JP2024024632A - Superelastic stent, manufacturing method of superelastic stent, alloy tube and manufacturing method of alloy tube - Google Patents

Superelastic stent, manufacturing method of superelastic stent, alloy tube and manufacturing method of alloy tube Download PDF

Info

Publication number
JP2024024632A
JP2024024632A JP2023185058A JP2023185058A JP2024024632A JP 2024024632 A JP2024024632 A JP 2024024632A JP 2023185058 A JP2023185058 A JP 2023185058A JP 2023185058 A JP2023185058 A JP 2023185058A JP 2024024632 A JP2024024632 A JP 2024024632A
Authority
JP
Japan
Prior art keywords
outer diameter
stent
superelastic
expansion force
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023185058A
Other languages
Japanese (ja)
Inventor
清 山内
Kiyoshi Yamauchi
良介 松井
Ryosuke Matsui
美里 藤井
Misato Fujii
純男 喜瀬
Sumio Kise
哲史 垣生
Tetsushi Kakio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Techno Material Co Ltd
Original Assignee
Furukawa Techno Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Techno Material Co Ltd filed Critical Furukawa Techno Material Co Ltd
Publication of JP2024024632A publication Critical patent/JP2024024632A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stent with improved characteristics through a study of a comprehensive process technique from tube processing to stent processing, and a processing technique thereof.
SOLUTION: A superelastic stent is composed of a Ti-Ni-based alloy. In an expansion force hysteresis curve composed of a recovery curve showing an outer diameter expansion force at a diameter recovery of the superelastic stent from a minimum outer diameter to a maximum outer diameter, and a diameter reduction curve showing an outer diameter expansion force at a diameter reduction of the superelastic stent from the maximum outer diameter to the minimum outer diameter, an outer diameter expansion force of the superelastic stent at an outer diameter deformation volume 1/2 in the recovery curve is 0.50 or more with regard to an outer diameter expansion force of the superelastic stent at an outer diameter deformation volume 1/2 in the diameter reduction curve. A maximum rate of change of an outer diameter expansion force in the recovery curve of the superelastic stent within a range from the outer diameter deformation volume 1/2 to an outer diameter deformation volume 3/4 is 50.0% or less based on the outer diameter expansion force of the superelastic stent at the outer diameter deformation volume 1/2 in the recovery curve.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は狭窄血管治療に於ける経皮的血管形成術に用いるステントに関するもので、特に超弾性を示すTi-Ni合金を元材(素材)とした自己拡張ステントおよびその製造方法、ならびにステント用の元材である合金チューブおよびその製造方法に係るものである。 The present invention relates to a stent used in percutaneous angioplasty in the treatment of stenotic blood vessels, and in particular to a self-expanding stent made from a superelastic Ti-Ni alloy as a base material (material), a method for manufacturing the same, and a stent for use with the stent. The invention relates to an alloy tube, which is the base material for the alloy tube, and a method for manufacturing the same.

Ti-Ni合金は加えられた変形の回復が外力の解放と同時に起きる超弾性と加熱を必要とする形状記憶効果を示すことがよく知られている。この場合、前者は合金を形状回復温度より高い温度のオーステナイト相(高温相)で利用する時に起き、後者は低温のマルテンサイト相(低温相)の場合に起きる。 It is well known that Ti--Ni alloys exhibit superelasticity and a shape memory effect that requires heating, with recovery of an applied deformation occurring simultaneously with the release of an external force. In this case, the former occurs when the alloy is utilized in the austenite phase (high temperature phase) at a temperature higher than the shape recovery temperature, and the latter occurs when the alloy is utilized in the low temperature martensitic phase (low temperature phase).

ステント治療は近年急速に用途が拡大している医療技術である。ステントは狭窄血管拡張治療後の再狭窄を防ぐ為に血管内に留置する金属メッシュであり、カテーテル先端部に組込まれている。治療に際しては、カテーテルを狭窄部に導入した後カテーテルから引き離して管腔内壁に取り付ける。 Stent treatment is a medical technology whose applications are rapidly expanding in recent years. A stent is a metal mesh that is placed in a blood vessel to prevent restenosis after vasodilation treatment for stenosis, and is incorporated into the tip of a catheter. During treatment, the catheter is introduced into the stenosis, then separated from the catheter and attached to the inner wall of the lumen.

その機能は風船を用いたバルーン拡張タイプと自らのバネ特性を利用した自己拡張タイプに分けられる。前者は主に冠動脈狭窄疾患治療に使われ、加工前チューブの元材料は主としてステンレスやコバルト合金などである。後者は脳や下肢などの疾患治療用であって、元材料はTi-Ni系合金超弾性材が使われる。 Its functions can be divided into a balloon expansion type that uses balloons and a self-expansion type that uses its own spring characteristics. The former is mainly used for the treatment of coronary artery stenosis, and the original material of the tube before processing is mainly stainless steel or cobalt alloy. The latter is used to treat diseases such as the brain and lower limbs, and the original material is a superelastic Ti-Ni alloy.

Ti-Ni合金を初めとした形状記憶合金は、マルテンサイト変態の逆変態に付随して顕著な形状記憶効果を示し、また逆変態後の強変形によって生じる応力誘起マルテンサイト相の発現に伴い良好な超弾性を示すこともよく知られている。これらの機能は多くの形状記憶合金の中でも特にTi-Ni合金、Ti-Ni-X合金(X=V、Cr、Nb、Coなど)に顕著に現れ、医療、建築、自動車などに広く使われている。 Shape memory alloys such as Ti-Ni alloys exhibit a remarkable shape memory effect accompanying the reverse transformation of martensitic transformation, and also exhibit good shape memory effects due to the appearance of stress-induced martensitic phase caused by strong deformation after the reverse transformation. It is also well known that it exhibits superelasticity. These functions are particularly evident in Ti-Ni alloys and Ti-Ni-X alloys (X=V, Cr, Nb, Co, etc.) among many shape memory alloys, and they are widely used in medicine, architecture, automobiles, etc. ing.

Ti-Ni合金の体内留置の医療用途に当たっては、その成分適用をNi:53.5~57.5質量%、残:Tiと、非特許文献1、2で規定されている。このため商用のステント用途の元材チューブは全て前記規格のTi-Ni合金であり、Ti-Ni合金に第三元素Xを添加したTi-Ni-X合金は当事者間の協議となる。一方、検討資料では、自己拡張ステントにTiーNi合金を用いる提案が特許文献1、特許文献2等に示され、本発明同様に元材となるチューブの特性改善に係る提案が特許文献3に記載されており、ステント用途の元材のTiーNi合金をNb添加した合金にすることで特性改善すること、特許文献4に形状記憶と超弾性を組み合わせた傾斜機能性の付与など、多くが出されている。 For medical use of Ti--Ni alloys for indwelling in the body, the application of the components is specified in Non-Patent Documents 1 and 2 as Ni: 53.5 to 57.5% by mass, balance: Ti. For this reason, all base material tubes for commercial stent applications are Ti--Ni alloys of the above-mentioned standards, and Ti--Ni--X alloys in which a third element X is added to Ti--Ni alloys are subject to negotiation between the parties involved. On the other hand, in the study materials, a proposal to use a Ti-Ni alloy for a self-expanding stent is shown in Patent Document 1, Patent Document 2, etc., and a proposal related to improving the characteristics of the tube that is the base material like the present invention is shown in Patent Document 3. Many studies have been proposed, such as improving the properties of a Ti-Ni alloy, which is the base material for stents, by adding Nb to it, and imparting graded functionality by combining shape memory and superelasticity in Patent Document 4. It's being served.

ここで、ステントに加工する前のTi-Ni系合金チューブ関連技術についてさらに説明する。Ti-Ni系合金は工業規格(JIS)として多くが制定され、製品化の際の重要な技術資料として活用されている。 Here, the technology related to the Ti--Ni alloy tube before being processed into a stent will be further explained. Many Ti--Ni alloys have been established as industrial standards (JIS) and are used as important technical data when commercializing products.

非特許文献1では、管(チューブ)用途のTi-Ni合金の化学成分をNi:53.5~57.5質量%(48.5~52.5at%) 合金と定義している。 Non-Patent Document 1 defines the chemical composition of a Ti-Ni alloy for pipe (tube) use as Ni: 53.5 to 57.5 mass% (48.5 to 52.5 at%) alloy.

また、非特許文献3から、第三元素添加のTi-Ni-X合金(X=V、Cr、Co、Cu、Nb、Ta、Hf等)でも添加量によってはTi-Ni合金と同様の特性を示すことが知られている。 In addition, from Non-Patent Document 3, it is found that Ti-Ni-X alloys with addition of a third element (X = V, Cr, Co, Cu, Nb, Ta, Hf, etc.) have similar properties to Ti-Ni alloys depending on the amount added. is known to show.

チューブ加工技術に関しては、一般に、ステント向け元材の金属製のシームレスチューブは、金属棒に対してガンドリルを用いた穴あけ加工を行うことで製造する。次に、アスペクト比が大きい細径チューブの加工は、穴あけ加工材にマンドレル(心金)を挿入して複合材(チューブ+マンドレル)として圧延や伸延(伸線)加工を行うことで製造される。加工の際にチューブはマンドレルを加工パス毎に抜出し、さらに細径の場合は空引き伸線を組み合わせて加工し、直線矯正を目的として熱処理を行うことが多い。 Regarding tube processing technology, generally, a metal seamless tube, which is a base material for a stent, is manufactured by drilling holes in a metal rod using a gun drill. Next, small-diameter tubes with a large aspect ratio are manufactured by inserting a mandrel into the punched material and rolling or elongating (wire drawing) the composite material (tube + mandrel). . During processing, the tube is often processed by pulling out the mandrel after each processing pass, and in the case of a smaller diameter, using a combination of dry wire drawing and heat treatment for the purpose of straightening the tube.

他方、均一な断面形状を有する金属製チューブを製造する手段として、上述した穴あけ加工のチューブ材(元材)へ金属製のコア(心金)材挿入の複合(チューブ+コア)材とした後伸線して複合状態のチューブを形成し、複合材からコア材を除去してチューブとすることも知られている。しかし、こうした製造工程では、最終工程のコア材の除去が重大な問題として残る。伸線されたクラッドチューブのチューブ材とコア材は強固に密着しており、クラッドチューブの径が細いほど、また長さが長いほど、コア材を除去する際の摩擦抵抗が非常に大きくなり、単純にコア材を引き抜いて除去することは難しくなる。 On the other hand, as a means of manufacturing a metal tube with a uniform cross-sectional shape, a metal core (mandrel) material is inserted into the tube material (original material) after the above-mentioned hole processing to create a composite (tube + core) material. It is also known to draw wire to form a composite tube and then remove the core material from the composite material to form the tube. However, in such manufacturing processes, the removal of the core material in the final step remains a serious problem. The tube material and core material of a drawn clad tube are tightly adhered to each other, and the thinner the diameter of the clad tube and the longer the length, the greater the frictional resistance when removing the core material. It becomes difficult to simply pull out and remove the core material.

そのため、コア材を除去する方法として、チューブ材の融点よりも低い温度で選択的にコア材のみを溶解する方法や、コア材の再結晶温度以上で熱処理を行いながら引き伸ばして縮径することでコア材を引き抜きしやすくする方法等が提案されている。 Therefore, methods for removing the core material include selectively melting only the core material at a temperature lower than the melting point of the tube material, or stretching and reducing the diameter while performing heat treatment at a temperature higher than the recrystallization temperature of the core material. Methods have been proposed to make it easier to pull out the core material.

特許文献5では、元材にTi-Ni合金等の形状記憶合金を用いた金属製シームレスチューブの細径加工技術が記載されている。具体的には、金属管(元材)と同等の伸延性を有するコア材を用いて複合材を構成し、複合材を伸延処理して複合状態の線材(アセンブリ)を形成する。その後、複合材のコア材のみを引き伸ばして縮径させ、縮径されたコア材を引き出して金属製シームレスチューブを製造する。更に、複合チューブを700℃程度で熱処理をすることで、コア材の引き伸ばし処理を容易に行うことができる点が記載されている。 Patent Document 5 describes a technology for reducing the diameter of a metal seamless tube using a shape memory alloy such as a Ti--Ni alloy as the base material. Specifically, a composite material is constructed using a core material having the same extensibility as the metal tube (original material), and the composite material is stretched to form a wire rod (assembly) in a composite state. Thereafter, only the core material of the composite material is stretched to reduce its diameter, and the reduced diameter core material is pulled out to manufacture a metal seamless tube. Furthermore, it is stated that by heat-treating the composite tube at about 700° C., the core material can be easily stretched.

また、特許文献6には、形状記憶合金パイプ(チューブ)の製造方法が開示されている。形状記憶合金で形成された円筒に心金(マンドレル)を挿入し、この円筒と心金を一体的に減面加工し、熱処理後に心金を引抜く。本文献には、管状のニッケル-チタン形状記憶合金ブランクと、ステンレス鋼の芯との、管の材料(圧延し、溶接した、厚さの減少したシート)の形状記憶効果を利用した同時減面加工により、管を膨張させて芯を除去できるようにする技術が開示されている。さらに、ここではチューブの作製条件について記載があり、加工率15%以上、直線矯正熱処理500℃、20分であることが明記されている。 Further, Patent Document 6 discloses a method for manufacturing a shape memory alloy pipe (tube). A mandrel is inserted into a cylinder made of a shape memory alloy, the cylinder and mandrel are integrally subjected to area reduction processing, and the mandrel is pulled out after heat treatment. This document describes the simultaneous area reduction of a tubular nickel-titanium shape memory alloy blank and a stainless steel core using the shape memory effect of the tube material (rolled and welded sheet with reduced thickness). Techniques are disclosed that allow processing to expand the tube and remove the core. Further, the tube manufacturing conditions are described here, and it is specified that the processing rate is 15% or more, and the straightening heat treatment is performed at 500° C. for 20 minutes.

特開平06-054913号公報Japanese Patent Application Publication No. 06-054913 特開平08-000738号公報Japanese Patent Application Publication No. 08-000738 特願2004-062664号公報Patent Application No. 2004-062664 特願2005-148995号公報Patent Application No. 2005-148995 米国特許第5709021号明細書US Patent No. 5709021 特開昭62-199218号公報Japanese Unexamined Patent Application Publication No. 1992-199218

JIS H-7107-2009「Ti-Ni形状記憶合金線、条及び管」JIS H-7107-2009 "Ti-Ni shape memory alloy wire, strip and tube" ASTM F2063-18「Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Device and Surgical Implants」ASTM F2063-18 “Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Device and Surgical Implan ts” 山内清、「最高作動温度を示す形状記憶合金」、まてりあ、1996年、35巻11号、p.1195-1198Kiyoshi Yamauchi, “Shape memory alloy exhibiting maximum operating temperature”, Materia, 1996, Vol. 35, No. 11, p. 1195-1198

Ti-Ni合金の超弾性は合金結晶の相変態に伴って発現し、その変態には伸線や圧延で生じた加工ひずみによって封じ込まれた動きをその後のひずみ緩和熱処理によって回復させる必要がある。ガイドワイヤーやステントなど実用の医療機器では、それぞれ目的に応じた時効処理条件(加工ひずみを残した再結晶温度以下の処理)が設定されている。また、Ti-Ni合金素材にはコイルステント用ワイヤーとレーザー加工ステント用チューブが挙げられるが、本発明が検討する解決課題は、冠動脈ステント、末梢系ステントなどに幅広く適用可能なチューブに係るものである。 The superelasticity of Ti-Ni alloys develops as a result of phase transformation of the alloy crystals, and for this transformation to occur, it is necessary to recover the motion trapped by processing strain caused by wire drawing and rolling through subsequent strain-relaxation heat treatment. . For practical medical devices such as guide wires and stents, aging treatment conditions (treatment below the recrystallization temperature that retains processing strain) are set depending on the purpose. In addition, Ti-Ni alloy materials include coil stent wire and laser-processed stent tubes, but the problem to be solved by the present invention is related to tubes that can be widely applied to coronary stents, peripheral stents, etc. be.

ステントは外径0.3mm以上6.0mm以下の素材チューブを独自設計に基づきレーザー溝加工後、外径1.5mm以上30.0mm以下のサイズに拡張処理した後、その半径方向の力学的特性(ステント拡張力ヒステリシス)をステント力学特性装置(例えばMSI-RX550/650)で求めて性能を評価する。 The stent is a material tube with an outer diameter of 0.3 mm or more and 6.0 mm or less, which is laser-grooved based on a unique design, and then expanded to an outer diameter of 1.5 mm or more and 30.0 mm or less, and then its mechanical properties in the radial direction are (Stent expansion force hysteresis) is determined using a stent mechanical characteristic device (eg, MSI-RX550/650) to evaluate performance.

ここで現状ステント加工の問題は、現行の加工プロセスには好適特性付与の選択肢がない。即ち、医療メーカーは、材料メーカーから提供される直線矯正処理済みチューブに既定の拡張処理を繰り返して所望形状のステントとするばかりで、特性改善など用途に応じた加工処理検討が出来ないことである。 The problem with current stent processing is that the current processing process does not have options for imparting suitable properties. In other words, medical manufacturers simply repeat the predetermined expansion process on the straightened tubes provided by material manufacturers to create stents with the desired shape, and are unable to consider processing processes tailored to the intended use, such as improving properties. .

前述したチューブならびにステントの上記文献からも明らかなように、チューブの作製とステントの作製は別々に検証がなされている。例えば上記文献で示すような変態温度や伸線性能のみに注目してチューブを作製するとステント加工前の製造条件にて加工率が不十分になることや、チューブ時点での直線矯正加工の温度を500℃以上付与してしまうことが通常条件となっている。 As is clear from the above-mentioned literature on tubes and stents, the manufacture of tubes and the manufacture of stents have been verified separately. For example, if a tube is manufactured by focusing only on the transformation temperature and wire drawing performance as shown in the above literature, the processing rate may be insufficient under the manufacturing conditions before stent processing, or the temperature of the straightening process at the time of the tube may become insufficient. The usual condition is to apply the temperature to 500°C or more.

図4に市販輪ゴムと本実施試験超弾性材(超弾性ステント)の一軸引っ張り試験の応力ヒステリシス曲線を示した。図4(a)に示す市販輪ゴムは、弾性体の典型であり、該ヒステリシス曲線にはひずみ負荷で生じた格子間摩擦などで減じられたロスが曲り(たわみ)として現れる。また、図4(b)に示す本実施試験超弾性材は、ひずみ負荷で誘起された超弾性に伴う平坦カーブを持つが、図4(a)に比べ前述のロスが大きい巾広のヒステリシス曲線を示す。 FIG. 4 shows the stress hysteresis curves of the uniaxial tensile test of the commercially available rubber band and the superelastic material (superelastic stent) tested in this implementation. The commercially available rubber band shown in FIG. 4(a) is a typical elastic body, and the loss reduced by interlattice friction caused by strain loading appears as bending (deflection) in the hysteresis curve. In addition, the superelastic material in this practical test shown in Figure 4(b) has a flat curve due to superelasticity induced by strain loading, but it has a wider hysteresis curve with the above-mentioned loss compared to Figure 4(a). shows.

ここに本発明の解決すべき重要課題は、これらバネ材が持つ必然的なヒステリシスの改善検討であり、該ヒステリシス巾を縮小させることである。 The important problem to be solved by the present invention is to study the improvement of the inevitable hysteresis that these spring materials have, and to reduce the hysteresis width.

前述の解決課題に対して本発明では、これまでの商用材熱処理チューブ活用から脱却した材料であるチューブ加工からステント加工に及ぶ包括的なプロセス技術の検討によって、特性が改善されたステントとその加工技術を提供する。 In order to solve the above problems, the present invention has developed a stent with improved properties and its processing by examining comprehensive process technology ranging from tube processing to stent processing, which is a material that has departed from the conventional use of commercially available heat-treated tubes. Provide technology.

[1] Ti-Ni系合金からなる超弾性ステントであって、前記超弾性ステントの最小外径から最大外径への回復径時の外径拡張力を示す回復曲線、および前記超弾性ステントの最大外径から最小外径への縮径時の外径拡張力を示す縮径曲線からなる拡張力ヒステリシス曲線において、前記回復曲線における前記超弾性ステントの外径変形量1/2での外径拡張力が、前記縮径曲線における前記超弾性ステントの外径変形量1/2での外径拡張力に対して、0.50以上であり、前記回復曲線における前記超弾性ステントの外径変形量1/2から外径変形量3/4までの範囲内の外径拡張力の最大変化率は、前記回復曲線における前記超弾性ステントの外径変形量1/2での外径拡張力を基準として、50.0%以内である、超弾性ステント。
[2] Ti-Ni系合金からなり、上記[1]に記載の超弾性ステントの元材である、合金チューブ。
[3] 超弾性ステントの製造方法であって、Ti-Ni系合金からなる合金チューブを超弾性ステントに加工するステント加工処理後に行う熱処理において、熱処理温度が475℃より高く前記合金チューブの再結晶温度未満であり、熱処理時間が1分以上20分以内である、超弾性ステントの製造方法。
[4] 前記熱処理温度が475℃より高く500℃以下である、上記[3]に記載の超弾性ステントの製造方法。
[5] 前記合金チューブの前記ステント加工処理における加工率が30%超以上65%以下である、上記[3]または[4]に記載の超弾性ステントの製造方法。
[6] 加工上がり後に490℃以下の直線矯正熱処理を行い、Ti-Ni系合金からなる合金チューブを製造する、合金チューブの製造方法。
[1] A superelastic stent made of a Ti-Ni alloy, a recovery curve showing the outer diameter expansion force at the time of recovery from the minimum outer diameter to the maximum outer diameter of the superelastic stent, and a recovery curve of the superelastic stent. In an expansion force hysteresis curve consisting of a diameter reduction curve showing the outer diameter expansion force during diameter reduction from the maximum outer diameter to the minimum outer diameter, the outer diameter at 1/2 of the outer diameter deformation amount of the superelastic stent in the recovery curve; The expansion force is 0.50 or more with respect to the outer diameter expansion force at 1/2 the amount of outer diameter deformation of the superelastic stent in the diameter reduction curve, and the outer diameter deformation of the superelastic stent in the recovery curve The maximum rate of change in the outer diameter expansion force within the range from 1/2 to 3/4 of the outer diameter deformation is the outer diameter expansion force at 1/2 of the outer diameter deformation of the superelastic stent in the recovery curve. As a reference, a superelastic stent within 50.0%.
[2] An alloy tube made of a Ti-Ni alloy, which is the base material for the superelastic stent described in [1] above.
[3] A method for manufacturing a superelastic stent, in which heat treatment is performed after stent processing for processing an alloy tube made of a Ti-Ni alloy into a superelastic stent, in which the heat treatment temperature is higher than 475° C. and recrystallization of the alloy tube is performed. A method for producing a superelastic stent, wherein the temperature is lower than that and the heat treatment time is from 1 minute to 20 minutes.
[4] The method for manufacturing a superelastic stent according to [3] above, wherein the heat treatment temperature is higher than 475°C and lower than 500°C.
[5] The method for manufacturing a superelastic stent according to [3] or [4] above, wherein the processing rate of the alloy tube in the stent processing is more than 30% and less than 65%.
[6] A method for manufacturing an alloy tube, in which an alloy tube made of a Ti-Ni alloy is manufactured by performing straightening heat treatment at 490° C. or lower after processing.

本発明によれば、力学特性に優れる超弾性ステントとその製造方法、ならびにステント用の元材である合金チューブおよびその製造方法を提供することができる。 According to the present invention, it is possible to provide a superelastic stent with excellent mechanical properties, a method for manufacturing the same, an alloy tube that is a raw material for the stent, and a method for manufacturing the same.

本発明の超弾性ステントの拡張力ヒステリシス曲線を説明する概略図である。FIG. 3 is a schematic diagram illustrating an expansion force hysteresis curve of the superelastic stent of the present invention. 超弾性ステントの拡張力ヒステリシス曲線の結果であり、(a)は実施例1の超弾性ステントの拡張力ヒステリシス曲線、(b)は比較例4の超弾性ステントの拡張力ヒステリシス曲線、(c)は実施例2および比較例6の超弾性ステントの拡張力ヒステリシス曲線を示す。These are the results of the expansion force hysteresis curves of the superelastic stent, (a) is the expansion force hysteresis curve of the superelastic stent of Example 1, (b) is the expansion force hysteresis curve of the superelastic stent of Comparative Example 4, and (c) is the expansion force hysteresis curve of the superelastic stent of Comparative Example 4. shows the expansion force hysteresis curves of the superelastic stents of Example 2 and Comparative Example 6. 本発明に係る自己拡張ステント概念図であり、(a)は合金チューブ加工上り、(b)は留置径拡張処理を示す。FIG. 2 is a conceptual diagram of a self-expanding stent according to the present invention, in which (a) shows an alloy tube after processing, and (b) shows an indwelling diameter expansion process. 本発明に係る超弾性ステントの引っ張り試験の応力ヒステリシス曲線であり、(a)は市販輪ゴムの応力ヒステリシス曲線、(b)はTi-Ni合金超弾性材500℃処理超弾性ステントの応力ヒステリシス曲線を示す。These are the stress hysteresis curves of the tensile test of the superelastic stent according to the present invention, (a) is the stress hysteresis curve of a commercially available rubber band, and (b) is the stress hysteresis curve of the superelastic stent treated with Ti-Ni alloy superelastic material at 500°C. show.

以下、実施形態に基づき詳細に説明する。 Hereinafter, it will be explained in detail based on the embodiment.

(合金組成の範囲)
本発明の合金チューブや超弾性ステントはTi-Ni系合金からなる。Ti-Ni系合金は、加えられた変形の回復が外力の解放と同時に起きる超弾性を示す。この場合、本発明で用いられるTi-Ni系合金の主な構造は、形状回復温度より高い温度のオーステナイト相(高温相)となる。そのため、本発明で求められるTi-Ni系合金は、オーステナイト相となるNi濃度が55.6質量%以上56.3質量%以下である。さらに、本発明で求める特性の範囲内である場合、V、Cr、Co、Cu、Nb、Ta、Hfの1種又は2種以上を総量で0.1~2.0質量%を含有し、残りがTi及び不可避不純物からなる成分組成を有するTi-Ni系合金でもよい。
(Range of alloy composition)
The alloy tube and superelastic stent of the present invention are made of a Ti--Ni alloy. Ti--Ni alloys exhibit superelasticity in which recovery from applied deformation occurs simultaneously with release of external force. In this case, the main structure of the Ti--Ni alloy used in the present invention is an austenite phase (high temperature phase) at a temperature higher than the shape recovery temperature. Therefore, the Ti--Ni alloy required by the present invention has a Ni concentration that forms an austenite phase of 55.6% by mass or more and 56.3% by mass or less. Furthermore, if the properties are within the range of the characteristics sought in the present invention, the total amount of one or more of V, Cr, Co, Cu, Nb, Ta, and Hf is contained in a total amount of 0.1 to 2.0% by mass, A Ti--Ni alloy having a composition in which the remainder consists of Ti and unavoidable impurities may also be used.

そのなかでも、Ti-Ni系合金は、所望の加工性ならびに拡張力を実現するために、Cを0質量%超0.040質量%以下、Oを0質量%超0.040質量%以下含有し、残部をTiおよび不可避不純物で構成することが好ましい。ここで、不可避不純物とは、製造工程上不可避的に含まれうる含有レベルの不純物を意味する。例えば、不可避不純物として、Nを0.005質量%以下含んでもよい。 Among them, Ti-Ni alloys contain more than 0% by mass of C and less than or equal to 0.040% by mass, and more than 0% by mass of O and not more than 0.040% by mass in order to achieve the desired workability and expansion force. However, it is preferable that the remainder be composed of Ti and unavoidable impurities. Here, the unavoidable impurity means a level of impurity that may be unavoidably included in the manufacturing process. For example, 0.005% by mass or less of N may be included as an unavoidable impurity.

Ni(ニッケル)は、本発明において、超弾性特性を発揮させるために必要な元素であるが、Ni含有量55.6質量%以上56.3質量%以下の範囲を外れると、体温においてTi-Ni系合金の超弾性の発現が難しくなる。このため、特に変態温度を重視する医療用途でかつ体内に留置する際にTi-Ni系合金を使用する場合には、Ni含有量は55.6質量%以上56.3質量%以下の範囲が好ましい。 Ni (nickel) is an element necessary to exhibit superelastic properties in the present invention, but if the Ni content is outside the range of 55.6% by mass or more and 56.3% by mass or less, Ti- It becomes difficult for Ni-based alloys to exhibit superelasticity. For this reason, when using a Ti-Ni alloy for medical purposes where the transformation temperature is particularly important and when indwelling the body, the Ni content should be in the range of 55.6% by mass or more and 56.3% by mass or less. preferable.

C(炭素)は、非金属介在物を形成する元素である。C含有量が多くなると、母相中に存在する非金属介在物の数が増加し、Ti-Ni系合金(製品)中に占める非金属介在物の占有率が高くなって、疲労破壊が生じ易くなる。このため、C含有量はできるだけ少なくすることが好ましい。具体的には、特に非特許文献2の規定に基づき、C含有量を0.040質量%以下とすることが好ましい。 C (carbon) is an element that forms nonmetallic inclusions. When the C content increases, the number of nonmetallic inclusions present in the matrix increases, and the occupation rate of nonmetallic inclusions in the Ti-Ni alloy (product) increases, making fatigue fracture more likely to occur. . For this reason, it is preferable to reduce the C content as much as possible. Specifically, based on the provisions of Non-Patent Document 2, the C content is preferably 0.040% by mass or less.

O(酸素)は、非金属介在物を形成する元素である。O含有量が多くなると、非金属介在物の粒子径が大きくなって、疲労破壊が生じ易くなる。このため、O含有量はできるだけ少なくすることが好ましい。具体的には、特に非特許文献2の規定に基づき、O含有量を0.040質量%以下とすることが好ましい。 O (oxygen) is an element that forms nonmetallic inclusions. When the O content increases, the particle size of nonmetallic inclusions increases, making fatigue fracture more likely to occur. For this reason, it is preferable to reduce the O content as much as possible. Specifically, based on the provisions of Non-Patent Document 2, it is preferable that the O content is 0.040% by mass or less.

なお、Ti-Ni系合金の合金組成の測定は従来公知の分析装置にて測定が可能であり、非特許文献2に規定がある。本発明は非特許文献2に準拠する測定値をTi-Ni系合金の合金組成範囲として示したものである。本発明にて使用したTi-Ni系合金の合金組成については表1に示す。また、後述する対応変化度CRならびにカーブ対比度FRと合金組成の関係を調査した結果を表5に示す。 The alloy composition of the Ti--Ni alloy can be measured using a conventionally known analyzer, and is prescribed in Non-Patent Document 2. In the present invention, measured values based on Non-Patent Document 2 are shown as the alloy composition range of the Ti--Ni alloy. The alloy composition of the Ti--Ni alloy used in the present invention is shown in Table 1. Further, Table 5 shows the results of investigating the relationship between the correspondence change degree CR and the curve contrast degree FR, which will be described later, and the alloy composition.

Figure 2024024632000002
Figure 2024024632000002

(合金チューブのサイズおよび超弾性ステントのサイズ)
本発明の超弾性ステントは、元材(素材)である本発明の合金チューブ(素管)を使用する。本発明の合金チューブに対して独自設計に基づきレーザー溝加工を施し、その後に拡張処理(特性処理)を付与することで、本発明の超弾性ステントとなる。例えば、外径1.5mm以上2.0mm以下の合金チューブを拡張して、外径10.0mm程度の超弾性ステントにすることが多い。一方、本発明では、サイズ変更による特性変化の有無の確認を目的として、外径0.3mmおよび外径6.0mmの合金チューブについても特性評価を実施し、拡張処理後の超弾性ステントの外径はそれぞれ1.5mmおよび30.0mmとした。
(alloy tube size and superelastic stent size)
The superelastic stent of the present invention uses the alloy tube (raw tube) of the present invention as a base material. The superelastic stent of the present invention is obtained by laser grooving the alloy tube of the present invention based on a unique design and then applying expansion treatment (characteristic treatment). For example, an alloy tube with an outer diameter of 1.5 mm or more and 2.0 mm or less is often expanded to form a superelastic stent with an outer diameter of about 10.0 mm. On the other hand, in the present invention, in order to confirm the presence or absence of changes in characteristics due to size changes, we also conducted characteristic evaluations on alloy tubes with an outer diameter of 0.3 mm and an outer diameter of 6.0 mm. The diameters were 1.5 mm and 30.0 mm, respectively.

本発明の合金チューブは、上記のTi-Ni系合金からなり、本発明の超弾性ステントの元材である。 The alloy tube of the present invention is made of the above-mentioned Ti--Ni alloy and is the base material of the superelastic stent of the present invention.

図1は、本発明の超弾性ステントの拡張力ヒステリシス曲線を説明する概略図である。本発明の超弾性ステントは、超弾性ステントの最小外径から最大外径への回復径時の外径拡張力を示す回復曲線、および超弾性ステントの最大外径から最小外径への縮径時の外径拡張力を示す縮径曲線からなる拡張力ヒステリシス曲線において、回復曲線における超弾性ステントの外径変形量1/2(2分の1)(点イ)での外径拡張力が、縮径曲線における超弾性ステントの外径変形量1/2(2分の1)(点ハ)での外径拡張力に対して、0.50以上(カーブ対比度FR)である。さらに、本発明の超弾性ステントは、上記拡張力ヒステリシス曲線において、回復曲線における超弾性ステントの外径変形量1/2(2分の1)(点イ)から外径変形量3/4(4分の3)(点ロ)までの範囲内の外径拡張力の最大変化率(変化度CR)は、回復曲線における超弾性ステントの外径変形量1/2(2分の1)(点イ)での外径拡張力を基準として、50.0%以内である。すなわち、本発明の超弾性ステントは、超弾性ステントの拡張力ヒステリシス曲線において、(点イの外径拡張力)/(点ハの外径拡張力)が0.50以上、かつ、点イでの外径拡張力を基準として、点イから点ロまでの範囲内の外径拡張力の最大変化率((点イの外径拡張力から最も離れた外径拡張力)×100/(点イの外径拡張力))が50.0%以内である。 FIG. 1 is a schematic diagram illustrating the expansion force hysteresis curve of the superelastic stent of the present invention. The superelastic stent of the present invention has a recovery curve showing the outer diameter expansion force at the time of recovery from the minimum outer diameter of the superelastic stent to the maximum outer diameter, and a recovery curve showing the outer diameter expansion force at the time of recovery from the minimum outer diameter of the superelastic stent to the minimum outer diameter of the superelastic stent. In the expansion force hysteresis curve consisting of the diameter contraction curve showing the outer diameter expansion force at , is 0.50 or more (curve contrast ratio FR) with respect to the outer diameter expansion force at the amount of outer diameter deformation 1/2 (1/2) (point c) of the superelastic stent in the diameter reduction curve. Furthermore, the superelastic stent of the present invention has an outer diameter deformation of 1/2 (1/2) (point A) of the superelastic stent in the recovery curve to 3/4 (point A) in the expansion force hysteresis curve. The maximum rate of change (change rate CR) in the outer diameter expansion force within the range up to 3/4) (point B) is the outer diameter deformation amount 1/2 (1/2) (1/2) of the superelastic stent in the recovery curve. It is within 50.0% based on the outer diameter expansion force at point A). That is, in the superelastic stent expansion force hysteresis curve, (outer diameter expansion force at point A)/(outer diameter expansion force at point C) is 0.50 or more, and at point A, the superelastic stent of the present invention has Based on the outer diameter expansion force of point A, the maximum change rate of the outer diameter expansion force within the range from point A to point B ((outer diameter expansion force farthest from the outer diameter expansion force of point A) x 100/(point The outside diameter expansion force)) is within 50.0%.

回復曲線における外径変形量1/2(点イ)および外径変形量3/4(点ロ)とは、回復曲線における超弾性ステントの最大外径から最小外径を引いた値を1としたときの、最小外径から1/2(2分の1)拡径(回復)した点、および最小外径から3/4(4分の3)拡径(回復)した点である。また、縮径曲線における外径変形量1/2(点ハ)とは、縮径曲線における超弾性ステントの最大外径から最小外径を引いた値を1としたときの、最大外径から1/2(2分の1)縮径した点である。 The amount of outer diameter deformation 1/2 (point A) and the amount of outer diameter deformation 3/4 (point B) in the recovery curve are the values obtained by subtracting the minimum outer diameter from the maximum outer diameter of the superelastic stent in the recovery curve. The points are the point where the diameter has expanded (recovered) by 1/2 (1/2) from the minimum outer diameter and the point where the diameter has expanded (recovered) by 3/4 (3/4) from the minimum outer diameter. In addition, the amount of outer diameter deformation 1/2 (point C) in the diameter reduction curve is defined as the maximum outer diameter when the value obtained by subtracting the minimum outer diameter from the maximum outer diameter of the superelastic stent in the diameter reduction curve is 1. This is the point where the diameter is reduced by 1/2 (1/2).

(対比度FR、変化度CR)
例えば、外径2.0mmの超弾性ステントを例にすると、下記の式-1および式-2に基づいて、拡張力ヒステリシス曲線ではステント加工前のサイズである外径1.6mmまで縮径させた時の縮径曲線ならびに回復曲線における外径6.3mm時点と外径8.6mm時点での外径拡張力(N)の測定を行うことで特性評価を実施できる。
(Comparison degree FR, change degree CR)
For example, taking a superelastic stent with an outer diameter of 2.0 mm, the expansion force hysteresis curve will reduce the diameter to 1.6 mm, which is the size before stent processing, based on Equations 1 and 2 below. Characteristics can be evaluated by measuring the outer diameter expansion force (N) at an outer diameter of 6.3 mm and at an outer diameter of 8.6 mm in the diameter reduction curve and recovery curve.

拡張処理ストローク1/2点(点イと点ハ)の算出式については、拡張前外径A、拡張後外径Bの場合
A+(B-A)/2・・・式-1
よって、拡張前外径Aが1.6mmで拡張後外径Bが11mmの場合、外径6.3mm時点となる。
Regarding the calculation formula for the expansion processing stroke 1/2 point (point A and point C), when the outer diameter before expansion is A and the outer diameter after expansion is B, A+(B-A)/2...Formula-1
Therefore, when the outer diameter A before expansion is 1.6 mm and the outer diameter B after expansion is 11 mm, the outer diameter becomes 6.3 mm.

同様に、拡張処理ストローク3/4点(点ロ)の算出式については、拡張前外径A、拡張後外径Bの場合
A+(B-A)×3/4・・・式-2
よって、拡張前外径Aが1.6mmで拡張後外径Bが11mmの場合、外径8.6mm時点となる。
Similarly, the formula for calculating the 3/4 point (point B) of the expansion stroke is as follows: A+(B-A)×3/4...Formula-2 when the outer diameter before expansion is A and the outer diameter after expansion is B
Therefore, when the outer diameter A before expansion is 1.6 mm and the outer diameter B after expansion is 11 mm, the outer diameter becomes 8.6 mm.

なお、拡張後の評価レベルを同一にする目的として、ステント加工前チューブ外径φ0.3mm材では1.5mmまで拡径し、測定時の最小外径は0.2mm、最大外径は1.6mmとしたため、縮径曲線1ならびに回復曲線2の0.9mm径と回復曲線2の1.25mm径にて、ステント加工前φ6.0mm材では30.0mmまで拡径し、測定時の最小外径は5.0mm、最大外径は31mmとしたため縮径曲線1ならびに回復曲線2の18.0mm径と回復曲線2の24.5mm径にて拡張力を測定し、評価を実施できる。 In addition, in order to make the evaluation level after expansion the same, the tube outer diameter φ0.3 mm before stent processing was expanded to 1.5 mm, the minimum outer diameter at the time of measurement was 0.2 mm, and the maximum outer diameter was 1.5 mm. 6 mm, the 0.9 mm diameter of diameter reduction curve 1 and recovery curve 2, and the 1.25 mm diameter of recovery curve 2 expands the diameter to 30.0 mm for the 6.0 mm diameter material before stent processing, and the minimum outer diameter at the time of measurement. Since the diameter was 5.0 mm and the maximum outer diameter was 31 mm, the expansion force could be measured and evaluated at the diameter reduction curve 1, the 18.0 mm diameter of the recovery curve 2, and the 24.5 mm diameter of the recovery curve 2.

本発明の超弾性ステントのサイズは使用するTi-Ni合金チューブの線径に依存するが、例えばφ1.6mmのTi-Ni合金チューブを使用した場合、超弾性ステントのサイズはφ5.0mm~φ30.0mmまで製造が可能となる。本発明では特性処理前Ti-Ni合金チューブサイズφ0.3mm~6.0mmを使用し拡張して超弾性ステントの作製を行った。超弾性ステントサイズφ1.5mm~φ30.0mmの範囲で、本発明で求める特性を満たすことを確認している。 The size of the superelastic stent of the present invention depends on the wire diameter of the Ti-Ni alloy tube used, but for example, when a Ti-Ni alloy tube with a diameter of 1.6 mm is used, the size of the superelastic stent is between 5.0 mm and 30 mm. Manufacturing is possible down to .0mm. In the present invention, a Ti--Ni alloy tube with a size of φ0.3 mm to 6.0 mm before characteristic treatment was used and expanded to produce a superelastic stent. It has been confirmed that the characteristics required by the present invention are satisfied in a superelastic stent size range of φ1.5 mm to φ30.0 mm.

また、本発明の超弾性ステントの製造方法は、Ti-Ni系合金からなる合金チューブを超弾性ステントに加工するステント加工処理後に行う熱処理において、熱処理温度は、475℃より高く合金チューブの再結晶温度未満であり、好ましくは475℃を超えて500℃以下であり、より好ましくは490℃以上500℃以下であり、熱処理時間は1分以上20分以内である。具体的には、合金チューブに対するステント加工処理後に実施する熱処理を上記温度範囲で上記時間に亘って行う。こうして、力学特性に優れる超弾性ステントを製造できる。本発明の超弾性ステントの製造方法で得られる超弾性ステントは、上記した本発明の超弾性ステントである。また、本発明の超弾性ステントの製造方法で用いられるTi-Ni系合金からなる合金チューブは、上記した本発明の合金チューブであることが好ましい。 Further, in the method for manufacturing a superelastic stent of the present invention, in the heat treatment performed after the stent processing treatment for processing an alloy tube made of a Ti-Ni alloy into a superelastic stent, the heat treatment temperature is higher than 475°C and the alloy tube is recrystallized. The temperature is preferably higher than 475°C and lower than 500°C, more preferably higher than 490°C and lower than 500°C, and the heat treatment time is between 1 minute and 20 minutes. Specifically, the heat treatment performed after the stent processing on the alloy tube is performed at the above temperature range for the above period of time. In this way, a superelastic stent with excellent mechanical properties can be manufactured. The superelastic stent obtained by the method for manufacturing a superelastic stent of the present invention is the above-described superelastic stent of the present invention. Further, the alloy tube made of a Ti--Ni alloy used in the method for manufacturing a superelastic stent of the present invention is preferably the alloy tube of the present invention described above.

また、超弾性ステントの力学特性を向上する観点から、ステント加工処理後に実施する熱処理において、熱処理温度が475℃より高く500℃以下であることが好ましい。 Further, from the viewpoint of improving the mechanical properties of the superelastic stent, in the heat treatment performed after the stent processing, the heat treatment temperature is preferably higher than 475°C and lower than 500°C.

また、合金チューブのステント加工処理における加工率は30%超以上65%以下であることが好ましい。ここで、合金チューブの加工率とは、JIS H0500:1998に記載される通り、加工によって減少した断面積の原断面積に対する割合である。加工率は通常加工前の材料の断面積Aoと加工後の断面積Aの差を加工前の材料の断面積Aoで割った百分率(%)(加工率=(Ao-A)/Ao×100%)で表す。本発明では熱処理工程前に測定した加工前複合材(空引き伸線の場合はチューブ材)の断面積Aoと加工後の断面積Aを評価し、上記計算式を用いて加工率とした。加工率30%以下では、製品の加工は可能であるが、加工率が不十分となるため、本発明で求める拡張力の変化度CR(Change of Radial-force)および対比度FR(Radial Force Ratio)の値がいずれも不足となる。一方、65%を超えた加工率では、外径サイズによって割れや断線が発生し加工条件が安定しない。これは、本発明の各工程における処理温度が限られた温度範囲に限定されるためである。 Further, the processing rate in the stent processing of the alloy tube is preferably more than 30% and less than 65%. Here, the processing rate of the alloy tube is the ratio of the cross-sectional area reduced by processing to the original cross-sectional area, as described in JIS H0500:1998. The processing rate is usually the percentage (%) obtained by dividing the difference between the cross-sectional area Ao of the material before processing and the cross-sectional area A after processing by the cross-sectional area Ao of the material before processing (processing rate = (Ao - A) / Ao × 100 Expressed in %). In the present invention, the cross-sectional area Ao of the pre-processed composite material (tube material in the case of dry wire drawing) measured before the heat treatment process and the cross-sectional area A after processing were evaluated, and the processing rate was determined using the above calculation formula. If the processing rate is 30% or less, it is possible to process the product, but the processing rate will be insufficient. ) are both insufficient. On the other hand, if the processing rate exceeds 65%, cracks or wire breaks may occur depending on the outer diameter size, making the processing conditions unstable. This is because the processing temperature in each step of the present invention is limited to a limited temperature range.

また、本発明の合金チューブの製造方法は、加工上がり後に490℃以下の直線矯正熱処理を行い、Ti-Ni系合金からなる合金チューブを製造する。こうして得られた合金チューブは、上記の超弾性ステントの製造方法に好適に用いられる。合金チューブは、Ti-Ni系合金からなり、好ましくはシームレスである。また、合金チューブの製造方法において、直線矯正熱処理は最終工程であることが好ましい。本発明の合金チューブの製造方法で得られる合金チューブは、上記した本発明の合金チューブである。 Further, in the method for manufacturing an alloy tube of the present invention, after processing, a straightening heat treatment is performed at 490° C. or lower to manufacture an alloy tube made of a Ti--Ni alloy. The alloy tube thus obtained is suitably used in the method for manufacturing a superelastic stent described above. The alloy tube is made of a Ti--Ni alloy and is preferably seamless. Further, in the method for manufacturing an alloy tube, it is preferable that the straightening heat treatment is the final step. The alloy tube obtained by the method for manufacturing an alloy tube of the present invention is the alloy tube of the present invention described above.

また、本発明の合金チューブの製造方法において、拡径毎の処理温度は、ステント加工後に実施する特性処理温度を基に、475℃未満が好ましく、380℃未満がより好ましい。また、拡径毎の処理温度は、低すぎるとステント拡張処理ができないため、150℃以上が好ましい。 Furthermore, in the method for producing an alloy tube of the present invention, the treatment temperature for each diameter expansion is preferably less than 475°C, more preferably less than 380°C, based on the characteristic treatment temperature performed after stent processing. Further, the treatment temperature for each diameter expansion is preferably 150° C. or higher, since the stent expansion treatment cannot be performed if it is too low.

以上説明した本発明によれば、超弾性ステントの元材である合金チューブを加工集合組織(加工ひずみ)導入の冷間加工上がりや温間加工上がりとすること、もしくは冷間加工上がりや温間加工上がりのチューブへ直線矯正処理温度150℃以上490℃以下を施し、さらにその後のステント加工後の特性処理の温度条件は475℃を超えて合金チューブの再結晶温度未満の条件とすることで、力学特性に優れる超弾性ステントとその製造方法を提供することができる。 According to the present invention described above, the alloy tube, which is the base material of a superelastic stent, can be made after cold working or warm working by introducing a working texture (processing strain), or after cold working or warm working. By subjecting the processed tube to a linear straightening treatment at a temperature of 150°C or higher and 490°C or lower, and furthermore, the temperature conditions for the subsequent characteristic treatment after stent processing are higher than 475°C and lower than the recrystallization temperature of the alloy tube. A superelastic stent with excellent mechanical properties and a method for manufacturing the same can be provided.

ここで、冷間加工上がりとは特性処理前直線矯正処理における温度調整がなしであることを示す。そのため、冷間加工上がりの例については表2~3中にて特性処理前直線処理の欄において「なし」と表示している。 Here, cold working indicates that there is no temperature adjustment in the straightening treatment before the characteristic treatment. Therefore, in Tables 2 and 3, "None" is shown in the column of linear treatment before characteristic treatment for examples after cold working.

本発明では、特にステント加工前の加工条件や直線矯正処理条件ならびにステント加工後の特性処理における温度域ならびに積算時間の制御によって、超弾性ステントの優れた特性の発現が可能であることを明らかにできたものである。 In the present invention, we have clarified that it is possible to express the excellent characteristics of a superelastic stent by controlling the processing conditions and straightening treatment conditions before stent processing, as well as the temperature range and integrated time in the characteristic treatment after stent processing. It was made.

以上、実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments have been described above, the present invention is not limited to the above embodiments, but includes all aspects included in the concept of the present invention and the scope of the claims, and may be variously modified within the scope of the present invention. be able to.

次に、実施例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, Examples and Comparative Examples will be described, but the present invention is not limited to these Examples.

表1~5に示すように、合金番号、外径(加工率;60%、50%、40%、30%)を有する合金チューブを用いた。特許文献3に示されるようにシームレスTi-Ni合金チューブを作製し、製造条件としては特許文献6に示されるような心金といわれる棒材を元材へ投入し、加工する方法にて製造を行った。ここで、細径の場合には複合材から心金材が抜けなくなるため、場合により通常知られている製造方法である1パスごとに心金材を挿入し複合材とするマンドレル伸線や空引き伸線を行い所定のサイズまでチューブ作製を行った。表2~5中、RTは室温である。また、上述のように、表2~3における「なし」とは、特性処理前直線矯正処理における温度調整がなしであり、冷間加工上がりである。 Alloy tubes having alloy numbers and outer diameters (processing rates: 60%, 50%, 40%, 30%) as shown in Tables 1 to 5 were used. As shown in Patent Document 3, a seamless Ti-Ni alloy tube is produced, and the manufacturing conditions are as shown in Patent Document 6, in which a bar material called a mandrel is added to the base material and processed. went. If the diameter is small, the core material cannot be removed from the composite material, so in some cases, the conventional manufacturing method, which involves inserting the core material in each pass to make the composite material, may be carried out using mandrel drawing or empty wire drawing. A tube was produced to a predetermined size by wire drawing. In Tables 2 to 5, RT is room temperature. Furthermore, as described above, "none" in Tables 2 and 3 means that there was no temperature adjustment in the straightening treatment before the characteristic treatment, and the product was cold worked.

実施例は加工率40%、50%および60%の冷間加工上り材もしくは同様の加工率で150℃~280℃にて温間加工を行ったものである。本発明材チューブは加工上がり、もしくは温間加工上がり材が含まれるが、さらには加工後の直線矯正処理として150℃~490℃の範囲で熱処理した試験材も含まれる。そのうえ、上記の条件で作製した本発明のチューブを用いてステント加工中に特性処理を施すことで本発明のステントを得た。上述のように、特性処理の温度条件は、475℃を超えて再結晶温度未満であり、475℃を超えて500℃以下が好ましく、490℃以上500℃以下がさらに好ましい。ここで、特性処理中の熱処理の積算保持時間は材料の線径に大きく依存するが、1~20分が好ましく、20分を超える保持時間は適さない。 The examples are cold-worked materials with processing rates of 40%, 50%, and 60%, or warm-worked materials at similar processing rates at 150° C. to 280° C. The material tubes of the present invention include processed materials or warm processed materials, but also include test materials that have been heat-treated in the range of 150° C. to 490° C. as straightening treatment after processing. Furthermore, the stent of the present invention was obtained by subjecting the tube of the present invention produced under the above conditions to characteristic treatment during stent processing. As mentioned above, the temperature conditions for the characteristic treatment are higher than 475°C and lower than the recrystallization temperature, preferably higher than 475°C and lower than 500°C, and more preferably higher than 490°C and lower than 500°C. Here, the cumulative retention time of the heat treatment during the characteristic treatment largely depends on the wire diameter of the material, but is preferably 1 to 20 minutes, and a retention time exceeding 20 minutes is not suitable.

比較例6、比較例7および比較例8は、φ2.0mm肉厚0.15mmTi-56.1質量%Ni合金チューブを使用し、加工条件・直線矯正処理条件は不明であるが、その後のステント加工中条件は本発明と同様の条件で作製した。比較材の特性処理条件は500℃として、積算保持時間はそれぞれ30分、15分、5分とした。 Comparative Example 6, Comparative Example 7, and Comparative Example 8 used a Ti-56.1 mass% Ni alloy tube with a diameter of 2.0 mm and a wall thickness of 0.15 mm, and although the processing conditions and straightening treatment conditions are unknown, the subsequent stent The processing conditions were similar to those of the present invention. The characteristics treatment conditions for the comparative materials were 500° C., and the cumulative holding times were 30 minutes, 15 minutes, and 5 minutes, respectively.

合金チューブに対するステント加工では、直線矯正処理後、本発明者保持デザインをファイバーレーザーによってステント加工上がり(参考図3(a))とした。合金チューブをレーザー加工後、遂次的なステント拡張処理を実施した。ここでは、拡径は外径2.0mmから外径3.0mmのように、外径約1mmずつ拡径毎370℃、約3分保持にて処理を実施した。上述のように、拡径毎の処理温度については、ステント加工後に実施する特性処理温度を基に、475℃未満が好ましく、380℃未満がより好ましい。また、拡径毎の処理温度は、低すぎるとステント拡張処理ができないため、150℃以上が好ましい。 In the stent processing for the alloy tube, after straightening treatment, the inventor's retained design was processed into a stent using a fiber laser (reference figure 3(a)). After laser processing the alloy tube, successive stent expansion treatments were performed. Here, the diameter was expanded from an outer diameter of 2.0 mm to an outer diameter of 3.0 mm, and the treatment was carried out by holding the temperature at 370° C. for about 3 minutes each time the outer diameter was increased by about 1 mm. As described above, the processing temperature for each diameter expansion is preferably less than 475°C, more preferably less than 380°C, based on the characteristic processing temperature performed after stent processing. Further, the treatment temperature for each diameter expansion is preferably 150° C. or higher, since the stent expansion treatment cannot be performed if it is too low.

その後、拡径工程が終了した後に、475℃を超えて500℃以下の温度範囲、積算時間1~20分の条件にて特性処理を行い、留置外径10.0mmの超弾性ステント(参考図3(b))を得た。 Then, after the diameter expansion process was completed, characteristics were processed under the conditions of a temperature range of over 475°C and no more than 500°C for an integrated time of 1 to 20 minutes. 3(b)) was obtained.

超弾性ステントは、ステント試験装置MSI-RX550/650を用いて径方向ステント拡張力測定を行い、超弾性ステントの拡張力ヒステリシス曲線を求めた。図2(a)に実施例1の超弾性ステントの拡張力ヒステリシス曲線を示す。ここで、拡張力ヒステリシス測定時における外径の条件は、例えば2.0mmの合金チューブを溝穴(スロット)レーザー加工後拡張径10.0mmの超弾性ステントを作製した場合、縮径時最小外径はスロットスペース分チューブより少し小さく縮み、拡張力測定回復時外径確認の為少し大きめに広げてデータ測定を行った。これは、ステントサイズよりも多少誤差を持たせる方が、ステントサイズの時の特性挙動を確認できるためである。そこで、2.0mmから拡径して作製した該留置外径10.0mmの超弾性ステントの本発明該曲線範囲はφ1.6mmとする縮径曲線、および再度11mmを該留置径とする回復曲線として測定を行った。また、変化度CR、及び対比度FRについては、拡張力ヒステリシス曲線測定時の最大外径点と最小外径時点の値から1/2時点(点イ、点ハ)および3/4時点(点ロ)の位置を確認することとした。これは、ステントに加工されたのちのサンプルも同等条件で測定が可能となるよう検討した結果である。例えば、本発明品はステント加工する前から最小寸法(加工前チューブサイズ)が分かっているため、縮径時最小外径と回復時最大外径を用いて点イ、点ロ、点ハの測定点を決定することができる。一方、ステント加工が完了した製品を測定する場合、元材であるチューブの寸法は不明となる。そこで、最小外径と最大外径の数値決定する場合の決定条件を以下に示す。加工前のチューブサイズの確認が困難な場合は、レーザー加工後のステントを縮径させて縮径できる限界サイズを縮径時最小外径、拡径した際に拡張力(N)が0となる時点の外径を拡張力測定回復時最大外径として、点イ、点ロ、点ハを決定する。 The radial stent expansion force of the superelastic stent was measured using a stent testing device MSI-RX550/650, and the expansion force hysteresis curve of the superelastic stent was determined. FIG. 2(a) shows the expansion force hysteresis curve of the superelastic stent of Example 1. Here, the conditions for the outer diameter when measuring expansion force hysteresis are, for example, when a superelastic stent with an expanded diameter of 10.0 mm is fabricated after slot laser processing of a 2.0 mm alloy tube, the minimum outside diameter during diameter contraction is The diameter was shrunk to a slightly smaller size than the tube due to the slot space, and when the expansion force was measured and recovered, the diameter was expanded slightly to confirm the outer diameter and data was measured. This is because it is better to allow some error than the stent size so that the characteristic behavior of the stent size can be confirmed. Therefore, the curve range of the present invention of the superelastic stent with an indwelling outer diameter of 10.0 mm, which was produced by increasing the diameter from 2.0 mm, is a diameter reduction curve with the indwelling diameter of 1.6 mm, and a recovery curve with the indwelling diameter of 11 mm again. Measurements were made as follows. In addition, regarding the degree of change CR and the degree of contrast FR, the values at the maximum outer diameter point and the minimum outer diameter point when measuring the expansion force hysteresis curve are measured at 1/2 point (point A, point C) and 3/4 point (point C). We decided to confirm the location of (b). This is the result of consideration to make it possible to measure samples under the same conditions after they have been processed into stents. For example, with the product of the present invention, the minimum dimension (pre-processing tube size) is known before stent processing, so points A, B, and C are measured using the minimum outer diameter at the time of diameter reduction and the maximum outer diameter at recovery. points can be determined. On the other hand, when measuring a product that has been processed into a stent, the dimensions of the tube, which is the original material, are unknown. Therefore, the determining conditions for numerically determining the minimum outer diameter and the maximum outer diameter are shown below. If it is difficult to confirm the tube size before processing, the limit size that can be reduced by reducing the diameter of the stent after laser processing is the minimum outer diameter when the stent is reduced, and the expansion force (N) is 0 when the stent is expanded. Points A, B, and C are determined by using the outer diameter at this point as the maximum outer diameter at the time of recovery of expansion force measurement.

これら試験データは臨床の事前評価に活用され、特に回復曲線2は血管内でのカテーテル解放後のステント動きそのものであり、目標留置部位での拡張力と血管内移動の拡張力径追従性を見ることができる。 These test data are utilized for clinical preliminary evaluation. In particular, recovery curve 2 is the movement of the stent itself after the catheter is released within the blood vessel, and it examines the expansion force at the target insertion site and the ability to follow the expansion force diameter of the intravascular movement. be able to.

(ステント拡張力の持続性)
図2(a)の示す実施例1の超弾性ステントの回復曲線は、拡張処理ストロークφ1.6からφ11.0mmの1/2(1.6+(11.0-1.6)/2)、留置ステント径中点のφ6.3mm近傍で前述のたわみ最大を示す。生じた該回復曲線2の傾斜は、φ6.3mm前後で概ね10°から5°へと変曲し、拡張処理ストロークの3/4(1.6+(11.0-1.6)×3/4)のφ8.6mmを越えて持続する。体内留置後のステント拡張力の持続性検証のため、たわみ量の変化確認が可能となるφ6.3mmからφ8.6mmへ移動の径変化に対応する拡張力(N)の変化度(CR)を次式-3によって求めた。
CR={(φ6.3(N)(点イ)-φ8.6(N)(点ロ))/φ8.6(N)(点ロ)}×100・・・式-3
(Sustainability of stent expansion force)
The recovery curve of the superelastic stent of Example 1 shown in FIG. 2(a) is 1/2 (1.6+(11.0-1.6)/2) of the expansion stroke from φ1.6 to φ11.0 mm. The above-mentioned maximum deflection is shown near the midpoint of the diameter of the indwelling stent, which is φ6.3 mm. The slope of the resulting recovery curve 2 changes from approximately 10° to 5° around φ6.3 mm, and is 3/4 (1.6 + (11.0 - 1.6) x 3/ 4) Lasts beyond φ8.6mm. In order to verify the sustainability of the stent expansion force after indwelling, we measured the degree of change (CR) in the expansion force (N) corresponding to the diameter change from φ6.3mm to φ8.6mm, which makes it possible to confirm changes in the amount of deflection. It was calculated using the following formula-3.
CR={(φ6.3(N) (point A)-φ8.6(N)(point B))/φ8.6(N)(point B)}×100...Formula-3

因みに、実施例1の超弾性ステントの変化度CRは、{(0.58N-0.40N/0.40N}×100=45.0%であった。 Incidentally, the change degree CR of the superelastic stent of Example 1 was {(0.58N−0.40N/0.40N}×100=45.0%).

一方、図2(b)に示す450℃・15分特性処理ステント(比較例4)は、該回復曲線2の傾斜はほぼ8°一定であり、留置ステントの拡張力維持可能な血管径範囲を狭くすると考えられる。前述と同じく、たわみ量の変化確認が可能となるφ6.3mmからφ8.6mmへの拡張力(N)変化度CRを求めると、比較例4の変化度CRは、{(0.75N-0.47N)/0.47N}×100=59.6%であった。表2~3には式-3に基づく本実施ステントの拡張力(N)CR%を示した。 On the other hand, in the stent treated with characteristics at 450°C for 15 minutes (Comparative Example 4) shown in FIG. It may be possible to narrow it down. Similarly to the above, when determining the degree of change CR in expansion force (N) from φ6.3 mm to φ8.6 mm, which makes it possible to confirm the change in the amount of deflection, the degree of change CR in Comparative Example 4 is {(0.75N-0 .47N)/0.47N}×100=59.6%. Tables 2 and 3 show the expansion force (N) CR% of the present stent based on Equation-3.

(ステント拡張力の高強度化)
超弾性ステントは、合金チューブに対して本発明者独自デザインを図3の如くにレーザー溝加工品(a)とした後セル状構造(b)に拡張した。該拡張力はステントの径方向発生力であり、そこには前記図3の留置ステント拡張処理の中で込められた、曲げ、ねじり、圧縮などの多軸的変形、並びにステントデザインが反映され、図4(b)同等材ワイヤー引っ張り試験の一軸応力評価とは異なった。即ち、図2の本試験ステントの拡張力ヒステリシス曲線では図4(a)輪ゴム同様のたわみカーブが見られ、図4(b)Ti-Ni合金超弾性材ワイヤーで示されるような超弾性特有の平坦カーブはなかった。
(Higher strength of stent expansion force)
The superelastic stent was created by making an alloy tube into a laser-grooved product (a) based on the inventor's original design as shown in FIG. 3, and then expanding it into a cellular structure (b). The expansion force is a force generated in the radial direction of the stent, which reflects the multiaxial deformation such as bending, torsion, and compression incorporated in the indwelling stent expansion process shown in FIG. 3, as well as the stent design. The results were different from the uniaxial stress evaluation in the wire tensile test of the equivalent material shown in Figure 4(b). That is, in the expansion force hysteresis curve of the test stent shown in FIG. 2, a deflection curve similar to that of a rubber band in FIG. There were no flat curves.

本実施では各ステント拡張力試験データの無次元化に向け、各ステント拡張力ヒステリシス曲線の回復曲線2と縮径曲線1との近接度評価として、回復曲線2のステント径φ6.3mmにおける縮径曲線1拡張力(N)(点ハ)に対する回復曲線2拡張力(N)(点イ)対比度(FR)を次式-4によって求めた。
対比度FR=φ6.3(N)(点イ)/φ6.3(N)(点ハ)・・・式-4
In this implementation, in order to make each stent expansion force test data dimensionless, we evaluated the proximity of each stent expansion force hysteresis curve to recovery curve 2 and diameter reduction curve 1. The contrast ratio (FR) of recovery curve 2 expansion force (N) (point A) to curve 1 expansion force (N) (point C) was determined by the following equation-4.
Contrast degree FR = φ6.3 (N) (point A) / φ6.3 (N) (point C)...Equation-4

例えば、実施例2の対比度FRは、0.73N/1.19N=0.61であった。 For example, the degree of contrast FR in Example 2 was 0.73N/1.19N=0.61.

特性処理ステントの拡張力は、合金チューブ加工率および処理時間に大きく影響を受ける。60%、50%および40%加工率の超弾性ステントは、合金チューブの加工率の低下に伴ってその拡張力を低くする。また、真直処理済み商用材ステント(比較例6、比較例7、比較例8)の拡張力は、合金チューブの直線矯正処理温度(詳細は不明であるが、再結晶温度を超えていると推定される)に支配され、その後のステント加工後の追加処理(5分、15分および30分)での拡張力差異は認めらない、即ち、特性処理後の500℃処理品におけるミニマム水準と云える。更に、図2(c)の実施例2と比較例6のステント比較図から、実施例2のステントが比較例6に対し2~3倍の拡張力を持つことが判る。実施例ステントのカーブ対比度FRは、前述の式-4から求めて表2~3に記した。 The expansion force of characteristically treated stents is greatly influenced by the alloy tube processing rate and processing time. Superelastic stents with 60%, 50% and 40% processing rates have lower expansion forces as the processing rate of the alloy tube decreases. In addition, the expansion force of the straightened commercial material stents (Comparative Example 6, Comparative Example 7, Comparative Example 8) is estimated to exceed the straightening treatment temperature of the alloy tube (the details are unknown, but it is estimated that it exceeds the recrystallization temperature). ), and no difference in expansion force was observed during additional treatments (5 minutes, 15 minutes, and 30 minutes) after subsequent stent processing. I can do it. Furthermore, from the comparison diagram of the stents of Example 2 and Comparative Example 6 in FIG. 2(c), it can be seen that the stent of Example 2 has an expansion force two to three times that of Comparative Example 6. The curve contrast ratio FR of the Example stents was determined from the above-mentioned formula-4 and is listed in Tables 2 and 3.

本発明の目的はステント高強度化に資する技術提案であり、本発明の範囲は前記式-4のカーブ対比度FRが比較例6、比較例7、比較例8のステントを越える0.50以上、および前記式-3の回復曲線2の拡張力変化度CRが50.0%以下であるとした。比較例は、前述双方もしくはどちらかを満たさないとして、FR<0.50、RC>50.0%のステントが確認された。本発明において、FR≧0.50、RC≦50.0%の両方の特性を満たすものを実施例とし、上記いずれかまたはその両方を満たさないものを比較例とした。 The purpose of the present invention is to propose a technology that contributes to increasing the strength of a stent, and the scope of the present invention is that the curve contrast ratio FR of the above formula-4 is 0.50 or more, which exceeds the stents of Comparative Examples 6, 7, and 8. , and the degree of change in expansion force CR of the recovery curve 2 of Equation-3 above was 50.0% or less. As a comparative example, a stent with FR<0.50 and RC>50.0% was confirmed as not satisfying either or both of the above conditions. In the present invention, examples that satisfy both the characteristics of FR≧0.50 and RC≦50.0% are defined as examples, and those that do not satisfy either or both of the above properties are defined as comparative examples.

Figure 2024024632000003
Figure 2024024632000003

Figure 2024024632000004
Figure 2024024632000004

Figure 2024024632000005
Figure 2024024632000005

Figure 2024024632000006
Figure 2024024632000006

(本発明の適用)
本発明の趣旨は前述の通り、ステント拡張処理技術によってステントに平坦回復カーブを持つ超弾性と任意な拡張力を発現させることである。本発明では高強度化を目指して特許請求範囲を拡張力、回復曲線傾斜角、処理条件など数値限定したが、目的に応じてその逸脱・変更を精査吟味することは当該者であれば容易に出来るものと考える。また、本発明では同様に超弾性を示す、Ti-Ni合金のNiもしくはTiの一部を元素Cu、Fe、Cr、Al、V、Pd、Ag、Mn、Co、Nb、Hf、Zrの内の一種もしくは二種以上でX置換したTi-Ni-X合金は、本発明用途を含めて広く適用可能である。
(Application of the present invention)
As mentioned above, the gist of the present invention is to make a stent exhibit superelasticity with a flat recovery curve and arbitrary expansion force using a stent expansion treatment technique. In the present invention, the scope of the patent claim is limited numerically, such as expansion force, recovery curve inclination angle, processing conditions, etc., with the aim of achieving high strength, but it is easy for the person concerned to carefully examine deviations and changes depending on the purpose. I think it's possible. In addition, in the present invention, a part of Ni or Ti of the Ti-Ni alloy, which also exhibits superelasticity, is replaced with one of the elements Cu, Fe, Cr, Al, V, Pd, Ag, Mn, Co, Nb, Hf, and Zr. Ti--Ni--X alloys in which X is substituted with one or more of the following are widely applicable including the use of the present invention.

1 縮径曲線
2 回復曲線
イ 変形量1/2時点における回復曲線の拡張力
ロ 変形量3/4時点における回復曲線2の拡張力
ハ 変形量1/2時点における縮径曲線1の拡張力
1. Diameter reduction curve 2. Recovery curve (a) Expansion force of the recovery curve at the time of 1/2 of the deformation amount (b) Expansion force of the recovery curve 2 at the time of 3/4 of the deformation amount (c) Expansion force of the diameter reduction curve 1 at the time of the deformation amount of 1/2

Claims (6)

Ti-Ni系合金からなる超弾性ステントであって、
前記超弾性ステントの最小外径から最大外径への回復径時の外径拡張力を示す回復曲線、および前記超弾性ステントの最大外径から最小外径への縮径時の外径拡張力を示す縮径曲線からなる拡張力ヒステリシス曲線において、
前記回復曲線における前記超弾性ステントの外径変形量1/2での外径拡張力が、前記縮径曲線における前記超弾性ステントの外径変形量1/2での外径拡張力に対して、0.50以上であり、
前記回復曲線における前記超弾性ステントの外径変形量1/2から外径変形量3/4までの範囲内の外径拡張力の最大変化率は、前記回復曲線における前記超弾性ステントの外径変形量1/2での外径拡張力を基準として、50.0%以内である、
超弾性ステント。
A superelastic stent made of a Ti-Ni alloy,
A recovery curve showing the outer diameter expansion force when the superelastic stent recovers from the minimum outer diameter to the maximum outer diameter, and an outer diameter expansion force when the superelastic stent shrinks from the maximum outer diameter to the minimum outer diameter. In the expansion force hysteresis curve consisting of the diameter reduction curve,
The outer diameter expansion force of the superelastic stent at an outer diameter deformation of 1/2 in the recovery curve is greater than the outer diameter expansion force of the superelastic stent at an outer diameter deformation of 1/2 in the diameter reduction curve. , 0.50 or more,
The maximum rate of change in the outer diameter expansion force within the range from 1/2 to 3/4 of the outer diameter deformation of the superelastic stent in the recovery curve is the outer diameter of the superelastic stent in the recovery curve. It is within 50.0% based on the outer diameter expansion force at 1/2 the amount of deformation.
Superelastic stent.
Ti-Ni系合金からなり、請求項1に記載の超弾性ステントの元材である、合金チューブ。 An alloy tube that is made of a Ti--Ni alloy and is a base material for the superelastic stent according to claim 1. 超弾性ステントの製造方法であって、
Ti-Ni系合金からなる合金チューブを超弾性ステントに加工するステント加工処理後に行う熱処理において、
熱処理温度が475℃より高く前記合金チューブの再結晶温度未満であり、
熱処理時間が1分以上20分以内である、
超弾性ステントの製造方法。
A method of manufacturing a superelastic stent, the method comprising:
In the heat treatment performed after stent processing to process an alloy tube made of Ti-Ni alloy into a superelastic stent,
The heat treatment temperature is higher than 475°C and lower than the recrystallization temperature of the alloy tube,
The heat treatment time is from 1 minute to 20 minutes,
Method of manufacturing superelastic stents.
前記熱処理温度が475℃より高く500℃以下である、請求項3に記載の超弾性ステントの製造方法。 The method for manufacturing a superelastic stent according to claim 3, wherein the heat treatment temperature is higher than 475°C and lower than 500°C. 前記合金チューブの前記ステント加工処理における加工率が30%超以上65%以下である、請求項3または4に記載の超弾性ステントの製造方法。 The method for manufacturing a superelastic stent according to claim 3 or 4, wherein the processing rate of the alloy tube in the stent processing is more than 30% and less than 65%. 加工上がり後に490℃以下の直線矯正熱処理を行い、Ti-Ni系合金からなる合金チューブを製造する、合金チューブの製造方法。
A method for manufacturing an alloy tube, in which an alloy tube made of a Ti--Ni alloy is manufactured by performing straightening heat treatment at 490°C or less after processing.
JP2023185058A 2021-05-29 2023-10-27 Superelastic stent, manufacturing method of superelastic stent, alloy tube and manufacturing method of alloy tube Pending JP2024024632A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021126224 2021-05-29
JP2021126224 2021-05-29
JP2022088031A JP2022183405A (en) 2021-05-29 2022-05-30 Superelastic stent and method for manufacturing superelastic stent, and alloy tube and method for manufacturing alloy tube

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022088031A Division JP2022183405A (en) 2021-05-29 2022-05-30 Superelastic stent and method for manufacturing superelastic stent, and alloy tube and method for manufacturing alloy tube

Publications (1)

Publication Number Publication Date
JP2024024632A true JP2024024632A (en) 2024-02-22

Family

ID=84332390

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022088031A Pending JP2022183405A (en) 2021-05-29 2022-05-30 Superelastic stent and method for manufacturing superelastic stent, and alloy tube and method for manufacturing alloy tube
JP2023185058A Pending JP2024024632A (en) 2021-05-29 2023-10-27 Superelastic stent, manufacturing method of superelastic stent, alloy tube and manufacturing method of alloy tube

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022088031A Pending JP2022183405A (en) 2021-05-29 2022-05-30 Superelastic stent and method for manufacturing superelastic stent, and alloy tube and method for manufacturing alloy tube

Country Status (1)

Country Link
JP (2) JP2022183405A (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143342B2 (en) * 2005-05-23 2013-02-13 Necトーキン株式会社 Autonomous functional stent
JP6842125B2 (en) * 2018-08-22 2021-03-17 株式会社ジャロック Manufacturing method of superelastic seamless tube
JP7157702B2 (en) * 2019-05-29 2022-10-20 株式会社古河テクノマテリアル NiTi-based alloy material, method for producing NiTi-based alloy material, and wire or tube made of NiTi-based alloy material

Also Published As

Publication number Publication date
JP2022183405A (en) 2022-12-09

Similar Documents

Publication Publication Date Title
US7258753B2 (en) Superelastic guiding member
US5637089A (en) Superelastic guiding member
EP1545679B1 (en) Radiopaque nitinol alloys for medical devices
JP5972789B2 (en) Stent manufacturing method
JPH04292174A (en) Superelastic guidance component
US5709021A (en) Process for the manufacture of metal tubes
JP6842125B2 (en) Manufacturing method of superelastic seamless tube
JP5089803B2 (en) Core wire for guide wire and manufacturing method thereof
JP2006006926A (en) Biocompatible metal bearing structure made of solid solution alloy
EP3538681B1 (en) Ni-free beta ti alloys with shape memory and super-elastic properties
JP3725900B2 (en) Guide wire with superelastic distal portion
JP2024024632A (en) Superelastic stent, manufacturing method of superelastic stent, alloy tube and manufacturing method of alloy tube
EP3034638A1 (en) MEDICAL Ti-Ni ALLOY
WO2020039658A1 (en) Superelastic seamless tube manufacturing method
WO2008095671A2 (en) Method of making cobalt-based alloy tubes having enhanced mechanical performance characteristics and a tube formed by the method
US20030044307A1 (en) Palladium/platinum alloy
JP4711282B2 (en) Functionally graded alloy and guide wire using the same
JP2022021277A (en) Guide wire and manufacturing method for the same
JP2001096307A (en) Method for manufacturing shape memory alloy tube
JP2014036817A (en) Functional metal tube member and method for manufacturing the same