WO2020044685A1 - Stage device - Google Patents

Stage device Download PDF

Info

Publication number
WO2020044685A1
WO2020044685A1 PCT/JP2019/020883 JP2019020883W WO2020044685A1 WO 2020044685 A1 WO2020044685 A1 WO 2020044685A1 JP 2019020883 W JP2019020883 W JP 2019020883W WO 2020044685 A1 WO2020044685 A1 WO 2020044685A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
slider
axis direction
air
actuator
Prior art date
Application number
PCT/JP2019/020883
Other languages
French (fr)
Japanese (ja)
Inventor
達矢 吉田
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2020540066A priority Critical patent/JP7328975B2/en
Publication of WO2020044685A1 publication Critical patent/WO2020044685A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/60Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/62Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/26Fluid-pressure drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B5/00Adjusting position or attitude, e.g. level, of instruments or other apparatus, or of parts thereof; Compensating for the effects of tilting or acceleration, e.g. for optical apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings

Definitions

  • the present invention relates to a stage device.
  • a stage device for positioning an object in a first direction and a second direction orthogonal to the first direction is known.
  • a stage device called a stack type in which each of the guides in the X-axis direction and the Y-axis direction is one (for example, Patent Document 1).
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a stage device in which an object is hardly affected by heat and which has a high degree of design freedom.
  • a stage device includes a slider driven by an air servo, a first guide for guiding the slider in a first direction, and an actuator for driving the first guide in a second direction. And a second guide for guiding the movement of the first guide in the second direction.
  • FIG. 2 is a diagram illustrating a cross section of the X-axis guide and the X-axis slider in FIG. 1.
  • FIG. 3 is a sectional view taken along line AA of FIG. 2.
  • FIG. 2 is a diagram illustrating a cross section of the stage device of FIG. 1.
  • FIG. 5 is a sectional view taken along line BB of FIG. 4.
  • FIG. 3 is a block diagram illustrating functions and configurations of a control unit. It is sectional drawing which shows the stage device which concerns on a modification.
  • FIG. 1 is a perspective view showing a stage device 100 according to the embodiment.
  • a first direction in which a first guide 12 (described later) extends is an X-axis direction
  • a second direction in which a second guide 16 (described later) extends is a Y-axis direction
  • both directions are orthogonal to each other.
  • An XYZ coordinate system is defined in which the direction of the movement is the Z-axis direction.
  • the first direction is orthogonal to the second direction, but is not limited to this.
  • the stage apparatus 100 is called a stack type XY stage, and positions an object in the X-axis direction and the Y-axis direction.
  • the stage device 100 includes a slider 10, a first guide 12, an actuator 14, two second guides 16, a table 18, and a control unit 30 (not shown in FIG. 1).
  • a slider 10 a slider 10
  • first guide 12 an actuator 14
  • second guides 16 two second guides 16
  • table 18 a table 18
  • control unit 30 not shown in FIG. 1
  • the side where the first guide 12 is provided with respect to the second guide 16 in the Z-axis direction will be described as the upper side.
  • the slider 10 is driven in the X-axis direction by air servo driving as described later.
  • the first guide 12 is an elongated member elongated in the X-axis direction, and guides the movement of the slider 10 in the X-axis direction.
  • the actuator 14 drives the first guide 12 in the Y-axis direction.
  • the second guide 16 guides the movement of the first guide 12 in the Y-axis direction.
  • the table 18 is fixed to the slider 10.
  • An object to be processed such as a semiconductor wafer is placed on the table 18, for example.
  • the table 18 can be moved in the XY directions to position the object in the XY directions.
  • FIG. 2 shows a cross section of the slider 10 and the first guide 12 taken along a plane orthogonal to the X-axis direction (that is, a YZ plane).
  • the first guide 12 includes a bottom wall 32, a first side wall 34, and a second side wall 36.
  • the bottom wall 32 is a plate-shaped member that is long in the X-axis direction, and is provided such that two main surfaces face the Z-axis direction.
  • the first side wall 34 is a standing wall that is long in the X-axis direction, and stands upright at one end in the Y-axis direction on the upper surface of the bottom wall 32.
  • the second side wall 36 is a standing wall that is long in the X-axis direction, like the first side wall 34, and is erected at the other end of the upper surface of the bottom wall 32 in the Y-axis direction so as to face the first side wall 34 in the Y-axis direction. I do.
  • the first side wall 34 and the second side wall 36 respectively have a first extension 34a and a second extension 36a extending toward each other. That is, the first side wall 34 and the second side wall 36 have an L-shaped cross section.
  • the slider 10 is a rectangular parallelepiped member, and is housed inside the first guide 12, that is, between the first side wall 34, the second side wall 36, and the bottom wall 32.
  • One or more air pads 40 are formed on each surface of the slider 10 facing the first guide 12, that is, on the bottom surface 10a, the first side surface 10b, the second side surface 10c, and the top surface 10d.
  • the air pad 40 ejects a high-pressure gas supplied from an air supply system (not shown), and forms a high-pressure gas layer with the first guide 12. As a result, the slider 10 floats from the first guide 12 while maintaining a small gap.
  • An air servo chamber 48 for driving the slider 10 is formed on the first side surface 10b facing the first side wall 34 and the second side surface 10c facing the second side wall 36. That is, in this embodiment, two air servo chambers 48 are formed in the slider 10. Thereby, rotation of the slider 10 around the Z axis can be controlled.
  • Each surface of the slider 10 is provided with exhaust grooves 42, 44, 46 for differential exhaust so as to surround the air pad 40.
  • the exhaust groove 42 is open to the atmosphere.
  • the exhaust groove 42 may be connected to an exhaust pump (not shown).
  • the exhaust grooves 44 and 46 are connected to an exhaust pump (not shown) for setting the pressure in the exhaust grooves to a low vacuum pressure level and a medium vacuum pressure level, respectively, from the air pad 40 and the air servo chamber 48 of the slider 10.
  • the compressed gas supplied to the internal space is exhausted to the outside.
  • the stage device 100 can be used even in a vacuum environment. When the stage device 100 is used under an atmospheric pressure environment, it is not necessary to provide such exhaust grooves 42, 44, 46.
  • FIG. 3 is a sectional view taken along line AA of FIG. With reference to FIG. 3, the principle of the movement of the slider 10 with respect to the first guide 12 will be described.
  • the stage device 100 further includes two partition walls 56.
  • the gap between the first guide 12 and the slider 10 and the gap between the partition 56 and the air servo chamber 48 are exaggerated. In practice, for example, these gaps are on the order of a few microns.
  • the partition 56 is fixed to the first guide 12 and partitions the air servo chamber 48 of the slider 10 into two air servo chambers 48A and 48B in the X-axis direction.
  • the two air servo chambers 48A and 48B are connected to air supply systems 50A and 50B for allowing compressed gas to enter and exit, respectively.
  • the air supply systems 50A and 50B include servo valves 52A and 52B and compressed gas supply sources 54A and 54B, respectively.
  • the slider 10 When the compressed gas is supplied to the air pad 40, the slider 10 slightly floats with respect to the first guide 12 as described above. In this state, for example, when the compressed gas is supplied to the air servo chamber 48A and the compressed gas is discharged from the air servo chamber 48B, the partition wall 56 acts as a piston, and the slider 10 moves to the left in the drawing. By controlling the opening of the servo valves 52A and 52B in this manner, the slider 10 can be moved to an arbitrary position with respect to the first guide 12.
  • two air servo chambers 48 are formed in the slider 10, and two air supply systems are connected to each air servo chamber 48, that is, a total of four air supply systems are connected to the slider 10. It is not limited to.
  • one air supply system 50A may be branched to supply compressed gas to two air servo chambers 48A
  • one 50B may be branched to supply compressed gas to two air servo chambers 48B.
  • only one air servo chamber 48 may be formed in the slider 10 and the air supply systems 50A and 50B may be connected to the air servo chambers 48A and 48B that divide the air servo chamber 48. That is, only two air supply systems may be connected to the slider 10.
  • the second guide 16 supports the first guide 12 so as to be movable in the Y-axis direction.
  • the two second guides 16 are provided on both sides of the actuator 14 in the X-axis direction so that the distances from the actuator 14 are particularly equal in the X-axis direction.
  • the configuration of the second guide 16 is not particularly limited, in the illustrated example, the second guide 16 is a linear guide, and is fixed to the rail 24 extending in the Y-axis direction and the lower surface of the bottom wall 32 of the first guide 12. And a block 26 that runs on the rail 24 while supporting the guide 12.
  • FIG. 4 shows a cross section of the stage device 100 cut along a plane orthogonal to the Y-axis direction (ie, an XZ plane).
  • FIG. 5 is a sectional view taken along line BB of FIG.
  • the gap between the fixed body 72 and the movable body 70 and the gap between the partition wall 74 and the air servo chamber 80 are exaggerated. In practice, for example, these gaps are on the order of a few microns.
  • the actuator 14 is an air servo actuator in the illustrated example, and includes a movable body 70, two fixed bodies 72, and two partition walls 74.
  • the two fixed bodies 72 are standing walls that are long in the Y-axis direction, and are arranged at intervals in the X-axis direction.
  • the movable body 70 is a rectangular parallelepiped member, is disposed between the two fixed bodies 72, and is fixed to the lower surface of the bottom wall 32 of the first guide 12.
  • Each surface of the movable body 70 facing the fixed body 72 that is, a first side face 70a facing one fixed body 72 and a second side face 70b facing the other fixed body 72 are provided for driving the movable body.
  • An air servo chamber 80 is formed.
  • the partition wall 74 is fixed to the fixed body 72, and partitions the air servo chamber 80 of the movable body 70 into two air servo chambers 80A and 80B in the X-axis direction.
  • the two air servo chambers 80A, 80B are connected to air supply systems 90A, 90B for allowing compressed gas to enter and exit, respectively.
  • the air supply systems 90A and 90B include servo valves 92A and 92B and compressed gas supply sources 94A and 94B, respectively.
  • the movable body 70 is interposed through the first guide 12 so that the inner surface of the air servo chamber 80 does not contact the partition 74, that is, a gap exists between the inner surface of the air servo chamber 80 and the partition 74. Supported by the two second guides 16.
  • the partition wall 74 acts as a piston, and the movable body 70 moves leftward in the drawing.
  • the movable body 70 and thus the first guide 12 can be moved in the Y-axis direction.
  • two air servo chambers 80 are formed in the movable body 70, and two air supply systems are connected to each air servo chamber 80, that is, a total of four air supply systems are connected to the movable body 70.
  • one supply system 90A may be branched to supply compressed gas to two air servo chambers 80A
  • one 80B may be branched to supply compressed gas to two air servo chambers 90B.
  • only one air servo chamber 80 may be formed in the movable body 70, and the air supply systems 90A and 90B may be connected to the air servo chambers 80A and 80B that partition the air servo chamber 80. That is, only two air supply systems may be connected to the movable body 70.
  • FIG. 6 is a block diagram showing the function and configuration of the control unit 30.
  • Each block shown here can be realized by hardware or other elements or mechanical devices such as a CPU (central processing unit) of a computer, and is realized by a computer program or the like in software.
  • the functional blocks realized by their cooperation are drawn. Therefore, it will be understood by those skilled in the art referred to in this specification that these functional blocks can be realized in various forms by a combination of hardware and software.
  • Control unit 30 includes a floating control unit 62 and a movement control unit 64.
  • the flying controller 62 controls the flow rate of the compressed gas ejected from the air pad 40 so that the slider 10 floats with respect to the first guide 12.
  • the movement control unit 64 controls the flow rate of the compressed gas supplied to the air servo chamber 48 to move the slider 10.
  • the movement control unit 64 controls the flow rate of the compressed gas supplied to the air servo chamber 80 to move the movable body 70 of the actuator 14.
  • the slider 10 when the slider 10 is driven by a linear motor, the coil of the linear motor generates heat, and the heat is applied to the slider 10, the table 18 fixed to the slider 10, and the object mounted on the table 18. Can be transmitted.
  • the slider 10 is driven by the air servo.
  • the compressed gas supply sources 54A and 54B that generate heat can be kept away from the slider 10 and the table 18, and the transfer of the heat to the slider 10 and the table 18 can be suppressed. That is, heat transmitted to the object can be reduced.
  • the first guide 12 exists between the actuator 14 and the table 18, and even if the actuator 14 generates heat, the heat is transmitted to the table 18 or an object placed on the table 18. Hard to reach. Therefore, in the present embodiment, the configuration of the actuator 14 is not particularly limited, and the degree of freedom in design is increased. That is, according to the present embodiment, it is possible to provide a stage device that can suppress the heat transmitted to the target object and has a high degree of design freedom.
  • two second guides 16 are provided on both sides of the actuator 14 in the X-axis direction.
  • the first guide 12 can be supported in a more stable manner in the Y-axis direction as compared with the case where the second guide 16 is provided only on one side of the actuator 14 in the X-axis direction.
  • stage device has been described above.
  • This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to the combination of the components, and that such modifications are also within the scope of the present invention. Further, a combination of the embodiments is also possible.
  • the actuator 14 is an air servo actuator
  • the actuator 14 only needs to drive the first guide 12 in the Y-axis direction.
  • the actuator 14 may be a linear motor or a voice coil motor, and may be a combination of a rotary motor and a ball screw.
  • the second guide 16 may be, for example, an air guide.
  • FIG. 7 is a cross-sectional view illustrating a stage device 100 according to a modification. FIG. 7 corresponds to FIG.
  • the second guide 16 includes a guide shaft 124 extending in the Y-axis direction, a cylindrical second slider 126 movable along the guide shaft 124 with the guide shaft 124 inserted, including.
  • the guide shaft 124 has a rectangular parallelepiped shape and the second slider 126 has a quadrangular cylindrical shape.
  • the present invention is not limited to this.
  • the guide shaft 124 is cylindrical and the second slider 126 is cylindrical. Is also good.
  • the second slider 126 has a small gap with respect to the guide shaft 124, and ejects a compressed gas from an air pad (not shown) provided inside the second slider 126, so that the second slider 126 It is possible to move smoothly along the line 124.
  • the flying controller 62 further controls the flow rate of the compressed gas ejected from the air pad provided inside the second slider 126 so that the second slider 126 floats with respect to the guide shaft 124.
  • the flying control unit 62 performs the load fluctuation so as to obtain a sufficiently large flying rigidity against the load fluctuation that may occur in the first guide 12 due to the movement of the slider 10.
  • the flow rate of the gas ejected from the air pad provided inside the second slider 126 is controlled so that the sinking of the first guide 12 due to the above can be suppressed or prevented.
  • the flying control unit 62 ejects the air pad of the second slider 126 of the second guide 16 on one side.
  • the flow rate of the gas may be increased, the flow rate of the gas ejected from the air pad of the second slider 126 of the second guide 16 on the other side may be reduced, the ejection of the gas may be stopped, or both may be used.
  • the actuator 14 is moved to the other side of the first guide 12.
  • the present invention can be used for a stage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Machine Tool Units (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

A stage device 100 comprises: a slider 10 for air-servo driving; a first guide 12 that guides first-direction movement of the slider 10; an actuator 14 that drives the first guide 12 in a second direction; and a second guide 16 that guides the second-direction movement of the first guide 12.

Description

ステージ装置Stage equipment
 本発明は、ステージ装置に関する。 The present invention relates to a stage device.
 対象物を第1方向と、第1方向に直交する第2方向に位置決めするためのステージ装置が知られている。従来では、X軸方向およびY軸方向のガイドがいずれも1つずつであるスタックタイプと呼ばれるステージ装置が提案されている(例えば特許文献1)。 ス テ ー ジ A stage device for positioning an object in a first direction and a second direction orthogonal to the first direction is known. Conventionally, there has been proposed a stage device called a stack type in which each of the guides in the X-axis direction and the Y-axis direction is one (for example, Patent Document 1).
特開平5-57558号公報JP-A-5-57558
 特許文献1に記載されるステージ装置では、リニアモータによりステージを駆動しているため、リニアモータのコイルが発する熱がステージひいてはステージに載置される対象物に伝わり、対象物が熱の影響を受けるおそれがある。 In the stage device described in Patent Document 1, since the stage is driven by the linear motor, heat generated by the coil of the linear motor is transmitted to the stage and eventually to the object mounted on the stage, and the object is affected by the heat. May be affected.
 また、ステージ装置では、高い設計自由度を確保したいという要望も当然ながらある。 当然 Naturally, there is also a demand for securing a high degree of freedom in designing stage devices.
 本発明は、こうした状況に鑑みてなされたものであり、その目的は、対象物が熱の影響を受けにくく、かつ、設計自由度の高いステージ装置を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a stage device in which an object is hardly affected by heat and which has a high degree of design freedom.
 上記課題を解決するために、本発明のある態様のステージ装置は、エアサーボ駆動のスライダと、スライダの第1方向の移動を案内する第1ガイドと、第1ガイドを第2方向に駆動するアクチュエータと、第1ガイドの第2方向の移動を案内する第2ガイドと、を備える。 In order to solve the above problems, a stage device according to an aspect of the present invention includes a slider driven by an air servo, a first guide for guiding the slider in a first direction, and an actuator for driving the first guide in a second direction. And a second guide for guiding the movement of the first guide in the second direction.
 なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を装置、方法、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 Note that any combination of the above-described components, and any replacement of the components and expressions of the present invention between apparatuses, methods, systems, and the like are also effective as embodiments of the present invention.
 本発明によれば、対象物が熱の影響を受けにくく、かつ、設計自由度の高いステージ装置を提供できる。 According to the present invention, it is possible to provide a stage device that is less likely to be affected by heat and has a high degree of design freedom.
実施の形態に係るステージ装置を示す斜視図である。It is a perspective view showing the stage device concerning an embodiment. 図1のX軸ガイドおよびX軸スライダの断面を示す図である。FIG. 2 is a diagram illustrating a cross section of the X-axis guide and the X-axis slider in FIG. 1. 図2のA-A線断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 2. 図1のステージ装置の断面を示す図である。FIG. 2 is a diagram illustrating a cross section of the stage device of FIG. 1. 図4のB-B線断面図である。FIG. 5 is a sectional view taken along line BB of FIG. 4. 制御部の機能および構成を示すブロック図である。FIG. 3 is a block diagram illustrating functions and configurations of a control unit. 変形例に係るステージ装置を示す断面図である。It is sectional drawing which shows the stage device which concerns on a modification.
 以下、各図面に示される同一または同等の構成要素、部材、工程には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 同一 Hereinafter, the same or equivalent components, members, and steps shown in each drawing are denoted by the same reference numerals, and the repeated description will be omitted as appropriate. In addition, the dimensions of the members in each drawing are appropriately enlarged or reduced for easy understanding. In each of the drawings, some of the members that are not important for describing the embodiments are omitted.
 図1は、実施の形態に係るステージ装置100を示す斜視図である。説明の便宜上、図示のように、第1ガイド12(後述)が延在する第1方向をX軸方向、第2ガイド16(後述)が延在する第2方向をY軸方向、両者に直交する方向をZ軸方向とするXYZ座標系を定める。本実施の形態では、第1方向と第2方向とは直交しているが、これには限定されない。ステージ装置100は、スタックタイプのXYステージと称され、対象物をX軸方向、Y軸方向に位置決めする。 FIG. 1 is a perspective view showing a stage device 100 according to the embodiment. For convenience of explanation, as shown, a first direction in which a first guide 12 (described later) extends is an X-axis direction, a second direction in which a second guide 16 (described later) extends is a Y-axis direction, and both directions are orthogonal to each other. An XYZ coordinate system is defined in which the direction of the movement is the Z-axis direction. In the present embodiment, the first direction is orthogonal to the second direction, but is not limited to this. The stage apparatus 100 is called a stack type XY stage, and positions an object in the X-axis direction and the Y-axis direction.
 ステージ装置100は、スライダ10と、第1ガイド12と、アクチュエータ14と、2つの第2ガイド16と、テーブル18と、制御部30(図1では不図示)と、を備える。
 以降、Z軸方向において第2ガイド16に対して第1ガイド12が設けられる側を上側として説明する。
The stage device 100 includes a slider 10, a first guide 12, an actuator 14, two second guides 16, a table 18, and a control unit 30 (not shown in FIG. 1).
Hereinafter, the side where the first guide 12 is provided with respect to the second guide 16 in the Z-axis direction will be described as the upper side.
 スライダ10は、後述するようにエアサーボ駆動により、X軸方向に駆動される。第1ガイド12は、X軸方向に細長い長尺状の部材であり、スライダ10のX軸方向の移動を案内する。アクチュエータ14は、第1ガイド12をY軸方向に駆動する。第2ガイド16は、第1ガイド12のY軸方向の移動を案内する。 (4) The slider 10 is driven in the X-axis direction by air servo driving as described later. The first guide 12 is an elongated member elongated in the X-axis direction, and guides the movement of the slider 10 in the X-axis direction. The actuator 14 drives the first guide 12 in the Y-axis direction. The second guide 16 guides the movement of the first guide 12 in the Y-axis direction.
 テーブル18は、スライダ10に固定される。テーブル18には、例えば、半導体ウェハなどの加工対象物等が載せられる。第1ガイド12をY軸方向に移動させ、スライダ10をX軸方向に移動させることにより、テーブル18をXY方向に移動させて対象物をXY方向に位置決めできる。 The table 18 is fixed to the slider 10. An object to be processed such as a semiconductor wafer is placed on the table 18, for example. By moving the first guide 12 in the Y-axis direction and moving the slider 10 in the X-axis direction, the table 18 can be moved in the XY directions to position the object in the XY directions.
 図2は、X軸方向に直交する平面(すなわちYZ平面)で切断したスライダ10および第1ガイド12の断面を示す。第1ガイド12は、底壁32と、第1側壁34と、第2側壁36と、を含む。底壁32は、X軸方向に長い平板状の部材であり、2つの主面がZ軸方向を向くよう設けられる。第1側壁34は、X軸方向に長い立壁であり、底壁32の上面のY軸方向における一端に立設する。第2側壁36は、第1側壁34と同様、X軸方向に長い立壁であり、第1側壁34とY軸方向で対向するように底壁32の上面のY軸方向における他端に立設する。第1側壁34、第2側壁36はそれぞれ、互いに向かって延び出す第1延出部34a、第2延出部36aを有する。つまり、第1側壁34および第2側壁36は、L字形の断面形状を有する。 FIG. 2 shows a cross section of the slider 10 and the first guide 12 taken along a plane orthogonal to the X-axis direction (that is, a YZ plane). The first guide 12 includes a bottom wall 32, a first side wall 34, and a second side wall 36. The bottom wall 32 is a plate-shaped member that is long in the X-axis direction, and is provided such that two main surfaces face the Z-axis direction. The first side wall 34 is a standing wall that is long in the X-axis direction, and stands upright at one end in the Y-axis direction on the upper surface of the bottom wall 32. The second side wall 36 is a standing wall that is long in the X-axis direction, like the first side wall 34, and is erected at the other end of the upper surface of the bottom wall 32 in the Y-axis direction so as to face the first side wall 34 in the Y-axis direction. I do. The first side wall 34 and the second side wall 36 respectively have a first extension 34a and a second extension 36a extending toward each other. That is, the first side wall 34 and the second side wall 36 have an L-shaped cross section.
 スライダ10は、直方体状の部材であり、第1ガイド12の内側、すなわち第1側壁34と第2側壁36と底壁32との間に収納される。第1ガイド12に対向するスライダ10の各面、すなわち底面10a、第1側面10b、第2側面10c、上面10dには、1つまたは複数のエアパッド40が形成されている。エアパッド40は、図示しない給気系から供給される高圧の気体を噴出し、第1ガイド12との間に高圧の気体層を形成する。これにより、スライダ10は微少な隙間を保って第1ガイド12から浮上する。 The slider 10 is a rectangular parallelepiped member, and is housed inside the first guide 12, that is, between the first side wall 34, the second side wall 36, and the bottom wall 32. One or more air pads 40 are formed on each surface of the slider 10 facing the first guide 12, that is, on the bottom surface 10a, the first side surface 10b, the second side surface 10c, and the top surface 10d. The air pad 40 ejects a high-pressure gas supplied from an air supply system (not shown), and forms a high-pressure gas layer with the first guide 12. As a result, the slider 10 floats from the first guide 12 while maintaining a small gap.
 第1側壁34と対向する第1側面10b、第2側壁36と対向する第2側面10cには、スライダ10を駆動するためのエアサーボ室48が形成されている。すなわち、本実施の形態では、スライダ10には2つのエアサーボ室48が形成されている。これにより、スライダ10のZ軸周りの回転を制御することができる。 An air servo chamber 48 for driving the slider 10 is formed on the first side surface 10b facing the first side wall 34 and the second side surface 10c facing the second side wall 36. That is, in this embodiment, two air servo chambers 48 are formed in the slider 10. Thereby, rotation of the slider 10 around the Z axis can be controlled.
 スライダ10の各面には、エアパッド40を取り囲むように差動排気用の排気溝42、44、46が形成されている。排気溝42は大気解放されている。なお、排気溝42は、排気ポンプ(図示せず)に接続されてもよい。排気溝44、46はそれぞれ、排気溝内の圧力を低真空圧力レベル、中真空圧力レベルにするための排気ポンプ(図示せず)に接続されており、スライダ10のエアパッド40およびエアサーボ室48から内部空間に供給された圧縮気体を外部に排気する。このように、圧縮気体が第1ガイド12とスライダ10との隙間から漏れ出さないようにすることで、ステージ装置100を真空環境下でも使用可能にすることができる。なお、ステージ装置100を大気圧環境下で使用する場合には、このような排気溝42、44、46を設ける必要はない。 排 気 Each surface of the slider 10 is provided with exhaust grooves 42, 44, 46 for differential exhaust so as to surround the air pad 40. The exhaust groove 42 is open to the atmosphere. Note that the exhaust groove 42 may be connected to an exhaust pump (not shown). The exhaust grooves 44 and 46 are connected to an exhaust pump (not shown) for setting the pressure in the exhaust grooves to a low vacuum pressure level and a medium vacuum pressure level, respectively, from the air pad 40 and the air servo chamber 48 of the slider 10. The compressed gas supplied to the internal space is exhausted to the outside. As described above, by preventing the compressed gas from leaking from the gap between the first guide 12 and the slider 10, the stage device 100 can be used even in a vacuum environment. When the stage device 100 is used under an atmospheric pressure environment, it is not necessary to provide such exhaust grooves 42, 44, 46.
 図3は、図2のA-A線断面図である。図3を参照して、スライダ10が第1ガイド12に対して移動する原理を説明する。ステージ装置100は、2つの隔壁56をさらに備える。図3では第1ガイド12とスライダ10との隙間や隔壁56とエアサーボ室48との隙間を誇張して描いている。実際は例えば、これらの隙間は数ミクロン程度である。 FIG. 3 is a sectional view taken along line AA of FIG. With reference to FIG. 3, the principle of the movement of the slider 10 with respect to the first guide 12 will be described. The stage device 100 further includes two partition walls 56. In FIG. 3, the gap between the first guide 12 and the slider 10 and the gap between the partition 56 and the air servo chamber 48 are exaggerated. In practice, for example, these gaps are on the order of a few microns.
 隔壁56は、第1ガイド12に固定され、スライダ10のエアサーボ室48をX軸方向に関して2つのエアサーボ室48A、48Bに区画する。2つのエアサーボ室48A、48Bには、圧縮気体を出入り可能にするための給気系50A、50Bがそれぞれ接続されている。給気系50A、50Bは、サーボ弁52A、52Bと、圧縮気体供給源54A、54Bと、をそれぞれ含む。 The partition 56 is fixed to the first guide 12 and partitions the air servo chamber 48 of the slider 10 into two air servo chambers 48A and 48B in the X-axis direction. The two air servo chambers 48A and 48B are connected to air supply systems 50A and 50B for allowing compressed gas to enter and exit, respectively. The air supply systems 50A and 50B include servo valves 52A and 52B and compressed gas supply sources 54A and 54B, respectively.
 エアパッド40に圧縮気体を供給すると、上述のようにスライダ10が第1ガイド12に対してわずかに浮上する。この状態で、例えばエアサーボ室48Aに圧縮気体を供給するとともに、エアサーボ室48Bから圧縮気体を排出すると、隔壁56がピストンとして作用して、スライダ10が図中の左方向に移動する。このようにして、サーボ弁52A、52Bの開度を制御することによって、スライダ10を第1ガイド12に対して任意の位置に移動させることができる。 When the compressed gas is supplied to the air pad 40, the slider 10 slightly floats with respect to the first guide 12 as described above. In this state, for example, when the compressed gas is supplied to the air servo chamber 48A and the compressed gas is discharged from the air servo chamber 48B, the partition wall 56 acts as a piston, and the slider 10 moves to the left in the drawing. By controlling the opening of the servo valves 52A and 52B in this manner, the slider 10 can be moved to an arbitrary position with respect to the first guide 12.
 なおここでは、スライダ10に2つのエアサーボ室48が形成され、各エアサーボ室48に2つの給気系が接続されている、すなわちスライダ10に計4つの給気系が接続されているが、これには限定されない。例えば、1つの給気系50Aを分岐して2つのエアサーボ室48Aに圧縮気体を供給し、1つの50Bを分岐して2つのエアサーボ室48Bに圧縮気体を供給してもよい。また例えば、スライダ10にエアサーボ室48が1つのみ形成され、当該エアサーボ室48を区画したエアサーボ室48A、48Bに給気系50A、50Bが接続されてもよい。すなわちスライダ10に給気系が計2つのみ接続されてもよい。 Here, two air servo chambers 48 are formed in the slider 10, and two air supply systems are connected to each air servo chamber 48, that is, a total of four air supply systems are connected to the slider 10. It is not limited to. For example, one air supply system 50A may be branched to supply compressed gas to two air servo chambers 48A, and one 50B may be branched to supply compressed gas to two air servo chambers 48B. Further, for example, only one air servo chamber 48 may be formed in the slider 10 and the air supply systems 50A and 50B may be connected to the air servo chambers 48A and 48B that divide the air servo chamber 48. That is, only two air supply systems may be connected to the slider 10.
 図1に戻り、第2ガイド16は、第1ガイド12をY軸方向に移動自在に支持する。本実施の形態では、2つの第2ガイド16は、X軸方向におけるアクチュエータ14の両側に、特にX軸方向においてアクチュエータ14との距離が互いに等しくなるように設けられている。第2ガイド16は、その構成は特に限定しないが、図示の例ではリニアガイドであり、Y軸方向に延在するレール24と、第1ガイド12の底壁32の下面に固定され、第1ガイド12を支持した状態でレール24上を走行するブロック26と、を含む。 Returning to FIG. 1, the second guide 16 supports the first guide 12 so as to be movable in the Y-axis direction. In the present embodiment, the two second guides 16 are provided on both sides of the actuator 14 in the X-axis direction so that the distances from the actuator 14 are particularly equal in the X-axis direction. Although the configuration of the second guide 16 is not particularly limited, in the illustrated example, the second guide 16 is a linear guide, and is fixed to the rail 24 extending in the Y-axis direction and the lower surface of the bottom wall 32 of the first guide 12. And a block 26 that runs on the rail 24 while supporting the guide 12.
 図4は、Y軸方向に直交する平面(すなわちXZ平面)で切断したステージ装置100の断面を示す。図5は、図4のB-B線断面図である。図5では、固定体72と可動体70との隙間や隔壁74とエアサーボ室80との隙間を誇張して描いている。実際は例えば、これらの隙間は数ミクロン程度である。 FIG. 4 shows a cross section of the stage device 100 cut along a plane orthogonal to the Y-axis direction (ie, an XZ plane). FIG. 5 is a sectional view taken along line BB of FIG. In FIG. 5, the gap between the fixed body 72 and the movable body 70 and the gap between the partition wall 74 and the air servo chamber 80 are exaggerated. In practice, for example, these gaps are on the order of a few microns.
 アクチュエータ14は、その構成は特に限定しないが、図示の例ではエアサーボアクチュエータであり、可動体70と、2つの固定体72と、2つの隔壁74と、を含む。2つの固定体72は、Y軸方向に長い立壁であり、X軸方向に間隔をあけて配置される。可動体70は、直方体状の部材であり、2つの固定体72の間に配置され、第1ガイド12の底壁32の下面に固定される。固定体72に対向する可動体70の各面、すなわち一方の固定体72と対向する第1側面70aと、他方の固定体72と対向する第2側面70bには、可動体を駆動するためのエアサーボ室80が形成されている。 Although the configuration of the actuator 14 is not particularly limited, the actuator 14 is an air servo actuator in the illustrated example, and includes a movable body 70, two fixed bodies 72, and two partition walls 74. The two fixed bodies 72 are standing walls that are long in the Y-axis direction, and are arranged at intervals in the X-axis direction. The movable body 70 is a rectangular parallelepiped member, is disposed between the two fixed bodies 72, and is fixed to the lower surface of the bottom wall 32 of the first guide 12. Each surface of the movable body 70 facing the fixed body 72, that is, a first side face 70a facing one fixed body 72 and a second side face 70b facing the other fixed body 72 are provided for driving the movable body. An air servo chamber 80 is formed.
 隔壁74は、固定体72に固定され、可動体70のエアサーボ室80をX軸方向に関して2つのエアサーボ室80A、80Bに区画する。2つのエアサーボ室80A、80Bには、圧縮気体を出入り可能にするための給気系90A、90Bがそれぞれ接続されている。給気系90A、90Bは、サーボ弁92A、92Bと、圧縮気体供給源94A、94Bと、をそれぞれ含む。なお、可動体70は、エアサーボ室80の内面と隔壁74とが非接触となるように、つまりエアサーボ室80の内面と隔壁74との間に隙間が存在するように、第1ガイド12を介して2つの第2ガイド16に支持されている。 The partition wall 74 is fixed to the fixed body 72, and partitions the air servo chamber 80 of the movable body 70 into two air servo chambers 80A and 80B in the X-axis direction. The two air servo chambers 80A, 80B are connected to air supply systems 90A, 90B for allowing compressed gas to enter and exit, respectively. The air supply systems 90A and 90B include servo valves 92A and 92B and compressed gas supply sources 94A and 94B, respectively. The movable body 70 is interposed through the first guide 12 so that the inner surface of the air servo chamber 80 does not contact the partition 74, that is, a gap exists between the inner surface of the air servo chamber 80 and the partition 74. Supported by the two second guides 16.
 例えばエアサーボ室80Aに圧縮気体を供給するとともに、エアサーボ室80Bから圧縮気体を排出すると、隔壁74がピストンとして作用して、可動体70が図中の左方向に移動する。このようにして、サーボ弁92A、92Bの開度を制御することによって、可動体70ひいては第1ガイド12を、Y軸方向に移動させることができる。 For example, when the compressed gas is supplied to the air servo chamber 80A and the compressed gas is discharged from the air servo chamber 80B, the partition wall 74 acts as a piston, and the movable body 70 moves leftward in the drawing. By controlling the opening of the servo valves 92A and 92B in this manner, the movable body 70 and thus the first guide 12 can be moved in the Y-axis direction.
 なおここでは、可動体70に2つのエアサーボ室80が形成され、各エアサーボ室80に2つの給気系が接続されている、すなわち可動体70に計4つの給気系が接続されているが、これには限定されない。例えば、1つの給気系90Aを分岐して2つのエアサーボ室80Aに圧縮気体を供給し、1つの80Bを分岐して2つのエアサーボ室90Bに圧縮気体を供給してもよい。また例えば、可動体70にエアサーボ室80が1つのみ形成され、当該エアサーボ室80を区画したエアサーボ室80A、80Bに給気系90A、90Bが接続されてもよい。すなわち可動体70に給気系が計2つのみ接続されてもよい。 Here, two air servo chambers 80 are formed in the movable body 70, and two air supply systems are connected to each air servo chamber 80, that is, a total of four air supply systems are connected to the movable body 70. , But is not limited to this. For example, one supply system 90A may be branched to supply compressed gas to two air servo chambers 80A, and one 80B may be branched to supply compressed gas to two air servo chambers 90B. Further, for example, only one air servo chamber 80 may be formed in the movable body 70, and the air supply systems 90A and 90B may be connected to the air servo chambers 80A and 80B that partition the air servo chamber 80. That is, only two air supply systems may be connected to the movable body 70.
 図6は、制御部30の機能および構成を示すブロック図である。ここに示す各ブロックは、ハードウエア的には、コンピュータのCPU(central processing unit)をはじめとする素子や機械装置で実現でき、ソフトウエア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウエア、ソフトウエアの組合せによっていろいろなかたちで実現できることは、本明細書に触れた当業者には理解されるところである。 FIG. 6 is a block diagram showing the function and configuration of the control unit 30. Each block shown here can be realized by hardware or other elements or mechanical devices such as a CPU (central processing unit) of a computer, and is realized by a computer program or the like in software. The functional blocks realized by their cooperation are drawn. Therefore, it will be understood by those skilled in the art referred to in this specification that these functional blocks can be realized in various forms by a combination of hardware and software.
 制御部30は、浮上制御部62と、移動制御部64と、を含む。浮上制御部62は、スライダ10を第1ガイド12に対して浮上させるべくエアパッド40から噴出させる圧縮気体の流量を制御する。移動制御部64は、スライダ10を移動させるべくエアサーボ室48に供給する圧縮気体の流量を制御する。また、移動制御部64は、アクチュエータ14の可動体70を移動させるべくエアサーボ室80に供給する圧縮気体の流量を制御する。 Control unit 30 includes a floating control unit 62 and a movement control unit 64. The flying controller 62 controls the flow rate of the compressed gas ejected from the air pad 40 so that the slider 10 floats with respect to the first guide 12. The movement control unit 64 controls the flow rate of the compressed gas supplied to the air servo chamber 48 to move the slider 10. In addition, the movement control unit 64 controls the flow rate of the compressed gas supplied to the air servo chamber 80 to move the movable body 70 of the actuator 14.
 つづいて、本実施の形態が奏する効果について述べる。ここで、例えばスライダ10がリニアモータにより駆動される場合、リニアモータのコイルが熱を発し、その熱がスライダ10、スライダ10に固定されたテーブル18、そしてテーブル18に載置された対象物に伝わりうる。これに対し本実施の形態では、スライダ10はエアサーボにより駆動される。この場合、熱を発する圧縮気体供給源54A、54Bをスライダ10やテーブル18から遠ざけることができ、その熱がスライダ10やテーブル18に伝わるのを抑止できる。すなわち、対象物に伝わる熱を低減できる。一方、アクチュエータ14とテーブル18との間には第1ガイド12が存在しており、仮にアクチュエータ14が熱を発生させても、その熱はテーブル18やテーブル18に載置された対象物には伝わりにくい。そこで本実施の形態では、アクチュエータ14の構成は特に限定せず、設計の自由度を高めている。つまり、本実施の形態によれば、対象物に伝わる熱を抑えられ、かつ、設計自由度が高いステージ装置を提供できる。 Next, the effects of the present embodiment will be described. Here, for example, when the slider 10 is driven by a linear motor, the coil of the linear motor generates heat, and the heat is applied to the slider 10, the table 18 fixed to the slider 10, and the object mounted on the table 18. Can be transmitted. On the other hand, in the present embodiment, the slider 10 is driven by the air servo. In this case, the compressed gas supply sources 54A and 54B that generate heat can be kept away from the slider 10 and the table 18, and the transfer of the heat to the slider 10 and the table 18 can be suppressed. That is, heat transmitted to the object can be reduced. On the other hand, the first guide 12 exists between the actuator 14 and the table 18, and even if the actuator 14 generates heat, the heat is transmitted to the table 18 or an object placed on the table 18. Hard to reach. Therefore, in the present embodiment, the configuration of the actuator 14 is not particularly limited, and the degree of freedom in design is increased. That is, according to the present embodiment, it is possible to provide a stage device that can suppress the heat transmitted to the target object and has a high degree of design freedom.
 また、本実施の形態では、2つの第2ガイド16はX軸方向におけるアクチュエータ14の両側に設けられる。これにより、第2ガイド16がX軸方向におけるアクチュエータ14の一方側にのみ設けられる場合と比べ、より安定に、第1ガイド12をY軸方向に移動自在に支持できる。 In the present embodiment, two second guides 16 are provided on both sides of the actuator 14 in the X-axis direction. Thus, the first guide 12 can be supported in a more stable manner in the Y-axis direction as compared with the case where the second guide 16 is provided only on one side of the actuator 14 in the X-axis direction.
 以上、実施の形態に係るステージ装置について説明した。この実施の形態は例示であり、各構成要素の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。また、実施の形態同士の組み合わせも可能である。 The stage device according to the embodiment has been described above. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to the combination of the components, and that such modifications are also within the scope of the present invention. Further, a combination of the embodiments is also possible.
(変形例1)
 実施の形態では、アクチュエータ14がエアサーボアクチュエータである場合について説明したが、これには限定されない。アクチュエータ14は、第1ガイド12をY軸方向に駆動できればよく、例えばリニアモータであっても、ボイスコイルモータであって、回転型のモータとボールネジとを組み合わせたものであってもよい。
(Modification 1)
In the embodiment, the case where the actuator 14 is an air servo actuator has been described, but the present invention is not limited to this. The actuator 14 only needs to drive the first guide 12 in the Y-axis direction. For example, the actuator 14 may be a linear motor or a voice coil motor, and may be a combination of a rotary motor and a ball screw.
(変形例2)
 実施の形態では、第2ガイド16がリニアガイドである場合について説明したが、これには限定されない。
(Modification 2)
In the embodiment, the case where the second guide 16 is a linear guide has been described, but the present invention is not limited to this.
 第2ガイド16は例えば、エアガイドであってもよい。図7は、変形例に係るステージ装置100を示す断面図である。図7は図4に対応する。本変形例では、第2ガイド16は、Y軸方向に延在するガイド軸124と、ガイド軸124が挿通された状態でガイド軸124に沿って移動可能な筒状の第2スライダ126と、を含む。なお、図示の例ではガイド軸124が直方体状で第2スライダ126が四角筒状であるが、これには限定されず、例えばガイド軸124が円柱状で第2スライダ126が円筒状であってもよい。 The second guide 16 may be, for example, an air guide. FIG. 7 is a cross-sectional view illustrating a stage device 100 according to a modification. FIG. 7 corresponds to FIG. In the present modified example, the second guide 16 includes a guide shaft 124 extending in the Y-axis direction, a cylindrical second slider 126 movable along the guide shaft 124 with the guide shaft 124 inserted, including. In the illustrated example, the guide shaft 124 has a rectangular parallelepiped shape and the second slider 126 has a quadrangular cylindrical shape. However, the present invention is not limited to this. For example, the guide shaft 124 is cylindrical and the second slider 126 is cylindrical. Is also good.
 第2スライダ126は、ガイド軸124に対して微少な隙間を有し、第2スライダ126の内部に設けられたエアパッド(不図示)から圧縮気体を噴出することで、第2スライダ126はガイド軸124に沿って滑らかに移動可能となっている。 The second slider 126 has a small gap with respect to the guide shaft 124, and ejects a compressed gas from an air pad (not shown) provided inside the second slider 126, so that the second slider 126 It is possible to move smoothly along the line 124.
 また本変形例では、浮上制御部62はさらに、第2スライダ126をガイド軸124に対して浮上させるべく第2スライダ126の内部に設けられたエアパッドから噴出させる圧縮気体の流量を制御する。 In the present modification, the flying controller 62 further controls the flow rate of the compressed gas ejected from the air pad provided inside the second slider 126 so that the second slider 126 floats with respect to the guide shaft 124.
 ここで、スライダ10が第1ガイド12に沿ってX軸方向に移動すると、第1ガイド12に荷重変動が生じて第1ガイド12がY軸方向周りに傾き、アクチュエータ14の可動体70に固定体72周りのモーメントが生じうる。その結果、可動体70が固定体72と接触するかじりが生じうる。特に、本変形例では可動体70が気体の圧力で浮上しているため、可動体70に固定体72周りのモーメントが生じると、かじりが生じやすい。 Here, when the slider 10 moves in the X-axis direction along the first guide 12, a load change occurs in the first guide 12, and the first guide 12 tilts around the Y-axis direction, and is fixed to the movable body 70 of the actuator 14. A moment around the body 72 can occur. As a result, galling that the movable body 70 comes into contact with the fixed body 72 may occur. In particular, in the present modification, since the movable body 70 is levitated by the pressure of the gas, when a moment around the fixed body 72 is generated in the movable body 70, the movable body 70 is likely to be galling.
 そこで本変形例では、浮上制御部62は、スライダ10が移動することにより第1ガイド12に生じるであろう荷重変動に対して十分大きな浮上剛性を得られるように、別の言い方をすると荷重変動による第1ガイド12の沈み込みを抑止または防止できるように、第2スライダ126の内部に設けられたエアパッドが噴出する気体の流量を制御する。 Therefore, in the present modification, the flying control unit 62, in other words, performs the load fluctuation so as to obtain a sufficiently large flying rigidity against the load fluctuation that may occur in the first guide 12 due to the movement of the slider 10. The flow rate of the gas ejected from the air pad provided inside the second slider 126 is controlled so that the sinking of the first guide 12 due to the above can be suppressed or prevented.
 具体的には例えば、浮上制御部62は、アクチュエータ14に対して第1ガイド12の一方側にスライダ10が移動した場合、その一方側の第2ガイド16の第2スライダ126のエアパッドが噴出する気体の流量を増やしてもよく、その他方側の第2ガイド16の第2スライダ126のエアパッドが噴出する気体の流量を減らすあるいは気体の噴出を止めてもよく、またはこれらを併用してもよい。アクチュエータ14に対して第1ガイド12の他方側に移動した場合も同様である。 Specifically, for example, when the slider 10 moves to one side of the first guide 12 with respect to the actuator 14, the flying control unit 62 ejects the air pad of the second slider 126 of the second guide 16 on one side. The flow rate of the gas may be increased, the flow rate of the gas ejected from the air pad of the second slider 126 of the second guide 16 on the other side may be reduced, the ejection of the gas may be stopped, or both may be used. . The same applies when the actuator 14 is moved to the other side of the first guide 12.
(変形例3)
 実施の形態では、2つの第2ガイド16がアクチュエータ14に対して互いに反対側に位置するように第1ガイド12に固定される場合について説明したが、これには限定されず、ステージ装置100は第2ガイド16を1つだけ備えていても、3以上備えていてもよい。
(Modification 3)
In the embodiment, the case where the two second guides 16 are fixed to the first guide 12 so as to be located on the opposite sides to the actuator 14 has been described. However, the present invention is not limited thereto. Only one second guide 16 may be provided, or three or more may be provided.
 上述した実施の形態と変形例の任意の組み合わせもまた本発明の実施の形態として有用である。組み合わせによって生じる新たな実施の形態は、組み合わされる実施の形態および変形例それぞれの効果をあわせもつ。また、請求項に記載の各構成要件が果たすべき機能は、実施の形態および変形例において示された各構成要素の単体もしくはそれらの連係によって実現されることも当業者には理解されるところである。 任意 Any combination of the above-described embodiment and modifications is also useful as an embodiment of the present invention. A new embodiment that is created by the combination has the effects of the combined embodiment and the modification. It should also be understood by those skilled in the art that the functions to be fulfilled by the components described in the claims are realized by each component shown in the embodiment and the modification or a combination thereof. .
 本発明は、ステージ装置に利用できる。 The present invention can be used for a stage device.
 10 スライダ、 12 第1ガイド、 14 アクチュエータ、 16 第2ガイド、 100 ステージ装置。 {10} slider, {12} first guide, {14} actuator, {16} second guide, {100} stage device.

Claims (4)

  1.  エアサーボ駆動のスライダと、
     前記スライダの第1方向の移動を案内する第1ガイドと、
     前記第1ガイドを第2方向に駆動するアクチュエータと、
     前記第1ガイドの前記第2方向の移動を案内する第2ガイドと、を備えることを特徴とするステージ装置。
    An air servo driven slider,
    A first guide for guiding movement of the slider in a first direction;
    An actuator for driving the first guide in a second direction;
    A second guide for guiding the movement of the first guide in the second direction.
  2.  前記第1方向と前記第2方向とが直交していることを特徴とする請求項1に記載のステージ装置。 The stage device according to claim 1, wherein the first direction and the second direction are orthogonal to each other.
  3.  前記第2ガイドは、前記アクチュエータの両側に設けられていることを特徴とする請求項1または2に記載のステージ装置。 The stage device according to claim 1, wherein the second guide is provided on both sides of the actuator.
  4.  前記第2ガイドはリニアガイドであることを特徴とする請求項1から3のいずれかに記載のステージ装置。 4. The stage device according to claim 1, wherein the second guide is a linear guide.
PCT/JP2019/020883 2018-08-30 2019-05-27 Stage device WO2020044685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020540066A JP7328975B2 (en) 2018-08-30 2019-05-27 stage equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-161393 2018-08-30
JP2018161393 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020044685A1 true WO2020044685A1 (en) 2020-03-05

Family

ID=69642959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020883 WO2020044685A1 (en) 2018-08-30 2019-05-27 Stage device

Country Status (3)

Country Link
JP (1) JP7328975B2 (en)
TW (1) TWI821323B (en)
WO (1) WO2020044685A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211023A1 (en) * 2021-04-01 2022-10-06 住友重機械工業株式会社 Stage apparatus, exposure apparatus, inspection apparatus, and device manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110523A (en) * 2000-09-29 2002-04-12 Sumitomo Heavy Ind Ltd Aligner
JP2004119426A (en) * 2002-09-24 2004-04-15 Nikon Corp Air guide for special atmosphere, stage device, and aligner
JP2004319902A (en) * 2003-04-18 2004-11-11 Advantest Corp Stage device and exposure device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687362B2 (en) * 1998-03-31 2005-08-24 日本精工株式会社 2-axis moving device
JP2002353118A (en) * 2001-05-28 2002-12-06 Nikon Corp Stage apparatus and projection aligner
JP2006033910A (en) * 2004-07-12 2006-02-02 Sumitomo Heavy Ind Ltd Linear motor and stage arrangement employing it
JP4899469B2 (en) * 2005-12-22 2012-03-21 ウシオ電機株式会社 Flat stage device
TWI457193B (en) * 2006-03-02 2014-10-21 Sumitomo Heavy Industries Stage device
JP5242218B2 (en) * 2008-03-31 2013-07-24 住友重機械工業株式会社 XY stage device
TWI547333B (en) * 2013-02-04 2016-09-01 旭東機械工業股份有限公司 Laser cut apparatus
JP6704658B2 (en) * 2016-10-13 2020-06-03 住友重機械工業株式会社 Stage equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110523A (en) * 2000-09-29 2002-04-12 Sumitomo Heavy Ind Ltd Aligner
JP2004119426A (en) * 2002-09-24 2004-04-15 Nikon Corp Air guide for special atmosphere, stage device, and aligner
JP2004319902A (en) * 2003-04-18 2004-11-11 Advantest Corp Stage device and exposure device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211023A1 (en) * 2021-04-01 2022-10-06 住友重機械工業株式会社 Stage apparatus, exposure apparatus, inspection apparatus, and device manufacturing method

Also Published As

Publication number Publication date
TWI821323B (en) 2023-11-11
TW202009094A (en) 2020-03-01
JPWO2020044685A1 (en) 2021-09-09
JP7328975B2 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
US7898204B2 (en) High-speed substrate manipulator
TWI649151B (en) Stage device
US7232286B2 (en) Seal device and method for operating the same and substrate processing apparatus comprising a vacuum chamber
WO2020044685A1 (en) Stage device
US20050189901A1 (en) Stage devices and exposure systems comprising same
US10371279B2 (en) Actuator
CN102069201B (en) Two-degree-of-freedom dynamic error counteracting device for free-form surface ultra-precision turning
JP6651392B2 (en) Substrate floating transfer device
JPH09184537A (en) Vibration damping device
JP6967760B2 (en) XY stage movement mechanism
JPH1123752A (en) Movement-guiding device
JP2012197804A (en) Air spring actuator and vibration isolator
US20240021463A1 (en) Stage apparatus, exposure apparatus, inspection apparatus, and device manufacturing method
JP4443778B2 (en) Fluid pressure actuator
JP2001050212A (en) Fluid pressure actuator
US20230272821A1 (en) Actuator, stage device, exposure device, inspection device
JP2002107479A (en) Stage device
JP4938724B2 (en) Stage positioning device
JP2001050210A (en) X-y table
JP2007313589A (en) Positioning device
JPH11190306A (en) Air slide device
JP2010151322A (en) Xy stage
JPH10103403A (en) Vibration removing equipment and its control method
JP2022064573A (en) Table device
JP2005093637A (en) Positioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854910

Country of ref document: EP

Kind code of ref document: A1