WO2020042297A1 - 弹性复合纤维 - Google Patents

弹性复合纤维 Download PDF

Info

Publication number
WO2020042297A1
WO2020042297A1 PCT/CN2018/110754 CN2018110754W WO2020042297A1 WO 2020042297 A1 WO2020042297 A1 WO 2020042297A1 CN 2018110754 W CN2018110754 W CN 2018110754W WO 2020042297 A1 WO2020042297 A1 WO 2020042297A1
Authority
WO
WIPO (PCT)
Prior art keywords
viscosity
pet
ptt
viscosity pet
low
Prior art date
Application number
PCT/CN2018/110754
Other languages
English (en)
French (fr)
Inventor
欧阳文咸
冯永生
Original Assignee
上海海凯生物材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海凯生物材料有限公司 filed Critical 上海海凯生物材料有限公司
Publication of WO2020042297A1 publication Critical patent/WO2020042297A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/16Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins

Definitions

  • the present invention relates to an elastic composite fiber and a manufacturing method thereof.
  • Comfort is one of the most basic properties required by the apparel market at present, and elasticity is one of the basic requirements for wearing comfort.
  • elastic fibers are mainly composed of spandex. Spandex has good elasticity, but its use is limited due to its expensive selling price and responsible spinning process. However, due to the large demand for elastic comfort, it still has a huge market application.
  • the composite fiber has a good price advantage, high cost performance, simple process, low cost, and broad application prospects.
  • the application publication number CN 105297180 A in the Chinese invention patent application entitled “Application to PET / PTT Composite Fiber Manufacturing Process” discloses a manufacturing process applied to PET / PTT composite fiber, which is characterized by : Including the following steps: Step one: 38-42 parts of layered double hydroxide, 18-22 parts of seaweed carbon fiber, 9-12 parts of silica, 9-12 parts of zirconium dioxide and 18-22 parts of zinc dioxide Mix thoroughly and heat in a 500 ° C calcining furnace for 1 hour.
  • the layered double hydroxides (LDHs) are obtained by mixing sodium carbonate and sodium hydroxide in a ratio of 1:16 and grinding for 10 minutes at room temperature to obtain A mixed solution, and then aluminum nitrate, magnesium nitrate, polyamide, and phosphite are mixed according to 1: 3: 1: 0.5 parts by weight to obtain a second mixed solution.
  • the first mixed solution is mixed with the second mixed solution and then ground for 1 h. After warming to 80-120 ° C, the solution was washed with distilled water for several times and filtered until the conductivity of the filtrate was substantially constant.
  • the nano-layered double hydroxides (LDHs) were obtained by vacuum drying.
  • the molar ratio of sodium hydroxide to aluminum nitrate was 2: 1; Step 2.
  • the cooled nano-powder is fully ground by a jet mill and a nano-impact grinder to make a functional nano-powder with an average particle size of less than 50 nm.
  • Step 3 Add the above-mentioned nano-powder to an excess of Y-methacryloxy Propyltrimethoxysilane (silane coupling agent KH570) in an aqueous solution, thoroughly mixed, and stirred for one hour; Step four, the modified nano-powder precipitates were thoroughly dried and fully ground again to obtain the modification Functional nano-powder; Step five: fully mix 50 parts of polyester PTT particles that have been fully dried with 8-10 parts of the modified functional nano-powder, and add 0.6-0.8 parts of titanate coupling agent to obtain a blend; Step 6.
  • Step 7 Spun the far-infrared master batch, 20-30 parts of polyethylene terephthalate particles and 50 parts of polyester PTT particles through a melt spinning machine to obtain far-infrared functional elastic polyester PTT fibers.
  • An object of the present invention is to provide an elastic composite fiber having good elasticity, strength, and heat retention.
  • Another object of the present invention is to provide a method for manufacturing an elastic composite fiber, which has the advantage of simple process.
  • An elastic composite fiber includes a fiber body, and the fiber body is composed of the following weight percentages and is compositely spun: low-viscosity PET 10-90%, high-viscosity PET 10-90%, and PTT 10-80%
  • the viscosity of the low-viscosity PET is 0.42-0.67 dL / g
  • the viscosity of the high-viscosity PET is 0.68-0.83 dL / g
  • the P TT viscosity is 0.73- 1.12 dL / g
  • the crimp of the fiber body The number is between 3 and 12 / cm.
  • the weight percentage of the low-viscosity PET is 25%, the viscosity is 0.4 2 dL / g, the weight percentage of the high-viscosity PET is 25%, and the viscosity is 0.83 dL / g.
  • the weight percentage of the PTT is 50%, and the viscosity is 0.92 dL / g.
  • the present invention also provides a method for manufacturing an elastic composite fiber, including the following steps:
  • Step A drying the low-viscosity PET, high-viscosity PET, and PTT, and drying to a water content of less than 15 ppm, the viscosity of the low-viscosity PET is 0.42-0.67 dL / g, and the viscosity of the high-viscosity PET is 0.68-0.83 dL / g, PTT viscosity is 0.73- 1.12 dL / g;
  • Step B Put low-viscosity PET, high-viscosity PET, and PTT into the screw extruder separately for melt extrusion, and meter them into the composite spinning module through a metering pump, respectively.
  • the weight percentage of the low-viscosity PET accounts for the total material. 10-90%, the weight percentage of high viscosity PET accounts for 10-90% of the total material, and the weight percentage of PTT accounts for 10-80% of the total material;
  • the melt from the composite spinning assembly is introduced into a spinneret and sprayed, After cooling out Bunching and oiling to obtain fibers;
  • Step C sizing the fibers obtained in step B.
  • the sizing is performed by tension heat setting or loose sizing, wherein the tension heat setting uses a first traction roller, a second traction roller, a third traction roller, and a fourth traction roller.
  • the first traction roller speed is 220-280m / min, the temperature is 85-95 ° C, the second traction roller speed is 2 22-282m / min, the temperature is 110-130 ° C, and the third traction roller speed is 225-285m / min, the temperature is 130-150 ° C, the speed of the fourth traction roller is 230-290m / min, the temperature is 150-180 ° C; the loose setting temperature is 80-120 ° C, and the time is 2-6min.
  • high-viscosity PET guarantees the rigidity and hardness of the composite fiber
  • low-viscosity PET guarantees the softness and elasticity of the composite fiber
  • PTT guarantees the feel of the composite fiber. Curling is caused by the difference in properties between different materials, and the different crystal orientations of the different materials cause the materials to form natural curls, which have good fluffy and warm properties.
  • the invention also provides a method for manufacturing a composite fiber, which has the advantages of simple process and low cost.
  • An elastic composite fiber includes a fiber body, and the fiber body is composed of the following weight percentages and is compositely spun: low-viscosity PET 10-90%, high-viscosity PET 10-90%, and PTT 10-80%
  • the viscosity of the low-viscosity PET is 0.42-0.67 dL / g
  • the viscosity of the high-viscosity PET is 0.68-0.83 dL / g
  • the P TT viscosity is 0.73-1.12 dL / g
  • the crimp of the fiber body The number is between 3 and 12 / cm.
  • PET is polyethylene terephthalate
  • PTT is polytrimethylene terephthalate.
  • the viscosity and the ratio are selected. Both PET and PTT can be purchased directly from the market. More preferably, in the present invention,
  • PET and PTT were further screened to make the material meet the requirements of the following table:
  • the hue b value refers to the b value obtained by the hue measurement using the Henry characteristic difference meter method.
  • a method for manufacturing an elastic composite fiber includes the following steps:
  • Step A drying low-viscosity PET, high-viscosity PET, PTT, and drying to a water content of less than 15 ppm
  • the viscosity of low viscosity PET is 0.42dL / g
  • the viscosity of high viscosity PET is 0.83dL / g
  • the viscosity of PTT is 0.92 dL / g
  • Step B Put low-viscosity PET, high-viscosity PET, and PTT into the screw extruder for melt extrusion, respectively, and meter them into the composite spinning module through a metering pump.
  • the weight percentage of the low-viscosity PET accounts for the total material ( 25% of the total weight of low-viscosity PET, high-viscosity PET and PTT involved in spinning, high-viscosity PET accounts for 25% of the total material, and PTT accounts for 50% of the total material; from composite spinning components
  • the resulting melt is introduced into a spinneret and sprayed, and the fibers are cooled and lubricated to obtain fibers after spraying;
  • step C the fiber obtained in step B is shaped, and the heat setting is performed by tension heat setting.
  • the tension heat setting is performed by using a first traction roller, a second traction roller, a third traction roller, and a fourth traction roller.
  • the speed of the first pulling roller is 250m / min, the temperature is 90 ° C, the speed of the second pulling roller is 250m / min, the temperature is 120 ° C, the speed of the third pulling roller is 250m / min, the temperature is 140 ° C, and the speed of the fourth pulling roller is 250m / min, temperature 165 ° C.
  • the first traction roller, the second traction roller, the third traction roller, and the fourth traction roller are sequentially stretched and shaped.
  • the first traction roller, the second traction roller, the third traction roller, and the fourth traction roller can be used. Multiple, the temperature of each traction roller rises in order, so that the fiber is heated more uniformly, and the fiber forming structure is better and more stable.
  • a method for manufacturing an elastic composite fiber includes the following steps:
  • Step A drying the low-viscosity PET, high-viscosity PET, and PTT, and drying to a water content of less than 15 ppm, the viscosity of the low-viscosity PET is 0.42 dL / g, the viscosity of the high-viscosity PET is 0.83 dL / g, and PTT Viscosity is 0.92 dL / g;
  • Step B Put low-viscosity PET, high-viscosity PET, and PTT into the screw extruder for melt extrusion, respectively, and meter them into the composite spinning module through a metering pump.
  • the weight percentage of the low-viscosity PET accounts for the total material ( 25% of the total weight of low-viscosity PET, high-viscosity PET and PTT involved in spinning, high-viscosity PET accounts for 25% of the total material, and PTT accounts for 50% of the total material; from composite spinning components
  • the resulting melt is introduced into a spinneret and sprayed, and the fibers are cooled and lubricated to obtain fibers after spraying
  • step C the fiber obtained in step B is shaped, and the shaped loosening is adopted.
  • the loose shaped temperature is 100 ° C. and the time is 4 minutes.
  • the loose setting uses the tension-free state to make the fiber fully relax, eliminate the internal stress of the fiber, make the fiber structure perfect, and the shape stable.
  • the relevant detection data of the composite fiber obtained is as follows: Strong: 3.4 cN / dtex
  • Modulus 56 cN / dtex, elongation at break: 30%, boiling water shrinkage: 30%, number of crimps: 5 pcs / cm.
  • a method for manufacturing an elastic composite fiber includes the following steps:
  • Step A drying the low-viscosity PET, high-viscosity PET, and PTT, and drying to a water content of less than 15 ppm, the viscosity of the low-viscosity PET is 0.55 dL / g, the viscosity of the high-viscosity PET is 0.75 dL / g, and PTT Viscosity is 0.95 dL / g;
  • Step B Put low-viscosity PET, high-viscosity PET, and PTT into the screw extruder for melt extrusion, respectively, and meter them into the composite spinning module through a metering pump.
  • the weight percentage of the low-viscosity PET accounts for the total material ( 25% of the total weight of low-viscosity PET, high-viscosity PET and PTT involved in spinning, high-viscosity PET accounts for 25% of the total material, and PTT accounts for 50% of the total material; from composite spinning components
  • the resulting melt is introduced into a spinneret and sprayed, and the fibers are cooled and lubricated to obtain fibers after spraying;
  • step C the fibers obtained in step B are shaped, and the setting is performed by tension heat setting, wherein the tension heat setting is performed by the first traction roller, the second traction roller, the third traction roller, and the fourth traction roller.
  • the speed of the first pulling roller is 250m / min, the temperature is 90 ° C, the speed of the second pulling roller is 250m / min, the temperature is 120 ° C, the speed of the third pulling roller is 250m / min, the temperature is 140 ° C, and the speed of the fourth pulling roller is 250m / min, temperature 165 oc
  • the screw is divided into five zones, and the temperatures of the five zones of the screw are 265 ° C, 275 ° C, 280 ° C, 280 ° C, 275 ° C.
  • the fibers coming out of the spinneret are cooled by a ring blower, the temperature is 20 ° C, and the wind speed is 2m / s.
  • the low-viscosity PET can be obtained by polymerizing terephthalic acid and an excess of a diol, and the diol is 33% in excess during the polymerization (molar ratio, that is, the molar amount of the diol over the normal reaction) 33% more).
  • 1,2-propylene glycol and diethylene glycol are used as the glycol, and the molar ratio of 1,2-propylene glycol to diethylene glycol is controlled to 70: 30-50: 50.
  • the molar ratio of diethylene glycol increases, the fluidity of low-viscosity PET increases, and the strength gradually decreases.
  • High-viscosity PET can be subjected to thickening treatment in conventional PET, specifically using a liquid-phase thickening process.
  • the liquid small molecules are extracted to achieve purification and increase viscosity.
  • the rigidity of PET after thickening treatment increases, and the strength increases.
  • the stiffness of composite fibers plays an important role.
  • the PTT in the present invention may be a conventional PTT on the market.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Multicomponent Fibers (AREA)

Abstract

一种弹性复合纤维,包括纤维本体,纤维本体由如下重量百分比的物质经复合纺丝而成:低粘度PET 10-90%,高粘度PET 10-90%,PTT 10-80%;所述低粘度PET的粘度为0.42-0.67dL/g,所述高粘度PET的粘度为0.68-0.83dL/g,所述PTT粘度为0.73-1.12dL/g,所述纤维本体的卷曲数在3-12个/cm。该复合纤维具有一定的卷曲数,具有较好的蓬松性和保暖性。

Description

弹性复合纤维
技术领域
[0001] 本发明涉及一种弹性复合纤维及其制造方法。
背景技术
[0002] 舒适性是目前服装市场所需要的最基本性能之一, 而弹性是服用舒适性的基本 需求之一。 目前弹性纤维主要由氨纶材料构成: 氨纶具有良好的弹性, 但由于 其昂贵的售价以及负责的纺纱工艺限制了其使用, 但由于弹性舒适性的需求量 大, 目前仍然具有巨大的市场应用; 复合纤维具有良好的价格优势, 性价比高 , 同时具有工艺简单, 成本低, 具有广阔的应用前景。
[0003] 如申请公布号 CN 105297180 A , 名称为“应用于 PET/PTT复合纤维的制造工艺 ”的中国发明专利申请中, 公开了一种应用于 PET/PTT复合纤维的制造工艺, 其 特征在于: 包括以下步骤: 步骤一、 将层状双氢氧化物 38-42份、 海藻碳纤维 18-22份、 二氧化硅 9-12份、 二氧化锆 9-12份和二氧化锌 18-22份充分混合, 并置于 500度煅烧炉中加热 1小时, 所述层状双氢氧化物 (LDHs) 为将碳酸钠 、 氢氧化钠按照物质的量比 1 : 16混合后室温下研磨 lOmin获得第一混合液, 再将硝酸铝、 硝酸镁、 聚酰胺和亚磷酸酯按照 1 : 3 : 1 : 0.5重量份混合获得第 二混合液, 将第一混合液与第二混合液混合后再研磨 lh升温至 80-120°C保温后 , 用蒸馏水多次洗涤、 过滤至滤液电导率基本恒定, 真空干燥获得纳米层状双 氢氧化物 (LDHs) , 所述氢氧化钠与硝酸铝的摩尔比为 2: 1 ; 步骤二、 将上述 经过冷却后的纳米粉体通过气流粉碎机和纳米冲击研磨机充分研磨, 制成平均 粒度<50nm的功能纳米粉体; 步骤三、 将上述纳米粉体中加到入过量 Y-甲基丙 烯酰氧基丙基三甲氧基硅烷 (硅烷偶联剂 KH570) 水溶液中, 充分混合, 搅拌 一小时; 步骤四、 将上述经改性的纳米粉体沉淀物, 彻底烘干并再次充分研磨 , 获得改性功能纳米粉体; 步骤五、 将充分干燥过的涤纶 PTT颗粒 50份与上 述改性功能纳米粉体 8-10份充分混合, 并加入钛酸酯偶联剂 0.6-0.8份获得共混 料; 步骤六、 将上述共混料投入螺旋挤出机熔融共混挤出, 造粒得到远红外母 粒; 步骤七、 将所述远红外母粒、 聚对苯二甲酸乙二醇酯颗粒 20-30份与涤纶 PTT颗粒 50份经熔融纺丝机纺丝获得远红外功能弹性涤纶 PTT纤维。
发明概述
技术问题
[0004] 上述的复合纤维的制作工艺相对复杂, 而且传统工艺得到的复合纤维蓬松性、 保暖性、 弹性等难以令人满意。
[0005] 鉴于此, 本案发明人对上述问题进行深入研究, 遂有本案产生。
问题的解决方案
技术解决方案
[0006] 本发明的目的在于提供一种具有较好的弹性、 强力、 保暖性的弹性复合纤维。
[0007] 本发明的另一目的在于提供一种弹性复合纤维的制造方法, 其具有工艺简易的 优点。
[0008] 为了达到上述目的, 本发明采用这样的技术方案:
[0009] 一种弹性复合纤维, 包括纤维本体, 纤维本体由如下重量百分比的物质组成经 复合纺丝而成: 低粘度 PET 10-90%, 高粘度 PET 10-90%, PTT 10-80%; 所述低 粘度 PET的粘度为 0.42-0.67dL/g, 所述高粘度 PET的粘度为 0.68-0.83dL/g, 所述 P TT粘度为 0.73- 1.12 dL/g, 所述纤维本体的卷曲数在 3- 12个 /cm。
[0010] 作为本发明的一种优选方式, 所述低粘度 PET的重量百分比为 25%, 粘度为 0.4 2 dL/g, 所述高粘度 PET的重量百分比为 25%, 粘度为 0.83 dL/g, 所述 PTT的重量 百分比为 50%, 粘度为 0.92 dL/g。
[0011] 本发明还提出一种弹性复合纤维的制造方法, 包括如下步骤:
[0012] 步骤 A、 将低粘度 PET、 高粘度 PET、 PTT进行干燥, 干燥至含水量低于 15ppm , 低粘度 PET的粘度为 0.42-0.67dL/g, 高粘度 PET的粘度为 0.68-0.83dL/g, PTT粘 度为 0.73- 1.12 dL/g;
[0013] 步骤 B、 将低粘度 PET、 高粘度 PET、 PTT分别投入螺杆挤出机中进行熔融挤出 , 并通过计量泵计量分别送入复合纺丝组件, 低粘度 PET重量百分比占总物料的 10-90% , 高粘度 PET的重量百分比占总物料的 10-90%, PTT的重量百分比占总 物料的 10-80% ; 从复合纺丝组件出来的熔体引入喷丝板喷出, 喷出后经过冷却 集束上油得到纤维;
[0014] 步骤 C, 将步骤 B得到的纤维进行定型, 定型采用紧张热定型或者松式定型, 其中, 紧张热定型采用第一牵引辊、 第二牵引辊、 第三牵引辊以及第四牵引辊 进行拉伸定型, 第一牵引辊速度 220-280m/min, 温度 85-95°C, 第二牵引辊速度 2 22-282m/min, 温度 110-130°C, 第三牵引辊速度 225-285m/min, 温度 130-150°C , 第四牵引辊速度 230-290m/min, 温度 150-180°C; 松式定型的温度为 80-120°C , 时间为 2-6min。
发明的有益效果
有益效果
[0015] 采用本发明的技术方案后, 高粘度 PET保证了复合纤维的刚性和硬度, 低粘度 PET保证复合纤维的柔软性和弹性, PTT则保证了复合纤维的手感, 本发明中复 合纤维的卷曲由不同材料之间属性的差异所造成, 各不同材料的结晶取向上的 不同从而导致材料形成了天然卷曲, 具有较好的蓬松性和保暖性。 本发明的还 提出了复合纤维的制造方法, 其具有工艺简易、 成本低的优点。
实施该发明的最佳实施例
本发明的最佳实施方式
[0016] 为了进一步解释本发明的技术方案, 下面结合实施例进行详细阐述。
[0017] 一种弹性复合纤维, 包括纤维本体, 纤维本体由如下重量百分比的物质组成经 复合纺丝而成: 低粘度 PET 10-90%, 高粘度 PET 10-90%, PTT 10-80%; 所述低 粘度 PET的粘度为 0.42-0.67dL/g, 所述高粘度 PET的粘度为 0.68-0.83dL/g, 所述 P TT粘度为 0.73-1.12 dL/g, 所述纤维本体的卷曲数在 3- 12个 /cm。 其中, PET为聚 对苯二甲酸乙二醇酯, PTT为聚对苯二甲酸丙二酯,本申请对其粘度和配比进行 了选择, PET和 PTT均可直接从市面上购买。 更优选地, 本发明中, 还对
PET和 PTT进行了进一步筛选, 使得材料符合下表的要求:
[] [表 1]
Figure imgf000005_0001
[0018] 其中, 色相 b值是指采用亨特色差计法进行色相测量得到的 b值。
[0019] 实施例一
[0020] 一种弹性复合纤维的制造方法, 包括如下步骤:
[0021] 步骤 A、 将低粘度 PET、 高粘度 PET、 PTT进行干燥, 干燥至含水量低于 15ppm
, 低粘度 PET的粘度为 0.42dL/g, 高粘度 PET的粘度为 0.83dL/g, PTT粘度为 0.92 dL/g;
[0022] 步骤 B、 分别将低粘度 PET、 高粘度 PET、 PTT投入螺杆挤出机中进行熔融挤出 , 并分别通过计量泵计量送入复合纺丝组件, 低粘度 PET重量百分比占总物料 ( 参与纺丝的低粘度 PET、 高粘度 PET以及 PTT的总重量) 的 25%, 高粘度 PET的 重量百分比占总物料的 25%, PTT的重量百分比占总物料的 50%; 从复合纺丝组 件出来的熔体引入喷丝板喷出, 喷出后经过冷却集束上油得到纤维;
[0023] 步骤 C, 将步骤 B得到的纤维进行定型, 定型采用紧张热定型, 其中, 紧张热 定型采用第一牵引辊、 第二牵引辊、 第三牵引辊以及第四牵引辊进行拉伸定型 , 第一牵引辊速度 250m/min, 温度 90°C, 第二牵引辊速度 250m/min, 温度 120°C , 第三牵引辊速度 250m/min, 温度 140°C, 第四牵引辊速度 250m/min, 温度 165 °C。 本发明采用第一牵引辊、 第二牵引辊、 第三牵引辊以及第四牵引辊依次进行 拉伸定型, 第一牵引辊、 第二牵引辊、 第三牵引辊以及第四牵引辊均可以采用 多根, 各牵引辊的温度依次上升, 使得纤维受热更均匀, 纤维成型结构更好, 更稳定。 [0024] 实施例一得到的纤维, 强力 :3.2cN/dtex, 模量 :50cN/dtex, 断裂伸长率: 40% , 沸水收缩率: 35% , 卷曲数: 9个 /cm。
[0025] 实施例二
[0026] 一种弹性复合纤维的制造方法, 包括如下步骤:
[0027] 步骤 A、 将低粘度 PET、 高粘度 PET、 PTT进行干燥, 干燥至含水量低于 15ppm , 低粘度 PET的粘度为 0.42dL/g, 高粘度 PET的粘度为 0.83dL/g, PTT粘度为 0.92 dL/g;
[0028] 步骤 B、 分别将低粘度 PET、 高粘度 PET、 PTT投入螺杆挤出机中进行熔融挤出 , 并分别通过计量泵计量送入复合纺丝组件, 低粘度 PET重量百分比占总物料 ( 参与纺丝的低粘度 PET、 高粘度 PET以及 PTT的总重量) 的 25%, 高粘度 PET的 重量百分比占总物料的 25%, PTT的重量百分比占总物料的 50%; 从复合纺丝组 件出来的熔体引入喷丝板喷出, 喷出后经过冷却集束上油得到纤维;
[0029] 步骤 C, 将步骤 B得到的纤维进行定型, 定型采用定型松式, 松式定型的温度 为 100°C, 时间为 4min。 纤维在成型的过程中, 释放了内应力, 大分子的排列未 达到最稳定的状态, 纤维卷曲形态稳定。 松式定型利用无张力状态, 使得纤维 充分松弛, 消除了纤维内部应力, 使得纤维结构完善, 形态稳定。
[0030] 采用实施例二, 得到的复合纤维的相关检测数据如下: 强力 :3.4cN/dtex
模量 :56cN/dtex, 断裂伸长率: 30% , 沸水收缩率: 30% , 卷曲数: 5个 /cm。
[0031] 实施例三
[0032] 一种弹性复合纤维的制造方法, 包括如下步骤:
[0033] 步骤 A、 将低粘度 PET、 高粘度 PET、 PTT进行干燥, 干燥至含水量低于 15ppm , 低粘度 PET的粘度为 0.55dL/g, 高粘度 PET的粘度为 0.75dL/g, PTT粘度为 0.95 dL/g;
[0034] 步骤 B、 分别将低粘度 PET、 高粘度 PET、 PTT投入螺杆挤出机中进行熔融挤出 , 并分别通过计量泵计量送入复合纺丝组件, 低粘度 PET重量百分比占总物料 ( 参与纺丝的低粘度 PET、 高粘度 PET以及 PTT的总重量) 的 25%, 高粘度 PET的 重量百分比占总物料的 25%, PTT的重量百分比占总物料的 50%; 从复合纺丝组 件出来的熔体引入喷丝板喷出, 喷出后经过冷却集束上油得到纤维; [0035] 步骤 C, 将步骤 B得到的纤维进行定型, 定型采用紧张热定型, 其中, 紧张热 定型采用第一牵引辊、 第二牵引辊、 第三牵引辊以及第四牵引辊进行拉伸定型 , 第一牵引辊速度 250m/min, 温度 90°C, 第二牵引辊速度 250m/min, 温度 120°C , 第三牵引辊速度 250m/min, 温度 140°C, 第四牵引辊速度 250m/min, 温度 165 oc
[0036] 实施例四至六
[0037] 除低粘度 PET、 高粘度 PET以及 PTT的重量比不同, 制作方法与实施例三相同 , 得到的复合纤维的相关参数如下:
Figure imgf000007_0001
[0038] 实施例七至九
[0039] 除低粘度 PET、 高粘度 PET以及 PTT的粘度不同, 制作方法与实施例三相同, 得到的复合纤维的性能参数如下:
[]
Figure imgf000008_0001
[0040] 本发明中螺杆挤出机, 螺杆分成五区, 螺杆的五区的温度分别为 265°C、 275°C 、 280°C、 280°C、 275°C。
[0041] 本发明中, 从喷丝板出来的纤维采用环吹风冷却, 温度 20°C、 风速 2m/s
[0042] 本发明中, 低粘度 PET可以采用对苯二甲酸和过量的二元醇进行聚合得到, 聚 合过程中二元醇过量 33%(摩尔比, 即比正常反应的二元醇的摩尔量还多 33%), 其中, 二元醇使用 1,2 -丙二醇和一缩二乙二醇, 1,2 -丙二醇与一缩二乙二醇的摩 尔比控制在 70:30-50:50, 随着一缩二乙二醇所占摩尔比的增大,低粘度的 PET流动 性在增加,强度则逐渐下降。 高粘度 PET可以在常规 PET中通过增粘处理, 具体采 用液相增粘工艺, 通过抽提液态小分子从而达到提纯和增加粘度的作用, 增粘 处理后的 PET刚性增加, 强度增大对于提升复合纤维的硬度有重要作用。 本发明 中的 PTT可以采用市面上的常规 PTT。
[0043] 本发明的产品形式并非限于本案实施例, 任何人对其进行类似思路的适当变化 或修饰, 皆应视为不脱离本发明的专利范畴。

Claims

权利要求书
[权利要求 1] 一种弹性复合纤维, 包括纤维本体, 其特征在于, 所述纤维本体由如 下三种物质经复合纺丝而成: 低粘度 PET、 高粘度 PET以及 PTT; 所 述低粘度 PET的重量占三种所述物质的总重量的重量百分比为 10-90% , 所述高粘度 PET的重量占三种所述物质的总重量的重量百 分比为 10-90%, 所述 PTT的重量占三种所述物质的总重量的重量百分 比为 10-80%; 所述低粘度 PET的粘度为 0.42-0.67dL/g, 所述高粘度 PE T的粘度为 0.68-0.83dL/g, 所述 PTT的粘度为 0.73-1.12 dL/g, 所述纤维 本体的卷曲数为 3- 12个 /cm。
[权利要求 2] 如权利要求 1所述的一种弹性复合纤维, 其特征在于: 所述低粘度 PE
T的重量百分比为 25%, 所述低粘度 PET的粘度为 0.42 dL/g, 所述高 粘度 PET的重量百分比为 25%, 所述高粘度 PET的粘度为 0.83 dL/g , 所述 PTT的重量百分比为 50%, 所述 PTT的粘度为 0.92 dL/g。
[权利要求 3] 一种弹性复合纤维的制造方法, 其特征在于, 包括如下步骤:
步骤 A、 将低粘度 PET、 高粘度 PET、 PTT三种物质进行干燥, 且干燥 至含水量低于 15ppm, 所述低粘度 PET的粘度为 0.42-0.67dL/g, 所述 高粘度 PET的粘度为 0.68-0.83dL/g, 所述 PTT的粘度为 0.73-1.12 dL/g 步骤 B、 分别将所述低粘度 PET、 所述高粘度 PET、 所述 PTT投入螺杆 挤出机中进行熔融挤出, 并分别通过计量泵计量送入复合纺丝组件; 所述低粘度 PET的重量占三种所述物质的总重量的重量百分比为 10-9 0% , 所述高粘度 PET的重量占三种所述物质的总重量的重量百分比 为 10-90%, 所述 PTT的的重量占三种所述物质的总重量的重量百分 比为 10-80%; 从所述复合纺丝组件出来的熔体引入喷丝板喷出, 喷 出后经过冷却集束上油得到纤维;
步骤 C, 将所述步骤 B得到的所述纤维进行定型, 该定型采用紧张热 定型或者松式定型; 其中, 所述紧张热定型采用第一牵引辊、 第二牵 引辊、 第三牵引辊以及第四牵引辊进行拉伸定型, 所述第一牵引辊的 速度为 220-280m/min, 所述第一牵引辊的温度为 85-95°C, 所述第二 牵引辊的速度为 222-282m/min 所述第二牵引辊的温度为 110-130°C , 所述第三牵引辊的速度为 225-285m/min, 所述第三牵引辊的温度 为 130-150°C, 所述第四牵引辊的速度为 230-290m/min, 所述第四牵 引辊的温度为 150-180°C; 所述松式定型的温度为 80-120°C, 所述松 式定型的时间为 2-6min。
PCT/CN2018/110754 2018-08-28 2018-10-18 弹性复合纤维 WO2020042297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810987214.0 2018-08-28
CN201810987214.0A CN109137137B (zh) 2018-08-28 2018-08-28 一种弹性复合纤维及其制造方法

Publications (1)

Publication Number Publication Date
WO2020042297A1 true WO2020042297A1 (zh) 2020-03-05

Family

ID=64828555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110754 WO2020042297A1 (zh) 2018-08-28 2018-10-18 弹性复合纤维

Country Status (2)

Country Link
CN (1) CN109137137B (zh)
WO (1) WO2020042297A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110029408B (zh) * 2019-05-21 2020-05-05 上海海凯生物材料有限公司 一种弹性复合纤维及其制造方法
CN110241479A (zh) * 2019-06-12 2019-09-17 佛山新晟泰新材料技术有限公司 一种永久卷曲欧根纱及其制备方法
CN118166448A (zh) * 2024-03-22 2024-06-11 佛山市顺德区东邦化纤有限公司 一种抗菌化学纤维及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239928A (ja) * 1999-02-23 2000-09-05 Nippon Ester Co Ltd ストレッチ性織編用ポリエステル複合繊維
CN1676685A (zh) * 2005-04-15 2005-10-05 绍兴兴虹化纤工业有限公司 三组份自卷曲长丝的生产方法
CN204111956U (zh) * 2014-07-31 2015-01-21 江苏盛虹科技股份有限公司 一种pet复合弹性纤维
CN104711690A (zh) * 2015-02-08 2015-06-17 江苏江南高纤股份有限公司 高弹性中空毛型聚酯长纤维的制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312337C (zh) * 2003-12-21 2007-04-25 浙江恒逸集团有限公司 对苯二甲酸乙二醇酯和对苯二甲酸丙二醇酯共混纺丝及其生产方法
JP2007056382A (ja) * 2005-08-22 2007-03-08 Unitica Fibers Ltd 高比重複合繊維の製造方法
CN102978724B (zh) * 2012-12-21 2015-05-13 东华大学 一种双组份并列复合纤维及其制备方法
CN103225118B (zh) * 2013-03-27 2015-07-15 嘉兴学院 一种并列复合纤维喷丝板、用其制备三维卷曲抗菌纤维的方法及应用
CN103421169B (zh) * 2013-07-12 2015-08-19 中国石油化工股份有限公司 一种用于制造多组分纤维的低分子量聚酯的制备方法
CN105755562A (zh) * 2016-01-29 2016-07-13 太仓荣文合成纤维有限公司 一种非对称双组分弹性复合纤维生产方法
CN105908268B (zh) * 2016-07-05 2018-04-17 雷鸣 一种高抗起毛起球和高耐磨的三组份复合纤维及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239928A (ja) * 1999-02-23 2000-09-05 Nippon Ester Co Ltd ストレッチ性織編用ポリエステル複合繊維
CN1676685A (zh) * 2005-04-15 2005-10-05 绍兴兴虹化纤工业有限公司 三组份自卷曲长丝的生产方法
CN204111956U (zh) * 2014-07-31 2015-01-21 江苏盛虹科技股份有限公司 一种pet复合弹性纤维
CN104711690A (zh) * 2015-02-08 2015-06-17 江苏江南高纤股份有限公司 高弹性中空毛型聚酯长纤维的制造方法

Also Published As

Publication number Publication date
CN109137137A (zh) 2019-01-04
CN109137137B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2020042297A1 (zh) 弹性复合纤维
CN107287682B (zh) 一种含石墨烯的砭石复合纤维及其制备方法和应用
CN102251308B (zh) 一种有色消光涤纶长丝的制备方法
CN102995158B (zh) 生物光素锦纶6纤维及其制备方法
CN109183176B (zh) 一种高弹性高收缩耐磨色丝纤维的制备工艺
CN106367836A (zh) 一种中空生物质石墨烯聚酯纤维的制造方法
WO2016127833A1 (zh) 一种醋腈纤维及其制备方法
CN109706546B (zh) 一种石墨烯海岛纤维及其制造方法
CN1772982A (zh) 锦纶6负离子短纤维及其制造方法
CN103590139A (zh) 一种强力三维卷曲记忆纤维及其制造方法
CN105177751A (zh) 一种有色抗紫外异形细旦涤纶长丝及其制备方法
WO2022048162A1 (zh) 一种石墨烯散热纤维的制备方法
CN105908269A (zh) 一种异形中空保暖涤纶低弹丝的制造方法
CN111041606A (zh) 一种耐久性抗菌纺织纤维及制备方法
CN106350883A (zh) 一种氧化石墨烯/聚丙烯腈复合纤维的制备方法
CN107151843A (zh) 一种远红外负离子锦氨包覆丝的制造方法
CN112760784A (zh) 一种具有冰凉感的锦涤混纺面料的制备工艺
WO2020006693A1 (zh) 一种异形纤维在红外辐射材料及纺织品中的应用
WO2020232876A1 (zh) 一种弹性复合纤维及其制造方法
CN109706545B (zh) 一种微孔中空石墨烯海岛纤维及其制造方法
CN110331465A (zh) 一种皮芯结构的防红外线凉爽改性锦纶长丝的制备方法
CN103628167B (zh) 一种制备生物相容性改善的医用聚丙烯单丝的方法
CN113186622A (zh) 一种负离子抗菌保暖纤维及其制备方法
CN107189223A (zh) 一种聚丙烯熔喷布专用超分散色母粒及其制备方法
CN107663665B (zh) 一种高强低收缩特亮绣花线聚酯牵伸丝的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931625

Country of ref document: EP

Kind code of ref document: A1