WO2020044424A1 - 水素配送計画装置および水素配送計画方法 - Google Patents

水素配送計画装置および水素配送計画方法 Download PDF

Info

Publication number
WO2020044424A1
WO2020044424A1 PCT/JP2018/031656 JP2018031656W WO2020044424A1 WO 2020044424 A1 WO2020044424 A1 WO 2020044424A1 JP 2018031656 W JP2018031656 W JP 2018031656W WO 2020044424 A1 WO2020044424 A1 WO 2020044424A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
delivery
demand
evaluation value
unit
Prior art date
Application number
PCT/JP2018/031656
Other languages
English (en)
French (fr)
Inventor
裕之 山原
秋葉 剛史
山田 正彦
Original Assignee
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝エネルギーシステムズ株式会社 filed Critical 東芝エネルギーシステムズ株式会社
Priority to PCT/JP2018/031656 priority Critical patent/WO2020044424A1/ja
Publication of WO2020044424A1 publication Critical patent/WO2020044424A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Definitions

  • the embodiment of the present invention relates to a hydrogen distribution planning device and a hydrogen distribution planning method.
  • a fuel cell device is known as a device that generates electricity without emitting carbon dioxide because it utilizes hydrogen. Since this fuel cell is generally fixedly used, it is necessary to carry hydrogen to the place where the fuel cell is installed.
  • a method of transporting hydrogen a method of transporting hydrogen to each installation location through pipes, a method of storing and transporting hydrogen in a curdle, a method of storing hydrogen in a tank trailer, and supplying it to a fixed storage device at a location of each fuel cell device. Methods are known.
  • the problem to be solved by the present invention is to provide a hydrogen distribution planning device and a hydrogen distribution planning method capable of suppressing generation of carbon dioxide generated when hydrogen is distributed to a plurality of demand bases.
  • the hydrogen distribution planning device generates an acquisition unit that acquires a hydrogen supply amount at a supply base, a hydrogen demand amount at each of a plurality of demand bases, and a plurality of delivery routes connecting the supply base and the plurality of demand bases.
  • An evaluation value is further calculated based on the converted amount of carbon dioxide for each of the plurality of demand bases according to the amount of use of the alternative energy.
  • FIG. 2 is a conceptual diagram of a hydrogen delivery route according to the first embodiment.
  • FIG. 2 is a block diagram showing a detailed configuration of a hydrogen distribution planning unit.
  • FIG. 3 is a block diagram showing a detailed configuration of a hydrogen distribution plan generation unit.
  • the figure which shows the in-vehicle storage device used and the filling amount The figure which shows the hydrogen demand prediction amount in a demand base.
  • the figure which shows that hydrogen deficiency has not occurred.
  • Diagram showing the remaining amount of each on-board storage device 3 is an example of a flowchart of a hydrogen distribution plan generation unit.
  • the figure which shows the delivery route which returns from delivery The figure which shows the reduced distance by a delivery putter, a straight line, and a bounce.
  • 9 is a flowchart of a hydrogen distribution plan generation unit according to the second embodiment.
  • 13 is a flowchart of a hydrogen distribution plan generation unit according to the third embodiment.
  • the figure which shows the example of the weight parameter concerning 4th Embodiment. 15 is a flowchart of a hydrogen distribution plan generation unit according to the fourth embodiment.
  • FIG. 1 is a conceptual diagram of a hydrogen delivery route according to the first embodiment. As shown in FIG. 1, the supply route 2, a plurality of demand sites 4, and a delivery site 6 are provided in the hydrogen delivery route according to the present embodiment. FIG. 1 further shows a delivery vehicle 8. Although only one demand base 4 is shown in FIG. 1 for simplicity of illustration, a plurality of demand bases 4 are provided in the hydrogen delivery route according to the present embodiment.
  • Supply base 2 is a base for producing hydrogen and supplying hydrogen to a plurality of demand bases 4.
  • a hydrogen production device 20 At the supply base 2, a hydrogen production device 20, a stationary storage device 22, and a plurality of on-vehicle storage devices 24 are arranged.
  • the hydrogen production device 20 produces hydrogen and oxygen using electric power generated by, for example, renewable energy.
  • the hydrogen production device 20 is connected to a stationary storage device 22 by piping.
  • the stationary storage device 22 stores the hydrogen supplied from the hydrogen production device 20 via a pipe.
  • the plurality of on-vehicle storage devices 24 are, for example, car dolls, and are hydrogen storage devices that can be mounted on the delivery vehicle 8. The capacities of the plurality of in-vehicle storage devices 24 may be different from each other.
  • the onboard storage device 24 is filled with hydrogen from the stationary storage device 22.
  • the plurality of demand bases 4 are bases where the delivered hydrogen is converted into electric power and heat by the fuel cell device 42.
  • a stationary storage device 40 and a fuel cell 42 are arranged in each of the plurality of demand bases 4.
  • the stationary storage device 40 stores the hydrogen supplied from the on-vehicle storage device 24 loaded on the delivery vehicle 8.
  • the stationary storage device 40 is connected to the fuel cell device 42 via a pipe, and supplies hydrogen to the fuel cell device 42.
  • the fuel cell device 42 generates power using the hydrogen supplied from the stationary storage device 40 via a pipe, and generates electric power and heat.
  • the plurality of demand bases 4 are provided with a supply facility using alternative energy instead of hydrogen for supplying power when hydrogen in the fixed storage device 40 is insufficient.
  • a plurality of demand bases 4 are provided with a system power supply facility or a fossil fuel power generation facility.
  • a converted value of carbon dioxide according to the amount of power used is assigned to the power used by the alternative energy supply equipment as a hydrogen effective utilization parameter.
  • the delivery base 6 is a base where the delivery vehicle 8 that has finished delivering hydrogen stops. That is, when performing delivery of hydrogen, the delivery vehicle 8 departs from the delivery base 6, goes around the supply base 2 and the plurality of demand bases 4, and returns to the delivery base 6 again.
  • the delivery vehicle 8 is a vehicle that converts fossil fuel into power, and delivers the hydrogen stored in the on-vehicle storage device 24 to the plurality of demand bases 4.
  • the converted value of carbon dioxide according to the traveling distance is assigned to the delivery vehicle 8 as the carbon dioxide emission amount at the time of delivery.
  • FIG. 2 is a diagram showing a transmission / reception network of the hydrogen distribution planning device 100.
  • a measuring device 2a At the supply base 2, a measuring device 2a, a data server 2b, and a transmitting device 2c are further arranged.
  • measuring instruments 4a, 4b, 4c, a data server 4d, a transmitting device 4e, an electric device 44, and a heating device 46 are further arranged.
  • the hydrogen distribution planning device 100 has a hydrogen distribution planning unit 100a and a transmission / reception unit 100b.
  • the measuring device 2a of the supply base 2 measures the amount of hydrogen produced by the hydrogen producing device 20 and the amount of hydrogen stored in the stationary storage device 22.
  • the data server 2b stores data measured by the measuring device 2a.
  • the transmitting device 2c transmits the data stored in the data server 2b to the hydrogen distribution planning device 100.
  • the measuring device 4 a of the demand base 4 measures the amount of hydrogen produced in the stationary storage device 40 and the amount of power generated by the fuel cell device 42.
  • the measuring device 4b measures the amount of power supplied to the electric device 44.
  • the measuring device 4c measures the amount of heat supplied to the heating device 46.
  • the data server 4d stores data measured by the measuring devices 4a, 4b, 4c.
  • the transmission device 4e transmits the data stored in the data server 4d to the hydrogen distribution planning device 100.
  • the receiving device 6a of the distribution base 6 receives the information on the hydrogen distribution plan planned by the hydrogen distribution planning device 100.
  • the display device 6b is, for example, a monitor, and displays information on the hydrogen distribution plan received by the receiving device 6a.
  • the driver of the delivery vehicle 8 executes hydrogen delivery according to the information on the hydrogen delivery plan received by the receiving device 6a.
  • the hydrogen distribution planning unit 100a of the hydrogen distribution planning device 100 generates a hydrogen distribution plan based on, for example, information received by the transmission / reception device 100b.
  • the transmission / reception device 100b receives a signal including data information transmitted from the transmission devices 4e of the plurality of demand bases 4 and a signal including data information transmitted from the transmission device 2c of the supply base 2. Further, the transmitting / receiving device 100b transmits information on the hydrogen distribution plan to the receiving device 6a of the distribution base 6.
  • FIG. 3 is a block diagram showing a detailed configuration of the hydrogen distribution planning unit 100a.
  • the hydrogen distribution planning unit 100a includes a supply base actual database 102, a supply prediction unit 104, a demand base execution database 106, and a hydrogen demand prediction unit 108.
  • the hydrogen demand prediction unit 108 includes a demand prediction unit 110 and an operation planning unit 112.
  • the hydrogen delivery planning unit 100a includes a delivery route database 114, an input unit 116, a setting database 118, a display unit 120, and a hydrogen delivery plan generation unit 122.
  • the supply base record database 102 stores the amount of hydrogen produced by the hydrogen production apparatus 20 transmitted via the transmission device 2c of the supply base 2 and the amount of hydrogen stored in the stationary storage device 22.
  • the supply prediction unit 104 predicts a hydrogen production amount of the hydrogen production apparatus 20 based on data stored in the supply base performance database 102.
  • the supply prediction unit 104 calculates the hydrogen production amount of the hydrogen production apparatus 20 in units of, for example, one day, half a day, and one week using a general prediction method such as a moving average, a regression equation, and machine learning. Predict. Note that the supply prediction unit 104 according to the present embodiment corresponds to a hydrogen supply prediction unit.
  • the demand base implementation database 106 stores, for each demand base 4, data measured by the measuring devices 4a, 4b, and 4c transmitted via the transmission devices 4e of the plurality of demand bases 4.
  • the hydrogen demand prediction unit 108 predicts the respective hydrogen demands at the plurality of demand bases 4. Assuming that the remaining amount of hydrogen in the stationary storage device 40 (FIG. 1) at the demand base 4 is 100%, for example, the amount of hydrogen used per day, that is, the hydrogen demand is estimated, and this is used as the hydrogen demand prediction result. And That is, the hydrogen demand prediction unit 108 predicts the hydrogen demand regardless of the remaining amount of the stationary storage device 40.
  • the demand prediction unit 106 included in the hydrogen demand prediction unit 108 predicts at least one of the power demand and the heat demand for each demand base 4 based on the data stored in the demand base implementation database 106.
  • the demand forecasting unit 110 uses, for example, a general forecasting method such as a moving average, a regression equation, and machine learning to calculate at least one of the power demand and the heat demand for each demand base 4 for one day, for example. Forecast in half a day, one week, etc.
  • the operation planning unit 112 included in the hydrogen demand forecasting unit 108 determines the hydrogen demand of the fuel cell device 42 at each demand base 4 based on at least one of the power demand and the heat demand at each demand base 4 predicted by the demand forecasting unit 106. Is predicted in units of, for example, one day, half day, or one week. Then, the operation planning unit 112 generates an operation plan using the predicted hydrogen demand for each demand base 4. As described above, the hydrogen demand prediction unit 108 predicts the hydrogen demand of each demand base 4 in units of, for example, one day, half a day, and one week.
  • the delivery route database 114 stores a plurality of delivery routes that connect at least the supply base 2 and the plurality of demand bases 4. Further, the delivery route database 114 stores a plurality of delivery routes connecting the supply base 2, the plurality of demand bases 4, and the delivery base 6. The delivery route database 114 stores the number of distances for each delivery route.
  • the input unit 116 inputs information necessary for the delivery plan.
  • the input unit 116 receives various input operations from the operator, converts the received input operations into electric signals, and outputs the electric signals to the hydrogen distribution planning unit 100a.
  • the input unit 116 is realized by a mouse, a keyboard, a trackball, a switch, a button, a joystick, and the like.
  • the setting database 118 stores information for imposing restrictions on the delivery plan generated by the hydrogen delivery plan generation unit 122.
  • the site priority, the weight parameter, and the delivery pattern are stored.
  • the important base priority indicates the priority of the plurality of demand bases 4. For example, when priority 1 is assigned, a delivery plan is generated with the hydrogen demand at that location as the first priority. The details of the important site priority, the weight parameter, and the delivery pattern will be described later.
  • the display unit 120 is, for example, a monitor, and displays information on the distribution plan generated by the hydrogen distribution plan generation unit 122, for example, information including at least one of a table and a graph. Further, the display unit 120 displays the constraint information based on the information in the setting database 118.
  • FIG. 4 is a block diagram showing a detailed configuration of the hydrogen distribution plan generation unit 122.
  • the hydrogen distribution plan generation unit 122 is configured by, for example, a processor, and generates a hydrogen distribution plan.
  • the hydrogen delivery plan generation unit 122 includes an acquisition unit 124, a constraint setting unit 126, a route generation unit 128, an evaluation value calculation unit 130, a delivery planning unit 136, a vehicle storage device state estimation unit 138, and a filling planning unit. 140, a hydrogen demand extraction unit 142, a display control unit 144, and a storage unit 146.
  • the acquisition unit 124 acquires the hydrogen supply amount at the supply base 2 and the respective hydrogen demands at the plurality of demand bases 4.
  • the acquisition unit 124 determines, for example, the hydrogen supply amount at the supply base 2 predicted by the supply prediction unit 104 (FIG. 3) and the hydrogen demand amounts at the plurality of demand bases 4 predicted by the hydrogen demand prediction unit 108 (FIG. 3). To get.
  • the constraint setting unit 126 sets a constraint on at least one of the delivery route generated by the route generation unit 128 and the evaluation value distribution calculated by the evaluation value calculation unit 130.
  • the constraint setting unit 126 uses, for example, information selected by the operator from information stored in the setting database 118 via the input unit 116 (FIG. 3) as a constraint, and sets a route generation unit 128 and an evaluation value calculation unit 130. Set to at least one of
  • FIG. 5A is a diagram showing an example of a constraint indicating a delivery condition.
  • the constraint setting unit 126 sets the number of delivery vehicles 8, the total number of in-vehicle storage devices 24, the in-vehicle storage devices 24 that can be delivered in one delivery, , And the capacity of each in-vehicle storage device 24 are set.
  • FIG. 5B is a diagram showing an example of effective hydrogen utilization parameters.
  • the constraint setting unit 126 sets the carbon dioxide equivalent amount for each demand base D1, D2, D3, that is, the effective hydrogen utilization parameter, for the evaluation value calculation unit 130.
  • the hydrogen effective utilization parameter is a parameter that is set according to the degree to which hydrogen can be effectively utilized based on the actual power and heat demand data of the demand base 4. In other words, the higher the degree to which hydrogen can be effectively used, the higher the carbon dioxide conversion amount when hydrogen is insufficient, that is, the set value of the hydrogen effective utilization parameter.
  • the hydrogen effective utilization parameter may be obtained by statistical processing.
  • the hydrogen effective utilization parameters 30, 20, and 10 indicate the amount of carbon dioxide generated when the generated power corresponding to the insufficient unit hydrogen amount is replaced with another energy. That is, when replacing the deficient hydrogen with other energy, the converted amount 30 of carbon dioxide in the demand facility D3 is the largest, the converted amount 20 of carbon dioxide in the demand facility D2 is the second largest, and the carbon dioxide in the demand facility D1 is the next largest. Is the smallest. Thus, the larger the effective hydrogen utilization parameter, the greater the amount of carbon dioxide generated per unit of hydrogen replaced by other energy.
  • FIG. 5C is a diagram showing an example of a weight parameter. As illustrated in FIG. 5C, the constraint setting unit 126 sets a weight parameter for the evaluation value calculation unit 130.
  • the constraint setting unit 126 can set the evaluation value calculation unit 130 to one of a first mode in which hydrogen deficiency is not permitted and a second mode in which hydrogen deficiency is permitted.
  • the route generation unit 128 includes the number of delivery vehicles 8 set by the constraint setting unit 126, the total number of vehicle-mounted storage devices 24, the total number of vehicle-mounted storage devices 24 that can be delivered in one delivery, the vehicle-mounted storage device Based on the capacity of 24, a plurality of delivery routes connecting the supply base 2 and the plurality of demand bases 4 are generated.
  • the evaluation value calculation unit 130 calculates an evaluation value for each of a plurality of delivery routes generated by the route generation unit 128.
  • the evaluation value calculation unit 130 includes an emission amount calculation unit 132 and an opportunity loss calculation unit 134.
  • the emission amount calculation unit 132 calculates a first evaluation value for each of the plurality of delivery routes generated by the route generation unit 128 based on the amount of carbon dioxide generated when the hydrogen supply amount at the supply site 2 is delivered to the plurality of demand sites 4. calculate.
  • the opportunity loss calculation unit 134 calculates the hydrogen supply amount at the supply base 2 based on the amount of carbon dioxide generated according to the usage amount of the alternative energy for the hydrogen shortage when the hydrogen shortage occurs even when the hydrogen supply amount is supplied to the plurality of demand bases 4.
  • the second evaluation value is calculated for each of the plurality of delivery routes generated by the route generation unit 128.
  • the opportunity loss calculation unit 134 calculates a carbon dioxide reduction opportunity loss as the second evaluation value, for example.
  • the shortage amount [Nm 3 ]) is calculated.
  • the evaluation value calculation unit 130 may calculate the evaluation value based on a route that does not deliver hydrogen to the demand base 4 where the shortage of hydrogen occurs.
  • the calculation of the emission amount calculation unit 132 of the evaluation value calculation unit 130 includes N days.
  • the estimated remaining amount of the stationary storage device 40 at the start of the eye ⁇ the predicted hydrogen demand on the Nth day.
  • the total amount of filling of the on-vehicle storage device 24 on the Nth day ⁇ the predicted hydrogen supply amount on the Nth day, and the filling amount of one on-vehicle storage device 24 on the Nth day ⁇ the on-vehicle storage device 24 Is set as the maximum capacity.
  • the filling amount in the on-vehicle storage device 24 delivered on the Nth day 0.
  • the constraint setting unit 126 sets the second mode, that is, when the opportunity loss of carbon dioxide reduction is considered, the calculation of the emission amount calculation unit 132 and the opportunity loss calculation unit 134 starts on the Nth day.
  • the total filling amount of the on-vehicle storage device 24 on the Nth day ⁇ the predicted hydrogen supply amount on the Nth day, and the filling amount of one on-vehicle storage device 24 on the Nth day ⁇
  • ⁇ Evaluation value calculation section 130 calculates an evaluation value in accordance with the weight parameter (FIG. 5C) set for evaluation value calculation section 130 by constraint setting section 126. For example, the first evaluation value is multiplied by a set value 1 of carbon dioxide emission during delivery (FIG. 5C) as a weight, and the second evaluation value is a set value 1 of carbon dioxide reduction opportunity loss (FIG. 5C). Is multiplied as a weight.
  • the evaluation value calculation unit 130 adds the weighted first evaluation value and second evaluation value, for example, to obtain an evaluation value.
  • the delivery plan unit 136 creates a delivery plan for the hydrogen generated at the supply base 2 based on the evaluation value calculated by the evaluation value calculation unit 130.
  • the delivery plan unit 136 uses a delivery route whose evaluation value calculated by the evaluation value calculation unit 130 indicates the minimum value for the delivery plan.
  • the delivery planning unit 136 also includes information on the hydrogen supply amounts and supply orders to the plurality of demand bases 4 in the delivery plan.
  • the above-mentioned distribution pattern means information including at least a distribution route whose evaluation value indicates the minimum value, a hydrogen supply amount to the plurality of demand bases 4, and supply order information in the distribution route.
  • FIGS. 6A to 6G are diagrams showing examples of a delivery plan planned by the delivery planning unit 136 when the hydrogen shortage does not occur.
  • FIG. 6A is a diagram showing a delivery date, a demand base for delivery, and presence / absence of a delivery schedule.
  • FIG. 6B is a diagram illustrating the vehicle-mounted storage device 24 to be used. 6A and 6B, circles indicate selected items. The same applies to the following description.
  • FIG. 6C is a diagram showing the predicted amount of hydrogen supply at the supply base 2.
  • FIG. 6D is a diagram illustrating the on-vehicle storage device 24 and the filling amount to be used.
  • FIG. 6E is a diagram showing the predicted hydrogen demand at the demand base 4.
  • FIG. 6F is a diagram illustrating the estimated remaining amount of the fixed storage device 40 at the demand base 4.
  • FIG. 6G is a diagram showing that hydrogen deficiency has not occurred.
  • the delivery plan unit 136 generates a delivery plan, for example, every day.
  • FIGS. 7A to 7G are diagrams showing examples of a delivery plan planned by the delivery planning unit 137 when a hydrogen deficiency occurs.
  • FIG. 7A is a diagram showing a delivery date, a demand base for delivery, and whether or not there is a delivery schedule.
  • FIG. 7B is a diagram showing the vehicle-mounted storage device 24 to be used.
  • FIG. 7C is a diagram illustrating a predicted hydrogen supply amount at the supply base 2.
  • FIG. 7D is a diagram illustrating the vehicle-mounted storage device 24 and the filling amount to be used.
  • FIG. 7E is a diagram showing the predicted hydrogen demand at the demand base 4.
  • FIG. 7F is a diagram illustrating the estimated remaining amount of the stationary storage device 40 at the demand base 4.
  • FIG. 7G is a diagram showing that hydrogen deficiency occurs on June 7.
  • FIGS. 8A and 8B are diagrams showing examples of delivery plans for every half day planned by the delivery planning unit 136.
  • FIG. 8A is a diagram showing morning and afternoon of a delivery day, a demand base for delivery, and presence / absence of a delivery schedule.
  • FIG. 8B is a diagram showing the vehicle-mounted storage device 24 used in the morning and afternoon of the delivery day.
  • the delivery plan unit 136 may generate a delivery plan, for example, every half day.
  • the in-vehicle storage device state estimating unit 138 estimates the position and the remaining amount of the in-vehicle storage device 24 at the end of the previous delivery.
  • the route generation unit 128 creates a transport route using the estimation result as an initial value. This makes it possible to create a delivery plan more suitable for actual operation.
  • the filling planning unit 140 fills the fully loaded in-vehicle storage device 24 when the plurality of in-vehicle storage devices 24 used for delivery of the hydrogen supplied from the supply base 2 include the fully-filled in-vehicle storage device 24. Generate a hydrogen filling plan.
  • the filling planning unit 140 plans a method of distributing and filling the hydrogen supply amount to the on-vehicle storage device 24. For example, if the on-vehicle storage device 24 has to be fully charged in three days, a hydrogen filling plan for filling the on-vehicle storage device 24 by 1/3 of the capacity of the on-vehicle storage device is generated.
  • 1/3 of the capacity of the on-vehicle storage device 24 is subtracted every day from the hydrogen supply prediction result, and the remainder is used to create a hydrogen delivery plan. That is, in this case, the calculation by the evaluation value calculation unit 130 uses the hydrogen supply amount obtained by subtracting 1/3 of the hydrogen amount of the capacity of the vehicle-mounted storage device 24 every day. This makes it possible to make a distribution plan that is consistent with other hydrogen demands.
  • the hydrogen demand extraction unit 142 When the hydrogen supplied from the supply base 2 is included in another hydrogen delivery plan different from the hydrogen delivery plan planned by the delivery planning unit 136, the hydrogen demand extraction unit 142 outputs the hydrogen demand from the other hydrogen delivery plan. Extract information.
  • the hydrogen demand extracting unit 142 obtains information on the timing and amount of hydrogen to be delivered from the supply base 2 and the timing and amount of hydrogen to be delivered to the demand base from other hydrogen delivery plans, and the evaluation value calculation unit 130. That is, the evaluation value calculation unit 130 uses the information on the timing and amount of hydrogen delivered from the supply base 2 extracted by the hydrogen demand extraction unit 142 and the amount of hydrogen and the amount of hydrogen delivered to the demand base 4. . This makes it possible to establish a hydrogen distribution plan that is consistent with other hydrogen distribution plans.
  • FIGS. 9A to 9D are examples of graphs displayed on the display unit 120.
  • FIG. FIG. 9A is a diagram showing the hydrogen delivery amount for each of the plurality of demand bases D1, D2, and D3. The horizontal axis indicates the date, and the vertical axis indicates the hydrogen delivery amount.
  • FIG. 9B is a diagram illustrating the hydrogen demand for each of the plurality of demand bases D1, D2, and D3, and the estimated remaining amount of the fixed-value storage amount device 40. The horizontal axis indicates the date, and the vertical axis indicates the hydrogen demand and the estimated remaining amount of the fixed-value storage amount device 40.
  • FIG. 9C is a diagram equivalent to FIG. 9B and shows the amount of insufficient hydrogen in a square.
  • FIG. 9D is a diagram illustrating the remaining amount of each of the in-vehicle storage amount devices C1, C2, and C3.
  • the horizontal axis indicates the date, and the vertical axis indicates the remaining amount for each of the in-vehicle storage amount devices C1, C2, and C3.
  • charts such as FIGS. 5A to 5C, FIGS. 6A to 6G, FIGS. 7A to 7G, FIGS. 8A to 8B, and FIGS. 9A to 9D are also transmitted to the delivery base 6 (FIG. 2), and the display device 6b (FIG. ).
  • the display control unit 144 controls the display unit 120 to display the information set by the constraint setting unit 126, the information on the delivery plan generated by the delivery planning unit 136, and the like.
  • the display control unit 144 performs control to display, for example, FIGS. 5A to 5C, FIGS. 6A to 6G, FIGS. 7A to 7G, FIGS. 8A to 8B, and FIGS. 9A to 9D on the display unit 120. This facilitates setting and makes it easier to understand the result.
  • the storage unit 146 is realized by, for example, a RAM (Random Access Memory), a semiconductor memory device such as a flash memory, a hard disk, an optical disk, or the like.
  • the storage unit 146 stores, for example, information set by the constraint setting unit 126.
  • the storage unit 146 stores various programs executed by the hydrogen distribution plan generation unit 122.
  • the hydrogen distribution plan generation unit 122 is configured by, for example, a processor.
  • the term processor is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or an application-specific integrated circuit (Application Specialized Integrated Circuit: ASIC), a programmable logic device (for example, a programmable logic device, for example).
  • SPLD Simple Programmable Logic Device
  • CPLD Composite Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the processor realizes the functions by reading and executing the program stored in the storage unit 146.
  • the supply prediction unit 104 and the hydrogen demand prediction unit 108 are also configured by the processor, and have a storage (not shown). The function is realized by reading and executing the program stored in the section.
  • FIG. 10 is an example of a flowchart showing a processing example of the hydrogen distribution plan generation unit 122.
  • the acquisition unit 124 acquires the hydrogen supply amount at the supply base 2 predicted by the supply prediction unit 104 and the respective hydrogen demand amounts at the plurality of demand bases 4 predicted by the hydrogen demand prediction unit 108. (Step S100).
  • the constraint setting unit 126 sets the constraint conditions including the setting of the mode 1 or the mode 2 in the route generation unit 128 and the evaluation value calculation unit 130 (step S102). Subsequently, the route generation unit 128 generates a route according to the constraint (Step S104). The route generation unit 128 generates a different route each time according to the constraint condition.
  • the emission amount calculation unit 132 calculates a first evaluation value based on the carbon dioxide amount generated when the hydrogen supply amount is delivered to the plurality of demand bases 4 (step S106).
  • the opportunity loss calculation unit 134 determines whether or not the setting is mode 2 (step S108). If the setting is mode 2 (YES in step S108), hydrogen is effectively used for each of the plurality of demand bases 4 Based on the parameters, a second evaluation value is calculated as a carbon dioxide opportunity loss (step S110). On the other hand, when the mode is not the mode 2 (NO in step S108), the opportunity loss calculation unit 134 does not calculate the second evaluation value. Subsequently, the evaluation value calculation unit 130 adds the weighted first evaluation value and the second evaluation value as evaluation values, and stores the result in the storage unit 146 (step S112). However, when the mode is not the mode 2, the evaluation value calculation unit 130 does not add the second evaluation value to the evaluation value.
  • the delivery plan unit 136 compares the evaluation value calculated by the evaluation value calculation unit 130 with the evaluation value already stored in the storage unit 146 (step S114), and compares the evaluation value calculated by the evaluation value calculation unit 130 with the evaluation value. Is smaller (YES in step S114), the evaluation value stored in the storage unit 146 is replaced with the evaluation value calculated by the evaluation value calculation unit 130. In the storage unit 146, a maximum value that can be calculated by the evaluation value calculation unit 130 is set as an initial value. On the other hand, when the evaluation value calculated by the evaluation value calculation unit 130 is equal to or larger than the evaluation value already stored in the storage unit 146 (NO in step S114), the delivery plan unit 136 is already stored in the storage unit 146. Do not replace the evaluation value.
  • step S118 determines whether or not the number of calculations has reached the specified number of times. If the number of calculations has been reached (YES in step S119), the body processing ends, and the delivery plan is completed. Generate. On the other hand, when the specified number of times has not been reached (NO in step S119), the processing from step S104 is repeated.
  • the evaluation value calculation unit 130 sets the second mode and supplies hydrogen to the plurality of demand bases 4 and the hydrogen shortage occurs
  • the evaluation value is calculated based on the converted amount of carbon dioxide for each of the plurality of demand bases 4 in accordance with the amount of the alternative energy used. This makes it possible to generate a hydrogen distribution plan that also takes into account the amount of carbon dioxide used when generating electric power used to compensate for the shortage of hydrogen.
  • the route generation unit 128 In the hydrogen delivery planning device 100 according to the modification of the first embodiment, the route generation unit 128 considers “going straight” from the delivery base directly to the demand base and “going home” returning directly from the demand base to the delivery base. This is different from the hydrogen distribution planning device 100 according to the first embodiment. Hereinafter, differences from the hydrogen distribution planning device 100 according to the first embodiment will be described.
  • FIG. 11 is a diagram showing a delivery route for starting delivery.
  • the upper diagram of FIG. 11 is a diagram illustrating a delivery route that drops to the supply base S1 and then goes to the demand bases D1, D2, and D3, and the delivery distance is 70 km.
  • the lower diagram of FIG. 11 is a diagram illustrating a delivery route from the delivery base C1 to the demand bases D1, D2, and D3, and the delivery distance is 50 km.
  • FIG. 12 is a diagram showing a delivery route returning from delivery.
  • the upper diagram of FIG. 12 is a diagram illustrating a delivery route that stops at the supply base S1 from the demand bases D1, D2, and D3, and the delivery distance is 70 kilometers.
  • the lower diagram of FIG. 12 is a diagram illustrating a delivery route to the delivery base C1 without stopping at the supply base S1, and the delivery distance is 50 km.
  • FIG. 13A is a diagram showing a delivery pattern and a reduced distance due to going straight and going back. As described above, when the direct and bounce are permitted, the delivery distance is reduced.
  • the route generation unit 128 includes a delivery including a direct route from the delivery base C1 to the demand bases D1, D2, and D3, and a return route from the demand base to the delivery base C1 directly. Generate a route.
  • the evaluation value calculation unit 130 calculates the evaluation values of both the delivery route including at least one of the direct route and the return route and the delivery route not including the direct route and the return route. That is, based on the evaluation value calculated by the evaluation value calculation unit 130, the delivery planning unit 136 determines whether the delivery route includes at least one of the direct route and the return route, or the delivery route that does not include the direct route and the return route. Can be selected.
  • FIG. 13B is a diagram showing a delivery route planned by the delivery planning unit 136 and a vehicle-mounted storage device when going straight and going back are permitted. As shown in FIG. 13B, a delivery route including a direct and a bounce may be finally selected.
  • the display control unit 144 performs control to display the charts illustrated in FIGS. 13A and 13B on the display unit 120, for example.
  • the route generation unit 128 includes a direct route from the delivery base C1 to the demand bases D1, D2, and D3, and a return to the delivery base C1 from the demand base.
  • a delivery route was created. As a result, when the amount of carbon dioxide emission in the delivery route is reduced, it is possible to select a route that includes at least one of a direct route and a direct return, and a more efficient delivery plan can be generated.
  • the hydrogen distribution planning device 100 according to the second embodiment is different from the hydrogen distribution planning device 100 according to the first embodiment in that a hydrogen distribution plan that takes into account the priority of hydrogen shortage at each demand base 4 is generated.
  • a hydrogen distribution plan that takes into account the priority of hydrogen shortage at each demand base 4 is generated.
  • FIG. 14 is a diagram showing the priorities set by the constraint setting unit 126 as constraints.
  • the constraint setting unit 126 sets a priority for each of the demand bases D1, D2, and D3.
  • Priority 1 has the highest priority
  • priority 2 is the second highest priority after priority 1.
  • Mode 1 is a mode in which any demand base does not allow a shortage of hydrogen.
  • Mode 2 is a mode in which a demand base set with priority 1 does not allow a shortage of hydrogen but a demand base set with priority 2 allows a shortage of hydrogen.
  • the mode 3 is a mode in which the demand base to which the priority 1 and the priority 2 are set is allowed to be short of hydrogen.
  • the distribution planning unit 136 generates a hydrogen distribution plan in consideration of the priority of each of the demand bases D1, D2, and D3.
  • FIG. 15 is an example of a flowchart of the hydrogen distribution plan generation unit 122 according to the second embodiment.
  • the delivery planning unit 136 determines whether the number of calculations has reached the specified number of times (step S118). When the number of calculations has reached the specified number of times (YES in step S118), it is determined whether or not a solution exists. A determination is made (step S202). If a solution exists (YES in step S202), the entire process ends. On the other hand, if there is no solution (NO in step S202), 1 is added to the counter (step S204), and the processing from step S102 is repeated. In the mode 3, the entire process ends even when no solution exists.
  • a delivery plan is generated in the mode 1, and when a solution is not obtained, the process is shifted to the mode 2, and when a solution is not obtained, the mode is shifted to the mode 3.
  • the demand base D3 preferentially according to the priority
  • the mode 3 the shortage of hydrogen at the demand base D3 having the priority 1 can be tolerated.
  • the constraint setting unit 126 sets the priority for each of the demand bases D1, D2, and D3. This makes it possible to generate a hydrogen distribution plan so as to satisfy the hydrogen demand of the demand base D3 for which the highest priority is set.
  • the hydrogen distribution planning device 100 according to the third embodiment differs from the hydrogen distribution planning device 100 according to the first embodiment in that a hydrogen distribution plan that takes into account the demand reduction rate for each demand base 4 is generated.
  • a hydrogen distribution plan that takes into account the demand reduction rate for each demand base 4 is generated.
  • the constraint setting unit 126 sets a demand reduction rate for each demand base 4. That is, when there is a shortage of hydrogen, the constraint setting unit 126 multiplies the demand reduction rate set for each demand base 4 by the hydrogen demand for each demand base 4 to reduce the entire hydrogen demand. Note that, similarly to the hydrogen distribution planning apparatus 100 according to the second embodiment, a distribution plan is first generated in mode 1, and if a solution cannot be obtained, the mode shifts to mode 2; The demand reduction rate set for each base 4 may be multiplied by the hydrogen demand for each demand base 4 to reduce the entire hydrogen demand.
  • FIG. 16 is an example of a flowchart of the hydrogen distribution plan generation unit 122 according to the third embodiment.
  • the constraint setting unit 126 sets the mode 1 by setting the counter to 0 (step S200). Subsequently, the constraint setting unit 126 sets the constraint conditions including the setting of the mode 1 in the route generation unit 128 and the evaluation value calculation unit 130 (Step S300).
  • the demand reduction rate 1
  • the demand reduction rate is set to 1 at all the demand bases, and the hydrogen demand is multiplied.
  • the rescheduling counter is 1, the hydrogen demand is multiplied by, for example, 0.9 as the demand reduction rate.
  • the delivery planning unit 136 determines whether or not the number of calculations has reached the specified number of times (step S118). If the number of times of calculation has reached the specified number of times (YES in step S119), it is determined whether or not a solution exists. A determination is made (step S302). If a solution exists (YES in step S302), the entire process ends. On the other hand, if there is no solution (NO in step S302), 1 is added to the counter (step S304), and the processing from step S300 is repeated.
  • the amount of hydrogen demand at each demand base 4 can be gradually reduced. This makes it possible to generate a hydrogen distribution plan that uses a larger amount of hydrogen and does not cause a shortage of hydrogen.
  • the hydrogen distribution planning device 100 according to the fourth embodiment is different from the hydrogen distribution planning device 100 according to the first embodiment in that an operation suitability is provided.
  • differences from the hydrogen distribution planning device 100 according to the first embodiment will be described.
  • FIG. 17 is a diagram illustrating an example of a weight parameter according to the fourth embodiment.
  • the constraint setting unit 126 according to the fourth embodiment multiplies the evaluation value generated by the evaluation value calculation unit 130 by the value of the weight parameter to the operation suitability, and adds the result.
  • the first evaluation value is multiplied by 1
  • the second evaluation value is multiplied by 1
  • the operation suitability is multiplied by 100 and added.
  • the operation suitability means a degree indicating how much a certain delivery plan can satisfy the conditions related to the operation. Examples of the degree of operation suitability include a small amount of hydrogen filled in the on-vehicle storage device and delivery on a delivery prohibited day. As the numerical value multiplied by the operation suitability increases, the operation constraint becomes more severe.
  • the operational suitability can be expressed by a condition that is difficult to express by an expression or by an expression. However, if it is incorporated as a constraint, it is used to cope with a condition that takes too much time to derive the optimal solution. In this way, by incorporating the evaluation values into the calculation of the evaluation value instead of the constraint conditions, it is possible to derive a plan that satisfies the conditions for operation while repeatedly solving the optimization problem.
  • the delivery planning unit 136 calculates the operation suitability of the delivery pattern indicating the delivery route and the hydrogen supply amount selected based on the evaluation value of the evaluation value calculation unit 130, and creates the delivery pattern again in the case of an operation violation.
  • FIG. 18 is an example of a flowchart of the hydrogen distribution plan generation unit 122 according to the fourth embodiment. Hereinafter, differences from FIG. 10 will be described. As shown in FIG. 18, the constraint setting unit 126 sets a weight parameter including the operation suitability (step S400).
  • step S118 determines whether the number of calculations has reached the specified number of times. When the number of calculations has reached the specified number of times (YES in step S119), it is determined whether the solution is an operation violation. A determination is made (step S402). If it is not an operation violation (NO in step S402), the entire process ends. On the other hand, if it is an operation violation (YES in step S402), the weight parameter for the operation suitability is changed (step S404), and the processing from step S400 is repeated.
  • the constraint setting unit 126 sets the weight parameter for the operation suitability. This makes it possible to generate a hydrogen distribution plan so as to satisfy the operational suitability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Fuel Cell (AREA)

Abstract

本実施形態に係る水素配送計画装置は、供給拠点における水素供給量と、複数の需要拠点におけるそれぞれの水素需要量を取得する取得部と、供給拠点と複数の需要拠点を結ぶ配送経路を複数生成する経路生成部と、水素供給量を複数の需要拠点へ配送する場合に生じる二酸化炭素量に基づき、複数の配送経路毎に評価値を計算する評価値計算部と、評価値に基づき、供給拠点で生成される水素の配送計画を生成する配送計画部と、を備え、評価値計算部は、水素供給量を複数の需要拠点に供給しても水素不足が生じる場合に、水素不足の量に対する代替エネルギの使用量に応じた二酸化炭素の複数の需要拠点毎の換算量に更に基づき、評価値を計算する。

Description

水素配送計画装置および水素配送計画方法
 本発明の実施形態は、水素配送計画装置および水素配送計画方法に関する。
 燃料電池装置は、水素を利用するため二酸化炭素を排出せずに発電する装置として知られている。この燃料電池は一般に固定設置されて使用されるため、設置されている場所に水素を運ぶ必要がある。水素を運ぶ方法としては、配管を通して各設置場所に運ぶ方法、水素をカードルに貯蔵して運ぶ方法、水素をタンクトレーラーに貯蔵して、各燃料電池装置の設置場所にある定置貯蔵装置に補給する方法などが知られている。
 水素ガス用に配管を設置するには設備費用がかかってしまう。それに対して、水素をカードルに貯蔵して運ぶ方法、水素をタンクトレーラーに貯蔵して各燃料電池装置の設置場所にある定置貯蔵装置に補給する方法が現実的である。ところが、水素の配送には化石燃料が使用され、二酸化炭素(CO)を排出してしまうので、水素配送の効率化が求められている。
特許第3801898号公報
 本発明が解決しようとする課題は、水素を複数の需要拠点へ配送する場合に生じる二酸化炭素の発生を抑制可能な水素配送計画装置および水素配送計画方法を提供することである。
 本実施形態に係る水素配送計画装置は、供給拠点における水素供給量と、複数の需要拠点におけるそれぞれの水素需要量を取得する取得部と、供給拠点と複数の需要拠点を結ぶ配送経路を複数生成する経路生成部と、水素供給量を複数の需要拠点へ配送する場合に生じる二酸化炭素量に基づき、複数の配送経路毎に評価値を計算する評価値計算部と、評価値に基づき、供給拠点で生成される水素の配送計画を生成する配送計画部と、を備え、評価値計算部は、水素供給量を複数の需要拠点に供給しても水素不足が生じる場合に、水素不足の量に対する代替エネルギの使用量に応じた二酸化炭素の複数の需要拠点毎の換算量に更に基づき、評価値を計算する。
 本実施形態によれば、水素を複数の需要拠点へ配送する場合に生じる二酸化炭素の発生を抑制できる。
第1実施形態に係る水素配送経路の概念図。 水素配送計画装置の送受信網を示す図。 水素配送計画部の詳細な構成を示すブロック図。 水素配送計画生成部の詳細な構成を示すブロック図。 配送条件を示す制約の例を示す図。 水素有効活用パラメータの例を示す図。 重みパラメータの例を示す図。 配送日と配送を行う需要拠点と、配予定の有無を示す図。 使用する車載貯蔵装置を示す図。 供給拠点における水素供給予測量を示す図。 使用する車載貯蔵装置及び充填量を示す図。 需要拠点における水素需要予測量を示す図。 需要拠点における定置貯蔵装置の推定残量を示す図。 水素不足が発生していないことを示す図。 水素不足時の配送日と配送を行う需要拠点と、配予定の有無を示す図。 水素不足時の使用する車載貯蔵装置を示す図。 水素不足時の供給拠点における水素供給予測量を示す図。 水素不足時に使用する車載貯蔵装置及び充填量を示す図。 水素不足時の需要拠点における水素需要予測量を示す図。 水素不足時の需要拠点における定置貯蔵装置の推定残量を示す図。 水素不足が発生することを示す図。 午前及び午後と、配送を行う需要拠点と、配予定の有無を示す図。 配送日の午前及び午後に使用する車載貯蔵装置を示す図。 複数の需要拠点毎の水素配送量を示す図。 複数の需要拠点毎の水素需要量、定値貯蔵量装置の推定残量を示す図。 不足水素量を四角形で示す図。 車載貯蔵量装置毎の残量を示す図 水素配送計画生成部のフロチャートの一例。 配送を開始する配送経路を示す図。 配送から戻る配送経路を示す図。 配送パターと直行、直帰による減少距離を示す図。 配送計画部で計画された配送経路、車載貯蔵装置を示す図。 制約設定部が制約として設定する優先度を示す図。 第2実施形態に係る水素配送計画生成部のフロチャート。 第3実施形態に係る水素配送計画生成部のフロチャート。 第4実施形態に係る重みパラメータの例を示す図。 第4実施形態に係る水素配送計画生成部のフロチャート。
 以下、本発明の実施形態に係る水素配送計画装置および水素配送計画方法について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は、本発明の実施形態の一例であって、本発明はこれらの実施形態に限定して解釈されるものではない。また、本実施形態で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号又は類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。
 (第1実施形態)
 図1は、第1実施形態に係る水素配送経路の概念図である。図1に示すように、本実施形態に係る水素配送経路には、供給拠点2と、複数の需要拠点4と、配送拠点6とが設けられている。図1には更に配送車8が図示されている。なお、需要拠点4は図1中では図示の簡略化のために、1拠点しか図示されていないが、本実施形態に係る水素配送経路には複数の需要拠点4が設けられている。
 供給拠点2は、水素を製造し複数の需要拠点4に水素供給する拠点である。供給拠点2には、水素製造装置20と、定置貯蔵装置22と、複数の車載貯蔵装置24が配置されている。水素製造装置20は、例えば再生可能エネルギにより発電された電力により、水素と酸素を製造する。水素製造装置20は、配管により定置貯蔵装置22と接続されている。定置貯蔵装置22は、配管を介して水素製造装置20から供給された水素を貯蔵する。
 複数の車載貯蔵装置24は、例えばカードルであり、配送車8に車載可能な水素貯蔵装置である。複数の車載貯蔵装置24の容量はそれぞれ異なっていてもよい。車載貯蔵装置24には、定置貯蔵装置22から水素が充填される。
 複数の需要拠点4は、配送された水素を、燃料電池装置42により電力と熱に変換する拠点である。複数の需要拠点4のそれぞれには、定置貯蔵装置40と、燃料電池42とが配置されている。定置貯蔵装置40は、配送車8に積載された車載貯蔵装置24から供給された水素を貯蔵する。定置貯蔵装置40は、配管により燃料電池装置42と接続され、燃料電池装置42に水素を供給する。燃料電池装置42は、配管を介して定置貯蔵装置40から供給された水素を用いて発電し、電力と熱を生成する。
 複数の需要拠点4には、定置貯蔵装置40の水素が不足する場合に、電力を供給する水素に代替する代替エネルギによる供給設備が設けられている。例えば、複数の需要拠点4には、系統電力の供給設備が設けられたり、化石燃料による発電設備が設けられたりする。代替エネルギの供給設備による使用電力には、使用電力量に応じた二酸化炭素の換算値が、水素有効活用パラメータとして割り振られる。
 配送拠点6は、水素の配送が終了した配送車8が停車する拠点である。すなわち、配送車8は、水素配送を行う際に、配送拠点6から出発し、供給拠点2や複数の需要拠点4を回って、再び配送拠点6に戻ってくる。
 配送車8は、化石燃料を動力に変換する車であり、車載貯蔵装置24に貯蔵された水素を複数の需要拠点4に配送する。配送車8には、走行距離に応じた二酸化炭素の換算値が、配送時二酸化炭素排出量として割り振られる。
 図2は、水素配送計画装置100の送受信網を示す図である。図2に示すように、供給拠点2には、計測器2aと、データサーバ2bと、送信装置2cとが更に配置されている。需要拠点4には、計測器4a、4b、4cと、データサーバ4dと、送信装置4eと、電気機器44と、熱機器46とが更に配置されている。水素配送計画装置100は、水素配送計画部100aと、送受信部100bとを有する。
 供給拠点2の計測器2aは、水素製造装置20の水素製造量と、定置貯蔵装置22に貯蔵される水素量を計測する。データサーバ2bは、計測器2aが計測したデータを記憶する。送信装置2cは、データサーバ2bに記憶されたデータを水素配送計画装置100に送信する。
 需要拠点4の計測器4aは、定置貯蔵装置40に貯蔵される水素製造量と、燃料電池装置42の発電量を計測する。計測器4bは、電気機器44に供給される電力量を計測する。計測器4cは、熱機器46に供給される熱量を計測する。データサーバ4dは、計測器4a、4b、4cが計測したデータを記憶する。送信装置4eは、データサーバ4dに記憶されたデータを水素配送計画装置100に送信する。
 配送拠点6の受信装置6aは、水素配送計画装置100が計画した水素配送計画に関する情報を受信する。表示装置6bは、例えばモニターであり、受信装置6aが受信した水素配送計画に関する情報を表示する。配送車8の運転士などは、受信装置6aが受信した水素配送計画に関する情報に従った水素配送を実行する。
 水素配送計画装置100の水素配送計画部100aは、例えば送受信装置100bが受信した情報に基づき、水素配送計画を生成する。送受信装置100bは、複数の需要拠点4の送信装置4eから送信されたデータの情報を含む信号と、供給拠点2の送信装置2cから送信されたデータの情報を含む信号とを受信する。また、送受信装置100bは、水素配送計画に関する情報を配送拠点6の受信装置6aに送信する。
 図3は、水素配送計画部100aの詳細な構成を示すブロック図である。図3に示すように、水素配送計画部100aは、供給拠点実績データベース102と、供給予測部104と、需要拠点実施データベース106と、水素需要予測部108とを備えて構成される。また、水素需要予測部108は、需要予測部110と、運転計画部112と、を有する。更に水素配送計画部100aは、配送経路データベース114と、入力部116と、設定データベース118と、表示部120と、水素配送計画生成部122とを備えて構成される。
 供給拠点実績データベース102は、供給拠点2の送信装置2cを介して送信された水素製造装置20の水素製造量と、定置貯蔵装置22に貯蔵される水素量とを記憶する。供給予測部104は、供給拠点実績データベース102に記憶されるデータに基づき、水素製造装置20の水素製造量を予測する。この供給予測部104は、例えば、移動平均、回帰式、及び機械学習などの一般的な予測方法を用いて、水素製造装置20の水素製造量を、例えば1日、半日、1週間単位などで予測する。なお、本実施形態に係る供給予測部104が水素供給予測部に対応する。
 需要拠点実施データベース106は、複数の需要拠点4の送信装置4eを介して送信された計測器4a、4b、4cが計測したデータを需要拠点4毎に記憶する。
 水素需要予測部108は、複数の需要拠点4におけるそれぞれの水素需要量を予測する。需要拠点4の定置貯蔵装置40(図1)の水素残量が100%であると仮定して、例えば1日当たりの水素使用量、すなわち水素需要量を推定するものとし、これを水素需要予測結果とする。すなわち、水素需要予測部108は、定置貯蔵装置40の残量によらず、水素需要量を予測する。
 より詳細には、水素需要予測部108が有する需要予測部106は、需要拠点実施データベース106に記憶されるデータに基づき、需要拠点4毎の電力需要及び熱需要の内の少なくとも一方を予測する。この需要予測部110は、例えば、移動平均、回帰式、及び機械学習などの一般的な予測方法を用いて、需要拠点4毎の電力需要及び熱需要の内の少なくとも一方を、例えば1日、半日、1週間単位などで予測する。
 水素需要予測部108が有する運転計画部112は、需要予測部106が予測した需要拠点4毎の電力需要及び熱需要の内の少なくとも一方に基づき、需要拠点4毎における燃料電池装置42の水素需要を例えば1日、半日、1週間単位などで予測する。そして、運転計画部112は、予測した水素需要を用いた運転計画を需要拠点4毎に生成する。このように、水素需要予測部108は、需要拠点4毎の水素需要を、例えば1日、半日、1週間単位などで予測する。
 この場合の定置貯蔵装置40(図1)の残量、配送量、需要量のバランス式は、N+1日目開始時点の定置貯蔵装置40の推定残量=max(0、N日目開始時点の定置貯蔵装置40の推定残量+N日目の水素配送量-N日目の水素需要の予測量)として示すことが可能である。
 配送経路データベース114は、供給拠点2と、複数の需要拠点4とを少なくとも結ぶ配送経路を複数記憶している。また、配送経路データベース114は、供給拠点2と、複数の需要拠点4と、配送拠点6と結ぶ配送経路を複数記憶している。また、配送経路データベース114は、配送経路ごとの距離数を記憶している。
 入力部116は、配送計画に必要な情報を入力する。この入力部116は、操作者からの各種の入力操作を受け付け、受け付けた入力操作を電気信号に変換して水素配送計画部100aに出力する。例えば、入力部116は、マウスやキーボード、トラックボール、スイッチ、ボタン、ジョイスティック等により実現される。
 設定データベース118には、水素配送計画生成部122が生成する配送計画に制約を設けるための情報が記憶されている。例えば、設定データベース118には、配送車8の台数、車載貯蔵装置24の総数、一度の配送で配送可能な車載貯蔵装置24の総数、車載貯蔵装置24の容量、上述の水素有効活用パラメータ、重要拠点優先度、重みパラメータ、配送パターンが記憶されている。ここで、重要拠点優先度は、複数の需要拠点4の優先度を示す。例えば優先度1が割り振られると、その拠点の水素需要量を第1優先として配送計画が生成される。なお、重要拠点優先度、重みパラメータ、配送パターンの詳細は後述する。
 表示部120は、例えばモニターであり、水素配送計画生成部122が生成する配送計画に関する情報、例えば表及びグラフの少なくとも一方を含む情報を表示する。また、表示部120は、設定データベース118の情報に基づく制約情報を表示する。
 図4は、水素配送計画生成部122の詳細な構成を示すブロック図である。図4に示すように、水素配送計画生成部122は、例えばプロセッサで構成され、水素配送計画を生成する。水素配送計画生成部122は、取得部124と、制約設定部126と、経路生成部128と、評価値計算部130と、配送計画部136と、車載貯蔵装置状態推定部138と、充填計画部140と、水素需要抽出部142と、表示制御部144と、記憶部146とを備える
 取得部124は、供給拠点2における水素供給量と、複数の需要拠点4におけるそれぞれの水素需要量とを取得する。取得部124は、例えば供給予測部104(図3)が予測した供給拠点2における水素供給量と、水素需要予測部108(図3)が予測した複数の需要拠点4におけるそれぞれの水素需要量とを取得する。
 制約設定部126は、経路生成部128が生成する配送経路及び評価値計算部130が計算する評価値配の少なくとも一方に制約を設ける。制約設定部126は、例えば、入力部116(図3)を介して設定データベース118に記憶される情報の中から操作者により選択された情報を制約として、経路生成部128及び評価値計算部130の少なくとも一方に設定する。
 図5Aは、配送条件を示す制約の例を示す図である。図5Aに示すように、制約設定部126は、経路生成部128が生成する配送経路の制約として、配送車8の台数、車載貯蔵装置24の総数、一度の配送で配送可能な車載貯蔵装置24の総数、車載貯蔵装置24毎の容量を設定する。
 図5Bは、水素有効活用パラメータの例を示す図である。図5Bに示すように、制約設定部126は、評価値計算部130に対して、需要拠点D1、D2、D3毎の二酸化炭素換算量、すなわち水素有効活用パラメータを設定する。水素有効活用パラメータは、需要拠点4の電力、及び熱需要の実績データにより水素を有効活用できる度合に応じて設定するパラメータである。換言すると水素を有効活用できる度合が高いほど、水素が不足する場合の二酸化炭素換算量、すなわち水素有効活用パラメータの設定値が高くなる。なお、水素有効活用パラメータを統計的処理により求めてもよい。
 例えば、水素有効活用パラメータ30、20、10は、不足する単位水素量に相当する発電電力を他のエネルギで代替する場合に発生する二酸化炭素の量を示している。すなわち、不足する水素を他のエネルギで代替する場合に、需要施設D3における二酸化炭素の換算量30が最も多く、需要施設D2における二酸化炭素の換算量20が次に多く、需要施設D1における二酸化炭素の換算量10が最も少なくなっている。このように、水素有効活用パラメータが大きくなる程、他のエネルギに代替された単位水素あたりの二酸化炭素の発生量が多くなることを示している。
 図5Cは、重みパラメータの例を示す図である。図5Cに示すように、制約設定部126は、評価値計算部130に対して、重みパラメータを設定する。
 また、制約設定部126は、評価値計算部130に対して、水素不足を許容しない第1モード、水素不足を許容する第2モードのいずれかを設定可能である。
 図4に示すように、経路生成部128は、制約設定部126が設定した配送車8の台数、車載貯蔵装置24の総数、一度の配送で配送可能な車載貯蔵装置24の総数、車載貯蔵装置24の容量に基づき、供給拠点2と複数の需要拠点4を結ぶ配送経路を複数生成する。
 評価値計算部130は、経路生成部128が生成する複数の配送経路毎に評価値を計算する。この評価値計算部130は、排出量計算部132と、機会損出計算部134とを有する。
 排出量計算部132は、供給拠点2における水素供給量を複数の需要拠点4へ配送する場合に生じる二酸化炭素量に基づき、経路生成部128が生成する複数の配送経路毎に第1評価値を計算する。
 機会損出計算部134は、供給拠点2における水素供給量を複数の需要拠点4に供給しても水素不足が生じる場合に、水素不足に対する代替エネルギの使用量に応じて生じる二酸化炭素量に基づき、経路生成部128が生成する複数の配送経路毎に第2評価値を計算する。
 機会損出計算部134は、例えば第2評価値として二酸化炭素削減機会損失を計算する。ここで、二酸化炭素削減機会損失[kg-二酸化炭素]=ΣN=D1、D2、D3(需要拠点Nの水素有効活用パラメータ[kg-二酸化炭素/Nm])×(需要拠点Nの日水素不足量[Nm])として計算される。なお。評価値計算部130は、水素不足が生じる場合に、水素不足が生じる需要拠点4には水素を配送しない経路に基づき、評価値を計算してもよい。
 より詳細には、制約設定部126が上述の第1モードを設定する場合、つまり、二酸化炭素削減機会損失を考慮しない場合、評価値計算部130の排出量計算部132の計算には、N日目の開始時点の定置貯蔵装置40の推定残量≧N日目の水素需要予測量となる制約が設けられる。供給拠点2については、N日目の車載貯蔵装置24への総充填量≦N日目の水素供給予測量となり、且つN日目の1つの車載貯蔵装置24への充填量≦車載貯蔵装置24の最大容量となる制約が設けられる。なお、N日目に配送される車載貯蔵装置24への充填量=0とする。
 一方で、制約設定部126が第2モードを設定する場合、つまり、二酸化炭素削減機会損失を考慮する場合、排出量計算部132および機会損出計算部134の計算には、N日目の開始時点の定置貯蔵装置40の推定残量≧N日目の水素需要予測量-N日目の水素不足量であり、且つN日目の水素需要予測量-N日目の水素不足量≧0となる制約が設けられる。供給拠点2については上述と同様に、N日目の車載貯蔵装置24への総充填量≦N日目の水素供給予測量となり、且つN日目の1つの車載貯蔵装置24への充填量≦車載貯蔵装置24の最大容量となる制約が設けられる。
 また、評価値計算部130は、制約設定部126が評価値計算部130に対して設定した重みパラメータ(図5C)に従い評価値を計算する。例えば、第1評価値には、配送時二酸化炭素排出量の設定値1(図5C)が重みとして乗算され、第2評価値には、二酸化炭素削減機会損出の設定値1(図5C)が重みとして乗算される。評価値計算部130は、例えば、これら重みを付けた第1評価値と第2評価値とを加算して、評価値とする。
 配送計画部136は、評価値計算部130で計算された評価値に基づき、供給拠点2で生成される水素の配送計画を生成する。この配送計画部136は、評価値計算部130で起算された評価値が最小値を示す配送経路を配送計画に用いる。また、配送計画部136は、複数の需要拠点4への水素供給量、供給順の情報も配送計画に含める。上述の配送パターンは、評価値が最小値を示す配送経路、複数の需要拠点4への水素供給量、及び配送経路における供給順の情報を少なくとも含む情報を意味する。
 図6A乃至6Gは、水素不足が発生しない場合の配送計画部136が計画した配送計画例を示す図である。図6Aは、配送日と配送を行う需要拠点と、配予定の有無を示す図である。図6Bは、使用する車載貯蔵装置24を示す図である。図6A及び図6Bにおいて丸印は、選択された項目を示している。以下の説明でも同様である。
 図6Cは、供給拠点2における水素供給予測量を示す図である。図6Dは、使用する車載貯蔵装置24及び充填量を示す図である。図6Eは、需要拠点4における水素需要予測量を示す図である。図6Fは、需要拠点4における定置貯蔵装置40の推定残量を示す図である。図6Gは、水素不足が発生していないことを示す図である。このように、配送計画部136は、例えば1日毎に配送計画を生成する。
 図7A乃至7Gは、水素不足が発生する場合の配送計画部137が計画した配送計画例を示す図である。図7Aは、配送日と配送を行う需要拠点と、配予定の有無を示す図である。図7Bは、使用する車載貯蔵装置24を示す図である。図7Cは、供給拠点2における水素供給予測量を示す図である。図7Dは、使用する車載貯蔵装置24及び充填量を示す図である。図7Eは、需要拠点4における水素需要予測量を示す図である。図7Fは、需要拠点4における定置貯蔵装置40の推定残量を示す図である。図7Gは、6月7日に水素不足が発生することを示す図である。
 図8A、図8Bは、配送計画部136が計画した半日毎の配送計画例を示す図である。図8Aは、配送日の午前及び午後と、配送を行う需要拠点と、配予定の有無を示す図である。図8Bは、配送日の午前及び午後に使用する車載貯蔵装置24を示す図である。このように、配送計画部136は、例えば半日毎に配送計画を生成してもよい。
 車載貯蔵装置状態推定部138は、前回の配送終わりでの車載貯蔵装置24の位置と残量を推定する。経路生成部128は、その推定結果を初期値として搬送経路を作成する。これにより、実際の運用により適した配送計画を作成することが可能となる。
 充填計画部140は、供給拠点2から供給される水素の配送に用いる複数の車載貯蔵装置24の中に、満充填する車載貯蔵装置24が存在する場合に、満充填する車載貯蔵装置24に充填する水素充填計画を生成する。この充填計画部140は、車載貯蔵装置24に対して水素供給量を配分して充填する方法を計画する。例えば、車載貯蔵装置24を3日間で満充填しなければならない場合には、車載貯蔵装置の容量の1/3ずつ車載貯蔵装置24に充填する水素充填計画を生成する。この場合、水素供給予測結果から1日毎に車載貯蔵装置24の容量の1/3を差し引き、その残りで、水素配送計画を作成する。すなわち、この場合、評価値計算部130での計算には、1日毎に車載貯蔵装置24の容量の1/3水素量が差し引かれた水素供給量が用いられる。これにより、他の水素需要との整合のとれた配送計画を立てることが可能となる。
 水素需要抽出部142は、供給拠点2から供給される水素が、配送計画部136が計画する水素配送計画と異なる他の水素配送計画にも含まれる場合に、他の水素配送計画から水素需要の情報を抽出する。この水素需要抽出部142は、他の水素配送計画から、供給拠点2から水素を配送するタイミングと水素量、需要拠点に水素を配送するタイミングと水素量の情報を取得して、評価値計算部130に供給する。すなわち、評価値計算部130の計算には、水素需要抽出部142が抽出した供給拠点2から水素を配送するタイミングと水素量、需要拠点4に水素を配送するタイミングと水素量の情報が用いられる。これにより、他の水素配送計画との整合のとれた水素配送計画を立てることが可能となる。
 図9A乃至9Dは、表示部120に表示されるグラフの例である。図9Aは、複数の需要拠点D1、D2、D3毎の水素配送量を示す図である。横軸は日付を示し、縦軸は水素配送量を示している。図9Bは、複数の需要拠点D1、D2、D3毎の水素需要量、定値貯蔵量装置40の推定残量を示す図である。横軸は日付を示し、縦軸は水素需要量、定値貯蔵量装置40の推定残量を示している。図9Cは、図9Bと同等の図であり、不足水素量を四角形で示す図である。横軸は日付を示し、縦軸は水素需要量、定値貯蔵量装置40の推定残量を示している。図9Dは、車載貯蔵量装置C1、C2、C3毎の残量を示す図である。横軸は日付を示し、縦軸は車載貯蔵量装置C1、C2、C3毎の残量を示している。同様に、図5A乃至5C、図6A乃至6G、図7A乃至7G、図8A乃至8B、図9A乃至9Dなどの図表は、配送拠点6(図2)にも送信され、表示装置6b(図2)により表示される。
 表示制御部144は、制約設定部126で設定された情報、配送計画部136で生成された配送計画に関する情報などを表示部120に表示する制御を行う。表示制御部144は、例えば図5A乃至5C、図6A乃至6G、図7A乃至7G、図8A乃至8B、図9A乃至9Dを表示部120に表示する制御を行う。これにより、設定が容易になり、かつ、結果を理解しやすくなる。
 記憶部146は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等により実現される。記憶部146は、例えば、制約設定部126が設定した情報を格納する。また、記憶部146は、水素配送計画生成部122が実行する各種のプログラムを格納する。
 なお、上述したように、本実施形態においては、水素配送計画生成部122は、例えば、プロセッサにより構成される。ここで、プロセッサという文言は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、或いは、特定用途向け集積回路(Application Specific Integrated Circuit: ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device: SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device: CPLD)、及び、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array: FPGA)等の回路を意味する。プロセッサは、記憶部146に保存されたプログラムを読み出して実行することにより機能を実現する。同様に供給予測部104、水素需要予測部108も、プロセッサにより構成され、不図示の記憶部に保存されたプログラムを読み出して実行することにより機能を実現する。
 図10は、水素配送計画生成部122の処理例を示すフロチャートの一例である。図10に示すように、取得部124は、供給予測部104が予測した供給拠点2における水素供給量と、水素需要予測部108が予測した複数の需要拠点4におけるそれぞれの水素需要量を取得する(ステップS100)。
 次に、制約設定部126は、モード1又はモード2の設定を含めた制約条件を経路生成部128及び評価値計算部130に設定する(ステップS102)。続けて、経路生成部128は、制約条件に従い、経路を生成する(ステップS104)。経路生成部128は、制約条件に従い、毎回異なる経路を生成する。
 次に、排出量計算部132は、水素供給量を複数の需要拠点4へ配送する場合に生じる二酸化炭素量に基づく第1評価値を計算する(ステップS106)。
 次に機会損出計算部134は、設定がモード2であるか否かを判定し(ステップS108)、モード2である場合(ステップS108のYES)に、複数の需要拠点4毎の水素有効活用パラメータに基づき、二酸化炭素機会損として第2評価値を計算する(ステップS110)。一方で、モード2でない場合(ステップS108のNO)には、機会損出計算部134は、第2評価値を計算しない。続けて、評価値計算部130は、重みを付けた第1評価値と第2評価値とを評価値として加算し、記憶部146に記憶する(ステップS112)。ただし、評価値計算部130は、モード2でない場合には、第2評価値を評価値に加算しない。
 次に、配送計画部136は、評価値計算部130が計算した評価値が記憶部146に既に記憶される評価値と比較し(ステップS114)、評価値計算部130が計算した評価値の方が小さい場合に(ステップS114のYES)、記憶部146に記憶される評価値を評価値計算部130が計算した評価値に置き換える。記憶部146には、初期値として評価値計算部130が計算しえる最大値が設定されている。一方で、評価値計算部130が計算した評価値が記憶部146に既に記憶される評価値以上である場合に(ステップS114のNO)、配送計画部136は、記憶部146に既に記憶される評価値を置換しない。
 次に、配送計画部136は、計算回数が規定回数に達したか否かを判定し(ステップS118)、規定回数に達した場合に(ステップS119のYES)、体処理終了し、配送計画を生成する。一方で、規定回数に達していない場合に(ステップS119のNO)、ステップS104からの処理を繰り返す。
 以上のように第1実施形態によれば、評価値計算部130が、第2モードが設定され、水素供給量を複数の需要拠点4に供給しても水素不足が生じる場合に、水素不足量に対する代替エネルギの使用量に応じた二酸化炭素の複数の需要拠点4毎の換算量に更に基づき、評価値を計算することとした。これにより、水素不足を補うために使用される電力を生成する際に使用する二酸化炭素の量も考慮した水素配送計画を生成できる。
(第1実施形態の変形例)
 第1実施形態の変形例に係る水素配送計画装置100は、経路生成部128が、配送拠点から直に需要拠点に向かう「直行」、需要拠点から直に配送拠点に帰る「直帰」を考慮する点で第1実施形態に係る水素配送計画装置100と相違する。以下では、第1実施形態に係る水素配送計画装置100と相違する点に関して説明する。
 図11は配送を開始する配送経路を示す図である。図11の上図は、供給拠点S1に立ち寄ってから需要拠点D1、D2、D3に向かう配送経路を示す図であり、配送距離は、70キロメートルである。図11の下図は、配送拠点C1から需要拠点D1、D2、D3に向かう配送経路を示す図であり、配送距離は、50キロメートルである。
 図12は配送から戻る配送経路を示す図である。図12の上図は、需要拠点D1、D2、D3から供給拠点S1に立ち寄る配送経路を示す図であり、配送距離は、70キロメートルである。図12の下図は、供給拠点S1に立ち寄らずに、配送拠点C1に向かう配送経路を示す図であり、配送距離は、50キロメートルである。
 図13Aは、配送パターンと直行、直帰による減少距離を示す図である。このように、直行、直帰を許可すると配送距離が低減される。
 第1実施形態の変形例に係る経路生成部128は、配送拠点C1から直に需要拠点D1、D2、D3に向かう直行経路と、需要拠点から直に配送拠点C1に帰る直帰経路を含む配送経路を生成する。
 これにより、評価値計算部130は、直行経路及び直帰経路の内の少なくとも一方を含む配送経路と、直行経路及び直帰経路を含まない配送経路との双方の評価値を演算する。すなわち、配送計画部136は、評価値計算部130で計算された評価値に基づき、直行経路及び直帰経路の内の少なくとも一方を含む配送経路、又は直行経路及び直帰経路を含まない配送経路のいずれも選択可能である。
 図13Bは、直行、直帰を許可した場合に、配送計画部136で計画された配送経路、車載貯蔵装置を示す図である。図13Bに示すように、直行、直帰を含む配送経路が最終的に選択される場合がある。なお、表示制御部144は、例えば図13A、13Bに示す図表を表示部120に表示する制御を行う。
 以上のように第1実施形態の変形例に経路生成部128は、配送拠点C1から直に需要拠点D1、D2、D3に向かう直行と、需要拠点から直に配送拠点C1に帰る直帰を含む配送経路を生成することとした。これにより、配送経路における二酸化炭素の排出量が低減される場合には、直行及び直帰の内の少なくとも一方を含む経路の選択が可能となり、より効率的な配送計画を生成することができる。
(第2実施形態)
 第2実施形態に係る水素配送計画装置100は、需要拠点4毎の水素不足への優先度を考慮した水素配送計画を生成することで第1実施形態に係る水素配送計画装置100と相違する。以下では、第1実施形態に係る水素配送計画装置100と相違する点に関して説明する。
 図14は、制約設定部126が制約として設定する優先度を示す図である。図14に示すように、制約設定部126は、需要拠点D1、D2、D3毎に優先度を設定する。優先度1が最も優先度が高く、優先度2は優先度1の次に高い優先度である。モード1は、いずれの拠需要拠点にも水素不足を許容しないモードである。モード2は、優先度1が設定された需要拠点の水素不足を許容しないが、優先度2が設定された需要拠点の水素不足を許容するモードである。モード3は、優先度1及び優先度2が設定された需要拠点の水素不足を許容するモードである。
 例えば、需要拠点によっては、凍結防止などの理由から、燃料電池装置42(図2)の稼働を所定の期間、継続させる必要が生じる場合がある。そういった場合、二酸化炭素だけの観点から水素配送計画を作成するのは好ましくない場合がある。本実施形態に係る配送計画部136は、需要拠点D1、D2、D3毎の優先度を考慮した水素配送計画を生成する。
 図15は、第2実施形態に係る水素配送計画生成部122のフロチャートの一例である。以下では図10と相違する点を説明する。図12に示すように、制約設定部126は、先ずカウンタ=0としてモード1の設定を行う(ステップS200)。続けて、制約設定部126は、モード1の設定を含めた制約条件を経路生成部128及び評価値計算部130に設定する(ステップS102)。一方で、制約設定部126は、カウンタ=1の場合にはモード2の設定を含めた制約条件を経路生成部128及び評価値計算部130に設定する。更に、制約設定部126は、カウンタ=2の場合にはモード3の設定を含めた制約条件を経路生成部128及び評価値計算部130に設定する。
 次に、配送計画部136は、計算回数が規定回数に達したか否かを判定し(ステップS118)、規定回数に達した場合に(ステップS118のYES)、解が存在するか否かを判定する(ステップS202)。解が存在する場合に(ステップS202のYES)、全体処理を終了する。一方で、解が存在しない場合に(ステップS202のNO)、カウンタに1を加算し(ステップS204)、ステップS102からの処理を繰り返す。なお、モード3では、解が存在しない場合にも全体処理を終了する。
 このように、先ずモード1で配送計画を生成し、解が得られない場合にモード2に移行し、更に解が得られない場合にモード3に移行することした。これにより、優先度により水素を優先的に需要拠点D3に供給することにより、他の需要拠点D2に水素不足が生じた場合にも対応可能となる。さらに、モード3を設けることにより、優先度1の需要拠点D3の水素不足も許容可能となる。モード2及び3の場合にも、水素不足に対する代替エネルギの使用量に応じた二酸化炭素の複数の需要拠点D2、D3毎の換算量に更に基づき、評価値を計算することが可能となり、二酸化炭素の発生量を抑制できる。
 以上のように、第2実施形態によれば、制約設定部126が、需要拠点D1、D2、D3毎に優先度を設定することした。これにより、最も高い優先度が設定された需要拠点D3の水素需要を満たすように水素配送計画を生成可能となる。
(第3実施形態)
 第3実施形態に係る水素配送計画装置100は、需要拠点4毎の需要削減率を考慮した水素配送計画を生成することで第1実施形態に係る水素配送計画装置100と相違する。以下では、第1実施形態に係る水素配送計画装置100と相違する点に関して説明する。
 第3実施形態に係る制約設定部126は、需要拠点4毎に需要削減率を設定する。すなわち、制約設定部126は、水素不足が生じる場合、需要拠点4毎に設定された需要削減率を需要拠点4毎の水素需要量に乗算し、水素需要量全体を削減する。なお、第2実施形態に係る水素配送計画装置100と同様に、先ずモード1で配送計画を生成し、解が得られない場合にモード2に移行し、更に解が得られない場合に、需要拠点4毎に設定された需要削減率を需要拠点4毎の水素需要量に乗算し、水素需要量全体を削減してもよい。
 図16は、第3実施形態に係る水素配送計画生成部122のフロチャートの一例である。以下では図10と相違する点を説明する。図16に示すように、制約設定部126は、先ずカウンタ=0としてモード1の設定を行う(ステップS200)。続けて、制約設定部126は、モード1の設定を含めた制約条件を経路生成部128及び評価値計算部130に設定する(ステップS300)。
 ここで、カウンタが0の場合には、需要削減率=1を乗算する。一方で、カウンタが0で無い場合には、カウンタが増加する度に、需要拠点4毎に設定された需要削減率を増加させて需要拠点4毎の水素需要量に乗算する。例えば再計画カウンタが0の場合には、全需要拠点で需要削減率を1として水素需要量に乗じる。再計画カウンタが1の場合には需要削減率として例えば0.9を水素需要量に乗算する。再計画カウンタが2の場合は需要削減率、例えば0.9×0.9=0.81として元の水素需要量に乗じる。この場合、全体の水素需要が0.81倍になる。
 次に、配送計画部136は、計算回数が規定回数に達したか否かを判定し(ステップS118)、規定回数に達した場合に(ステップS119のYES)、解が存在するか否かを判定する(ステップS302)。解が存在する場合に(ステップS302のYES)、全体処理を終了する。一方で、解が存在しない場合に(ステップS302のNO)、カウンタに1加算し(ステップS304)、ステップS300からの処理を繰り返す。
 以上のように、第3実施形態によれば、解が存在しない場合に需要拠点4毎の水素需要量を段階的に減らすることが可能である。これにより、水素供給量をより多く使用し、且つ水素不足が生じない水素配送計画を生成できる。
(第4実施形態)
 第4実施形態に係る水素配送計画装置100は、運用適合度を設けることで第1実施形態に係る水素配送計画装置100と相違する。以下では、第1実施形態に係る水素配送計画装置100と相違する点に関して説明する。
 図17は、第4実施形態に係る重みパラメータの例を示す図である。図17に示すように、第4実施形態に係る制約設定部126は、評価値計算部130が生成する評価値に、運用適合度に重みパラメータの値を乗算して加算する。例えば、図17に示すように、第1評価値に1を乗算し、第2評価値に1を乗算し、運用適合度に100を乗算して加算する。運用適合度とは、ある配送計画が、運用に関する条件をどの程度満たせるかを示す度合いを意味する。運用適合度の例としては、車載貯蔵装置に充填されている水素量が少ない、配送禁止日に配送されている、などがある。運用適合度に乗算される数値が大きくなるほど、運用制約が厳しくなる。
 運用適合度は、式で表現しにくい条件、式で表現できるが、制約条件として組み込むと最適解の導出に時間がかかりすぎる条件などに対応するために用いられる。このように、制約条件としてではなく、評価値の計算に組み込むことで、最適化問題を繰り返し解きながら、運用に関する条件を満たす計画を導出することが可能となる。
 運用適合度に乗算される数値が大きくなるほど、運用制約が厳しくなる。このため、先ず、運用適合度の初期値は重み、すなわち運用適合度に乗算される数値を低めに設定しておき、一度最適化問題を解くこととする。この場合に、得られた計画結果では、運用に関する条件を満たさない、すなわち運用違反の解が出るならば、重みを大きくして、再度最適化問題を解くこととする。これにより、評価値における運用適合度の影響を高めることで運用違反にならない解に近付けることが可能となる。
 配送計画部136は、評価値計算部130の評価値に基づき選択した配送経路及び水素供給量を示す配送パターンの運用適合度を算出し、運用違反の場合は再度配送パターンを作成する。
 図18は、第4実施形態に係る水素配送計画生成部122のフロチャートの一例である。以下では図10と相違する点を説明する。図18に示すように、制約設定部126は、運用適合度を含む重みパラメータの設定を行う(ステップS400)。
 次に、配送計画部136は、計算回数が規定回数に達したか否かを判定し(ステップS118)、規定回数に達した場合に(ステップS119のYES)、解が運用違反か否かを判定する(ステップS402)。運用違反でない場合に(ステップS402のNO)、全体処理を終了する。一方で、運用違反である場合に(ステップS402のYES)、運用適合度に対する重みパラメータを変更し(ステップS404)、ステップS400からの処理を繰り返す。
 以上のように、第4実施形態によれば、制約設定部126が、運用適合度に対する重みパラメータの設定を行うこととした。これにより、運用適合度を満たすように水素配送計画を生成可能となる。
 以上、いくつかの実施形態を説明したが、これらの実施形態は、例としてのみ提示したものであり、発明の範囲を限定することを意図したものではない。本明細書で説明した新規な装置、方法及びプログラムは、その他の様々な形態で実施することができる。また、本明細書で説明した装置、方法及びプログラムの形態に対し、発明の要旨を逸脱しない範囲内で、種々の省略、置換、変更を行うことができる。

Claims (14)

  1.  供給拠点における水素供給量と、複数の需要拠点におけるそれぞれの水素需要量を取得する取得部と、
     前記供給拠点と前記複数の需要拠点を結ぶ配送経路を複数生成する経路生成部と、
     前記水素供給量を前記複数の需要拠点へ配送する場合に生じる二酸化炭素量に基づき、前記複数の配送経路毎に評価値を計算する評価値計算部と、
     前記評価値に基づき、前記供給拠点で生成される水素の配送計画を生成する配送計画部と、を備え、
     前記評価値計算部は、前記水素供給量を前記複数の需要拠点に供給しても水素不足が生じる場合に、前記水素不足の量に対する代替エネルギの使用量に応じた二酸化炭素の前記複数の需要拠点毎の換算量に更に基づき、前記評価値を計算する、水素配送計画装置。
  2.  前記評価値計算部は、前記水素不足が生じる場合に、前記水素不足が生じる需要拠点には水素を配送しない経路に基づき、前記評価値を演算する、請求項1に記載の水素配送計画装置。
  3.  前記経路生成部が生成する配送経路及び前記評価値計算部が計算する前記評価値の少なくとも一方に制約を設ける制約設定部を更に備える、請求項1又は2に記載の水素配送計画装置。
  4.  前記制約設定部は、前記配送経路に沿って水素を配送可能な配送車の車両台数、前記配送車に搭載可能な車載貯蔵装置の容量及び総数に基づき、前記配送経路に制約を設ける、請求項3に記載の水素配送計画装置。
  5.  前記経路生成部は、配送拠点から前記需要拠点のいずれかに直に向かう直行経路と、前記需要拠点のいずれかから配送拠点に直に帰る直帰経路を含む配送経路を生成可能であり、
     前記評価値計算部は、直行経路及び直帰経路の内の少なくとも一方を含む配送経路と、直行経路及び直帰経路を含まない配送経路との双方の評価値を演算し、
     前記配送計画部は、前記評価値に基づき、前記直行経路及び前記直帰経路の内の少なくとも一方を含む配送経路、又は直行経路及び前記直帰経路を含まない配送経路のいずれかによる配送計画を生成する、請求項1乃至3のいずれか一項に記載の水素配送計画装置。
  6.  前記制約設定部は、前記複数の需要拠点の中の特定の需要拠点には、優先的に水素を供給する制約を設ける、請求項3乃至5のいずれか一項に記載の水素配送計画装置。
  7.  前記評価値計算部は、
     水素不足を許容しない第1モードで前記評価値を計算し、
     計算解が無い場合に、所定の需要拠点における水素不足を許容する第2モードで前記評価値を計算する、請求項1乃至6のいずれか一項に記載の水素配送計画装置。
  8.  前記評価値計算部は、
     水素不足を許容しない第1モードで前記評価値を計算し、
     計算解が無い場合に、前記需要拠点毎に設定された需要削減率を需要に乗じる、請求項1乃至7のいずれか一項に記載の水素配送計画装置。
  9.  前記制約設定部は、前記評価値計算部が生成する評価値に、運用適合度に重みパラメータの値を乗算して更に加算する、請求項3に記載の水素配送計画装置。
  10.  前記供給拠点における前記水素供給量を予測する水素供給予測部と、
     前記複数の需要拠点におけるそれぞれの前記水素需要量を予測する水素需要予測部と、を更に備え、
     前記取得部は、前記水素供給予測部が予測した前記水素供給量と、前記水素需要予測部が予測した前記水素需要量を取得する、請求項1乃至9のいずれか一項に記載の水素配送計画装置。
  11.  前回の配送計画の終わりでの車載貯蔵装置の位置と残量を推定する推定部を更に備え、
     評価値計算部は、前記推定部の推定結果に基づき、評価値を計算する、請求項1乃至10のいずれか一項に記載の水素配送計画装置。
  12.  前記供給拠点から供給される水素が、前記配送計画部が計画する配送計画と異なる配送計画にも含まれる場合に、 
     前記他の配送計画から、供給拠点から水素を配送するタイミングと水素量、需要拠点に水素を配送するタイミングと水素量の情報を取得して、前記評価値計算部に供給する水素需要抽出部を更に備える、請求項1乃至11のいずれか一項に記載の水素配送計画装置。
  13.  前記供給拠点から供給される水素の配送に用いる複数の車載貯蔵装置の中に、満充填する車載貯蔵装置が存在する場合に、前記満充填する車載貯蔵装置に充填する水素充填計画を生成する充填計画部を更に備える、請求項1乃至12のいずれか一項に記載の水素配送計画装置。
  14.  供給拠点における水素供給量と、複数の需要拠点におけるそれぞれの水素需要量を取得する取得工程と、
     前記供給拠点と前記複数の需要拠点を結ぶ配送経路を複数生成する経路生成工程と、
     前記水素供給量を前記複数の需要拠点へ配送する場合に生じる二酸化炭素量に基づき、前記複数の配送経路毎に評価値を計算する評価値計算部と、
     前記評価値に基づき、前記供給拠点で生成される水素の配送計画を生成する配送計画工程と、を備え、
     前記評価値計算工程は、前記水素供給量を前記複数の需要拠点に供給しても水素不足が生じる場合に、前記水素不足の量に対する代替エネルギの使用量に応じた二酸化炭素の前記複数の需要拠点毎の換算量に更に基づき、前記評価値を計算する、水素配送計画方法。
PCT/JP2018/031656 2018-08-28 2018-08-28 水素配送計画装置および水素配送計画方法 WO2020044424A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031656 WO2020044424A1 (ja) 2018-08-28 2018-08-28 水素配送計画装置および水素配送計画方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031656 WO2020044424A1 (ja) 2018-08-28 2018-08-28 水素配送計画装置および水素配送計画方法

Publications (1)

Publication Number Publication Date
WO2020044424A1 true WO2020044424A1 (ja) 2020-03-05

Family

ID=69644859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031656 WO2020044424A1 (ja) 2018-08-28 2018-08-28 水素配送計画装置および水素配送計画方法

Country Status (1)

Country Link
WO (1) WO2020044424A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038773A1 (ja) * 2020-08-21 2022-02-24 日本電信電話株式会社 配送計画生成装置、配送計画生成方法、およびプログラム
WO2022176125A1 (ja) * 2021-02-18 2022-08-25 株式会社日立製作所 水素利用管理装置、水素需給管理装置、水素需給管理運用システムおよび水素需給管理方法
WO2023127115A1 (ja) * 2021-12-28 2023-07-06 株式会社日立製作所 水素取引支援装置、水素取引支援方法、及び水素取引支援システム
WO2023181560A1 (ja) * 2022-03-23 2023-09-28 株式会社日立製作所 パイプライン管理システム及び及びその制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362070A (ja) * 2003-06-02 2004-12-24 Idemitsu Kosan Co Ltd コージェネレーショングリッド燃料自動発注・配送システム
JP2005350299A (ja) * 2004-06-10 2005-12-22 Hitachi Ltd 水素燃料製造システム,水素燃料製造方法および水素燃料製造プログラム
JP2015015793A (ja) * 2013-07-03 2015-01-22 川崎重工業株式会社 マイクログリッドの制御装置及びその制御方法
WO2018109899A1 (ja) * 2016-12-15 2018-06-21 株式会社 東芝 水素輸送計画作成装置および水素輸送計画作成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362070A (ja) * 2003-06-02 2004-12-24 Idemitsu Kosan Co Ltd コージェネレーショングリッド燃料自動発注・配送システム
JP2005350299A (ja) * 2004-06-10 2005-12-22 Hitachi Ltd 水素燃料製造システム,水素燃料製造方法および水素燃料製造プログラム
JP2015015793A (ja) * 2013-07-03 2015-01-22 川崎重工業株式会社 マイクログリッドの制御装置及びその制御方法
WO2018109899A1 (ja) * 2016-12-15 2018-06-21 株式会社 東芝 水素輸送計画作成装置および水素輸送計画作成方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038773A1 (ja) * 2020-08-21 2022-02-24 日本電信電話株式会社 配送計画生成装置、配送計画生成方法、およびプログラム
JP7501641B2 (ja) 2020-08-21 2024-06-18 日本電信電話株式会社 配送計画生成装置、配送計画生成方法、およびプログラム
WO2022176125A1 (ja) * 2021-02-18 2022-08-25 株式会社日立製作所 水素利用管理装置、水素需給管理装置、水素需給管理運用システムおよび水素需給管理方法
JP7470858B2 (ja) 2021-02-18 2024-04-18 株式会社日立製作所 水素利用管理装置、水素需給管理装置、水素需給管理運用システムおよび水素需給管理方法
WO2023127115A1 (ja) * 2021-12-28 2023-07-06 株式会社日立製作所 水素取引支援装置、水素取引支援方法、及び水素取引支援システム
WO2023181560A1 (ja) * 2022-03-23 2023-09-28 株式会社日立製作所 パイプライン管理システム及び及びその制御方法

Similar Documents

Publication Publication Date Title
WO2020044424A1 (ja) 水素配送計画装置および水素配送計画方法
Adler et al. Online routing and battery reservations for electric vehicles with swappable batteries
Liu et al. Distributed operation management of battery swapping-charging systems
JP6062682B2 (ja) 再生可能エネルギによる走行管理システム
US20160185246A1 (en) Charging management device, charging management system, and charging management method
JP4713623B2 (ja) 充放電管理装置
Janjic et al. Commercial electric vehicle fleet scheduling for secondary frequency control
WO2012017937A1 (ja) 電力需給平準化システム
JP7068852B2 (ja) 車両選択装置および方法
JP2013027214A (ja) 電力供給システム
JP2017096497A (ja) エネルギー源供給システムの制御方法およびエネルギー源供給システム
Eider et al. Seamless electromobility
Seitaridis et al. An agent-based negotiation scheme for the distribution of electric vehicles across a set of charging stations
KR20150022732A (ko) 전력계통 운영 보조서비스를 위한 전기자동차 충전개소의 참여용량 제어방법 및 시스템
CN108216195A (zh) 混合动力车辆的控制装置及混合动力车辆的控制方法
JP6475177B2 (ja) カーシェアリングサービスの運用システム
WO2017195537A1 (ja) 充放電計画システム、計画方法及びプログラム
WO2018180438A1 (ja) 売電情報通知装置、売電情報通知方法および充電システム
JP5471327B2 (ja) マイクログリッドにおける充電設備管理システム
Bartolucci et al. Grid service potential from optimal sizing and scheduling the charging hub of a commercial Electric Vehicle fleet
US11698397B2 (en) Power calculation apparatus and power calculation method
JP7495911B2 (ja) 電動車両の充放電制御装置
JP2019219783A (ja) 配送計画生成システムおよびプログラム
US11329490B2 (en) Management device, management method, and storage medium
JP2023012161A (ja) 水素ステーション、水素ステーション用制御部及び水素ステーション用のプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP