WO2020039658A1 - Superelastic seamless tube manufacturing method - Google Patents

Superelastic seamless tube manufacturing method Download PDF

Info

Publication number
WO2020039658A1
WO2020039658A1 PCT/JP2019/017898 JP2019017898W WO2020039658A1 WO 2020039658 A1 WO2020039658 A1 WO 2020039658A1 JP 2019017898 W JP2019017898 W JP 2019017898W WO 2020039658 A1 WO2020039658 A1 WO 2020039658A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
superelastic
clad
seamless
diameter
Prior art date
Application number
PCT/JP2019/017898
Other languages
French (fr)
Japanese (ja)
Inventor
清則 武澤
清 山内
将弘 山本
誠一 高村
Original Assignee
株式会社ジャロック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019080668A external-priority patent/JP6842125B2/en
Application filed by 株式会社ジャロック filed Critical 株式会社ジャロック
Publication of WO2020039658A1 publication Critical patent/WO2020039658A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • B21C1/24Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles by means of mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C45/00Separating mandrels from work or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D3/00Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Definitions

  • the present invention relates to a method for manufacturing a seamless tube made of a superelastic alloy material such as a Ti—Ni alloy.
  • shape memory alloys such as Ti—Ni alloys exhibit remarkable shape memory accompanying martensitic transformation and reverse transformation to a parent phase. It is also known that superelasticity is exhibited with the stress-induced martensitic transformation caused by strong deformation after the reverse transformation. The onset of these properties begins at the martensitic transformation onset (As) temperature and is completed at the reverse transformation end (Af) temperature. Superelasticity exhibited by shape memory alloys is a unique property not found in other metals, and its application and practical application are being promoted not only in medicine but also in a wide range of fields such as home appliances, automobiles, clothing, and construction.
  • a metal seamless tube is manufactured by performing a drilling process using a gun drill on a metal bar.
  • a small-diameter tube having a large aspect ratio is manufactured by inserting a mandrel into a drilled material and performing rolling or elongation (drawing).
  • the tube is often pulled out of the mandrel for each processing pass and heat treated. For this reason, processing by such a discontinuous process is inefficient and costly, and the diameter and length of a tube that can be manufactured are limited.
  • a means for manufacturing a metal tube having a uniform cross-sectional shape after the above-described drilled tube material is used as a clad material for insertion of a metal core material, a wire is drawn to form a clad tube, and the clad tube is formed. It is also known to remove a core material from a tube to form a tube. However, in such a manufacturing process, removal of the core material in the final process remains a serious problem. The tube material and the core material of the drawn clad tube are tightly adhered, and the smaller the clad tube diameter and the longer the length, the greater the frictional resistance when removing the core material becomes. It becomes difficult to pull out and remove the core material.
  • a method of removing the core material a method of selectively dissolving only the core material at a temperature lower than the melting point of the tube material or a method of expanding and reducing the diameter by performing heat treatment at a temperature higher than the recrystallization temperature of the core material.
  • a method of facilitating the extraction of a material has been proposed.
  • Patent Document 1 describes a technique for processing a metal seamless tube into a small diameter using a shape memory alloy such as a Ti—Ni alloy as a core material. More specifically, the tube material is formed by using a core material having the same extensibility as the tube material to form the clad material, and the clad material is subjected to elongation processing to form a clad tube. Thereafter, the core material of the clad tube is stretched to reduce the diameter, and the reduced core material is pulled out to produce a metal seamless tube. Furthermore, it is described that by subjecting the clad tube to a heat treatment at about 700 ° C., the core material can be easily stretched. However, in this case, the obtained tube is limited to the one after the heat treatment.
  • a shape memory alloy such as a Ti—Ni alloy
  • a high-temperature heat treatment for the clad material is unavoidable in order to stretch the core material after the wire drawing process, and heat effects such as a decrease in rigidity of not only the core material but also the tube material are caused. Will occur.
  • the tube is used as a material for a medical stent, and has a straight size of about 1 mm with an outer diameter of about 2 mm and a thickness of about 0.2 mm.
  • Stents using a Ti—Ni alloy are roughly classified into a cage net type using a wire and a laser processing type using a tube, but most of the latter laser processing types except for a part of peripheral cerebral cerebral arteries and the like. Type is used.
  • the tube is required to have straightness and a suitable length (about 1 m) for facilitating continuous processing. There is no situation.
  • an object of the present invention is to provide a manufacturing method capable of manufacturing a super-elastic seamless tube having a reduced diameter without reducing rigidity.
  • the method for manufacturing a superelastic seamless tube according to the present invention is characterized in that a cladding material in which a core material made of a metal material is inserted inside a cylindrical tube material made of a superelastic alloy material is axially stretched to form a distraction.
  • removing step there is provided a straightening step of heating and straightening the superelastic seamless tube.
  • a clad tube is formed by drawing the clad material.
  • the superelastic alloy material used for the tube material is a Ti—Ni alloy material
  • the core material has a higher elongation in a tensile test (based on JIS Z2241) than the Ti—Ni alloy material used for the tube material. Made of large metal material.
  • B Ni: 48.5 to 52.5 at%.
  • Fe, Co, Mg, Cr, Va, Zr, Nb, Mo, Hf, Ta, and Tn are contained in a total amount of 0.1 to 2 at%, and the remainder is Ti and unavoidable impurities.
  • C Ni containing 48.5 to 52.5 at%, and further containing at least one of Cu, Ag, and Au in a total amount of 0.1 to 20 at%.
  • a superelastic seamless tube made of any of the following superelastic alloy materials (a) to (c).
  • B Ni: 48.5 to 52.5 at%.
  • one or more of Fe, Co, Mg, Cr, Va, Zr, Nb, Mo, Hf, Ta, and Tn contains 0.1 to 2 at% in total, and the balance is Ti and unavoidable impurities.
  • the present invention by providing the above configuration, forging a clad tube obtained by elongating a clad material in which a core material is inserted inside the tube material and forging a gap between the tube material and the core material.
  • the super-elastic seamless tube having increased rigidity can be manufactured by performing diameter reduction processing to form and reducing the diameter of the deformed core material.
  • the method for manufacturing a superelastic seamless tube according to the present invention is characterized in that a cladding material in which a core material made of a metal material is inserted inside a cylindrical tube material made of a superelastic alloy material is axially stretched to form a distraction.
  • the tube material is formed by cutting a cylindrical body made of a superelastic alloy material along a central axis by using a drilling tool such as a gun drill to form a cylindrical body, and rolling the obtained cylindrical body by a known roll rolling process (eg, cold rolling). To a predetermined outer diameter and wall thickness by three-roll rolling).
  • a material having an Af temperature at which superelasticity is exhibited at a low temperature is preferably room temperature or less.
  • a Ti—Ni-based alloy material is preferable, and when the cold work rate is 60% or more, Ni having a component composition of 50 to 51 at% with excellent workability is preferable.
  • the target materials include those having the following compositions. (A) Ni: 48.5 to 52.5 at%, the balance being a Ti—Ni alloy material having a component composition of Ti and unavoidable impurities. (B) Ni: 48.5 to 52.5 at%.
  • Fe, Co, Mg, Cr, Va, Zr, Nb, Mo, Hf, Ta, and Tn are contained in a total amount of 0.1 to 2 at%, and the remainder is Ti and unavoidable impurities.
  • C Ni containing 48.5 to 52.5 at%, and further containing 0.1 to 20 at% of at least one of Cu, Ag, and Au.
  • Ti-Ni alloy material having a component composition consisting of Ti and inevitable impurities
  • alloy materials Other than Ti—Ni-based alloy materials, known alloy materials exhibiting similar superelastic properties can be used. Such alloy materials include Cu-Al-Ni alloy materials, Cu-Al-Mn alloy materials, and Fe-Mn-Si alloy materials.
  • the core material is obtained by forming a metal material into a cylindrical body having the same outer diameter as the inner diameter of the tube material by cutting.
  • a material that does not have a temperature dependence of the shape is preferable.
  • a steel material such as low carbon steel or manganese steel, or a metal material having excellent ductility such as a Cu alloy material such as brass Is mentioned.
  • the metal material has a larger elongation in a tensile test (based on JIS Z2241) than the superelastic alloy material used for the tube material.
  • a Ti—Ni-based alloy material similar to the tube material is used, an alloy material in which plastic strain (working strain) easily occurs, that is, a composition in which the alloy transformation temperature is higher than that of the tube material is preferable.
  • FIG. 1 is a sectional view orthogonal to the axial direction of the clad material (FIG. 1A) and a sectional view along the axial direction (FIG. 1B).
  • the clad material is configured to cover the outer peripheral surface of the cylindrical core material 2 with the cylindrical tube material 1.
  • a known die drawing / wire drawing process can be used, and it is preferable to repeatedly execute the process as necessary until a predetermined outer diameter is formed.
  • a clad tube having a reduced diameter is obtained.
  • FIG. 2 is an external view of the formed clad tube.
  • the tube portion 1 is in close contact with the periphery of the core portion 2. When the tube portion 1 is stretched and stretched, the tube portion is further stretched and the core portion is depressed at the end.
  • FIG. 3 is an explanatory view related to the diameter reduction processing, and is an explanatory view (FIG. 3 (a)) viewed from a direction orthogonal to the axial direction of the clad tube and an explanatory view (FIG. 3 (b)) viewed from the axial direction. is there.
  • a pair of dies are simultaneously beaten over the entire circumference of the clad tube while rotating around the clad tube to reduce the diameter.
  • the pair of dies has a substantially semi-circular hitting surface, and the processing diameter of the circular processing surface formed at the time of hitting is set substantially equal to the outer diameter of the finished shape of the super elastic seamless tube. I have. For this reason, the tube portion and the core portion of the clad tube are deformed in a direction in which the tube portion slightly contracts toward the central axis. However, the tube portion has superelasticity, so that it returns to its original shape.
  • the core portion extends in the axial direction because it undergoes plastic deformation in the reduced diameter state, but the tube portion expands from the reduced diameter state and returns to its original shape, so there is a gap between the core and the core portion. Will occur.
  • the effect of such diameter reduction is one of the factors that facilitate the core material being pulled out.
  • the diameter reduction processing is performed by simultaneously striking the entire circumference of the clad tube, but is not limited to such a processing method as long as the core part can be reduced in diameter. Other processing methods can be used. For example, a plurality of hit points may be set around the clad tube, and the diameter may be reduced by sequentially hitting at high speed.
  • FIG. 4 is an explanatory view of a clad tube subjected to diameter reduction processing.
  • the clad tube is in a state where the core portion 2 is reduced in diameter by the diameter reduction processing and projects so as to protrude from both ends of the tube portion 1. Since such diameter reduction processing can be performed at room temperature, it becomes possible to perform processing without thermally affecting the tube portion of the clad tube.
  • FIG. 5 is an explanatory diagram relating to a core portion removing step. Since the core portion 2 is exposed at both ends of the clad tube subjected to the diameter reduction process (FIG. 5A), the exposed portion can be grasped and the core portion 2 can be easily pulled out (FIG. 5A). FIG. 5 (b)). In this case, since the diameter of the core portion 2 is reduced, a slight gap is formed between the core portion 2 and the tube portion 1, and the core portion 2 can be pulled out at a time without remaining. Then, a superelastic seamless tube having a predetermined outer diameter and a predetermined thickness can be obtained (FIG. 5C).
  • the obtained superelastic seamless tube may be subjected to a straightening treatment as required.
  • a straightening treatment for example, tension annealing in which a tensile force is applied along the axial direction while being heated to 300 ° C. to 500 ° C. can be used.
  • FIG. 6 is a cross-sectional view orthogonal to the axial direction of the superelastic seamless tube (FIG. 6A) and a cross-sectional view along the axial direction (FIG. 6B).
  • FIG. 7 is a graph showing the yield stress hysteresis characteristic of Example 13 described later.
  • FIG. 7 shows the respective transitions when the elongation strain is 4% and 6%.
  • the graph shows a flat region where the stress hardly changes with respect to the change in elongation strain when yielding in the tensile test, and the stress in this region is the yield stress ⁇ y.
  • the recovery stress ⁇ r there is a flat region where the stress hardly changes with respect to the change in elongation strain when the tensile force is released after yielding, and the stress in this region is the recovery stress ⁇ r.
  • the recovery stress ⁇ r large.
  • the recovery stress upon release may be set to 200 MPa or more.
  • ⁇ About cladding material> Regarding the tube material, a round bar made of a Ti—Ni alloy was prepared, and firstly, a wire electric discharge machine (manufactured by Mitsubishi Electric Corporation) was cut out along the central axis to an outer diameter of 15 mm and an inner diameter of 11 mm to a length of 200 mm. . Next, the processed cylindrical material was roll-rolled by a cold three-roll rolling mill to obtain a tube material (1 m) having an outer diameter of 8 mm and a wall thickness of 0.5 mm.
  • the core material As for the core material, a core material having an outer diameter of 7 mm and a length of 1 mm was prepared, and the core material was inserted inside the tube material to obtain a clad material.
  • ⁇ About distraction processing> With respect to the obtained clad material, a process of performing a die drawing process using a wire drawing machine and then performing an annealing process was repeated, and the process was performed at a final cold working rate of 60% or more.
  • the obtained clad tube was formed into a tube shape having a tube portion having an outer diameter of 2 mm and having a uniform thickness and a shape close to a finished shape.
  • ⁇ About diameter reduction> A pair of dies as shown in FIG. 3 were attached to a swaging machine (manufactured by Jaroc Co., Ltd.), and the diameter of the clad tube was reduced by hitting the entire circumference of the clad tube with a processing diameter of 2 mm. As a result of the diameter reduction processing, the core portion was reduced in diameter and exposed so as to protrude from both ends of the clad tube, and a gap was formed between the tube portion and the core portion. The exposed core portion was grasped and pulled out of the clad tube to obtain a super-elastic seamless tube having an outer diameter of 2.0 mm and a uniform thickness of 1 m in length.
  • the obtained superelastic seamless tube was straightened by tension annealing while being heated at 300 ° C. to 500 ° C. for 5 minutes to form a long superelastic seamless tube having a small bending.
  • ⁇ Comparative Example> As comparative examples, purchased market materials and conventional construction materials were used. The conventional construction material was subjected to the following processing in which cold working distortion could be introduced. A tube material having an outer diameter of 7 mm was formed by the above-described roll rolling using Ti-51Ni as a Ti-Ni alloy, and then a clad material was obtained by performing clad incorporation using a straight carbide mandrel as a core material. The clad material is formed into a tube having an outer diameter of 2.8 mm and a wall thickness of 0.23 mm by repeating core removal and annealing (700 ° C.) at a surface reduction rate of about 10%. After annealing at 700 ° C., no annealing is performed. Was formed into an outer diameter of 2 mm and a wall thickness of 0.22 mm (cold working rate of 30%) by straightening.
  • Comparative Examples 1 to 4 clad tubes were produced in which only elongation was performed and diameter reduction was not performed. In any of the comparative examples, the core material could not be pulled out, and a superelastic seamless tube could not be produced. In Comparative Example 3, heat treatment at 400 ° C. was performed after elongation, but the core material could not be pulled out. Therefore, as described in Patent Literature 1, in order to extend the core material, it is considered that a contrivance such as performing a considerably high-temperature heat treatment on the clad tube is required. In Comparative Examples 5 and 6, the Ti-51Ni tube had a cold working rate of 30%, and the straightening treatment at 350 ° C. in Comparative Example 5 did not provide sufficient straightness. In the straightening process, straightness can be obtained, but the rigidity does not reach 600 MPa. Comparative Example 7 was a straight tube purchased on the market, and sufficient rigidity was not obtained.
  • Example 1 diameter reduction was performed after elongation, and in each case, the core material could be easily pulled out, and good core material removability was confirmed.
  • the finished shape (outer diameter, inner diameter and cold working rate) can be set with high precision by distraction processing. In diameter reduction processing, cracking or chipping of the tube part does not occur. No change in shape was observed in appearance.
  • Example 2 to 7 the core material was pulled out after the elongation and the diameter reduction, and a superelastic seamless tube was produced.
  • the produced superelastic seamless tube was straightened while being heated to 300 to 500 ° C. Was done.
  • the yield stress at 4% elongation strain was measured for the superelastic seamless tube after the straightening treatment. Each of them showed a yield stress of 600 MPa or more, and it was confirmed that a highly rigid superelastic seamless tube was obtained.
  • ⁇ About cladding material> By processing in the same manner as in Processing Example 1, a tube material (1 m) having an outer diameter of 8 mm and a wall thickness of 0.5 mm was obtained. The same core material as in Working Example 1 was prepared, and the clad material was obtained by inserting the core material inside the tube material.
  • the obtained clad material is processed so as to have a final cold working rate of 60% or more in the same process as in Working Example 1, and the tube portion has an outer diameter of 2 mm and is close to a finished shape elongated to a uniform thickness.
  • a shaped clad tube was obtained.
  • Processing was performed in the same manner as in Processing Example 1 to obtain a super-elastic seamless tube having an outer diameter of 2.0 mm and a length of 1 m and a uniform thickness.
  • the obtained superelastic seamless tube was straightened by tension annealing while being heated at 300 ° C. to 500 ° C. for 5 minutes to form a long superelastic seamless tube having a small bending.
  • a clad material using a superelastic material as a tube material is uniformly stretched by elongation to produce a clad tube, and the produced clad tube is easily pulled out and removed by a diameter reducing process. It is possible to stably manufacture a super-elastic seamless tube having a high rigidity and a small diameter.
  • the present invention can be applied to the manufacture of metal tubes of a wide range of sizes, and is particularly useful for the manufacture of thin and thin metal tubes.
  • a metal tube having an inner diameter of 0.1 mm to 5 mm and a wall thickness of 0.01 mm to 1 mm can be used.
  • the core part is made of a metal material that is more easily plastically deformed than the tube part, and the shape of the tube is set by distraction processing, and the core material is reduced in diameter by diameter reduction processing It can be easily pulled out and removed.
  • the length of the tube can be set arbitrarily, and it is possible to cope with a tube having a size of several meters and a size of 10 m or more, depending on the upper limit of the device for extending the core material.
  • the superelastic seamless tube according to the present invention can be used in a living environment temperature range (0 ° C. to 40 ° C.), and is suitable as a material for a stent for catheter treatment in the medical field.

Abstract

The purpose of the present invention is to provide a manufacturing method for allowing manufacturing of a superelastic seamless tube having a small diameter without decreasing rigidity. This superelastic seamless tube manufacturing method is for obtaining a superelastic seamless tube by: forming a clad tube having a predetermined outer diameter by extending, in the axial direction, a clad material obtained by inserting a core member 2 formed from a metal material into a cylindrical tube member 1 formed from a superelastic alloy material; forging the clad tube to deform and reduce the diameter of the core member 2 such that a gap is formed between the tube member 1 and the core member 2; and pulling the core member 2 having the reduced diameter out of the clad tube.

Description

超弾性シームレスチューブの製造方法Method of manufacturing super-elastic seamless tube
 本発明は、Ti-Ni合金等の超弾性合金材料からなるシームレスチューブの製造方法に関する。 The present invention relates to a method for manufacturing a seamless tube made of a superelastic alloy material such as a Ti—Ni alloy.
 Ti-Ni合金をはじめとした形状記憶合金は、マルテンサイト変態と母相への逆変態に付随して顕著な形状記憶を示すことが知られている。また、逆変態後の強変形によって引き起こされる応力誘起マルテンサイト変態に伴い、超弾性を示すことも知られている。これらの特性の発現は、マルテンサイト変態開始(As)温度に始まり、逆変態終了(Af)温度で完了する。形状記憶合金が示す超弾性は、他の金属では見られない特異な特性であり、その応用・実用化は、医療のみならず家電、自動車、衣料、建築といった幅広い分野で進められている。 形状 It is known that shape memory alloys such as Ti—Ni alloys exhibit remarkable shape memory accompanying martensitic transformation and reverse transformation to a parent phase. It is also known that superelasticity is exhibited with the stress-induced martensitic transformation caused by strong deformation after the reverse transformation. The onset of these properties begins at the martensitic transformation onset (As) temperature and is completed at the reverse transformation end (Af) temperature. Superelasticity exhibited by shape memory alloys is a unique property not found in other metals, and its application and practical application are being promoted not only in medicine but also in a wide range of fields such as home appliances, automobiles, clothing, and construction.
 また、Ti-Ni合金関連技術については、工業規格(JIS)として多くが制定され、製品化の際の重要な技術資料として活用されている。非特許文献1では、Ti-Ni合金の化学成分をNi:53.5~57.5質量%(48.5~52.5at%)合金と定義している。また、第三元素添加のTi-Ni-X合金(X=V,Cr、Co、Cu、Nb、Ta、Hf等)でもTi-Ni合金と同様の特性を示すことが知られている(例えば、非特許文献2参照)。 技術 In addition, many Ti-Ni alloy-related technologies have been established as industrial standards (JIS) and are used as important technical data for commercialization. Non-Patent Document 1 defines the chemical composition of a Ti—Ni alloy as Ni: 53.5 to 57.5 mass% (48.5 to 52.5 at%) alloy. It is also known that a third element-added Ti—Ni—X alloy (X = V, Cr, Co, Cu, Nb, Ta, Hf, etc.) exhibits the same characteristics as a Ti—Ni alloy (for example, , Non-Patent Document 2).
 一方、チューブ加工技術に関して、一般に、金属製のシームレスチューブは金属棒に対してガンドリルを用いた穴あけ加工を行うことで製造する。次に、アスペクト比が大きい細径チューブの加工は、穴あけ加工材にマンドレルを挿入して圧延や伸延(伸線)加工を行うことで製造される。加工の際に、チューブはマンドレルを加工パス毎に抜出し、熱処理されることが多い。このため、こうした非連続的プロセスによる加工処理は非効率でコストがかかり、製造可能なチューブの径や長さにも制限がある。 On the other hand, regarding the tube processing technology, generally, a metal seamless tube is manufactured by performing a drilling process using a gun drill on a metal bar. Next, a small-diameter tube having a large aspect ratio is manufactured by inserting a mandrel into a drilled material and performing rolling or elongation (drawing). During processing, the tube is often pulled out of the mandrel for each processing pass and heat treated. For this reason, processing by such a discontinuous process is inefficient and costly, and the diameter and length of a tube that can be manufactured are limited.
 他方、均一な断面形状を有する金属製チューブを製造する手段として、上述した穴あけ加工のチューブ材を金属製のコア材挿入のクラッド材とした後、伸線してクラッドチューブを形成し、クラッドチューブからコア材を除去してチューブとすることも知られている。しかし、こうした製造工程では、最終工程のコア材の除去が重大な問題として残る。伸線されたクラッドチューブのチューブ材とコア材は強固に密着しており、クラッドチューブの径が細いほど、また長さが長いほどコア材を除去する際の摩擦抵抗が非常に大きくなり、単純にコア材を引き抜いて除去することは難しくなる。 On the other hand, as a means for manufacturing a metal tube having a uniform cross-sectional shape, after the above-described drilled tube material is used as a clad material for insertion of a metal core material, a wire is drawn to form a clad tube, and the clad tube is formed. It is also known to remove a core material from a tube to form a tube. However, in such a manufacturing process, removal of the core material in the final process remains a serious problem. The tube material and the core material of the drawn clad tube are tightly adhered, and the smaller the clad tube diameter and the longer the length, the greater the frictional resistance when removing the core material becomes. It becomes difficult to pull out and remove the core material.
 そのため、コア材を除去する方法として、チューブ材の融点よりも低い温度で選択的にコア材のみを溶解する方法やコア材の再結晶温度以上で熱処理を行いながら引き伸ばして縮径することでコア材を引き抜きしやすくする方法等が提案されている。 Therefore, as a method of removing the core material, a method of selectively dissolving only the core material at a temperature lower than the melting point of the tube material or a method of expanding and reducing the diameter by performing heat treatment at a temperature higher than the recrystallization temperature of the core material. A method of facilitating the extraction of a material has been proposed.
 また、特許文献1では、コア材にTi-Ni合金等の形状記憶合金を用いた金属製シームレスチューブの細径加工技術が記載されている。具体的には、チューブ材はチューブ材と同等の伸延性を有するコア材を用いてクラッド材を構成し、クラッド材を伸延処理してクラッドチュープを形成する。その後、クラッドチューブのコア材を引き伸ばして縮径させ、縮径されたコア材を引き出して金属製シームレスチューブを製造するとしている。更に、クラッドチューブを700℃程度で熱処理をすることで、コア材の引き伸ばし処理を容易に行うことができる点が記載されている。しかしながら、この場合は得られるチューブが熱処理上がりに限定されてしまう。 特許 Further, Patent Document 1 describes a technique for processing a metal seamless tube into a small diameter using a shape memory alloy such as a Ti—Ni alloy as a core material. More specifically, the tube material is formed by using a core material having the same extensibility as the tube material to form the clad material, and the clad material is subjected to elongation processing to form a clad tube. Thereafter, the core material of the clad tube is stretched to reduce the diameter, and the reduced core material is pulled out to produce a metal seamless tube. Furthermore, it is described that by subjecting the clad tube to a heat treatment at about 700 ° C., the core material can be easily stretched. However, in this case, the obtained tube is limited to the one after the heat treatment.
米国特許第5709021号明細書US Pat. No. 5,709,021
 上述した従来のコア材を除去する方法は、いずれも非効率で非経済的であり、更にチューブ内に不純物が残るといった課題がある。また、チューブ材自体が加熱処理により高温となって熱影響を受けやすく、そのままで使用できる用途は少ない。 従 来 All of the conventional methods for removing a core material described above are inefficient and uneconomical, and further have a problem that impurities remain in the tube. Further, the tube material itself becomes high temperature by the heat treatment and is easily affected by heat, and there are few uses that can be used as it is.
 特許文献1に記載された方法においても、伸線加工後のコア材の引き延ばしを行うためにクラッド材に対する高温の加熱処理が不可避であり、コア材のみならずチューブ材も剛性低下といった熱影響が生じるようになる。その解決の一つとして、コア材抜き取り後、仕上げの伸線加工によって剛性を高めることは可能であるが、その加工は仕上げ径近くからであり、得られる加工率は低く500℃未満での熱矯正に十分な形状仕上げも難しいのが現状である。 Also in the method described in Patent Document 1, a high-temperature heat treatment for the clad material is unavoidable in order to stretch the core material after the wire drawing process, and heat effects such as a decrease in rigidity of not only the core material but also the tube material are caused. Will occur. As one of the solutions, it is possible to increase the rigidity by drawing wire after finishing the core material, but the processing is performed near the finished diameter, and the obtained processing rate is low and the heat treatment at less than 500 ° C. At present, it is difficult to obtain a shape finish sufficient for correction.
 こうした熱影響による剛性低下は、超弾性シームレスチューブの特性改善にとって大きな課題となっている。例えば、該チューブは医療用のステントの材料として使用されており、概ね外径2mm程度、厚さ約0.2mmで真直な1mのサイズとされる。そして、Ti-Ni合金を使用したステントは、ワイヤーを用いたカゴ網タイプ及びチューブを用いたレーザー加工タイプに大別されるが、末梢血管脳動脈などの一部を除き多くは後者のレーザー加工タイプが使用されている。レーザー加工タイプでは、チューブには真直性と連続加工を容易にする相応の長さ(1m程度)が求められており、500℃程度の熱処理を常用とした比較的剛性が低いものとせざるを得ない状況となっている。 剛性 The reduction in rigidity due to such thermal effects is a major issue for improving the characteristics of superelastic seamless tubes. For example, the tube is used as a material for a medical stent, and has a straight size of about 1 mm with an outer diameter of about 2 mm and a thickness of about 0.2 mm. Stents using a Ti—Ni alloy are roughly classified into a cage net type using a wire and a laser processing type using a tube, but most of the latter laser processing types except for a part of peripheral cerebral cerebral arteries and the like. Type is used. In the laser processing type, the tube is required to have straightness and a suitable length (about 1 m) for facilitating continuous processing. There is no situation.
 そこで、本発明は、剛性を低下させることなく細径化した超弾性シームレスチューブを製造することができる製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a manufacturing method capable of manufacturing a super-elastic seamless tube having a reduced diameter without reducing rigidity.
 本発明に係る超弾性シームレスチューブの製造方法は、超弾性合金材料からなる筒状のチューブ材の内側に金属材料からなるコア材を挿入したクラッド材を軸方向に引き延ばしてクラッドチューブに形成する伸延工程と、前記クラッドチューブを鍛造加工して前記チューブ材と前記コア材との間に隙間を形成する縮径工程と、縮径された前記コア材を前記クラッドチューブから引き抜いて超弾性シームレスチューブを得る除去工程とを備えている。さらに、前記超弾性シームレスチューブを加熱して真直化処理する真直工程を備えている。さらに、前記伸延工程では、前記クラッド材を伸線加工によりクラッドチューブを形成する。さらに、前記縮径工程では、前記クラッドチューブの周囲を同時に叩打するスウェージング加工を行う。さらに、前記チューブ材に用いる超弾性合金材料は、Ti-Ni系合金材料であり、前記コア材は、前記チューブ材に用いるTi-Ni合金材料よりも引張試験(JIS Z2241準拠)での伸びが大きい金属材料からなる。 The method for manufacturing a superelastic seamless tube according to the present invention is characterized in that a cladding material in which a core material made of a metal material is inserted inside a cylindrical tube material made of a superelastic alloy material is axially stretched to form a distraction. A step of forging the clad tube to form a gap between the tube material and the core material, and pulling out the reduced diameter core material from the clad tube to form a superelastic seamless tube. And removing step. Further, there is provided a straightening step of heating and straightening the superelastic seamless tube. Further, in the distraction step, a clad tube is formed by drawing the clad material. Further, in the diameter reducing step, a swaging process for simultaneously hitting the periphery of the clad tube is performed. Further, the superelastic alloy material used for the tube material is a Ti—Ni alloy material, and the core material has a higher elongation in a tensile test (based on JIS Z2241) than the Ti—Ni alloy material used for the tube material. Made of large metal material.
 本発明に係る超弾性シームレスチューブは、外径1mm~5mm及び肉厚0.1mm~0.5mmのチューブ形状で降伏応力(伸び歪みε=4%)が600MPa以上である以下の(a)~(c)のいずれかの超弾性合金材料からなる超弾性シームレスチューブ。
(a)Ni:48.5~52.5at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni合金材料
(b)Ni:48.5~52.5at%を含有し、さらに、Fe、Co,Mg、Cr、Va、Zr、Nb、Mo、Hf、Ta、Tnの1種又は2種以上を総量で0.1~2at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni系合金材料
(c)Ni:48.5~52.5at%を含有し、さらに、Cu、Ag、Auの1種以上を総量で0.1~20at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni系合金材料   
The superelastic seamless tube according to the present invention has a tube shape having an outer diameter of 1 mm to 5 mm and a wall thickness of 0.1 mm to 0.5 mm and a yield stress (elongation strain ε = 4%) of at least 600 MPa or more, A superelastic seamless tube made of the superelastic alloy material according to any one of (c).
(A) Ni: 48.5 to 52.5 at%, with the balance being a Ti—Ni alloy material having a composition of Ti and unavoidable impurities. (B) Ni: 48.5 to 52.5 at%. Further, one or more of Fe, Co, Mg, Cr, Va, Zr, Nb, Mo, Hf, Ta, and Tn are contained in a total amount of 0.1 to 2 at%, and the remainder is Ti and unavoidable impurities. (C) Ni containing 48.5 to 52.5 at%, and further containing at least one of Cu, Ag, and Au in a total amount of 0.1 to 20 at%. Ti-Ni-based alloy material containing, the balance being Ti and unavoidable impurities
 本発明に係る別の超弾性シームレスチューブは、外径1mm~5mm及び肉厚0.1mm~0.5mmのチューブ形状で降伏(伸び歪みε=4%)後の解放時回復応力が200MPa以上である以下の(a)~(c)のいずれかの超弾性合金材料からなる超弾性シームレスチューブ。
(a)Ni:48.5~52.5at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni合金材料
(b)Ni:48.5~52.5at%を含有し、さらに、Fe、Co,Mg、Cr、Va、Zr、Nb、Mo、Hf、Ta、Tnの1種又は2種以上を総量で0.1~2at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni系合金材料
(c)Ni:48.5~52.5at%を含有し、さらに、Cu、Ag、Auの1種以上を総量で0.1~20at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni系合金材料
Another superelastic seamless tube according to the present invention has a tube shape with an outer diameter of 1 mm to 5 mm and a wall thickness of 0.1 mm to 0.5 mm, and has a recovery stress upon release after yielding (elongation strain ε = 4%) of 200 MPa or more. A superelastic seamless tube made of any of the following superelastic alloy materials (a) to (c).
(A) Ni: 48.5 to 52.5 at%, with the balance being a Ti—Ni alloy material having a composition of Ti and unavoidable impurities. (B) Ni: 48.5 to 52.5 at%. Further, one or more of Fe, Co, Mg, Cr, Va, Zr, Nb, Mo, Hf, Ta, and Tn contains 0.1 to 2 at% in total, and the balance is Ti and unavoidable impurities. (C) Ni containing 48.5 to 52.5 at%, and further containing at least one of Cu, Ag, and Au in a total amount of 0.1 to 20 at%. Ti-Ni-based alloy material containing, the balance being Ti and unavoidable impurities
 本発明は、上記の構成を備えることで、チューブ材の内側にコア材を挿入したクラッド材を伸延加工して得られたクラッドチューブを鍛造加工してチューブ材とコア材との間に隙間を形成する縮径加工を行い、縮径変形されたコア材を引き抜き除去して剛性を高めた超弾性シームレスチューブを製造することができる。 The present invention, by providing the above configuration, forging a clad tube obtained by elongating a clad material in which a core material is inserted inside the tube material and forging a gap between the tube material and the core material. The super-elastic seamless tube having increased rigidity can be manufactured by performing diameter reduction processing to form and reducing the diameter of the deformed core material.
クラッド材の軸方向に直交する断面図及び軸方向に沿う断面図である。It is sectional drawing orthogonal to the axial direction of a clad material, and sectional drawing along an axial direction. 作成されたクラッドチューブに関する外観図である。It is an external view about the produced clad tube. 縮径加工に関する説明図である。It is explanatory drawing regarding diameter reduction processing. 縮径加工されたクラッドチューブに関する説明図である。It is explanatory drawing regarding the clad tube which carried out diameter reduction processing. コア部分の除去工程に関する説明図である。It is explanatory drawing regarding the removal process of a core part. 超弾性シームレスチューブの軸方向に直交する断面図及び軸方向に沿う断面図である。It is sectional drawing orthogonal to the axial direction of a super elastic seamless tube, and sectional drawing along an axial direction. 実施例13に関する降伏応力ヒステリシス特定を示すグラフである。31 is a graph showing the yield stress hysteresis identification in Example 13.
 以下、本発明に係る実施形態について詳しく説明する。なお、以下に説明する実施形態は、本発明を実施するにあたって好ましい具体例であるから、技術的に種々の限定がなされている。しかしながら、本発明は、以下の説明において特に本発明を限定する旨明記されていない限り、これらの形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. It should be noted that the embodiments described below are preferred specific examples for carrying out the present invention, and thus various technical limitations are made. However, the present invention is not limited to these embodiments unless otherwise specified in the following description.
 本発明に係る超弾性シームレスチューブの製造方法は、超弾性合金材料からなる筒状のチューブ材の内側に金属材料からなるコア材を挿入したクラッド材を軸方向に引き延ばしてクラッドチューブに形成する伸延工程と、クラッドチューブを鍛造加工してチューブ材とコア材との間に隙間を形成する縮径工程と、縮径されたコア材をクラッドチューブから引き抜いて超弾性シームレスチューブを得る除去工程とを備えている。 The method for manufacturing a superelastic seamless tube according to the present invention is characterized in that a cladding material in which a core material made of a metal material is inserted inside a cylindrical tube material made of a superelastic alloy material is axially stretched to form a distraction. A step of forging the clad tube to form a gap between the tube material and the core material, and a removing step of extracting the reduced core material from the clad tube to obtain a superelastic seamless tube. Have.
 チューブ材は、超弾性合金材料からなる円柱体にガンドリル等の穴あけ具を使用して中心軸に沿ってくり抜いて円筒体を形成し、得られた円筒体を公知のロール圧延加工(例;冷間3ロール圧延)により所定の外径及び肉厚とする。最終工程での伸延加工されたチューブ材は、超弾性シームレスチューブの仕上げ仕様で決めることができる。例えば、仕上げを外径2mm、肉厚0.2mm及び降伏応力(伸び歪みε=4%)600MPa以上とした場合、概ね外径3mm及び肉厚0.3mmとすればよい。 The tube material is formed by cutting a cylindrical body made of a superelastic alloy material along a central axis by using a drilling tool such as a gun drill to form a cylindrical body, and rolling the obtained cylindrical body by a known roll rolling process (eg, cold rolling). To a predetermined outer diameter and wall thickness by three-roll rolling). The stretched tube material in the final step can be determined by the finishing specifications of the superelastic seamless tube. For example, when the finish is 2 mm in outer diameter, 0.2 mm in thickness, and 600 MPa or more in yield stress (elongation strain ε = 4%), the outer diameter may be approximately 3 mm and the thickness in 0.3 mm.
 チューブ材に用いる超弾性合金材料としては、低温で超弾性を発現するAf温度が室温以下のものが望ましい。また、Ti-Ni系合金材料が好ましく、冷間加工率60%以上の場合には、加工性に優れるNi:50~51at%の成分組成のものが好ましい。対象材料としては、以下の組成のものが挙げられる。
(a)Ni:48.5~52.5at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni合金材料
(b)Ni:48.5~52.5at%を含有し、さらに、Fe、Co,Mg、Cr、Va、Zr、Nb、Mo、Hf、Ta、Tnの1種又は2種以上を総量で0.1~2at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni系合金材料
(c)Ni:48.5~52.5at%を含有し、さらに、Cu、Ag、Auの1種以上を0.1~20at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni系合金材料   
As a superelastic alloy material used for the tube material, a material having an Af temperature at which superelasticity is exhibited at a low temperature is preferably room temperature or less. In addition, a Ti—Ni-based alloy material is preferable, and when the cold work rate is 60% or more, Ni having a component composition of 50 to 51 at% with excellent workability is preferable. The target materials include those having the following compositions.
(A) Ni: 48.5 to 52.5 at%, the balance being a Ti—Ni alloy material having a component composition of Ti and unavoidable impurities. (B) Ni: 48.5 to 52.5 at%. Further, one or more of Fe, Co, Mg, Cr, Va, Zr, Nb, Mo, Hf, Ta, and Tn are contained in a total amount of 0.1 to 2 at%, and the remainder is Ti and unavoidable impurities. (C) Ni containing 48.5 to 52.5 at%, and further containing 0.1 to 20 at% of at least one of Cu, Ag, and Au. Ti-Ni alloy material having a component composition consisting of Ti and inevitable impurities
 Ti-Ni系合金材料以外にも、同様の超弾性特性を示す公知の合金材料を用いることができる。こうした合金材料としては、Cu-Al-Ni合金材料、Cu-Al-Mn合金材料、Fe-Mn-Si合金材料が挙げられる。 Other than Ti—Ni-based alloy materials, known alloy materials exhibiting similar superelastic properties can be used. Such alloy materials include Cu-Al-Ni alloy materials, Cu-Al-Mn alloy materials, and Fe-Mn-Si alloy materials.
 コア材は、金属材料を切削加工によりチューブ材の内径と同一の外径の円柱体に形成して得られる。コア材に用いる金属材料としては、チューブ材と異なり形状の温度依存性を有していない材料が好ましく、例えば、低炭素鋼やマンガン鋼といった鋼材料、真鍮などCu合金材料といった延性に優れる金属材料が挙げられる。具体的には、チューブ材に用いる超弾性合金材料よりも引張試験(JIS Z2241準拠)での伸びの大きい金属材料であることが好ましい。また、チューブ材と同様のTi-Ni系合金材料を用いる場合には、塑性歪み(加工歪み)が生じやすい合金材料、即ち合金変態温度がチューブ材に比べて高くなる組成が好ましい。 The core material is obtained by forming a metal material into a cylindrical body having the same outer diameter as the inner diameter of the tube material by cutting. As the metal material used for the core material, unlike the tube material, a material that does not have a temperature dependence of the shape is preferable. For example, a steel material such as low carbon steel or manganese steel, or a metal material having excellent ductility such as a Cu alloy material such as brass Is mentioned. Specifically, it is preferable that the metal material has a larger elongation in a tensile test (based on JIS Z2241) than the superelastic alloy material used for the tube material. When a Ti—Ni-based alloy material similar to the tube material is used, an alloy material in which plastic strain (working strain) easily occurs, that is, a composition in which the alloy transformation temperature is higher than that of the tube material is preferable.
 チューブ材はその内側にコア材を挿入してクラッド材を作成し、得られたクラッド材を軸方向に引き延ばして所定の外径に伸延加工する。図1は、クラッド材の軸方向に直交する断面図(図1(a))及び軸方向に沿う断面図(図1(b))である。クラッド材は、円柱状のコア材2の外周面を円筒状のチューブ材1で被覆するように構成されている。伸延加工としては、公知のダイス引き伸線加工を用いることができ、所定の外径に形成されるまで必要に応じて繰り返し加工することが好ましい。伸延工程では、細径化されたクラッドチューブが得られるが、クラッドチューブのチューブ部分の外径及び肉厚が超弾性シームレスチューブの仕上げ形状とほぼ同一となるように加工することが好ましい。図2は、作成されたクラッドチューブに関する外観図である。コア部分2の周囲にチューブ部分1が密着した状態となっており、引き延ばして伸延加工した場合には、チューブ部分がより引き延ばされて端部においてコア部分が窪んだ状態となる。 は The tube material is prepared by inserting a core material into the inside of the tube material to form a clad material, and extending the obtained clad material in the axial direction to a predetermined outer diameter. FIG. 1 is a sectional view orthogonal to the axial direction of the clad material (FIG. 1A) and a sectional view along the axial direction (FIG. 1B). The clad material is configured to cover the outer peripheral surface of the cylindrical core material 2 with the cylindrical tube material 1. As the elongation process, a known die drawing / wire drawing process can be used, and it is preferable to repeatedly execute the process as necessary until a predetermined outer diameter is formed. In the distraction step, a clad tube having a reduced diameter is obtained. However, it is preferable that the clad tube be processed so that the outer diameter and the wall thickness of the tube portion are substantially the same as the finished shape of the superelastic seamless tube. FIG. 2 is an external view of the formed clad tube. The tube portion 1 is in close contact with the periphery of the core portion 2. When the tube portion 1 is stretched and stretched, the tube portion is further stretched and the core portion is depressed at the end.
 伸延加工されたクラッドチューブは、伸延加工状態で鍛造加工してコア材を縮径変形させる縮径工程を行う。縮径加工では、スウェージング加工(回転冷間鍛造加工)を行うことが好ましい。図3は、縮径加工に関する説明図であり、クラッドチューブの軸方向に直交する方向から見た説明図(図3(a))及び軸方向から見た説明図(図3(b))である。 The stretched clad tube is forged in the stretched state and subjected to a diameter reduction step of reducing the diameter of the core material. In the diameter reduction processing, it is preferable to perform swaging processing (rotary cold forging processing). FIG. 3 is an explanatory view related to the diameter reduction processing, and is an explanatory view (FIG. 3 (a)) viewed from a direction orthogonal to the axial direction of the clad tube and an explanatory view (FIG. 3 (b)) viewed from the axial direction. is there.
 この例では、一対のダイスをクラッドチューブの周囲を回転させながらクラッドチューブの周囲を全周にわたって同時に叩打して縮径加工を行う。一対のダイスは、略半円状の叩打面が形成されており、叩打時に形成される円形状の加工面の加工径は、超弾性シームレスチューブの仕上がり形状の外径とほぼ同一に設定している。そのため、クラッドチューブのチューブ部分及びコア部分が中心軸に向かってわずかに縮む方向に変形するが、チューブ部分は超弾性を有しているので、元の形状に復元するようになる。コア部分は、縮径した状態で塑性変形していくため軸方向に延伸していくが、チューブ分は、縮径した状態から拡大して元の形状に戻るためコア部分との間に隙間が生じるようになる。こうした縮径加工による作用がコア材の引き抜きを容易にする一因である。なお、上述した例では、縮径加工は、クラッドチューブの周囲を全周にわたって同時に叩打しているが、こうした加工方法に限定されることはなくコア部分が縮径変形することが可能であれば他の加工方法を用いることができる。例えば、クラッドチューブの周囲に複数の打点を設定して高速で順次叩打することで縮径加工するようにしてもよい。 で は In this example, a pair of dies are simultaneously beaten over the entire circumference of the clad tube while rotating around the clad tube to reduce the diameter. The pair of dies has a substantially semi-circular hitting surface, and the processing diameter of the circular processing surface formed at the time of hitting is set substantially equal to the outer diameter of the finished shape of the super elastic seamless tube. I have. For this reason, the tube portion and the core portion of the clad tube are deformed in a direction in which the tube portion slightly contracts toward the central axis. However, the tube portion has superelasticity, so that it returns to its original shape. The core portion extends in the axial direction because it undergoes plastic deformation in the reduced diameter state, but the tube portion expands from the reduced diameter state and returns to its original shape, so there is a gap between the core and the core portion. Will occur. The effect of such diameter reduction is one of the factors that facilitate the core material being pulled out. In the above-described example, the diameter reduction processing is performed by simultaneously striking the entire circumference of the clad tube, but is not limited to such a processing method as long as the core part can be reduced in diameter. Other processing methods can be used. For example, a plurality of hit points may be set around the clad tube, and the diameter may be reduced by sequentially hitting at high speed.
 図4は、縮径加工されたクラッドチューブに関する説明図である。クラッドチューブは、縮径加工によりコア部分2が縮径変形されてチューブ部分1の両端部からはみ出すように突出した状態となる。こうした縮径加工は、室温で加工を行うことができるので、クラッドチューブのチューブ部分に熱的影響を与えることなく加工することが可能となる。 FIG. 4 is an explanatory view of a clad tube subjected to diameter reduction processing. The clad tube is in a state where the core portion 2 is reduced in diameter by the diameter reduction processing and projects so as to protrude from both ends of the tube portion 1. Since such diameter reduction processing can be performed at room temperature, it becomes possible to perform processing without thermally affecting the tube portion of the clad tube.
 縮径加工されたクラッドチューブは、コア部分を引き抜いて除去することで超弾性シームレスチューブを得る。図5は、コア部分の除去工程に関する説明図である。縮径加工されたクラッドチューブは、両端部にコア部分2が露出した状態となっているので(図5(a))、露出した部分を把持してコア部分2を容易に引き抜くことができる(図5(b))。この場合、コア部分2が縮径変形しているので、チューブ部分1との間にわずかに隙間が生じており、コア部分2が残留することなく一度に引き抜くことが可能である。そして、所定の外径及び肉厚に形成された超弾性シームレスチューブを得ることができる(図5(c))。 超 The clad tube subjected to the diameter reduction is pulled out of the core portion and removed to obtain a super-elastic seamless tube. FIG. 5 is an explanatory diagram relating to a core portion removing step. Since the core portion 2 is exposed at both ends of the clad tube subjected to the diameter reduction process (FIG. 5A), the exposed portion can be grasped and the core portion 2 can be easily pulled out (FIG. 5A). FIG. 5 (b)). In this case, since the diameter of the core portion 2 is reduced, a slight gap is formed between the core portion 2 and the tube portion 1, and the core portion 2 can be pulled out at a time without remaining. Then, a superelastic seamless tube having a predetermined outer diameter and a predetermined thickness can be obtained (FIG. 5C).
 得られた超弾性シームレスチューブは、必要に応じて真直化処理をしてもよい。真直化処理では、例えば、300℃~500℃に加熱した状態で、軸方向に沿って引張力を加えたテンションアニールとすることができる。 超 The obtained superelastic seamless tube may be subjected to a straightening treatment as required. In the straightening process, for example, tension annealing in which a tensile force is applied along the axial direction while being heated to 300 ° C. to 500 ° C. can be used.
 図6は、超弾性シームレスチューブの軸方向に直交する断面図(図6(a))及び軸方向に沿う断面図(図6(b))である。超弾性シームレスチューブは、伸延加工により均一な外径及び肉厚に形成されており、内周面についても縮径加工によりコア部分の残留がないきれいな面に仕上げられている。外径1mm~5mm及び肉厚0.1mm~0.5mmの細径化されたチューブ形状に形成することが可能で、降伏応力(伸び歪みε=4%)が600MPa以上である高剛性の超弾性シームレスチューブを得ることができる。 FIG. 6 is a cross-sectional view orthogonal to the axial direction of the superelastic seamless tube (FIG. 6A) and a cross-sectional view along the axial direction (FIG. 6B). The superelastic seamless tube is formed to have a uniform outer diameter and wall thickness by extension processing, and the inner peripheral surface is also finished by a diameter reduction processing to a clean surface with no core portion remaining. It can be formed in a thin tube shape with an outer diameter of 1 mm to 5 mm and a wall thickness of 0.1 mm to 0.5 mm, and has a high rigidity with a yield stress (elongation strain ε = 4%) of 600 MPa or more. An elastic seamless tube can be obtained.
 医療用のステント材料として超弾性シームレスチューブを用いる場合、ステントの体内留置特性として降伏応力ヒステリシス特性を検証することが望ましい。図7は、後述する実施例13に関する降伏応力ヒステリシス特性を示すグラフである。図7では、伸び歪みが4%及び6%の場合のそれぞれの推移を示している。グラフでは、引張試験で降伏した際に伸び歪みの変化に対して応力がほとんど変化しない平坦な領域がみられ、この領域での応力が降伏応力σyである。また、降伏した後に引張力を解放した際に伸び歪みの変化に対して応力がほとんど変化しない平坦な領域がみられ、この領域での応力が回復応力σrである。ステントに用いる場合には回復応力σrを大きく設定することが好ましい。例えば、デリバリー収納縮径及びカテーテル装着搬送の際に外力により容易に変形できる変形特性と体内留置後の高い回復特性を有することが求められることから、軸方向の引張試験での降伏(伸び歪みε=4%)後の解放時回復応力が200MPa以上に設定するとよい。 超 When using a superelastic seamless tube as a medical stent material, it is desirable to verify the yield stress hysteresis characteristics as the indwelling characteristics of the stent. FIG. 7 is a graph showing the yield stress hysteresis characteristic of Example 13 described later. FIG. 7 shows the respective transitions when the elongation strain is 4% and 6%. The graph shows a flat region where the stress hardly changes with respect to the change in elongation strain when yielding in the tensile test, and the stress in this region is the yield stress σy. Further, there is a flat region where the stress hardly changes with respect to the change in elongation strain when the tensile force is released after yielding, and the stress in this region is the recovery stress σr. When used for a stent, it is preferable to set the recovery stress σr large. For example, since it is required to have a deformable property that can be easily deformed by an external force when the delivery storage diameter is reduced and the catheter is transported, and a high recovery property after being placed in the body, the yield (elongation strain ε) in the tensile test in the axial direction is required. = 4%), the recovery stress upon release may be set to 200 MPa or more.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら制約されるものではない。 The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
[加工例1]
<使用材料について>
 チューブ材として、Ti-50Ni、Ti-50.25Ni、Ti-50.5Ni、Ti-51Niの4種類のTi-Ni合金材料(古河マテリアル株式会社製)を使用し、コア材として、マンガン鋼を使用した。
[Processing example 1]
<Materials used>
Four kinds of Ti-Ni alloy materials (manufactured by Furukawa Material Co., Ltd.) of Ti-50Ni, Ti-50.25Ni, Ti-50.5Ni, and Ti-51Ni are used as the tube material, and manganese steel is used as the core material. used.
<クラッド材について>
 チューブ材については、Ti-Ni合金製丸棒を準備し、まずワイヤー放電加工機(三菱電機株式会社製)を用いて中心軸に沿って外径15mm及び内径11mmにくり抜き、長さ200mmとした。次に、加工した円筒材を冷間3ロール圧延機によりロール圧延して、外径8mmで肉厚0.5mmのチューブ材(1m)を得た。
<About cladding material>
Regarding the tube material, a round bar made of a Ti—Ni alloy was prepared, and firstly, a wire electric discharge machine (manufactured by Mitsubishi Electric Corporation) was cut out along the central axis to an outer diameter of 15 mm and an inner diameter of 11 mm to a length of 200 mm. . Next, the processed cylindrical material was roll-rolled by a cold three-roll rolling mill to obtain a tube material (1 m) having an outer diameter of 8 mm and a wall thickness of 0.5 mm.
 コア材については、外径7mmで長さ1mmに成形したものを準備し、チューブ材の内側にコア材を挿入してクラッド材を得た。 As for the core material, a core material having an outer diameter of 7 mm and a length of 1 mm was prepared, and the core material was inserted inside the tube material to obtain a clad material.
<伸延加工について>
 得られたクラッド材について、伸線加工機を用いてダイス引き伸線加工を行った後焼鈍し処理を行う工程を繰り返し、最終冷間加工率60%以上での加工処理とした。得られたクラッドチューブは、チューブ部分を外径2mmで均一な肉厚に伸延された仕上げ形状に近いチューブ形状に成形した。
<About distraction processing>
With respect to the obtained clad material, a process of performing a die drawing process using a wire drawing machine and then performing an annealing process was repeated, and the process was performed at a final cold working rate of 60% or more. The obtained clad tube was formed into a tube shape having a tube portion having an outer diameter of 2 mm and having a uniform thickness and a shape close to a finished shape.
<縮径加工について>
 スウェージング加工機(株式会社ジャロック製)に図3に示すような一対のダイスを取り付けて加工径2mmでクラッドチューブの周囲を全周にわたって叩打して縮径加工を行った。縮径加工によりクラッドチューブの両端部からコア部分が縮径変形してはみ出すように露出した状態となり、チューブ部分とコア部分との間に隙間が形成された。露出したコア部分を把持してクラッドチューブから引き抜き、外径2.0mmで長さ1mの均一な肉厚の超弾性シームレスチューブを得た。
<About diameter reduction>
A pair of dies as shown in FIG. 3 were attached to a swaging machine (manufactured by Jaroc Co., Ltd.), and the diameter of the clad tube was reduced by hitting the entire circumference of the clad tube with a processing diameter of 2 mm. As a result of the diameter reduction processing, the core portion was reduced in diameter and exposed so as to protrude from both ends of the clad tube, and a gap was formed between the tube portion and the core portion. The exposed core portion was grasped and pulled out of the clad tube to obtain a super-elastic seamless tube having an outer diameter of 2.0 mm and a uniform thickness of 1 m in length.
<真直化処理について>
 得られた超弾性シームレスチューブを300℃~500℃で5分間加熱しながら、テンションアニールにより真直化処理を行い、曲がりの小さい長尺状の超弾性シームレスチューブに成形した。
<About straightening process>
The obtained superelastic seamless tube was straightened by tension annealing while being heated at 300 ° C. to 500 ° C. for 5 minutes to form a long superelastic seamless tube having a small bending.
<比較例について>
 比較例として、購入市場材及び従来工法材を用いた。従来工法材は、冷間加工歪みの導入可能な次の加工を行った。Ti-Ni合金としてTi-51Niを用い、上述のロール圧延加工で外径7mmのチューブ材とした後、真直超硬マンドレルをコア材としてクラッド組み込みを行ってクラッド材を得た。クラッド材は減面加工率10%程度毎のコア抜き取り・焼鈍(700℃)処理を繰り返して外径2.8mm及び肉厚0.23mmのチューブ状に成形し、700℃焼鈍処理後、焼鈍なしの空引き処理で外径2mm及び肉厚0.22mm(冷間加工率30%)に成形して真直化処理を行った。
<Comparative Example>
As comparative examples, purchased market materials and conventional construction materials were used. The conventional construction material was subjected to the following processing in which cold working distortion could be introduced. A tube material having an outer diameter of 7 mm was formed by the above-described roll rolling using Ti-51Ni as a Ti-Ni alloy, and then a clad material was obtained by performing clad incorporation using a straight carbide mandrel as a core material. The clad material is formed into a tube having an outer diameter of 2.8 mm and a wall thickness of 0.23 mm by repeating core removal and annealing (700 ° C.) at a surface reduction rate of about 10%. After annealing at 700 ° C., no annealing is performed. Was formed into an outer diameter of 2 mm and a wall thickness of 0.22 mm (cold working rate of 30%) by straightening.
<評価結果について>
 製造された超弾性シームレスチューブの剛性試験として、引張試験(株式会社島津製作所製;AG-X)を行い、伸び歪みε=4%時降伏応力(MPa)を測定した。評価結果を表1に示す。表1では、コア材の引き抜きができた場合が○で、引き抜きができなかった場合が×を示している。また、伸延加工における「有*」は外径2.8mmコア抜き焼鈍後マンドレル引き、曲り(mm/m)における「10>*」はチューブ真直不良をそれぞれ示している。
<About evaluation results>
As a stiffness test of the manufactured superelastic seamless tube, a tensile test (manufactured by Shimadzu Corporation; AG-X) was performed, and the yield stress (MPa) at elongation strain ε = 4% was measured. Table 1 shows the evaluation results. In Table 1, the case where the core material was able to be pulled out is indicated by 、, and the case where the core material was not drawn out is indicated by x. In addition, “Yes *” in the elongation processing indicates a mandrel pull after 2.8 mm outer diameter core removal annealing, and “10> *” in the bending (mm / m) indicates tube straight defect.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例1から4として、伸延加工のみ行い縮径加工を行わなかったクラッドチューブを作製した。いずれの比較例でもコア材の引き抜きができず、超弾性シームレスチューブを製造することができなかった。比較例3では、伸延加工の後に400℃の熱処理を行ったがコア材の引き抜きはできなかった。したがって、特許文献1に記載されているように、コア材の引き延ばしを行うために、クラッドチューブに対してかなりの高温の熱処理を行うなどの工夫が必要となるものと考えられる。比較例5及び6は、Ti-51Niチューブを冷間加工率30%としたもので、比較例5における350℃での真直化処理では十分な真直性は得られず、比較例6における500℃での真直化処理では真直性は得られるもの剛性については600MPaには及ばない。比較例7については、市場で購入した直進チューブであり、やはり十分な剛性は得られなかった。 (5) As Comparative Examples 1 to 4, clad tubes were produced in which only elongation was performed and diameter reduction was not performed. In any of the comparative examples, the core material could not be pulled out, and a superelastic seamless tube could not be produced. In Comparative Example 3, heat treatment at 400 ° C. was performed after elongation, but the core material could not be pulled out. Therefore, as described in Patent Literature 1, in order to extend the core material, it is considered that a contrivance such as performing a considerably high-temperature heat treatment on the clad tube is required. In Comparative Examples 5 and 6, the Ti-51Ni tube had a cold working rate of 30%, and the straightening treatment at 350 ° C. in Comparative Example 5 did not provide sufficient straightness. In the straightening process, straightness can be obtained, but the rigidity does not reach 600 MPa. Comparative Example 7 was a straight tube purchased on the market, and sufficient rigidity was not obtained.
 実施例1は、伸延加工の後に縮径加工を行っており、いずれもコア材の引き抜きを容易に行うことができ、良好なコア材の除去性が確認された。得られた超弾性シームレスチューブは、仕上げ形状(外径、内径および冷間加工率)を伸延加工で精度よく設定することができ、縮径加工では、チューブ部分の割れや欠けが発生することはなく形状変化も外観上認めらなかった。 は In Example 1, diameter reduction was performed after elongation, and in each case, the core material could be easily pulled out, and good core material removability was confirmed. In the obtained superelastic seamless tube, the finished shape (outer diameter, inner diameter and cold working rate) can be set with high precision by distraction processing. In diameter reduction processing, cracking or chipping of the tube part does not occur. No change in shape was observed in appearance.
 実施例2から7は、伸延加工及び縮径加工の後にコア材を引き抜いて超弾性シームレスチューブを作製し、作製された超弾性シームレスチューブに対して300℃~500℃に加熱しながら真直化処理を行った。真直化処理後の超弾性シームレスチューブについて、4%伸び歪み時降伏応力を測定した。いずれも600MPa以上の降伏応力を示しており、高剛性の超弾性シームレスチューブが得られたことが確認できた。 In Examples 2 to 7, the core material was pulled out after the elongation and the diameter reduction, and a superelastic seamless tube was produced. The produced superelastic seamless tube was straightened while being heated to 300 to 500 ° C. Was done. The yield stress at 4% elongation strain was measured for the superelastic seamless tube after the straightening treatment. Each of them showed a yield stress of 600 MPa or more, and it was confirmed that a highly rigid superelastic seamless tube was obtained.
[加工例2]
<使用材料について>
 チューブ材として、Ti-50Ni、Ti-50.25Ni、Ti-50.5Ni、Ti-51Niの4種類のTi-Ni合金材料(古河マテリアル株式会社製)を使用し、コア材として、マンガン鋼を使用した。
[Processing example 2]
<Materials used>
Four kinds of Ti-Ni alloy materials (manufactured by Furukawa Material Co., Ltd.) of Ti-50Ni, Ti-50.25Ni, Ti-50.5Ni, and Ti-51Ni are used as the tube material, and manganese steel is used as the core material. used.
<クラッド材について>
 加工例1と同様に加工して、外径8mmで肉厚0.5mmのチューブ材(1m)を得た。また、コア材についても加工例1と同様のものを準備し、チューブ材の内側にコア材を挿入してクラッド材を得た。
<About cladding material>
By processing in the same manner as in Processing Example 1, a tube material (1 m) having an outer diameter of 8 mm and a wall thickness of 0.5 mm was obtained. The same core material as in Working Example 1 was prepared, and the clad material was obtained by inserting the core material inside the tube material.
<伸延加工について>
 得られたクラッド材について、加工例1と同様の工程で最終冷間加工率60%以上となるように加工処理し、チューブ部分を外径2mmで均一な肉厚に伸延された仕上げ形状に近い形状のクラッドチューブを得た。
<About distraction processing>
The obtained clad material is processed so as to have a final cold working rate of 60% or more in the same process as in Working Example 1, and the tube portion has an outer diameter of 2 mm and is close to a finished shape elongated to a uniform thickness. A shaped clad tube was obtained.
<縮径加工について>
 加工例1と同様に加工し、外径2.0mmで長さ1mの均一な肉厚の超弾性シームレスチューブを得た。
<About diameter reduction>
Processing was performed in the same manner as in Processing Example 1 to obtain a super-elastic seamless tube having an outer diameter of 2.0 mm and a length of 1 m and a uniform thickness.
<真直化処理について>
 得られた超弾性シームレスチューブを300℃~500℃で5分間加熱しながら、テンションアニールにより真直化処理を行い、曲がりの小さい長尺状の超弾性シームレスチューブに成形した。
<About straightening process>
The obtained superelastic seamless tube was straightened by tension annealing while being heated at 300 ° C. to 500 ° C. for 5 minutes to form a long superelastic seamless tube having a small bending.
<評価結果について>
 製造された超弾性シームレスチューブの剛性試験として、引張試験(株式会社島津製作所製;AG-X)を行い、伸び歪みε=4%時降伏応力σy(MPa)及び解放時回復応力σr(MPa)を測定した。評価結果を表2に示す。
<About evaluation results>
As a stiffness test of the manufactured superelastic seamless tube, a tensile test (manufactured by Shimadzu Corporation; AG-X) was performed, and elongation strain ε = yield stress σy (MPa) at 4% and recovery stress σr (MPa) at release. Was measured. Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例10から14では、伸延加工及び縮径加工を行って超弾性シームレスチューブを製造する場合に、合金材料に応じて冷間加工率及び熱処理(真直化処理)の条件を適切に設定することで、解放時応力σrが200MPa以上の降伏応力ヒステリシス特性を有する高剛性の超弾性シームレスチューブが得られたことが確認できた。 In Examples 10 to 14, when a superelastic seamless tube is manufactured by performing elongation processing and diameter reduction processing, the conditions of the cold working rate and the heat treatment (straightening treatment) are appropriately set according to the alloy material. Thus, it was confirmed that a high-rigidity superelastic seamless tube having a yield stress hysteresis characteristic of a release stress σr of 200 MPa or more was obtained.
 以上説明したように、超弾性材料をチューブ材として用いたクラッド材を伸延加工により均一に引き延ばしてクラッドチューブを作製し、作製されたクラッドチューブを縮径加工によってコア材を容易に引き抜いて除去することができ、高剛性で細径化された超弾性シームレスチューブを安定して製造することが可能となる。 As described above, a clad material using a superelastic material as a tube material is uniformly stretched by elongation to produce a clad tube, and the produced clad tube is easily pulled out and removed by a diameter reducing process. It is possible to stably manufacture a super-elastic seamless tube having a high rigidity and a small diameter.
 また、本発明は、広範囲のサイズの金属チューブを製造する場合に適用することが可能で、特に薄肉細径の金属チューブの製造に有用である。例としては、内径0.1mm~5mm、肉厚0.01mm~1mmの金属チューブに対応可能である。クラッドチューブを作製する際に、コア部分をチューブ部分よりも塑性変形しやすい金属材料で構成することで、伸延加工でチューブの形状を設定することで、縮径加工でコア材を縮径変形させて容易に引き抜き除去することができる。チューブ長さは任意に設定することができ、コア材を伸延する装置の上限次第で、数mサイズ及び10m以上のサイズのチューブにも対応することができる。 The present invention can be applied to the manufacture of metal tubes of a wide range of sizes, and is particularly useful for the manufacture of thin and thin metal tubes. For example, a metal tube having an inner diameter of 0.1 mm to 5 mm and a wall thickness of 0.01 mm to 1 mm can be used. When making a clad tube, the core part is made of a metal material that is more easily plastically deformed than the tube part, and the shape of the tube is set by distraction processing, and the core material is reduced in diameter by diameter reduction processing It can be easily pulled out and removed. The length of the tube can be set arbitrarily, and it is possible to cope with a tube having a size of several meters and a size of 10 m or more, depending on the upper limit of the device for extending the core material.
 本発明に係る超弾性シームレスチューブは、生活環境温度(0℃~40℃)域で使用することができ、医療分野でのカテーテル治療用ステントの素材として好適である。 The superelastic seamless tube according to the present invention can be used in a living environment temperature range (0 ° C. to 40 ° C.), and is suitable as a material for a stent for catheter treatment in the medical field.
1・・・チューブ材、チューブ部分、2・・・コア材、コア部分、D・・・ダイス 1 ... tube material, tube part, 2 ... core material, core part, D ... die

Claims (7)

  1.  超弾性合金材料からなる筒状のチューブ材の内側に金属材料からなるコア材を挿入したクラッド材を軸方向に引き延ばしてクラッドチューブに形成する伸延工程と、前記クラッドチューブを鍛造加工して前記チューブ材と前記コア材との間に隙間を形成する縮径工程と、縮径された前記コア材を前記クラッドチューブから引き抜いて超弾性シームレスチューブを得る除去工程とを備えている超弾性シームレスチューブの製造方法。 An extension step in which a clad material in which a core material made of a metal material is inserted inside a cylindrical tube material made of a superelastic alloy material is axially stretched to form a clad tube, and the tube is formed by forging the clad tube. A diameter reducing step of forming a gap between the core material and the core material, and a removing step of extracting the reduced diameter core material from the clad tube to obtain a superelastic seamless tube. Production method.
  2.  前記超弾性シームレスチューブを加熱して真直化処理する真直工程を備えている請求項1に記載の超弾性シームレスチューブの製造方法。 2. The method for manufacturing a superelastic seamless tube according to claim 1, further comprising a straightening step of heating and straightening the superelastic seamless tube.
  3.  前記伸延工程では、前記クラッド材を伸線加工によりクラッドチューブを形成する請求項1又は2に記載の超弾性シームレスチューブの製造方法。 3. The method for manufacturing a superelastic seamless tube according to claim 1, wherein, in the distraction step, the clad material is formed into a clad tube by wire drawing.
  4.  前記縮径工程では、前記クラッドチューブの周囲を同時に叩打するスウェージング加工を行う請求項1から3のいずれかに記載の超弾性シームレスチューブの製造方法。 The method of manufacturing a superelastic seamless tube according to any one of claims 1 to 3, wherein, in the diameter reducing step, a swaging process of simultaneously hitting the periphery of the clad tube is performed.
  5.  前記チューブ材に用いる超弾性合金材料は、Ti-Ni系合金材料であり、前記コア材は、前記チューブ材に用いるTi-Ni合金材料よりも引張試験(JIS Z2241準拠)での伸びが大きい金属材料からなる請求項1から4のいずれかに記載の超弾性シームレスチューブの製造方法。 The superelastic alloy material used for the tube material is a Ti—Ni-based alloy material, and the core material is a metal having a greater elongation in a tensile test (based on JIS Z2241) than the Ti—Ni alloy material used for the tube material. The method for producing a superelastic seamless tube according to any one of claims 1 to 4, comprising a material.
  6.  外径1mm~5mm及び肉厚0.1mm~0.5mmのチューブ形状で降伏応力(伸び歪みε=4%)が600MPa以上である以下の(a)~(c)のいずれかの超弾性合金材料からなる超弾性シームレスチューブ。
    (a)Ni:48.5~52.5at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni合金材料
    (b)Ni:48.5~52.5at%を含有し、さらに、Fe、Co,Mg、Cr、Va、Zr、Nb、Mo、Hf、Ta、Tnの1種又は2種以上を総量で0.1~2at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni系合金材料
    (c)Ni:48.5~52.5at%を含有し、さらに、Cu、Ag、Auの1種以上を総量で0.1~20at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni系合金材料
    Any of the following superelastic alloys (a) to (c) having a tube shape having an outer diameter of 1 mm to 5 mm and a wall thickness of 0.1 mm to 0.5 mm and having a yield stress (elongation strain ε = 4%) of 600 MPa or more. Super elastic seamless tube made of material.
    (A) Ni: 48.5 to 52.5 at%, with the balance being a Ti—Ni alloy material having a composition of Ti and unavoidable impurities. (B) Ni: 48.5 to 52.5 at%. Further, one or more of Fe, Co, Mg, Cr, Va, Zr, Nb, Mo, Hf, Ta, and Tn contains 0.1 to 2 at% in total, and the balance is Ti and unavoidable impurities. (C) Ni containing 48.5 to 52.5 at%, and further containing at least one of Cu, Ag, and Au in a total amount of 0.1 to 20 at%. Ti-Ni-based alloy material containing, the balance being Ti and unavoidable impurities
  7.  外径1mm~5mm及び肉厚0.1mm~0.5mmのチューブ形状で降伏(伸び歪みε=4%)後の解放時回復応力が200MPa以上である以下の(a)~(c)のいずれかの超弾性合金材料からなる超弾性シームレスチューブ。
    (a)Ni:48.5~52.5at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni合金材料
    (b)Ni:48.5~52.5at%を含有し、さらに、Fe、Co,Mg、Cr、Va、Zr、Nb、Mo、Hf、Ta、Tnの1種又は2種以上を総量で0.1~2at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni系合金材料
    (c)Ni:48.5~52.5at%を含有し、さらに、Cu、Ag、Auの1種以上を総量で0.1~20at%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni系合金材料
    Any of the following (a) to (c) in which the recovery stress upon release after yielding (elongation strain ε = 4%) is 200 MPa or more in a tube shape having an outer diameter of 1 mm to 5 mm and a wall thickness of 0.1 mm to 0.5 mm. Superelastic seamless tube made of any superelastic alloy material.
    (A) Ni: 48.5 to 52.5 at%, with the balance being a Ti—Ni alloy material having a composition of Ti and unavoidable impurities. (B) Ni: 48.5 to 52.5 at%. Further, one or more of Fe, Co, Mg, Cr, Va, Zr, Nb, Mo, Hf, Ta, and Tn are contained in a total amount of 0.1 to 2 at%, and the remainder is Ti and unavoidable impurities. (C) Ni having a component composition of 48.5 to 52.5 at%, and further containing at least one of Cu, Ag and Au in a total amount of 0.1 to 20 at%. Ti-Ni-based alloy material containing, the balance being Ti and unavoidable impurities
PCT/JP2019/017898 2018-08-22 2019-04-26 Superelastic seamless tube manufacturing method WO2020039658A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018155168 2018-08-22
JP2018-155168 2018-08-22
JP2019-080668 2019-04-22
JP2019080668A JP6842125B2 (en) 2018-08-22 2019-04-22 Manufacturing method of superelastic seamless tube

Publications (1)

Publication Number Publication Date
WO2020039658A1 true WO2020039658A1 (en) 2020-02-27

Family

ID=69592615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017898 WO2020039658A1 (en) 2018-08-22 2019-04-26 Superelastic seamless tube manufacturing method

Country Status (1)

Country Link
WO (1) WO2020039658A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113166854A (en) * 2020-06-08 2021-07-23 南京江东工贸有限公司 Metal material and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502472A (en) * 2001-09-20 2005-01-27 メンリー コーポレイション Metal tube manufacturing method
JP2007054867A (en) * 2005-08-25 2007-03-08 Jaroc:Kk Swaging apparatus for hot-working

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502472A (en) * 2001-09-20 2005-01-27 メンリー コーポレイション Metal tube manufacturing method
JP2007054867A (en) * 2005-08-25 2007-03-08 Jaroc:Kk Swaging apparatus for hot-working

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113166854A (en) * 2020-06-08 2021-07-23 南京江东工贸有限公司 Metal material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP6842125B2 (en) Manufacturing method of superelastic seamless tube
JP4698946B2 (en) Metal tube manufacturing method
US20220033949A1 (en) Nickel-titanium-yttrium alloys with reduced oxide inclusions
JP5972789B2 (en) Stent manufacturing method
US5709021A (en) Process for the manufacture of metal tubes
EP2404636B1 (en) Core for guide wire and method of producing same
WO2020039658A1 (en) Superelastic seamless tube manufacturing method
EP2786814B1 (en) Method for manufacturing seamless pipe
JPS60141823A (en) Production of nonmagnetic steel working member
JP3719610B2 (en) Shape memory alloy tube and manufacturing method thereof
JP7368798B2 (en) Processing method of pure titanium metal material
JP2024024632A (en) Superelastic stents and methods of manufacturing superelastic stents, and alloy tubes and methods of manufacturing alloy tubes
JP2003213388A (en) METHOD OF PRODUCING SHAPE-MEMORY ALLOY BOLT WITH OUTER DIAMETER OF &gt;=3 mm
JP2008045167A (en) METHOD FOR PRODUCING Ni-BASED ALLOY PRODUCT
JPH0751733A (en) Manufacture of mo or mo alloy seamless capillary tube
JP2001096307A (en) Method for manufacturing shape memory alloy tube
JP5255474B2 (en) Method for producing iron-based shape memory alloy profile
JP2004308827A (en) Method of manufacturing spring
JP2022025817A (en) Copper alloy tube and manufacturing method thereof
Chen et al. Development of hot drawing process for nitinol Tube
JPH11156079A (en) Needle for sewing
JPH101762A (en) Production of nickel-titanium alloy material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852533

Country of ref document: EP

Kind code of ref document: A1