WO2020006693A1 - 一种异形纤维在红外辐射材料及纺织品中的应用 - Google Patents

一种异形纤维在红外辐射材料及纺织品中的应用 Download PDF

Info

Publication number
WO2020006693A1
WO2020006693A1 PCT/CN2018/094432 CN2018094432W WO2020006693A1 WO 2020006693 A1 WO2020006693 A1 WO 2020006693A1 CN 2018094432 W CN2018094432 W CN 2018094432W WO 2020006693 A1 WO2020006693 A1 WO 2020006693A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped
infrared
filaments
fiber
cross
Prior art date
Application number
PCT/CN2018/094432
Other languages
English (en)
French (fr)
Inventor
李鹂
严鎽
陶义飞
杨晨啸
Original Assignee
香港纺织及成衣研发中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港纺织及成衣研发中心 filed Critical 香港纺织及成衣研发中心
Priority to EP18925522.7A priority Critical patent/EP3730679A4/en
Priority to US17/046,488 priority patent/US20210130982A1/en
Priority to PCT/CN2018/094432 priority patent/WO2020006693A1/zh
Publication of WO2020006693A1 publication Critical patent/WO2020006693A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/106Radiation shielding agents, e.g. absorbing, reflecting agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/04Pigments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • D01F6/605Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides

Definitions

  • the invention relates to a special-shaped fiber, in particular to the application of a special-shaped fiber in infrared radiation materials and textiles.
  • infrared rays Any object will radiate infrared rays to the outside world.
  • infrared rays can penetrate deep into the subcutaneous tissue to promote the metabolism and growth of the organism, and become an ideal functional fiber medium. It is used in functional textiles such as thermal insulation and health care.
  • the infrared functional fibers prepared under the current technical conditions all have problems such as yellowish fiber color, reduced mechanical strength of the fiber, increased surface roughness of the fiber, leakage of infrared additives, and low industrial production efficiency, which have restricted the promotion of its high-end products and application.
  • the preparation methods of infrared functional fibers mainly focus on the blend spinning method and the coating method.
  • the blend spinning method is the most commonly used method for preparing infrared functional fibers.
  • Chinese Patent Publication No. CN 105220263A published on January 6, 2016, discloses a method for preparing far-infrared polyester fibers.
  • the far-infrared modified attapulgite is a far-infrared additive, which is mixed with refined terephthalic acid, ethylene glycol, and a catalytic assistant to perform an esterification polycondensation reaction to synthesize a far-infrared modified polyester master batch, and then
  • the far-infrared polyester fiber is prepared by using the modified masterbatch as a raw material through a melt spinning method and a post-treatment process.
  • Chinese Patent Publication No. 102926222A published on February 13, 2013, discloses a method for preparing far-infrared textiles by injection.
  • the invention uses a syringe to directly inject far-infrared ceramic micropowder additives into a polyamide melt, and then Preparation of nylon fiber with far-infrared function.
  • Chinese Patent Publication No. CN 102776600B published on December 11, 2013, discloses a method for preparing high-efficiency far-infrared nylon fibers.
  • the invention synthesizes a magnesium-aluminum composite oxide MMO far-infrared additive through co-precipitation and high-temperature calcination. Then, the additive and the polyamide 6 chip are blended and granulated to prepare a far-infrared polyamide 6 masterbatch, and finally the far-infrared nylon fiber is obtained by melt spinning.
  • Chinese Patent Publication No. CN1208507C discloses hollow three-dimensional crimped polyester fibers with far-infrared radiation and a manufacturing method thereof.
  • the invention uses a titanate coupling agent and a surfactant to
  • the infrared ultra-fine material is subjected to a dry surface treatment, and the treated far-infrared additive is blended with a polyester carrier to prepare a far-infrared masterbatch, and then the far-infrared masterbatch is mixed with ordinary polyester chips, and then hollow spinning and then The processing results in far-infrared radiation hollow three-dimensional crimped polyester fibers.
  • Cisokaku No. CN104695227A published on June 10, 2015, discloses a production process of far-infrared cotton fibers.
  • the invention mixes far-infrared ceramic powder with resin binder, crosslinking agent, dispersion, etc.
  • the far-infrared coating mixed liquid is made, and then coated on the surface of the treated fibril to obtain far-infrared cotton fibers.
  • Cikonation No. CN101606808B published on July 18, 2012, discloses a far-infrared thermal quilt.
  • the invention uses a far-infrared ceramic powder, a binder, and an auxiliary agent to prepare natural fibers in a specific proportion.
  • Far-infrared fibers are processed by padding, coating, and spraying.
  • the infrared functional fiber prepared by the coating method has the characteristics of simple process flow and is applicable to various natural fibers and synthetic fibers, it is difficult to be stable for a long time due to the poor washing resistance of the coating method itself. .
  • a main object of the present invention is to provide an application of a special-shaped fiber in an infrared radiation material, wherein the cross-sectional shape of the special-shaped fiber is polygonal, trilobal, quadlobal, cross, double cross, I-shaped, Chevron, C, V, or hollow.
  • a cross-sectional shape of the shaped fiber is a polygon, an I-shape, a chevron-shape, a C-shape, or a V-shape.
  • a cross-sectional shape of the shaped fiber is a polygon.
  • the polygon is a triangle, a quadrangle, a pentagon, or a hexagon.
  • a cross-sectional shape of the shaped fiber is a triangle.
  • the hollow shape is a single hollow shape or a multi-hollow shape.
  • the single hollow shape is a circular hollow shape, a triangular hollow shape, a quadrangular hollow shape, a pentagonal hollow shape, a hexagonal hollow shape, and the shape of the hollow hole is circular or polygonal.
  • the polymer fiber is used as a raw material to produce the special-shaped fiber by spinning.
  • the polymer masterbatch includes polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
  • polyamide 6 polyamide 66, polyamide 56, polyamide 1010, polypropylene, polyacrylonitrile, polyvinyl chloride, polyvinyl formal, and polyurethane.
  • the polymer masterbatch includes one or more of polyamide 56, polyamide 66, and polyamide 6, the profiled fibers are fully drawn filaments, and the cross-sectional shape is triangular.
  • the polymer masterbatch further includes an additive
  • the additive includes an infrared additive and / or a matting agent.
  • the profiled fibers are short fibers, semi-pre-oriented filaments, pre-oriented filaments, high-oriented filaments, fully-oriented filaments, undrawn filaments, drawn filaments, and fully drawn Filaments, conventional textured filaments, stretch textured filaments or air textured filaments.
  • An embodiment of the present invention further provides an application of a profiled fiber in a textile.
  • the textiles include thermal products and health products.
  • the textile is a thermal underwear or a down filling.
  • the shaped fiber according to an embodiment of the present invention can be directly used as a high-performance infrared material, and it can have a stable and durable infrared function without adding an infrared additive.
  • An embodiment of the present invention provides an application of a special-shaped fiber in an infrared material, particularly an infrared radiation material.
  • the shape of the special-shaped fiber may specifically be polygonal, trilobal, quadlobal, cross, double cross, industrial Zigzag, chevron, C, V or hollow.
  • the special-shaped fibers with cross-sections that are polygonal, tri-lobal, quad-lobal, cross-shaped, double-cross-shaped, I-shaped, chevron-shaped, C-shaped, and V-shaped all refer to shaped fibers (not hollow).
  • the polygon may be a triangle, a quadrangle, a pentagon, a hexagon, or the like.
  • the hollow fiber may be single hollow or multiple hollow.
  • the multi-hollow fiber refers to a circular or polygonal outer cross section, but a plurality of circular or polygonal hollow holes.
  • the hollow fiber may be a single hollow shape, such as a circular hollow shape, a triangular hollow shape, a quadrangular hollow shape, a pentagonal hollow shape, or a hexagonal hollow shape.
  • the single hollow fiber is hollow.
  • the shape is round or polygon.
  • the principle of reflection and refraction of light propagating in the medium is used to increase the optical path of infrared rays propagating inside the fiber through the shaped fiber cross section, thereby improving its infrared performance.
  • theoretical simulation calculations combined with Kirchhoff's law of thermal radiation show that fibers with irregular cross-sections have also improved significantly in terms of infrared radiation.
  • the shaped fiber can be directly used as a high-performance infrared material, and it can have a stable and long-lasting infrared function without adding an infrared additive. It can not only maintain the original mechanical properties of the fiber, but also solve the problems of environmental pollution and tedious processes during the use of infrared additives.
  • a polymer masterbatch is used as a raw material, and a shaped fiber having a corresponding cross-section is prepared through a spinneret having a shaped hole.
  • the shape of the orifice of the spinneret matches the shape of the prepared fiber, for example, it can be a trilobal shape, a quadlobal shape, a cross shape, a double cross shape, an I-shape, a chevron shape, or a C shape.
  • the profiled fiber according to an embodiment of the present invention has different degrees of infrared emissivity and surface gloss depending on the shape of the fiber cross section, which can meet the requirements of infrared fiber performance in different application fields.
  • the gloss of the profiled fiber is gloss, semi-matt, or matt, and preferably matt.
  • the specific shapes of the special-shaped fibers are obtained based on the theory of reflection and refraction of light.
  • the spinneret holes of each shape are the same as those in the prior art, such as trilobes, triangles, etc. Made with the same technical principles.
  • the spinning processing method may be melt spinning, dry spinning, wet spinning, or dry-wet spinning, but it is not limited to the above method.
  • the shaped fiber may be a short fiber or a filament; the filament may be, for example, a semi-pre-oriented filament, a pre-oriented filament, a highly-oriented filament, or a full-oriented filament.
  • Filaments, undrawn filaments, drawn filaments, fully drawn filaments, conventional textured filaments, drawn textured filaments, or air textured filaments are preferably fully drawn filaments (FDY).
  • the polymer masterbatch can be polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyamide 6, polyamide 66 , Polyamide 56, polyamide 1010, polypropylene, polyacrylonitrile, polyvinyl chloride, polyvinyl formal, polyurethane, etc., preferably polyamide, such as polyamide 6, polyamide 56, polyamide 66.
  • the polymer masterbatch can be processed into a shaped fiber and then directly used as an infrared special functional material, without the need for an infrared additive.
  • This method is not only simple in process, low in cost, environmentally friendly, and suitable for industrial production, but also overcomes the disadvantages of the relatively complicated process for preparing infrared fibers by the blend spinning method, the poor durability of the coating method, and the leakage of additives; at the same time, it has one step, Low cost, green environmental protection, simple process.
  • the shaped fiber does not have any infrared additives and its infrared function has no obvious aging, and is stable and durable.
  • infrared additives may be added to the polymer masterbatch, and then spinning is performed to make shaped fibers to change the surface gloss of the fibers, and simultaneously double enhance the infrared fiber. Infrared function.
  • the infrared additive may be mullite, cordierite, zirconium carbide, silicon dioxide, magnesium oxide, or the like.
  • the matting agent may be silica, silica, titanium dioxide, or the like.
  • the special-shaped fiber according to an embodiment of the present invention is used as an infrared material, and has the advantages of simple preparation method, low cost, and no green additive and environmental protection, and has excellent infrared function stability and durability, which is suitable for industrial large-scale production.
  • the special-shaped fiber according to an embodiment of the present invention can be used in the field of textiles, such as thermal underwear, down fillings, sports and health care functional textiles.
  • the conventional polyethylene terephthalate master batch is conveyed by a screw to a spinning box with a temperature of 225 ° C, and is melt-extruded through a three-lobed spinneret after melting and metering, at a constant temperature of 5500m / Winding at a winding speed of min, and then drawing and winding the wound yarn at a drawing temperature of 120 ° C and a drawing ratio of 4.5 times to obtain a light trilobal infrared functional polyethylene terephthalate Glycol ester stretched DTY filament;
  • the conventional polyamide 6 master batch is conveyed by a screw to a spinning box with a temperature of 225 ° C, and is melt-extruded through a three-lobed spinneret after melting and metering, and is performed at a winding speed of 5500 m / min under constant temperature conditions. Winding, and then drawing and elasticizing the wound yarn at a drawing temperature of 120 ° C and a drawing ratio of 4.5 times to obtain a stretched and deformed DTY filament of bright trilobal infrared functional polyamide 6;
  • the conventional polypropylene masterbatch is conveyed by a screw to a spinning box with a temperature of 225 ° C. After melting and metering, it is melt extruded through a three-lobed spinneret and rolled at a winding speed of 5500m / min under constant temperature conditions. Winding, and then drawing and elasticizing the wound yarn at a drawing temperature of 120 ° C and a drawing ratio of 4.5 times to obtain a stretched and deformed DTY filament of bright trilobal infrared functional polypropylene;
  • the conventional polyvinyl formal masterbatch is conveyed by a screw to a spinning box with a temperature of 225 ° C, and after melt measurement, it is melt extruded through a three-lobed spinneret, and is wound at a constant temperature of 5500m / min. Winding at a speed, and then drawing the winding yarn at a drawing temperature of 120 ° C. and a drawing ratio of 4.5 times to obtain a stretched deformation DTY of bright trilobal infrared functional polyvinyl formal Filament
  • the conventional polytrimethylene terephthalate master batch is conveyed by a screw to a spinning box with a temperature of 195 ° C, and after melting and metering, it is melt extruded through a cross-shaped spinneret, under a constant temperature condition at a volume of 1500m / min. Winding speed, and then drawing the wound yarn at a draft temperature of 120 ° C and a draw ratio of 1.5 times to obtain a light cross-shaped infrared functional polytrimethylene terephthalate pre-oriented POY filament ;
  • the conventional polybutylene terephthalate master batch is conveyed by a screw to a spinning box with a temperature of 185 ° C, and after melting and metering, it is melt extruded through a double cross-shaped spinneret, and at a constant temperature of 2000 m / After winding at a winding speed of min, and then drawing the wound yarn at a drawing temperature of 110 ° C and a drawing ratio of 2.5 times, a bright double cross-shaped infrared functional polybutylene terephthalate was obtained. Ester semi-pre-oriented MOY filament;
  • the conventional polybutylene terephthalate master batch is conveyed by a screw to a spinning box with a temperature of 185 ° C, and after melt measurement, it is melt extruded through a double cross-shaped spinneret, and under constant temperature conditions at 125 ° C.
  • the drafting temperature is 1.5 times
  • the drafting ratio is 1.5 times
  • the setting temperature is 90 ° C.
  • the tow is drawn and shaped, and then wound at a winding speed of 5000m / min to obtain a bright double cross-shaped infrared functional pair.
  • the conventional polybutylene terephthalate master batch is conveyed by a screw to a spinning box with a temperature of 185 ° C, and after melting and metering, it is melt extruded through a double cross-shaped spinneret and rolled under constant temperature conditions. And post-treatment to obtain undrawn UDY filaments with bright double cross-shaped infrared functional polybutylene terephthalate;
  • the conventional polybutylene terephthalate master batch is conveyed by a screw to a spinning box with a temperature of 185 ° C, and after melting and metering, it is melt extruded through a double cross-shaped spinneret, and at a constant temperature of 90 ° C
  • the tow is drawn and shaped with a drawing temperature of 2.0, a drawing ratio of 2.0 times, and a setting temperature of 100 ° C, and then wound at a winding speed of 3000 m / min to obtain a bright double cross-shaped infrared functional pair.
  • the conventional polybutylene terephthalate master batch is conveyed by a screw to a spinning box with a temperature of 185 ° C, and after melting and metering, it is melt extruded through a double cross-shaped spinneret, at 80 ° C under constant temperature conditions.
  • the drafting temperature, 2.5 times the draft ratio and the setting temperature of 105 ° C are used to draw and shape the tow, and then wind it at a winding speed of 5000m / min to obtain a bright double cross-shaped infrared functional pair.
  • the conventional polyamide 56 masterbatch is conveyed by a screw to a spinning box with a temperature of 270 ° C. After melting and metering, it is melt extruded through a triangular spinneret. Under constant temperature conditions, the drawing temperature is 80 ° C, 1.5 times the The drawing ratio and the setting temperature of 115 ° C are used to draw and shape the tow, and then wind it at a winding speed of 5500m / min to obtain a fully-stretched FDY filament of bright triangular infrared functional polyamide 56;
  • the conventional polyamide 66 masterbatch is conveyed by a screw to a spinning box with a temperature of 260 ° C, and is melted and extruded through a triangular spinneret after being melted and metered.
  • the drawing temperature is 5.5 times.
  • the drawing ratio and the setting temperature of 120 ° C are used to draw and shape the tow, and then wind it at a winding speed of 5000m / min to obtain a fully triangular FDY filament of infrared functional polyamide 66;
  • Table 1 lists the parameters and characterization data of the fibers used in the examples and comparative examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Knitting Of Fabric (AREA)
  • Artificial Filaments (AREA)

Abstract

一种异形纤维在红外辐射材料、纺织品中的应用,其中所述异形纤维的横截面形状为多边形、三叶形、四叶形、十字形、双十字形、工字形、山字形、C形、V形或中空形。所述的异形纤维,可直接用作高性能红外材料,无需加入红外添加剂便可具备稳定且持久的红外功能。

Description

一种异形纤维在红外辐射材料及纺织品中的应用 技术领域
本发明涉及一种异形纤维,具体为一种异形纤维在红外辐射材料及纺织品中的应用。
背景技术
任何物体都会向外界辐射红外线,红外线作为自然界中的良性光线,以其较好的穿透性,可深入皮下组织促进生物体的代谢及生长发育,而成为一种理想的功能纤维媒介体被广泛应用于保暖、保健等功能性纺织品领域。但目前技术条件下制备的红外性功能纤维均存在纤维本色偏黄、纤维机械强度下降、纤维表面粗糙度增加、红外添加剂渗漏及工业生产效率低下等问题,进而制约了其高端产品的推广及应用。
目前,红外功能性纤维的制备方法主要集中在共混纺丝法和涂层法。共混纺丝法是制备红外功能性纤维最常用的方法,例如:中国专利公开号CN 105220263A,公开日期为2016年1月6日,公开了一种远红外聚酯纤维的制备方法,该发明以远红外改性后的凹凸棒土为远红外添加剂,将其与精对苯二甲酸、乙二醇及催化助剂混合后进行酯化缩聚反应以合成远红外改性聚酯母粒,然后再以改性母粒为原料通过熔融纺丝法及后处理工艺制备远红外聚酯纤维。
中国专利公开号CN 102926222A,公开日期为2013年2月13日,公开了一种注射法制备远红外纺织品的方法,该发明采用注射器直接将远红外陶瓷微粉添加剂注入聚酰胺熔体中,进而再制备具有远红外功能的锦纶纤维。
中国专利公开号CN 102776600B,公开日期为2013年12月11日,公开了一种高效远红外锦纶纤维的制备方法,该发明通过共沉淀及高温煅烧法合成了镁铝复合氧化物MMO远红外添加剂,然后将该添加剂与聚酰胺6切片进行共混造粒制备远红外聚酰胺6母粒,最后经熔融纺丝得到远红外锦纶纤维。
中国专利公开号CN 1208507C,公开日期为2005年6月29日,公开了远红外辐射中空三维卷曲聚酯纤维及其制作方法,该发明以钛酸酯类偶联剂和表面活性剂对无机远红外超细材料进行干法表面处理,再将处理后的远红外添加剂与聚酯载体共混制备远红外母粒,然后将该远红外母粒与普通聚酯切片混合后进行中空纺丝及后处理得到远红外辐射中空三维卷曲聚酯纤维。
以上举例采用共混纺丝法制备红外功能性纤维的方法较为繁琐,且存在红外添加剂与成纤聚合物相容性和分散性较差及难以纺丝的困难。采用涂层法制备红外功能性纤维也有较多的报道。例如:中国专利公开号CN 106120012A,公开日期为2016年11月16日,公开了一种自发热聚酯纤维及其制备方法,该发明通过混合远红外陶瓷粉、无机发热粉体、固化交联剂及稀释剂制备纺丝用发热助剂,再将该发热助剂均匀喷涂于聚酯原丝表面以得到自发热聚酯纤维。
中国专利公开号CN104695227A,公开日期为2015年6月10日,公开了一种远红外棉纤维的生产工艺,该发明将远红外陶瓷粉与树脂粘合剂、交联剂、分散液等混合后制成远红外涂层混合液,进而涂覆在处理后的原纤维表面即得到远红外棉纤维。
中国专利公开号CN101606808B,公开日期为2012年7月18日,公开了一种远红外保暖被,该发明以远红外陶瓷粉和粘合剂、助剂按特定比例配制成的整理剂对天然纤维进行浸轧、涂层和喷雾处理,从而加工出远红外纤维。
采用涂层法制备红外功能性纤维虽然具有工艺流程简单且适用于各种天然纤维及合成纤维的特点,但受制于涂层法本身的耐水洗性能差,因而其红外纤维的红外功能难以长期稳定。
发明内容
本发明的一个主要目的在于提供一种异形纤维在红外辐射材料中的应用,其中所述异形纤维的横截面形状为多边形、三叶形、四叶形、十字形、双十字形、工字形、山字形、C形、V形或中空形。
根据本发明一实施方式,所述异形纤维的截面形状为多边形、工字形、山字形、C形或V形。
根据本发明一实施方式,所述异形纤维的截面形状为多边形。
根据本发明一实施方式,所述多边形为三角形、四边形、五边形或六边形。
根据本发明一实施方式,所述异形纤维的截面形状为三角形。
根据本发明一实施方式,所述中空形为单中空形或多中空形。
根据本发明一实施方式,所述单中空形为圆形中空形、三角形中空形、四边形中空形、五边形中空形、六边形中空形,且中空孔洞的形状为圆形或多边形。
根据本发明一实施方式,以聚合物母粒为原料,通过纺丝制得所述异形纤维。
根据本发明一实施方式,所述聚合物母粒包括聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚酰胺6、聚酰胺66、聚酰胺 56、聚酰胺1010、聚丙烯、聚丙烯腈、聚氯乙烯、聚乙烯醇缩甲醛及聚氨酯中的一种或多种。
根据本发明一实施方式,所述聚合物母粒包括聚酰胺56、聚酰胺66及聚酰胺6中的一种或多种,所述异形纤维为全拉伸长丝,截面形状为三角形。
根据本发明一实施方式,所述聚合物母粒还包括添加剂,所述添加剂包括红外添加剂和/或消光剂。
根据本发明一实施方式,所述异形纤维为短纤维、半预取向长丝、预取向长丝、高取向长丝、全取向长丝、未拉伸长丝、拉伸长丝、全拉伸长丝、常规变形长丝、拉伸变形长丝或空气变形长丝。
本发明一实施方式进一步提供了一种异形纤维在纺织品中的应用。
根据本发明一实施方式,所述纺织品包括保暖用品和保健用品。
根据本发明一实施方式,所述纺织品为保暖内衣或羽绒填充物。
本发明一实施方式的异形纤维,可直接用作高性能红外材料,无需加入红外添加剂便可具备稳定且持久的红外功能。
具体实施方式
体现发明特征与优点的典型实施例将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施例上具有各种的变化,其皆不脱离本发明的范围,且其中的描述在本质上是当作说明之用,而非用以限制本发明。
本发明一实施方式提供了一种异形纤维在红外材料,特别是红外辐射材料中的应用,该异形纤维的形状具体可以为多边形、三叶形、四叶形、十字形、双十字形、工字形、山字形、C形、V形或中空形。
本发明中,截面为多边形、三叶形、四叶形、十字形、双十字形、工字形、山字形、C形、V形的异形纤维均指异形截面纤维(非中空)。
于本发明一实施方式中,多边形可以为三角形、四边形、五边形、六边形等。
于本发明一实施方式中,中空形纤维可为单中空形或多中空形。其中,多中空形纤维是指***截面为圆形或多边形,但中空孔洞为多个圆形或多边形。
于本发明一实施方式中,中空形纤维可以为单中空形,例如圆形中空形、三角形中空形、四边形中空形、五边形中空形、六边形中空形,上述单中空形纤维中空孔洞的形状为圆形或多边形。
本发明中,利用光线在介质中传播的反射和折射原理,通过异形的纤维截面来增加红 外线在纤维内部传播的光程,从而改善其红外性能。此外,理论模拟计算结合基尔霍夫热辐射定律表明异形截面的纤维在红外辐射方面也有较明显的提升。
于本发明一实施方式中,异形纤维可直接用作高性能红外材料,无需加入红外添加剂便可具备稳定且持久的红外功能。使得既能保持纤维原本的机械性能,又解决了红外添加剂使用过程中的环境污染及工艺繁琐的问题。
于本发明一实施方式中,以聚合物母粒为原料,通过具有异形孔眼的喷丝板,制得具有相应横截面的异形纤维。
其中,喷丝板孔眼(喷丝孔)的形状与所制得的纤维的形状相匹配,例如可以是三叶形、四叶形、十字形、双十字形、工字形、山字形、C形、V形、三角形、四边形、五边形、六边形、圆形单中空形、圆形多中空形、三角形单中空形、三角形多中空形、四边形中空形等。
本发明一实施方式的异形纤维,视其纤维截面形状的不同具有不同程度的红外发射率及表面光泽度,可满足不同应用领域对红外纤维性能的需求。
于本发明一实施方式中,异形纤维的光泽度为有光、半消光、消光,优选为有光。
于本发明一实施方式中,异形纤维的各具体形状是基于光线的反射和折射理论得到,各形状的喷丝板孔眼或与现有技术相同,例如三叶形、三角形等,或基于与现有技术相同的原理制作而成。
本发明中,对于纺丝工艺的其他参数没有限定,例如,纺丝加工方法可以为熔融纺丝、干法纺丝、湿法纺丝或干湿法纺丝,但不限于上述方法。
本发明中,对于纤维的其他参数没有限定,例如,异形纤维可以是短纤维,也可以是长丝;长丝例如可以是半预取向长丝、预取向长丝、高取向长丝、全取向长丝、未拉伸长丝、拉伸长丝、全拉伸长丝、常规变形长丝、拉伸变形长丝或空气变形长丝,优选为全拉伸长丝(FDY)。
聚合物母粒可以是聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚酰胺6、聚酰胺66、聚酰胺56、聚酰胺1010、聚丙烯、聚丙烯腈、聚氯乙烯、聚乙烯醇缩甲醛、聚氨酯等,优选为聚酰胺,例如聚酰胺6、聚酰胺56、聚酰胺66。
本发明一实施方式的方法,可将聚合物母粒纺丝加工成为异形纤维后,直接用作红外特种功能材料,可无需红外添加剂。该方法不仅工艺简单、成本低廉、绿色环保、适宜工业化生产,且克服了共混纺丝法制备红外纤维相对复杂的工艺流程及涂层法耐久性差、添 加剂渗漏等缺点;同时,具有一步到位、成本低廉、绿色环保、工艺简单的优点。
于本发明一实施方式中,异形纤维无任何红外添加剂且其红外功能无明显时效性,稳定且持久。
于本发明一实施方式中,也可向聚合物母粒中加入红外添加剂、消光剂、稳定剂等,再进行纺丝,制成异形纤维,以改变纤维表面光泽度,同时双重增强红外纤维的红外功能。
于本发明一实施方式中,红外添加剂可以是莫来石、堇青石、碳化锆、二氧化硅、氧化镁等。
于本发明一实施方式中,消光剂可以是白炭黑、二氧化硅、二氧化钛等。
本发明一实施方式的异形纤维,用作红外材料,具有制备方法工艺简单、成本低廉、无红外添加剂绿色环保的优点,且纤维的红外功能稳定性及耐久性优异,适宜工业化大规模生产。
本发明一实施方式的异形纤维,可用于纺织品,例如保暖内衣、羽绒填充物、体育运动及医疗保健等保暖保健功能性纺织品领域。
下面,结合具体实施例对本发明一实施方式的用作红外材料的异形纤维做进一步说明。
实施例1
a.将常规聚对苯二甲酸乙二醇酯母粒通过螺杆输送至温度为225℃的纺丝箱体,熔融计量后经三叶形喷丝孔熔融挤出,在恒温条件下以5500m/min的卷绕速度进行卷绕,然后在120℃的牵伸温度及4.5倍的牵伸倍率下对卷绕丝进行牵伸加弹即得到有光三叶形红外功能性聚对苯二甲酸乙二醇酯的拉伸变形DTY长丝;
b.取上述所得有光三叶形红外功能性聚对苯二甲酸乙二醇酯的拉伸变形DTY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.84,辐照温升为1.4℃。
实施例2
a.将常规聚酰胺6母粒通过螺杆输送至温度为225℃的纺丝箱体,熔融计量后经三叶形喷丝孔熔融挤出,在恒温条件下以5500m/min的卷绕速度进行卷绕,然后在120℃的牵 伸温度及4.5倍的牵伸倍率下对卷绕丝进行牵伸加弹即得到有光三叶形红外功能性聚酰胺6的拉伸变形DTY长丝;
b.取上述所得有光三叶形红外功能性聚酰胺6的拉伸变形DTY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.88,辐照温升为1.6℃。
实施例3
a.将常规聚丙烯母粒通过螺杆输送至温度为225℃的纺丝箱体,熔融计量后经三叶形喷丝孔熔融挤出,在恒温条件下以5500m/min的卷绕速度进行卷绕,然后在120℃的牵伸温度及4.5倍的牵伸倍率下对卷绕丝进行牵伸加弹即得到有光三叶形红外功能性聚丙烯的拉伸变形DTY长丝;
b.取上述所得有光三叶形红外功能性聚丙烯的拉伸变形DTY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.83,辐照温升为1.1℃。
实施例4
a.将常规聚乙烯醇缩甲醛母粒通过螺杆输送至温度为225℃的纺丝箱体,熔融计量后经三叶形喷丝孔熔融挤出,在恒温条件下以5500m/min的卷绕速度进行卷绕,然后在120℃的牵伸温度及4.5倍的牵伸倍率下对卷绕丝进行牵伸加弹即得到有光三叶形红外功能性聚乙烯醇缩甲醛的拉伸变形DTY长丝;
b.取上述所得有光三叶形红外功能性聚乙烯醇缩甲醛的拉伸变形DTY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.82,辐照温升为1.2℃。
实施例5
a.将常规聚对苯二甲酸丙二醇酯母粒通过螺杆输送至温度为195℃的纺丝箱体,熔融计量后经十字形喷丝孔熔融挤出,在恒温条件下以1500m/min的卷绕速度进行卷绕,然后在120℃的牵伸温度及1.5倍的牵伸倍率下对卷绕丝进行牵伸即得到有光十字形红外功能性聚对苯二甲酸丙二醇酯预取向POY长丝;
b.取上述所得有光十字形红外功能性聚对苯二甲酸丙二醇酯预取向POY长丝,以针 织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标(测试标准为GB/T 30127-2013)准进行发射率和辐照温升测试,得其发射率为0.83,辐照温升为1.2℃。
实施例6
a.将常规聚对苯二甲酸丙二醇酯母粒与0.5%质量分数的消光剂混合后通过螺杆输送至温度为195℃的纺丝箱体,熔融计量后经十字形喷丝孔熔融挤出,在恒温条件下以1500m/min的卷绕速度进行卷绕,然后在120℃的牵伸温度及1.5倍的牵伸倍率下对卷绕丝进行牵伸即得到半消光十字形红外功能性聚对苯二甲酸丙二醇酯预取向POY长丝;
b.取上述所得半消光十字形红外功能性聚对苯二甲酸丙二醇酯预取向POY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标(测试标准为GB/T 30127-2013)准进行发射率和辐照温升测试,得其发射率为0.79,辐照温升为1.1℃。
实施例7
a.将常规聚对苯二甲酸丙二醇酯母粒与2%质量分数的消光剂混合后通过螺杆输送至温度为195℃的纺丝箱体,熔融计量后经十字形喷丝孔熔融挤出,在恒温条件下以1500m/min的卷绕速度进行卷绕,然后在120℃的牵伸温度及1.5倍的牵伸倍率下对卷绕丝进行牵伸即得到消光十字形红外功能性聚对苯二甲酸丙二醇酯预取向POY长丝;
b.取上述所得消光十字形红外功能性聚对苯二甲酸丙二醇酯预取向POY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标(测试标准为GB/T 30127-2013)准进行发射率和辐照温升测试,得其发射率为0.72,辐照温升为0.8℃。
实施例8
a.将常规聚对苯二甲酸丁二醇酯母粒通过螺杆输送至温度为185℃的纺丝箱体,熔融计量后经双十字形喷丝孔熔融挤出,在恒温条件下以2000m/min的卷绕速度进行卷绕,然后在110℃的牵伸温度及2.5倍的牵伸倍率下对卷绕丝进行牵伸即得到有光双十字形红外功能性聚对苯二甲酸丁二醇酯半预取向MOY长丝;
b.取上述所得有光双十字形红外功能性聚对苯二甲酸丁二醇酯半预取向MOY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.81,辐照温升为1.2℃。
实施例9
a.将常规聚对苯二甲酸丁二醇酯母粒通过螺杆输送至温度为185℃的纺丝箱体,熔融计量后经双十字形喷丝孔熔融挤出,在恒温条件下以125℃的牵伸温度、1.5倍的牵伸倍率及90℃的定型温度对丝束进行牵伸和定型处理,再经5000m/min的卷绕速度进行卷绕即得到有光双十字形红外功能性聚对苯二甲酸丁二醇酯高取向HOY长丝;
b.取上述所得有光双十字形红外功能性聚对苯二甲酸丁二醇酯高取向HOY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.83,辐照温升为1.1℃。
实施例10
a.将常规聚对苯二甲酸丁二醇酯母粒通过螺杆输送至温度为185℃的纺丝箱体,熔融计量后经双十字形喷丝孔熔融挤出,在恒温条件下进行卷绕及后处理即得到有光双十字形红外功能性聚对苯二甲酸丁二醇酯的未拉伸UDY长丝;
b.取上述所得有光双十字形红外功能性聚对苯二甲酸丁二醇酯的未拉伸UDY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.76,辐照温升为0.8℃。
实施例11
a.将常规聚对苯二甲酸丁二醇酯母粒通过螺杆输送至温度为185℃的纺丝箱体,熔融计量后经双十字形喷丝孔熔融挤出,在恒温条件下以90℃的牵伸温度、2.0倍的牵伸倍率及100℃的定型温度对丝束进行牵伸和定型处理,再经3000m/min的卷绕速度进行卷绕即得到有光双十字形红外功能性聚对苯二甲酸丁二醇酯的拉伸DY长丝;
b.取上述所得有光双十字形红外功能性聚对苯二甲酸丁二醇酯的拉伸DY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.79,辐照温升为0.9℃。
实施例12
a.将常规聚对苯二甲酸丁二醇酯母粒通过螺杆输送至温度为185℃的纺丝箱体,熔融 计量后经双十字形喷丝孔熔融挤出,在恒温条件下以80℃的牵伸温度、2.5倍的牵伸倍率及105℃的定型温度对丝束进行牵伸和定型处理,再经5000m/min的卷绕速度进行卷绕即得到有光双十字形红外功能性聚对苯二甲酸丁二醇酯的全拉伸FDY长丝;
b.取上述所得有光双十字形红外功能性聚对苯二甲酸丁二醇酯的全拉伸FDY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.84,辐照温升为1.2℃。
实施例13
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以三角形喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光三角形红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光三角形红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.90,辐照温升为1.9℃。
实施例14
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以四边形喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光四边形红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光四边形红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.87,辐照温升为1.7℃。
实施例15
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以五边形喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光五边形红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光五边形红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T  30127-2013)进行发射率和辐照温升测试,得其发射率为0.83,辐照温升为1.5℃。
实施例16
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以六边形喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光六边形红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光六边形红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.81,辐照温升为1.4℃。
实施例17
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以山字形喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光山字形红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光山字形红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.78,辐照温升为1.4℃。
实施例18
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以工字形喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光工字形红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光工字形红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.78,辐照温升为1.5℃。
实施例19
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以C字形喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光C字形红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光C字形红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.76,辐照温升为1.2℃。
实施例20
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以V字形喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光V字形红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光V字形红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.74,辐照温升为1.0℃。
实施例21
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以六边形中空(截面为六边形,单中空,孔洞为圆形)喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光六边形中空红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光六边形中空红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.72,辐照温升为0.9℃。
实施例22
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以五边形中空(截面为五边形,单中空,孔洞为圆形)喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光五边形中空红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光五边形中空红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.71,辐照温升为1.0℃。
实施例23
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以四边形中空(截面为四边形,单中空,孔洞为圆形)喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光四边形中空红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光四边形中空红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.64,辐照温升为0.7℃。
实施例24
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以三角形中空(截面为三角形,单中空,孔洞为圆形)喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光三角形中空红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光三角形中空红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.63,辐照温升为0.6℃。
实施例25
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以圆形中空(截面为圆形,单中空,孔洞为圆形)喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光圆形中空红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光圆形中空红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.61,辐照温升为0.6℃。
实施例26
a.将常规聚丙烯腈母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干湿法纺丝技术将其以四叶形喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等 工艺处理后即得到半消光四叶形红外功能性聚丙烯腈的短纤维;
b.取上述所得半消光四叶形红外功能性聚丙烯腈的短纤维进行色法纺纱,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.82,辐照温升为1.1℃。
实施例27
a.将常规聚丙烯腈母粒、红外添加剂二氧化硅及0.5%质量分数的消光剂混合后制成纺丝原液,通过干湿法纺丝技术将其以四叶形喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到增强型半消光四叶形红外功能性聚丙烯腈的短纤维;
b.取上述所得增强型半消光四叶形红外功能性聚丙烯腈的短纤维进行色法纺纱,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.88,辐照温升为1.4℃。
实施例28
a.将常规聚氯乙烯母粒与2%质量分数的消光剂混合后制成纺丝原液,通过湿法纺丝技术将其以三角形中空(截面为三角形,单中空,孔洞为圆形)喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到消光三角形中空红外功能性聚氯乙烯的短纤维;
b.取上述所得消光三角形中空红外功能性聚氯乙烯的短纤维进行色法纺纱,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.70,辐照温升为0.6℃。
实施例29
a.将常规聚氯乙烯母粒、红外添加剂氧化镁及2%质量分数的消光剂混合后制成纺丝原液,通过湿法纺丝技术将其以三角形中空(截面为三角形,单中空,孔洞为圆形)喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到增强型消光三角形中空红外功能性聚氯乙烯的短纤维;
b.取上述所得增强型消光三角形中空红外功能性聚氯乙烯的短纤维进行色法纺纱,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为 GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.74,辐照温升为0.9℃。
实施例30
a.将常规聚酰胺56母粒通过螺杆输送至温度为270℃的纺丝箱体,熔融计量后经三角形喷丝孔熔融挤出,在恒温条件下以80℃的牵伸温度、1.5倍的牵伸倍率及115℃的定型温度对丝束进行牵伸和定型处理,再经5500m/min的卷绕速度进行卷绕即得到有光三角形红外功能性聚酰胺56的全拉伸FDY长丝;
b.取上述所得有光三角形红外功能性聚酰胺56的全拉伸FDY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.93,辐照温升为1.9℃。
实施例31
a.将常规聚酰胺66母粒通过螺杆输送至温度为260℃的纺丝箱体,熔融计量后经三角形喷丝孔熔融挤出,在恒温条件下以110℃的牵伸温度、5.5倍的牵伸倍率及120℃的定型温度对丝束进行牵伸和定型处理,再经5000m/min的卷绕速度进行卷绕即得到有光三角形红外功能性聚酰胺66的全拉伸FDY长丝;
b.取上述所得有光三角形红外功能性聚酰胺66的全拉伸FDY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.94,辐照温升为2.1℃。
实施例32
a.将常规聚酰胺6母粒与红外添加剂碳化锆混合后通过螺杆输送至温度为240℃的纺丝箱体,熔融计量后经三角形喷丝孔熔融挤出,在恒温条件下以100℃的牵伸温度、3.5倍的牵伸倍率及115℃的定型温度对丝束进行牵伸和定型处理,再经4000m/min的卷绕速度进行卷绕即得到增强型有光三角形红外功能性聚酰胺6的全拉伸FDY长丝;
b.取上述所得增强型有光三角形红外功能性聚酰胺6的全拉伸FDY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.97,辐照温升为2.4℃。
对比例
a.将常规聚氨酯母粒与0.5%质量分数的消光剂混合后制成纺丝原液,通过干法纺丝技术将其以圆形喷丝孔挤出形成初生纤维,再经水洗、拉伸、卷曲、干燥及上油等工艺处理后即得到半消光圆形红外功能性聚氨酯的空气变形ATY长丝;
b.取上述所得半消光圆形红外功能性聚氨酯的空气变形ATY长丝,以针织技术制备常规四平结构织物;按照纺织品远红外性能的检测和评价标准(测试标准为GB/T 30127-2013)进行发射率和辐照温升测试,得其发射率为0.55,辐照温升为0.57℃。
表1列出了各实施例及对比例中所使用的纤维的各项参数及表征数据。
表1
Figure PCTCN2018094432-appb-000001
Figure PCTCN2018094432-appb-000002
Figure PCTCN2018094432-appb-000003
除非特别限定,本发明所用术语均为本领域技术人员通常理解的含义。
本发明所描述的实施方式仅出于示例性目的,并非用以限制本发明的保护范围,本领域技术人员可在本发明的范围内作出各种其他替换、改变和改进,因而,本发明不限于上述实施方式,而仅由权利要求限定。

Claims (13)

  1. 一种异形纤维在红外辐射材料中的应用,其中所述异形纤维的截面形状为多边形、三叶形、四叶形、十字形、双十字形、工字形、山字形、C形、V形或中空形。
  2. 根据权利要求1所述的应用,其中所述异形纤维的截面形状为多边形、工字形、山字形、C形或V形。
  3. 根据权利要求1所述的应用,其中所述异形纤维的截面形状为多边形。
  4. 根据权利要求1至3中任一项所述的应用,其中所述多边形为三角形、四边形、五边形或六边形。
  5. 根据权利要求4所述的应用,其中所述异形纤维的截面形状为三角形。
  6. 根据权利要求1所述的应用,其中所述中空形为单中空形或多中空形。
  7. 根据权利要求6所述的应用,其中所述单中空形为圆形中空形、三角形中空形、四边形中空形、五边形中空形、六边形中空形,且中空孔洞的形状为圆形或多边形。
  8. 根据权利要求1所述的应用,其中以聚合物母粒为原料,通过纺丝制得所述异形纤维。
  9. 根据权利要求8所述的应用,其中所述聚合物母粒包括聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚酰胺6、聚酰胺66、聚酰胺56、聚酰胺1010、聚丙烯、聚丙烯腈、聚氯乙烯、聚乙烯醇缩甲醛及聚氨酯中的一种或多种。
  10. 根据权利要求8所述的应用,其中所述聚合物母粒包括聚酰胺56、聚酰胺66及聚酰胺6中的一种或多种,所述异形纤维为全拉伸长丝,截面形状为三角形。
  11. 根据权利要求8所述的应用,其中所述聚合物母粒还包括添加剂,所述添加剂包括红外添加剂和/或消光剂。
  12. 根据权利要求1所述的应用,其中所述异形纤维为短纤维、半预取向长丝、预取向长丝、高取向长丝、全取向长丝、未拉伸长丝、拉伸长丝、全拉伸长丝、常规变形长丝、拉伸变形长丝或空气变形长丝。
  13. 一种权利要求1至12中任一项所述的异形纤维在纺织品中的应用。
PCT/CN2018/094432 2018-07-04 2018-07-04 一种异形纤维在红外辐射材料及纺织品中的应用 WO2020006693A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18925522.7A EP3730679A4 (en) 2018-07-04 2018-07-04 USE OF PROFILED FIBERS IN INFRARED RADIATION MATERIAL AND TEXTILE
US17/046,488 US20210130982A1 (en) 2018-07-04 2018-07-04 Application of profiled fiber in infrared radiation material and textiile
PCT/CN2018/094432 WO2020006693A1 (zh) 2018-07-04 2018-07-04 一种异形纤维在红外辐射材料及纺织品中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/094432 WO2020006693A1 (zh) 2018-07-04 2018-07-04 一种异形纤维在红外辐射材料及纺织品中的应用

Publications (1)

Publication Number Publication Date
WO2020006693A1 true WO2020006693A1 (zh) 2020-01-09

Family

ID=69060528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094432 WO2020006693A1 (zh) 2018-07-04 2018-07-04 一种异形纤维在红外辐射材料及纺织品中的应用

Country Status (3)

Country Link
US (1) US20210130982A1 (zh)
EP (1) EP3730679A4 (zh)
WO (1) WO2020006693A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111155332A (zh) * 2020-01-20 2020-05-15 西安工程大学 一种辐射冷却被动降温织物及其制备方法
CN114250527A (zh) * 2020-09-22 2022-03-29 上海凯赛生物技术股份有限公司 一种聚酰胺5x全牵伸丝及其制备方法与应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622294A (zh) * 2022-03-29 2022-06-14 苏州世祥生物纤维有限公司 一种功能性原液着色母粒及其制备方法和应用
KR102677993B1 (ko) * 2022-12-21 2024-06-26 주식회사 드림워커 항균 기능성 원사 및 이를 포함하는 탄소섬유 직조원단

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308148A (zh) * 2000-03-01 2001-08-15 仪征化纤股份有限公司 远红外辐射中空三维卷曲聚酯纤维及其制作方法
CN101606808A (zh) 2009-07-16 2009-12-23 上海水星家用纺织品有限公司 一种远红外保暖被
CN102776600A (zh) 2012-07-10 2012-11-14 东华大学 一种高效远红外锦纶纤维的制备方法
CN102926222A (zh) 2012-11-22 2013-02-13 吴江江旭纺织有限公司 一种注射法制备远红外纺织品的方法
CN203474972U (zh) * 2013-09-05 2014-03-12 福建佳亿化纤有限公司 一种高效远红外异型锦纶长丝
CN104695227A (zh) 2015-02-11 2015-06-10 浙江益南纤维科技有限公司 一种远红外棉纤维的生产工艺
CN105164323A (zh) * 2013-03-15 2015-12-16 克洛佩塑料产品公司 提供改进的红外发射率的聚合材料
CN105220263A (zh) 2015-09-01 2016-01-06 浙江恒逸高新材料有限公司 一种远红外聚酯纤维的制备方法
CN106120012A (zh) 2016-06-30 2016-11-16 武汉纺织大学 一种自发热聚酯纤维及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020059021A (ko) * 2000-12-30 2002-07-12 조 정 래 나이론 6 3각 단면사의 제조방법
JP2002309463A (ja) * 2001-04-16 2002-10-23 Toray Ind Inc ポリアミド中空繊維からなる布帛
ZA200900187B (en) * 2006-06-09 2010-03-31 Sachtleben Chemie Gmbh Pigment and polymeric materials matted therewith
CN101182651A (zh) * 2007-12-20 2008-05-21 荣盛石化股份有限公司 一种功能性异形聚酯长丝及制造方法
KR101354261B1 (ko) * 2012-11-01 2014-02-05 (주) 나노비젼텍 복합기능성 폴리에스터 섬유의 제조방법 및 그에 의해서 제조된 복합기능성 폴리에스터 섬유
TWI530554B (zh) * 2014-05-30 2016-04-21 吸光蓄熱母粒、其製品及其製品的製法
JP2016056464A (ja) * 2014-09-08 2016-04-21 日本エステル株式会社 機能性繊維
DK3448342T3 (da) * 2016-04-29 2023-01-16 Beaulieu Int Group Nv Bikomponente trelappede stapelfibre eller kortskårne fibre og anvendelser deraf
TWI650451B (zh) * 2016-07-27 2019-02-11 新光合成纖維股份有限公司 仿羽絨纖維、用於製造該纖維之噴絲板及方法
CN206219727U (zh) * 2016-11-28 2017-06-06 湖州隆之源纺织科技有限公司 一种表面具有凹陷的纤维
JP6464245B1 (ja) * 2017-09-20 2019-02-06 ▲緑▼能奈米科技有限公司 遠赤外線繊維の男性性機能を増強するための下着

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308148A (zh) * 2000-03-01 2001-08-15 仪征化纤股份有限公司 远红外辐射中空三维卷曲聚酯纤维及其制作方法
CN1208507C (zh) 2000-03-01 2005-06-29 仪征化纤股份有限公司 远红外辐射中空三维卷曲聚酯纤维及其制作方法
CN101606808A (zh) 2009-07-16 2009-12-23 上海水星家用纺织品有限公司 一种远红外保暖被
CN102776600A (zh) 2012-07-10 2012-11-14 东华大学 一种高效远红外锦纶纤维的制备方法
CN102926222A (zh) 2012-11-22 2013-02-13 吴江江旭纺织有限公司 一种注射法制备远红外纺织品的方法
CN105164323A (zh) * 2013-03-15 2015-12-16 克洛佩塑料产品公司 提供改进的红外发射率的聚合材料
CN203474972U (zh) * 2013-09-05 2014-03-12 福建佳亿化纤有限公司 一种高效远红外异型锦纶长丝
CN104695227A (zh) 2015-02-11 2015-06-10 浙江益南纤维科技有限公司 一种远红外棉纤维的生产工艺
CN105220263A (zh) 2015-09-01 2016-01-06 浙江恒逸高新材料有限公司 一种远红外聚酯纤维的制备方法
CN106120012A (zh) 2016-06-30 2016-11-16 武汉纺织大学 一种自发热聚酯纤维及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3730679A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111155332A (zh) * 2020-01-20 2020-05-15 西安工程大学 一种辐射冷却被动降温织物及其制备方法
CN114250527A (zh) * 2020-09-22 2022-03-29 上海凯赛生物技术股份有限公司 一种聚酰胺5x全牵伸丝及其制备方法与应用
CN114250527B (zh) * 2020-09-22 2024-04-05 上海凯赛生物技术股份有限公司 一种聚酰胺5x全牵伸丝及其制备方法与应用

Also Published As

Publication number Publication date
EP3730679A4 (en) 2021-08-18
EP3730679A1 (en) 2020-10-28
US20210130982A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
JP7032826B2 (ja) 植物性ポリエステルフィラメント糸及びその製造方法
WO2020006693A1 (zh) 一种异形纤维在红外辐射材料及纺织品中的应用
JP6068664B2 (ja) 複合機能性ポリエステル繊維の製造方法及びそれによって製造された複合機能性ポリエステル繊維
US4420534A (en) Conductive composite filaments and methods for producing said composite filaments
WO2017071201A1 (zh) 一种功能性尼龙66面料及其制备方法
JP2018504531A (ja) 蓄熱保温性フリース及びその製造方法
CN104532388A (zh) 一种有色异型尺寸稳定型涤纶单丝及其制备方法
KR101232405B1 (ko) 기능성 폴리에스터 섬유의 제조방법 및 그에 의해서 제조된 폴리에스터 섬유
CN101463505A (zh) 负离子聚丙烯中空空气变形纤维及其制备方法和应用
JP5735844B2 (ja) 染色性に優れたカチオン可染ポリエステル繊維および繊維集合体
CN111134379B (zh) 一种内衣用无胶棉的制备方法
JP5718045B2 (ja) 染色性に優れたポリエステル繊維および繊維集合体
WO2020151116A1 (zh) 一种抗紫外锦纶超细纤长丝的生产方法及其生产设备
CN204198908U (zh) 一种大有光聚酯纤维及其纺丝所用的喷丝板
KR20120077264A (ko) 복합기능성 나일론 섬유의 제조방법 및 그에 의한 복합기능성 나일론 섬유
JP5718100B2 (ja) 常圧可染ポリエステル繊維
TWI454601B (zh) A dyed-core type composite fiber, a method for producing the same, and a garment made using the same
WO2021135079A1 (zh) 一种可降解聚酯纤维及其制备方法
KR101744256B1 (ko) 용출형 복합중공섬유 및 복합중공사
KR20140089155A (ko) 형태안정성이 우수한 타이어코드용 폴리에스테르 원사의 제조방법
CN110685026A (zh) 一种异形纤维在红外辐射材料及纺织品中的应用
WO2022148357A1 (zh) 一种由混合聚酯制成的化学纤维材料
KR101939942B1 (ko) 광발열 특성 및 염색견뢰도가 우수한 폴리에틸렌테레프탈레이트 심초형 필라멘트사
KR102475063B1 (ko) 폴리페닐렌 설파이드 해도 가연사 및 그의 제조방법
CN101824665A (zh) 多功能远红外ptt扁平长丝的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018925522

Country of ref document: EP

Effective date: 20200721

NENP Non-entry into the national phase

Ref country code: DE