WO2020045515A1 - Additive for hydraulic material - Google Patents

Additive for hydraulic material Download PDF

Info

Publication number
WO2020045515A1
WO2020045515A1 PCT/JP2019/033755 JP2019033755W WO2020045515A1 WO 2020045515 A1 WO2020045515 A1 WO 2020045515A1 JP 2019033755 W JP2019033755 W JP 2019033755W WO 2020045515 A1 WO2020045515 A1 WO 2020045515A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic material
meth
additive
acrylate
shell layer
Prior art date
Application number
PCT/JP2019/033755
Other languages
French (fr)
Japanese (ja)
Inventor
太一朗 新井
千紗 小林
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Publication of WO2020045515A1 publication Critical patent/WO2020045515A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof

Definitions

  • the present invention relates to additives for hydraulic materials. More specifically, the present invention relates to an additive for hydraulic material useful for applications such as spray mortar and concrete.
  • Patent Document 1 discloses a monomer composition containing an ethylenically unsaturated carboxylic acid monomer (a), an aromatic vinyl monomer (b), and a (meth) acrylate monomer (c).
  • the polymer (1) / polymer (2) has a mass ratio of 25/75 to 75/25, and the ethylenically unsaturated carboxylic acid monomer (a-1) used in the polymer (1) is The mass ratio to the ethylenically unsaturated carboxylic acid monomer (a-2) used in the polymer (2) ( -2) / (a-1) is from 3 to 8, and the ethylenically unsaturated carboxylic acid monomer (a) is from 0.1 to 1.6% by mass in the total polymer monomer composition.
  • An aqueous resin dispersion for cement mortar characterized by the above is disclosed.
  • Patent Document 2 discloses that at least one kind selected from an ethylenically unsaturated carboxylic acid monomer (a), an aromatic vinyl monomer (b) and / or a (meth) acrylate monomer (c) An aqueous resin dispersion (1) obtained by emulsion polymerization of a monomer composition containing a monomer, wherein the aqueous resin dispersion (1) is obtained by two or more stages of emulsion polymerization.
  • Patent Document 3 discloses that 0.5 to 6% by mass of an ethylenically unsaturated monocarboxylic acid monomer (a) and 94 to 99.5 of another vinyl monomer (b) copolymerizable with (a).
  • aqueous resin dispersion (1) obtained by emulsion polymerization of a monomer composition containing 1% by mass of the aqueous resin dispersion (1). Ratio), and 20 to 40% (equivalent ratio) on the surface of the aqueous resin dispersion particles is disclosed.
  • the spraying method of spraying concrete (mortar) onto construction surfaces is widely used.
  • materials other than the quick-setting agent hydroaulic material, aggregate, water, additives for hydraulic material, etc.
  • pressurized air or a pump to the nozzle discharge port
  • It is pumped and mixed with the quick-setting agent sent by another pump just before the nozzle and sprayed on the construction surface.
  • Patent Document 4 discloses an aggregate selected from cement, fine aggregate and lightweight aggregate, a fibrous mineral, a thickener, an expanding material, and a glass transition temperature of ⁇ 20 ° C.
  • a hydraulic composition comprising a 0 ° C. emulsion is disclosed.
  • Patent Document 5 discloses a rock stabilization method characterized by spraying a cement composition having a flow value of 250 or less into narrow cracks in rock or / and narrow seams between rocks. I have.
  • a hydraulic material composition containing various hydraulic material additives and a stabilization method used in a spraying method are disclosed.
  • the hydraulic material composition used in the spraying method has a high adhesiveness of the paste to the aggregate in mortar, concrete, etc., in order to reduce the loss (rebound amount) due to rebound when sprayed onto the construction surface. Desired.
  • the conventional additives for hydraulic materials are not sufficient in terms of the adhesion of the paste to the aggregate when used in the hydraulic material composition.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide an additive for hydraulic material capable of improving the adhesion of a paste to an aggregate in mortar, concrete or the like.
  • the present inventors have conducted various studies on additives for hydraulic materials, and found that the resin having the core layer and at least one shell layer has a glass transition temperature of the shell layer which is an average glass transition temperature of the shell layer. Higher, and the emulsion particles having an average glass transition temperature of the resin constituting the shell layer of ⁇ 15 ° C. or more improve the adhesion of the paste to the aggregate in mortar, concrete, and the like, The inventors have conceived that the above problems can be successfully solved, and have reached the present invention.
  • the present invention includes emulsion particles having a core layer and at least one shell layer, wherein the emulsion particles have a glass transition temperature of a resin constituting the core layer and an average glass transition temperature of a resin constituting the shell layer. It is an additive for hydraulic materials having a higher glass transition temperature than the resin constituting the shell layer and having an average glass transition temperature of ⁇ 15 ° C. or higher.
  • At least one of the resin constituting the core layer and the resin constituting the shell layer preferably has a structural unit (a) derived from a (meth) acrylate ester.
  • At least one of the resin constituting the core layer and the resin constituting the shell layer preferably has a structural unit (b) derived from (meth) acrylic acid (salt).
  • the emulsion particles preferably have 70 to 99.9% by mass of the structural unit (a) based on 100% by mass of all the structural units constituting the emulsion particles.
  • the emulsion particles preferably have 0.1 to 10% by mass of the structural unit (b) with respect to 100% by mass of all the structural units constituting the emulsion particles.
  • the above-mentioned copolymer emulsion particles preferably have an average particle diameter of 10 to 5000 nm.
  • the additive for hydraulic material is preferably used for shotcrete applications.
  • the present invention is also a hydraulic material composition comprising the above-mentioned additive for hydraulic material, a hydraulic material and an aggregate.
  • the hydraulic material composition further contains a water reducing agent.
  • the present invention is also a method for spraying the hydraulic material additive together with the hydraulic material onto a construction surface.
  • the present invention further provides a method for producing an additive for hydraulic material containing emulsion particles having a core layer and at least one shell layer, wherein the production method comprises polymerizing a monomer component to form a shell material.
  • the production method comprises polymerizing a monomer component to form a shell material.
  • the additive for hydraulic material of the present invention has the above-described configuration and can improve the adhesion of the paste to the aggregate in the mortar / concrete or the like. it can.
  • the additive for hydraulic material of the present invention includes emulsion particles having a core layer and at least one shell layer (hereinafter, also referred to as emulsion particles).
  • the emulsion particles may be any as long as two or more polymers form a core layer (inner core) and a shell layer (outer shell), and the resin (polymer) constituting the shell layer may be one kind. Or two or more types.
  • the shell layer in the emulsion particles may be a single layer or two or more layers.
  • the shell layer is preferably one layer or two layers. More preferably, it is a single layer.
  • the emulsion particles may have a homogenous structure in which the core layer and the shell layer are completely compatible with each other and cannot be distinguished from each other.
  • a shell composite structure or a microdomain structure may be used, but among these structures, a core-shell composite structure is preferable in order to sufficiently draw out the characteristics of the emulsion particles and produce a stable emulsion particle.
  • the surface of the core layer is covered with a shell layer.
  • the surface of the core layer is preferably completely covered with the shell layer, but may not be completely covered. The form in which the layer is exposed may be used.
  • the resin constituting the core layer has a glass transition temperature higher than the average glass transition temperature of the resin constituting the shell layer, and the resin constituting the shell layer has an average glass transition temperature of ⁇ 15 ° C. That is all.
  • the emulsion particles having such a configuration are used in the hydraulic material composition, the adhesion of the paste to the aggregate is improved. Further, thereby, the rebound amount when the hydraulic material composition is sprayed on the construction surface can be reduced. Further, the hydraulic material composition containing the above-mentioned emulsion particles is excellent in workability, and also improves the pumpability of the hydraulic material composition by a pump or the like when the hydraulic material composition is used in the spraying method.
  • the glass transition temperature of the resin constituting the core layer is not particularly limited as long as it is higher than the average glass transition temperature of the resin constituting the shell layer, but is preferably from 10 to 100 ° C, more preferably from 30 to 60 ° C. is there.
  • the average glass transition temperature of the resin constituting the shell layer is not less than ⁇ 15 ° C. and is not particularly limited as long as it is lower than the glass transition temperature of the resin constituting the core layer, but is preferably ⁇ 15 to 70 ° C. And more preferably -15 to 30 ° C.
  • the difference between the glass transition temperature of the resin constituting the core layer and the average glass transition temperature of the resin constituting the shell layer is preferably 0 to 100 ° C. Thereby, the function and effect of the present invention can be more sufficiently exhibited.
  • the temperature is more preferably 0 to 80 ° C, and still more preferably 0 to 50 ° C.
  • the glass transition temperature (Tg) of the resin (polymer) constituting the above-mentioned emulsion particles can be controlled by the type and usage ratio of the monomer component described later, and can be obtained by the following FOX formula (1). It can be determined by DSC (differential scanning calorimeter) or DTA (differential thermal analyzer).
  • Tg ′ is the Tg (absolute temperature) of the polymer.
  • W1 ′, W2 ′,... Wn ′ are mass fractions of each monomer with respect to all monomer components.
  • Tg1, Tg2,... Tgn are glass transition temperatures (absolute temperatures) of homopolymers (homopolymers) composed of the respective monomer components.
  • the glass transition temperature of the homopolymer used in the above calculation can be a value described in the literature, and is described, for example, in “POLYMER HANDBOOK 3rd Edition” (issued by John Wiley & Sons, Inc.).
  • the resin constituting the shell layer may be one kind or two or more kinds.
  • the average of the resins constituting the shell layer is obtained.
  • Wn 'in the above formula (1) is obtained by summing the mass of each monomer in all the resins constituting the shell layer, and then forming the shell layer. It is determined as the mass fraction of each monomer relative to all monomer components.
  • the above-mentioned copolymer emulsion particles preferably have an average particle diameter of 10 to 5000 nm. It is more preferably from 70 to 500 nm, and still more preferably from 150 to 350 nm.
  • the average particle size of the copolymer emulsion particles can be measured by a dynamic light scattering measurement method.
  • At least one of the resin constituting the core layer and the resin constituting the shell layer preferably has a structural unit (a) derived from a (meth) acrylate ester. More preferably, at least one of the resins constituting the shell layer preferably has the structural unit (a). More preferably, at least one of the resins constituting the shell layer and the resin constituting the core layer have the above structural unit (a), and more preferably, all the resins constituting the emulsion particles are composed of the structural unit (a) ).
  • the emulsion particles preferably have 70 to 99.9% by mass of the structural unit (a) based on 100% by mass of all the structural units constituting the emulsion particles. Thereby, the function and effect of the present invention can be more sufficiently exhibited. It is more preferably 80 to 99.9% by mass, and still more preferably 90 to 99.9% by mass.
  • the (meth) acrylic acid ester is preferably an alkyl ester of (meth) acrylic acid having 1 to 20 carbon atoms. If the alkyl (meth) acrylate has the same structure as the ester of (meth) acrylic acid and an alkyl alcohol having 1 to 20 carbon atoms, the alkyl alcohol having (meth) acrylic acid and 1 to 20 carbon atoms Is not limited to those obtained by an ester reaction.
  • the number of carbon atoms of the alkyl group in the (meth) acrylate is preferably 1 to 18. Thereby, the glass transition temperature of the emulsion particles is in a more preferable range.
  • the number of carbon atoms in the alkyl group is more preferably 1 to 16, more preferably 1 to 14, and particularly preferably 1 to 12.
  • the (meth) acrylic acid ester may be used alone or in combination of two or more.
  • An embodiment in which two or more kinds are preferably used, and an embodiment in which two kinds of (meth) acrylates having different numbers of carbon atoms in the alkyl group are used is one of preferred embodiments of the present invention. Thereby, a polymer having a more suitable Tg can be obtained.
  • the carbon number of the alkyl group in one (meth) acrylate is preferably 1 to 15. It is more preferably 1 to 10, and further preferably 1 to 5.
  • the alkyl group of the other (meth) acrylic acid ester preferably has 3 to 20 carbon atoms. It is more preferably from 5 to 20, and even more preferably from 5 to 10.
  • alkyl group in the (meth) acrylate examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group (amyl group), an n-hexyl group, and an n-heptyl group.
  • the (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, and heptyl ( (Meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl ( (Meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl ( (Met
  • methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, and octyl (meth) are preferable.
  • At least one of the resin constituting the core layer and the resin constituting the shell layer preferably has a structural unit (b) derived from (meth) acrylic acid (salt). More preferably, the resin constituting the core layer has the structural unit (b). More preferably, at least one of the resins constituting the shell layer and the resin constituting the core layer have the above structural unit (b), and more preferably, all the polymers constituting the emulsion particles are composed of the structural unit (b) ).
  • the emulsion particles preferably have 0.1 to 10% by mass of the structural unit (b) with respect to 100% by mass of all the structural units constituting the emulsion particles. Thereby, the function and effect of the present invention can be more sufficiently exhibited. More preferably, it is 0.5 to 5% by mass, and still more preferably 0.5 to 3% by mass.
  • the (meth) acrylic acid (salt) represents acrylic acid, acrylate, methacrylic acid, and methacrylate, and among these, acrylic acid and acrylate are preferable.
  • One of these (meth) acrylic acids (salts) may be used alone, or two or more thereof may be used.
  • the salt in the (meth) acrylic acid (salt) include metal salts, ammonium salts, and organic amine salts. Among these, alkali metal salts such as Li, Na, K, and Ca are preferable, and sodium salts and ammonium salts are more preferable.
  • the emulsion particles may have a structural unit (c) derived from another monomer other than the (meth) acrylic acid ester and the (meth) acrylic acid (salt).
  • the content ratio of the structural unit (c) is preferably 0 to 50% by mass relative to 100% by mass of all the structural units constituting the emulsion particles. It is more preferably 0 to 20% by mass, and still more preferably 0 to 10% by mass.
  • monomers include aromatic vinyl compounds such as styrene, vinyltoluene and ⁇ -methylstyrene; vinyl esters such as vinyl acetate; vinyl ethers such as methyl vinyl ether; crotonic acid, tiglic acid, 3-methylcroton Acid, ethylenically unsaturated monocarboxylic acids other than (meth) acrylic acid (salt) such as 2-methyl-2-pentenoic acid; maleic acid, fumaric acid, itaconic acid, mesaconic acid, citraconic acid, fumaric acid, etc.
  • aromatic vinyl compounds such as styrene, vinyltoluene and ⁇ -methylstyrene
  • vinyl esters such as vinyl acetate
  • vinyl ethers such as methyl vinyl ether
  • crotonic acid tiglic acid
  • 3-methylcroton Acid ethylenically unsaturated monocarboxylic acids other than (meth) acrylic acid (salt) such as 2-methyl-2-pen
  • Saturated polycarboxylic acids monomers having a carboxyl group such as partially esterified ethylenically unsaturated polycarboxylic acids such as monoethyl maleate and monoethyl itaconate; vinyl sulfonic acid, styrene sulfonic acid, and sulfo (meth) acrylate
  • a monomer having a sulfonic acid group such as 2- (meth) acryloyloxyethyl Acid phosphate monomers such as acid phosphate, 2- (meth) acryloyloxypropyl acid phosphate, 2- (meth) acryloyloxy-3-chloropropyl acid phosphate and 2- (meth) acryloyloxyethyl phenyl phosphoric acid ;
  • esters of (meth) acrylic acid with polyhydric alcohols such as ethylene glycol, propylene glycol, 1,3-butylene glycol, diethylene glycol, polyethylene glycol, polypropylene glycol, trimethylolpropane, pentaerythritol and dipentaerythritol; divinylbenzene and the like
  • Polyfunctional vinyl compounds such as allyl (meth) acrylate; vinyl chloride, vinylidene chloride, chlorostyrene, vinyl fluoride, vinylidene fluoride, perfluorooctylethyl (meth) acrylate and the like
  • Examples include a monomer having a halogen component.
  • the other monomer is preferably an aromatic vinyl compound such as styrene, vinyl toluene and ⁇ -methylstyrene, and more preferably styrene.
  • the resin constituting the core layer has a structural unit derived from styrene.
  • Tg emulsion particles having a more suitable Tg.
  • An embodiment in which both the resin constituting the core layer and the resin constituting the shell layer in the emulsion particles have a structural unit derived from styrene is one of preferred embodiments of the present invention.
  • the present invention is also a resin dispersion containing the above-mentioned emulsion particles and a solvent (hereinafter, also referred to as an emulsion).
  • a solvent hereinafter, also referred to as an emulsion.
  • the solvent include those described in the method for producing an emulsion described below.
  • the method for producing the emulsion of the present invention is not particularly limited, it can be produced by emulsion polymerization of a monomer component.
  • the form in which the emulsion polymerization is carried out is not particularly limited.
  • the emulsion polymerization can be carried out by appropriately adding a monomer component, a polymerization initiator, an emulsifier and the like to an aqueous medium and carrying out polymerization.
  • the monomer component is further emulsion-polymerized into an emulsion containing the core layer. It is preferable to obtain by multi-stage polymerization of forming a shell layer.
  • the present invention also provides a method for producing an additive for hydraulic material containing emulsion particles having a core layer and at least one shell layer, wherein the production method comprises polymerizing a monomer component to form a shell material.
  • a core layer composed of a resin having a glass transition temperature higher than the average glass transition temperature of the resin constituting the layer and polymerizing the monomer component to obtain an average glass transition temperature of ⁇ 15 ° C.
  • a step of forming a shell layer composed of a resin as described above A step of polymerizing the monomer component to form a core layer composed of a resin having a higher glass transition temperature than the average glass transition temperature of the resin constituting the shell layer; and And forming a shell layer composed of a resin having an average glass transition temperature of ⁇ 15 ° C. or higher.
  • a polymerization chain transfer agent or the like may be used for controlling the molecular weight.
  • the monomer component contains (meth) acrylic acid (salt) because the polymerizability is improved and the stability of the obtained emulsion is improved.
  • the aqueous solvent is not particularly limited, and may be, for example, water, one or more mixed solvents of water-miscible solvents, and a mixed solvent in which such a solvent is mixed with water as a main component. And the like. Among these, water is preferred.
  • anionic surfactant is not particularly limited, for example, polyoxyalkylene alkyl ether sulfate, polyoxyalkylene oleyl ether sulfate sodium salt, polyoxyalkylene alkyl phenyl ether sulfate, alkyl diphenyl ether disulfonate, poly Oxyalkylene (mono, di, tri) styryl phenyl ether sulfate, polyoxyalkylene (mono, di, tri) benzyl phenyl ether sulfate, alkenyl succinic acid disalt; sodium dodecyl sulfate, potassium dodecyl sulfate, ammonium alkyl sulfate Sodium dodecyl polyglycol ether sul
  • anionic surfactant examples include, for example, Latemul WX, Latemul 118B, Perex SS-H, Emulgen A-60, B-66, defendol WZ (manufactured by Kao Corporation), Newcol 707SF, Newcol 707SN, Newcall 714SF, Newcall 714SN, AB-26S, ABEX-2010, 2020, 2030, DSB (manufactured by Rhodia Nichika), and the like. Surfactants corresponding to these nonionic types can also be used.
  • a reactive anionic surfactant As the anionic surfactant, and as the reactive surfactant, a reactive anionic surfactant, a sulfosuccinate-type reactive anionic surfactant, an alkenyl succinate-type reactive anionic surfactant, and the like. One or more of these can be used.
  • Commercially available sulfosuccinate-type reactive anionic surfactants include Latemul S-120, S-120A, S-180 and S-180A (all of which are trade names, manufactured by Kao Corporation), Eleminor JS-2 (trademark) Name, Sanyo Kasei Kogyo Co., Ltd.), Adecaria Soap SR-10, SR-20, SR-30 (manufactured by ADEKA) and the like.
  • alkenyl succinate-type reactive anionic surfactant examples include Latemul ASK (trade name, manufactured by Kao Corporation) and the like. Furthermore, (meth) acrylic acid polyoxyethylene sulfonate salt (for example, “Eleminol RS-30” manufactured by Sanyo Chemical Industries, Ltd., “Antox MS-60” manufactured by Nippon Emulsifier Co., Ltd.), allyloxymethylalkyloxypolyoxy Sulfate esters (salts) having an allyl group, such as sulfonate salts of ethylene (eg, “Aqualon KH-10” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and polyoxyalkylene alkenyl ether ammonium sulfates (eg, “Latemul PD- 104 "), an aromatic hydrocarbon compound having a 1-propenyl group, a polyoxyethylene group, and an ammonium sulfate group (eg," Aqualon BC-10
  • anionic surfactant the following surfactants and the like can be further used as a reactive surfactant.
  • Sulfoalkyl (C1-4) ester salt type surfactants of aliphatic unsaturated carboxylic acids having 3-5 carbon atoms for example, 2-sulfoethyl (meth) acrylate sodium salt, 3-sulfopropyl (meth) acrylate ammonium (Meth) acrylic acid sulfoalkyl ester salt type surfactants such as salts; sulfopropyl maleic acid alkyl ester sodium salt, sulfopropyl maleic acid polyoxyethylene alkyl ester ammonium salt, sulfoethyl fumaric acid polyoxyethylene alkyl ester ammonium salt, etc.
  • the nonionic surfactant is not particularly limited, and examples thereof include polyoxyethylene alkyl ethers; polyoxyethylene alkyl aryl ethers; sorbitan aliphatic esters; polyoxyethylene sorbitan aliphatic esters; Monoglyceride; polyoxyethyleneoxypropylene copolymer; condensation products of ethylene oxide with aliphatic amines, amides or acids.
  • allyloxymethylalkoxyethyl hydroxypolyoxyethylene eg, “ADEKA REAL SOAP ER-20” manufactured by ADEKA, etc.
  • polyoxyalkylene alkenyl ether eg, “Latemul PD-420”, “Latemul PD-” manufactured by Kao Corporation
  • a nonionic surfactant having reactivity such as an aromatic compound having a 1-propenyl group and a polyoxyethylene group (eg,” Aqualon RN-20 "manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.).
  • a nonionic surfactant having reactivity such as an aromatic compound having a 1-propenyl group and a polyoxyethylene group
  • Aqualon RN-20 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • the cationic surfactant is not particularly limited and includes, for example, dialkyldimethylammonium salts, ester-type dialkylammonium salts, amide-type dialkylammonium salts, dialkylimidazolinium salts, and the like. Can be used.
  • the amphoteric surfactant is not particularly limited, and includes, for example, alkyldimethylaminoacetic acid betaine, alkyldimethylamine oxide, alkylcarboxymethylhydroxyethylimidazolinium betaine, alkylamidopropyl betaine, alkylhydroxysulfobetaine, and the like. One or more of these can be used.
  • the polymer surfactant is not particularly limited and includes, for example, polyvinyl alcohol and a modified product thereof; (meth) acrylic water-soluble polymer; hydroxyethyl (meth) acrylic water-soluble polymer; hydroxypropyl (meth) acrylic Water-soluble polymer; polyvinylpyrrolidone, etc., and one or more of these can be used.
  • (meth) acrylic water-soluble polymer hydroxyethyl (meth) acrylic water-soluble polymer
  • hydroxypropyl (meth) acrylic Water-soluble polymer polyvinylpyrrolidone, etc., and one or more of these can be used.
  • the protective colloid examples include polyvinyl alcohols such as partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, and modified polyvinyl alcohol; cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, and carboxymethyl cellulose salts; natural polysaccharides such as guar gum And the like, and one or more of these can be used.
  • the protective colloid may be used alone or in combination with a surfactant.
  • the amount of the protective colloid used may be appropriately set according to the use conditions and the like. For example, the amount is 10 parts by weight or less based on 100 parts by weight of the total amount of the monomer components used to form the polymer. Preferably, it is 5 parts by weight or less, more preferably 3 parts by weight or less.
  • the polymerization initiator is not particularly limited as long as it is a substance that is decomposed by heat to generate a radical molecule, and examples thereof include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; 2,2′-azobis (2-amidinopropane) dihydrochloride, 4,4'-azobis (4-cyanopentanoic acid), 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobisisobutyronitrile Azo compounds such as 2,2'-azobis (2,4-dimethylvaleronitrile); organic peroxides such as tert-butylperoxy-2-ethylhexanoate, benzoyl peroxide, di-tert-butyl peroxide Substances: hydrogen peroxide and ascorbic acid, t-butyl hydroperoxide and Rongalit, potassium persulfate and metal salt, ammonium persulfate Redox poly
  • the amount of the polymerization initiator is not particularly limited, and may be appropriately set depending on the type of the polymerization initiator and the like.
  • the total amount of the monomer components used to form the polymer is 100 parts by weight.
  • the amount is preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1 part by weight.
  • a reducing agent can be used in combination with the polymerization initiator as needed.
  • the reducing agent include reducing organic compounds such as ascorbic acid, tartaric acid, citric acid, and glucose; for example, reducing inorganic compounds such as sodium thiosulfate, sodium sulfite, sodium bisulfite, sodium metabisulfite, and the like. And one or more of these can be used.
  • the amount of the reducing agent to be used is not particularly limited, and is preferably, for example, 0.001 to 1 part by weight based on 100 parts by weight of the total amount of the monomer components used to form the polymer.
  • the polymerization chain transfer agent is not particularly restricted but includes, for example, 3-mercaptopropionic acid, 2-mercaptopropionic acid, hexylmercaptan, octylmercaptan, n-dodecylmercaptan, t-dodecylmercaptan, n-hexadecylmercaptan, n- Alkyl mercaptans such as tetradecyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, carbon tetrabromide and ethylene bromide; 2-ethylhexyl mercaptoacetate, 2-ethylhexyl mercaptopropionate, tridecyl mercaptopyrropionate
  • Mercaptocarboxylic acid alkyl esters such as mercaptocarboxylic acid methoxybutyl ester, mercaptopropionic acid methoxybutyl este
  • alkyl mercaptans such as hexyl mercaptan, octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexadecyl mercaptan, and n-tetradecyl mercaptan are preferably used.
  • the amount of the polymerization chain transfer agent used is, for example, preferably 20 parts by weight or less, more preferably 10 parts by weight or less, based on 100 parts by weight of all monomer components. More preferably, it is at most 5.0 parts by weight, particularly preferably at most 2.0 parts by weight, most preferably at most 1.0 part by weight.
  • the above polymerization may be carried out in the presence of a chelating agent such as sodium ethylenediaminetetraacetate, a dispersant such as sodium polyacrylate, or an inorganic salt, if necessary.
  • a chelating agent such as sodium ethylenediaminetetraacetate
  • a dispersant such as sodium polyacrylate
  • an inorganic salt if necessary.
  • a method for adding the monomer component, the polymerization initiator, and the like for example, a method such as a batch addition method, a continuous addition method, and a multi-stage addition method can be applied. Further, these addition methods may be appropriately combined.
  • the polymerization temperature is not particularly limited, and is, for example, preferably from 0 to 100 ° C, more preferably from 40 to 95 ° C.
  • the polymerization time is not particularly limited, and is, for example, preferably 1 to 15 hours, and more preferably 2 to 10 hours.
  • the method for adding the monomer component, the polymerization initiator, and the like is not particularly limited, and for example, a method such as a batch addition method, a continuous addition method, or a multi-stage addition method can be applied. Further, these addition methods may be appropriately combined.
  • the emulsion is neutralized with a neutralizing agent.
  • a neutralizing agent is not particularly restricted but includes, for example, tertiary amines such as triethanolamine, dimethylethanolamine, diethylethanolamine and morpholine; diglycolamine, aqueous ammonia; sodium hydroxide. These may be used alone or in combination of two or more.
  • the additive for hydraulic material of the present invention contains the above emulsion particles, and may contain two or more kinds of emulsion particles.
  • the content of the emulsion particles in the additive for hydraulic material is not particularly limited, but the solid content in the additive for hydraulic material (ie, The content is preferably 5 to 90% by mass based on 100% by mass of the nonvolatile components. More preferably, it is 20 to 90% by mass, and still more preferably 30 to 75% by mass.
  • additive for hydraulic material refers to an additive added to a hydraulic material composition such as cement paste, mortar, and concrete, and is an agent consisting of only the above emulsion. It may be an agent containing not only the above-mentioned emulsion particles but also other additives as described below as necessary.
  • the additive for hydraulic material of the present invention is preferably used in a hydraulic material composition containing a hydraulic material and an aggregate. That is, a hydraulic material composition including a hydraulic material additive, a hydraulic material, and an aggregate is also one of the present invention.
  • the blending ratio of the hydraulic material additive of the present invention for example, the ratio of the emulsion particles, which are essential components of the present invention (the total amount when a plurality is included), is calculated as solid content. It is preferable to set the amount to be 0.005 to 10% by mass with respect to 100% by mass of the total amount of the hydraulic material. More preferably, it is 0.01 to 5% by mass, and still more preferably 0.02 to 3% by mass.
  • solid content can be measured as follows. ⁇ Solid content measurement method> 1. Weigh aluminum dish accurately. The solid content measurement object is precisely weighed on the aluminum dish precisely weighed in 2.1. 3. A solid matter measured precisely at 2 was put into a dryer adjusted to 130 ° C.
  • the solid content is measured by subtracting the mass of the aluminum dish obtained in 1 from the mass obtained in 6.5 and dividing by the mass of the solid content measurement object obtained in 2.
  • the hydraulic material is not particularly limited as long as it has hydraulic or latent hydraulic properties.
  • ordinary Portland cement early-strength Portland cement, moderate heat Portland cement, Portland cement such as low heat Portland cement, silica, etc.
  • Cement fly ash cement, blast furnace cement, alumina cement, belite-rich cement, various mixed cements; constituents of cements such as tricalcium silicate, dicalcium silicate, tricalcium aluminate, tetracalcium iron aluminate; latent hydraulic property
  • Fly ash, silica fume, slag, lime fine powder and the like may be used alone or in combination of two or more.
  • ordinary Portland cement is commonly used and can be suitably applied.
  • Examples of the above-mentioned aggregate include, in addition to gravel, crushed stone, granulated slag, recycled aggregate, etc., siliceous, clay, zircon, high alumina, silicon carbide, graphite, chromium, chromium, magnesia, etc. And the like.
  • the additive for hydraulic material of the present invention may be used in a hydraulic material composition together with other additives other than the additive for hydraulic material of the present invention.
  • Foaming agent oxyalkylene-based antifoaming agent, alcohol-based antifoaming agent, amide-based antifoaming agent, phosphate ester-based antifoaming agent, metal soap-based antifoaming agent, silicone-based antifoaming agent, AE agent, surfactant, Waterproofing agents, rust inhibitors, preservatives, crack reducing agents, swelling agents, cement wetting agents, thickeners, separation reducing agents, flocculants, drying shrinkage reducing agents, strength enhancers,
  • the cement dispersant (water reducing agent) is not particularly limited, and (i) a polyalkylaryl sulfonate-based dispersant such as naphthalene sulfonic acid formaldehyde condensate; a melamine formalin resin such as melamine sulfonic acid formaldehyde condensate; Aromatic aminosulfonate dispersants such as aminoaryl sulfonic acid-phenol-formaldehyde condensate; Lignin sulfonate dispersants such as lignin sulfonate and modified lignin sulfonate; Polystyrene sulfonate Various sulfonic acid-based dispersants having a sulfonic acid group in the molecule thereof (water reducing agent); (ii) polyalkylenes as described in JP-B-59-18338 and JP-A-7-223852.
  • Glycol mono (meth) acrylate monomers (meth) Lulic acid monomers and copolymers obtained from monomers copolymerizable with these monomers; JP-A-10-236858, JP-A-2001-220417, and JP-A-2002-121555.
  • JP-A-2002-121056 copolymers obtained from unsaturated (poly) alkylene glycol ether-based monomers, maleic acid-based monomers or (meth) acrylic acid-based monomers; Polycarboxylic acid-based dispersants (water reducing agents) having a (poly) oxyalkylene group and a carboxyl group in the molecule such as (iii) (alkoxy) polyalkylene glycol as described in JP-A-2006-52381 Mono (meth) acrylate, phosphate monoester monomer, and copolymers obtained from phosphate diester monomer, etc.
  • Polycarboxylic acid-based dispersants water reducing agents having a (poly) oxyalkylene group and a carboxyl group in the molecule such as (iii) (alkoxy) polyalkylene glycol as described in JP-A-2006-52381 Mono (meth) acrylate, phosphate monoester monomer, and copolymers obtained
  • Copolymer having an oxyalkylene group and a phosphate group having a (poly) oxyalkylene group and an aromatic group and / or a heterocyclic aromatic group as described in JP-T-2008-517080.
  • Polycondensation product comprising a monomer, a monomer having a phosphoric acid (salt) group and / or a phosphoric ester group and an aromatic group and / or a heteroaromatic group, and an aldehyde compound;
  • various dispersants water-reducing agents
  • dispersants having an aromatic triazine structural unit, a polyalkylene glycol structural unit, and a phosphate ester structural unit can be mentioned.
  • the additive for hydraulic material of the present invention is preferably used in combination with a water reducing agent among the other additives described above. That is, the hydraulic material composition preferably further contains a water reducing agent, and such a form is one of preferred embodiments of the present invention.
  • the quick-setting agent is not particularly limited as long as it is a known quick-setting agent.
  • the quick setting agent used may be a powder quick setting agent, a liquid quick setting agent, or a slurry type quick setting agent.
  • the liquid quick-setting admixture include aluminum sulfate, fluorine, and alkali metals, and those containing these and alkanolamine. One or more of these can be used.
  • a known water-soluble hydration accelerator can be used as the liquid quick-setting agent used in the present invention.
  • hydration accelerator examples include, for example, organic hydration accelerators such as formic acid or a salt thereof, acetic acid or a salt thereof, and lactic acid or a salt thereof, and water glass, nitrate, nitrite, thiosulfate, and thiocyanate. It is possible to use an inorganic hydration accelerator such as a salt.
  • the powder quick setting agent examples include those containing calcium aluminates, sulfates, alkali metal aluminates, alkali metal carbonates, and oxycarboxylic acids, and one or two of these. The above can be used.
  • the defoaming agent is not particularly limited as long as it is a known defoaming agent.
  • mineral oil-based antifoaming agents such as kerosene and liquid paraffin
  • oil and fat defoaming agents such as animal and vegetable oils, sesame oil, castor oil, and alkylene oxide adducts thereof
  • Fatty acid esters such as diethylene glycol monolaurate, glycerin monoricinoleate, alkenyl succinic acid derivatives, sorbitol monolaurate, sorbitol trioleate, polyoxyethylene monolaurate, polyoxyethylene sorbitol monolaurate, and natural wax
  • Antifoaming agents such as octyl alcohol, hexadecyl alcohol, acetylene alcohol, glycols and polyoxyalkylene glycol
  • defoaming agents such as polyoxyalkyleneamide and acrylate polyamine
  • Phosphate ester defoamers such as
  • oxyalkylene-based defoamers are most preferred.
  • the amount of the antifoaming agent used is small, and the compatibility between the antifoaming agent and the copolymer is also excellent. It is.
  • the oxyalkylene-based antifoaming agent is not particularly limited as long as it is a compound having an oxyalkylene group in the molecule and having an action of reducing bubbles in an aqueous liquid, and among them, represented by the following general formula (2) Specific oxyalkylene antifoaming agents are preferred.
  • R 1 and R 3 are the same or different and are each a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, an alkenyl group having 1 to 22 carbon atoms, an alkynyl group having 1 to 22 carbon atoms, phenyl Or an alkylphenyl group (the alkyl group in the alkylphenyl group has 1 to 22 carbon atoms).
  • R 2 O represents one or a mixture of two or more oxyalkylene groups having 2 to 4 carbon atoms. In the case of two or more, R 2 O may be added in block form or in random form.
  • t is the average number of moles of the added oxyalkylene group, and represents a number from 0 to 300.
  • R 1 and R 3 are not hydrogen atoms at the same time, and T represents a group of —O—, —CO 2 —, —SO 4 —, —PO 4 —, or —NH—.
  • n represents an integer of 1 or 2, and when R 1 is a hydrogen atom, n is 1.
  • Examples of the oxyalkylene-based antifoaming agent represented by the above formula (2) include polyoxyalkylenes such as (poly) oxyethylene (poly) oxypropylene adduct; diethylene glycol heptyl ether, polyoxyethylene oleyl ether, and polyoxyalkylene.
  • (Poly) oxyalkylene alkyl ethers such as oxypropylene butyl ether, polyoxyethylene polyoxypropylene-2-ethylhexyl ether, and oxyethylene oxypropylene adduct to a higher alcohol having 12 to 14 carbon atoms; polyoxypropylene phenyl ether, poly (Poly) oxyalkylene (alkyl) aryl ethers such as oxyethylene nonylphenyl ether; 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 2,5-dimethyl-3-hexyne Acetylene ethers obtained by addition-polymerizing an alkylene oxide to acetylene alcohols such as 2,5-diol and 3-methyl-1-butyn-3-ol; diethylene glycol oleate, diethylene glycol laurate, ethylene glycol distearate, etc.
  • the mixing ratio of the water-reducing material is preferably 0.01 to 1% by mass in terms of solid content, based on 100% by mass of the total amount of the hydraulic material. More preferably, it is 0.05 to 0.5% by mass, and still more preferably 0.07 to 0.3% by mass.
  • the unit water amount per 1 m 3 , the amount of cement used, and the water / cement ratio are not particularly limited.
  • the unit water amount is 100 to 300 kg / m 3
  • the used cement amount is 300 to 500 kg / m 3 . 3.
  • the water / cement ratio (weight ratio) is preferably 0.35 to 0.6. More preferably, the unit water amount is 140 to 240 kg / m 3 , the used cement amount is 350 to 480 kg / m 3 , and the water / cement ratio (weight ratio) is 0.4 to 0.5.
  • the additive for hydraulic material of the present invention is not particularly limited as long as it is used in the hydraulic material composition, and can be used in ready-mixed concrete, shotcrete and the like. Preferably, it is used for shotcrete applications.
  • the use of the additive for hydraulic material of the present invention in shotcrete is also one aspect of the present invention.
  • the present invention is also a method of spraying the hydraulic material additive of the present invention together with the hydraulic material onto a construction surface.
  • the method of use is not particularly limited as long as the hydraulic material additive of the present invention is sprayed on the construction surface together with the hydraulic material.However, a mixture of the hydraulic material additive and the hydraulic material is sprayed on the construction surface. Is preferred.
  • the method of use includes a step of mixing the additive for hydraulic material and the hydraulic material, a step of pumping the hydraulic material composition obtained by the mixing step with compressed air or a pump, and a step of pumping water. And a step of spraying the hard material composition.
  • Preferred embodiments of the hydraulic material composition are as described above.
  • the average particle size of the scattering intensity was measured using a particle size measuring device (Zetasizer Nano manufactured by Malvern) by a dynamic light scattering method.
  • Example 1 Production of additive for hydraulic material Primary polymerization step (first stage): In a flask equipped with a dropping funnel, a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 783.5 g of deionized water and 28.8 g of a 25% aqueous solution of BC-10 (Daiichi Kogyo Seiyaku Co., Ltd.) were added.
  • RN-20 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • 14.4 g of a 25% aqueous solution 16.2 g of 2-ethylhexyl acrylate, 9.0 g of styrene, 59.4 g of methyl methacrylate, and 5.4 g of acrylic acid
  • heated to 75 ° C. with stirring while gently blowing nitrogen gas After the temperature was raised, 54.0 g of a 5% aqueous solution of potassium persulfate and 4.0 g of a 2.5% aqueous solution of sodium disulfite were added to initiate polymerization. After maintaining the inside of the reaction system at 80 ° C.
  • Secondary polymerization step After completion of the primary polymerization reaction, 19.2 g of a 25% aqueous solution of BC-10 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and RN-20 (Daiichi Kogyo Seiyaku Co., Ltd.) were maintained while maintaining the reaction system at 80 ° C. ), 251.0 g of deionized water, 415.4 g of methyl methacrylate, 305.0 g of 2-ethylhexyl acrylate, 85.8 g of styrene and 3.8 g of acrylic acid. The emulsion was dropped uniformly over 140 minutes.
  • reaction system was maintained at 80 ° C. for 60 minutes to complete the secondary polymerization.
  • reaction system was cooled to 50 ° C., 7.1 g of 25% aqueous ammonia was added, and the mixture was stirred at the same temperature for 10 minutes. After stirring, the mixture was cooled to room temperature and filtered through a 100-mesh wire net to obtain an emulsion having a solid content of 43.2% and a particle diameter of 83 nm.
  • Example 2 Primary polymerization step (first stage): In a flask equipped with a dropping funnel, a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 783.5 g of deionized water and 28.8 g of a 25% aqueous solution of BC-10 (Daiichi Kogyo Seiyaku Co., Ltd.) were added.
  • RN-20 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • 14.4 g of a 25% aqueous solution 16.2 g of 2-ethylhexyl acrylate, 9.0 g of styrene, 59.4 g of methyl methacrylate, and 5.4 g of acrylic acid
  • heated to 75 ° C. with stirring while gently blowing nitrogen gas After the temperature was raised, 54.0 g of a 5% aqueous solution of potassium persulfate and 4.0 g of a 2.5% aqueous solution of sodium disulfite were added to initiate polymerization. After maintaining the inside of the reaction system at 80 ° C.
  • Secondary polymerization step After completion of the primary polymerization reaction, 19.2 g of a 25% aqueous solution of BC-10 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and RN-20 (Daiichi Kogyo Seiyaku Co., Ltd.) were maintained while maintaining the reaction system at 80 ° C. )), 281.0 g of deionized water, 464.7 g of methyl methacrylate, 341.1 g of 2-ethylhexyl acrylate and 4.3 g of acrylic acid for 140 minutes. It was dropped uniformly. Thereafter, the inside of the reaction system was maintained at 80 ° C.
  • reaction system was cooled to 50 ° C., 7.1 g of 25% aqueous ammonia was added, and the mixture was stirred at the same temperature for 10 minutes. After stirring, the mixture was cooled to room temperature and filtered through a 100-mesh wire net to obtain an emulsion having a solid content of 43.0% and a particle diameter of 95 nm.
  • Example 3 Primary polymerization step (first stage): In a flask equipped with a dropping funnel, a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 783.5 g of deionized water and 1.2 g of a 25% aqueous solution of BC-10 (Daiichi Kogyo Seiyaku Co., Ltd.) were added.
  • RN-20 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • 0.6 g of a 25% aqueous solution 16.2 g of 2-ethylhexyl acrylate, 9.0 g of styrene, 59.4 g of methyl methacrylate, and 5.4 g of acrylic acid
  • heated to 75 ° C. with stirring while gently blowing nitrogen gas After the temperature was raised, 54.0 g of a 5% aqueous solution of potassium persulfate and 4.0 g of a 2.5% aqueous solution of sodium disulfite were added to initiate polymerization. After maintaining the inside of the reaction system at 80 ° C.
  • Secondary polymerization step After completion of the primary polymerization reaction, 19.2 g of a 25% aqueous solution of BC-10 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and RN-20 (Daiichi Kogyo Seiyaku Co., Ltd.) were maintained while maintaining the reaction system at 80 ° C. )), 281.0 g of deionized water, 464.7 g of methyl methacrylate, 341.1 g of 2-ethylhexyl acrylate and 4.3 g of acrylic acid for 140 minutes. It was dropped uniformly. Thereafter, the inside of the reaction system was maintained at 80 ° C.
  • reaction system was cooled to 50 ° C., 7.1 g of 25% aqueous ammonia was added, and the mixture was stirred at the same temperature for 10 minutes. After stirring, the mixture was cooled to room temperature and filtered through a 100-mesh wire net to obtain an emulsion having a solid content of 43.6% and a particle size of 197 nm.
  • RN-20 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • 14.4 g of a 25% aqueous solution 16.2 g of 2-ethylhexyl acrylate, 9.0 g of styrene, 59.4 g of methyl methacrylate, and 5.4 g of acrylic acid
  • heated to 75 ° C. with stirring while gently blowing nitrogen gas After the temperature was raised, 54.0 g of a 5% aqueous solution of potassium persulfate and 4.0 g of a 2.5% aqueous solution of sodium disulfite were added to initiate polymerization. After maintaining the inside of the reaction system at 80 ° C.
  • Secondary polymerization step After completion of the primary polymerization reaction, 19.2 g of a 25% aqueous solution of BC-10 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and RN-20 (Daiichi Kogyo Seiyaku Co., Ltd.) were maintained while maintaining the reaction system at 80 ° C. )), 281.0 g of deionized water, 295.1 g of methyl methacrylate, 513.0 g of 2-ethylhexyl acrylate and 1.9 g of acrylic acid for 140 minutes. It was dropped uniformly. Thereafter, the inside of the reaction system was maintained at 80 ° C.
  • reaction system was cooled to 50 ° C., 7.1 g of 25% aqueous ammonia was added, and the mixture was stirred at the same temperature for 10 minutes. After stirring, the mixture was cooled to room temperature and filtered through a 100-mesh wire net to obtain an emulsion having a solid content of 43.6% and a particle diameter of 88 nm.
  • a polycarboxylic acid copolymer of the present invention comprising an aqueous solution of a polymer having a weight average molecular weight of 29,000 was obtained.
  • the amount of all monomers used was 56.2% by weight based on the total amount of raw materials used in the polymerization.

Abstract

Provided is an additive for a hydraulic material. The additive makes it possible to improve the adhesion of a paste portion of mortar, cement, or the like to an aggregate. The present invention is an additive for a hydraulic material. The additive is characterized by including emulsion particles that have a core layer and at least one shell layer, the glass transition temperature of resin the constitutes the core layer being higher than the average glass transition temperature of resin that constitutes the shell layer(s), and the average glass transition temperature of the resin that constitutes the shell layer(s) being at least -15°C.

Description

水硬性材料用添加剤Additives for hydraulic materials
本発明は、水硬性材料用添加剤に関する。より詳しくは、吹付モルタル・コンクリート等の用途に有用な水硬性材料用添加剤に関する。 The present invention relates to additives for hydraulic materials. More specifically, the present invention relates to an additive for hydraulic material useful for applications such as spray mortar and concrete.
(メタ)アクリレート系共重合体エマルションは、セメント等の水硬性材料組成物の改質性に優れ、硬化物の強度や耐久性等を向上させる作用等を有するため、土木・建築構造物等を構築するために欠かすことのできないものとなっている。
例えば特許文献1には、エチレン性不飽和カルボン酸単量体(a)、芳香族ビニル単量体(b)及び(メタ)アクリル酸エステル単量体(c)とを含む単量体組成物(m1)を乳化重合して得られ、そのガラス転移温度Tg1が-10~30℃である重合体(1);及び、エチレン性不飽和カルボン酸単量体(a)、(メタ)アクリル酸エステル単量体(c)とを含む単量体組成物(m2)を乳化重合して得られ、そのガラス転移温度Tg2が20~60℃である重合体(2)を含み、Tg1<Tg2であり、重合体(1)/重合体(2)の質量比が25/75~75/25であり、重合体(1)で使用するエチレン性不飽和カルボン酸単量体(a-1)と重合体(2)で使用するエチレン性不飽和カルボン酸単量体(a-2)との質量比(a-2)/(a-1)が3~8であり、エチレン性不飽和カルボン酸単量体(a)が全重合体の単量体組成物中0.1~1.6質量%であることを特徴とするセメントモルタル用水性樹脂分散体が開示されている。特許文献2には、エチレン性不飽和カルボン酸単量体(a)、芳香族ビニル単量体(b)及び/又は(メタ)アクリル酸エステル単量体(c)から選ばれる1種以上の単量体とを含む単量体組成物を乳化重合して得られる水性樹脂分散体(1)であり、該水性樹脂分散体(1)が2段階以上の乳化重合で得られるものであって、1段目に使用するエチレン性不飽和カルボン酸単量体(a-1)と最終段に使用するエチレン性不飽和カルボン酸単量体(a-最終)との質量比(a-最終)/(a-1)が4~8であることを特徴とするセメントモルタル用水性樹脂分散体が開示されている。特許文献3には、エチレン性不飽和モノカルボン酸単量体(a)0.5~6質量%、(a)と共重合可能なその他のビニル系単量体(b)94~99.5質量%とを含む単量体組成物を乳化重合して得られる水性樹脂分散体(1)であって、水性樹脂分散体(1)のカルボキシル基の分布が水層に5~25%(当量比)、水性樹脂分散体粒子表面に20~40%(当量比)であることを特徴とするセメント用水性樹脂分散体が開示されている。
(Meth) acrylate-based copolymer emulsions are excellent in improving the properties of hydraulic material compositions such as cement, and have the effect of improving the strength and durability of cured products. It is indispensable for building.
For example, Patent Document 1 discloses a monomer composition containing an ethylenically unsaturated carboxylic acid monomer (a), an aromatic vinyl monomer (b), and a (meth) acrylate monomer (c). A polymer (1) obtained by emulsion polymerization of (m1) and having a glass transition temperature Tg1 of -10 to 30 ° C .; and an ethylenically unsaturated carboxylic acid monomer (a), (meth) acrylic acid A monomer composition (m2) containing the ester monomer (c) is obtained by emulsion polymerization, and the polymer (2) having a glass transition temperature Tg2 of 20 to 60 ° C. is contained, and Tg1 <Tg2 The polymer (1) / polymer (2) has a mass ratio of 25/75 to 75/25, and the ethylenically unsaturated carboxylic acid monomer (a-1) used in the polymer (1) is The mass ratio to the ethylenically unsaturated carboxylic acid monomer (a-2) used in the polymer (2) ( -2) / (a-1) is from 3 to 8, and the ethylenically unsaturated carboxylic acid monomer (a) is from 0.1 to 1.6% by mass in the total polymer monomer composition. An aqueous resin dispersion for cement mortar characterized by the above is disclosed. Patent Document 2 discloses that at least one kind selected from an ethylenically unsaturated carboxylic acid monomer (a), an aromatic vinyl monomer (b) and / or a (meth) acrylate monomer (c) An aqueous resin dispersion (1) obtained by emulsion polymerization of a monomer composition containing a monomer, wherein the aqueous resin dispersion (1) is obtained by two or more stages of emulsion polymerization. Mass ratio between the ethylenically unsaturated carboxylic acid monomer (a-1) used in the first stage and the ethylenically unsaturated carboxylic acid monomer (a-final) used in the final stage (a-final) An aqueous resin dispersion for cement mortar, wherein / (a-1) is from 4 to 8, is disclosed. Patent Document 3 discloses that 0.5 to 6% by mass of an ethylenically unsaturated monocarboxylic acid monomer (a) and 94 to 99.5 of another vinyl monomer (b) copolymerizable with (a). % By weight of the aqueous resin dispersion (1) obtained by emulsion polymerization of a monomer composition containing 1% by mass of the aqueous resin dispersion (1). Ratio), and 20 to 40% (equivalent ratio) on the surface of the aqueous resin dispersion particles is disclosed.
ところで、例えばトンネルの一次覆工や、岩盤斜面・法面の保護・補強、コンクリート構造物の補修・補強等の土木・建築工事では、コンクリート(モルタル)を施工面に吹付ける吹付工法が広く用いられている。吹付工法の中でも、例えば湿式法では、急結剤以外の材料(水硬性材料、骨材、水、水硬性材料用添加剤等)を混合した後、圧縮空気又はポンプでノズル(吐出口)まで圧送し、ノズルの直前で別のポンプで送られた急結剤と混合して施工面に吹付ける。
吹付工法に用いられる水硬性材料に関して、例えば特許文献4には、セメント、細骨材及び軽量骨材より選ばれる骨材、繊維状鉱物、増粘剤、膨張材及びガラス転移温度-20℃~0℃のエマルションとを含むことを特徴とする水硬性組成物が開示されている。特許文献5には、岩盤の狭幅の割れ目又は/及び岩盤間の狭幅の継ぎ目に、フロー値が250以下のセメント組成物を噴霧することを特徴とする岩盤の安定化工法が開示されている。
By the way, in civil engineering and construction work such as primary lining of tunnels, protection and reinforcement of rock slopes and slopes, and repair and reinforcement of concrete structures, the spraying method of spraying concrete (mortar) onto construction surfaces is widely used. Have been. Among the spraying methods, for example, in the wet method, after mixing materials other than the quick-setting agent (hydraulic material, aggregate, water, additives for hydraulic material, etc.), pressurized air or a pump to the nozzle (discharge port). It is pumped and mixed with the quick-setting agent sent by another pump just before the nozzle and sprayed on the construction surface.
Regarding the hydraulic material used in the spraying method, for example, Patent Document 4 discloses an aggregate selected from cement, fine aggregate and lightweight aggregate, a fibrous mineral, a thickener, an expanding material, and a glass transition temperature of −20 ° C. A hydraulic composition comprising a 0 ° C. emulsion is disclosed. Patent Document 5 discloses a rock stabilization method characterized by spraying a cement composition having a flow value of 250 or less into narrow cracks in rock or / and narrow seams between rocks. I have.
特開2008-081368号公報JP 2008-08368 A 特開2005-029457号公報JP 2005-029457 A 特開2005-008790号公報JP 2005-008790 A 特開2008-013384号公報JP 2008-013384 A 特開2001-248165号公報JP-A-2001-248165
上述のとおり、種々の水硬性材料用添加剤を含む水硬性材料組成物や、吹付工法に用いられる安定化工法が開示されている。吹付工法で用いられる水硬性材料組成物は、施工面に吹付けた際のはね返りによるロス分(リバウンド量)を低減させるために、モルタル・コンクリート等におけるペースト分の骨材への高い付着性が求められる。しかしながら従来の水硬性材料用添加剤は、水硬性材料組成物に用いた際のペースト分の骨材への付着性の点において充分ではなかった。 As described above, a hydraulic material composition containing various hydraulic material additives and a stabilization method used in a spraying method are disclosed. The hydraulic material composition used in the spraying method has a high adhesiveness of the paste to the aggregate in mortar, concrete, etc., in order to reduce the loss (rebound amount) due to rebound when sprayed onto the construction surface. Desired. However, the conventional additives for hydraulic materials are not sufficient in terms of the adhesion of the paste to the aggregate when used in the hydraulic material composition.
本発明は、上記現状に鑑みてなされたものであり、モルタル・コンクリート等におけるペースト分の骨材への付着性を向上させることができる水硬性材料用添加剤を提供することを目的とする。 The present invention has been made in view of the above situation, and an object of the present invention is to provide an additive for hydraulic material capable of improving the adhesion of a paste to an aggregate in mortar, concrete or the like.
本発明者は、水硬性材料用添加剤について種々検討したところ、コア層と少なくとも1層のシェル層とを有し、コア層を構成する樹脂のガラス転移温度がシェル層の平均のガラス転移温度よりも高く、かつ、シェル層を構成する樹脂の平均のガラス転移温度が-15℃以上であるエマルション粒子が、モルタル・コンクリート等におけるペースト分の骨材への付着性を向上させることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。 The present inventors have conducted various studies on additives for hydraulic materials, and found that the resin having the core layer and at least one shell layer has a glass transition temperature of the shell layer which is an average glass transition temperature of the shell layer. Higher, and the emulsion particles having an average glass transition temperature of the resin constituting the shell layer of −15 ° C. or more improve the adhesion of the paste to the aggregate in mortar, concrete, and the like, The inventors have conceived that the above problems can be successfully solved, and have reached the present invention.
すなわち本発明は、コア層と少なくとも1層のシェル層とを有するエマルション粒子を含み、該エマルション粒子は、コア層を構成する樹脂のガラス転移温度がシェル層を構成する樹脂の平均のガラス転移温度よりも高く、かつ、シェル層を構成する樹脂の平均のガラス転移温度が-15℃以上である水硬性材料用添加剤である。 That is, the present invention includes emulsion particles having a core layer and at least one shell layer, wherein the emulsion particles have a glass transition temperature of a resin constituting the core layer and an average glass transition temperature of a resin constituting the shell layer. It is an additive for hydraulic materials having a higher glass transition temperature than the resin constituting the shell layer and having an average glass transition temperature of −15 ° C. or higher.
上記エマルション粒子は、コア層を構成する樹脂とシェル層を構成する樹脂の少なくともいずれかが(メタ)アクリル酸エステル由来の構造単位(a)を有することが好ましい。 In the emulsion particles, at least one of the resin constituting the core layer and the resin constituting the shell layer preferably has a structural unit (a) derived from a (meth) acrylate ester.
上記エマルション粒子は、コア層を構成する樹脂とシェル層を構成する樹脂の少なくともいずれかが(メタ)アクリル酸(塩)由来の構造単位(b)を有することが好ましい。 In the emulsion particles, at least one of the resin constituting the core layer and the resin constituting the shell layer preferably has a structural unit (b) derived from (meth) acrylic acid (salt).
上記エマルション粒子は、エマルション粒子を構成する全構造単位100質量%に対して構造単位(a)を70~99.9質量%有することが好ましい。 The emulsion particles preferably have 70 to 99.9% by mass of the structural unit (a) based on 100% by mass of all the structural units constituting the emulsion particles.
上記エマルション粒子は、エマルション粒子を構成する全構造単位100質量%に対して構造単位(b)を0.1~10質量%有することが好ましい。 The emulsion particles preferably have 0.1 to 10% by mass of the structural unit (b) with respect to 100% by mass of all the structural units constituting the emulsion particles.
上記共重合体エマルション粒子は、平均粒子径が10~5000nmであることが好ましい。 The above-mentioned copolymer emulsion particles preferably have an average particle diameter of 10 to 5000 nm.
上記水硬性材料用添加剤は、吹付けコンクリート用途に用いられることが好ましい。 The additive for hydraulic material is preferably used for shotcrete applications.
本発明はまた、上記水硬性材料用添加剤と水硬性材料と骨材とを含む水硬性材料組成物でもある。 The present invention is also a hydraulic material composition comprising the above-mentioned additive for hydraulic material, a hydraulic material and an aggregate.
上記水硬性材料組成物は、更に減水剤を含むことが好ましい。 It is preferable that the hydraulic material composition further contains a water reducing agent.
本発明は更に、上記水硬性材料用添加剤を水硬性材料とともに施工面に吹き付けて使用する方法でもある。 The present invention is also a method for spraying the hydraulic material additive together with the hydraulic material onto a construction surface.
本発明は更に、コア層と少なくとも1層のシェル層とを有するエマルション粒子を含む水硬性材料用添加剤を製造する方法であって、上記製造方法は、単量体成分を重合して、シェル層を構成する樹脂の平均のガラス転移温度よりも高いガラス転移温度を有する樹脂から構成されるコア層を形成する工程と、単量体成分を重合して、平均のガラス転移温度が-15℃以上である樹脂から構成されるシェル層を形成する工程とを含む水硬性材料用添加剤の製造方法でもある。 The present invention further provides a method for producing an additive for hydraulic material containing emulsion particles having a core layer and at least one shell layer, wherein the production method comprises polymerizing a monomer component to form a shell material. Forming a core layer composed of a resin having a glass transition temperature higher than the average glass transition temperature of the resin constituting the layer, and polymerizing the monomer component to obtain an average glass transition temperature of −15 ° C. And a step of forming a shell layer composed of a resin as described above.
本発明の水硬性材料用添加剤は、上述の構成よりなり、モルタル・コンクリート等におけるペースト分の骨材への付着性を向上させることができるため、吹付モルタル・コンクリート等に好適に用いることができる。 The additive for hydraulic material of the present invention has the above-described configuration and can improve the adhesion of the paste to the aggregate in the mortar / concrete or the like. it can.
以下に本発明の好ましい形態について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下に記載される本発明の個々の好ましい形態を2又は3以上組み合わせた形態も、本発明の好ましい形態に該当する。 Hereinafter, preferred embodiments of the present invention will be specifically described. However, the present invention is not limited to the following description, and can be applied with appropriate modifications without departing from the spirit of the present invention. It should be noted that a combination of two or more of the individual preferred embodiments of the present invention described below also corresponds to a preferred embodiment of the present invention.
<エマルション粒子>
本発明の水硬性材料用添加剤は、コア層と少なくとも1層のシェル層とを有するエマルション粒子(以下、エマルション粒子ともいう。)を含む。上記エマルション粒子は、2種以上のポリマーがコア層(内核)とシェル層(外殻)とを形成するものであればよく、シェル層を構成する樹脂(ポリマー)は、1種であっても、2種以上であってもよい。また、エマルション粒子におけるシェル層は、1層であっても2層以上であってもよい。シェル層としては、1層又は2層であることが好ましい。より好ましくは1層である。
<Emulsion particles>
The additive for hydraulic material of the present invention includes emulsion particles having a core layer and at least one shell layer (hereinafter, also referred to as emulsion particles). The emulsion particles may be any as long as two or more polymers form a core layer (inner core) and a shell layer (outer shell), and the resin (polymer) constituting the shell layer may be one kind. Or two or more types. The shell layer in the emulsion particles may be a single layer or two or more layers. The shell layer is preferably one layer or two layers. More preferably, it is a single layer.
上記エマルション粒子は、コア層とシェル層とが完全に相溶し、これらを区別できない均質構造のものであってもよく、これらが完全には相溶せずに不均質に形成されるコア・シェル複合構造やミクロドメイン構造であってもよいが、これらの構造の中でも、エマルション粒子の特性を充分に引き出し、安定なエマルション粒子を作製するためには、コア・シェル複合構造であることが好ましい。上記コア・シェル複合構造においては、コア層の表面がシェル層によって被覆された形態であることが好ましい。この場合、コア層の表面は、シェル層によって完全に被覆されていることが好適であるが、完全に被覆されていなくてもよく、例えば、網目状に被覆されている形態や、所々においてコア層が露出している形態であってもよい。 The emulsion particles may have a homogenous structure in which the core layer and the shell layer are completely compatible with each other and cannot be distinguished from each other. A shell composite structure or a microdomain structure may be used, but among these structures, a core-shell composite structure is preferable in order to sufficiently draw out the characteristics of the emulsion particles and produce a stable emulsion particle. . In the above-described core-shell composite structure, it is preferable that the surface of the core layer is covered with a shell layer. In this case, the surface of the core layer is preferably completely covered with the shell layer, but may not be completely covered. The form in which the layer is exposed may be used.
上記エマルション粒子は、コア層を構成する樹脂のガラス転移温度がシェル層を構成する樹脂の平均のガラス転移温度よりも高く、かつ、シェル層を構成する樹脂の平均のガラス転移温度が-15℃以上である。このような構成のエマルション粒子を水硬性材料組成物に用いると、ペースト分の骨材への付着性が向上する。更にこれにより、施工面に水硬性材料組成物を吹き付けた際のリバウンド量を低減することができる。また、上記エマルション粒子を含む水硬性材料組成物は作業性にも優れ、水硬性材料組成物を吹付工法に用いる際の水硬性材料組成物のポンプ等による圧送性も向上する。 In the emulsion particles, the resin constituting the core layer has a glass transition temperature higher than the average glass transition temperature of the resin constituting the shell layer, and the resin constituting the shell layer has an average glass transition temperature of −15 ° C. That is all. When the emulsion particles having such a configuration are used in the hydraulic material composition, the adhesion of the paste to the aggregate is improved. Further, thereby, the rebound amount when the hydraulic material composition is sprayed on the construction surface can be reduced. Further, the hydraulic material composition containing the above-mentioned emulsion particles is excellent in workability, and also improves the pumpability of the hydraulic material composition by a pump or the like when the hydraulic material composition is used in the spraying method.
上記コア層を構成する樹脂のガラス転移温度は、シェル層を構成する樹脂の平均のガラス転移温度より高ければ特に制限されないが、好ましくは10~100℃であり、より好ましくは30~60℃である。
シェル層を構成する樹脂の平均のガラス転移温度は、-15℃以上であって、コア層を構成する樹脂のガラス転移温度よりも低ければ特に制限されないが、好ましくは-15~70℃であり、より好ましくは-15~30℃である。
また、コア層を構成する樹脂のガラス転移温度とシェル層を構成する樹脂の平均のガラス転移温度との差は、0~100℃であることが好ましい。これにより本発明の作用効果をより充分に発揮することができる。より好ましくは0~80℃であり、更に好ましくは0~50℃である。
The glass transition temperature of the resin constituting the core layer is not particularly limited as long as it is higher than the average glass transition temperature of the resin constituting the shell layer, but is preferably from 10 to 100 ° C, more preferably from 30 to 60 ° C. is there.
The average glass transition temperature of the resin constituting the shell layer is not less than −15 ° C. and is not particularly limited as long as it is lower than the glass transition temperature of the resin constituting the core layer, but is preferably −15 to 70 ° C. And more preferably -15 to 30 ° C.
The difference between the glass transition temperature of the resin constituting the core layer and the average glass transition temperature of the resin constituting the shell layer is preferably 0 to 100 ° C. Thereby, the function and effect of the present invention can be more sufficiently exhibited. The temperature is more preferably 0 to 80 ° C, and still more preferably 0 to 50 ° C.
上記エマルション粒子を構成する樹脂(ポリマー)のガラス転移温度(Tg)は、後述する単量体成分の種類や使用割合によって制御することができ、次のFOXの式(1)により求められる他、DSC(示差走査熱量測定装置)やDTA(示差熱分析装置)によって求めることができる。  The glass transition temperature (Tg) of the resin (polymer) constituting the above-mentioned emulsion particles can be controlled by the type and usage ratio of the monomer component described later, and can be obtained by the following FOX formula (1). It can be determined by DSC (differential scanning calorimeter) or DTA (differential thermal analyzer).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
式中、Tg’は、ポリマーのTg(絶対温度)である。W1’、W2’、・・・Wn’は、全単量体成分に対する各単量体の質量分率である。Tg1、Tg2、・・・Tgnは、各単量体成分からなるホモポリマー(単独重合体)のガラス転移温度(絶対温度)である。上記計算に用いるホモポリマーのガラス転移温度は、文献に記載されている値を用いることができ、例えば、「POLYMER HANDBOOK 第3版」(John Wiley & Sons, Inc.発行)などに記載されている。
上述のとおり、シェル層を構成する樹脂は、1種であっても、2種以上であってもよく、シェル層を構成する樹脂が2種以上である場合、シェル層を構成する樹脂の平均のガラス転移温度は、上記式(1)におけるW1’、W2’、・・・Wn’を、シェル層を構成する全樹脂における各単量体の質量を合計したうえで、シェル層を構成する全単量体成分に対する各単量体の質量分率として求める。
Where Tg ′ is the Tg (absolute temperature) of the polymer. W1 ′, W2 ′,... Wn ′ are mass fractions of each monomer with respect to all monomer components. Tg1, Tg2,... Tgn are glass transition temperatures (absolute temperatures) of homopolymers (homopolymers) composed of the respective monomer components. The glass transition temperature of the homopolymer used in the above calculation can be a value described in the literature, and is described, for example, in “POLYMER HANDBOOK 3rd Edition” (issued by John Wiley & Sons, Inc.). .
As described above, the resin constituting the shell layer may be one kind or two or more kinds. When the resin constituting the shell layer is two kinds or more, the average of the resins constituting the shell layer is obtained. , Wn 'in the above formula (1) is obtained by summing the mass of each monomer in all the resins constituting the shell layer, and then forming the shell layer. It is determined as the mass fraction of each monomer relative to all monomer components.
上記共重合体エマルション粒子は、平均粒子径が10~5000nmであることが好ましい。より好ましくは70~500nmであり、更に好ましくは150~350nmである。共重合体エマルション粒子の平均粒子径は、動的光散乱測定法により測定することができる。 The above-mentioned copolymer emulsion particles preferably have an average particle diameter of 10 to 5000 nm. It is more preferably from 70 to 500 nm, and still more preferably from 150 to 350 nm. The average particle size of the copolymer emulsion particles can be measured by a dynamic light scattering measurement method.
上記エマルション粒子は、コア層を構成する樹脂とシェル層を構成する樹脂の少なくともいずれかが(メタ)アクリル酸エステル由来の構造単位(a)を有することが好ましい。
より好ましくはシェル層を構成する樹脂のうち少なくとも1種が上記構造単位(a)を有することが好ましい。更に好ましくは、シェル層を構成する樹脂のうち少なくとも1種及びコア層を構成する樹脂が上記構造単位(a)を有することが好ましく、更に好ましくはエマルション粒子を構成する全樹脂が構造単位(a)を有することである。
上記エマルション粒子は、エマルション粒子を構成する全構造単位100質量%に対して構造単位(a)を70~99.9質量%有することが好ましい。これにより本発明の作用効果をより充分に発揮することができる。より好ましくは80~99.9質量%であり、更に好ましくは90~99.9質量%である。
In the emulsion particles, at least one of the resin constituting the core layer and the resin constituting the shell layer preferably has a structural unit (a) derived from a (meth) acrylate ester.
More preferably, at least one of the resins constituting the shell layer preferably has the structural unit (a). More preferably, at least one of the resins constituting the shell layer and the resin constituting the core layer have the above structural unit (a), and more preferably, all the resins constituting the emulsion particles are composed of the structural unit (a) ).
The emulsion particles preferably have 70 to 99.9% by mass of the structural unit (a) based on 100% by mass of all the structural units constituting the emulsion particles. Thereby, the function and effect of the present invention can be more sufficiently exhibited. It is more preferably 80 to 99.9% by mass, and still more preferably 90 to 99.9% by mass.
上記(メタ)アクリル酸エステルは、(メタ)アクリル酸の炭素数1~20アルキルエステルであることが好ましい。上記アルキル(メタ)アクリレートは、(メタ)アクリル酸と炭素数が1~20であるアルキルアルコールとのエステルと同じ構造であれば、(メタ)アクリル酸と炭素数が1~20であるアルキルアルコールとがエステル反応して得られたものに限定されない。
上記(メタ)アクリル酸エステルにおけるアルキル基の炭素数として好ましくは1~18である。これにより、エマルション粒子のガラス転移温度がより好適な範囲となる。アルキル基の炭素数としてより好ましくは1~16であり、更に好ましくは1~14であり、特に好ましくは1~12である。
The (meth) acrylic acid ester is preferably an alkyl ester of (meth) acrylic acid having 1 to 20 carbon atoms. If the alkyl (meth) acrylate has the same structure as the ester of (meth) acrylic acid and an alkyl alcohol having 1 to 20 carbon atoms, the alkyl alcohol having (meth) acrylic acid and 1 to 20 carbon atoms Is not limited to those obtained by an ester reaction.
The number of carbon atoms of the alkyl group in the (meth) acrylate is preferably 1 to 18. Thereby, the glass transition temperature of the emulsion particles is in a more preferable range. The number of carbon atoms in the alkyl group is more preferably 1 to 16, more preferably 1 to 14, and particularly preferably 1 to 12.
上記(メタ)アクリル酸エステルは、1種用いても、2種以上用いてもよい。好ましくは2種以上用いる形態であり、アルキル基の炭素数の異なる2種類の(メタ)アクリル酸エステルを用いる形態は、本発明の好ましい実施形態の1つである。これにより、より好適なTgを有するポリマーを得ることができる。
上記(メタ)アクリル酸エステルを2種用いる場合、一方の(メタ)アクリル酸エステルにおけるアルキル基の炭素数は、1~15であることが好ましい。より好ましくは1~10であり、更に好ましくは1~5である。
もう一方の(メタ)アクリル酸エステルにおけるアルキル基の炭素数は、3~20であることが好ましい。より好ましくは5~20であり、更に好ましくは5~10である。
The (meth) acrylic acid ester may be used alone or in combination of two or more. An embodiment in which two or more kinds are preferably used, and an embodiment in which two kinds of (meth) acrylates having different numbers of carbon atoms in the alkyl group are used is one of preferred embodiments of the present invention. Thereby, a polymer having a more suitable Tg can be obtained.
When two kinds of the above (meth) acrylates are used, the carbon number of the alkyl group in one (meth) acrylate is preferably 1 to 15. It is more preferably 1 to 10, and further preferably 1 to 5.
The alkyl group of the other (meth) acrylic acid ester preferably has 3 to 20 carbon atoms. It is more preferably from 5 to 20, and even more preferably from 5 to 10.
上記(メタ)アクリル酸エステルにおけるアルキル基として具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基(アミル基)、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコサニル基、i-プロピル基、sec-ブチル基、i-ブチル基、t-ブチル基、1-メチルブチル基、1-エチルプロピル基、2-メチルブチル基、i-アミル基、ネオペンチル基、1,2-ジメチルプロピル基、1,1-ジメチルプロピル基、t-アミル基、1,3-ジメチルブチル基、3,3-ジメチルブチル基、2-エチルブチル基、2-エチル-2-メチルプロピル基、1-メチルヘプチル基、2-エチルヘキシル基、1,5-ジメチルヘキシル基、t-オクチル基、分岐したノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基、イコシル基等の直鎖又は分岐鎖のアルキル基が挙げられる。 Specific examples of the alkyl group in the (meth) acrylate include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group (amyl group), an n-hexyl group, and an n-heptyl group. , N-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl , N-octadecyl group, n-nonadecyl group, n-eicosanyl group, i-propyl group, sec-butyl group, i-butyl group, t-butyl group, 1-methylbutyl group, 1-ethylpropyl group, 2-methylbutyl Group, i-amyl group, neopentyl group, 1,2-dimethylpropyl group, 1,1-dimethylpropyl group, t-amyl group, 1,3-dimethylbutyl group, 3,3 Dimethylbutyl, 2-ethylbutyl, 2-ethyl-2-methylpropyl, 1-methylheptyl, 2-ethylhexyl, 1,5-dimethylhexyl, t-octyl, branched nonyl, decyl And straight-chain or branched-chain alkyl groups such as undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and icosyl group.
(メタ)アクリル酸エステルとして具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、イコシル(メタ)アクリレート等が挙げられる。
中でも好ましくは、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート等である。
Specific examples of the (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, and heptyl ( (Meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl ( (Meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate Heptadecyl (meth) acrylate, octadecyl (meth) acrylate, nonadecyl (meth) acrylate, eicosyl (meth) acrylate.
Among them, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, and octyl (meth) are preferable. Acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) Acrylate and the like.
上記エマルション粒子は、コア層を構成する樹脂とシェル層を構成する樹脂の少なくともいずれかが(メタ)アクリル酸(塩)由来の構造単位(b)を有することが好ましい。
より好ましくはコア層を構成する樹脂が上記構造単位(b)を有することが好ましい。更に好ましくは、シェル層を構成する樹脂のうち少なくとも1種及びコア層を構成する樹脂が上記構造単位(b)を有することが好ましく、更に好ましくはエマルション粒子を構成する全ポリマーが構造単位(b)を有することである。
上記エマルション粒子は、エマルション粒子を構成する全構造単位100質量%に対して構造単位(b)を0.1~10質量%有することが好ましい。これにより本発明の作用効果をより充分に発揮することができる。より好ましくは0.5~5質量%であり、更に好ましくは0.5~3質量%である。
In the emulsion particles, at least one of the resin constituting the core layer and the resin constituting the shell layer preferably has a structural unit (b) derived from (meth) acrylic acid (salt).
More preferably, the resin constituting the core layer has the structural unit (b). More preferably, at least one of the resins constituting the shell layer and the resin constituting the core layer have the above structural unit (b), and more preferably, all the polymers constituting the emulsion particles are composed of the structural unit (b) ).
The emulsion particles preferably have 0.1 to 10% by mass of the structural unit (b) with respect to 100% by mass of all the structural units constituting the emulsion particles. Thereby, the function and effect of the present invention can be more sufficiently exhibited. More preferably, it is 0.5 to 5% by mass, and still more preferably 0.5 to 3% by mass.
上記(メタ)アクリル酸(塩)とは、アクリル酸、アクリル酸塩、メタクリル酸、メタクリル酸塩を表し、これらの中でも、アクリル酸、アクリル酸塩が好ましい。これら(メタ)アクリル酸(塩)は、1種を用いてもよく、2種以上を用いてもよい。上記(メタ)アクリル酸(塩)における塩としては、金属塩、アンモニウム塩、有機アミン塩が挙げられる。これらの中でも、Li、Na、K、Ca等のアルカリ金属塩が好ましく、より好ましくは、ナトリウム塩またはアンモニウム塩である。 The (meth) acrylic acid (salt) represents acrylic acid, acrylate, methacrylic acid, and methacrylate, and among these, acrylic acid and acrylate are preferable. One of these (meth) acrylic acids (salts) may be used alone, or two or more thereof may be used. Examples of the salt in the (meth) acrylic acid (salt) include metal salts, ammonium salts, and organic amine salts. Among these, alkali metal salts such as Li, Na, K, and Ca are preferable, and sodium salts and ammonium salts are more preferable.
上記エマルション粒子は、(メタ)アクリル酸エステル及び(メタ)アクリル酸(塩)以外のその他の単量体由来の構造単位(c)を有していてもよい。上記エマルション粒子において、エマルション粒子を構成する全構造単位100質量%に対する構造単位(c)の含有割合は、0~50質量%であることが好ましい。より好ましくは0~20質量%であり、更に好ましくは0~10質量%である。 The emulsion particles may have a structural unit (c) derived from another monomer other than the (meth) acrylic acid ester and the (meth) acrylic acid (salt). In the above emulsion particles, the content ratio of the structural unit (c) is preferably 0 to 50% by mass relative to 100% by mass of all the structural units constituting the emulsion particles. It is more preferably 0 to 20% by mass, and still more preferably 0 to 10% by mass.
その他の単量体として具体的には、スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル化合物;酢酸ビニル等のビニルエステル;メチルビニルエーテル等のビニルエーテル;クロトン酸、チグリン酸、3-メチルクロトン酸、2-メチル-2-ペンテン酸等の(メタ)アクリル酸(塩)以外のエチレン性不飽和モノカルボン酸類;マレイン酸、フマル酸、イタコン酸、メサコン酸、シトラコン酸、フマル酸等の不飽和多価カルボン酸類;マレイン酸モノエチル、イタコン酸モノエチル等のエチレン性不飽和多価カルボン酸の部分エステル化物等のカルボキシル基を有する単量体;ビニルスルホン酸、スチレンスルホン酸、スルホ(メタ)アクリレート等のスルホン酸基を有する単量体;2-(メタ)アクリロイルオキシエチルアシッドホスフェート、2-(メタ)アクリロイルオキシプロピルアシッドホスフェート、2-(メタ)アクリロイルオキシ-3-クロロプロピルアシッドホスフェート、2-(メタ)アクリロイルオキシエチルフェニルリン酸等の酸性リン酸エステル系単量体; Specific examples of other monomers include aromatic vinyl compounds such as styrene, vinyltoluene and α-methylstyrene; vinyl esters such as vinyl acetate; vinyl ethers such as methyl vinyl ether; crotonic acid, tiglic acid, 3-methylcroton Acid, ethylenically unsaturated monocarboxylic acids other than (meth) acrylic acid (salt) such as 2-methyl-2-pentenoic acid; maleic acid, fumaric acid, itaconic acid, mesaconic acid, citraconic acid, fumaric acid, etc. Saturated polycarboxylic acids; monomers having a carboxyl group such as partially esterified ethylenically unsaturated polycarboxylic acids such as monoethyl maleate and monoethyl itaconate; vinyl sulfonic acid, styrene sulfonic acid, and sulfo (meth) acrylate A monomer having a sulfonic acid group, such as 2- (meth) acryloyloxyethyl Acid phosphate monomers such as acid phosphate, 2- (meth) acryloyloxypropyl acid phosphate, 2- (meth) acryloyloxy-3-chloropropyl acid phosphate and 2- (meth) acryloyloxyethyl phenyl phosphoric acid ;
(メタ)アリルアルコール、イソプロピルアルコール、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸とポリプロピレングリコールもしくはポリエチレングリコールとのモノエステル、α-(ヒドロキシルメチル)アクリル酸メチル等のヒドロキシル基を有する単量体;グリシジル(メタ)アクリレート等のエポキシ基を有する単量体;(メタ)アクリロニトリル等のニトリル基を有する単量体;N-モノメチル(メタ)アクリルアミド、N-モノエチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、ジアセトンアクリルアミド、N-メチロールアクリルアミド等のアミド基を有する単量体;(メタ)アクリル酸ジメチルアミノエチル、アミノスチレン等のアミノ基を有する単量体;イソプロペニルオキサゾリン、ビニルピロリドン等のその他の官能基を有する単量体; (Meth) allyl alcohol, isopropyl alcohol, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, monoester of (meth) acrylic acid with polypropylene glycol or polyethylene glycol, α- (hydroxylmethyl A) a monomer having a hydroxyl group such as methyl acrylate; a monomer having an epoxy group such as glycidyl (meth) acrylate; a monomer having a nitrile group such as (meth) acrylonitrile; N-monomethyl (meth) acrylamide Monomers having an amide group such as N, monoethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, diacetone acrylamide, N-methylol acrylamide; dimethylaminoethyl (meth) acrylate, aminostyrene Monomers having an amino group; isopropenyl oxazoline monomer having other functional groups such as vinyl pyrrolidone;
(メタ)アクリル酸とエチレングリコール、プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の多価アルコールとのエステル;ジビニルベンゼン等の多官能ビニル化合物;(メタ)アクリル酸アリル等の(メタ)アクリル酸とアリルエステル;塩化ビニル、塩化ビニリデン、クロロスチレン、フッ化ビニル、フッ化ビニリデン、(メタ)アクリル酸パーフルオロオクチルエチル等のハロゲン成分を有する単量体が挙げられる。 Esters of (meth) acrylic acid with polyhydric alcohols such as ethylene glycol, propylene glycol, 1,3-butylene glycol, diethylene glycol, polyethylene glycol, polypropylene glycol, trimethylolpropane, pentaerythritol and dipentaerythritol; divinylbenzene and the like Polyfunctional vinyl compounds; (meth) acrylic acid and allyl ester such as allyl (meth) acrylate; vinyl chloride, vinylidene chloride, chlorostyrene, vinyl fluoride, vinylidene fluoride, perfluorooctylethyl (meth) acrylate and the like Examples include a monomer having a halogen component.
その他の単量体として好ましくはスチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル化合物であり、より好ましくはスチレンである。
上記エマルション粒子は、少なくともコア層を構成する樹脂がスチレン由来の構造単位を有することが好ましい。これにより、より好適なTgを有するエマルション粒子を得ることができる。上記エマルション粒子においてコア層を構成する樹脂及びシェル層を構成する樹脂のいずれもがスチレン由来の構造単位を有する形態は、本発明の好ましい実施形態の1つである。
The other monomer is preferably an aromatic vinyl compound such as styrene, vinyl toluene and α-methylstyrene, and more preferably styrene.
In the emulsion particles, it is preferable that at least the resin constituting the core layer has a structural unit derived from styrene. Thereby, emulsion particles having a more suitable Tg can be obtained. An embodiment in which both the resin constituting the core layer and the resin constituting the shell layer in the emulsion particles have a structural unit derived from styrene is one of preferred embodiments of the present invention.
<エマルション>
本発明はまた、上記エマルション粒子と溶媒とを含む樹脂分散体(以下、エマルションともいう)である。
上記溶媒としては、後述するエマルションの製造方法に記載の溶媒が挙げられる。
<Emulsion>
The present invention is also a resin dispersion containing the above-mentioned emulsion particles and a solvent (hereinafter, also referred to as an emulsion).
Examples of the solvent include those described in the method for producing an emulsion described below.
<エマルションの製造方法>
本発明のエマルションの製造方法は、特に制限されないが、単量体成分を乳化重合することにより製造することができる。乳化重合を行う形態としては特に限定されず、例えば、水性媒体中に単量体成分、重合開始剤及び乳化剤等を適宜加えて重合することにより行うことができる。具体的には、乳化剤及び/又は保護コロイドの存在下、水系溶媒中で単量体成分を乳化重合させてコア層を形成した後、該コア層を含むエマルションに更に単量体成分を乳化重合させてシェル層を形成する多段重合により得ることが好ましい。
本発明はまた、コア層と少なくとも1層のシェル層とを有するエマルション粒子を含む水硬性材料用添加剤を製造する方法であって、上記製造方法は、単量体成分を重合して、シェル層を構成する樹脂の平均のガラス転移温度よりも高いガラス転移温度を有する樹脂から構成されるコア層を形成する工程と、単量体成分を重合して、平均のガラス転移温度が-15℃以上である樹脂から構成されるシェル層を形成する工程とを含む水硬性材料用添加剤の製造方法でもある。また、単量体成分を重合して、シェル層を構成する樹脂の平均のガラス転移温度よりも高いガラス転移温度を有する樹脂から構成されるコア層を形成する工程と、単量体成分を重合して、平均のガラス転移温度が-15℃以上である樹脂から構成されるシェル層を形成する工程とを行うことにより得られるエマルション粒子を含む水硬性材料用添加剤もまた、本発明の1つである。
また、本発明のエマルションの製造において、分子量調節のために重合連鎖移動剤等を用いてもよい。
上記単量体成分の具体例及び好ましい例、並びに、各単量体の好ましい割合は、上述のとおりである。単量体成分が(メタ)アクリル酸(塩)を含む場合、重合性が向上し、得られるエマルションの安定性が向上するため、好ましい。
<Emulsion manufacturing method>
Although the method for producing the emulsion of the present invention is not particularly limited, it can be produced by emulsion polymerization of a monomer component. The form in which the emulsion polymerization is carried out is not particularly limited. For example, the emulsion polymerization can be carried out by appropriately adding a monomer component, a polymerization initiator, an emulsifier and the like to an aqueous medium and carrying out polymerization. Specifically, after a monomer component is emulsion-polymerized in an aqueous solvent in the presence of an emulsifier and / or a protective colloid to form a core layer, the monomer component is further emulsion-polymerized into an emulsion containing the core layer. It is preferable to obtain by multi-stage polymerization of forming a shell layer.
The present invention also provides a method for producing an additive for hydraulic material containing emulsion particles having a core layer and at least one shell layer, wherein the production method comprises polymerizing a monomer component to form a shell material. Forming a core layer composed of a resin having a glass transition temperature higher than the average glass transition temperature of the resin constituting the layer, and polymerizing the monomer component to obtain an average glass transition temperature of −15 ° C. And a step of forming a shell layer composed of a resin as described above. A step of polymerizing the monomer component to form a core layer composed of a resin having a higher glass transition temperature than the average glass transition temperature of the resin constituting the shell layer; and And forming a shell layer composed of a resin having an average glass transition temperature of −15 ° C. or higher. One.
In the production of the emulsion of the present invention, a polymerization chain transfer agent or the like may be used for controlling the molecular weight.
Specific examples and preferred examples of the monomer component, and preferred ratios of the respective monomers are as described above. It is preferable that the monomer component contains (meth) acrylic acid (salt) because the polymerizability is improved and the stability of the obtained emulsion is improved.
上記水系溶媒としては特に限定されず、例えば、水、水と混じり合うことができる溶媒の1種又は2種以上の混合溶媒、このような溶媒に水が主成分となるように混合した混合溶媒等が挙げられる。これらの中でも、水が好ましい。 The aqueous solvent is not particularly limited, and may be, for example, water, one or more mixed solvents of water-miscible solvents, and a mixed solvent in which such a solvent is mixed with water as a main component. And the like. Among these, water is preferred.
上記乳化剤としては、アニオン性(系)、カチオン性(系)、ノニオン性(系)、両性の各種界面活性剤、及び、高分子界面活性剤の1種又は2種以上を用いることができる。
上記アニオン系界面活性剤としては特に限定されず、例えば、ポリオキシアルキレンアルキルエーテル硫酸エステル塩、ポリオキシアルキレンオレイルエーテル硫酸ナトリウム塩、ポリオキシアルキレンアルキルフェニルエーテル硫酸エステル塩、アルキルジフェニルエーテルジスルホン酸塩、ポリオキシアルキレン(モノ、ジ、トリ)スチリルフェニルエーテル硫酸エステル塩、ポリオキシアルキレン(モノ、ジ、トリ)ベンジルフェニルエーテル硫酸エステル塩、アルケニルコハク酸ジ塩;ナトリウムドデシルサルフェート、カリウムドデシルサルフェート、アンモニウムアルキルサルフェート等のアルキルサルフェート塩;ナトリウムドデシルポリグリコールエーテルサルフェート;ナトリウムスルホリシノエート;スルホン化パラフィン塩等のアルキルスルホネート;ナトリウムドデシルベンゼンスルホネート、アルカリフェノールヒドロキシエチレンのアルカリ金属サルフェート等のアルキルスルホネート;高アルキルナフタレンスルホン酸塩;ナフタレンスルホン酸ホルマリン縮合物;ナトリウムラウレート、トリエタノールアミンオレエート、トリエタノールアミンアビエテート等の脂肪酸塩;ポリオキシアルキルエーテル硫酸エステル塩;ポリオキシエチレンカルボン酸エステル硫酸エステル塩;ポリオキシエチレンフェニルエーテル硫酸エステル塩;コハク酸ジアルキルエステルスルホン酸塩;ポリオキシエチレンアルキルアリールサルフェート塩等が挙げられる。これらの1種又は2種以上を用いることができる。
As the emulsifier, one or more of anionic (system), cationic (system), nonionic (system), amphoteric surfactants, and high molecular surfactants can be used.
The anionic surfactant is not particularly limited, for example, polyoxyalkylene alkyl ether sulfate, polyoxyalkylene oleyl ether sulfate sodium salt, polyoxyalkylene alkyl phenyl ether sulfate, alkyl diphenyl ether disulfonate, poly Oxyalkylene (mono, di, tri) styryl phenyl ether sulfate, polyoxyalkylene (mono, di, tri) benzyl phenyl ether sulfate, alkenyl succinic acid disalt; sodium dodecyl sulfate, potassium dodecyl sulfate, ammonium alkyl sulfate Sodium dodecyl polyglycol ether sulfate; sodium sulforisinoate; sulfonated paraffin Alkylsulfonates such as sodium dodecylbenzenesulfonate and alkali metal sulfates of alkali phenol hydroxyethylene; high alkyl naphthalene sulfonates; naphthalenesulfonic acid formalin condensates; sodium laurate, triethanolamine oleate, Fatty acid salts such as ethanolamine aviate; polyoxyalkyl ether sulfate; polyoxyethylene carboxylate sulfate; polyoxyethylene phenyl ether sulfate; dialkyl succinate sulfonate; polyoxyethylene alkyl aryl sulfate And the like. One or more of these can be used.
上記アニオン系界面活性剤として好適な市販品としては、例えば、ラテムルWX、ラテムル118B、ペレックスSS-H、エマルゲンA-60、B-66、レベノールWZ(花王社製)、ニューコール707SF、ニューコール707SN、ニューコール714SF、ニューコール714SN、AB-26S、ABEX-2010、2020、2030、DSB(ローディア日華社製)等を挙げることができる。
また、これらのノニオンタイプに相当する界面活性剤も使用することができる。
Commercial products suitable as the anionic surfactant include, for example, Latemul WX, Latemul 118B, Perex SS-H, Emulgen A-60, B-66, Lebenol WZ (manufactured by Kao Corporation), Newcol 707SF, Newcol 707SN, Newcall 714SF, Newcall 714SN, AB-26S, ABEX-2010, 2020, 2030, DSB (manufactured by Rhodia Nichika), and the like.
Surfactants corresponding to these nonionic types can also be used.
上記アニオン系界面活性剤としては、また反応性界面活性剤として、反応性アニオン系界面活性剤、スルホコハク酸塩型反応性アニオン系界面活性剤、アルケニルコハク酸塩型反応性アニオン系界面活性剤等の1種又は2種以上を用いることができる。
スルホコハク酸塩型反応性アニオン系界面活性剤の市販品としては、ラテムルS-120、S-120A、S-180及びS-180A(いずれも商品名、花王社製)、エレミノールJS-2(商品名、三洋化成工業社製)、アデカリアソープSR-10、SR-20、SR-30(ADEKA社製)等が挙げられる。
アルケニルコハク酸塩型反応性アニオン系界面活性剤の市販品としては、ラテムルASK(商品名、花王社製)等が挙げられる。
更に、(メタ)アクリル酸ポリオキシエチレンスルフォネート塩(例えば、三洋化成工業社製「エレミノールRS-30」、日本乳化剤社製「アントックスMS-60」等)、アリルオキシメチルアルキルオキシポリオキシエチレンのスルフォネー卜塩(例えば、第一工業製薬社製「アクアロンKH-10」等)等のアリル基を有する硫酸エステル(塩)、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム(例えば、花王社製「ラテムルPD-104」等)、1-プロペニル基とポリオキシエチレン基と硫酸アンモニウム塩基とを有する芳香族炭化水素化合物(例えば、第一工業製薬社製「アクアロンBC-10」等)等も用いることができる。
As the anionic surfactant, and as the reactive surfactant, a reactive anionic surfactant, a sulfosuccinate-type reactive anionic surfactant, an alkenyl succinate-type reactive anionic surfactant, and the like. One or more of these can be used.
Commercially available sulfosuccinate-type reactive anionic surfactants include Latemul S-120, S-120A, S-180 and S-180A (all of which are trade names, manufactured by Kao Corporation), Eleminor JS-2 (trademark) Name, Sanyo Kasei Kogyo Co., Ltd.), Adecaria Soap SR-10, SR-20, SR-30 (manufactured by ADEKA) and the like.
Commercial products of the alkenyl succinate-type reactive anionic surfactant include Latemul ASK (trade name, manufactured by Kao Corporation) and the like.
Furthermore, (meth) acrylic acid polyoxyethylene sulfonate salt (for example, “Eleminol RS-30” manufactured by Sanyo Chemical Industries, Ltd., “Antox MS-60” manufactured by Nippon Emulsifier Co., Ltd.), allyloxymethylalkyloxypolyoxy Sulfate esters (salts) having an allyl group, such as sulfonate salts of ethylene (eg, “Aqualon KH-10” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and polyoxyalkylene alkenyl ether ammonium sulfates (eg, “Latemul PD- 104 "), an aromatic hydrocarbon compound having a 1-propenyl group, a polyoxyethylene group, and an ammonium sulfate group (eg," Aqualon BC-10 "manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and the like.
また、上記アニオン系界面活性剤としては、更に反応性界面活性剤として、下記の界面活性剤等も用いることができる。
炭素数3~5の脂肪族不飽和カルボン酸のスルホアルキル(炭素数1~4)エステル塩型界面活性剤、例えば、2-スルホエチル(メタ)アクリレートナトリウム塩、3-スルホプロピル(メタ)アクリレートアンモニウム塩等の(メタ)アクリル酸スルホアルキルエステル塩型界面活性剤;スルホプロピルマレイン酸アルキルエステルナトリウム塩、スルホプロピルマレイン酸ポリオキシエチレンアルキルエステルアンモニウム塩、スルホエチルフマル酸ポリオキシエチレンアルキルエステルアンモニウム塩等の脂肪族不飽和ジカルボン酸アルキルスルホアルキルジエステル塩型界面活性剤。
Further, as the anionic surfactant, the following surfactants and the like can be further used as a reactive surfactant.
Sulfoalkyl (C1-4) ester salt type surfactants of aliphatic unsaturated carboxylic acids having 3-5 carbon atoms, for example, 2-sulfoethyl (meth) acrylate sodium salt, 3-sulfopropyl (meth) acrylate ammonium (Meth) acrylic acid sulfoalkyl ester salt type surfactants such as salts; sulfopropyl maleic acid alkyl ester sodium salt, sulfopropyl maleic acid polyoxyethylene alkyl ester ammonium salt, sulfoethyl fumaric acid polyoxyethylene alkyl ester ammonium salt, etc. The aliphatic unsaturated dicarboxylic acid alkylsulfoalkyl diester salt type surfactant.
上記ノニオン系界面活性剤としては特に限定されず、例えば、ポリオキシエチレンアルキルエーテル;ポリオキシエチレンアルキルアリールエーテル;ソルビタン脂肪族エステル;ポリオキシエチレンソルビタン脂肪族エステル;グリセロールのモノラウレート等の脂肪族モノグリセライド;ポリオキシエチレンオキシプロピレン共重合体;エチレンオキサイドと脂肪族アミン、アミド又は酸との縮合生成物等が挙げられる。また、アリルオキシメチルアルコキシエチルヒドロキシポリオキシエチレン(例えば、ADEKA社製「アデカリアソープER-20」等)、ポリオキシアルキレンアルケニルエーテル(例えば、花王社製「ラテムルPD-420」、「ラテムルPD-430」等)、1-プロペニル基とポリオキシエチレン基とを有する芳香族化合物(例えば、第一製工業製薬社製、「アクアロンRN-20」等)等の反応性を有するノニオン系界面活性剤も用いることができる。これらの1種又は2種以上を用いることができる。 The nonionic surfactant is not particularly limited, and examples thereof include polyoxyethylene alkyl ethers; polyoxyethylene alkyl aryl ethers; sorbitan aliphatic esters; polyoxyethylene sorbitan aliphatic esters; Monoglyceride; polyoxyethyleneoxypropylene copolymer; condensation products of ethylene oxide with aliphatic amines, amides or acids. Further, allyloxymethylalkoxyethyl hydroxypolyoxyethylene (eg, “ADEKA REAL SOAP ER-20” manufactured by ADEKA, etc.) and polyoxyalkylene alkenyl ether (eg, “Latemul PD-420”, “Latemul PD-” manufactured by Kao Corporation) 430 ") and a nonionic surfactant having reactivity such as an aromatic compound having a 1-propenyl group and a polyoxyethylene group (eg," Aqualon RN-20 "manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.). Can also be used. One or more of these can be used.
上記カチオン系界面活性剤としては特に限定されず、例えば、ジアルキルジメチルアンモニウム塩、エステル型ジアルキルアンモニウム塩、アミド型ジアルキルアンモニウム塩、ジアルキルイミダゾリニウム塩等が挙げられ、これらの1種又は2種以上を用いることができる。 The cationic surfactant is not particularly limited and includes, for example, dialkyldimethylammonium salts, ester-type dialkylammonium salts, amide-type dialkylammonium salts, dialkylimidazolinium salts, and the like. Can be used.
上記両性界面活性剤としては特に限定されず、例えば、アルキルジメチルアミノ酢酸ベタイン、アルキルジメチルアミンオキサイド、アルキルカルボキシメチルヒドロキシエチルイミダゾリニウムベタイン、アルキルアミドプロピルベタイン、アルキルヒドロキシスルホベタイン等が挙げられ、これらの1種又は2種以上を用いることができる。 The amphoteric surfactant is not particularly limited, and includes, for example, alkyldimethylaminoacetic acid betaine, alkyldimethylamine oxide, alkylcarboxymethylhydroxyethylimidazolinium betaine, alkylamidopropyl betaine, alkylhydroxysulfobetaine, and the like. One or more of these can be used.
上記高分子界面活性剤としては特に限定されず、例えば、ポリビニルアルコール及びその変性物;(メタ)アクリル系水溶性高分子;ヒドロキシエチル(メタ)アクリル系水溶性高分子;ヒドロキシプロピル(メタ)アクリル系水溶性高分子;ポリビニルピロリドン等が挙げられ、これらの1種又は2種以上を用いることができる。
上記界面活性剤の中でも、環境面からは、非ノニルフェニル型の界面活性剤を用いることが好適である。
The polymer surfactant is not particularly limited and includes, for example, polyvinyl alcohol and a modified product thereof; (meth) acrylic water-soluble polymer; hydroxyethyl (meth) acrylic water-soluble polymer; hydroxypropyl (meth) acrylic Water-soluble polymer; polyvinylpyrrolidone, etc., and one or more of these can be used.
Among the above-mentioned surfactants, it is preferable to use a non-nonylphenyl type surfactant from an environmental point of view.
上記保護コロイドとしては、例えば、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、変性ポリビニルアルコール等のポリビニルアルコール類;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース塩等のセルロース誘導体;グアーガム等の天然多糖類等が挙げられ、これらの1種又は2種以上を用いることができる。なお、保護コロイドは単独で使用されてもよいし、界面活性剤と併用されてもよい。
上記保護コロイドの使用量としては、使用条件等に応じて適宜設定すればよいが、例えば、重合体を形成するのに用いられる単量体成分の総量100重量部に対して10重量部以下であることが好ましく、より好ましくは5重量部以下であり、特に好ましくは3重量部以下である。
このように保護コロイドを使用することで重合安定性や機械的安定性に優れたエマルションを得ることができる。
Examples of the protective colloid include polyvinyl alcohols such as partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, and modified polyvinyl alcohol; cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, and carboxymethyl cellulose salts; natural polysaccharides such as guar gum And the like, and one or more of these can be used. The protective colloid may be used alone or in combination with a surfactant.
The amount of the protective colloid used may be appropriately set according to the use conditions and the like. For example, the amount is 10 parts by weight or less based on 100 parts by weight of the total amount of the monomer components used to form the polymer. Preferably, it is 5 parts by weight or less, more preferably 3 parts by weight or less.
By using the protective colloid as described above, an emulsion having excellent polymerization stability and mechanical stability can be obtained.
上記重合開始剤としては、熱によって分解し、ラジカル分子を発生させる物質であれば特に限定されないが、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類;2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、4,4’-アゾビス(4-シアノペンタン酸)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物;tert-ブチルパーオキシ-2-エチルヘキサノエート、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド等の有機過酸化物;過酸化水素とアスコルビン酸、t-ブチルヒドロパーオキサイドとロンガリット、過硫酸カリウムと金属塩、過硫酸アンモニウムと亜硫酸水素ナトリウム等のレドックス系重合開始剤等が挙げられ、これらの1種又は2種以上を用いることができる。
上記重合開始剤の使用量としては特に限定されず、重合開始剤の種類等に応じて適宜設定すればよいが、例えば、重合体を形成するのに用いられる単量体成分の総量100重量部に対して、0.1~2重量部であることが好ましく、より好ましくは0.2~1重量部である。
The polymerization initiator is not particularly limited as long as it is a substance that is decomposed by heat to generate a radical molecule, and examples thereof include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; 2,2′-azobis (2-amidinopropane) dihydrochloride, 4,4'-azobis (4-cyanopentanoic acid), 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobisisobutyronitrile Azo compounds such as 2,2'-azobis (2,4-dimethylvaleronitrile); organic peroxides such as tert-butylperoxy-2-ethylhexanoate, benzoyl peroxide, di-tert-butyl peroxide Substances: hydrogen peroxide and ascorbic acid, t-butyl hydroperoxide and Rongalit, potassium persulfate and metal salt, ammonium persulfate Redox polymerization initiators such as sodium hydrogen sulfite and the like, can be used alone or in combination of two or more thereof.
The amount of the polymerization initiator is not particularly limited, and may be appropriately set depending on the type of the polymerization initiator and the like. For example, the total amount of the monomer components used to form the polymer is 100 parts by weight. The amount is preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1 part by weight.
上記重合開始剤には、重合を促進させるため、必要に応じて還元剤を併用することができる。還元剤としては、例えば、アスコルビン酸、酒石酸、クエン酸、ブドウ糖等の還元性有機化合物;例えば、チオ硫酸ナトリウム、亜硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウム、等の還元性無機化合物等が挙げられ、これらの1種又は2種以上を用いることができる。
上記還元剤の使用量としては特に限定されず、例えば、重合体を形成するのに用いられる単量体成分の総量100重量部に対して、0.001~1重量部であることが好ましい。
In order to promote the polymerization, a reducing agent can be used in combination with the polymerization initiator as needed. Examples of the reducing agent include reducing organic compounds such as ascorbic acid, tartaric acid, citric acid, and glucose; for example, reducing inorganic compounds such as sodium thiosulfate, sodium sulfite, sodium bisulfite, sodium metabisulfite, and the like. And one or more of these can be used.
The amount of the reducing agent to be used is not particularly limited, and is preferably, for example, 0.001 to 1 part by weight based on 100 parts by weight of the total amount of the monomer components used to form the polymer.
上記重合連鎖移動剤としては特に限定されず、例えば、3-メルカプトプロピオン酸、2-メルカプトプロピオン酸、ヘキシルメルカプタン、オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメルカプタン等のアルキルメルカプタン類;四塩化炭素、四臭化炭素、臭化エチレン等のハロゲン化炭化水素;メルカプト酢酸2-エチルヘキシルエステル、メルカプトプロピオン酸2-エチルヘキシルエステル、メルカプトピロピオン酸トリデシルエステル等のメルカプトカルボン酸アルキルエステル;メルカプト酢酸メトキシブチルエステル、メルカプトプロピオン酸メトキシブチルエステル等のメルカプトカルボン酸アルコキシアルキルエステル;オクタン酸2-メルカプトエチルエステル等のカルボン酸メルカプトアルキルエステルや、α-メチルスチレンダイマー、ターピノーレン、α-テルピネン、γ-テルピネン、ジペンテン、アニソール、アリルアルコール等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。これらの中でも、ヘキシルメルカプタン、オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメルカプタン等のアルキルメルカプタン類を用いることが好ましい。重合連鎖移動剤の使用量としては、例えば、全単量体成分100重量部に対して、好ましくは20重量部以下、より好ましくは、10重量部以下である。更に好ましくは、5.0重量部以下、特に好ましくは2.0重量部以下、最も好ましくは1.0重量部以下である。 The polymerization chain transfer agent is not particularly restricted but includes, for example, 3-mercaptopropionic acid, 2-mercaptopropionic acid, hexylmercaptan, octylmercaptan, n-dodecylmercaptan, t-dodecylmercaptan, n-hexadecylmercaptan, n- Alkyl mercaptans such as tetradecyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, carbon tetrabromide and ethylene bromide; 2-ethylhexyl mercaptoacetate, 2-ethylhexyl mercaptopropionate, tridecyl mercaptopyrropionate Mercaptocarboxylic acid alkyl esters such as mercaptocarboxylic acid methoxybutyl ester, mercaptopropionic acid methoxybutyl ester and the like; octanoic acid - or carboxylic acid mercaptoalkyl esters such as mercaptoethyl ester, alpha-methylstyrene dimer, terpinolene, alpha-terpinene, .gamma.-terpinene, dipentene, anisole, allyl alcohol and the like. These may be used alone or in combination of two or more. Among these, alkyl mercaptans such as hexyl mercaptan, octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexadecyl mercaptan, and n-tetradecyl mercaptan are preferably used. The amount of the polymerization chain transfer agent used is, for example, preferably 20 parts by weight or less, more preferably 10 parts by weight or less, based on 100 parts by weight of all monomer components. More preferably, it is at most 5.0 parts by weight, particularly preferably at most 2.0 parts by weight, most preferably at most 1.0 part by weight.
上記重合は、必要に応じて、エチレンジアミン四酢酸ナトリウム等のキレート剤、ポリアクリル酸ナトリウム等の分散剤や、無機塩等の存在下で行ってもよい。また、単量体成分や重合開始剤等の添加方法としては、例えば、一括添加法、連続添加法、多段添加法等の方法を適用することができる。また、これらの添加方法を適宜組み合わせてもよい。 The above polymerization may be carried out in the presence of a chelating agent such as sodium ethylenediaminetetraacetate, a dispersant such as sodium polyacrylate, or an inorganic salt, if necessary. As a method for adding the monomer component, the polymerization initiator, and the like, for example, a method such as a batch addition method, a continuous addition method, and a multi-stage addition method can be applied. Further, these addition methods may be appropriately combined.
上記製造方法における重合条件に関し、重合温度としては特に限定されず、例えば、0~100℃であることが好ましく、より好ましくは40~95℃である。また、重合時間も特に限定されず、例えば、1~15時間とすることが好適で、より好ましくは2~10時間である。
単量体成分や重合開始剤等の添加方法としては特に限定されず、例えば、一括添加法、連続添加法、多段添加法等の方法を適用することができる。また、これらの添加方法を適宜組み合わせてもよい。
Regarding the polymerization conditions in the above production method, the polymerization temperature is not particularly limited, and is, for example, preferably from 0 to 100 ° C, more preferably from 40 to 95 ° C. Also, the polymerization time is not particularly limited, and is, for example, preferably 1 to 15 hours, and more preferably 2 to 10 hours.
The method for adding the monomer component, the polymerization initiator, and the like is not particularly limited, and for example, a method such as a batch addition method, a continuous addition method, or a multi-stage addition method can be applied. Further, these addition methods may be appropriately combined.
本発明のエマルションの製造方法においては、乳化重合によりエマルションを製造した後、中和剤によりエマルションを中和することが好ましい。これにより、エマルションが安定化されることになる。
中和剤としては特に限定されず、例えば、トリエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、モルホリン等の三級アミン;ジグリコールアミン、アンモニア水;水酸化ナトリウム等を用いることができる。これらは単独で用いてもよく、2種以上を併用してもよい。
In the method for producing an emulsion of the present invention, it is preferable that after the emulsion is produced by emulsion polymerization, the emulsion is neutralized with a neutralizing agent. Thereby, the emulsion will be stabilized.
The neutralizing agent is not particularly restricted but includes, for example, tertiary amines such as triethanolamine, dimethylethanolamine, diethylethanolamine and morpholine; diglycolamine, aqueous ammonia; sodium hydroxide. These may be used alone or in combination of two or more.
<水硬性材料用添加剤及び水硬性材料組成物>
本発明の水硬性材料用添加剤は、上記エマルション粒子を含むものであり、エマルション粒子を2種以上含んでいてもよい。上記水硬性材料用添加剤における上記エマルション粒子の含有量(2種以上のエマルション粒子を含む場合は、その総含有量)は、特に制限されないが、水硬性材料用添加剤中の固形分(すなわち不揮発分)100質量%中、5~90質量%であることが好ましい。より好ましくは20~90質量%、更に好ましくは30~75質量%である。
なお、本明細書中、「水硬性材料用添加剤」とは、セメントペースト、モルタル、コンクリート等の水硬性材料組成物へ添加される添加剤のことをいい、上記エマルションのみからなる剤であってもよいし、また、上記エマルション粒子だけでなく、必要に応じて更に後述するその他の添加剤等を含む剤であってもよい。
<Hydraulic material additive and hydraulic material composition>
The additive for hydraulic material of the present invention contains the above emulsion particles, and may contain two or more kinds of emulsion particles. The content of the emulsion particles in the additive for hydraulic material (when two or more types of emulsion particles are included, the total content thereof) is not particularly limited, but the solid content in the additive for hydraulic material (ie, The content is preferably 5 to 90% by mass based on 100% by mass of the nonvolatile components. More preferably, it is 20 to 90% by mass, and still more preferably 30 to 75% by mass.
In the present specification, the term "additive for hydraulic material" refers to an additive added to a hydraulic material composition such as cement paste, mortar, and concrete, and is an agent consisting of only the above emulsion. It may be an agent containing not only the above-mentioned emulsion particles but also other additives as described below as necessary.
本発明の水硬性材料用添加剤は、水硬性材料と骨材とを含む水硬性材料組成物に用いられることが好ましい。すなわち、水硬性材料用添加剤と水硬性材料と骨材とを含む水硬性材料組成物もまた、本発明の1つである。 The additive for hydraulic material of the present invention is preferably used in a hydraulic material composition containing a hydraulic material and an aggregate. That is, a hydraulic material composition including a hydraulic material additive, a hydraulic material, and an aggregate is also one of the present invention.
上記水硬性材料組成物において、本発明の水硬性材料用添加剤の配合割合としては、例えば、本発明の必須成分であるエマルション粒子(複数含む場合はその合計量)の割合が、固形分換算で、水硬性材料の全量100質量%に対して、0.005~10質量%となるように設定することが好ましい。より好ましくは0.01~5質量%であり、更に好ましくは0.02~3質量%である。なお、本明細書中、固形分含量は、以下のようにして測定することができる。
<固形分測定方法>
1.アルミ皿を精秤する。
2.1で精秤したアルミ皿に固形分測定物を精秤する。
3.窒素雰囲気下130℃に調温した乾燥機に2で精秤した固形分測定物を1.5時間入れる。
4.1時間後、乾燥機から取り出し、室温のデシケーター内で15分間放冷する。
5.15分後、デシケーターから取り出し、アルミ皿+測定物を精秤する。
6.5で得られた質量から1で得られたアルミ皿の質量を差し引き、2で得られた固形分測定物の質量で除することで固形分を測定する。
In the hydraulic material composition, as the blending ratio of the hydraulic material additive of the present invention, for example, the ratio of the emulsion particles, which are essential components of the present invention (the total amount when a plurality is included), is calculated as solid content. It is preferable to set the amount to be 0.005 to 10% by mass with respect to 100% by mass of the total amount of the hydraulic material. More preferably, it is 0.01 to 5% by mass, and still more preferably 0.02 to 3% by mass. In addition, in this specification, solid content can be measured as follows.
<Solid content measurement method>
1. Weigh aluminum dish accurately.
The solid content measurement object is precisely weighed on the aluminum dish precisely weighed in 2.1.
3. A solid matter measured precisely at 2 was put into a dryer adjusted to 130 ° C. in a nitrogen atmosphere for 1.5 hours.
4. After 1 hour, remove from the dryer and allow to cool in a desiccator at room temperature for 15 minutes.
5. After 15 minutes, take out of the desiccator and weigh the aluminum plate + the measured object.
The solid content is measured by subtracting the mass of the aluminum dish obtained in 1 from the mass obtained in 6.5 and dividing by the mass of the solid content measurement object obtained in 2.
上記水硬性材料としては、水硬性又は潜在水硬性を有するものであれば特に限定されず、例えば、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等のポルトランドセメントや、シリカセメント、フライアッシュセメント、高炉セメント、アルミナセメント、ビーライト高含有セメント、各種混合セメント;珪酸三カルシウム、珪酸二カルシウム、アルミン酸三カルシウム、鉄アルミン酸四カルシウム等のセメントの構成成分;潜在水硬性を有するフライアッシュ、シリカフューム、スラグ、石灰微粉等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。これらの中でも、普通ポルトランドセメントが通常よく使用され、好適に適用することができる。 The hydraulic material is not particularly limited as long as it has hydraulic or latent hydraulic properties.For example, ordinary Portland cement, early-strength Portland cement, moderate heat Portland cement, Portland cement such as low heat Portland cement, silica, etc. Cement, fly ash cement, blast furnace cement, alumina cement, belite-rich cement, various mixed cements; constituents of cements such as tricalcium silicate, dicalcium silicate, tricalcium aluminate, tetracalcium iron aluminate; latent hydraulic property Fly ash, silica fume, slag, lime fine powder and the like. These may be used alone or in combination of two or more. Of these, ordinary Portland cement is commonly used and can be suitably applied.
上記骨材としては、砂利、砕石、水砕スラグ、再生骨材等以外に、珪石質、粘土質、ジルコン質、ハイアルミナ質、炭化珪素質、黒鉛質、クロム質、クロマグ質、マグネシア質等の耐火骨材等が挙げられる。 Examples of the above-mentioned aggregate include, in addition to gravel, crushed stone, granulated slag, recycled aggregate, etc., siliceous, clay, zircon, high alumina, silicon carbide, graphite, chromium, chromium, magnesia, etc. And the like.
本発明の水硬性材料用添加剤は、水硬性材料組成物において、本発明の水硬性材料用添加剤以外のその他の添加剤と併用してもよく、その他の添加剤としては、通常使用されるセメント分散剤や減水剤、水溶性高分子物質、遅延剤、急結剤、早強剤・促進剤、鉱油系消泡剤、油脂系消泡剤、脂肪酸系消泡剤、脂肪酸エステル系消泡剤、オキシアルキレン系消泡剤、アルコール系消泡剤、アミド系消泡剤、リン酸エステル系消泡剤、金属石鹸系消泡剤、シリコーン系消泡剤、AE剤、界面活性剤、防水剤、防錆剤、防腐剤、ひび割れ低減剤、膨張材、セメント湿潤剤、増粘剤、分離低減剤、凝集剤、乾燥収縮低減剤、強度増進剤、セルフレベリング剤、着色剤、防カビ剤、高炉スラグ、フライアッシュ、シンダーアッシュ、クリンカーアッシュ、ハスクアッシュ、シリカヒューム、シリカ粉末、コロイダルシリカ、繊維、石膏等のセメント添加剤(材)が挙げられる。 The additive for hydraulic material of the present invention may be used in a hydraulic material composition together with other additives other than the additive for hydraulic material of the present invention. Cement dispersants, water reducing agents, water-soluble polymer substances, retarders, quick-setting agents, fast-strength agents / accelerators, mineral oil-based defoamers, oil-based defoamers, fatty acid-based defoamers, fatty acid ester-based defoamers Foaming agent, oxyalkylene-based antifoaming agent, alcohol-based antifoaming agent, amide-based antifoaming agent, phosphate ester-based antifoaming agent, metal soap-based antifoaming agent, silicone-based antifoaming agent, AE agent, surfactant, Waterproofing agents, rust inhibitors, preservatives, crack reducing agents, swelling agents, cement wetting agents, thickeners, separation reducing agents, flocculants, drying shrinkage reducing agents, strength enhancers, self-leveling agents, coloring agents, fungicides Blast furnace slag, fly ash, cinder ash, clinker ash Husk ash, silica fume, silica powder, colloidal silica, fibers, cement additives such as gypsum (wood) and the like.
セメント分散剤(減水剤)としては特に限定されず、(i)ナフタレンスルホン酸ホルムアルデヒド縮合物等のポリアルキルアリールスルホン酸塩系分散剤;メラミンスルホン酸ホルムアルデヒド縮合物等のメラミンホルマリン樹脂、スルホン酸塩系分散剤;アミノアリールスルホン酸-フェノール-ホルムアルデヒド縮合物等の芳香族アミノスルホン酸塩系分散剤;リグニンスルホン酸塩、変成リグニンスルホン酸塩等のリグニンスルホン酸塩系分散剤;ポリスチレンスルホン酸塩系分散剤;等の分子中にスルホン酸基を有する各種スルホン酸系分散剤(減水剤);(ii)特公昭59-18338号公報、特開平7-223852号公報に記載の如く、ポリアルキレングリコールモノ(メタ)アクリル酸エステル系単量体、(メタ)アクリル酸系単量体、およびこれらの単量体と共重合可能な単量体から得られる共重合体;特開平10-236858号公報、特開2001-220417号公報、特開2002-121055号公報、特開2002-121056号公報に記載の如く、不飽和(ポリ)アルキレングリコールエーテル系単量体、マレイン酸系単量体または(メタ)アクリル酸系単量体から得られる共重合体;等の分子中に(ポリ)オキシアルキレン基とカルボキシル基とを有する各種ポリカルボン酸系分散剤(減水剤);(iii)特開2006-52381号公報に記載の如く、(アルコキシ)ポリアルキレングリコールモノ(メタ)アクリレート、リン酸モノエステル系単量体、およびリン酸ジエステル系単量体から得られる共重合体等の、分子中に(ポリ)オキシアルキレン基とリン酸エステル基とを有する共重合体;特表2008-517080号公報に記載の如く、(ポリ)オキシアルキレン基と芳香環族基及び/又は複素環式芳香族基とを有する単量体、リン酸(塩)基及び/又はリン酸エステル基と芳香環族基及び/又は複素環式芳香族基とを有する単量体、およびアルデヒド化合物からなる重縮合生成物;特表2015-508384号公報に記載の如く、芳香族トリアジン構造単位、ポリアルキレングリコール構造単位、およびリン酸エステル構造単位を有する分散剤;等の各種リン酸系分散剤(減水剤)等が挙げられる。
本発明の水硬性材料用添加剤は、上記その他の添加剤の中でも、減水剤と併用されることが好ましい。
すなわち、上記水硬性材料組成物は、更に減水剤を含むものであることが好ましく、このような形態は本発明の好ましい実施形態の1つである。
The cement dispersant (water reducing agent) is not particularly limited, and (i) a polyalkylaryl sulfonate-based dispersant such as naphthalene sulfonic acid formaldehyde condensate; a melamine formalin resin such as melamine sulfonic acid formaldehyde condensate; Aromatic aminosulfonate dispersants such as aminoaryl sulfonic acid-phenol-formaldehyde condensate; Lignin sulfonate dispersants such as lignin sulfonate and modified lignin sulfonate; Polystyrene sulfonate Various sulfonic acid-based dispersants having a sulfonic acid group in the molecule thereof (water reducing agent); (ii) polyalkylenes as described in JP-B-59-18338 and JP-A-7-223852. Glycol mono (meth) acrylate monomers, (meth) Lulic acid monomers and copolymers obtained from monomers copolymerizable with these monomers; JP-A-10-236858, JP-A-2001-220417, and JP-A-2002-121555. JP-A-2002-121056, copolymers obtained from unsaturated (poly) alkylene glycol ether-based monomers, maleic acid-based monomers or (meth) acrylic acid-based monomers; Polycarboxylic acid-based dispersants (water reducing agents) having a (poly) oxyalkylene group and a carboxyl group in the molecule such as (iii) (alkoxy) polyalkylene glycol as described in JP-A-2006-52381 Mono (meth) acrylate, phosphate monoester monomer, and copolymers obtained from phosphate diester monomer, etc. Copolymer having an oxyalkylene group and a phosphate group; having a (poly) oxyalkylene group and an aromatic group and / or a heterocyclic aromatic group as described in JP-T-2008-517080. Polycondensation product comprising a monomer, a monomer having a phosphoric acid (salt) group and / or a phosphoric ester group and an aromatic group and / or a heteroaromatic group, and an aldehyde compound; As described in JP-A-2005-508384, various dispersants (water-reducing agents) such as dispersants having an aromatic triazine structural unit, a polyalkylene glycol structural unit, and a phosphate ester structural unit can be mentioned.
The additive for hydraulic material of the present invention is preferably used in combination with a water reducing agent among the other additives described above.
That is, the hydraulic material composition preferably further contains a water reducing agent, and such a form is one of preferred embodiments of the present invention.
上記急結剤としては公知の急結剤であれば良く特に限定されない。用いる急結剤は粉体急結剤、液体急結剤でも、スラリータイプの急結剤でも良い。液体急結剤としては例えば硫酸アルミニウム、フッ素、及びアルカリ金属、さらに、これらとアルカノールアミンを含有するものが挙げられ、これらの1種または2種以上を用いることができる。また本発明で使用する液体急結剤には、既知の水溶性の水和促進剤を使用することが可能である。水和促進剤としては、例えば、ギ酸又はその塩、酢酸又はその塩、及び乳酸又はその塩等の有機系の水和促進剤や、水ガラス、硝酸塩、亜硝酸塩、チオ硫酸塩、及びチオシアン酸塩等の無機系の水和促進剤を使用することが可能である。粉体急結剤としては例えば、カルシウムアルミネート類、硫酸塩類、アルカリ金属アルミン酸塩類、アルカリ金属炭酸塩類、及びオキシカルボン酸類を含有してなるもの等が挙げられ、これらの1種または2種以上を用いることができる。 The quick-setting agent is not particularly limited as long as it is a known quick-setting agent. The quick setting agent used may be a powder quick setting agent, a liquid quick setting agent, or a slurry type quick setting agent. Examples of the liquid quick-setting admixture include aluminum sulfate, fluorine, and alkali metals, and those containing these and alkanolamine. One or more of these can be used. As the liquid quick-setting agent used in the present invention, a known water-soluble hydration accelerator can be used. Examples of the hydration accelerator include, for example, organic hydration accelerators such as formic acid or a salt thereof, acetic acid or a salt thereof, and lactic acid or a salt thereof, and water glass, nitrate, nitrite, thiosulfate, and thiocyanate. It is possible to use an inorganic hydration accelerator such as a salt. Examples of the powder quick setting agent include those containing calcium aluminates, sulfates, alkali metal aluminates, alkali metal carbonates, and oxycarboxylic acids, and one or two of these. The above can be used.
上記消泡剤としては、公知の消泡剤であれば良く特に限定されない。例えば、燈油、流動パラフィン等の鉱油系消泡剤;動植物油、ごま油、ひまし油、これらのアルキレンオキシド付加物等の油脂系消泡剤;オレイン酸、ステアリン酸、これらのアルキレンオキシド付加物等の脂肪酸系消泡剤;ジエチレングリコールモノラウレート、グリセリンモノリシノレート、アルケニルコハク酸誘導体、ソルビトールモノラウレート、ソルビトールトリオレエート、ポリオキシエチレンモノラウレート、ポリオキシエチレンソルビトールモノラウレート、天然ワックス等の脂肪酸エステル系消泡剤;オクチルアルコール、ヘキサデシルアルコール、アセチレンアルコール、グリコール類、ポリオキシアルキレングリコール等のアルコール系消泡剤;ポリオキシアルキレンアミド、アクリレートポリアミン等のアミド系消泡剤;リン酸トリブチル、ナトリウムオクチルホスフェート等のリン酸エステル系消泡剤;アルミニウムステアレート、カルシウムオレエート等の金属石鹸系消泡剤;シリコーン油、シリコーンペースト、シリコーンエマルジョン、有機変成ポリシロキサン、フルオロシリコーン油等のシリコーン系消泡剤;ポリオキシエチレンポリオキシプロピレン付加物等のオキシアルキレン系消泡剤;等が挙げられ、これらの1種または2種以上を用いることができる。上記例示の消泡剤の中でも特に、オキシアルキレン系消泡剤が最も好ましい。本発明のセメント混和剤用共重合体とオキシアルキレン系消泡剤とを組み合わせて用いると、消泡剤使用量が少なくて済み、さらに消泡剤と共重合体との相溶性にも優れるからである。オキシアルキレン系消泡剤としては、分子内にオキシアルキレン基を有しかつ水性液体中の気泡を減少させる作用を有する化合物であれば特に制限はないが、その中でも下記一般式(2)で表わされる特定のオキシアルキレン系消泡剤が好ましい。
 {-T-(R O)t-R }n (2)
上記式(2)中、R 、Rは、同一又は異なって、水素原子、炭素数1~22のアルキル基、炭素数1~22のアルケニル基、炭素数1~22のアルキニル基、フェニル基またはアルキルフェニル基(アルキルフェニル基中のアルキル基の炭素数は1~22である)を表わす。ROは、炭素数2~4のオキシアルキレン基の1種または2種以上の混合物を表わし、2種以上の場合はブロック状に付加していてもランダム状に付加していてもよい。tは、オキシアルキレン基の平均付加モル数であり、0~300の数を表わす。tが0のとき、R、Rが同時に水素原子であることはなく、Tは-O-、-CO-、-SO-、-PO-又は-NH-の基を表わす。nは、1又は2の整数を表わし、Rが水素原子のとき、nは1である。
上記式(2)で表されるオキシアルキレン系消泡剤の例としては、(ポリ)オキシエチレン(ポリ)オキシプロピレン付加物等のポリオキシアルキレン類;ジエチレングリコールヘプチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシプロピレンブチルエーテル、ポリオキシエチレンポリオキシプロピレン-2-エチルヘキシルエーテル、炭素数12~14の高級アルコールへのオキシエチレンオキシプロピレン付加物等の(ポリ)オキシアルキレンアルキルエーテル類;ポリオキシプロピレンフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等の(ポリ)オキシアルキレン(アルキル)アリールエーテル類;2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、2,5-ジメチル-3-ヘキシン-2,5-ジオール、3-メチル-1-ブチン-3-オール等のアセチレンアルコールにアルキレンオキシドを付加重合させたアセチレンエーテル類;ジエチレングリコールオレイン酸エステル、ジエチレングリコールラウリル酸エステル、エチレングリコールジステアリン酸エステル等の(ポリ)オキシアルキレン脂肪酸エステル類;ポリオキシエチレンソルビタンモノラウリン酸エステル、ポリオキシエチレンソルビタントリオレイン酸エステル等の(ポリ)オキシアルキレンソルビタン脂肪酸エステル類;ポリオキシプロピレンメチルエーテル硫酸ナトリウム、ポリオキシエチレンドデシルフェノールエーテル硫酸ナトリウム等の(ポリ)オキシアルキレンアルキル(アリール)エーテル硫酸エステル塩類;(ポリ)オキシエチレンステアリルリン酸エステル等の(ポリ)オキシアルキレンアルキルリン酸エステル類;ポリオキシエチレンラウリルアミン等の(ポリ)オキシアルキレンアルキルアミン類;等が挙げられ、これらの1種または2種以上を用いることができる。
The defoaming agent is not particularly limited as long as it is a known defoaming agent. For example, mineral oil-based antifoaming agents such as kerosene and liquid paraffin; oil and fat defoaming agents such as animal and vegetable oils, sesame oil, castor oil, and alkylene oxide adducts thereof; Fatty acid esters such as diethylene glycol monolaurate, glycerin monoricinoleate, alkenyl succinic acid derivatives, sorbitol monolaurate, sorbitol trioleate, polyoxyethylene monolaurate, polyoxyethylene sorbitol monolaurate, and natural wax Antifoaming agents such as octyl alcohol, hexadecyl alcohol, acetylene alcohol, glycols and polyoxyalkylene glycol; defoaming agents such as polyoxyalkyleneamide and acrylate polyamine; Phosphate ester defoamers such as tributyl phosphate and sodium octyl phosphate; metal soap defoamers such as aluminum stearate and calcium oleate; silicone oil, silicone paste, silicone emulsion, organically modified polysiloxane, fluoro Silicone antifoaming agents such as silicone oil; oxyalkylene antifoaming agents such as polyoxyethylene polyoxypropylene adduct; and the like, and one or more of these can be used. Among the defoamers exemplified above, oxyalkylene-based defoamers are most preferred. When the copolymer for cement admixture of the present invention and the oxyalkylene-based antifoaming agent are used in combination, the amount of the antifoaming agent used is small, and the compatibility between the antifoaming agent and the copolymer is also excellent. It is. The oxyalkylene-based antifoaming agent is not particularly limited as long as it is a compound having an oxyalkylene group in the molecule and having an action of reducing bubbles in an aqueous liquid, and among them, represented by the following general formula (2) Specific oxyalkylene antifoaming agents are preferred.
R 1 {-T- (R 2 O) t-R 3 } n (2)
In the above formula (2), R 1 and R 3 are the same or different and are each a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, an alkenyl group having 1 to 22 carbon atoms, an alkynyl group having 1 to 22 carbon atoms, phenyl Or an alkylphenyl group (the alkyl group in the alkylphenyl group has 1 to 22 carbon atoms). R 2 O represents one or a mixture of two or more oxyalkylene groups having 2 to 4 carbon atoms. In the case of two or more, R 2 O may be added in block form or in random form. t is the average number of moles of the added oxyalkylene group, and represents a number from 0 to 300. When t is 0, R 1 and R 3 are not hydrogen atoms at the same time, and T represents a group of —O—, —CO 2 —, —SO 4 —, —PO 4 —, or —NH—. n represents an integer of 1 or 2, and when R 1 is a hydrogen atom, n is 1.
Examples of the oxyalkylene-based antifoaming agent represented by the above formula (2) include polyoxyalkylenes such as (poly) oxyethylene (poly) oxypropylene adduct; diethylene glycol heptyl ether, polyoxyethylene oleyl ether, and polyoxyalkylene. (Poly) oxyalkylene alkyl ethers such as oxypropylene butyl ether, polyoxyethylene polyoxypropylene-2-ethylhexyl ether, and oxyethylene oxypropylene adduct to a higher alcohol having 12 to 14 carbon atoms; polyoxypropylene phenyl ether, poly (Poly) oxyalkylene (alkyl) aryl ethers such as oxyethylene nonylphenyl ether; 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 2,5-dimethyl-3-hexyne Acetylene ethers obtained by addition-polymerizing an alkylene oxide to acetylene alcohols such as 2,5-diol and 3-methyl-1-butyn-3-ol; diethylene glycol oleate, diethylene glycol laurate, ethylene glycol distearate, etc. (Poly) oxyalkylene fatty acid esters; (poly) oxyalkylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan trioleate; sodium polyoxypropylene methyl ether sulfate, polyoxyethylene dodecyl phenol (Poly) oxyalkylenealkyl (aryl) ether sulfates such as sodium ether sulfate; (poly) oxyethylenes (Poly) oxyalkylenealkyl phosphates such as allyl phosphate; (poly) oxyalkylenealkylamines such as polyoxyethylene laurylamine; and one or more of these can be used. .
上記水硬性材料組成物において、上記減水材の配合割合としては、固形分換算で、水硬性材料の全量100質量%に対して、0.01~1質量%であることが好ましい。より好ましくは0.05~0.5質量%であり、更に好ましくは0.07~0.3質量%である。 In the hydraulic material composition, the mixing ratio of the water-reducing material is preferably 0.01 to 1% by mass in terms of solid content, based on 100% by mass of the total amount of the hydraulic material. More preferably, it is 0.05 to 0.5% by mass, and still more preferably 0.07 to 0.3% by mass.
上記水硬性材料組成物においては、その1mあたりの単位水量、セメント使用量及び水/セメント比は特に限定されず、例えば、単位水量100~300kg/m、使用セメント量300~500kg/m、水/セメント比(重量比)=0.35~0.6であることが好ましい。より好ましくは、単位水量140~240kg/m、使用セメント量350~480kg/m、水/セメント比(重量比)=0.4~0.5である。 In the hydraulic material composition, the unit water amount per 1 m 3 , the amount of cement used, and the water / cement ratio are not particularly limited. For example, the unit water amount is 100 to 300 kg / m 3 , and the used cement amount is 300 to 500 kg / m 3 . 3. The water / cement ratio (weight ratio) is preferably 0.35 to 0.6. More preferably, the unit water amount is 140 to 240 kg / m 3 , the used cement amount is 350 to 480 kg / m 3 , and the water / cement ratio (weight ratio) is 0.4 to 0.5.
本発明の水硬性材料用添加剤は、水硬性材料組成物に用いられる限り特に制限されず、レディーミクストコンクリート、吹付けコンクリート等に用いることができる。好ましくは吹付けコンクリート用途に用いることである。本発明の水硬性材料用添加剤の吹付けコンクリートへの使用方法もまた、本発明の1つである。本発明は更に、本発明の水硬性材料用添加剤を水硬性材料とともに施工面に吹き付けて使用する方法でもある。
上記使用方法は、本発明の水硬性材料用添加剤を水硬性材料とともに施工面に吹き付ける限り特に制限されないが、水硬性材料用添加剤と水硬性材料とを混合したものを施工面に吹き付けることが好ましい。上記使用方法としては、水硬性材料用添加剤と水硬性材料とを混合する工程と、混合工程により得られた水硬性材料組成物を圧縮空気又はポンプ等で圧送する工程と、圧送された水硬性材料組成物を吹き付ける工程とを含むことがより好ましい。上記水硬性材料組成物の好ましい形態等は、上述のとおりである。
The additive for hydraulic material of the present invention is not particularly limited as long as it is used in the hydraulic material composition, and can be used in ready-mixed concrete, shotcrete and the like. Preferably, it is used for shotcrete applications. The use of the additive for hydraulic material of the present invention in shotcrete is also one aspect of the present invention. The present invention is also a method of spraying the hydraulic material additive of the present invention together with the hydraulic material onto a construction surface.
The method of use is not particularly limited as long as the hydraulic material additive of the present invention is sprayed on the construction surface together with the hydraulic material.However, a mixture of the hydraulic material additive and the hydraulic material is sprayed on the construction surface. Is preferred. The method of use includes a step of mixing the additive for hydraulic material and the hydraulic material, a step of pumping the hydraulic material composition obtained by the mixing step with compressed air or a pump, and a step of pumping water. And a step of spraying the hard material composition. Preferred embodiments of the hydraulic material composition are as described above.
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, “parts” means “parts by mass” and “%” means “% by mass”.
<エマルション粒子の平均粒子径の測定>
動的光散乱法による粒子径測定装置(Malvern社製Zetasizer Nano)を用い、散乱強度平均粒子径を測定した。
<Measurement of average particle size of emulsion particles>
The average particle size of the scattering intensity was measured using a particle size measuring device (Zetasizer Nano manufactured by Malvern) by a dynamic light scattering method.
<実施例1>水硬性材料用添加剤の製造
1次重合工程(1段目):
滴下ロート、攪拌機、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに脱イオン水783.5gと、BC-10(第一工業製薬(株)製)の25%水溶液28.8gと、RN-20(第一工業製薬(株)製)の25%水溶液14.4gと、2-エチルヘキシルアクリレート16.2gと、スチレン9.0gと、メチルメタクリレート59.4gと、アクリル酸5.4gとを仕込み、ゆるやかに窒素ガスを吹き込みながら攪拌下に75℃まで昇温した。昇温後、5%の過硫酸カリウム水溶液を54.0g及び2.5%の二亜硫酸ナトリウム水溶液4.0gを添加し、重合を開始した。反応系内を80℃で20分間保持した後、1次重合を一旦終了した。
2次重合工程(2段目):
1次重合反応終了後、反応系内を80℃に維持したまま、BC-10(第一工業製薬(株)製)の25%水溶液19.2gと、RN-20(第一工業製薬(株)製)の25%水溶液9.6gと、脱イオン水281.0gと、メチルメタクリレート415.4gと、2-エチルヘキシルアクリレート305.0gと、スチレン85.8gとアクリル酸3.8gとからなるプレエマルションを、140分間にわたって均一滴下した。その後、60分間、反応系内を80℃に維持し、2次重合を終了した。次に、反応系内を50℃にまで冷却し、25%アンモニア水7.1gを添加し、同温度で10分間攪拌した。攪拌後、室温にまで冷却し、100メッシュの金網で濾過して、固形分43.2%、粒子径83nmのエマルションを得た。
<Example 1> Production of additive for hydraulic material Primary polymerization step (first stage):
In a flask equipped with a dropping funnel, a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 783.5 g of deionized water and 28.8 g of a 25% aqueous solution of BC-10 (Daiichi Kogyo Seiyaku Co., Ltd.) were added. , RN-20 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 14.4 g of a 25% aqueous solution, 16.2 g of 2-ethylhexyl acrylate, 9.0 g of styrene, 59.4 g of methyl methacrylate, and 5.4 g of acrylic acid And heated to 75 ° C. with stirring while gently blowing nitrogen gas. After the temperature was raised, 54.0 g of a 5% aqueous solution of potassium persulfate and 4.0 g of a 2.5% aqueous solution of sodium disulfite were added to initiate polymerization. After maintaining the inside of the reaction system at 80 ° C. for 20 minutes, the primary polymerization was once terminated.
Secondary polymerization step (second stage):
After completion of the primary polymerization reaction, 19.2 g of a 25% aqueous solution of BC-10 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and RN-20 (Daiichi Kogyo Seiyaku Co., Ltd.) were maintained while maintaining the reaction system at 80 ° C. ), 251.0 g of deionized water, 415.4 g of methyl methacrylate, 305.0 g of 2-ethylhexyl acrylate, 85.8 g of styrene and 3.8 g of acrylic acid. The emulsion was dropped uniformly over 140 minutes. Thereafter, the inside of the reaction system was maintained at 80 ° C. for 60 minutes to complete the secondary polymerization. Next, the reaction system was cooled to 50 ° C., 7.1 g of 25% aqueous ammonia was added, and the mixture was stirred at the same temperature for 10 minutes. After stirring, the mixture was cooled to room temperature and filtered through a 100-mesh wire net to obtain an emulsion having a solid content of 43.2% and a particle diameter of 83 nm.
<実施例2>
1次重合工程(1段目):
滴下ロート、攪拌機、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに脱イオン水783.5gと、BC-10(第一工業製薬(株)製)の25%水溶液28.8gと、RN-20(第一工業製薬(株)製)の25%水溶液14.4gと、2-エチルヘキシルアクリレート16.2gと、スチレン9.0gと、メチルメタクリレート59.4gと、アクリル酸5.4gとを仕込み、ゆるやかに窒素ガスを吹き込みながら攪拌下に75℃まで昇温した。昇温後、5%の過硫酸カリウム水溶液を54.0g及び2.5%の二亜硫酸ナトリウム水溶液4.0gを添加し、重合を開始した。反応系内を80℃で20分間保持した後、1次重合を一旦終了した。
2次重合工程(2段目):
1次重合反応終了後、反応系内を80℃に維持したまま、BC-10(第一工業製薬(株)製)の25%水溶液19.2gと、RN-20(第一工業製薬(株)製)の25%水溶液9.6gと、脱イオン水281.0gと、メチルメタクリレート464.7gと、2-エチルヘキシルアクリレート341.1gとアクリル酸4.3gとからなるプレエマルションを、140分間にわたって均一滴下した。その後、60分間、反応系内を80℃に維持し、2次重合を終了した。次に、反応系内を50℃にまで冷却し、25%アンモニア水7.1gを添加し、同温度で10分間攪拌した。攪拌後、室温にまで冷却し、100メッシュの金網で濾過して、固形分43.0%、粒子径95nmのエマルションを得た。
<Example 2>
Primary polymerization step (first stage):
In a flask equipped with a dropping funnel, a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 783.5 g of deionized water and 28.8 g of a 25% aqueous solution of BC-10 (Daiichi Kogyo Seiyaku Co., Ltd.) were added. , RN-20 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 14.4 g of a 25% aqueous solution, 16.2 g of 2-ethylhexyl acrylate, 9.0 g of styrene, 59.4 g of methyl methacrylate, and 5.4 g of acrylic acid And heated to 75 ° C. with stirring while gently blowing nitrogen gas. After the temperature was raised, 54.0 g of a 5% aqueous solution of potassium persulfate and 4.0 g of a 2.5% aqueous solution of sodium disulfite were added to initiate polymerization. After maintaining the inside of the reaction system at 80 ° C. for 20 minutes, the primary polymerization was once terminated.
Secondary polymerization step (second stage):
After completion of the primary polymerization reaction, 19.2 g of a 25% aqueous solution of BC-10 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and RN-20 (Daiichi Kogyo Seiyaku Co., Ltd.) were maintained while maintaining the reaction system at 80 ° C. )), 281.0 g of deionized water, 464.7 g of methyl methacrylate, 341.1 g of 2-ethylhexyl acrylate and 4.3 g of acrylic acid for 140 minutes. It was dropped uniformly. Thereafter, the inside of the reaction system was maintained at 80 ° C. for 60 minutes to complete the secondary polymerization. Next, the reaction system was cooled to 50 ° C., 7.1 g of 25% aqueous ammonia was added, and the mixture was stirred at the same temperature for 10 minutes. After stirring, the mixture was cooled to room temperature and filtered through a 100-mesh wire net to obtain an emulsion having a solid content of 43.0% and a particle diameter of 95 nm.
<実施例3>
1次重合工程(1段目):
滴下ロート、攪拌機、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに脱イオン水783.5gと、BC-10(第一工業製薬(株)製)の25%水溶液1.2gと、RN-20(第一工業製薬(株)製)の25%水溶液0.6gと、2-エチルヘキシルアクリレート16.2gと、スチレン9.0gと、メチルメタクリレート59.4gと、アクリル酸5.4gとを仕込み、ゆるやかに窒素ガスを吹き込みながら攪拌下に75℃まで昇温した。昇温後、5%の過硫酸カリウム水溶液を54.0g及び2.5%の二亜硫酸ナトリウム水溶液4.0gを添加し、重合を開始した。反応系内を80℃で20分間保持した後、1次重合を一旦終了した。
2次重合工程(2段目):
1次重合反応終了後、反応系内を80℃に維持したまま、BC-10(第一工業製薬(株)製)の25%水溶液19.2gと、RN-20(第一工業製薬(株)製)の25%水溶液9.6gと、脱イオン水281.0gと、メチルメタクリレート464.7gと、2-エチルヘキシルアクリレート341.1gとアクリル酸4.3gとからなるプレエマルションを、140分間にわたって均一滴下した。その後、60分間、反応系内を80℃に維持し、2次重合を終了した。次に、反応系内を50℃にまで冷却し、25%アンモニア水7.1gを添加し、同温度で10分間攪拌した。攪拌後、室温にまで冷却し、100メッシュの金網で濾過して、固形分43.6%、粒子径197nmのエマルションを得た。
<Example 3>
Primary polymerization step (first stage):
In a flask equipped with a dropping funnel, a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 783.5 g of deionized water and 1.2 g of a 25% aqueous solution of BC-10 (Daiichi Kogyo Seiyaku Co., Ltd.) were added. , RN-20 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 0.6 g of a 25% aqueous solution, 16.2 g of 2-ethylhexyl acrylate, 9.0 g of styrene, 59.4 g of methyl methacrylate, and 5.4 g of acrylic acid And heated to 75 ° C. with stirring while gently blowing nitrogen gas. After the temperature was raised, 54.0 g of a 5% aqueous solution of potassium persulfate and 4.0 g of a 2.5% aqueous solution of sodium disulfite were added to initiate polymerization. After maintaining the inside of the reaction system at 80 ° C. for 20 minutes, the primary polymerization was once terminated.
Secondary polymerization step (second stage):
After completion of the primary polymerization reaction, 19.2 g of a 25% aqueous solution of BC-10 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and RN-20 (Daiichi Kogyo Seiyaku Co., Ltd.) were maintained while maintaining the reaction system at 80 ° C. )), 281.0 g of deionized water, 464.7 g of methyl methacrylate, 341.1 g of 2-ethylhexyl acrylate and 4.3 g of acrylic acid for 140 minutes. It was dropped uniformly. Thereafter, the inside of the reaction system was maintained at 80 ° C. for 60 minutes to complete the secondary polymerization. Next, the reaction system was cooled to 50 ° C., 7.1 g of 25% aqueous ammonia was added, and the mixture was stirred at the same temperature for 10 minutes. After stirring, the mixture was cooled to room temperature and filtered through a 100-mesh wire net to obtain an emulsion having a solid content of 43.6% and a particle size of 197 nm.
<比較例1>
1次重合工程(1段目):
滴下ロート、攪拌機、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに脱イオン水783.5gと、BC-10(第一工業製薬(株)製)の25%水溶液28.8gと、RN-20(第一工業製薬(株)製)の25%水溶液14.4gと、2-エチルヘキシルアクリレート16.2gと、スチレン9.0gと、メチルメタクリレート59.4gと、アクリル酸5.4gとを仕込み、ゆるやかに窒素ガスを吹き込みながら攪拌下に75℃まで昇温した。昇温後、5%の過硫酸カリウム水溶液を54.0g及び2.5%の二亜硫酸ナトリウム水溶液4.0gを添加し、重合を開始した。反応系内を80℃で20分間保持した後、1次重合を一旦終了した。
2次重合工程(2段目):
1次重合反応終了後、反応系内を80℃に維持したまま、BC-10(第一工業製薬(株)製)の25%水溶液19.2gと、RN-20(第一工業製薬(株)製)の25%水溶液9.6gと、脱イオン水281.0gと、メチルメタクリレート295.1gと、2-エチルヘキシルアクリレート513.0gとアクリル酸1.9gとからなるプレエマルションを、140分間にわたって均一滴下した。その後、60分間、反応系内を80℃に維持し、2次重合を終了した。次に、反応系内を50℃にまで冷却し、25%アンモニア水7.1gを添加し、同温度で10分間攪拌した。攪拌後、室温にまで冷却し、100メッシュの金網で濾過して、固形分43.6%、粒子径88nmのエマルションを得た。
<Comparative Example 1>
Primary polymerization step (first stage):
In a flask equipped with a dropping funnel, a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 783.5 g of deionized water and 28.8 g of a 25% aqueous solution of BC-10 (Daiichi Kogyo Seiyaku Co., Ltd.) were added. , RN-20 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 14.4 g of a 25% aqueous solution, 16.2 g of 2-ethylhexyl acrylate, 9.0 g of styrene, 59.4 g of methyl methacrylate, and 5.4 g of acrylic acid And heated to 75 ° C. with stirring while gently blowing nitrogen gas. After the temperature was raised, 54.0 g of a 5% aqueous solution of potassium persulfate and 4.0 g of a 2.5% aqueous solution of sodium disulfite were added to initiate polymerization. After maintaining the inside of the reaction system at 80 ° C. for 20 minutes, the primary polymerization was once terminated.
Secondary polymerization step (second stage):
After completion of the primary polymerization reaction, 19.2 g of a 25% aqueous solution of BC-10 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and RN-20 (Daiichi Kogyo Seiyaku Co., Ltd.) were maintained while maintaining the reaction system at 80 ° C. )), 281.0 g of deionized water, 295.1 g of methyl methacrylate, 513.0 g of 2-ethylhexyl acrylate and 1.9 g of acrylic acid for 140 minutes. It was dropped uniformly. Thereafter, the inside of the reaction system was maintained at 80 ° C. for 60 minutes to complete the secondary polymerization. Next, the reaction system was cooled to 50 ° C., 7.1 g of 25% aqueous ammonia was added, and the mixture was stirred at the same temperature for 10 minutes. After stirring, the mixture was cooled to room temperature and filtered through a 100-mesh wire net to obtain an emulsion having a solid content of 43.6% and a particle diameter of 88 nm.
<製造例1>減水剤(ポリカルボン酸共重合体)の製造
温度計、攪拌機、滴下ロート、環流冷却器を備えたガラス製反応容器にイオン交換水72.26部、3-メチル-3-ブテン-1-オールにエチレンオキサイドを50モル付加した不飽和アルコール127.74部を仕込み、65℃に昇温した後、そこへ過酸化水素30%水溶液0.71部を添加し、アクリル酸40%水溶液46.58部を3時間、3-メルカプトプロピオン酸0.67部を3時間、L-アスコルビン酸2.1%水溶液12.97部を3.5時間かけて滴下した。その後60分引き続いて65℃に温度を維持して重合反応を完結させ、温度を50℃以下に降温し水酸化ナトリウム12.2%水溶液76.07部でpH4からpH7になるように中和し、重量平均分子量29,000の重合体水溶液からなる本発明のポリカルボン酸共重合体を得た。尚、重合時に使用する原料の全量に対する全単量体の使用量は、56.2重量%であった。
<Production Example 1> Production of water reducing agent (polycarboxylic acid copolymer) In a glass reaction vessel equipped with a thermometer, a stirrer, a dropping funnel, and a reflux condenser, 72.26 parts of ion-exchanged water, 3-methyl-3- 127.74 parts of an unsaturated alcohol obtained by adding 50 mol of ethylene oxide to buten-1-ol was charged, and the temperature was raised to 65 ° C., and 0.71 part of a 30% aqueous hydrogen peroxide solution was added thereto, and acrylic acid 40 46.58 parts of a 3% aqueous solution were added dropwise over 3 hours, 0.67 parts of 3-mercaptopropionic acid were added over 3 hours, and 12.97 parts of a 2.1% aqueous solution of L-ascorbic acid were added over 3.5 hours. Thereafter, the temperature was maintained at 65 ° C. for 60 minutes to complete the polymerization reaction. The temperature was lowered to 50 ° C. or lower, and neutralized to pH 7 from pH 4 with 76.07 parts of a 12.2% aqueous solution of sodium hydroxide. Thus, a polycarboxylic acid copolymer of the present invention comprising an aqueous solution of a polymer having a weight average molecular weight of 29,000 was obtained. The amount of all monomers used was 56.2% by weight based on the total amount of raw materials used in the polymerization.
<コンクリート官能評価>
下記のとおり調製した(練り上げた)コンクリートを目視で観察し、石の目立ち具合を5段階評価で表して石とモルタルの付着性の指標とした。石の目立ち具合が大きい、すなわち、石とモルタルが分離して石が目立つものを、付着性が低いとする。付着性が高いものを5、低いものを1とした。
コンクリートの調製:
パン型コンクリートミキサーにて、表1の配合割合に従って、水、セメント(普通ポルトランドセメント、太平洋セメント(株)製)、粗骨材(青梅産硬質砕石、表乾比重=2.65g/cm)、細骨材(大井川産陸砂、表乾比重=2.62g/cm)、及び、上記実施例、比較例で得られた水硬性材料用添加剤をセメントに対して0.3重量部となる様に投入し、90秒間混練を行ってコンクリートを作成した。更にスランプ値が20±1cmとなるように、減水剤として製造例1で得られたポリカルボン酸共重合体を添加した。なお、空気量は消泡剤であるオキシアルキレン系消泡剤を添加して3.0%未満となるように調整した。得られたコンクリートのスランプ値はJIS A 1150に従って測定した。
<Concrete sensory evaluation>
The concrete prepared (kneaded) as described below was visually observed, and the conspicuousness of the stone was represented by a five-point scale and used as an index of the adhesion between the stone and the mortar. Stones with a high degree of conspicuousness, that is, stones and mortar that are separated and conspicuous, are considered to have low adhesion. A sample having high adhesiveness was designated as 5, and a sample having low adhesion was designated as 1.
Preparation of concrete:
In a pan-type concrete mixer, water, cement (ordinary Portland cement, manufactured by Taiheiyo Cement Co., Ltd.), coarse aggregate (hard crushed stone from Ome, surface dry specific gravity = 2.65 g / cm 3 ) according to the mixing ratio in Table 1 , Fine aggregate (land sand from Oigawa, surface dry specific gravity = 2.62 g / cm 3 ), and 0.3 parts by weight of the additive for hydraulic material obtained in the above Examples and Comparative Examples with respect to cement. And kneaded for 90 seconds to produce concrete. Further, the polycarboxylic acid copolymer obtained in Production Example 1 was added as a water reducing agent so that the slump value was 20 ± 1 cm. The amount of air was adjusted to be less than 3.0% by adding an oxyalkylene-based antifoaming agent as an antifoaming agent. The slump value of the obtained concrete was measured according to JIS A 1150.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<Sieve testによる付着性の評価>
装置:4.85mm目開きフルイ (JISZ8801)、モルタルフロー試験台(JISR5201)
装置の概要:4.85mm目開きフルイ、受け皿、モルタルフロー試験台からなる。
評価方法:上記のとおり調製した(練り上げた)コンクリート1kgを4.85mmの目開きを有するフルイ上に均一の厚さとなる様に静かに手で置き、モルタルフロー試験台を用いて60回タッピングして振動を与えた。タッピング後に受け皿の上に落下したモルタルの重量よりタッピングによるモルタルのフルイ通過率(%)を算出した。エマルション未添加の系のフルイ通過率を100%としたときの、各々の系のフルイ通過率の比を求め付着性の尺度と定義した。フルイ通過率比が小さいほど、石とモルタルが分離しづらくなると考えられるため、付着性が高いと評価することができる。
<Evaluation of adhesiveness by sieve test>
Apparatus: 4.85 mm aperture sieve (JISZ8801), mortar flow test bench (JISR5201)
Outline of device: 4.85 mm mesh sieve, saucer, mortar flow test stand.
Evaluation method: 1 kg of concrete prepared (kneaded) as described above was gently placed by hand on a sieve having an opening of 4.85 mm so as to have a uniform thickness, and tapped 60 times using a mortar flow test table. Vibrated. From the weight of the mortar dropped on the tray after tapping, the mortar passing rate (%) of the mortar by tapping was calculated. The ratio of the sieving rate of each system to the sieving rate of the system without the emulsion was defined as 100%, and defined as a measure of the adhesion. It is considered that the smaller the sieve passage ratio is, the more difficult it is to separate the stone and the mortar, and thus the higher the adhesiveness can be evaluated.
<結果>
結果を以下表2に記した。表2における単量体は、以下のとおりである。なお、上記のFoxの式(1)により重合性単量体成分のガラス転移温度(Tg)を算出するのに使用したそれぞれのホモポリマーのTg値を下記に( )で示した。
2EHA:2-エチルヘキシルアクリレート(-70℃)
AA:アクリル酸(95℃)
St:スチレン(100℃)
MMA:メチルメタクリレート(105℃)
<Result>
The results are shown in Table 2 below. The monomers in Table 2 are as follows. The Tg value of each homopolymer used to calculate the glass transition temperature (Tg) of the polymerizable monomer component according to the above Fox equation (1) is shown in parentheses below.
2EHA: 2-ethylhexyl acrylate (-70 ° C)
AA: Acrylic acid (95 ° C)
St: Styrene (100 ° C)
MMA: methyl methacrylate (105 ° C)
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 

Claims (8)

  1. コア層と少なくとも1層のシェル層とを有するエマルション粒子を含み、該エマルション粒子は、コア層を構成する樹脂のガラス転移温度がシェル層を構成する樹脂の平均のガラス転移温度よりも高く、かつ、シェル層を構成する樹脂の平均のガラス転移温度が-15℃以上であることを特徴とする水硬性材料用添加剤。 The emulsion particles having a core layer and at least one shell layer, wherein the emulsion particles have a glass transition temperature of a resin constituting the core layer higher than an average glass transition temperature of a resin constituting the shell layer, and An additive for a hydraulic material, wherein the resin constituting the shell layer has an average glass transition temperature of −15 ° C. or higher.
  2. 前記エマルション粒子は、コア層を構成する樹脂とシェル層を構成する樹脂の少なくともいずれかが(メタ)アクリル酸エステル由来の構造単位(a)を有することを特徴とする請求項1に記載の水硬性材料用添加剤。 2. The water according to claim 1, wherein in the emulsion particles, at least one of a resin constituting the core layer and a resin constituting the shell layer has a structural unit (a) derived from a (meth) acrylate ester. 3. Additive for hard materials.
  3. 前記エマルション粒子は、コア層を構成する樹脂とシェル層を構成する樹脂の少なくともいずれかが(メタ)アクリル酸(塩)由来の構造単位(b)を有することを特徴とする請求項1又は2に記載の水硬性材料用添加剤。 3. The emulsion particles according to claim 1, wherein at least one of the resin constituting the core layer and the resin constituting the shell layer has a structural unit (b) derived from (meth) acrylic acid (salt). The additive for hydraulic material according to 1.
  4. 前記水硬性材料用添加剤は、吹付けコンクリート用途に用いられることを特徴とする請求項1~3のいずれかに記載の水硬性材料用添加剤。 The additive for hydraulic material according to any one of claims 1 to 3, wherein the additive for hydraulic material is used for shotcrete application.
  5. 請求項1~4のいずれかに記載の水硬性材料用添加剤と水硬性材料と骨材とを含むことを特徴とする水硬性材料組成物。 A hydraulic material composition comprising the hydraulic material additive according to any one of claims 1 to 4, a hydraulic material, and an aggregate.
  6. 前記水硬性材料組成物は、更に減水剤を含むことを特徴とする請求項5に記載の水硬性材料組成物。 The hydraulic material composition according to claim 5, wherein the hydraulic material composition further contains a water reducing agent.
  7. 請求項1~4のいずれかに記載の水硬性材料用添加剤を水硬性材料とともに施工面に吹き付けて使用する方法。 A method for spraying the hydraulic material additive according to any one of claims 1 to 4 together with the hydraulic material onto a construction surface.
  8. コア層と少なくとも1層のシェル層とを有するエマルション粒子を含む水硬性材料用添加剤を製造する方法であって、
    該製造方法は、単量体成分を重合して、シェル層を構成する樹脂の平均のガラス転移温度よりも高いガラス転移温度を有する樹脂から構成されるコア層を形成する工程と、
    単量体成分を重合して、平均のガラス転移温度が-15℃以上である樹脂から構成されるシェル層を形成する工程とを含むことを特徴とする水硬性材料用添加剤の製造方法。
    A method for producing an additive for hydraulic material including emulsion particles having a core layer and at least one shell layer,
    The production method is a step of polymerizing a monomer component to form a core layer composed of a resin having a higher glass transition temperature than the average glass transition temperature of the resin constituting the shell layer,
    Forming a shell layer composed of a resin having an average glass transition temperature of −15 ° C. or higher by polymerizing the monomer component.
PCT/JP2019/033755 2018-08-31 2019-08-28 Additive for hydraulic material WO2020045515A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-163226 2018-08-31
JP2018163226 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045515A1 true WO2020045515A1 (en) 2020-03-05

Family

ID=69643584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033755 WO2020045515A1 (en) 2018-08-31 2019-08-28 Additive for hydraulic material

Country Status (1)

Country Link
WO (1) WO2020045515A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111777717A (en) * 2020-07-10 2020-10-16 江苏建鸿环保材料科技有限公司 Core-shell structure polymer cement modifier, preparation method and cement-based material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205333A (en) * 1989-06-30 1991-09-06 Lion Corp Admixture for cement mortar and/or concrete
JPH0957191A (en) * 1995-08-25 1997-03-04 Dainippon Toryo Co Ltd Coating method for inorganic building material
JPH09110495A (en) * 1995-10-12 1997-04-28 Lion Corp Polymer emulsion for semiflexible pavement
JPH11152428A (en) * 1997-11-25 1999-06-08 Kansai Paint Co Ltd Thermal insulation coating finishing
JP2000290056A (en) * 1999-02-04 2000-10-17 Nippon Shokubai Co Ltd Hydraulic composition
JP2009528242A (en) * 2006-03-01 2009-08-06 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Additive mixture for building materials having microparticles that swell in the building material mixture
JP2016507623A (en) * 2013-02-06 2016-03-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Hybrid latex containing polymer particles having a core-shell structure and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205333A (en) * 1989-06-30 1991-09-06 Lion Corp Admixture for cement mortar and/or concrete
JPH0957191A (en) * 1995-08-25 1997-03-04 Dainippon Toryo Co Ltd Coating method for inorganic building material
JPH09110495A (en) * 1995-10-12 1997-04-28 Lion Corp Polymer emulsion for semiflexible pavement
JPH11152428A (en) * 1997-11-25 1999-06-08 Kansai Paint Co Ltd Thermal insulation coating finishing
JP2000290056A (en) * 1999-02-04 2000-10-17 Nippon Shokubai Co Ltd Hydraulic composition
JP2009528242A (en) * 2006-03-01 2009-08-06 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Additive mixture for building materials having microparticles that swell in the building material mixture
JP2016507623A (en) * 2013-02-06 2016-03-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Hybrid latex containing polymer particles having a core-shell structure and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111777717A (en) * 2020-07-10 2020-10-16 江苏建鸿环保材料科技有限公司 Core-shell structure polymer cement modifier, preparation method and cement-based material

Similar Documents

Publication Publication Date Title
WO2018086610A1 (en) Polymer and preparation method and application thereof
JP4727940B2 (en) Redispersed powder stabilized with polyvinyl alcohol having fluidizing properties, process for its production and use
JP2013517133A5 (en)
JP6092257B2 (en) Aqueous dispersion
JP6946101B2 (en) Resin emulsion for cement additives
WO2020045515A1 (en) Additive for hydraulic material
JP7228029B2 (en) Additives for hydraulic materials
JP2009023901A (en) Cement admixture and cement composition
JP2011046545A (en) Emulsion composition and coating film waterproofing material using the same
JP2008081368A (en) Water-based resin dispersion for cement mortar and composition for the same
JP2001302307A (en) Cement additive and concrete composition produced by using the same
JP4210616B2 (en) Damping emulsion
JP7090166B2 (en) Additives for hydraulic materials
JP2011136880A (en) Cement admixture and cement composition
TW202021928A (en) Additive for hydraulic compositions, and hydraulic composition
JP7241643B2 (en) Additive for cement, cement composition, method for improving cement strength
CN105189401B (en) The powder composition that can quickly suspend
JP4562964B2 (en) Cement dispersant
JP4509587B2 (en) Aqueous resin dispersion for cement mortar and composition thereof
JP2006176380A (en) Copolymer for dispersing hydraulic powder
JP5705423B2 (en) Cement additive and cement composition
JP2009256134A (en) Cement additive, cement admixture and cement composition
CN112020538B (en) Polymer modified cementitious compositions
JP5047637B2 (en) Aqueous resin dispersion, compounding agent for cement mortar, cement mortar composition, and cured cement mortar
JPS641425B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP