。
本发明的第二方面提供一种高钠含量普鲁士蓝正极材料的制备方法,所述制备方法包括以下步骤:
(1)在保护气氛和一定温度下,将过渡金属盐、抗氧化剂、络合剂、pH调节剂、钠盐溶解于水中,得到含过渡金属盐的第一混合溶液;
(2)在保护气氛和一定温度下,将亚铁***、抗氧化剂、pH调节剂、钠盐溶解于水中,得到含亚铁***的第二混合溶液;
(3)将所述第一混合溶液和所述第二混合溶液分别滴加到具有保护气氛及一定温度的容器中,然后搅拌、静置,随后洗涤、过滤或离心、喷雾和真空干燥,得到所述高钠含量普鲁士蓝正极材料。
进一步地,所述第一混合溶液和所述第二混合溶液的pH均在5.5~7.5之间。
进一步地,在步骤(1)中,所述过渡金属盐选自过渡金属的氯化盐、硫酸盐、碳酸盐、硝酸盐、磷酸盐、乙酸盐中的至少一种,所述过渡金属选自Fe、Co、Mn、Ni、Cu、Zn、Cr、V、Zr和Ti中的至少一种。
进一步地,所述第一混合溶液中过渡金属盐的浓度为0.01~10mol/L,优选为0.01~5mol/L,进一步优选为0.01~1mol/L。
进一步地,在步骤(1)中,所述络合剂选自柠檬酸、马来酸、枸杞酸、乙二胺四乙酸和氨水中的至少一种。
进一步地,所述络合剂的用量为步骤(1)中所述过渡金属盐摩尔量的1~20倍,优选为1~5倍。
进一步地,在步骤(2)中,所第二混合溶液中述亚铁***的浓度为 0.01~10mol/L,优选为0.01~5mol/L,进一步优选为0.01~1mol/L。
进一步地,在步骤(1)和(2)中,所述抗氧化剂各自独立地选自抗坏血酸、异抗坏血酸、水合肼、硫酸亚铁、亚硫酸钠、硼氢化钠中的至少一种。
进一步地,所述第一混合溶液和所述第二混合溶液中,抗氧化剂的浓度均为0.01~5mol/L,优选为0.01~5mol/L,进一步优选为0.01~1mol/L。
进一步地,在步骤(1)和(2)中,所述pH调节剂各自独立地选自硫酸、盐酸、硝酸、柠檬酸、抗坏血酸、氨水、氢氧化钠、碳酸钠和碳酸氢钠中的至少一种。
进一步地,在步骤(1)和(2)中,所述钠盐各自独立地选自氯化钠、硫酸钠、硝酸钠、乙酸钠、柠檬酸三钠、乙二胺四乙酸二钠和乙二胺四乙酸四钠中的至少一种。
进一步地,所述第一混合溶液和所述第二混合溶液中,钠盐的含量均为0.01~10mol/L,优选为0.01~5mol/L,进一步优选为0.01~1.5mol/L。
根据本发明,当一种物质可同时作为多种上述功能组分时,分别计入各种功能组分的用量。
进一步地,在步骤(3)中,所述第一混合溶液和所述第二混合溶液的滴加速度均为1~500毫升/分钟,优选为1~10毫升/分钟;所述滴加可通过本领域常规方式实现,例如蠕动泵。
进一步地,在步骤(3)中,所述搅拌的速度为100~1200转/分钟,优选为800~1200转/分钟,所述搅拌的时间为6~72小时。
进一步地,在步骤(3)中,所述静置的时间为1~48小时。
进一步地,在步骤(3)中,所述喷雾和真空干燥的温度均在60~300℃之间。
进一步地,在所有步骤中,所述保护气氛选自氩气、氮气和氢气中的至少一种。
进一步地,在所有步骤中,所述一定温度均在0~80℃之间。
本发明的第三方面提供由上述制备方法制得的高钠含量普鲁士蓝正极材料。
本发明的第四方面提供上述高钠含量普鲁士蓝正极材料的应用。
本发明的第五方面提供一种钠离子电池,包括负极材料、玻璃纤维隔膜、有机电解液和正极材料,其特征在于,所述负极材料为金属钠或硬碳材料,所述正极材料为上述高钠含量普鲁士蓝正极材料。
与现有已报道共沉淀技术合成的普鲁士蓝钠离子电池正极材料相比,本发明具有的优异效果如下:
1、本发明的普鲁士蓝正极材料钠含量高,材料结构稳定,电化学性能优异,主要得益于控制材料缓慢结晶。络合剂的加入使得过渡金属离子缓慢与亚铁氰根反应,为避免过渡金属盐溶液和亚铁***溶液直接混合导致反应速度过快,在第三容器中将两种进行缓慢混合也可以有效降低反应浓度从而减缓反应速度。此外,pH的调控可以增加络合剂的络合能力且抑制过渡金属离子的水解效应,钠盐的加入使得溶液中具有足够的钠源,从而提高普鲁士蓝材料中的钠含量。加入抗氧化剂和使用保护气氛的目的是使过渡金属离子始终处于低价态,从而保证最终产物中较高的钠含量。
2、本发明提供的高钠含量普鲁士蓝正极材料的制备方法简单易操作,材料呈现微米尺寸立方体形貌,生产效率高。通过调控反应物浓度比例、温度、pH、转速等参数,材料生产产率和产量高,容易实现工业放大生产。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
附图说明
通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显。
图1为本发明实施例6所制备得到的高钠含量普鲁士蓝正极材料的X 射线衍射图。
图2为本发明实施例6所制备得到的高钠含量普鲁士蓝正极材料的扫描电镜图。
图3为本发明实施例6所制备得到的高钠含量普鲁士蓝正极材料的0.5C首次充放电曲线图。
图4为本发明实施例6所制备得到的高钠含量普鲁士蓝正极材料的0.5C充放电循环性能图。
具体实施方式
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。
实施例1
普鲁士蓝正极材料的制备:
(1)在25℃下将容器A中通入氮气,加入100ml去离子水,随后依次将0.1g抗坏血酸、6mmol七水合硫酸亚铁、12mmol柠檬酸、6mmol硫酸钠溶解于容器A中,加入氨水调节容器A中溶液的pH=6.5。在25℃下将容器B中通入氮气,加入100ml去离子水,随后依次将0.1g抗坏血酸、4mmol十水合亚铁***、6mmol硫酸钠溶解于容器B中,容器B中溶液的pH=6.5。
(2)在25℃下将容器C中通入氮气,随后将容器A和容器B中的溶液分别通过蠕动泵以2ml/分钟的速度同时滴加到容器C中,容器C中搅拌速度为1000转/小时,待容器A和容器B中的溶液全部加入到容器C中后,继续搅拌12小时。
(3)随后将溶液静置24小时,然后将溶液上清液抽离,剩余浆料离心水洗3次,随后250℃喷雾干燥,再180℃真空干燥12小时。即得到分 子式为Na 1.82FeFe(CN) 6的普鲁士蓝正极材料,得到的材料呈立方体形貌,粒径为2.5微米,产率为90%。
钠离子电池的制备:
将得到的普鲁士蓝正极材料制作成电极片,与玻璃纤维隔膜、金属钠、有机电解液进行组装,得到钠离子电池。
实施例2
普鲁士蓝正极材料的制备:
(1)在25℃下将容器A中通入氮气,加入100ml去离子水,随后依次将0.1g抗坏血酸、6mmol七水合硫酸亚铁、12mmol柠檬酸、8mmol硫酸钠溶解于容器A中,加入氨水调节容器A中溶液的pH=6.5。在25℃下将容器B中通入氮气,加入100ml去离子水,随后依次将0.1g抗坏血酸、4mmol十水合亚铁***、8mmol硫酸钠溶解于容器B中,容器B中溶液的pH=6.5。
(2)在25℃下将容器C中通入氮气,随后将容器A和容器B中的溶液分别通过蠕动泵以2ml/分钟的速度同时滴加到容器C中,容器C中搅拌速度为1000转/小时,待容器A和容器B中的溶液全部加入到容器C中后,继续搅拌12小时。
(3)随后将溶液静置24小时,然后将溶液上清液抽离,剩余浆料离心水洗3次,随后250℃喷雾干燥,再180℃真空干燥12小时。即得到分子式为Na 1.84FeFe(CN) 6的普鲁士蓝正极材料,得到的材料呈立方体形貌,粒径为2微米,产率为92%。
钠离子电池的制备:
将得到的普鲁士蓝正极材料制作成电极片,与玻璃纤维隔膜、金属钠、有机电解液进行组装,得到钠离子电池。
实施例3
普鲁士蓝正极材料的制备:
(1)在25℃下将容器A中通入氮气,加入100ml去离子水,随后依次将0.1g抗坏血酸、4mmol七水合硫酸亚铁、2mmol一水合硫酸锰、12mmol柠檬酸、10mmol硫酸钠溶解于容器A中,加入氨水调节容器A中溶液的pH=6.5。在25℃下将容器B中通入氮气,加入100ml去离子水,随后依次将0.1g抗坏血酸、4mmol十水合亚铁***、10mmol硫酸钠溶解于容器B中,容器B中溶液的pH=6.5。
(3)在25℃下将容器C中通入氮气,随后将容器A和容器B中的溶液分别通过蠕动泵以2ml/分钟的速度同时滴加到容器C中,容器C中搅拌速度为1000转/小时,待容器A和容器B中的溶液全部加入到容器C中后,继续搅拌12小时。
(3)随后将溶液静置24小时,然后将溶液上清液抽离,剩余浆料离心水洗3次,随后250℃喷雾干燥,再180℃真空干燥12小时。即得到分子式为Na 1.86Fe 0.67Mn 0.33Fe(CN) 6的普鲁士蓝正极材料,得到的材料呈立方体形貌,粒径为3微米,产率为92%。
钠离子电池的制备:
将得到的普鲁士蓝正极材料制作成电极片,与玻璃纤维隔膜、金属钠、有机电解液进行组装,得到钠离子电池。
实施例4
普鲁士蓝正极材料的制备:
(1)在25℃下将容器A中通入氮气,加入100ml去离子水,随后依次将0.1g抗坏血酸、4mmol七水合硫酸亚铁、2mmol七水合硫酸钴、12mmol柠檬酸、12mmol硫酸钠溶解于容器A中,加入氨水调节容器A中溶液的pH=6.5。在25℃下将容器B中通入氮气,加入100ml去离子水,随后依次 将0.1g抗坏血酸、4mmol十水合亚铁***、12mmol硫酸钠溶解于容器B中,容器B中溶液的pH=6.5。
(2)在25℃下将容器C中通入氮气,随后将容器A和容器B中的溶液分别通过蠕动泵以2ml/分钟的速度同时滴加到容器C中,容器C中搅拌速度为1000转/小时,待容器A和容器B中的溶液全部加入到容器C中后,继续搅拌12小时。
(3)随后将溶液静置24小时,然后将溶液上清液抽离,剩余浆料离心水洗3次,随后250℃喷雾干燥,再180℃真空干燥12小时。即得到分子式为Na 1.89Fe 0.67Co 0.33Fe(CN) 6的普鲁士蓝正极材料,得到的材料呈立方体形貌,粒径为3微米,产率为91%。
钠离子电池的制备:
将得到的普鲁士蓝正极材料制作成电极片,与玻璃纤维隔膜、金属钠、有机电解液进行组装,得到钠离子电池。
实施例5
普鲁士蓝正极材料的制备:
(1)在25℃下将容器A中通入氮气,加入100ml去离子水,随后依次将0.1g抗坏血酸、5mmol七水合硫酸亚铁、1mmol六水合硫酸镍、12mmol柠檬酸、14mmol硫酸钠溶解于容器A中,加入氨水调节容器A中溶液的pH=6.5。在25℃下将容器B中通入氮气,加入100ml去离子水,随后依次将0.1g抗坏血酸、4mmol十水合亚铁***、14mmol硫酸钠溶解于容器B中,容器B中溶液的pH=6.5。
(2)在25℃下将容器C中通入氮气,随后将容器A和容器B中的溶液分别通过蠕动泵以2ml/分钟的速度同时滴加到容器C中,容器C中搅拌速度为1000转/小时,待容器A和容器B中的溶液全部加入到容器C中后,继续搅拌12小时。
(3)随后将溶液静置24小时,然后将溶液上清液抽离,剩余浆料离心水洗3次,随后250℃喷雾干燥,再180℃真空干燥12小时。即得到分子式为Na 1.91Fe 0.83Ni 0.17Fe(CN) 6的普鲁士蓝正极材料,得到的材料呈立方体形貌,粒径为3.5微米,产率为90%。
钠离子电池的制备:
将得到的普鲁士蓝正极材料制作成电极片,与玻璃纤维隔膜、金属钠、有机电解液进行组装,得到钠离子电池。
实施例6
普鲁士蓝正极材料的制备:
(1)在25℃下将容器A中通入氮气,加入100ml去离子水,随后依次将0.1g抗坏血酸、6mmol七水合硫酸亚铁、12mmol二水合柠檬酸三钠溶解于容器A中,容器A中溶液的pH=6.8。在25℃下将容器B中通入氮气,加入100ml去离子水,随后依次将0.1g抗坏血酸、4mmol十水合亚铁***、12mmol二水合柠檬酸三钠溶解于容器B中,容器B中溶液的pH=6.8。
(2)在25℃下将容器C中通入氮气,随后将容器A和容器B中的溶液分别通过蠕动泵以2ml/分钟的速度同时滴加到容器C中,容器C中搅拌速度为1000转/小时,待容器A和容器B中的溶液全部加入到容器C中后,继续搅拌12小时。
(3)随后将溶液静置24小时,然后将溶液上清液抽离,剩余浆料离心水洗3次,随后250℃喷雾干燥,再180℃真空干燥12小时。即得到分子式为Na 1.92FeFe(CN) 6的普鲁士蓝正极材料,得到的材料呈立方体形貌,粒径为2微米,产率为90%。
钠离子电池的制备:
将得到的普鲁士蓝正极材料制作成电极片,与玻璃纤维隔膜、金属钠、 有机电解液进行组装,得到钠离子电池。
实施例7
普鲁士蓝正极材料的制备:
(1)在25℃下将容器A中通入氮气,加入100ml去离子水,随后依次将0.2g抗坏血酸、6mmol七水合硫酸亚铁、6mmol一水合硫酸锰、24mmol二水合柠檬酸三钠溶解于容器A中,容器A中溶液的pH=6.9。在25℃下将容器B中通入氮气,加入100ml去离子水,随后依次将0.2g抗坏血酸、8mmol十水合亚铁***、24mmol二水合柠檬酸三钠溶解于容器B中,容器B中溶液的pH=6.9。
(2)在25℃下将容器C中通入氮气,随后将容器A和容器B中的溶液分别通过蠕动泵以2ml/分钟的速度同时滴加到容器C中,容器C中搅拌速度为1000转/小时,待容器A和容器B中的溶液全部加入到容器C中后,继续搅拌12小时。
(3)随后将溶液静置24小时,然后将溶液上清液抽离,剩余浆料离心水洗3次,随后250℃喷雾干燥,再180℃真空干燥12小时。即得到分子式为Na 1.91Fe 0.5Mn 0.5Fe(CN) 6的普鲁士蓝正极材料,得到的材料呈立方体形貌,粒径为3.5微米,产率为88%。
钠离子电池的制备:
将得到的普鲁士蓝正极材料制作成电极片,与玻璃纤维隔膜、金属钠、有机电解液进行组装,得到钠离子电池。
实施例8
普鲁士蓝正极材料的制备:
(1)在35℃下将容器A中通入氮气,加入100ml去离子水,随后依次将5g抗坏血酸、9mmol七水合硫酸亚铁、9mmol七水合硫酸钴、27mmol  EDTA-4Na溶解于容器A中,容器A中溶液的pH=7。在35℃下将容器B中通入氮气,加入100ml去离子水,随后依次将5g抗坏血酸、12mmol十水合亚铁***、27mmol EDTA-4Na溶解于容器B中,容器B中溶液的pH=7。
(2)在35℃下将容器C中通入氮气,随后将容器A和容器B中的溶液分别通过蠕动泵以2ml/分钟的速度同时滴加到容器C中,容器C中搅拌速度为1000转/小时,待容器A和容器B中的溶液全部加入到容器C中后,继续搅拌12小时。
(3)随后将溶液静置24小时,然后将溶液上清液抽离,剩余浆料离心水洗3次,随后250℃喷雾干燥,再180℃真空干燥12小时。即得到分子式为Na 1.93Fe 0.5Co 0.5Fe(CN) 6的普鲁士蓝正极材料,得到的材料呈立方体形貌,粒径为3微米,产率为89%。
钠离子电池的制备:
将得到的普鲁士蓝正极材料制作成电极片,与玻璃纤维隔膜、金属钠、有机电解液进行组装,得到钠离子电池。
实施例9
普鲁士蓝正极材料的制备:
(1)在35℃下将容器A中通入氮气,加入100ml去离子水,随后依次将0.3g抗坏血酸、27mmol七水合硫酸钴、9mmol六水合硫酸镍、72mmol二水合柠檬酸三钠溶解于容器A中,容器A中溶液的pH=7。在35℃下将容器B中通入氮气,加入100ml去离子水,随后依次将0.3g抗坏血酸、24mmol十水合亚铁***、72mmol二水合柠檬酸三钠溶解于容器B中,容器B中溶液的pH=7。
(2)在35℃下将容器C中通入氮气,随后将容器A和容器B中的溶液分别通过蠕动泵以2ml/分钟的速度同时滴加到容器C中,容器C中搅拌 速度为1000转/小时,待容器A和容器B中的溶液全部加入到容器C中后,继续搅拌12小时。
(3)随后将溶液静置24小时,然后将溶液上清液抽离,剩余浆料离心水洗3次,随后250℃喷雾干燥,再180℃真空干燥12小时。即得到分子式为Na 1.94Co 0.75Ni 0.25Fe(CN) 6的普鲁士蓝正极材料,得到的材料呈立方体形貌,粒径为4微米,产率为90%。
钠离子电池的制备:
将得到的普鲁士蓝正极材料制作成电极片,与玻璃纤维隔膜、金属钠、有机电解液进行组装,得到钠离子电池。
实施例10
普鲁士蓝正极材料的制备:
(1)在60℃下将容器A中通入氮气,加入100ml去离子水,随后依次将0.5g抗坏血酸、45mmol一水合硫酸锰、90mmol二水合柠檬酸三钠溶解于容器A中,容器A中溶液的pH=7。在60℃下将容器B中通入氮气,加入100ml去离子水,随后依次将0.5g抗坏血酸、30mmol十水合亚铁***、90mmol二水合柠檬酸三钠溶解于容器B中,容器B中溶液的pH=7。
(2)在60℃下将容器C中通入氮气,随后将容器A和容器B中的溶液分别通过蠕动泵以2ml/分钟的速度同时滴加到容器C中,容器C中搅拌速度为1000转/小时,待容器A和容器B中的溶液全部加入到容器C中后,继续搅拌12小时。
(3)随后将溶液静置24小时,然后将溶液上清液抽离,剩余浆料离心水洗3次,随后250℃喷雾干燥,再180℃真空干燥12小时。即得到分子式为Na 1.93MnFe(CN) 6的普鲁士蓝正极材料,得到的材料呈立方体形貌,粒径为5微米,产率为89%。
钠离子电池的制备:
将得到的普鲁士蓝正极材料制作成电极片,与玻璃纤维隔膜、金属钠、有机电解液进行组装,得到钠离子电池。
测试例
将上述实施例制备的钠离子电池在10mA/g电流密度下的充放电测试,所测数据如表2所示:
表2
Figure PCTCN2018103863-appb-000001
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (15)

  1. 一种高钠含量普鲁士蓝正极材料,其特征在于,所述高钠含量普鲁士蓝正极材料的分子式为Na xM aN bFe(CN) 6,其中,M和N为相同或不同的过渡金属,各自独立地选自Fe、Co、Mn、Ni、Cu、Zn、Cr、V、Zr或Ti,1.8<x<2,0<a<1,0<b<1,a+b=1。
  2. 根据权利要求1所述的高钠含量普鲁士蓝正极材料,其特征在于,所述高钠含量普鲁士蓝正极材料呈立方体形貌,粒径为1-30微米。
  3. 一种高钠含量普鲁士蓝正极材料的制备方法,其特征在于,所述制备方法包括以下步骤:
    (1)在保护气氛和一定温度下,将过渡金属盐、抗氧化剂、络合剂、pH调节剂、钠盐溶解于水中,得到含过渡金属盐的第一混合溶液;
    (2)在保护气氛和一定温度下,将亚铁***、抗氧化剂、pH调节剂、钠盐溶解于水中,得到含亚铁***的第二混合溶液;
    (3)将所述第一混合溶液和所述第二混合溶液分别滴加到具有保护气氛及一定温度的容器中,然后搅拌、静置,随后洗涤、过滤或离心、喷雾和真空干燥,得到所述高钠含量普鲁士蓝正极材料。
  4. 根据权利要求3所述的制备方法,其特征在于,所述第一混合溶液和所述第二混合溶液的pH均在5.5~7.5之间。
  5. 根据权利要求3所述的制备方法,其特征在于,在步骤(1)中,所述过渡金属盐选自过渡金属的氯化盐、硫酸盐、碳酸盐、硝酸盐、磷酸盐、乙酸盐中的至少一种,所述过渡金属选自Fe、Co、Mn、Ni、Cu、Zn、Cr、V、Zr和Ti中的至少一种;所述第一混合溶液中过渡金属盐的浓度为 0.01~10mol/L。
  6. 根据权利要求3所述的制备方法,其特征在于,在步骤(1)中,所述络合剂选自柠檬酸、马来酸、枸杞酸、乙二胺四乙酸、柠檬酸三钠和氨水中的至少一种,所述络合剂的用量为步骤(1)中所述过渡金属盐摩尔量的1~20倍。
  7. 根据权利要求3所述的制备方法,其特征在于,在步骤(2)中,所述第二混合溶液中亚铁***的浓度为0.01~10mol/L。
  8. 根据权利要求3所述的制备方法,其特征在于,在步骤(1)和(2)中,所述抗氧化剂各自独立地选自抗坏血酸、异抗坏血酸、水合肼、硫酸亚铁、亚硫酸钠、硼氢化钠中的至少一种,所述第一混合溶液和所述第二混合溶液中,抗氧化剂的浓度均为0.01~5mol/L。
  9. 根据权利要求3所述的制备方法,其特征在于,在步骤(1)和(2)中,所述pH调节剂各自独立地选自硫酸、盐酸、硝酸、柠檬酸、抗坏血酸、氨水、氢氧化钠、碳酸钠和碳酸氢钠中的至少一种。
  10. 根据权利要求3所述制备方法,其特征在于,在步骤(1)和(2)中,所述钠盐各自独立地选自氯化钠、硫酸钠、硝酸钠、乙酸钠、柠檬酸三钠、乙二胺四乙酸二钠和乙二胺四乙酸四钠中的至少一种;所述第一混合溶液和所述第二混合溶液中,钠盐的含量均为0.01~10mol/L。
  11. 根据权利要求3所述的制备方法,其特征在于,在步骤(3)中,
    所述第一混合溶液和所述第二混合溶液的滴加速度均为1~500毫升/分 钟;
    所述搅拌的速度为100~1200转/分钟,所述搅拌的时间为6~72小时;
    所述静置的时间为1~48小时;
    所述喷雾和真空干燥的温度均在60~300℃之间。
  12. 根据权利要求3-11中任意一项所述的制备方法,其特征在于,在所有步骤中,
    所述保护气氛选自氩气、氮气和氢气中的至少一种;
    所述一定温度均在0~80℃之间。
  13. 由权利要求3-12中任意一项所述的制备方法制得的高钠含量普鲁士蓝正极材料。
  14. 权利要求1、2和13中任意一项所述的高钠含量普鲁士蓝正极材料的应用。
  15. 一种钠离子电池,包括负极材料、玻璃纤维隔膜、有机电解液和正极材料,其特征在于,所述负极材料为金属钠或硬碳材料,所述正极材料为权利要求1、2和13中任意一项所述的高钠含量普鲁士蓝正极材料。
PCT/CN2018/103863 2018-09-04 2018-09-04 一种高钠含量普鲁士蓝正极材料及其制备方法和应用与钠离子电池 WO2020047725A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880004524.4A CN110235292B (zh) 2018-09-04 2018-09-04 一种高钠含量普鲁士蓝正极材料及其制备方法和应用与钠离子电池
PCT/CN2018/103863 WO2020047725A1 (zh) 2018-09-04 2018-09-04 一种高钠含量普鲁士蓝正极材料及其制备方法和应用与钠离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/103863 WO2020047725A1 (zh) 2018-09-04 2018-09-04 一种高钠含量普鲁士蓝正极材料及其制备方法和应用与钠离子电池

Publications (1)

Publication Number Publication Date
WO2020047725A1 true WO2020047725A1 (zh) 2020-03-12

Family

ID=67862312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103863 WO2020047725A1 (zh) 2018-09-04 2018-09-04 一种高钠含量普鲁士蓝正极材料及其制备方法和应用与钠离子电池

Country Status (2)

Country Link
CN (1) CN110235292B (zh)
WO (1) WO2020047725A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943228A (zh) * 2020-08-24 2020-11-17 全球能源互联网研究院有限公司 一种普鲁士蓝类钠离子电池正极材料及其制备方法
CN114477233A (zh) * 2022-02-16 2022-05-13 温州大学碳中和技术创新研究院 一种高熵多金属普鲁士蓝及其类似物制备方法和钠离子电池

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115023829A (zh) * 2020-02-24 2022-09-06 辽宁星空钠电电池有限公司 一种低水分含量的普鲁士蓝钠离子电池正极材料及其制备方法和钠离子电池
CN111547742B (zh) * 2020-04-14 2023-04-07 浙江钠创新能源有限公司 一种钠离子电池正极材料及其制备方法和钠离子电池
CN111943227B (zh) * 2020-07-27 2022-07-01 北京航空航天大学 一种低缺陷和低水含量的普鲁士白类似物的制备方法
CN111943225B (zh) * 2020-08-24 2023-04-18 全球能源互联网研究院有限公司 一种普鲁士蓝类钠离子电池正极材料及其制备方法
CN112142069A (zh) * 2020-09-27 2020-12-29 广州大学 一种普鲁士蓝类似物及其形貌控制方法和应用
CN112607748A (zh) * 2020-12-24 2021-04-06 三峡大学 一种多元普鲁士蓝钠离子电池正极材料及其制备方法
CN113104863A (zh) * 2021-03-29 2021-07-13 三峡大学 惰性过渡金属元素掺杂铁基普鲁士蓝钠离子电池正极材料
KR102315320B1 (ko) * 2021-06-18 2021-10-19 경북대학교 산학협력단 양극활물질, 이의 제조방법 및 이를 포함하는 나트륨 이온 이차전지
CN114188502B (zh) * 2021-11-30 2024-02-13 湖南钠方新能源科技有限责任公司 一种普鲁士白复合材料及其制备方法和应用
CN114388796B (zh) * 2021-12-17 2023-07-07 合肥国轩高科动力能源有限公司 一种掺杂型正极材料、制备方法及钠离子电池
CN114506860B (zh) * 2022-01-07 2023-08-22 清华大学 一种铁锰基普鲁士蓝固溶体及其制备方法
CN114455609B (zh) * 2022-02-16 2023-04-07 温州大学碳中和技术创新研究院 循环稳定的低成本钠离子电池正极材料制备方法及应用
CN115124050A (zh) * 2022-06-01 2022-09-30 湖州超钠新能源科技有限公司 碱金属掺杂的普鲁士蓝类材料及其制备方法和应用
CN115072741B (zh) * 2022-07-08 2023-11-17 金驰能源材料有限公司 普鲁士蓝正极材料及其连续式制备方法以及钠离子电池
CN115504487A (zh) * 2022-10-12 2022-12-23 雅迪科技集团有限公司 正极材料的制备方法、正极材料以及钠离子电池
CN115784258A (zh) * 2022-11-24 2023-03-14 赣州立探新能源科技有限公司 一种锰基普鲁士蓝正极材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056663A (ja) * 2012-09-11 2014-03-27 Nippon Telegr & Teleph Corp <Ntt> ナトリウム二次電池
CN107342418A (zh) * 2017-06-21 2017-11-10 浙江大学 一种亚铁氰基正极材料及其制备方法和应用
CN107364875A (zh) * 2017-06-22 2017-11-21 全球能源互联网研究院 一种制备普鲁士蓝正极材料的方法及钠离子电池
CN108258239A (zh) * 2018-01-18 2018-07-06 中国科学院过程工程研究所 一种钠离子电池正极材料及其制备方法和用途
CN108448098A (zh) * 2018-03-30 2018-08-24 合肥师范学院 一种花状结构钠离子电池正极材料Na2CoFe(CN)6的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900918B2 (ja) * 2012-01-25 2016-04-06 国立大学法人 筑波大学 ナトリウム電池およびナトリウム電池用の正極部材
US9559358B2 (en) * 2012-03-28 2017-01-31 Sharp Laboratories Of America, Inc. Alkali and alkaline-earth ion batteries with hexacyanometallate cathode and non-metal anode
US20150044553A1 (en) * 2013-08-07 2015-02-12 Toyota Motor Engineering & Manufacturing North America, Inc. Cathode active material for non-aqueous rechargeable magnesium battery
CN103474659B (zh) * 2013-08-23 2015-09-16 中国科学院化学研究所 一类钠离子电池正极材料的制备方法及应用
CN103825004B (zh) * 2014-03-21 2016-04-06 中国科学院宁波材料技术与工程研究所 一种混合离子二次电池
JP2016052978A (ja) * 2014-09-04 2016-04-14 Toto株式会社 同一元素系シアノ架橋型金属錯体の結晶からなる金属錯体膜
CN104282908A (zh) * 2014-09-24 2015-01-14 张五星 一种高钠铁基普鲁士蓝电极材料的合成方法
CN104701543A (zh) * 2015-02-05 2015-06-10 北京理工大学 一种钠离子电池普鲁士蓝类似物正极材料及其制备方法
CN106549155A (zh) * 2016-10-20 2017-03-29 河南师范大学 一种钾钠锰铁基普鲁士蓝类电极材料及其制备方法和应用
CN107364874A (zh) * 2017-06-22 2017-11-21 全球能源互联网研究院 一种普鲁士蓝正极材料制备方法及钠离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056663A (ja) * 2012-09-11 2014-03-27 Nippon Telegr & Teleph Corp <Ntt> ナトリウム二次電池
CN107342418A (zh) * 2017-06-21 2017-11-10 浙江大学 一种亚铁氰基正极材料及其制备方法和应用
CN107364875A (zh) * 2017-06-22 2017-11-21 全球能源互联网研究院 一种制备普鲁士蓝正极材料的方法及钠离子电池
CN108258239A (zh) * 2018-01-18 2018-07-06 中国科学院过程工程研究所 一种钠离子电池正极材料及其制备方法和用途
CN108448098A (zh) * 2018-03-30 2018-08-24 合肥师范学院 一种花状结构钠离子电池正极材料Na2CoFe(CN)6的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943228A (zh) * 2020-08-24 2020-11-17 全球能源互联网研究院有限公司 一种普鲁士蓝类钠离子电池正极材料及其制备方法
CN114477233A (zh) * 2022-02-16 2022-05-13 温州大学碳中和技术创新研究院 一种高熵多金属普鲁士蓝及其类似物制备方法和钠离子电池

Also Published As

Publication number Publication date
CN110235292A (zh) 2019-09-13
CN110235292B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2020047725A1 (zh) 一种高钠含量普鲁士蓝正极材料及其制备方法和应用与钠离子电池
WO2021168600A1 (zh) 一种低水分含量的普鲁士蓝钠离子电池正极材料及其制备方法和钠离子电池
US11855285B2 (en) Full-gradient nickel cobalt manganese positive electrode material, ruthenium oxide coated material and preparation method thereof
US20190386293A1 (en) Ternary material and preparation method thereof, battery slurry, positive electrode and lithium battery
CN107275633B (zh) 一种具有低晶格应力的梯度氟掺杂三元正极材料及其制备方法
CN106410157B (zh) 一种高倍率长寿命正极材料及其制备方法
CN115000399B (zh) 一种类球状钠离子电池正极材料及其制备方法和钠离子电池
CN104752714A (zh) 一种高容量镍钴基锂离子正极材料及其制备方法
CN110540254A (zh) 一种硼镁共掺杂梯度镍钴锰酸锂正极材料及其制备方法
CN105514373A (zh) 一种高容量锂离子电池正极材料及其制备方法
CN102891309A (zh) 一种浓度渐变的球形富锂正极材料及其制备方法
CN113488634A (zh) 双层包覆改性高镍无钴单晶三元正极材料及其制备方法
CN113479944A (zh) 一种改性高镍三元正极材料的制备方法
CN111689528A (zh) 一种三元材料前驱体及其制备方法和用途
CN111082059A (zh) 一种v掺杂p2型钠离子电池正极材料及其制备方法
CN114864896A (zh) 一种原位碳包覆纳米磷酸铁锂正极材料及其制备方法
CN108777293B (zh) 一种纳米复合材料及其制备方法和应用
CN115385380B (zh) 钠离子电池正极材料的制备方法
CN110504447A (zh) 一种氟掺杂的镍钴锰前驱体及其制备方法与应用
WO2023092886A1 (zh) 改性正极材料、其制备方法及锂离子电池
CN113540466A (zh) 一种金属硼化物与硼酸盐复合包覆改性的镍钴锰三元材料前驱体及其制备方法
CN114843469B (zh) 一种MgFe2O4改性的P2/O3型镍基层状钠离子电池正极材料及其制备方法
CN111342008A (zh) 一种氟化钾掺杂富锂锰基材料及其制备方法和应用
CN112744872A (zh) 一种高镍正极材料的液相法磷元素掺杂改性制备方法
CN114105117A (zh) 一种前驱体及磷酸镍铁锂正极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932830

Country of ref document: EP

Kind code of ref document: A1