WO2020038221A1 - 一种发动机的冷却*** - Google Patents

一种发动机的冷却*** Download PDF

Info

Publication number
WO2020038221A1
WO2020038221A1 PCT/CN2019/099325 CN2019099325W WO2020038221A1 WO 2020038221 A1 WO2020038221 A1 WO 2020038221A1 CN 2019099325 W CN2019099325 W CN 2019099325W WO 2020038221 A1 WO2020038221 A1 WO 2020038221A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
cylinder head
oil cooler
cooling system
coolant outlet
Prior art date
Application number
PCT/CN2019/099325
Other languages
English (en)
French (fr)
Inventor
许雨涛
贺礼
黄书杰
刘伟
赵晓波
***
刘国庆
汪名月
赵福成
王瑞平
Original Assignee
贵州吉利发动机有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州吉利发动机有限公司, 浙江吉利控股集团有限公司 filed Critical 贵州吉利发动机有限公司
Priority to US17/270,849 priority Critical patent/US20210239030A1/en
Publication of WO2020038221A1 publication Critical patent/WO2020038221A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/08Arrangements of lubricant coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0412Cooling or heating; Control of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/024Cooling cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/028Cooling cylinders and cylinder heads in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold

Definitions

  • the present application relates to the technical field of automobile safety, and in particular, to a cooling system for an engine.
  • hybrids will become the mainstream of the market for a long time in the future. At the same time, it can reduce the environmental pressure and meet people's needs for travel. Hidden dangers cannot be ignored.
  • the present application provides a cooling system for an engine.
  • the cooling system of the engine includes: a coolant pump; a cylinder block and a cylinder head, which are provided with a coolant channel inside for receiving coolant from the coolant pump and passing through a coolant outlet on the cylinder head; Heat exchange, part of the coolant is sent back to the coolant pump; transmission oil cooler receives part of the coolant from the cylinder head, and heat exchanges the part of the coolant back to the coolant pump; the cylinder head is divided into upper and lower parts
  • the two layers include a cylinder head upper sleeve and a cylinder head lower sleeve. The temperature of the coolant output by the cylinder head upper sleeve is higher than the temperature of the coolant output by the cylinder head lower sleeve.
  • the cylinder head has a first cylinder head coolant outlet, the coolant flows out through the first cylinder head coolant outlet, and after being heat-exchanged through a radiator, it is partially transported and returned.
  • the coolant pump; the coolant output end of the radiator is also connected to the coolant input end of the transmission oil cooler to deliver the cooled coolant to the transmission oil cooler.
  • the cylinder head is provided with a second cylinder head coolant outlet, and the second cylinder head coolant outlet is connected to the transmission oil cooler so that the coolant output by the upper sleeve of the cylinder head Input transmission oil cooler;
  • the cylinder block is provided with a first cylinder block coolant outlet and a second cylinder block coolant outlet; the first cylinder block coolant outlet is in fluid communication with the cylinder block and the cylinder head,
  • the second cylinder block coolant fluid is in fluid communication with the coolant pump after passing through an engine oil cooler.
  • the cooling system further includes a control module for controlling the opening and closing of a fluid path between the second cylinder head coolant outlet and the transmission oil cooler, and between the radiator and the transmission oil cooler. So that one of the upper cover of the cylinder head and the radiator sends coolant to the transmission oil cooler; the control module includes: a first control valve, which is arranged at the second cylinder head coolant outlet and cools the transmission oil The first fluid path L between the radiators to control the opening and closing of the first fluid path L, so that the coolant is delivered from the second cylinder head coolant outlet to the transmission oil cooler; the second control valve Arranged on a bypass branch L between the coolant output end of the radiator and the coolant input end of the transmission oil cooler to control the on-off of the bypass branch L to make the coolant Delivered from the radiator to the transmission oil cooler.
  • a control module for controlling the opening and closing of a fluid path between the second cylinder head coolant outlet and the transmission oil cooler, and between the radiator and the transmission oil cooler.
  • the cooling system further includes a heater core, which is also connected to the coolant outlet of the second cylinder head to receive the coolant sent from the upper casing of the cylinder head.
  • the control module includes a third control valve configured on a second fluid path between the second cylinder head coolant outlet and the heater core, To control the opening and closing of the second fluid path, the coolant is delivered from the coolant outlet of the second cylinder head to the heater core.
  • the cylinder head is further provided with a third cylinder head coolant outlet, and the third cylinder head coolant outlet is in fluid communication with the coolant pump after passing through an EGR cooler and an EGR control valve.
  • a thermostat is provided between the first cylinder head coolant outlet and the radiator to control a fluid between the first cylinder head coolant outlet and the radiator. Continuity of the path.
  • the first cylinder head coolant outlet is also in fluid communication with the coolant pump via a throttle valve.
  • a cylinder head of a cylinder of the engine is non-integrated, and an exhaust manifold of the engine is not integrated into the cylinder head.
  • the cooling system of the engine of the present application can quickly reduce the temperature of the upper part of the cylinder block and reduce the occurrence of pre-ignition and knocking.
  • the oil temperature of the transmission is quickly heated to improve transmission efficiency.
  • the temperature of the transmission oil can be reduced to avoid the transmission failure due to excessive temperature.
  • the vehicle when the vehicle does not need warm air, it can cut off the flow of warm air water and reduce the energy loss of the engine.
  • the use of electric water pumps enables intelligent control of the entire water cycle of the entire cooling system and improves the fuel economy of the entire vehicle.
  • FIG. 1 is a schematic diagram of a cooling system for an engine according to a first embodiment of the present application.
  • FIG. 2 is a schematic diagram of a working condition of an engine cooling system according to a first embodiment of the present application at a low temperature and cold start.
  • FIG. 3 is an electrical control diagram of the engine's cooling system according to the first embodiment of the present application at a low temperature and cold start.
  • FIG. 4 is a schematic diagram of the working condition of the engine cooling system according to the first embodiment of the present application in a low-speed running stage after startup.
  • FIG. 5 is a schematic diagram of a working condition of an engine cooling system according to a first embodiment of the present application, in a medium-speed and medium-load driving phase.
  • FIG. 6 is a schematic diagram of the working condition of the engine cooling system according to the first embodiment of the present application in a high-speed and high-load driving phase.
  • the cooling system of the engine of the present application includes: a coolant pump 10; a cylinder block 22 and a cylinder head 24 provided therein with a coolant passage for receiving coolant from the coolant pump 10 and passing through the cylinder head
  • the first cylinder head coolant outlet 242 on 24 sends part of the coolant back to the coolant pump 10 via the thermostat 82 and the radiator 80;
  • the transmission oil cooler 60 receives part of the coolant from the cylinder head 24 and passes through Heat exchange causes the part of the coolant to flow back to the coolant pump 10.
  • the inside of the cylinder head 24 is divided into two upper and lower layers, including an upper casing of the cylinder head and a lower casing of the cylinder head.
  • the temperature of the coolant output from the upper casing of the cylinder head is higher than the temperature of the coolant output from the lower casing of the cylinder head.
  • the upper sleeve of the cylinder head cools the exhaust-side air duct and valve, and the lower sleeve of the cylinder head cools the combustion chamber located in the cylinder.
  • a second cylinder head coolant outlet 244 is also provided.
  • the second cylinder head coolant outlet 244 is connected to the transmission oil cooler 60 to connect the cylinder
  • the coolant sent from the cover is input to the transmission oil cooler 60.
  • the coolant in the transmission oil cooler 60 is lower than the first temperature threshold
  • the coolant sent from the upper casing of the cylinder head is input to the transmission oil cooler 60.
  • the temperature of the coolant in the transmission oil cooler 60 is higher than the temperature of the coolant output from the second cylinder head coolant outlet 244, and the temperature of the oil in the transmission oil cooler 60 is lower than the second temperature threshold
  • the coolant sent from the upper casing of the cylinder head is input to a transmission oil cooler 60.
  • the first temperature threshold and the second temperature threshold are both preset by the cooling system according to the operating conditions of the vehicle.
  • a third cylinder head coolant outlet 246 is also provided outside the cylinder head 24, and the third cylinder head coolant outlet 246 passes through EGR (Exhaust Gas Recirculation (exhaust gas recirculation) cooler 32 is in fluid communication with the coolant pump 10 so that the EGR cooler 32 and the EGR control valve 34 can directly input coolant from the cylinder head 24 without additional pipelines, so the arrangement is simple and efficient.
  • EGR exhaust Gas Recirculation
  • only the first cylinder head coolant outlet 242 and the second cylinder head coolant outlet 244 are provided outside the cylinder head 24. At this time, the EGR cooler 32 and the EGR control valve 34 are cooled from the first cylinder head.
  • the coolant outlet 242 inputs a coolant.
  • the coolant in the lower casing of the cylinder head cools the combustion chamber located in the cylinder, and flows out through the first cylinder head coolant outlet 242 and the third cylinder head coolant outlet 246.
  • the first cylinder head coolant outlet 242 is in fluid communication with the coolant pump 10 via a throttle valve 36, or is in fluid communication with the radiator pump 10 via a thermostat 82.
  • the third cylinder head coolant outlet 246 is in fluid communication with the coolant pump 10 via an EGR cooler 32 and an EGR control valve 34.
  • the coolant in the upper casing of the cylinder head cools the exhaust-side air passages and valves of the engine, and flows out through the second cylinder head coolant outlet 244 and the first cylinder head coolant outlet 242.
  • the second cylinder head coolant outlet 244 is disposed near the exhaust manifold of the engine.
  • the second cylinder head coolant outlet 244 is connected to the transmission oil cooler 60 to form a first fluid path L1 to guide the higher temperature coolant from the upper casing of the cylinder head into the transmission oil cooler 60.
  • the coolant inlet of the transmission oil cooler 60 is also connected to the coolant outlet of the radiator 80 to form a bypass branch L3.
  • the cooling system further includes a control module 70 for controlling the opening and closing of fluid paths between the second cylinder head coolant outlet 244 and the transmission oil cooler 60, and between the radiator 80 and the transmission oil cooler 60, so that One of the cylinder head upper sleeve and the radiator 80 is caused to deliver coolant to the transmission oil cooler.
  • the bypass branch L3 may not be provided.
  • the cooling system further includes a heater core 40.
  • the second cylinder head coolant outlet 244 is also connected to the heater core 40 to form a second fluid path L2 to guide the higher temperature coolant from the upper jacket of the cylinder head into the heater core 40.
  • the second fluid path L2 is turned on.
  • the aforementioned control module 70 is also configured to be able to control whether the second fluid path L2 is conductive.
  • the heater core 40 is, for example, a main component of warm air in a passenger compartment of a vehicle. In another embodiment, the thermal cooling system does not have the heater core 40.
  • a first control valve 62 is also installed on a fluid path between the second cylinder head coolant outlet 244 and the transmission oil cooler 60 to control cooling of the second cylinder head coolant.
  • the first fluid path L1 between the outlet 244 and the transmission oil cooler 60 is opened and closed.
  • a second control valve 64 is arranged on the bypass branch L3 between the coolant inlet of the transmission oil cooler 60 and the coolant outlet of the radiator 80 to control the on-off of the bypass branch L3.
  • the coolant is delivered from the outlet of the radiator 80 to the transmission oil cooler 60.
  • a third control valve 42 is also installed on the second fluid path L2 between the second cylinder head coolant outlet 244 and the heater core 40 to control the second between the cylinder head 24 and the heater core 40 Opening and closing of the fluid path L2.
  • the first control valve 62, the second control valve 64, and the third control valve 42 belong to the control module 70.
  • the first control valve 62, the second control valve 64, and the third control valve 42 each adopt an electronically controlled flow limiting valve, so that not only can intelligently control the on and off of the corresponding fluid path, but also the layout is simple. low cost.
  • other methods can be used to control the on and off of the fluid path.
  • a multi-port flow control valve is used as the control module 70 to control three fluid paths simultaneously.
  • the mechanical control valve opens or closes each fluid path
  • the control module 70 is composed of the mechanical control valve and the sensor.
  • the control module 70 sets the aforementioned first temperature threshold value in advance according to the operating condition of the vehicle, more specifically, the temperature of the coolant output from the second cylinder head coolant outlet 244 and the temperature of the oil in the transmission oil cooler 60.
  • the first heater core temperature threshold, the second temperature threshold, and the third temperature threshold so as to open or close the first fluid path L1, the second fluid path L2, and the third fluid path according to different temperature values.
  • the cylinder block 22 not only has a first cylinder coolant outlet 222 to convey the coolant in the cylinder block 22 to the cylinder head 24, but also has a second cylinder coolant outlet 224 to transfer
  • the coolant in the cylinder block 22 is sent to the engine oil cooler 50 for cooling, and the cooled coolant is sent back to the coolant pump 10.
  • the cooling system does not have an engine oil cooler. Accordingly, the cylinder block The second cylinder coolant outlet 224 is also not provided on 22.
  • the nose of the cylinder body 22 is drilled to form the water jackets 226 and 228 in the nose bridge region. The processing is simple and the cooling efficiency of the upper part of the water jacket is higher.
  • the cylinder head 24 of the cylinder is non-integrated, and the exhaust manifold is not integrated into the cylinder head 24.
  • the cylinder head 24 is only designed to have a double-layer cooling water jacket, and the performance is stable and easy to implement.
  • the cylinder head 24 may be integrated, and an exhaust manifold is integrated into the cylinder head 24.
  • the coolant pump 10 is an electric water pump, which not only can reduce the mechanical load of the front-end gear train of the engine, but also has precise control, simple arrangement and low cost.
  • the coolant pump 10 may be a mechanical water pump.
  • Fig. 2 and Fig. 3 show the working state in the low-temperature cold start stage
  • Fig. 4 shows the working state in the low-speed running stage after starting / starting at room temperature
  • Fig. 5 shows the working state in the medium-speed and medium-load driving stage
  • Fig. 6 shows high-speed and high-load The working state during the driving phase.
  • the solid line indicates that the fluid path is on
  • the dotted line indicates that the fluid path is off.
  • FIG. 2 shows the working condition of the first embodiment of the present application during a low temperature cold start.
  • the temperature of the coolant in the vehicle cooling system, the engine oil in the engine, and the oil in the transmission are relatively low, and the air temperature in the vehicle is relatively low.
  • the temperature of the coolant in the transmission oil cooler 60 is lower than the first temperature threshold, and the temperature of the heater core 40 is lower than the first heater core temperature threshold.
  • the entire machine ECU issues a command, and the electric control diagram is shown in FIG. 3 Show.
  • the coolant pump 10 is powered on to start working, and provides coolant to the entire cooling system.
  • the coolant enters the cylinder block 22 through the coolant pump 10, and then enters the cylinder head 24 through the cylinder water L0. Among them, a part in the cylinder block 22 The coolant enters the water jackets 226 and 228 of the bridge of the nose, and then enters the cylinder head 24 after cooling the bridge of the bridge, and another part of the coolant flows through the second cylinder coolant outlet 224 to the engine oil cooler 50 and flows through the engine oil cooler 50 Return coolant pump 10.
  • the inside of the cylinder head 24 is divided into upper and lower layers, including a cylinder head upper sleeve and a cylinder head lower sleeve.
  • the lower casing of the cylinder head cools the combustion chamber and flows out through the first cylinder head coolant outlet 242 and the third cylinder head coolant outlet 246.
  • the upper casing of the cylinder head cools the exhaust-side air passage and valve, flows out through the second cylinder head coolant outlet 244 and the first cylinder head coolant outlet 242, and the water temperature of the upper water jacket is higher than that of the lower water jacket.
  • the third control valve 42 and the first control valve 62 are controlled by the ECU. As shown in FIG. 3, the ECU issues a command.
  • the third control valve 42 and the first control valve 62 are opened by power on, and the high-temperature coolant flows directly to The heater core 40 and the transmission oil cooler 60 rapidly increase the temperature in the vehicle and improve comfort.
  • the oil in the transmission is heated to improve the lubricating performance of the oil, reduce transmission wear, and improve power transmission efficiency.
  • the coolant flows back to the coolant pump 10.
  • the thermostat 82 is closed, and the coolant in the lower casing of the cylinder head flows back to the coolant pump 10 through the EGR cooler 32 and the EGR control valve 34 and the throttle valve 36 to complete the entire cooling cycle.
  • FIG. 4 shows the working condition of the first embodiment of the present application in the low-speed running stage after starting at room temperature or after starting.
  • the engine and transmission oil temperatures are high during low-speed driving or at room temperature or in the warm-up stage, and the interior temperature is moderate, requiring no cooling or warm air.
  • the ECU determines the control target of the cooling system, and issues a command to open the first control valve 62, the second control valve 64, and the third control valve 42, so that the first fluid path L1 and the third fluid path L3 Both and the second fluid path L2 are in a closed state.
  • the coolant flows out through the second cylinder coolant outlet 224, the first cylinder head coolant outlet 242, and the third cylinder head coolant outlet 246, respectively.
  • the flow is returned to the coolant pump 10 via the EGR cooler 32, the EGR control valve 34, the throttle valve 36, and the engine oil cooler 50 to complete the cycle.
  • the oil temperature of the engine and the transmission is high, and the temperature of the oil in the transmission is higher than the temperature of the engine coolant outlet.
  • the large cycle of the engine needs to be started.
  • the temperature of the oil in the transmission oil cooler 60 is higher than the temperature of the coolant output from the second cylinder head coolant outlet 244, and the temperature of the oil in the transmission oil cooler 60 is lower than the second temperature threshold. 5.
  • the coolant enters the inside of the cylinder block 22 through the coolant pump 10, and then enters the cylinder head 24 from the cylinder water L0.
  • part of the coolant enters the water jackets 226 and 228 of the nose bridge region when passing through the cylinder block 22, and after cooling the nose bridge region It then flows to the engine oil cooler 50 through the second cylinder coolant outlet 224 or enters the cylinder head 24 through the first cylinder coolant outlet 222.
  • the cooling water is output from the third cylinder head coolant outlet 246 and the first cylinder head coolant outlet 242, and flows back through the EGR cooler 32, the EGR control valve 34, the thermostat 82, the throttle valve 36, and the radiator 80. ⁇ ⁇ 10 ⁇ Coolant pump 10.
  • the coolant cooled by the radiator 80 continues to participate in the cycle.
  • the ECU issues a command to energize only the first control valve 62 to control the first A control valve 62 is partially opened to cool the transmission oil temperature by passing coolant through the transmission oil cooler 60.
  • the temperature of the coolant in the engine and the temperature of the oil in the transmission are high.
  • the speed of the coolant pump 10 increases and rotates rapidly, and the amount of coolant pumped out increases accordingly.
  • the need for engine cooling because the coolant output by the engine cylinder head 24 can no longer meet the demand for transmission cooling, in other words, the temperature of the oil in the transmission oil cooler 60 and the temperature of the coolant output from the second cylinder head coolant outlet 244 at this time. Both are higher than the third temperature threshold, so the ECU issues a command, see FIG.
  • the coolant outlet 246 and the first cylinder head coolant outlet 242 flow out, flow back to the coolant pump 10 through the EGR cooler 32, the EGR control valve 34, the thermostat 82, the throttle valve 36, and the radiator 80 to complete a cycle.
  • the thermostat 82 is turned on, and the engine performs a large cycle.
  • a part of the coolant cooled by the radiator 80 passes through the third fluid path L3 and enters the transmission oil cooler 60 to quickly reduce the temperature of the oil in the transmission to prevent the transmission from malfunctioning because the oil temperature is too high.
  • the cooling system provided in the present application at a low temperature cold start, the coolant input to the heater core 40 from the cylinder head 24 is a higher temperature coolant output through the second cylinder head coolant outlet 244, Therefore, warming up is faster; while the transmission oil cooler 60 can enter the coolant from the first fluid path L1 via the second cylinder head coolant outlet 244 to rapidly heat up, which increases the comfort in the car during cold starts and the oil lubrication performance of the transmission .
  • the higher temperature coolant is quickly output from the upper casing of the cylinder head, which also quickly reduces the temperature of the cylinder head, reduces the occurrence of pre-ignition and knock, and improves the safety of the vehicle.
  • the transmission oil cooler 60 can not only enter the coolant from the first fluid path L1 via the second cylinder head coolant outlet 244 as described above to rapidly raise the temperature, but also from the third fluid via the coolant outlet of the radiator 80.
  • Path L3 input coolant quickly cools down, intelligently switches, and has higher efficiency.
  • the EGR cooler 32 and the EGR control valve 34 directly enter the water from the third cylinder head coolant outlet 246 of the cylinder head 24 without additional pipelines, and the arrangement is simple and efficient.
  • the new hybrid engine cooling system for the engine cooling system of the present application can make the upper part of the cylinder block more fully cooled, thereby reducing the occurrence of knocking; it can realize the intelligent switching of warm air cooling water and reduce the energy consumption of the engine;
  • the transmission can be heated or cooled under all operating conditions to improve the transmission efficiency of the transmission and reduce the energy loss of the entire vehicle. Further reduce vehicle fuel consumption and emissions.
  • the cooling system and cooling method of the engine of the present application can quickly reduce the temperature of the upper part of the cylinder block and reduce the occurrence of pre-ignition and knock.
  • the oil temperature of the transmission is quickly heated to improve transmission efficiency.
  • the temperature of the transmission oil can be reduced to avoid the transmission failure due to excessive temperature.
  • the vehicle when the vehicle does not need warm air, it can cut off the flow of warm air water and reduce the energy loss of the engine.
  • the use of electric water pumps enables intelligent control of the entire water cycle of the entire cooling system and improves the fuel economy of the entire vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

一种发动机的冷却***,包括:冷却剂泵(10);缸体(22)和缸盖(24),其内部设有冷却剂通道,用于接收来自冷却剂泵(10)的冷却剂,并通过缸盖(24)上的冷却剂出口经过热交换,使部分冷却剂输送回冷却剂泵(10);变速器机油冷却器(60),接收来自缸盖(24)的部分冷却剂,经过热交换,使该部分冷却剂流回冷却剂泵(10);缸盖分为上下两层,包括缸盖上层套和缸盖下层套,缸盖上层套输出的冷却剂的温度高于缸盖下层套输出的冷却剂的温度。该冷却***可以减小车辆发动机早燃和爆震的发生概率,提高传动效率,增强变速器的可靠性。

Description

一种发动机的冷却***
本专利申请要求 2018年8月22日提交的中国专利申请号为201810962923.3,申请人为贵州吉利发动机有限公司、浙江吉利控股集团有限公司,发明名称为“一种发动机的冷却***”的优先权,该申请的全文以引用的方式并入本申请中。
技术领域
本申请涉及汽车安全技术领域,尤其涉及一种发动机的冷却***。
背景技术
随着经济的快速发展,人们对于出行方式的选择更加复杂,呈现多样化的发展趋势,而快速发展的同时,势必会带来环境的压力。新出台的政策法规将迫使汽车工业格局发展转变,低排放、低油耗已经成为行业发展的目标。
技术问题
混合动力作为传统燃油车向纯电动车过渡的重要阶段,在未来很长时间将成为市场的主流,降低环境压力的同时可满足人们对于出行的需求,但同时,混合动力汽车所带来的安全隐患也不容忽视。
技术解决方案
有鉴于此,本申请提供了一种发动机的冷却***。
本申请提供的发动机的冷却***,包括:冷却剂泵;缸体和缸盖,其内部设有冷却剂通道,用于接收来自冷却剂泵的冷却剂,并通过缸盖上的冷却剂出口经过热交换,使部分冷却剂输送回冷却剂泵;变速器机油冷却器,接收来自缸盖的部分冷却剂,经过热交换,使所述部分冷却剂流回冷却剂泵;所述缸盖分为上下两层,包括缸盖上层套和缸盖下层套,所述缸盖上层套输出的冷却剂的温度高于所述缸盖下层套输出的冷却剂的温度。
根据本申请的一个实施例,所述缸盖具有第一缸盖冷却剂出口,所述冷却剂通过所述第一缸盖冷却剂出口流出,经由散热器进行热交换后,被部分输送会回所述冷却剂泵;所述散热器的冷却剂输出端还与所述变速器机油冷却器的冷却剂输入端连接,以将冷却后的冷却剂输送至所述变速器机油冷却器。
根据本申请的一个实施例,所述缸盖上设置有第二缸盖冷却剂出口,该第二缸盖冷却剂出口与所述变速器机油冷却器连接,以使缸盖上层套输出的冷却剂输入变速器机油冷却器;所述缸体上设有第一缸体冷却剂出口和第二缸体冷却剂出口,所述第一缸体冷却剂出口流体连通所述缸体与所述缸盖,所述第二缸体冷却剂出口经过发动机机油冷却器后流体连通所述冷却剂泵。
根据本申请的一个实施例,所述冷却***还包括控制模块,用于控制第二缸盖冷却剂出口与变速器机油冷却器之间、以及散热器与变速器机油冷却器之间流体路径的通断,以使缸盖上层套和散热器中的一个向变速器机油冷却器输送冷却剂;所述控制模块包括:第一控制阀,配置在所述第二缸盖冷却剂出口与所述变速器机油冷却器之间的第一流体路径L上,以控制所述第一流体路径L的通断,使冷却剂从所述第二缸盖冷却剂出口输送至所述变速器机油冷却器;第二控制阀,配置在所述散热器的冷却剂输出端与所述变速器机油冷却器的冷却剂输入端之间的旁通支路L上,以控制所述旁通支路L的通断,使冷却剂从所述散热器输送至所述变速器机油冷却器。
根据本申请的一个实施例,所述冷却***还包括加热器芯,该加热器芯也与所述第二缸盖冷却剂出口连接,以接收所述缸盖上层套送出的冷却剂。根据本申请的一个实施例,所述控制模块包括第三控制阀,所述第三控制阀配置在所述第二缸盖冷却剂出口与所述加热器芯之间的第二流体路径上,以控制所述第二流体路径的通断,使冷却剂从所述第二缸盖冷却剂出口输送至所述加热器芯。
根据本申请的一个实施例,所述缸盖上还设有第三缸盖冷却剂出口,所述第三缸盖冷却剂出口经过EGR冷却器、EGR控制阀后流体连通所述冷却剂泵。
根据本申请的一个实施例,所述第一缸盖冷却剂出口与所述散热器之间设有节温器,用于控制所述第一缸盖冷却剂出口与所述散热器之间流体路径的通断。
根据本申请的一个实施例,所述第一缸盖冷却剂出口还经由节气门流体连通所述冷却剂泵。
根据本申请的一个实施例,所述发动机的气缸的缸盖为非集成式,发动机的排气歧管没有集成到所述缸盖中。
有益效果
本申请发动机的冷却***可快速降低缸体上部的温度,减少早燃和爆震的发生。在冷启动时,快速加热变速器机油温度,提高变速器传动效率;而在高速高负荷时,可降低变速器机油温度,避免因温度过高而导致变速器失效。此外,可在整车不需要暖风的时候切断暖风水流量,降低发动机能量损失。电动水泵的使用,使整个冷却***的整个水循环实现了智能控制,提高了整车的燃油经济性。
附图说明
图1为本申请第一实施例提供的发动机的冷却***的示意图。
图2为本申请第一实施例的发动机的冷却***,处于低温冷启动时的工作状况示意图。
图3为本申请第一实施例的发动机的冷却***,处于低温冷启动时的电控图。
图4为本申请第一实施例的发动机的冷却***,处于启动后低速行驶阶段的工作状况示意图。
图5为本申请第一实施例的发动机的冷却***,处于中速中负荷行驶阶段的工作状况示意图。
图6为本申请第一实施例的发动机的冷却***,处于高速高负荷行驶阶段的工作状况示意图。
本发明的实施方式
以下由特定的具体实施例说明本申请的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本申请的其他优点及功效。
在下述描述中,参考附图,附图描述了本申请的若干实施例。应当理解,还可使用其他实施例,并且可以在不背离本申请的精神和范围的情况下进行机械组成、结构、电气以及操作上的改变。下面的详细描述不应该被认为是限制性的,并且本申请的实施例的范围仅由公布的专利的权利要求书所限定。这里使用的术语仅是为了描述特定实施例,而并非旨在限制本申请。空间相关的术语,例如“上”、“下”、“左”、“右”、“下面”、“下方”、“下部”、“上方”、“上部”等,可在文中使用以便于说明图中所示的一个元件或特征与另一元件或特征的关系。
虽然在一些实例中术语第一、第二等在本文中用来描述各种元件,但是这些元件不应当被这些术语限制。这些术语仅用来将一个元件与另一个元件进行区分。
参考图1,本申请的发动机的冷却***包括:冷却剂泵10;缸体22和缸盖24,其内设有冷却剂通道,用于接收来自冷却剂泵10的冷却剂,并通过缸盖24上的第一缸盖冷却剂出口242,经由节温器82和散热器80,使部分冷却剂输送回冷却剂泵10;变速器机油冷却器60,接收来自缸盖24的部分冷却剂,经过热交换,使所述部分冷却剂流回冷却剂泵10。
具体的,所述缸盖24内部分为上下两层,包括缸盖上层套和缸盖下层套。缸盖上层套输出的冷却剂的温度高于缸盖下层套输出的冷却剂的温度。缸盖上层套冷却排气侧气道及气门,缸盖下层套冷却位于气缸内的燃烧室。缸盖24外部除了具有第一缸盖冷却剂出口242外,还配置有第二缸盖冷却剂出口244,该第二缸盖冷却剂出口244与所述变速器机油冷却器60连接,以将缸盖上层套送出的冷却剂输入到变速器机油冷却器60。例如,在变速器机油冷却器60内的冷却剂低于第一温度阈值时,将缸盖上层套送出的冷却剂输入到变速器机油冷却器60。或者,在变速器机油冷却器60内的冷却剂的温度高于第二缸盖冷却剂出口244输出的冷却剂温度,并且变速器机油冷却器60内的机油的温度低于第二温度阈值时,将缸盖上层套送出的冷却剂输入到变速器机油冷却器60。所述第一温度阈值和第二温度阈值均由冷却***根据车辆的运行工况预先设定。另外,在本实施例中,缸盖24外部还设置有第三缸盖冷却剂出口246,该第三缸盖冷却剂出口246经过EGR(Exhaust Gas Recirculation,排气再循环)冷却器32后流体连通冷却剂泵10,以便EGR冷却器32和EGR控制阀34能从缸盖24直接输入冷却剂,无需外加管路,因此布置简单,效率高。在另一实施方式中,缸盖24外部仅设置有第一缸盖冷却剂出口242和第二缸盖冷却剂出口244,此时,EGR冷却器32和EGR控制阀34从第一缸盖冷却剂出口242输入冷却剂。
缸盖下层套内的冷却剂冷却位于气缸内的燃烧室,通过第一缸盖冷却剂出口242和第三缸盖冷却剂出口246流出。所述第一缸盖冷却剂出口242经由节气门36流体连通所述冷却剂泵10,或经由节温器82与散热器80流体连通所述冷却剂泵10。所述第三缸盖冷却剂出口246经由EGR冷却器32和EGR控制阀34流体连通所述冷却剂泵10。缸盖上层套内的冷却剂冷却发动机的排气侧气道及气门,通过第二缸盖冷却剂出口244和第一缸盖冷却剂出口242流出。第二缸盖冷却剂出口244配置在靠近发动机的排气歧管的位置。第二缸盖冷却剂出口244与所述变速器机油冷却器60连接构成第一流体路径L1,以引导来自缸盖上层套的较高温度的冷却剂进入变速器机油冷却器60。
在本实施例中,所述变速器机油冷却器60的冷却剂入口还与散热器80的冷却剂出口连接,构成旁通支路L3。在变速器机油冷却器60内的机油的温度与第二缸盖冷却剂出口244输出的冷却剂温度均高于第三温度阈值时,使缸盖上层套送出的冷却剂输入变速器机油冷却器60。此时,冷却***还包括控制模块70,用于控制第二缸盖冷却剂出口244与变速器机油冷却器60之间、以及散热器80与变速器机油冷却器60之间流体路径的通断,以使缸盖上层套和散热器80中的一个向所述变速器机油冷却器输送冷却剂。在另一实施方式中,旁通支路L3可以不被设置。
在本实施例中,冷却***还包括加热器芯40。第二缸盖冷却剂出口244还与该加热器芯40连接构成第二流体路径L2,以引导来自缸盖上层套的较高温度的冷却剂进入加热器芯40。当环境温度低于第一加热芯温度阈值时,第二流体路径L2导通。此时,前述控制模块70也被配置为能够控制该第二流体路径L2是否导通。加热器芯40例如是车辆乘客室内的暖风的主要部件。在另一实施方式中,热冷却***不具有该加热器芯40。
更具体的,在本实施例中,第二缸盖冷却剂出口244与变速器机油冷却器60之间的流体路径上还安装有第一控制阀62,以控制冷所述第二缸盖冷却剂出口244与所述变速器机油冷却器60之间的第一流体路径L1的通断。相似地,变速器机油冷却器60的冷却剂入口与散热器80的冷却剂出口之间的旁通支路L3上配置有第二控制阀64,以控制所述旁通支路L3的通断,使冷却剂从散热器80的出口处输送至所述变速器机油冷却器60。第二缸盖冷却剂出口244与加热器芯40之间的第二流体路径L2上还安装有第三控制阀42,以控制所述缸盖24与所述加热器芯40之间的第二流体路径L2的通断。所述第一控制阀62、第二控制阀64和第三控制阀42均属于控制模块70。在本实施例中,第一控制阀62、第二控制阀64和第三控制阀42均采用电控限流阀,这样不仅能分别智能控制对应流体路径的导通和关闭,而且布置简单,成本低。在其他实施方式中,也可以采用其他方式控制流体路径的导通和关闭,如采用一个多端口流动控制阀作为控制模块70,以同时控制三个流体路径,再如在一些物理环境中,采用机械式控制阀打开或关闭每个流体路径,由机械式控制阀配合传感器构成控制模块70。控制模块70根据车辆的运行状况,更确切地说,是根据第二缸盖冷却剂出口244输出的冷却剂的温度和变速器机油冷却器60内的机油温度,来预先设定前述第一温度阈值、第一加热器芯温度阈值、第二温度阈值和第三温度阈值,从而根据不同的温度值,来开通或关闭所述第一流体路径L1、第二流体路径L2以及第三流体路径。
在本实施例中,缸体22不仅具有第一缸体冷却剂出口222,以将缸体22内的冷却剂输送到所述缸盖24,还具有第二缸体冷却剂出口224,以将缸体22内的冷却剂输送到发动机机油冷却器50冷却,冷却后的冷却剂被输送回冷却剂泵10;在另一实施方式中,冷却***不具有发动机机油冷却器,相应地,缸体22上也没有配置第二缸体冷却剂出口224。在本实施例中,缸体22鼻梁区钻孔,形成鼻梁区水套226和228,其加工简单,能使水套上部冷却效率更高。
在本实施例中,气缸的缸盖24为非集成式,排气歧管没有集成到所述缸盖24中,缸盖24仅设计为具有双层冷却水套,性能稳定易实现。在其他实施方式中,所述缸盖24也可以是集成式,将排气歧管集成到缸盖24中。
在本实施例中,所述冷却剂泵10是电动水泵,不仅能降低发动机前端轮系的机械负荷,而且控制精确,布置简单,成本低。在其他实施方式中,冷却剂泵10也可以是机械水泵。
为更清楚的说明本申请的工作原理和***结构,以下结合工作状况图对本申请第一实施例再做详细阐释。
一般而言,发动机的工作过程会经历低温冷启动/室温启动、启动后低速行驶、中速中负荷行驶,以及高速高负荷行驶等阶段,下面结合附图的图2、图3、图4、图5和图6分别说明。其中,图2和图3显示低温冷启动阶段的工作状态,图4显示室温启动/启动后低速行驶阶段的工作状态,图5显示中速中负荷行驶阶段的工作状态,图6显示高速高负荷行驶阶段的工作状态。图中,实线表示流体路径导通,虚线表示流体路径关闭。
请参阅图2,该图显示本申请第一实施例处于低温冷启动时的工作状况。如图2所示,在发动机低温冷启动或者刚启动时,车辆冷却***内的冷却剂、发动机内的机油,以及变速器内的机油,温度都比较低,并且车内的空气温度也比较低。换言之,此时变速器机油冷却器60内的冷却剂温度低于第一温度阈值,加热器芯40的温度低于第一加热器芯温度阈值,整机ECU发出命令,电控图如图3所示。冷却剂泵10通电开始工作,给整个冷却***提供冷却剂,冷却剂通过冷却剂泵10进入缸体22,接着经由缸体上水L0进入到缸盖24 内部,其中,缸体22内的部分冷却剂进入鼻梁区水套226和228,冷却鼻梁区后再进入缸盖24内,另外一部分冷却剂则经过第二缸体冷却剂出口224流向发动机机油冷却器50,经发动机机油冷却器50流回冷却剂泵10。缸盖24内部分为上下两层,包括缸盖上层套和缸盖下层套。缸盖下层套冷却燃烧室,通过第一缸盖冷却剂出口242和第三缸盖冷却剂出口246流出。缸盖上层套冷却排气侧气道及气门,通过第二缸盖冷却剂出口244和第一缸盖冷却剂出口242流出,并且上层水套的水温高于下层水套。
冷启动时第三控制阀42和第一控制阀62由ECU控制,如图3所示,ECU发出命令,第三控制阀42和第一控制阀62通电开启,温度高的冷却剂分别直接流向加热器芯40和变速器机油冷却器60,使车内温度迅速升温,提高舒适性,同时加热变速箱内的机油,提高机油的润滑性能,降低变速箱磨损,并提高动力传输效率,加热后的冷却剂则流回冷却剂泵10。此时节温器82关闭,缸盖下层套的冷却剂则通过EGR冷却器32和EGR控制阀34、以及节气门36流回冷却剂泵10,完成整个冷却循环。
在发动机进行室温启动或进入启动后低速行驶阶段时,请参阅图4,图4显示本申请第一实施例处于室温启动或启动后低速行驶阶段的工作状况。如图4所示,在低速行驶或室温或热机阶段,发动机及变速器机油温度较高,车内温度适中,无需进行冷却,也无需暖风。根据检测到的这些温度值,ECU确定冷却***的控制目标,发出指令断开第一控制阀62、第二控制阀64和第三控制阀42,使第一流体路径L1、第三流体路径L3和第二流体路径L2均处于关闭状态。这样,冷却剂经过冷却剂泵10进入缸体22和缸盖24内部后,接着分别通过第二缸体冷却剂出口224、第一缸盖冷却剂出口242和第三缸盖冷却剂出口246流出,与图2所示的工作状况中的流向一致,经由EGR冷却器32、EGR控制阀34、节气门36和发动机机油冷却器50,流回冷却剂泵10,完成循环。
当发动机进入中速中负荷行驶阶段时,发动机及变速器的机油温度较高,并且变速器内机油的温度高于发动机冷却剂出口的温度,此时需要开启发动机大循环。换言之,此时变速器机油冷却器60内的机油的温度高于第二缸盖冷却剂出口244输出的冷却剂温度,并且变速器机油冷却器60内的机油的温度低于第二温度阈值,参阅图5,冷却液通过冷却剂泵10进入缸体22内部,再由缸体上水L0进入缸盖24,其中,部分冷却剂通过缸体22时进入鼻梁区水套226和228,冷却鼻梁区后再经第二缸体冷却剂出口224流向发动机机油冷却器50或经第一缸体冷却剂出口222进入缸盖24内。之后,冷却水由第三缸盖冷却剂出口246和第一缸盖冷却剂出口242输出,通过EGR冷却器32、EGR控制阀34、节温器82、节气门36,以及散热器80流回冷却剂泵10。同时,继续参阅图5,如图5中第一冷却路径L1所示,经散热器80冷却后的冷却剂,继续参与循环,此时ECU发出命令,只给第一控制阀62通电,控制第一控制阀62部分开启,通过让冷却剂流经变速器机油冷却器60来冷却变速器机油温度。
当车辆进入高速高负荷行驶阶段时,发动机内的冷却剂的温度和变速器内机油的温度都较高,冷却剂泵10的转速升高,快速转动,冷却剂的泵出量也相应增加,满足发动机冷却的需求。但时,由于由发动机缸盖24输出的冷却剂已不能满足变速器冷却的需求,换言之,此时变速器机油冷却器60内的机油的温度与第二缸盖冷却剂出口244输出的冷却剂的温度均高于第三温度阈值,因此ECU发出命令,请参阅图6,断开第三控制阀42和第一控制阀62,使第一冷却路径L1和第二冷却路径L2均关闭,使第二控制阀64通电打开。藉此,冷却剂由冷却剂泵10进入到缸体22,缸体22内的一部分冷却剂经过第二缸体冷却剂出口224流向发动机机油冷却器50,经发动机机油冷却器50流回冷却剂泵10;缸体22内的另一部分冷却剂由缸体上水L0进入到缸盖24,接着,冷却剂经过缸盖24内的缸盖上层套和缸盖下层套后由第三缸盖冷却剂出口246和第一缸盖冷却剂出口242流出,经过EGR冷却器32、EGR控制阀34、节温器82、节气门36以及散热器80流回冷却剂泵10,完成一个循环。该行驶状态下,节温器82开启,发动机进行大循环,部分冷却剂由第一缸盖冷却剂出口242输出后,经由节温器82到达散热器80。经过散热器80冷却后的冷却剂,一部分通过第三流体路径L3,进入变速器机油冷却器60,以迅速降低变速器内机油的温度,防止因为机油温度过高导致变速器产生故障。
由上述可知,本申请所提供的冷却***,在低温冷启动时,从缸盖24输入加热器芯40的冷却剂,是经由第二缸盖冷却剂出口244输出的较高温度的冷却剂,因此暖机更快;而变速器机油冷却器60可以经由第二缸盖冷却剂出口244从第一流体路径L1输入冷却剂迅速升温,增加了冷启动时车内的舒适性和变速器的机油润滑性能。另一方面,温度较高的冷却剂从缸盖上层套被快速输出,也迅速降低了缸盖的温度,减少了早燃和爆震的发生,提高了车辆的安全性。
对变速器而言,变速器机油冷却器60不仅如上述的可以经由第二缸盖冷却剂出口244从第一流体路径L1输入冷却剂迅速升温,还可以经由散热器80的冷却剂出口从第三流体路径L3输入冷却剂迅速降温,智能切换,效率更高。
EGR冷却器32和EGR控制阀34从缸盖24的第三缸盖冷却剂出口246直接进水,无需外加管路,布置简单效率高。
换言之,本申请发动机的冷却***新型的混动专用发动机冷却***可使缸体上部分的冷却更加充分,从而降低爆震的发生;可实现暖风冷却水智能切换,降低发动机能量消耗;此外还可以全工况加热或冷却变速器,提高变速器传功效率,减少整车能量损耗。进一步降低整车油耗和排放。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。
工业实用性
本申请发动机的冷却***和冷却方法可快速降低缸体上部的温度,减少早燃和爆震的发生。在冷启动时,快速加热变速器机油温度,提高变速器传动效率;而在高速高负荷时,可降低变速器机油温度,避免因温度过高而导致变速器失效。此外,可在整车不需要暖风的时候切断暖风水流量,降低发动机能量损失。电动水泵的使用,使整个冷却***的整个水循环实现了智能控制,提高了整车的燃油经济性。

Claims (10)

  1. 一种发动机的冷却***,包括:
    冷却剂泵(10);
    缸体(22)和缸盖(24),其内部设有冷却剂通道,用于接收来自冷却剂泵(10)的冷却剂,并通过缸盖(24)上的冷却剂出口经过热交换,使部分冷却剂输送回冷却剂泵(10);
    变速器机油冷却器(60),接收来自缸盖(24)的部分冷却剂,经过热交换,使所述部分冷却剂流回冷却剂泵(10);
    其特征在于,
    所述缸盖(24)分为上下两层,包括缸盖上层套和缸盖下层套,所述缸盖上层套输出的冷却剂的温度高于所述缸盖下层套输出的冷却剂的温度。
  2. 根据权利要求1所述的发动机的冷却***,其特征在于:
    所述缸盖(24)具有第一缸盖冷却剂出口(242),所述冷却剂通过所述第一缸盖冷却剂出口(242)流出,经由散热器(80)进行热交换后,被部分输送会回所述冷却剂泵(10);
    所述散热器(80)的冷却剂输出端还与所述变速器机油冷却器(60)的冷却剂输入端连接,以将冷却后的冷却剂输送至所述变速器机油冷却器(60)。
  3. 根据权利要求2所述的发动机的冷却***,其特征在于:
    所述缸盖(24)上设置有第二缸盖冷却剂出口(244),该第二缸盖冷却剂出口(244)与所述变速器机油冷却器(60)连接,以使缸盖上层套输出的冷却剂输入变速器机油冷却器(60);
    所述缸体(22)上设有第一缸体冷却剂出口(222)和第二缸体冷却剂出口(224),所述第一缸体冷却剂出口(222)流体连通所述缸体(22)与所述缸盖(24),所述第二缸体冷却剂出口(224)经过发动机机油冷却器(50)后流体连通所述冷却剂泵(10)。
  4. 根据权利要求2所述的发动机的冷却***,其特征在于:
    所述冷却***还包括控制模块(70),用于控制第二缸盖冷却剂出口(244)与变速器机油冷却器(60)之间、以及散热器(80)与变速器机油冷却器(60)之间流体路径的通断,以使缸盖上层套和散热器(80)中的一个向变速器机油冷却器(60)输送冷却剂;所述控制模块(70)包括:
    第一控制阀(62),配置在所述第二缸盖冷却剂出口(244)与所述变速器机油冷却器(60)之间的第一流体路径(L1)上,以控制所述第一流体路径(L1)的通断,使冷却剂从所述第二缸盖冷却剂出口(244)输送至所述变速器机油冷却器(60);
    第二控制阀(64),配置在所述散热器(80)的冷却剂输出端与所述变速器机油冷却器(60)的冷却剂输入端之间的旁通支路(L3)上,以控制所述旁通支路(L3)的通断,使冷却剂从所述散热器(80)输送至所述变速器机油冷却器(60)。
  5. 根据权利要求3所述的发动机的冷却***,其特征在于,所述冷却***还包括加热器芯(40),该加热器芯(40)也与所述第二缸盖冷却剂出口(244)连接,以接收所述缸盖上层套送出的冷却剂。
  6. 根据权利要求4所述的发动机的冷却***,其特征在于,所述控制模块(70)包括第三控制阀(42),所述第三控制阀(42)配置在所述第二缸盖冷却剂出口(244)与所述加热器芯(40)之间的第二流体路径(L2)上,以控制所述第二流体路径(L2)的通断,使冷却剂从所述第二缸盖冷却剂出口(244)输送至所述加热器芯(40)。
  7. 根据权利要求1所述的发动机的冷却***,其特征在于,所述缸盖(24)上还设有第三缸盖冷却剂出口(246),所述第三缸盖冷却剂出口(246)经过EGR冷却器(32)、EGR控制阀(34)后流体连通所述冷却剂泵(10)。
  8. 根据权利要求2所述的发动机的冷却***,其特征在于,所述第一缸盖冷却剂出口(242)与所述散热器(80)之间设有节温器(82),用于控制所述第一缸盖冷却剂出口(242)与所述散热器(80)之间流体路径的通断。
  9. 根据权利要求2所述的发动机的冷却***,其特征在于,所述第一缸盖冷却剂出口(242)还经由节气门(36)流体连通所述冷却剂泵(10)。
  10. 根据权利要求1所述的发动机的冷却***,其特征在于,所述发动机的气缸的缸盖为非集成式,发动机的排气歧管没有集成到所述缸盖中。
PCT/CN2019/099325 2018-08-22 2019-08-06 一种发动机的冷却*** WO2020038221A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/270,849 US20210239030A1 (en) 2018-08-22 2019-08-06 Cooling system of engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810962923.3A CN109268120A (zh) 2018-08-22 2018-08-22 一种发动机的冷却***
CN201810962923.3 2018-08-22

Publications (1)

Publication Number Publication Date
WO2020038221A1 true WO2020038221A1 (zh) 2020-02-27

Family

ID=65154050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099325 WO2020038221A1 (zh) 2018-08-22 2019-08-06 一种发动机的冷却***

Country Status (3)

Country Link
US (1) US20210239030A1 (zh)
CN (1) CN109268120A (zh)
WO (1) WO2020038221A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109268120A (zh) * 2018-08-22 2019-01-25 浙江吉利控股集团有限公司 一种发动机的冷却***
CN110566335B (zh) * 2019-08-01 2020-11-17 北京汽车股份有限公司 冷却循环控制模块、发动机冷却循环***以及汽车
KR20210074714A (ko) * 2019-12-12 2021-06-22 현대자동차주식회사 차량용 냉각 시스템의 냉각수 유동 제어 장치
CN112098104B (zh) * 2020-07-30 2022-03-29 东风汽车集团有限公司 热管理***温控阀台架
CN112214936A (zh) * 2020-09-09 2021-01-12 黄冈格罗夫氢能汽车有限公司 一种氢能汽车冷却水泵布置方案的优化设计方法及***
CN115247596A (zh) * 2022-06-24 2022-10-28 东风汽车集团股份有限公司 一种发动机热管理***的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106825A1 (de) * 2002-06-17 2003-12-24 Siemens Aktiengesellschaft Verfahren zum betrieb einer flüssigkeitsgekühlten brennkraftmaschine
JP2013024083A (ja) * 2011-07-19 2013-02-04 Isuzu Motors Ltd エンジンの冷却回路
CN104696057A (zh) * 2013-12-09 2015-06-10 现代自动车株式会社 用于车辆的冷却***
CN105317523A (zh) * 2014-06-24 2016-02-10 通用汽车环球科技运作有限责任公司 用于发动机的热管理的***和方法
CN106837504A (zh) * 2015-09-15 2017-06-13 丰田自动车株式会社 发动机冷却装置
CN109268120A (zh) * 2018-08-22 2019-01-25 浙江吉利控股集团有限公司 一种发动机的冷却***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2860833B1 (fr) * 2003-10-08 2007-06-01 Peugeot Citroen Automobiles Sa Circuit de refroidissement d'un moteur a combustion interne constitue d'au moins trois passages de refroidissement
SE538343C2 (sv) * 2013-10-18 2016-05-24 Scania Cv Ab Kylsystem i ett fordon
SE537027C2 (sv) * 2013-12-20 2014-12-09 Scania Cv Ab Kylarrangemang för kylning av åtminstone en cylinder hos enförbränningsmotor
US9334828B2 (en) * 2014-06-23 2016-05-10 Ford Global Technologies, Llc Bore bridge and cylinder cooling
CN106337753B (zh) * 2016-08-31 2019-02-12 潍柴动力股份有限公司 气缸盖精确冷却方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106825A1 (de) * 2002-06-17 2003-12-24 Siemens Aktiengesellschaft Verfahren zum betrieb einer flüssigkeitsgekühlten brennkraftmaschine
JP2013024083A (ja) * 2011-07-19 2013-02-04 Isuzu Motors Ltd エンジンの冷却回路
CN104696057A (zh) * 2013-12-09 2015-06-10 现代自动车株式会社 用于车辆的冷却***
CN105317523A (zh) * 2014-06-24 2016-02-10 通用汽车环球科技运作有限责任公司 用于发动机的热管理的***和方法
CN106837504A (zh) * 2015-09-15 2017-06-13 丰田自动车株式会社 发动机冷却装置
CN109268120A (zh) * 2018-08-22 2019-01-25 浙江吉利控股集团有限公司 一种发动机的冷却***

Also Published As

Publication number Publication date
US20210239030A1 (en) 2021-08-05
CN109268120A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
WO2020038221A1 (zh) 一种发动机的冷却***
JP5580151B2 (ja) エンジンの廃熱回収及び冷却装置
CN109795312B (zh) 一种插电式混合动力汽车的整车热管理***
US8042609B2 (en) Method and apparatus for improving vehicle fuel economy
JP5293236B2 (ja) ディーゼルエンジンの始動方法及びその装置
US20130305708A1 (en) Engine thermal management system and method for split cooling and integrated exhaust manifold applications
CN109915249B (zh) 汽车发动机冷却***及其控制方法
CN108343500B (zh) 一种汽车发动机冷却***
GB2471514A (en) Parallel Connected Exhaust Gas Heat Exchangers for a Motor Vehicle Engine
JP6090138B2 (ja) エンジンの冷却装置
GB2501304A (en) Engine system comprising coolant system having switchable coolant routes
CN105201625B (zh) 一种发动机冷却***
CN105134360A (zh) 一种多循环发动机冷却***
CN105201626A (zh) 一种发动机冷却***
CN112483236B (zh) 发动机热管理***
CN105257384B (zh) 一种发动机冷却***
CN105351070A (zh) 一种采用电控辅助水泵的发动机冷却***
CN106870061A (zh) 一种快速预热变速器机油的冷却***
CN109057942B (zh) 一种提高暖机速度降低油耗的冷却***
CN206086353U (zh) 一种发动机冷却与汽车采暖***
CN210769007U (zh) 一种适用于小排量增压直喷发动机的整车热管理***
CN105863804A (zh) 一种采用电控辅助水泵的发动机冷却***
CN105927356A (zh) 一种多循环发动机冷却***
CN105351071A (zh) 一种发动机冷却***
CN105257386A (zh) 一种采用延迟循环流路的发动机冷却***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851568

Country of ref document: EP

Kind code of ref document: A1