WO2020037845A1 - Nanocristaux de sulfure de cobalt creux à base de graphène capables d'activer efficacement le persulfate et leur procédé de préparation - Google Patents

Nanocristaux de sulfure de cobalt creux à base de graphène capables d'activer efficacement le persulfate et leur procédé de préparation Download PDF

Info

Publication number
WO2020037845A1
WO2020037845A1 PCT/CN2018/115125 CN2018115125W WO2020037845A1 WO 2020037845 A1 WO2020037845 A1 WO 2020037845A1 CN 2018115125 W CN2018115125 W CN 2018115125W WO 2020037845 A1 WO2020037845 A1 WO 2020037845A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
graphene oxide
based hollow
preparation
cobalt sulfide
Prior art date
Application number
PCT/CN2018/115125
Other languages
English (en)
Chinese (zh)
Inventor
刘福强
朱长青
凌晨
江昊
吴海德
李爱民
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to JP2020545353A priority Critical patent/JP7011350B2/ja
Publication of WO2020037845A1 publication Critical patent/WO2020037845A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J35/40
    • B01J35/50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/30Sulfides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Definitions

  • the invention belongs to the field of environmental catalyst synthesis, a graphene-based hollow cobalt sulfide nanocrystal capable of efficiently activating a persulfate salt, and a preparation method thereof.
  • Heterogeneous catalysis uses the surface active sites of solid catalysts. Point activation persulfate can effectively avoid the above problems.
  • researches on improving the efficiency of heterogeneous catalysis are mainly focused on two points, that is, enhancing the intrinsic catalytic activity by applying external energy to enhance or optimize the catalyst structure design.
  • the Chinese patent number is 201610174029.0, and the patent application document with an application publication date of March 24, 2016 discloses a method for electrochemically synergizing Ni-Fe-LDH / rGO catalyst to activate persulfate to treat organic wastewater;
  • Chinese patent number is 201510234345.8, the patent application file with an application publication date of May 11, 2015 discloses a construction and application method of a photo-assisted porous copper bismuthate-activated advanced oxidation technology for the treatment of persulfate brine.
  • External energy forms such as light to enhance the catalytic effect, but this type of method has high energy consumption and complex equipment, which is difficult to promote on a large scale.
  • cobalt has the best activation effect on persulfate.
  • Common cobalt-based catalysts are mostly cobalt or cobalt-containing oxides.
  • Chinese patent number 201510928060.4 and the application publication date of December 15, 2015 disclose a three-dimensional magnetic ordered mesoporous cobalt ferrite Method for treating dye wastewater by activating persulfate;
  • Chinese Patent No. 201510487197.0 and patent application filed on August 10, 2015 disclose a method for manganese-cobalt composite oxide to activate persulfate to degrade organic wastewater.
  • the resulting hollow Tricobalt tetrasulfide exhibits high electrocatalytic and photocatalytic hydrogen production efficiency (Huang et Cobalt-Based Bimetallic Sulfide Polyhedra for Efficient All-pH Value Electrochemical and Photocatalytic Hydrogen Evolution, J. Am. Chem. Soc. 2016, 138, 1359-1365).
  • the catalyst activity is still limited by the low conductivity of tricobalt tetrasulfide.
  • Kong et al. Used a solvothermal method to synthesize graphene-supported solid cobalt sulfide for lithium-ion batteries and photocatalysts (Kong et al.
  • the present invention solves the aforementioned technical problems in the prior art, and provides a graphene-based hollow cobalt sulfide nanocrystal capable of efficiently activating a persulfate salt and a preparation method thereof.
  • a method for preparing graphene-based hollow cobalt sulfide nanocrystals capable of efficiently activating persulfate salts includes the following steps:
  • step b Preparation of graphene-based hollow cobalt sulfide: The graphene-based hollow cobalt sulfide obtained in step b is placed in a tube furnace, and under the protection of an inert gas, the cobalt sulfide is desulfurized by high-temperature calcination. Graphene-based hollow cobalt sulfide nanocrystals.
  • the concentration of the graphene oxide dispersion in step a is 0.5 to 3 mg / mL, and the dosage of cobalt nitrate hexahydrate is 10 to 20 mg / mL.
  • the concentration of the 2-methylimidazole aqueous solution in step a is 45-115 mg / mL.
  • the concentration of the graphene oxide zeolite-type imidazole ester frame 67 ethanol dispersion is 1 to 3 mg / mL, and the dosage of thioacetamide is 1.5 to 4.5 mg / mL.
  • the solvothermal reaction temperature in the step b is 120-140 ° C, and the reaction time is 3-6 hours.
  • the inert gas in step c is one of high-purity nitrogen or argon.
  • the calcination temperature in the step c is 600-700 ° C
  • the calcination time is 2-6h
  • the heating rate is 1-10 ° C / min.
  • the graphene-based hollow cobalt sulfide nanocrystals can be used as a catalyst to activate persulfate and degrade organic matter.
  • Method 1 After the graphene-based hollow cobalt sulfide nanocrystals are thoroughly mixed with a solution containing an organic substance, persulfate is added.
  • the graphene-based hollow cobalt sulfide nanocrystals are trapped on a filter membrane, and are used to filter a mixed solution containing persulfate and organic matter.
  • the persulfate includes one or more of sodium persulfate, potassium persulfate, and potassium persulfate complex salts.
  • the present invention uses a simple organometallic frame self-stenciling method, combined with solvent thermal vulcanization and high temperature desulfurization reaction, to prepare a new type of graphene-supported cobalt sulfide nanocrystals with hollow structure; the composite material integrates graphene Enrichment of common organic pollutants, rapid transport of electrons, and the efficient activation of persulfate by cobalt sulfide can quickly degrade organic pollutants in water.
  • the graphene-based hollow cobalt sulfide nanocrystals prepared by the present invention can overcome the large amount of homogeneous catalytic agents and the difficulty of recovering the catalyst.
  • the common external energy combined with the heterogeneous heterogeneous catalysis has high energy consumption, complicated equipment, and ordinary heterogeneous.
  • the catalyst has the disadvantages of low activation efficiency of persulfate, etc. It is a new type of catalyst with high efficiency, low consumption, and multiple times of reuse. It can greatly save the amount of catalyst and oxidant while treating pollutants quickly, and has significant environmental and economic significance.
  • the present invention focuses on conventional cobalt-based heterogeneous catalysts that are mostly cobalt or cobalt-containing oxides.
  • cobalt sulfides have been used to activate persulfates, providing an advanced oxidation technology based on sulfate radicals. This kind of new-type high-efficiency catalyst has broad application prospects.
  • FIG. 1 is a (A) scanning and (B) transmission electron microscope image of a graphene-based hollow cobalt sulfide nanocrystal in the present invention
  • Example 2 is a graph showing the degradation effect of graphene-based hollow cobalt sulfide nanocrystals on bisphenol A in Example 1 of the present invention
  • FIG. 3 is a graphene-based hollow cobalt sulfide nanocrystal-based catalytic membrane structure (A) and its reuse performance (B) in Example 1 of the present invention.
  • step b Preparation of graphene-based hollow cobalt sulfide: The graphene-based hollow cobalt sulfide obtained in step b was placed in a tube furnace, and under a nitrogen atmosphere, the temperature was raised to 600 ° C and calcined at 5 ° C / min for 2h. A graphene-based hollow cobalt sulfide nanocrystal is obtained by inverse desulfurization reaction of tricobalt tetrasulfide.
  • FIG. 1 The scanning and transmission electron microscope images of the graphene-based hollow cobalt sulfide nanocrystals obtained in step c in this embodiment are shown in FIG. 1. It can be seen that hollow cobalt sulfide nanocrystals with a size of 10-40 nm are uniformly supported on the graphene nanosheets.
  • Bisphenol A is often used as an additive in plastics and resins. It is widely found in water as an endocrine disruptor.
  • the obtained graphene-based hollow cobalt sulfide nanocrystals were used to test the potassium bisulfate composite salt for degradation of bisphenol A.
  • the specific experimental conditions were: 2 mg of catalyst was placed in 20 mL of bisphenol A solution, and The concentration of phenol A was 20 mg / L, the initial pH was 6.65 and the pH was not adjusted during the experiment. The experimental temperature was 25 ° C. After the catalyst was dispersed ultrasonically, the adsorption-desorption equilibrium was reached for 30 minutes, and then 4 mg potassium persulfate was added. The composite salt initiates the reaction.
  • the degradation results of bisphenol A are shown in Figure 2. From the results, it can be seen that the degradation rate of bisphenol A can reach 97% in 8 minutes, which verifies the efficiency of the catalyst.
  • a catalyst with excellent reuse performance can effectively reduce wastewater treatment costs.
  • 0.5 mg of graphene-based hollow cobalt sulfide nanocrystals are first uniformly dispersed in 5 mL of water, and then filtered and trapped on an inert circular polytetrafluoroethylene filter membrane (pore diameter: 0.22 ⁇ m, diameter: 1.5 cm).
  • 2 mL of a mixed solution containing bisphenol A at a concentration of 10 mg / mL and a potassium persulfate complex salt at a concentration of 0.2 mg / mL was squeezed through a first filter membrane (M1) through a syringe, and the filtration speed was 1 mL / min To complete the first degradation, as shown in Figure 3A.
  • Fig. 3B shows the change of the catalytic efficiency of the adsorbent in the three cycles. It can be found that the catalytic efficiency of the catalyst does not decrease significantly in the three cycles.
  • the concentration of the graphene oxide dispersion in step a is 0.5 mg / mL;
  • step b the concentration of the graphene oxide zeolite-type imidazole ester frame 67 ethanol dispersion is 3 mg / mL, the concentration of thioacetamide is 4.5 mg / mL, the solvothermal reaction temperature is 140 ° C., and the reaction time is 6 h;
  • step c the inert protective gas is argon, and the heating rate is 10 ° C / min.
  • the obtained catalyst had a degradation rate of bisphenol A of 88% within 8 minutes.
  • the concentration of cobalt nitrate hexahydrate in step a is 20 mg / mL, and the concentration of 2-methylimidazole is 90 mg / mL;
  • step b the concentration of the graphene oxide zeolite-type imidazole ester frame 67 ethanol dispersion is 1 mg / mL, the concentration of thioacetamide is 1.5 mg / mL, the solvothermal reaction temperature is 120 ° C., and the reaction time is 3 h;
  • the obtained catalyst had a degradation rate of bisphenol A of 99% within 8 minutes.
  • the concentration of cobalt nitrate hexahydrate in step a is 10 mg / mL, and the concentration of 2-methylimidazole is 45 mg / mL;
  • step b the concentration of the graphene oxide zeolite-type imidazole ester frame 67 ethanol dispersion is 2 mg / mL, the concentration of thioacetamide is 3 mg / mL, the solvothermal reaction temperature is 130 ° C., and the reaction time is 5 h;
  • the obtained catalyst had a degradation rate of bisphenol A of 89% within 8 minutes.
  • Example 1 Same as in Example 1, except that the calcination temperature in step c is 650 ° C, the heating time is 4h, and the heating rate is 2 ° C / min. Under the same experimental conditions as in Example 1, the obtained catalyst had a degradation rate of 98% of bisphenol A within 8 minutes.
  • Example 2 Same as in Example 1, except that the calcination temperature in step c was 700 ° C, the heating time was 6 hours, and the heating rate was 1 ° C / min.
  • the obtained catalyst was treated with bisphenol A in 8 minutes under the same experimental conditions as in Example 1. The degradation rate is 99%.
  • Example 2 Same as in Example 1, except that the concentration of the graphene oxide dispersion was 2 mg / mL, and the degradation rate of bisphenol A by the catalyst was 95% under the same experimental conditions as in Example 1 within 8 minutes.
  • Example 2 Same as in Example 1, except that the persulfate used is one or a mixture of sodium persulfate or potassium persulfate, and the catalyst degrades bisphenol A within 8 minutes under the same experimental conditions as in Example 1. The rate is 86%.
  • step c Same as in Example 1, except that the calcination temperature in step c is 500 ° C. Because this temperature cannot trigger desulfurization reaction of tricobalt tetrasulfide to generate cobalt sulfide, the final material obtained is graphene-based hollow tricobalt tetrasulfide nanocrystals. Under the same experimental conditions as in Example 1, the degradation rate of bisphenol A within 75 minutes was 75%.
  • step c Same as in Example 1, except that the calcination temperature in step c is 800 ° C. At this temperature, tricobalt tetrasulfide undergoes two desulfurization reactions to produce non-cobalt octasulfide, so the final material obtained is graphene-based hollow non-cobalt octasulfide. Nanocrystals, when stored or placed in water, will react with oxygen in the air or water in an unstable manner and easily cause the loss of cobalt, which is not suitable as a catalyst for the degradation of pollutants in water.

Abstract

L'invention concerne des nanocristaux de sulfure de cobalt creux à base de graphène capables d'activer efficacement le persulfate et un procédé de préparation associé : tout d'abord la croissance d'une structure d'imidazolate zéolitique 67 sur la surface d'oxyde de graphène au moyen d'un procédé de précipitation ; l'utilisation de la structure d'imidazolate 67 en tant qu'automatrice et de thioacétamide en tant que source de soufre, la préparation d'un tétrasulfure de tricobalt à structure creuse au moyen d'une réaction solvothermale ; la calcination dans une atmosphère inerte, la conversion du tétrasulfure de tricobalt en sulfure de cobalt creux au moyen d'une réaction de désulfuration, et la réduction simultanée de l'oxyde de graphène en graphène, pour ainsi produire des nanocristaux de sulfure de cobalt creux à base de graphène.
PCT/CN2018/115125 2018-08-20 2018-11-13 Nanocristaux de sulfure de cobalt creux à base de graphène capables d'activer efficacement le persulfate et leur procédé de préparation WO2020037845A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020545353A JP7011350B2 (ja) 2018-08-20 2018-11-13 過硫酸塩を効率よく活性化可能なグラフェン系中空硫化コバルトのナノ結晶の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810949426.X 2018-08-20
CN201810949426.XA CN108706573B (zh) 2018-08-20 2018-08-20 一种可高效活化过硫酸盐的石墨烯基中空硫化钴纳米晶及其制备方法

Publications (1)

Publication Number Publication Date
WO2020037845A1 true WO2020037845A1 (fr) 2020-02-27

Family

ID=63873662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115125 WO2020037845A1 (fr) 2018-08-20 2018-11-13 Nanocristaux de sulfure de cobalt creux à base de graphène capables d'activer efficacement le persulfate et leur procédé de préparation

Country Status (3)

Country Link
JP (1) JP7011350B2 (fr)
CN (1) CN108706573B (fr)
WO (1) WO2020037845A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545211A (zh) * 2020-04-26 2020-08-18 闽南师范大学 一种氧化石墨烯-氧化镧-氢氧化钴复合材料、合成方法及其应用
CN113751074A (zh) * 2021-09-02 2021-12-07 北京建筑大学 固载型催化剂及其制备方法和应用
CN114011411A (zh) * 2021-11-08 2022-02-08 安徽科技学院 一种CoO-Co3O4碳复合物的制备方法及其应用
CN114160162A (zh) * 2021-12-29 2022-03-11 天津工业大学 一种Au/Co(OH)2层状金属氢氧化物空心结构光催化剂及其制备方法
CN114566627A (zh) * 2022-03-03 2022-05-31 北京理工大学 一种Co3S4-CoN@NC钠离子电极材料的制备方法
CN114604903A (zh) * 2022-04-07 2022-06-10 苏州大学 一种硫化钴/还原氧化石墨烯复合物及在气体传感器中的应用
CN114804220A (zh) * 2022-04-25 2022-07-29 广东邦普循环科技有限公司 一种多孔隙球形钴氧化物颗粒及其制备方法
CN114849748A (zh) * 2022-05-13 2022-08-05 华东理工大学 一种CoS/Ti3C2 MXene复合材料的制备及其应用
CN114917926A (zh) * 2022-04-24 2022-08-19 湖南大学 负载单原子钌的ldh催化剂及其制备方法和在病原菌消杀中的应用
CN114976069A (zh) * 2022-06-23 2022-08-30 香港科技大学深圳研究院 一种类沸石咪唑酯骨架/石墨烯催化剂的制备方法及其应用
CN115463649A (zh) * 2021-06-11 2022-12-13 华南师范大学 一种废塑料生物资源转化材料及其制备方法和应用
CN115672354A (zh) * 2022-10-17 2023-02-03 常州大学 一种zif-67衍生的空心硫化钴/硫化锰镉复合光催化剂的制备方法及其应用
CN115672374A (zh) * 2022-10-31 2023-02-03 中国科学技术大学 具有级联催化活性的金属单原子/金属纳米颗粒的纳米复合物及其制备与应用
CN116589970A (zh) * 2023-05-16 2023-08-15 广东昱昇新材料科技有限公司 一种耐老化密封胶及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108706573B (zh) * 2018-08-20 2020-01-31 南京大学 一种可高效活化过硫酸盐的石墨烯基中空硫化钴纳米晶及其制备方法
CN109626513B (zh) * 2018-11-27 2021-10-15 大连理工大学 光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的方法
CN111072121B (zh) * 2020-01-19 2022-04-08 江苏中烟工业有限责任公司 一种含有双金属氧化物的苯酚降解剂的制备方法及应用
CN111564629B (zh) * 2020-05-21 2022-10-21 宁波大学 一种硫掺杂Co3S4锂离子电池正极材料的制备方法
CN113976145B (zh) * 2021-11-23 2023-07-21 中国科学院合肥物质科学研究院 一种硫改性铁钴氧化物纳米片类芬顿催化剂及其制备方法和使用方法
CN116272424B (zh) * 2023-04-20 2024-04-26 中国长江三峡集团有限公司 一种CuFeS2改性催化陶瓷膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017628A1 (fr) * 2015-07-28 2017-02-02 Università Degli Studi Dell'aquila Synthèse de matériaux à base de graphène tridimensionnels
CN106970116A (zh) * 2017-03-20 2017-07-21 中国石油大学(华东) 一种对丙酮敏感的多面体状四氧化三钴‑三维多孔石墨烯凝胶复合材料膜
CN107200346A (zh) * 2017-06-23 2017-09-26 北京至心安科技股份有限公司 一种杂原子掺杂的金属含碳材料的制备方法和用途
CN108706573A (zh) * 2018-08-20 2018-10-26 南京大学 一种可高效活化过硫酸盐的石墨烯基中空硫化钴纳米晶及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4410588B2 (ja) * 2003-06-12 2010-02-03 株式会社チューオー 乾式壁部材用のアンティーク調縦目地化粧材、コーナー目地化粧材等の製造方法
JP2009022940A (ja) * 2007-07-18 2009-02-05 Solve:Kk 難分解性成分を含む畜産排水および有色排水の脱色方法
US9005496B2 (en) * 2012-02-01 2015-04-14 Pall Corporation Asymmetric membranes
CN104795575B (zh) * 2015-04-01 2017-02-22 绥化学院 一种高活性Co3S4与石墨烯复合电极材料的制备方法
KR101746951B1 (ko) * 2015-10-12 2017-06-14 한양대학교 에리카산학협력단 MOF(Metal Organic Framework) 기반의 코발트 황화물의 제조 방법, 및 이를 이용한 염료감응형 태양전지
CN105914345B (zh) * 2016-05-10 2018-05-11 湖南大学 一种空心纳米过渡金属硫化物/碳复合材料及制备方法
CN106229518B (zh) * 2016-07-26 2018-11-30 北京工业大学 一种基于MOF模板构筑空心多面体ZnS/CoS电催化剂的制备方法
CN106207172B (zh) * 2016-08-30 2019-06-25 安徽师范大学 一种硫化钴/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN106450200B (zh) * 2016-10-25 2019-03-12 福建师范大学 一种CoS@碳纳米笼及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017628A1 (fr) * 2015-07-28 2017-02-02 Università Degli Studi Dell'aquila Synthèse de matériaux à base de graphène tridimensionnels
CN106970116A (zh) * 2017-03-20 2017-07-21 中国石油大学(华东) 一种对丙酮敏感的多面体状四氧化三钴‑三维多孔石墨烯凝胶复合材料膜
CN107200346A (zh) * 2017-06-23 2017-09-26 北京至心安科技股份有限公司 一种杂原子掺杂的金属含碳材料的制备方法和用途
CN108706573A (zh) * 2018-08-20 2018-10-26 南京大学 一种可高效活化过硫酸盐的石墨烯基中空硫化钴纳米晶及其制备方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545211A (zh) * 2020-04-26 2020-08-18 闽南师范大学 一种氧化石墨烯-氧化镧-氢氧化钴复合材料、合成方法及其应用
CN111545211B (zh) * 2020-04-26 2023-01-10 闽南师范大学 一种氧化石墨烯-氧化镧-氢氧化钴复合材料、合成方法及其应用
CN115463649A (zh) * 2021-06-11 2022-12-13 华南师范大学 一种废塑料生物资源转化材料及其制备方法和应用
CN113751074A (zh) * 2021-09-02 2021-12-07 北京建筑大学 固载型催化剂及其制备方法和应用
CN113751074B (zh) * 2021-09-02 2023-04-25 北京建筑大学 固载型催化剂及其制备方法和应用
CN114011411A (zh) * 2021-11-08 2022-02-08 安徽科技学院 一种CoO-Co3O4碳复合物的制备方法及其应用
CN114011411B (zh) * 2021-11-08 2023-05-26 安徽科技学院 一种CoO-Co3O4碳复合物的制备方法及其应用
CN114160162A (zh) * 2021-12-29 2022-03-11 天津工业大学 一种Au/Co(OH)2层状金属氢氧化物空心结构光催化剂及其制备方法
CN114160162B (zh) * 2021-12-29 2024-01-05 天津工业大学 一种Au/Co(OH)2层状金属氢氧化物空心结构光催化剂及其制备方法
CN114566627A (zh) * 2022-03-03 2022-05-31 北京理工大学 一种Co3S4-CoN@NC钠离子电极材料的制备方法
CN114566627B (zh) * 2022-03-03 2023-11-28 北京理工大学 一种Co3S4-CoN@NC钠离子电极材料的制备方法
CN114604903A (zh) * 2022-04-07 2022-06-10 苏州大学 一种硫化钴/还原氧化石墨烯复合物及在气体传感器中的应用
CN114917926A (zh) * 2022-04-24 2022-08-19 湖南大学 负载单原子钌的ldh催化剂及其制备方法和在病原菌消杀中的应用
CN114917926B (zh) * 2022-04-24 2023-10-20 湖南大学 负载单原子钌的ldh催化剂及其制备方法和在病原菌消杀中的应用
CN114804220B (zh) * 2022-04-25 2023-07-07 广东邦普循环科技有限公司 一种多孔隙球形钴氧化物颗粒及其制备方法
CN114804220A (zh) * 2022-04-25 2022-07-29 广东邦普循环科技有限公司 一种多孔隙球形钴氧化物颗粒及其制备方法
CN114849748B (zh) * 2022-05-13 2023-09-08 华东理工大学 一种CoS/Ti3C2MXene复合材料的制备及其应用
CN114849748A (zh) * 2022-05-13 2022-08-05 华东理工大学 一种CoS/Ti3C2 MXene复合材料的制备及其应用
CN114976069B (zh) * 2022-06-23 2023-11-17 香港科技大学深圳研究院 一种类沸石咪唑酯骨架/石墨烯催化剂的制备方法及其应用
CN114976069A (zh) * 2022-06-23 2022-08-30 香港科技大学深圳研究院 一种类沸石咪唑酯骨架/石墨烯催化剂的制备方法及其应用
CN115672354A (zh) * 2022-10-17 2023-02-03 常州大学 一种zif-67衍生的空心硫化钴/硫化锰镉复合光催化剂的制备方法及其应用
CN115672374A (zh) * 2022-10-31 2023-02-03 中国科学技术大学 具有级联催化活性的金属单原子/金属纳米颗粒的纳米复合物及其制备与应用
CN115672374B (zh) * 2022-10-31 2024-02-23 中国科学技术大学 具有级联催化活性的金属单原子/金属纳米颗粒的纳米复合物及其制备与应用
CN116589970A (zh) * 2023-05-16 2023-08-15 广东昱昇新材料科技有限公司 一种耐老化密封胶及其制备方法

Also Published As

Publication number Publication date
JP2021514926A (ja) 2021-06-17
CN108706573B (zh) 2020-01-31
CN108706573A (zh) 2018-10-26
JP7011350B2 (ja) 2022-01-26

Similar Documents

Publication Publication Date Title
WO2020037845A1 (fr) Nanocristaux de sulfure de cobalt creux à base de graphène capables d'activer efficacement le persulfate et leur procédé de préparation
Li et al. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction
Li et al. Fabrication of ZIF-8@ TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation
Cao et al. Peroxymonosulfate activation of magnetic Co nanoparticles relative to an N-doped porous carbon under confinement: Boosting stability and performance
Xiao et al. Bimetal MOF derived mesocrystal ZnCo2O4 on rGO with High performance in visible-light photocatalytic NO oxidization
He et al. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity
CN112169822B (zh) 高效活化过硫酸盐的氮掺杂中空碳多面体@碳纳米管基单原子钴催化剂及其制备方法
Jiang et al. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO 2 spheres for water pollution treatment and hydrogen production
CN108097261B (zh) 一种高效稳定的铁锰复合氧化物催化剂及其制备方法与应用
CN108786779B (zh) 一种石墨炔/多孔二氧化钛光催化剂及其制备方法和应用
CN103007944A (zh) 石墨烯基磁性复合可见光催化材料Fe3O4-G-TiO2的制备方法
CN109603883A (zh) 一种可高效活化过硫酸盐的氮掺杂多孔碳多面体@纳米磷化钴复合催化剂及其制备方法
CN110721728A (zh) 一种负载型双功能催化复合材料及其制备方法
CN106345505A (zh) 一种多孔异质结构的复合光催化剂及其制备方法
CN113522317B (zh) 由MOFs衍生的钴基双金属硫/碳催化剂的制备方法和应用
WO2021212923A1 (fr) Matériau composite à hétérojonction p-n supporté sur une surface de mousse de nickel, son procédé de préparation et son utilisation
Jin et al. Interface engineering: Synergism between S-scheme heterojunctions and Mo-O bonds for promote photocatalytic hydrogen evolution
Liu et al. Synergistic effect of single-atom Cu and hierarchical polyhedron-like Ta3N5/CdIn2S4 S-scheme heterojunction for boosting photocatalytic NH3 synthesis
Duan et al. Direct Z-scheme Bi2O2CO3/porous g-C3N4 heterojunction for improved photocatalytic degradation performance
Wang et al. Constructing S-scheme CeO2/CN heterojunction for high efficiency light-induced photothermal synergistic catalytic degradation of gaseous formaldehyde under visible light irradiation
CN112973753A (zh) 一种z型异质结气凝胶型光催化材料的制备方法及其应用
Li et al. Recent advance of atomically dispersed dual‐metal sites carbocatalysts: Properties, synthetic materials, catalytic mechanisms, and applications in persulfate‐based advanced oxidation process
CN109876815B (zh) 石墨烯/ZnFe2O4复合可见光催化剂及其制备方法
CN102198392B (zh) 一种碳包裹二氧化钛复合材料的制备方法及其应用
CN103878001A (zh) 一种氟硼共掺杂TiO2纳米片的制备方法及用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930700

Country of ref document: EP

Kind code of ref document: A1