WO2020039613A1 - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
WO2020039613A1
WO2020039613A1 PCT/JP2019/005818 JP2019005818W WO2020039613A1 WO 2020039613 A1 WO2020039613 A1 WO 2020039613A1 JP 2019005818 W JP2019005818 W JP 2019005818W WO 2020039613 A1 WO2020039613 A1 WO 2020039613A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
heat
unit
light emitting
housing
Prior art date
Application number
PCT/JP2019/005818
Other languages
English (en)
French (fr)
Inventor
悠介 吉田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2020538018A priority Critical patent/JP6945077B2/ja
Publication of WO2020039613A1 publication Critical patent/WO2020039613A1/ja
Priority to US17/174,623 priority patent/US11156350B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0006Coupling light into the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels

Definitions

  • the present invention relates to a light source device in which a heating element and a heat sink in a light source unit are connected by a heat pipe.
  • an observation target object is often a dark place in a body cavity or the inside of a device, and therefore, illumination light is applied to the target object.
  • a light source device is used.
  • This type of light source device uses a solid-state light-emitting element such as an LED (Light Emitting Diode) or a laser light source as a light source.
  • a solid-state light-emitting element such as an LED (Light Emitting Diode) or a laser light source as a light source.
  • each solid-state light emitting element serving as a heat source is cooled. Cooling unit is provided inside the housing.
  • the cooling unit in the conventional light source device is usually configured by components such as a cooling fan, a heat sink, and a heat pipe.
  • the heat sink protrudes in the height direction from the light source unit having the solid state light emitting elements in the housing of the light source device, and a useless space is generated.
  • the limited housing size of the light source device cannot be effectively used, and it is particularly difficult to reduce the size of the light source device in the height direction.
  • the present invention has been made in view of the above circumstances, and provides a light source device capable of effectively utilizing a limited housing size by sufficiently suppressing heat generation from a light source while suppressing the enlargement of the housing. It is intended to provide.
  • a light source device includes a housing, a light source unit arranged at a predetermined height from a bottom surface of the housing, a heating element arranged in the light source unit, and a bottom surface of the housing.
  • a heat sink arranged at a predetermined height, and a heat pipe connected to the heating element and the heat sink, and when the bottom surface of the housing is used as a reference surface, Is set lower than the height of the light source unit from the reference plane.
  • External view of endoscope and light source device Block diagram showing main functions of the light source device A perspective view showing a configuration of a lens frame.
  • Explanatory diagram showing drive characteristics of a light source cooling fan Explanatory drawing showing the vertical arrangement of each unit in the light source device
  • Explanatory drawing showing the arrangement of the cooling unit in the light source device
  • Explanatory diagram showing the relationship between the height of each part
  • the light source device 1 of the present embodiment is a device that generates and emits illumination light for illuminating an object to be observed using the endoscope 100.
  • the light source device 1 is formed of a substantially rectangular parallelepiped housing, and has various components inside.
  • the endoscope 100 is a device configured to image an observation site inside a subject such as a living body or a structure, and to output and display an image based on the acquired image data using a display device (not shown). is there. It should be noted that the configuration of the endoscope 100 itself is well known, and a description thereof will be omitted assuming that the same endoscope as that conventionally used is applied.
  • a light source device 1 used by being connected to the endoscope 100 includes a connector portion 2 which is a connection portion for connecting a plug portion 101 provided on the endoscope 100 and a front surface of a housing. Have. One end 102 a of an optical fiber cable 102 inserted into the endoscope 100 is provided in the plug section 101. Light emitted from the light source device 1 is transmitted through the optical fiber cable 102 to one end 102 a of the optical fiber cable 102, and the other end of the optical fiber cable 102 provided at the distal end of the endoscope 100. Light is emitted forward from 102b to illuminate the observation target.
  • the light source device 1 has a plurality of light sources (not shown in FIG. 1) inside as described later, and is connected to the connector unit 2 as a bundle of light emitted from each of these light sources. The light is emitted toward one end 102a of the optical fiber cable 102 of the plug portion 101 that has been set.
  • the light source device 1 includes a cooling unit 20 for cooling a plurality of light sources (not shown in FIG. 1) as heating elements.
  • a housing 1a forming an outer shell of the light source device 1 has an air inlet serving as an opening for introducing air as a cooling medium that passes through the cooling unit 20 disposed inside the housing 1a into the housing. 20a and an exhaust port 20b as an opening for discharging air inside the housing to the outside of the housing.
  • the air inlet 20 a is formed on one side surface of the housing 1 a of the light source device 1.
  • the exhaust port 20b is formed on a second side surface (the back surface in the present embodiment) of the housing 1a of the light source device 1 adjacent to one side surface on which the intake port 20a is formed. Then, in the housing 1a of the light source device 1, the cooling medium is formed such that air as a cooling medium flows in from the intake port 20a, passes through the cooling unit 20, and is discharged from the exhaust port 20b (details will be described later). .
  • an intake port 20a is provided on one side surface of the light source device 1, and an exhaust port 20b is provided on a rear surface which is a second side surface adjacent thereto.
  • the location where the intake port 20a and the exhaust port 20b are provided is not limited to the example of the present embodiment. That is, the intake port 20a and the exhaust port 20b may be provided on any of the front, back, top, bottom, top, and both sides of the housing 1a of the light source device 1. Further, the intake port 20a and the exhaust port 20b may be provided on the same surface of the housing 1a of the light source device 1.
  • the front surface of the housing 1a of the light source device 1 refers to the surface on which the connector portion 2 is provided.
  • the back surface refers to the surface facing the front surface.
  • two surfaces adjacent to the front surface and the rear surface are referred to as side surfaces.
  • FIG. 2 shows only the main components of the electrical components and the optical components of the light source device 1.
  • the components are arranged in a plane so that the relationship between them can be easily grasped.
  • the light source device 1 includes a light source unit 10, a power supply unit 3, a control unit 4, a cooling fan 6 in a housing, and a light source cooling fan forming a part of a cooling unit 20. 26 and 27.
  • a heat radiating portion heat sink
  • a heat transfer portion heat pipe
  • the power supply unit 3 is a power supply unit that supplies power for driving each component unit of the light source device 1.
  • the power supply unit 3 is shown at a position distant from the light source unit 10, but the power supply unit 3 is actually arranged below the light source unit 10 as described later.
  • the control unit 4 includes a control unit 4a and a light source driving unit 4b.
  • the control unit 4a includes a circuit board on which a control circuit for controlling the operation of the light source device 1 based on a predetermined program is mounted.
  • a microcomputer having a CPU, a ROM, a RAM, a hard disk drive (HDD), It has an auxiliary storage device such as SSD (solid state drive) and an input / output interface.
  • the light source driving unit 4b includes a circuit board on which an electric circuit for driving a solid-state light emitting element (described later) of the light source unit 10 to emit illumination light in accordance with an instruction signal from the control unit 4a is mounted.
  • the light source unit 10 includes a plurality of light emitting units as a plurality of light sources which are heating elements.
  • Each light-emitting unit is, for example, provided with an insulating layer on a metal (aluminum or copper) and further overlaid a conductor such as copper on the insulating layer (metal-based substrate), each centered on a different wavelength. It is configured by mounting a solid-state light emitting element such as a laser diode or a light emitting diode (LED) that emits light in a predetermined wavelength range.
  • a solid-state light emitting element such as a laser diode or a light emitting diode (LED) that emits light in a predetermined wavelength range.
  • the light source unit 10 includes, for example, a light emitting unit 11a having a red (red) LED, a light emitting unit 11b having an orange (orange) LED, and a green LED as a light emitting unit having a solid state light emitting element.
  • the color (wavelength) of light emitted from each solid state light emitting element is not limited to these.
  • Each solid state light emitting element in the plurality of light emitting units is electrically connected to the light source driving unit 4b, and is driven and controlled by the light source driving unit 4b. That is, light emission of the plurality of solid state light emitting elements is controlled to be turned on and off by the instruction signal output from the light source driving unit 4b. Further, the plurality of solid state light emitting elements change the light intensity to be emitted according to the instruction signal output from the light source driving unit 4b.
  • Each light emitted from the plurality of light emitting units (11a, 11b, 11c, 11d, 11e) is converted into parallel light by the corresponding plurality of collimator lenses (13a, 13b, 13c, 13d, 13e) and then dichroic.
  • the light is guided to the condenser lens 14 by the mirrors (12a, 12b, 12c, 12d).
  • the plurality of collimator lenses (13a, 13b, 13c, 13d, 13e), the dichroic mirrors (12a, 12b, 12c, 12d), and the condenser lens 14 include a plurality of light emitting units (11a, 11b, 11c, 11d, and 11e) are optical members that guide the emitted light from the connector portion 2 that is a connection portion.
  • the condenser lens 14 condenses the light emitted from the plurality of light emitting units (11a, 11b, 11c, 11d, 11e) on one end 102a of the optical fiber cable 102 of the plug unit 101 connected to the connector unit 2.
  • the condenser lens 14 condenses the light emitted from the plurality of light emitting units (11a, 11b, 11c, 11d, 11e) on one end 102a of the optical fiber cable 102 of the plug unit 101 connected to the connector unit 2.
  • the condenser lens 14 has a role. That is, in the present embodiment, in the light source unit 10 of the light source device 1, when the axis passing through the center of the condenser lens 14 is the optical axis O, one light emitting unit 11 e is disposed on the optical axis O.
  • the other four light emitting units (11a, 11b, 11c, 11d) are disposed at positions adjacent to the optical axis O.
  • the optical axis O is the
  • each of the plurality of light emitting units are indicated by reference numerals O1, O2, O3, O4, and O5, the axis indicated by reference numeral O5. Is parallel to the optical axis O.
  • the corresponding four light emitting units are arranged such that the other four central axes (reference numerals O1, O2, O3, O4) are orthogonal to the optical axis O. ing.
  • the other four light emitting units (11a, 11b, 11c, 11d) other than the light emitting unit 11e have the axes O1, O2, O3, and O4 on the same plane including the optical axis O and the optical axis O. They are arranged orthogonally. Further, on the same plane including the optical axis O, the other four light emitting units (11a, 11b, 11c, 11d) are all on the same side (upper position shown in FIG. 2) with respect to the optical axis O. They are arranged side by side in a direction parallel to O.
  • the plurality of collimator lenses (13a, 13b, 13c, 13d, 13e) are respectively disposed in front of the plurality of light emitting units (11a, 11b, 11c, 11d, 11e), that is, on the optical path through which the emitted light passes. ing. Thereby, the light emitted from each of the light emitting units (11a, 11b, 11c, 11d, 11e) is transmitted and emitted as parallel light.
  • a plurality of dichroic mirrors are provided in front of four collimator lenses (13a, 13b, 13c, 13d), that is, on the optical path of emitted light. (12a, 12b, 12c, 12d) are provided, respectively.
  • the dichroic mirrors (12a, 12b, 12c, 12d) are arranged at predetermined intervals along the optical axis O.
  • Each reflecting surface of each dichroic mirror (12a, 12b, 12c, 12d) is orthogonal to a plane including the optical axis O and the central axes O1, O2, O3, and O4, and on the plane, each reflecting surface has an optical axis. It is arranged at an angle of approximately 45 degrees with respect to O.
  • each dichroic mirror (12a, 12b, 12c, 12d) is arranged toward the other four light emitting units (11a, 11b, 11c, 11d) and the condenser lens 14.
  • each reflecting surface of each dichroic mirror (12a, 12b, 12c, 12d) reflects the light emitted from the other four light emitting units (11a, 11b, 11c, 11d) toward the condenser lens 14. .
  • the reflecting surface of the dichroic mirror 12a among the plurality of dichroic mirrors reflects light in a predetermined wavelength band including the wavelength of light emitted from the light emitting unit 11a, and transmits light in other wavelength bands.
  • the reflecting surface of the dichroic mirror 12b reflects light in a predetermined wavelength band including the wavelength of light emitted from the light emitting unit 11b, and transmits light in other wavelength bands.
  • the reflection surface of the dichroic mirror 12c reflects light in a predetermined wavelength band including the wavelength of light emitted from the light emitting unit 11c, and transmits light in other wavelength bands.
  • each dichroic mirror (12a, 12b, 12c, 12d) transmits light in a predetermined wavelength band including the wavelength of light emitted from the light emitting unit 11e.
  • the light is combined with the parallel light emitted from the light emitting unit 11e and emitted through the collimator lens 13e, and enters the condenser lens 14.
  • the plurality of (five) light-emitting units (11a, 11b, 11c, 11d, and 11e) are positioned on the same plane with the central axis of the light emitted from each of the light-emitting units. It is arranged as follows. Then, it can be said that the respective light emitting units (11a, 11b, 11c, 11d, 11e) are sequentially arranged in a predetermined direction along the optical axis O. Note that the number of light-emitting units provided in the light source unit 10 is not limited to the above-described example (five), and may be, for example, two or more.
  • each collimator lens (13a, 13b, 13c, 13d, 13e) and the condenser lens 14 are configured by assembling two lenses into a lens frame in the present embodiment.
  • Each lens frame has basically the same configuration, and can be represented by, for example, a lens frame 16 having the configuration shown in FIG.
  • the lens frame 16 in FIG. 3 includes a lens 16A that holds a lens 15A, a lens 15B having a larger diameter than the lens 15A, and a fixing base 16b that is provided integrally with the base of the frame 16a. I have.
  • the two lenses 15A and 15B are housed in the frame 16a via the lens fixing collar 17, and are fixed to the frame 16a by the fixing ring 18.
  • the frame 16a is provided with an opening for accommodating the lenses 15A and 15B, and one side of the opening forms a lens insertion opening 16a_1 for inserting the lenses 15A and 15B, and the other of the openings.
  • a holding portion 16a_2 is formed to abut and hold the outer peripheral portion of the lens 15A having a relatively small diameter.
  • the lens fixing collar 17 and the lens 15B are inserted in order.
  • a male screw provided on the outer periphery of the fixing ring 18 is replaced with a female screw provided on the inner peripheral side of the lens insertion port 16a_1.
  • the lenses 15A and 15B can be fixed in the frame 16a with a predetermined pressing force.
  • the lens fixing collar 17 is interposed on the outer peripheral portion between the lenses 15A and 15B having different outer diameters, the lens fixing collar 17 is formed in a substantially frustoconical cylindrical shape. For this reason, when fixing the lenses 15A and 15B to the frame 16a, if the lens fixing collar 17 is erroneously inserted from the lens insertion opening 16a_1, the lens fixing collar 17 will be reversed between the lenses 15A and 15B. In this case, the distance between the lenses 15A and 15B is inappropriate, and proper optical performance cannot be obtained.
  • the large-diameter end face of the lens fixing collar 17 is provided at a predetermined position of the lens insertion opening 16a_1 of the frame 16a. Is provided with a shoulder portion 16a_3 to which the abutment can contact.
  • the lens fixing collar 17 When the lens fixing collar 17 is inserted from the lens insertion opening 16a_1 in a normal direction, the lens fixing collar 17 abuts on the outer peripheral portion of the lens 15A without contacting the shoulder 16a_3, and the large-diameter side. The end face contacts the outer peripheral portion of the lens 15A. Thereby, the lenses 15A and 15B can be held at a specified interval via the lens fixing collar 17.
  • the lens fixing collar 17 when the lens fixing collar 17 is inserted from the lens insertion opening 16a_1 in a direction opposite to the normal direction, the lens fixing collar 17 does not abut the lens 15A, and the large-diameter end surface abuts the shoulder 16a_3. .
  • the end surface on the small diameter side of the lens fixing collar 17 abuts on the rear side of the lens 15B, and the lens 15B projects from the frame 16a, so that the fixing ring 18 may be screwed into the frame 16a. become unable. Therefore, the operator can easily notice that the lens fixing collar 17 has been assembled in the reverse direction, and the trouble can be avoided beforehand.
  • the in-housing cooling fan 6 is an electric fan for discharging air inside the housing 1 a of the light source device 1 to the outside.
  • the drive of the cooling fan 6 in a housing is controlled by the control part 4a. That is, the control unit 4a controls the driving of the cooling fan 6 in the housing to control the rotation speed of the cooling fan 6 and the like.
  • the number of the cooling fans 6 in the housing is not limited to one, and a plurality of cooling fans may be provided.
  • the light source cooling fans 26 and 27 are electric fans included in the cooling unit 20 described later.
  • the driving of the light source cooling fans 26 and 27 is also controlled by the control unit 4a. That is, the control unit 4a controls the driving of the light source cooling fans 26 and 27, and controls the rotation speed of the light source cooling fans 26 and 27.
  • the light source cooling fan may be provided with three or more cooling fans.
  • the control unit 4a detects the intake air temperature in the housing 1a and changes the rotation speed of the light source cooling fans 26 and 27 in steps according to the intake air temperature.
  • the control unit 4a controls the rotation speed of the light source cooling fans 26 and 27 to decrease when the intake air temperature in the housing 1a is relatively low, and increases the rotation speed of the light source cooling fans 26 and 27 when the intake air temperature increases. To control.
  • the light source cooling fans 26 and 27 are miniaturized and arranged close to each other. Therefore, even if the light source cooling fans 26 and 27 are controlled to have the same rotation speed, there is actually a slight difference in the rotation speed between the two, and two sound waves that are close to each other interfere with each other, and a beat sound is generated. This may occur. Therefore, the control unit 4a intentionally drives the light source cooling fans 26 and 27 at different rotation speeds, thereby reducing noise caused by beats.
  • the control unit 4a sets the rotation speed N of one of the light source cooling fans 26 and 27 to N1 when the intake air temperature T in the housing 1a is T ⁇ T1, and N2 when T1 ⁇ T ⁇ T2.
  • the units (the power supply unit 3, the control unit 4, the light source unit 10, and the cooling unit 20) which are the main components of the light source device 1 are specifically shown in FIG. Are arranged as follows.
  • FIG. 5 shows the arrangement of each unit as viewed from the rear side of the housing 1a.
  • Each unit (the power supply unit 3, the control unit 4, the light source unit 10, and the cooling unit 20) is arranged so that the space in the housing 1a, particularly, the space in the height direction can be effectively utilized.
  • the power supply unit 3 is arranged on the bottom surface 1 a — b of the housing 1 a on the connector 2 side, and the light source unit 10 is arranged in the upper space of the power supply unit 3 so that the optical axis O coincides with the central axis of the connector 2. Have been.
  • the light source unit 10 is covered with a dustproof cover (not shown), and is fixed above the power supply unit 3 via a support frame 19.
  • the support frame 19 is fixed to the bottom surface 1a_b of the housing 1a and has support legs 19a slightly longer than the height of the power supply unit 3 and a support base 19b to which the light source unit 10 is fixed.
  • the support frame 19 By using the support frame 19 to float the light source unit 10 at a predetermined height from the bottom surface 1a_b of the housing 1a and disposing the power supply unit 3 at the lower part, the space in the height direction in the housing 1a is effectively used. It is possible to do.
  • an observation switching unit 2A for switching an observation mode is provided on the incident side of the connector section 2 on which the light emitted from the light source unit 10 is incident.
  • the observation switching unit 2A includes a plurality of optical filters according to the observation mode, and switches the optical filters inserted on the optical path of the light incident on the connector unit 2 by rotation.
  • the cooling unit 20 and the control unit 4 are arranged beside the power supply unit 3 and the light source unit 10 in the housing 1a.
  • the cooling unit 20 is configured by housing a heat radiating unit (heat sink) and a heat transfer unit (heat pipe) to be described later in a chamber 1b provided inside the housing 1a.
  • the chamber 1b is disposed at a position at a predetermined height away from the bottom surface 1a_b of the housing 1a, and the height from the bottom surface 1a_b of the housing 1a to the upper end of the chamber 1b is changed from the bottom surface 1a_b of the housing 1a to the light source unit 10b. Is set to be equal to or less than the height up to the upper end of. That is, the chamber 1b secures a flow path between the bottom surface of the chamber 1b and the bottom surface of the housing 1a to guide the air, which is the cooling medium flowing from the intake port 20a, to the power supply unit 3, and at the top of the chamber 1b. It is set so that a space for accommodating the control unit 4 can be secured, and the light source device 1 can be downsized in the height direction.
  • the cooling unit 20 is used to cool the light emitting units (11a, 11b, 11c, 11d, 11e) having solid-state light emitting elements as light sources, which are heating elements, among the constituent members of the light source unit 10. It is a constituent unit.
  • the cooling unit 20 includes a plurality of heat receiving sections (22a, 22b, 22c, 22d, 22e), a plurality of heat sinks (23a, 23b, 23c, 23d, 23e) as a plurality of heat radiating sections, and a plurality of heat transfer sections. And a plurality of heat pipes (24a, 24b, 24c, 24e).
  • the plurality of heat receiving sections (22a, 22b, 22c, 22d, 22e) are fixed by being brought into contact with the respective back sides of the plurality of light emitting sections (11a, 11b, 11c, 11d, 11e).
  • the plurality of heat receiving units (22a, 22b, 22c, 22d, 22e) are heat conductive members provided for transmitting heat from the solid state light emitting elements of the plurality of light emitting units (11a, 11b, 11c, 11d, 11e). is there.
  • the plurality of heat receiving units include a heat receiving unit 22a provided on the back side of the light emitting unit 11a and transmitting heat generated by the light emitting unit 11a, and a heat receiving unit provided on the back side of the light emitting unit 11b and transmitting heat generated by the light emitting unit 11b.
  • a heat receiving portion 22c provided on the back side of the light emitting portion 11c and transmitting heat generated by the light emitting portion 11c;
  • a heat receiving portion 22d provided on the back side of the light emitting portion 11d and transmitting heat generated by the light emitting portion 11d;
  • the plurality of heat receiving units and the plurality of light emitting units may be disposed in contact with each other, but other forms include, for example, a structure in which a member having a high heat transfer coefficient is sandwiched between the two. It may be. Further, in the present embodiment, an example is shown in which each of the plurality of heat receiving units is disposed on the back side of each of the plurality of light emitting units, but the present invention is not limited to this embodiment.
  • the arrangement and shape of the heat receiving portion with respect to the light emitting portion may be any shape as long as the heat receiving portion does not block the light emitting surface of the light emitting portion, and any shape may be acceptable.
  • a plurality of heat sinks (23a, 23b, 23c, 23d, 23e) as a plurality of heat radiating units and a plurality of heat pipes (24a, 24b, 24c, 24e) as a plurality of heat transfer units are housed in the chamber 1b.
  • the chamber 1b has openings on the intake port 20a side and the exhaust port 20b side of the housing 1a, and a cooling medium for cooling a plurality of light emitting units (11a, 11b, 11c, 11d, 11e) of the light source unit 10.
  • air hereinafter simply referred to as air
  • the cooling medium flows into the housing 1a from the air inlet 20a and flows in the chamber 1b along the direction in which the plurality of light emitting units (11a, 11b, 11c, 11d, 11e) are arranged. Is discharged from an exhaust port 20b provided on the second side surface of the second member.
  • the directions in which air flows in the chamber 1b are indicated by arrows F1, F2, and F3.
  • the plurality of heat sinks which are the plurality of heat radiating units, are provided at predetermined positions in the air flow path formed in the chamber 1b.
  • the cooling unit 20 in the present embodiment has the same number of heat receiving units (ie, a plurality of light emitting units), that is, five heat sinks (23a, 23b, 23c, 23d, 23e).
  • three heat sinks (23a, 23b, 23c) arranged in the vicinity of the air inlet 20a are arranged such that the surface of each heat sink through which the air passes is the air intake surface of the air inlet 20a in the housing (of the housing 1a). (One side surface) with a predetermined inclination angle. Each inclination angle is an angle greater than 0 degrees and 90 degrees or less with respect to the intake surface (one side surface of the housing 1a).
  • the inclination angle of the air passage surface with respect to the intake surface is smaller in a heat sink located farther away from the exhaust port 20b than in a heat sink located closer to the exhaust port 20b, for example. Smaller).
  • the inclination angle of the air passage surface of the heat sink disposed closer to the exhaust port 20b with respect to the intake surface is set to be the deepest (largest).
  • the other heat sinks (23d, 23e) are arranged on the flow path of the air passing through the heat sinks (23a, 23b), and the air passing through the heat sinks (23a, 23b) passes therethrough. Cool down.
  • the plurality of heat sinks are formed with different sizes.
  • the size of the heat sink is indicated by a cross-sectional area through which air as a cooling medium passes and its surface area. The size of the heat sink determines the cooling performance.
  • the plurality of solid-state light-emitting elements as heat generating elements in the light source device 1 have different amounts of heat and maximum operation-guaranteed temperatures depending on the wavelength of emitted light. Therefore, by setting the cooling performance of the heat sink in accordance with the ratio of the heat generation amount to the maximum temperature at which the operation of each solid-state light emitting element is guaranteed, it is possible to obtain a more efficient cooling effect and suppress an increase in the size of the device. .
  • the cooling performance of the heat radiating portion (heat sink) in the cooling unit 20 can be defined by the size of the cross-sectional area and the surface area through which the cooling medium passes. That is, the larger the cross-sectional area and the surface area of the heat radiating portion (heat sink) through which the air passes, the higher the cooling capacity can be.
  • each of the five heat sinks is provided in accordance with the degree of cooling required for each solid state light emitting element applied to the plurality of light emitting units (11a, 11b, 11c, 11d, 11e). Specifies the size.
  • heat pipes are provided at the respective heat receiving portions (22a, 22b, 22c) of the light emitting portions (11a, 11b, 11c) having solid state light emitting elements having a relatively large ratio of the heat generation amount to the maximum temperature. Connected through.
  • the light-emitting portion having the solid-state light-emitting element having a relatively small ratio of the calorific value to the maximum temperature at which the operation is guaranteed that is, the light-emitting portions (11d, 11e) are heat sinks (23d, 23e) arranged downstream of the flow path. It is connected to the.
  • the heat sink 23d can be brought into direct contact with the heat receiving part 22d of the light emitting part 11d, a heat pipe is not required.
  • the heat sink 23e at a position separated from the light emitting unit 11e is connected to a heat receiving unit 22e of the light emitting unit 11e via a heat pipe 24e.
  • the plurality of heat pipes (24a, 24b, 24c, 24e) are arranged so as to be substantially orthogonal to the flow direction of the cooling medium (air) in the flow path, that is, to cross the flow of air in the flow path. Is arranged in the channel.
  • the optical axis O of the light source unit 10 and the central axes (O1, O2, O3, O4, O5) of the emitted lights of the plurality of light emitting units (11a, 11b, 11c, 11d, 11e) are arranged on the same plane.
  • a plurality of heat pipes (24a, 24b, 24c, 24e) are arranged in a plane so as not to overlap each other in the direction of gravity. For this reason, it is possible to reduce the height of the housing 1a and downsize the light source device 1.
  • the height of the chamber 1b of the cooling unit 20 from the bottom surface 1a_b of the housing 1a is set lower than that of the light source unit 10, and the heat sinks (23a, 23b, 23c, 23d, The height from the bottom surface 1a_b of the housing 1a in FIG. Therefore, the center position in the height direction of the heat sink (23a, 23b, 23c, 23e) connected to the heat receiving portion (22a, 22b, 22c, 22e) via the heat pipe (24a, 24b, 24c, 24e) is: The position is lower than the heat receiving portions (22a, 22b, 22c, 22e).
  • each heat pipe (24a, 24b, 24c, 24e) is configured as a set of a plurality of heat pipes in consideration of a positional relationship between a heat source (solid light emitting element) and a heat radiating portion (heat sink). Connected to the corresponding heat sink.
  • each heat pipe (24a, 24b, 24c, 24e) is a set of two heat pipes, a first heat pipe and a second heat pipe.
  • a set of two heat pipes 24a, 24b, 24c, 24e
  • a plurality of light emitting units 11a, 11b, 11c, 11e
  • a heat receiving unit 22a, 22b, 22c, 22e
  • the heat sinks 23a, 23b, 23c, 23e
  • a heat receiving section 22 is fixed to the back side of a substrate 11-2 of the light emitting section 11 on which the solid state light emitting element 11_1 is mounted.
  • the heat receiving section 22 includes a first heat pipe 24_1 and a second heat pipe 24_1.
  • One end of a heat pipe 24 composed of a pipe 24_2 is connected.
  • the other ends of the first heat pipe 24_1 and the second heat pipe 24_2 are connected to the same heat sink 23.
  • the first heat pipe 24_1 has one end connected to the first connection portion 22_1 of the heat receiving portion 22 and extends substantially in the horizontal direction, and the extended substantially horizontal plane, that is, the bottom surface of the housing 1a. In the first surface S1 parallel to 1a_b, they are arranged in a shape corresponding to the arrangement of the corresponding heat sinks 23. The other end of the first heat pipe 24_1 is connected to and fixed to the first fixing portion 23_1 of the corresponding heat sink 23.
  • the first fixing part 23_1 of the heat sink 23 and the first connecting part 22_1 of the heat receiving part 22 are arranged so as to be located on the same first surface S1.
  • first heat pipe 24_1 is desirably arranged horizontally on the first surface S1 in each of the plurality of heat pipes (24a, 24b, 24c, 24e). At least one first heat pipe, such as a corresponding first heat pipe, may be arranged horizontally on the first surface S1.
  • the second heat pipe 24_2 has one end connected to the second connection part 22_2 of the heat receiving part 22, and is curved and extended downward in the direction of gravity.
  • the second connection portion 22_2 is provided at a position below the first connection portion 22_1 in the direction of gravity.
  • the second heat pipe 24_2 is bent downward from the second connection portion 22_2 in the direction of gravity, and then extends below the first fixing portion 23_1 of the heat sink 23 in the direction of gravity, that is, the first heat pipe 24_1.
  • the second heat pipe 24_2 is arranged in substantially the same vertical plane as the first heat pipe 24_1, but as long as it does not overlap with the other second heat pipes in the direction of gravity. , May not be arranged in the same vertical plane as the first heat pipe 24_1.
  • the substrate 11_2 on which the solid state light emitting element 11_1 of the light emitting unit 11 is mounted is held substantially perpendicular to the bottom surface 1a_b of the housing 1a.
  • the first connection section 22_1 of the first heat pipe 24_1 and the second connection section 22_2 of the second heat pipe 24_2 are vertically arranged with the solid state light emitting element 11_ therebetween.
  • the relationship will be.
  • the vertical distance A between the first connection part 22_1 and the solid state light emitting element 11_1 and the vertical distance B between the second connection part 22_2 and the solid state light emitting element 11_1 are set to have a relationship of A ⁇ B. I have.
  • the first heat pipe 24_1 connected to the heat receiving unit 22 at a position closer to the solid state light emitting element 11_1 as a heating element is connected to the second heat pipe 24_1 connected to the heat receiving unit 22 at a position relatively far from the solid state light emitting element 11_1.
  • It is configured by a heat pipe having higher heat transport performance than the pipe 24_2.
  • the first heat pipe 24_1 is a heat pipe having a wick having a composite structure, thereby enabling efficient heat transfer in the horizontal direction.
  • the second heat pipe 24_2 is a heat pipe in which a wick is formed of a sintered metal, thereby ensuring heat transfer performance in the direction of gravity.
  • the relationship between the first heat pipe 24_1 and the second heat pipe 24_2 and the first fixing part 23_1 and the second fixing part 23_2 of the heat sink 23 is determined by the ventilation of the casing 1a forming the outer shell of the light source device 1 and the cooling unit 20. The following relationship is obtained from the relationship with the chamber 1b that forms the use duct.
  • the height from the reference surface to the upper end of the light source unit 10 is H1
  • the height from the reference surface to the upper end of the chamber 1b is H2
  • the height from the reference surface to the heat sink is the base surface 1a_b of the housing 1a.
  • the height from the reference plane to H3 the height from the reference plane to the first fixing part 23_1 of the first heat pipe 24_1 (the height from the reference plane to the first plane S1) is H4
  • the height from the reference plane to the second plane is H2.
  • the respective heights (H1, H2, H3, H4, H5) are as follows. (1) is set so as to satisfy the relationship shown in Expression (1).
  • the height H4 from the reference surface to the first fixing portion 23_1 of the first heat pipe 24_1 is substantially the same as the height from the reference surface to the first connection portion 22_1 of the heat receiving portion 22.
  • the vertical distance A between the first connection part 22_1 and the solid state light emitting element 11_1 is smaller than the vertical distance B between the second connection part 22_2 and the solid state light emitting element 11_1 by the following formula ( The relationship is set so as to be represented by the expression 2).
  • the cooling unit 20 configured as described above, by operating the light source cooling fans 26 and 27, a predetermined amount of air flows into the chamber 1b that forms the ventilation duct.
  • a plurality of heat sinks (23a, 23b, 23c, 23d, 23e) are arranged at predetermined positions in the flow path in the chamber 1b, and a cooling medium (air) flowing in the flow path passes through each heat sink. I do.
  • the plurality of heat sinks are connected to the light source unit 10 via the plurality of heat pipes (24a, 24b, 24c, 24e) and the plurality of heat receiving units (22a, 22b, 22c, 22e), and directly via the heat receiving unit 22d.
  • the plurality of heat sinks are connected to the plurality of light emitting units (11a, 11b, 11c, 11d, 11e). Accordingly, the heat generated in the plurality of light emitting units (11a, 11b, 11c, 11d, 11e) can be radiated by the plurality of heat sinks.
  • the plurality of heat sinks are set so that the height from the bottom surface of the housing 1a is lower than the height of the light source unit 10.
  • the height of the light source unit 10 is restricted by the height of the connector portion 2 connected to the endoscope 100, the height of the plurality of heat sinks is reduced with respect to the light source unit 10, thereby increasing the height of the entire apparatus. It is possible to reduce the size in the direction.
  • At least each of the plurality of heat pipes (24a, 24b, 24c, 24e) that transfers heat from the heat receiving units (22a, 22b, 22c, 22d, 22e) of the light source unit 10 is provided.
  • the first heat pipe is connected to the heat sink in a substantially horizontal direction, and the second heat pipe is bent downward from the first heat pipe in the direction of gravity and connected to the heat sink. Accordingly, heat generated in the light source unit 10 can be effectively transmitted to and radiated from the heat sink disposed at a position lower than the light source unit 10, and higher cooling can be performed while suppressing an increase in the size of the device. It can contribute to the improvement of performance.
  • the first heat pipe connected at a position closer to the solid state light emitting element is constituted by a heat pipe having higher heat transport performance than the second heat pipe connected at a position relatively far from the solid state light emitting element.
  • heat can be efficiently transferred to a heat sink disposed at a position lower than the light source unit 10.
  • control unit 4 is disposed above the plurality of heat sinks, and the power supply unit 3 is disposed below the light source unit 10, so that the limited internal space of the housing 1a is limited. Can be used effectively to contribute to higher cooling performance while suppressing an increase in the size of the device.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)

Abstract

筐体(1a)と、筐体(1a)の底面から所定の高さに配置された光源ユニット(10)と、光源ユニット(10)内に配置された発熱体と、筐体(1a)の底面から所定の高さに配置されたヒートシンク(23)と、発熱体とヒートシンク(23)とに接続されたヒートパイプ(24)と、を有し、筐体(1a)の底面を基準面とした際に、ヒートシンク(23)の基準面からの高さは、光源ユニット(10)の基準面からの高さより低く設定されている。

Description

光源装置
 本発明は、光源ユニット内の発熱体とヒートシンクとをヒートパイプで接続した光源装置に関する。
 一般に、医療分野や工業用分野等において利用される内視鏡においては、観察対象物は、多くの場合、体腔内や装置内部等の暗所であるため、対象物に向けて照明光を照射する光源装置が使用される。この種の光源装置は、例えばLED(Light Emitting Diode;発光ダイオード)やレーザ光源等の固体発光素子を光源として利用しているものがあり、複数の固体発光素子を設けることにより、例えば白色光等、所望の色の照明光を出射させることができるように構成されている。
 このような光源装置においては、大光量の照明光を出射させる必要があるために、各固体発光素子の発熱量が大きくなる傾向がある。そこで、従来の光源装置においては、例えば、日本国特許公開2014-45820号公報、国際公開番号WO2014/038352号公報等に開示されているように、発熱源となる固体発光素子のそれぞれを冷却するための冷却ユニットを、筐体内部に備えているものがある。従来の光源装置における冷却ユニットは、例えば冷却ファン、ヒートシンク、ヒートパイプ等の構成物によって構成されているのが普通である。
 一般に、固体発光素子で発生した熱を効率的に放熱するためには、ヒートシンクの放熱断面積を十分に確保した上で、固体発光素子の中心とヒートシンクの中央部を水平面内に配置してヒートパイプで接続することが望まれる。しかしながら、このような接続関係では、光源装置の筐体内において、固体発光素子を有する光源ユニットよりもヒートシンクが高さ方向に突出してしまい、無駄な空間が生じる。その結果、光源装置の限りある筐体サイズを有効に活用することができず、特に光源装置を高さ方向で小型化することが困難になる。
 本発明は上記事情に鑑みてなされたもので、光源からの発熱を充分に冷却しつつ、筐体の大型化を抑止して限られた筐体サイズを有効に活用することのできる光源装置を提供することを目的としている。
 本発明の一態様による光源装置は、筐体と、前記筐体の底面から所定の高さに配置された光源ユニットと、前記光源ユニット内に配置された発熱体と、前記筐体の底面から所定の高さに配置されたヒートシンクと、前記発熱体と前記ヒートシンクとに接続されたヒートパイプと、を有し、前記筐体の底面を基準面とした際に、前記ヒートシンクの前記基準面からの高さは、前記光源ユニットの前記基準面からの高さより低く設定されている。
内視鏡及び光源装置の外観図 光源装置の主要機能を示すブロック構成図 レンズ枠の構成を示す斜視図 光源冷却ファンの駆動特性を示す説明図 光源装置内の各ユニットの上下方向の配置を示す説明図 光源装置内の冷却ユニットの配置を示す説明図 各部の高さの関係を示す説明図
 以下、図面を参照して本発明の実施の形態を説明する。以下の説明に用いる各図面は模式的に示すものであり、各構成要素を図面上で認識可能な程度の大きさで示すために、各部材の寸法関係や縮尺等を各構成要素毎に異ならせて示している場合がある。したがって、本発明は、これら各図面に記載された構成要素の数量や構成要素の形状や構成要素の大きさの比率や各構成要素の相対的な位置関係等に関し、図示の形態のみに限定されるものではない。
 本実施形態の光源装置1は、内視鏡100を用いて観察する対象物を照明するための照明光を発生させ出射する装置である。光源装置1は、略直方体形状の筐体からなり、その内部には各種の構成部材を有している。
 まず、本実施形態の光源装置1及びこれを適用する内視鏡を含む内視鏡システムの概略構成を、主に図1を用いて以下に説明する。
 内視鏡100は、生体や構造物等の被検体の内部の観察部位を撮像し、取得した撮像データに基く画像を表示装置(不図示)を用いて表示出力するように構成される装置である。尚、内視鏡100自体の構成については周知であり、従来普及している内視鏡と同様のものが適用されているものとして、その説明は省略する。
 この内視鏡100に接続して利用される光源装置1は、図1に示すように、内視鏡100に設けられたプラグ部101を接続する接続部であるコネクタ部2を、筐体前面に有している。プラグ部101には、内視鏡100内に挿通されている光ファイバケーブル102の一端102aが配設されている。光ファイバケーブル102の一端102aに対して、光源装置1から出射された光は、光ファイバケーブル102を介して伝送されて、内視鏡100の先端部に設けられた光ファイバケーブル102の他端102bより前方に向けて出射して、観察対象物を照明する。
 光源装置1は、後述するように、内部に複数の光源(図1には不図示)を有しており、これらの光源のそれぞれから出射された光を束ねた光束として、コネクタ部2に接続されたプラグ部101の光ファイバケーブル102の一端102aに向けて出射するように構成されている。
 光源装置1は、発熱体である複数の光源(図1では不図示)を冷却するための冷却ユニット20を備えている。光源装置1の外郭を形成する筐体1aには、筐体1a内部に配設される冷却ユニット20内を通過させる冷却媒体としての空気を筐体内へと導入するための開口部である吸気口20aと、同筐体内部の空気を筐体外部へと排出するための開口部である排気口20bとが設けられている。
 ここで、吸気口20aは、光源装置1の筐体1aの一側面に形成されている。また、排気口20bは、光源装置1の筐体1aにおいて、吸気口20aが形成されている一側面に隣接する第2の側面(本実施形態では背面)に形成されている。そして、光源装置1の筐体1a内において、吸気口20aから冷却媒体である空気が流入し、冷却ユニット20を通過して排気口20bから排出されるように形成されている(詳細は後述)。
 尚、本実施形態においては、図1に示すように、光源装置1の一側面に吸気口20aを設け、これに隣接する第2の側面である背面に排気口20bを設けている。しかしながら、吸気口20aと排気口20bとを設ける箇所は、本実施形態の例示に限られるものではない。即ち、吸気口20aと排気口20bとは、光源装置1の筐体1aの前面、背面、上面、底面、上面、及び両側面のいずれかに設けられていればよい。また、吸気口20aと排気口20bとを光源装置1の筐体1aの同一面に設けて構成してもよい。
 尚、この場合において、光源装置1の筐体1aにおいて前面は、コネクタ部2の設けられている面をいうものとする。筐体1aにおいて背面は、上記前面に対向する面をいうものとする。また、上記前面及び上記背面に隣接する二つの面を側面というものとする。そして、当該光源装置1の筐体1aを通常状態(図1に示す状態)で所定の平面上に設置したとき、下面側に配置される面を底面というものとし、この底面に対向する面を上面というものとする。
 次に、光源装置1の主要機能について、図2を用いて説明する。尚、図2においては、光源装置1における電気的構成部材及び光学的構成部材の主要構成のみを示している。また、各構成部材は、互いの関係を容易に把握できるように平面的に配置している。
 図2に示すように、本実施形態の光源装置1は、光源ユニット10と、電源ユニット3と、制御ユニット4と、筐体内冷却ファン6と、冷却ユニット20の一部を構成する光源冷却ファン26、27とを有して構成されている。尚、図2においては、冷却ユニット20を構成する構成部材のうち放熱部(ヒートシンク)や伝熱部(ヒートパイプ)等は図示していない。冷却ユニット20の詳細構成については後述する。
 電源ユニット3は、光源装置1の各構成ユニットを駆動する電力を供給する電力供給部である。尚、図2においては、電源ユニット3は光源ユニット10から離れた位置に図示しているが、実際には、後述するように電源ユニット3は光源ユニット10の下部に配置されている。
 制御ユニット4は、制御部4aと光源駆動部4bとを備えている。制御部4aは、光源装置1の動作を所定のプログラムに基づいて制御するための制御回路を実装した回路基板を備え、例えば、CPU、ROM、RAMを有するマイクロコンピュータ、HDD(hard disk drive)やSSD(solid state drive)等の補助記憶装置、入出力インタフェース等を有している。光源駆動部4bは、制御部4aからの指示信号に応じて光源ユニット10の固体発光素子(後述)を駆動して照明光を出射させるための電気回路を実装した回路基板を備えている。
 光源ユニット10は、発熱体である複数の光源としての複数の発光部を備える。本実施形態においては、発光部を5つ備えた例を示している。各発光部は、例えば、金属(アルミ又は銅)の上に絶縁層を設け、更に絶縁層の上に銅等の導体を重ねた基板(金属ベース基板)に、それぞれが異なる波長を中心とした所定の波長域の光を発するレーザーダイオードや発光ダイオード(LED)等の固体発光素子を実装して構成されている。
 具体的には、光源ユニット10は、固体発光素子を有する発光部として、例えば、赤色(red)LEDを有する発光部11aと、橙色(orange)LEDを有する発光部11bと、緑色(green)LEDを有する発光部11cと、青色(blue)LEDを有する発光部11dと、紫色(violet)LEDを有する発光部11eとを備えている。尚、個々の固体発光素子が出射する光の色(波長)は、これらに限定されるものではない。
 複数の発光部における各固体発光素子は光源駆動部4bと電気的に接続され、光源駆動部4bによって駆動制御される。つまり、複数の固体発光素子は、光源駆動部4bから出力される指示信号によって発光のオンオフ制御がなされる。また、複数の固体発光素子は、光源駆動部4bから出力される指示信号に応じて出射する光強度を変化させる。
 複数の発光部(11a、11b、11c、11d、11e)から出射された各光は、対応する複数のコリメーターレンズ(13a、13b、13c、13d、13e)によって平行光とされた後、ダイクロイックミラー(12a、12b、12c、12d)によって、集光レンズ14へと導かれる。ここで、複数のコリメーターレンズ(13a、13b、13c、13d、13e)と、ダイクロイックミラー(12a、12b、12c、12d)と、集光レンズ14とは、複数の発光部(11a、11b、11c、11d、11e)からの出射光を接続部であるコネクタ部2へと導く光学部材である。
 集光レンズ14は、複数の発光部(11a、11b、11c、11d、11e)から出射された光を、コネクタ部2に接続されたプラグ部101の光ファイバケーブル102の一端102aに集光させる役目をしている。即ち、本実施形態において光源装置1の光源ユニット10においては、集光レンズ14の中心を通る軸を光軸Oとした場合、同光軸O上に1つの発光部11eが配設されており、他の4つの発光部(11a、11b、11c、11d)は、光軸O上から外れて隣接した位置に配設されている。ここで、光軸Oは光源ユニット10から出射される光の中心軸となっている。
 また、複数の発光部(11a、11b、11c、11d、11e)のそれぞれから出射される光の中心軸を符号O1、O2、O3、O4、O5で示すものとすると、符号O5で示される軸は、光軸Oと平行となる。また、その他の4つの中心軸(符号O1、O2、O3、O4)は、光軸Oに対して直交するように、各対応する4つの発光部(11a、11b、11c、11d)が配置されている。
 つまり、発光部11e以外の他の4つの発光部(11a、11b、11c、11d)は、光軸Oを含む同一平面上において、符号O1、O2、O3、O4で示す軸が光軸Oと直交するように配設されている。また、光軸Oを含む同一平面上において、他の4つの発光部(11a、11b、11c、11d)は、光軸Oに対して全て同一の側(図2に示す上側位置)に光軸Oと平行な方向に並べて配設されている。
 複数のコリメーターレンズ(13a、13b、13c、13d、13e)は、それぞれが複数の発光部(11a、11b、11c、11d、11e)の前方、即ち出射光が通過する光路上に配設されている。これにより、各発光部(11a、11b、11c、11d、11e)からの出射光を透過させて、平行光として出射する。
 複数のコリメーターレンズ(13a、13b、13c、13d、13e)のうち、4個のコリメーターレンズ(13a、13b、13c、13d)の前方、即ち出射光の光路上には、複数のダイクロイックミラー(12a、12b、12c、12d)がそれぞれ設けられている。
 各ダイクロイックミラー(12a、12b、12c、12d)は、光軸Oに沿って所定の間隔を置いて配置されている。各ダイクロイックミラー(12a、12b、12c、12d)のそれぞれの反射面は、光軸O及び中心軸O1、O2、O3、O4を含む平面と直交し、かつ当該平面上において各反射面が光軸Oに対して略45度傾けて配置されている。
 この場合において、各ダイクロイックミラー(12a、12b、12c、12d)の反射面は、他の4つの発光部(11a、11b、11c、11d)と、集光レンズ14に向けて配置される。これにより、各ダイクロイックミラー(12a、12b、12c、12d)の各反射面は、他の4つの発光部(11a、11b、11c、11d)からの出射光を集光レンズ14に向けて反射する。
 複数のダイクロイックミラーのうちダイクロイックミラー12aの反射面は、発光部11aからの出射光の波長を含む所定の波長帯の光を反射し、他の波長帯の光を透過する。また、ダイクロイックミラー12bの反射面は、発光部11bからの出射光の波長を含む所定の波長帯の光を反射し、他の波長帯の光を透過する。そして、ダイクロイックミラー12cの反射面は、発光部11cからの出射光の波長を含む所定の波長帯の光を反射し、他の波長帯の光を透過する。更に、ダイクロイックミラー12dの反射面は、発光部11dからの出射光の波長を含む所定の波長帯の光を反射し、他の波長帯の光を透過する。一方、各ダイクロイックミラー(12a、12b、12c、12d)は、発光部11eからの出射光の波長を含む所定の波長帯の光を透過する。
 複数の発光部(11a、11b、11c、11d)から出射され、複数のコリメーターレンズ(13a、13b、13c、13d)を介して出射される平行光は、ダイクロイックミラー12a、12b、12c、12dによって反射され、発光部11eから出射されコリメーターレンズ13eを介して出射される平行光と合成されて、集光レンズ14へと入射する。
 上述のような構成を有する光源ユニット10においては、複数(5個)の発光部(11a、11b、11c、11d、11e)は、それぞれが出射する光の中心軸が同一の平面上に位置するように配設されている。そして、各発光部(11a、11b、11c、11d、11e)は、光軸Oに沿う所定の方向に順に配列されているということができる。尚、光源ユニット10が備える発光部の数は、上述の例(5個)に限定されるものではなく、例えば2つ以上であればよい。
 ここで、各コリメーターレンズ(13a、13b、13c、13d、13e)及び集光レンズ14は、本実施形態においては、2つのレンズをレンズ枠に組み付けて構成されている。各レンズ枠は、基本的には同様の構成であり、例えば図3に示す構成のレンズ枠16によって代表することができる。図3のレンズ枠16は、レンズ15Aと、レンズ15Aよりも大径のレンズ15Bとを保持する枠体16aと、枠体16aの基部に一体的に設けられる固定用台座16bとを有している。
 2つのレンズ15A、15Bは、レンズ固定カラー17を介して枠体16a内に収納され、固定リング18によって枠体16aに固定される。詳細には、枠体16aには、レンズ15A、15Bを収納する開口孔が設けられ、この開口孔の一方の側がレンズ15A、15Bを挿入するレンズ挿入口16a_1を形成し、開口孔の他方の側が相対的に小径のレンズ15Aの外周部に当接して保持する保持部16a_2を形成している。
 すなわち、レンズ挿入口16a_1からレンズ15Aを挿入して保持部16a_2にレンズ15Aの外周部を当接させた後、レンズ固定カラー17とレンズ15Bとを順に挿入する。そして、レンズ固定カラー17によってレンズ15Aとレンズ15Bとを規定の間隔に保持した状態で、固定リング18の外周に設けられた雄ネジを、レンズ挿入口16a_1の内周側に設けられた雌ネジにねじ込むことにより、所定の押圧力でレンズ15A、15Bを枠体16a内に固定することができる。
 この場合、レンズ固定カラー17は、互いに外径の異なるレンズ15A、15Bの間の外周部分に介装されるため、略円錐台形の筒状に形成されている。このため、レンズ15A、15Bを枠体16aに固定する際に、レンズ固定カラー17を誤って逆向きにレンズ挿入口16a_1から挿入すると、レンズ15A、15Bの間にレンズ固定カラー17が逆向きに配置され、レンズ15A、15Bの間の間隔が不適正となって適正な光学性能を得ることができない。
 このようなレンズ固定カラー17の逆向きの挿入による誤組み付けを防止するため、本実施形態においては、枠体16aのレンズ挿入口16a_1の所定の位置に、レンズ固定カラー17の大径側の端面が当接可能な肩部16a_3が設けられている。
 レンズ固定カラー17を正規の向きでレンズ挿入口16a_1から挿入した場合、レンズ固定カラー17は、肩部16a_3に当接することなく小径側の端面がレンズ15Aの外周部分に当接し、大径側の端面がレンズ15Aの外周部分に当接する。これにより、レンズ固定カラー17を介してレンズ15A、15Bを規定の間隔に保持することができる。
 一方、レンズ固定カラー17を通常とは逆の向きでレンズ挿入口16a_1から挿入した場合には、レンズ固定カラー17はレンズ15Aに当接することなく、大径側の端面が肩部16a_3に当接する。この状態でレンズ15Bを挿入すると、レンズ固定カラー17の小径側の端面がレンズ15Bの背面側に当接してレンズ15Bが枠体16aから突出してしまい、固定リング18を枠体16aにねじ込むことができなくなる。従って、作業者はレンズ固定カラー17を逆向きに組み付けたことを容易に気付くことができ、不具合を未然に回避することができる。
 次に、筐体内冷却ファン6、光源冷却ファン26、27について説明する。筐体内冷却ファン6は、光源装置1の筐体1a内部の空気を外部へと排出するための電動ファンである。筐体内冷却ファン6は、制御部4aによって駆動制御される。即ち、制御部4aは、筐体内冷却ファン6の駆動制御を行って、その回転数を変化させる等の制御を行う。尚、筐体内冷却ファン6は、1つに限らず、複数設けて構成する形態であってもよい。
 また、光源冷却ファン26、27は、後述する冷却ユニット20に含まれる電動ファンである。光源冷却ファン26、27も、制御部4aによって駆動制御される。即ち、制御部4aは、光源冷却ファン26、27の駆動制御を行って、その回転数を変化させる等の制御を行う。尚、光源冷却ファンも、3つ以上設けた形態であってもよい。
 制御部4aは、筐体1a内の吸気温度を検出し、吸気温度に応じて光源冷却ファン26、27の回転数を段階的に変化させる。制御部4aは、筐体1a内の吸気温度が比較的低い場合には光源冷却ファン26、27の回転数が低くなり、吸気温度が高くなると光源冷却ファン26、27の回転数が高くなるように制御する。
 ここで、光源冷却ファン26、27は小型化されており、互いに近接して配置されている。このため、光源冷却ファン26、27を同じ回転数として制御しても、実際には両者の間に僅かな回転数の差が存在するため、互いに近接する2つの音波が干渉し、うなり音が発生する虞がある。従って、制御部4aは、光源冷却ファン26、27を、意図的に回転数をずらして駆動することにより、うなりによる騒音を低減する。
 例えば、図4に示すように、制御部4aは、光源冷却ファン26、27の一方の回転数Nを、筐体1a内の吸気温度TがT<T1でN1、T1≦T≦T2でN2、T>T2でN3に制御するとき(例えば、T1=30°C、T2=35°C、N1=2900rpm、N2=3900rpm、N3=5500rpm)、光源冷却ファン26、27の他方の回転数をΔN(例えば、ΔN=300rpm)だけ低い回転数に制御する。これにより、近接して配置されている光源冷却ファン26、27のファン音の干渉によるうなり音を抑制し、騒音を低減することができる。
 以上の光源装置1の主要構成となる各ユニット(電源ユニット3、制御ユニット4、光源ユニット10、冷却ユニット20)は、具体的には、光源装置1の筐体1a内に、図5に示すように配置されている。図5は、筐体1aの背面側から見た各ユニットの配置を示している。各ユニット(電源ユニット3、制御ユニット4、光源ユニット10、冷却ユニット20)は、筐体1a内の空間、特に高さ方向の空間を有効に活用できるように配置されている。
 電源ユニット3は、筐体1a内のコネクタ部2側の底面1a_bに配置され、この電源ユニット3の上部空間に、光軸Oがコネクタ部2の中心軸と一致するように光源ユニット10が配置されている。光源ユニット10は、防塵カバー(不図示)によって覆われており、電源ユニット3の上部に支持フレーム19を介して固定されている。
 支持フレーム19は、筐体1aの底面1a_bに固定され、電源ユニット3の高さよりも若干長い支持脚19aと、光源ユニット10が固定される支持台19bとを有している。この支持フレーム19を用いて光源ユニット10を筐体1aの底面1a_bから所定の高さに浮かせて下部に電源ユニット3を配置することにより、筐体1a内の高さ方向の空間を有効に活用することが可能となる。
 尚、光源ユニット10からの出射光を入射するコネクタ部2の入射側には、白色光モードや蛍光モード等の観察モードを切り替えるための観察切替ユニット2Aが配設されている。観察切替ユニット2Aは、観察モードに応じた複数の光学フィルタを備え、コネクタ部2への入射光の光路上に挿入する光学フィルタを回転によって切り替える。
 また、筐体1a内の電源ユニット3及び光源ユニット10の側方には、冷却ユニット20及び制御ユニット4が配置されている。冷却ユニット20は、筐体1aの内部に配設されるチャンバ1bに、後述する放熱部(ヒートシンク)や伝熱部(ヒートパイプ)を収納して構成されている。
 チャンバ1bは、筐体1aの底面1a_bから離間した所定の高さの位置に配置され、筐体1aの底面1a_bからチャンバ1bの上端までの高さが、筐体1aの底面1a_bから光源ユニット10の上端までの高さ以下となるように設定されている。すなわち、チャンバ1bは、チャンバ1bの底面と筐体1aの底面との間に、吸気口20aから流入する冷却媒体である空気を電源ユニット3に導く流路を確保するとともに、チャンバ1bの上部に制御ユニット4を収納する空間を確保することができるように設定されており、光源装置1を高さ方向に小型化することが可能となっている。
 次に、冷却ユニット20について説明する。冷却ユニット20は、図6に示すように、光源ユニット10の構成部材のうち、発熱体である光源として固体発光素子を有する発光部(11a、11b、11c、11d、11e)を冷却するための構成ユニットである。この冷却ユニット20は、複数の受熱部(22a、22b、22c、22d、22e)と、複数の放熱部である複数のヒートシンク(23a、23b、23c、23d、23e)と、複数の伝熱部である複数のヒートパイプ(24a、24b、24c、24e)等を備えて構成されている。
 複数の受熱部(22a、22b、22c、22d、22e)は、複数の発光部(11a、11b、11c、11d、11e)のそれぞれの背面側に接触させて固定されている。複数の受熱部(22a、22b、22c、22d、22e)は、複数の発光部(11a、11b、11c、11d、11e)の固体発光素子からの熱を伝達するために設けられる熱伝導部材である。
 これら複数の受熱部としては、発光部11aの背面側に設けられ当該発光部11aの発熱を伝導する受熱部22aと、発光部11bの背面側に設けられ当該発光部11bの発熱を伝導する受熱部22bと、発光部11cの背面側に設けられ当該発光部11cの発熱を伝導する受熱部22cと、発光部11dの背面側に設けられ当該発光部11dの発熱を伝導する受熱部22dと、発光部11eの背面側に設けられ当該発光部11eの発熱を伝導する受熱部22eとがある。
 尚、複数の受熱部と複数の発光部とは、当接する形態で配設されていてもよいが、その他の形態としては、例えば両者の間に熱伝達率の高い部材を挟んで構成する形態としてもよい。また、本実施形態においては、複数の受熱部のそれぞれは、複数の発光部のそれぞれの背面側に配設した例を示しているが、この形態に限られることはない。発光部に対する受熱部の配置及び形状は、受熱部が発光部の光出射面を遮らない形態となっていればよく、如何様な形状で構成しても許容し得る。
 複数の放熱部である複数のヒートシンク(23a、23b、23c、23d、23e)と、複数の伝熱部である複数のヒートパイプ(24a、24b、24c、24e)は、チャンバ1bに収納されている。チャンバ1bは、筐体1aの吸気口20a側と排気口20b側に開口部を有し、光源ユニット10の複数の発光部(11a、11b、11c、11d、11e)を冷却するための冷却媒体である気体(通常の場合は空気である。以下、単に空気というものとする)が通過するダクトを形成している。
 冷却媒体(空気)は、筐体1aの吸気口20aから内部に流入し、チャンバ1b内で複数の発光部(11a、11b、11c、11d、11e)の配列方向に沿って流れ、筐体1aの第2の側面に設けられる排気口20bから排出される。図6においては、チャンバ1b内において、空気の流れる方向を矢印F1、F2、F3によって示している。
 複数の放熱部である複数のヒートシンクは、チャンバ1b内に形成される空気の流路において、それぞれ所定の位置に配設されている。本実施形態における冷却ユニット20は、複数の受熱部(即ち複数の発光部)と同数、即ち5つのヒートシンク(23a、23b、23c、23d、23e)を有している。
 これら複数のヒートシンクのうち、吸気口20a近傍に配置される3つのヒートシンク(23a、23b、23c)は、各ヒートシンクの空気が通過する面が筐体における吸気口20aの吸気面(筐体1aの一側面)に対して、それぞれ、所定の傾斜角度をもって配置されている。それぞれの傾斜角度は、吸気面(筐体1aの一側面)に対して0度より大きく90°以下の角度である。
 この場合において、各傾斜角度は、例えば排気口20bに近い側に配置されるヒートシンクよりも、排気口20bに遠い側に配置されるヒートシンクほど、その空気通過面の吸気面に対する傾斜角度が浅く(小さく)なるように設定される。同様に、排気口20bに近い側に配置されるヒートシンクの空気通過面の吸気面に対する傾斜角度が最も深く(大きく)なるように設定される。このように各ヒートシンク(23a、23b、23c)の空気通過面の吸気面に対する傾斜角度を傾けることにより、各流路(F1、F2、F3)を流れる冷却媒体(空気)の円滑な流れを確保することができる。
 また、複数のヒートシンクのうち、他のヒートシンク(23d、23e)は、ヒートシンク(23a、23b)を通過する空気の流路上に配置され、ヒートシンク(23a、23b)を通過する空気が通過することで、冷却される。
 本実施形態の光源装置1においては、図6にも示すように、複数のヒートシンクのサイズをそれぞれ異ならせて形成している。ここでヒートシンクのサイズとは、冷却媒体である空気が通過する断面積及びその表面積にて示される。ヒートシンクのサイズは冷却性能を規定する。
 光源装置1における発熱体としての複数の固体発光素子は、出射する光の波長に応じて発熱量および動作保障される最大温度が異なる。従って、各固体発光素子の動作保障される最大温度に対する発熱量の比率に応じてヒートシンクの冷却性能を設定することにより、より効率のよい冷却効果を得つつ、装置の大型化を抑えことができる。
 冷却ユニット20における放熱部(ヒートシンク)の冷却性能は、冷却媒体である空気の通過する断面積及び表面積の大小で規定できる。つまり、放熱部(ヒートシンク)における空気の通過する断面積及びその表面積を大きくする程、冷却能力を高くすることができることになる。
 そこで、本実施形態の光源装置1においては、複数の発光部(11a、11b、11c、11d、11e)に適用される各固体発光素子に必要な冷却度合いに応じて、5つのヒートシンクのそれぞれのサイズを規定している。
 具体的には、例えば、本実施形態において、複数のヒートシンクのうち、空気の流路の上流側(吸気口20a近傍)に配置される3つのヒートシンク(23a、23b、23c)は、動作保障される最大温度に対する発熱量の比率が比較的大きい固体発光素子を有する発光部(11a、11b、11c)のそれぞれの受熱部(22a、22b、22c)に、ヒートパイプ(24a、24b、24c)を介して接続されている。
 一方、動作保障される最大温度に対する発熱量の比率が比較的小さな固体発光素子を有する発光部、即ち発光部(11d、11e)は、流路の下流側に配設したヒートシンク(23d、23e)に接続されている。但し、ヒートシンク23dは、発光部11dの受熱部22dに直接、接触させることができるため、ヒートパイプを不要としている。発光部11eと離間した位置にあるヒートシンク23eは、ヒートパイプ24eを介して発光部11eの受熱部22eに接続されている。
 これらの複数のヒートパイプ(24a、24b、24c、24e)は、冷却媒体(空気)の流路内における流れる方向に対して略直交するように、つまり、流路内において空気の流れを横切るように流路内において配置される。且つ、光源ユニット10の光軸Oと複数の発光部(11a、11b、11c、11d、11e)の出射光の中心軸(O1、O2、O3、O4、O5)とを同一平面上に配置した光学系に対して、複数のヒートパイプ(24a、24b、24c、24e)を平面内で引き回して重力方向に互いに重ならないように配置している。このため、筐体1aの高さを低く抑えて光源装置1を小型化することが可能となる。
 また、前述したように、冷却ユニット20のチャンバ1bは、筐体1aの底面1a_bからの高さが光源ユニット10よりも低くなるように設定されており、ヒートシンク(23a、23b、23c、23d、23e)の筐体1aの底面1a_bからの高さも光源ユニット10より低くなる。従って、ヒートパイプ(24a、24b、24c、24e)を介して受熱部(22a、22b、22c、22e)に接続されるヒートシンク(23a、23b、23c、23e)の高さ方向の中心位置は、受熱部(22a、22b、22c、22e)よりも低い位置となる。
 このため、各ヒートパイプ(24a、24b、24c、24e)は、それぞれ、発熱源(固体発光素子)と放熱部(ヒートシンク)との位置関係を考慮した複数のヒートパイプを1組として構成され、対応するヒートシンクへと接続されている。本実施形態においては、各ヒートパイプ(24a、24b、24c、24e)は、それぞれ、第1ヒートパイプと第2ヒートパイプとの2本を1組としている。
 以下では、2本1組の複数のヒートパイプ(24a、24b、24c、24e)、複数の発光部(11a、11b、11c、11e)及び受熱部(22a、22b、22c、22e)、複数のヒートシンク(23a、23b、23c、23e)を、図7に示すように、ヒートパイプ24、発光部11及び受熱部22、ヒートシンク23で代表し、互いの接続関係について説明する。
 図7に示すように、発光部11の固体発光素子11_1がマウントされる基板11-2の背面側には受熱部22が固定され、この受熱部22に、第1ヒートパイプ24_1と第2ヒートパイプ24_2とからなるヒートパイプ24の一端が接続されている。第1ヒートパイプ24_1及び第2ヒートパイプ24_2の他端は、同じヒートシンク23に接続されている。
 詳細には、第1ヒートパイプ24_1は、一端が受熱部22の第1接続部22_1に接続されて略水平方向に延出され、延出された略水平方向の平面、すなわち筐体1aの底面1a_bと平行な第1面S1内において、対応するヒートシンク23の配置に応じた形状に配置される。そして、第1ヒートパイプ24_1の他端は、対応するヒートシンク23の第1固定部23_1に接続されて固定されている。ヒートシンク23の第1固定部23_1と、受熱部22の第1接続部22_1とは、同じ第1面S1上に位置するように配置される。
 尚、第1ヒートパイプ24_1は、複数のヒートパイプ(24a、24b、24c、24e)のそれぞれにおいて第1面S1上で水平に配置することが望ましいが、例えば発熱量が比較的大きい発光部に対応する第1ヒートパイプ等、少なくとも1つの第1ヒートパイプを第1面S1上で水平に配置するようにしても良い。
 一方、第2ヒートパイプ24_2は、一端が受熱部22の第2接続部22_2に接続され、重力方向の下側に湾曲されて延出される。第2接続部22_2は、第1接続部22_1に対して重力方向の下側の位置に設けられている。第2ヒートパイプ24_2は、第2接続部22_2から重力方向の下側に湾曲されて延出された後、ヒートシンク23の第1固定部23_1の重力方向下側の位置、すなわち第1ヒートパイプ24_1が配置される第1面S1と略平行な第2面S2上に設けられた第2固定部23_2に接続されて固定されている。
 尚、本実施形態においては、第2ヒートパイプ24_2は、第1ヒートパイプ24_1と、略同じ垂直面内に配置されるものとするが、他の第2ヒートパイプと重力方向で互いに重ならない限り、第1ヒートパイプ24_1と同じ垂直面内に配置しなくとも良い。
 ここで、発光部11の固体発光素子11_1がマウントされる基板11_2は、筐体1aの底面1a_bに対して略垂直に保持されている。この基板11_2の背面側の受熱部22においては、第1ヒートパイプ24_1の第1接続部22_1と第2ヒートパイプ24_2の第2接続部22_2とは、固体発光素子11_を間にして上下に配置される関係となる。且つ、第1接続部22_1と固体発光素子11_1との垂直方向の距離Aと、第2接続部22_2と固体発光素子11_1との垂直方向の距離Bとは、A<Bの関係に設定されている。
 従って、発熱体である固体発光素子11_1により近い位置で受熱部22に接続される第1ヒートパイプ24_1は、相対的に固体発光素子11_1から離れた位置で受熱部22に接続される第2ヒートパイプ24_2よりも熱輸送性能が高いヒートパイプで構成する。例えば、第1ヒートパイプ24_1は、複合構造のウイックを有するヒートパイプとすることで、水平方向の効率的な熱の移送を可能とする。また、第2ヒートパイプ24_2は、焼結金属でウイックを形成したヒートパイプとすることで、重力方向の熱輸送性能を確保する。
 また、第1ヒートパイプ24_1及び第2ヒートパイプ24_2とヒートシンク23の第1固定部23_1及び第2固定部23_2との関係は、光源装置1の外郭を形成する筐体1a、冷却ユニット20の通風用のダクトを形成するチャンバ1bとの関係からは、以下のような関係となる。
 図7において、筐体1aの底面1a_bを基準面として、基準面から光源ユニット10の上端部までの高さをH1、基準面からチャンバ1bの上端部までの高さをH2、基準面からヒートシンク23の上端部までの高さをH3、基準面から第1ヒートパイプ24_1の第1固定部23_1までの高さ(基準面から第1面S1までの高さ)をH4、基準面から第2ヒートパイプ24_2の第2固定部23_2までの高さ(基準面から第2面S2までの高さ)をH5とするとき、それぞれの高さ(H1、H2、H3、H4、H5)は、以下の(1)式で示す関係となるように設定されている。
 H1≧H2>H3>H4>H5 …(1)
 ここに、基準面から第1ヒートパイプ24_1の第1固定部23_1までの高さH4は、基準面から受熱部22の第1接続部22_1までの高さと略同じである。また、前述したように、第1接続部22_1と固体発光素子11_1との垂直方向の距離Aは、第2接続部22_2と固体発光素子11_1との垂直方向の距離Bに対して、以下の(2)式で示す関係となるように設定されている。
 A<B …(2)
 以上のように構成された冷却ユニット20においては、光源冷却ファン26、27を稼働させることにより、通風用のダクトを形成するチャンバ1b内に所定の流量の空気が流れる。チャンバ1b内の流路には、各所定の部位に複数のヒートシンク(23a、23b、23c、23d、23e)が配置されており、流路内を流れる冷却媒体(空気)は、各ヒートシンクを通過する。
 複数のヒートシンクは、複数のヒートパイプ(24a、24b、24c、24e)及び複数の受熱部(22a、22b、22c、22e)を介して、また、直接、受熱部22dを介して、光源ユニット10の複数の発光部(11a、11b、11c、11d、11e)に接続されている。従って、これにより、複数の発光部(11a、11b、11c、11d、11e)で発生した熱は、複数のヒートシンクによって放熱することができる。
 ここで、本実施形態の光源装置1においては、複数のヒートシンクは、筐体1aの底面からの高さが光源ユニット10の高さよりも低くなるように設定されている。光源ユニット10の高さは、内視鏡100と接続するコネクタ部2の高さによって制約されるが、この光源ユニット10に対して複数のヒートシンクの高さを抑えることで、装置全体を高さ方向に小型化することが可能となる。
 また、本実施形態においては、光源ユニット10の受熱部(22a、22b、22c、22d、22e)からの熱を伝熱する複数のヒートパイプ(24a、24b、24c、24e)のそれぞれを、少なくとも、略水平方向にヒートシンクに接続される第1ヒートパイプと、この第1ヒートパイプより重力方向の下側に湾曲されてヒートシンクに接続される第2ヒートパイプとの2本を1組としている。これにより、光源ユニット10よりも低い位置に配置されるヒートシンクに対して、光源ユニット10で発生する熱を効果的に伝熱して放熱することができ、装置の大型化を抑えながら、より高い冷却性能の向上に寄与することができる。
 しかも、固体発光素子により近い位置で接続される第1ヒートパイプを、相対的に固体発光素子から離れた位置で接続される第2ヒートパイプよりも熱輸送性能が高いヒートパイプで構成することにより、光源ユニット10よりも低い位置に配置されるヒートシンクに効率的に熱伝達することができる。
 また、本実施形態の光源装置1においては、複数のヒートシンクの上部に制御ユニット4を配置するとともに、光源ユニット10の下部に電源ユニット3を配置しており、筐体1aの限られた内部空間を有効に利用して、装置の大型化を抑えながら、より高い冷却性能の向上に寄与することができる。
 本出願は、2018年8月24日に日本国に出願された特願2018-157111号を優先権主張の基礎として出願するものであり、上記の内容は、本願明細書、請求の範囲、図面に引用されたものである。

Claims (5)

  1.  筐体と、
     前記筐体の底面から所定の高さに配置された光源ユニットと、
     前記光源ユニット内に配置された発熱体と、
     前記筐体の底面から所定の高さに配置されたヒートシンクと、
     前記発熱体と前記ヒートシンクとに接続されたヒートパイプと、
     を有し、
     前記筐体の底面を基準面とした際に、前記ヒートシンクの前記基準面からの高さは、前記光源ユニットの前記基準面からの高さより低く設定されている
     ことを特徴とする光源装置。
  2.  前記ヒートパイプは、第1ヒートパイプと、第2ヒートパイプと、を有し、
     前記第1ヒートパイプは、前記ヒートシンクの第1固定部で接続され、
     前記第2ヒートパイプは、重力方向の下側に湾曲されて前記ヒートシンクの第2固定部で接続され、
     前記第1固定部は、前記筐体の底面に平行な第1面上に配置され、
     前記第2固定部は、前記筐体の底面に平行な第2面上に配置され、
     前記第2面の前記基準面からの高さは、前記第1面の前記基準面からの高さより低く設定されている
     ことを特徴とする請求項1に記載の光源装置。
  3.  前記第1ヒートパイプを複数有し、複数の前記第1ヒートパイプの少なくとも1つは前記第1面上に配置されている
     ことを特徴とする請求項2に記載の光源装置。
  4.  前記筐体内に、前記ヒートシンクを収納するチャンバが配設され、
     前記チャンバの前記基準面からの高さは、前記光源ユニットの前記基準面からの高さ以下に設定されている
     ことを特徴とする請求項3に記載の光源装置。
  5.  前記発熱体として発光素子を有し、
     前記発光素子からの熱を伝達する受熱部は、前記第1ヒートパイプが接続される第1接続部と、前記第2ヒートパイプが接続される第2接続部と、を有し、
     前記第1接続部は前記第2接続部に比べて、前記発光素子へより近い距離に配置されている
     ことを特徴とする請求項4に記載の光源装置。
PCT/JP2019/005818 2018-08-24 2019-02-18 光源装置 WO2020039613A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020538018A JP6945077B2 (ja) 2018-08-24 2019-02-18 光源装置
US17/174,623 US11156350B2 (en) 2018-08-24 2021-02-12 Light source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018157111 2018-08-24
JP2018-157111 2018-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/174,623 Continuation US11156350B2 (en) 2018-08-24 2021-02-12 Light source device

Publications (1)

Publication Number Publication Date
WO2020039613A1 true WO2020039613A1 (ja) 2020-02-27

Family

ID=69593000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005818 WO2020039613A1 (ja) 2018-08-24 2019-02-18 光源装置

Country Status (3)

Country Link
US (1) US11156350B2 (ja)
JP (1) JP6945077B2 (ja)
WO (1) WO2020039613A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD966509S1 (en) * 2020-09-30 2022-10-11 Karl Storz Se & Co. Kg Device housing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102997A (ja) * 2008-10-24 2010-05-06 Stanley Electric Co Ltd 車両用led灯具
JP2014045820A (ja) * 2012-08-29 2014-03-17 Olympus Medical Systems Corp 光源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096896B2 (ja) * 2004-03-10 2008-06-04 セイコーエプソン株式会社 プロジェクタ
JP4565646B2 (ja) * 2005-07-25 2010-10-20 スタンレー電気株式会社 Led光源車両用灯具
FR2940407B1 (fr) * 2008-12-18 2013-11-22 Valeo Vision Sas Dispositif de refroidissement d'un module optique pour projecteur automobile
JP2012008474A (ja) 2010-06-28 2012-01-12 Olympus Corp 電子内視鏡装置
WO2014034205A1 (ja) 2012-08-29 2014-03-06 オリンパスメディカルシステムズ株式会社 光源装置
WO2014038352A1 (ja) 2012-09-07 2014-03-13 オリンパスメディカルシステムズ株式会社 光源装置及び内視鏡システム
JP6206989B2 (ja) * 2013-12-11 2017-10-04 Necディスプレイソリューションズ株式会社 冷却構造、照明光学系、投写型表示装置および冷却方法
JP5942049B2 (ja) * 2014-05-21 2016-06-29 オリンパス株式会社 冷却装置及び内視鏡用光源装置
JP6939041B2 (ja) * 2017-04-19 2021-09-22 富士フイルムビジネスイノベーション株式会社 光照射装置、光照射システム、画像形成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102997A (ja) * 2008-10-24 2010-05-06 Stanley Electric Co Ltd 車両用led灯具
JP2014045820A (ja) * 2012-08-29 2014-03-17 Olympus Medical Systems Corp 光源装置

Also Published As

Publication number Publication date
JPWO2020039613A1 (ja) 2021-05-20
JP6945077B2 (ja) 2021-10-06
US11156350B2 (en) 2021-10-26
US20210164642A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP6329708B2 (ja) 内視鏡用光源装置
JP5311838B2 (ja) 映像表示装置
CN111290203B (zh) 投影装置
JP5201612B2 (ja) 光源装置およびこれを備えた投写型表示装置
JP5942049B2 (ja) 冷却装置及び内視鏡用光源装置
EP2009345A2 (en) LED lamp module
EP3415986A1 (en) Projector
US9491423B2 (en) Projection device
JP4988912B2 (ja) 投写型映像表示装置
US8696163B2 (en) Lamp with wide-angle light emission and bulb thereof
JP2006276832A (ja) プロジェクタ
US20080198336A1 (en) Projection apparatus and lamp module
JP2006308885A (ja) プロジェクタ
JP2007316626A (ja) 投写型映像表示装置
WO2020039613A1 (ja) 光源装置
TWM594106U (zh) 燈具及燈具系統
JP6141544B2 (ja) 冷却装置及び内視鏡用光源装置
TWI623803B (zh) 投影裝置
TWI575301B (zh) 顯示裝置
JP2014113350A (ja) 内視鏡および内視鏡システム
JP2022112233A (ja) 投射型表示装置
CN114815474A (zh) 投影设备
JP2016085788A (ja) 照明装置
JP2012019935A (ja) 内視鏡用光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851915

Country of ref document: EP

Kind code of ref document: A1