WO2020036473A1 - Multi-functional net and method for manufacturing same - Google Patents

Multi-functional net and method for manufacturing same Download PDF

Info

Publication number
WO2020036473A1
WO2020036473A1 PCT/KR2019/010512 KR2019010512W WO2020036473A1 WO 2020036473 A1 WO2020036473 A1 WO 2020036473A1 KR 2019010512 W KR2019010512 W KR 2019010512W WO 2020036473 A1 WO2020036473 A1 WO 2020036473A1
Authority
WO
WIPO (PCT)
Prior art keywords
mgo
nanowire
group
present application
nanowires
Prior art date
Application number
PCT/KR2019/010512
Other languages
French (fr)
Korean (ko)
Inventor
변정훈
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180105646A external-priority patent/KR102095778B1/en
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Publication of WO2020036473A1 publication Critical patent/WO2020036473A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/12Scaring or repelling devices, e.g. bird-scaring apparatus using odoriferous substances, e.g. aromas, pheromones or chemical agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/30Scaring or repelling devices, e.g. bird-scaring apparatus preventing or obstructing access or passage, e.g. by means of barriers, spikes, cords, obstacles or sprinkled water
    • A01M29/34Scaring or repelling devices, e.g. bird-scaring apparatus preventing or obstructing access or passage, e.g. by means of barriers, spikes, cords, obstacles or sprinkled water specially adapted for insects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/52Devices affording protection against insects, e.g. fly screens; Mesh windows for other purposes

Definitions

  • the present application relates to a multifunctional network and a method for manufacturing the same, and more particularly, to a multifunctional network and a method for producing the nanowire attached to the mesh of the multifunctional network using a catalyst.
  • the net is a mesh type substrate, which may be referred to as a net or a screen, and is used for various purposes. It is applied to various fields such as insect screens, screens for air purification filters, packing networks for enhancing the rigidity of structures, shock absorbing nets to protect materials by absorbing shocks from external shocks, EMI shielding materials for shielding electromagnetic waves, and electrode materials. .
  • the demand for insect screens is also quite high at present.
  • the windows installed in the building are used to ventilate the contaminated indoor air.
  • Insect screens are generally nets that are installed on windows or doors to prevent insects and insects such as flies, mosquitoes and moths from entering the room. These screens are made of various materials such as synthetic resins such as nylon, glass fibers (glass fibers), and metals.
  • Conventional insect screen is a wire mesh is formed at a predetermined interval in the horizontal and vertical directions are formed as a mesh mesh having a certain size, the through-holes formed in the mesh network has a size enough to pass through the bugs or pests.
  • insect screen according to the prior art is not suitable for blocking yellow dust, pollen, fine dust and the like smaller than the size of the through-holes.
  • the cold outdoor air flows into the room.
  • an additional energy loss occurs by lowering the temperature, thereby causing the heating device to increase the room temperature.
  • Korean Patent No. 10-1598756 discloses a 'dust filter for fine dust', but this technique attaches a detachable filter to the screen. There is a hassle to additionally attach the device.
  • Patent Document 1 Republic of Korea Patent Registration 10-1598756
  • a multifunctional network having excellent ultrafine dust collecting capability capable of filtering from large dust to ultrafine dust is provided without the inconvenience of additionally installing an external device on the insect screen.
  • various fields for example, air purifier filter net, structure stiffness enhancer, external shock absorber, EMI shielding material, electrode material, medical filter, tire support network, speaker network in acoustic facilities
  • a method of manufacturing a multifunctional net that can be used for microphone nets, shoe soles or insole materials, sunscreens, cooking utensils, and the like.
  • An exemplary multifunctional network of the present application includes a mesh member, a catalyst portion attached to the surface of the mesh member, and a nanowire attached to the catalyst portion, wherein the first end of the nanowire is attached to the catalyst portion. While attached and fixed, the second end can flow, such that the nanowires have a flexible movement by external forces.
  • the average size of the gratings of the mesh member is 0.5 to 5.0 mm.
  • the mesh member includes at least one selected from the group consisting of metal materials and polymer materials.
  • the catalyst portion includes at least one selected from the group consisting of transition metals and noble metals and oxides thereof.
  • the average size of the catalytic moiety is 2 to 200 nm.
  • the nanowires comprise at least one selected from the group consisting of transition metals, oxides of transition metals, rare earth elements and oxides of rare earth elements.
  • the nanowires are Ag, Cu, C, Si, Ag 2 O, CuO, SiO 2 , TiO 2 , ZnO, WO 3 , MgO, Ti-MgO, Zn-MgO, W- MgO, and at least one selected from the group consisting of alloys thereof.
  • the nanowires have an average diameter of 5 to 500 nm and an average length of 0.5 to 500 ⁇ m.
  • the nanowires are doped with at least one selected from the group consisting of Fe, Zr and Chalcogene.
  • the nanowires comprise a functional coating layer.
  • the functional coating layer includes an antimicrobial or insect repellent to remove or combat bacteria or insects.
  • the present application relates to a method of manufacturing a multifunctional network.
  • Exemplary method of manufacturing a multifunctional network of the present application comprises the steps of preparing a mesh member, attaching the catalyst portion to the mesh member to be transferred in a roll (roll) and transfer the mesh member attached to the catalyst to the chemical vapor deposition chamber, By chemical vapor deposition method, the step of growing nanowires in the catalyst portion.
  • the chemical vapor deposition method is applied in an inert atmosphere.
  • the nanowires are Ag 2 O, CuO, SiO 2 , TiO 2 , ZnO, WO 3 , MgO, Ti-MgO, Zn-MgO, W-MgO, and their
  • the chemical vapor deposition method is applied in an air atmosphere containing oxygen.
  • An exemplary method of manufacturing a multifunctional network of the present application further includes forming a functional coating layer on the nanowires.
  • the functional coating layer includes an antibacterial or insect repellent to remove or combat bacteria or insects.
  • air purifier filter net in addition to the insect screen, air purifier filter net, structure stiffness enhancer, external shock absorber, EMI shielding material, electrode material, medical filter, tire support network, speaker network in the acoustic facility, microphone network, shoes It can be used for sole or insole materials, sunscreens, cooking utensils, etc.
  • FIG. 1 is a view schematically showing a conventional insect screen.
  • FIG. 2 is a view schematically showing an insect screen as an embodiment of the present application.
  • FIG. 3 is a view schematically showing an insect screen as an embodiment of the present application.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a insect screen, which is an embodiment of the present application.
  • nano may mean a size in nanometers (nm), for example, may mean a size of 1 to 1,000 nm, but is not limited thereto.
  • nanowire used herein may mean a wire having an average size in nanometers (nm), for example, may mean a wire having an average size of 1 to 1,000 nm, but is not limited thereto. It doesn't happen.
  • the present application covers air purifier filter nets, structural stiffness enhancers, external shock absorbers, EMI shields, electrode materials, medical filters, tire support nets, speaker nets in acoustic installations, microphone nets, shoe soles or insole materials, solar It can be used for light blocking materials, cooking materials, and the like.
  • air purifier filter nets structural stiffness enhancers, external shock absorbers, EMI shields, electrode materials, medical filters, tire support nets, speaker nets in acoustic installations, microphone nets, shoe soles or insole materials, solar It can be used for light blocking materials, cooking materials, and the like.
  • FIG. 1 is a diagram schematically illustrating a conventional insect screen
  • FIG. 2 is a diagram schematically illustrating a functional insect screen according to an embodiment of the present application.
  • the insect screen 1 according to an embodiment of the present application is the mesh member 10, the catalyst portion 20 and the catalyst portion 20 attached to the surface of the mesh member 10 Nanowires 30 attached thereto).
  • the mesh member 10 is a structure having a structure such as a net, and means a structure having excellent breathability.
  • the present invention is not limited thereto. 1 to 3, the cross section is shown as a square, but is not limited thereto.
  • lattices of the mesh member 10 is 0.5-5.0 mm.
  • the present invention is not limited thereto. A large average size of the grating provides good ventilation, but fine dust and ultra-fine dust can also pass through easily.
  • a mesh member including various materials may be applied to the present application.
  • the mesh member 10 preferably includes at least one selected from the group consisting of metal materials and polymer materials.
  • metal materials and polymer materials such as stainless steel and PET are included.
  • the catalyst unit 20 is attached to the mesh member 10.
  • the catalyst unit 20 shown in FIG. 3 is just one example, and may be attached to the mesh member 10 in various forms (not shown in FIG. 2). It is often difficult for the nanowire 30 to be described later to adhere directly to the mesh member 10.
  • the catalyst unit 20 may be a starting point at which the nanowires 30 grow.
  • the catalyst 20 is not particularly limited as long as it is a material capable of growing the nanowire 30, but at least selected from the group consisting of transition metals and noble metals and oxides thereof. It is preferable to include one.
  • the size (diameter) of the catalyst unit 20 may be 2 to 200 nm. Through the size of this range, the nanowire 30 and the mesh member 10 can be firmly adhered. If the diameter is smaller than 2 nm, when the electrostatic attraction is applied when the nanowire-grown catalyst is attached to the fiber in the process described below, the trapping efficiency to the fiber may be drastically reduced, and the diameter of the catalyst portion is larger than 200 nm. In this case, nanowires may not grow well, or only coarse nanowires having a diameter of a tube larger than 200 nm may be generated and may not be suitable for application to insect screens.
  • the method of attaching the catalyst unit 20 to the mesh member 10 is not particularly limited, but the catalyst unit may be attached to the mesh member 10 through aerosol catalyst deposition or dip coating. 20) can be attached.
  • the aerosol catalyst deposition method and the dip coating method are not particularly limited. However, the conditions or processes may be limited to the purpose of adhering the catalyst unit 20 to the mesh member 10 as intended in the present application. There is a number.
  • the nanowires 30 are attached to the catalyst unit 20.
  • the nanowires 30 shown in FIGS. 2 and 3 are just examples, and may be attached to the catalyst unit 20 in various forms. That is, the first end of the nanowires is attached to and fixed to the catalyst unit 20. However, the second end, which is the opposite end, may flow, such that the nanowires 30 may have flexible movement by external forces.
  • the nanowire 30 includes at least one selected from the group consisting of transition metals, oxides of transition metals, rare earth elements and oxides of rare earth elements.
  • the nanowires 30 may include Ag, Cu, C, Si, Ag 2 O, CuO, SiO 2 , TiO 2 , ZnO, WO 3 , MgO, Ti-MgO, Zn-MgO, W-MgO, and alloys thereof. At least one selected from the group consisting of tissues.
  • the average diameter of the nanowire 30 is 5 to 500 nm, the average length is 0.5 to 500 ⁇ m.
  • nanowires 30 may be attached to the catalyst unit 20 by chemical vapor deposition.
  • microparticles As air passes through the filter, the particles are trapped by colliding with the filter surface out of the streamline through several mechanisms.
  • the major capture mechanisms of microparticles are diffusion, interception, inertial impaction, gravitational settling, and electrical forces.
  • the method for filtering fine particles is included in the air by artificially applying external force to particles such as dust contained in flowing air, or by placing an obstacle, ie, nanowire, in the middle of the air flow.
  • the fine particles present can be separated.
  • the fine particles suspended in the gas undergo Brownian motion.
  • Brownian motion is more active with smaller particles, this principle may be the most important mechanism for removing ultra-fine dust.
  • fine dust streamline curves near the nanowires. Particles that move with flow with finite mass do not correctly follow the mammary gland when the mammary gland is curved because of their inertia. If the curvature of the streamline is severe and the mass of the particle is large, the particles will collide and escape from the streamline to the surface of the medium, thereby collecting fine dust.
  • the nanowire 30 is doped with at least one selected from the group consisting of Fe, Zr and Chalcogene.
  • the nanowires also include a functional coating layer. That is, the functional coating layer is formed on the surface of the nanowire 30.
  • the functional coating layer further includes an antimicrobial or insect repellent to remove or combat bacteria or insects.
  • ⁇ (dA) is the particle removal efficiency
  • l is the depth of the filter
  • E (dA) is the single fiber efficiency
  • is the packing density in the mesh grid of the wire
  • d f Means the diameter of the wire.
  • the functional coating layer may include various components to add various additional functions.
  • air purifier filter nets in addition to insect screens, air purifier filter nets, structural stiffness enhancers, external shock absorbers, EMI shields, electrode materials, medical filters, tire support nets, speaker nets in acoustic facilities, microphone nets, shoe soles or insole materials, and solar Can be used for blocking materials, cooking materials, etc.
  • the multifunctional network can be used for the battery electrode material.
  • it can be used as a net-like material contained in a flat panel battery.
  • the multifunctional network can be used as a medical filter. Particle removal ability and antibacterial activity, so it can be used as a medical gas or liquid filter.
  • the multifunctional network can be used as a support network in a tire.
  • the growth of nanofibers / wires increases the stiffness of the raw material and can be used as a support net in tires.
  • the multifunctional network can be used for acoustic facilities such as speaker or microphone networks.
  • acoustic facilities such as speaker or microphone networks.
  • the growth of nanofibers / wires increases the stiffness of the raw material, and thus can be used as a microphone network because of the presence of a speaker network and antibacterial activity.
  • Multifunctional nets are also available for shoe soles or insole materials. Improved rigidity can be used as insole material with sole and antibacterial activity.
  • the multi-functional net can be used in the sunning material for blocking the sun.
  • a coating network that absorbs and / or reflects sunlight can be sandwiched with a polymer film and used as a sintering material.
  • Multifunctional nets can also be used for cooking utensils. Based on improved stiffness, adjustable thermal conductivity, and hydrophobicity, it can be used as a cooker floor / surface material for pot bottoms and frying pans. Moreover, it can also be used as a heat insulation layer of a thermal insulation / cold storage bottle.
  • the multifunctional network can be used for various purposes.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a functional insect net having excellent ultrafine dust collecting ability.
  • a mesh member is prepared (S110). Since the description of the mesh member has been described in detail in the above-described functional screen, the description thereof will be omitted.
  • the prepared mesh member is transferred to a roll to attach the catalyst unit (S120).
  • the catalyst portion is attached to the mesh member by a roll-to-roll method.
  • a catalyst part can be attached to a mesh member through an aerosol catalyst vapor deposition method or a dip coating method.
  • the conditions that are specifically limited to the aerosol catalyst deposition method and the dip coating method are not particularly applied, but as intended in the present application, the conditions or processes may be limited to the purpose of adhering the catalyst portion to the mesh member.
  • the mesh member with the catalyst portion is transferred to the chemical vapor deposition chamber, and nanowires are grown on the catalyst portion by the chemical vapor deposition method (S130).
  • the conditions for carrying out the chemical vapor deposition method or the device capable of performing the same is not particularly limited, but may be limited to the intention of the present application.
  • the chemical vapor deposition method may be applied in an inert atmosphere.
  • the nanowires include at least one selected from the group consisting of Ag 2 O, CuO, SiO 2 , TiO 2 , ZnO, WO 3 MgO, Ti-MgO, Zn-MgO, W-MgO, and alloys thereof.
  • the chemical vapor deposition method may be applied in an air atmosphere containing oxygen.
  • This manufacturing method further includes the step of forming a functional coating film on the nanowires.
  • a method may be implemented by spray coating or liquid impregnation.
  • the spray coating method or the liquid impregnation method is not particularly limited, and a known method may be used.
  • the functional coating layer may include an antibacterial or insect repellent.
  • the functional coating layer may include additional components for various functions as described above.

Abstract

The present application can filter dust particles ranging in size from large to ultrafine without inconvenience of additionally installing an external device on a mosquito net. Moreover, in the present application, a nano-wire is simply attached to a mosquito net so that a fine dust collecting ability as well as a ventilation property can be improved. Furthermore, the present application can be applied to any part of a mosquito net which is variously configured. In addition, in the present application, a roll-to-roll method, in which a complicated manufacturing process is minimized, is adopted so as to enable continuous manufacturing thereof, thereby improving productivity.

Description

다기능성 망 및 이의 제조방법Multifunctional network and its manufacturing method
본 출원은 다기능성 망 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 촉매를 이용하여, 다기능성 망의 메쉬에 나노와이어를 부착한 다기능성 망 및 이의 제조방법에 관한 것이다.The present application relates to a multifunctional network and a method for manufacturing the same, and more particularly, to a multifunctional network and a method for producing the nanowire attached to the mesh of the multifunctional network using a catalyst.
망은 메쉬타입의 기재로서, 네트 또는 스크린으로 지칭될 수 있으며, 다양한 용도로 사용되고 있다. 방충망, 공기정화필터용 스크린, 구조물의 강성 증진을 위한 충진망, 외부충격으로부터 충격을 흡수하여, 자재를 보호하기 위한 충격흡수망, 전자기파 차폐를 위한 EMI Shielding 재료, 전극소재 등 다양한 분야에 적용된다.The net is a mesh type substrate, which may be referred to as a net or a screen, and is used for various purposes. It is applied to various fields such as insect screens, screens for air purification filters, packing networks for enhancing the rigidity of structures, shock absorbing nets to protect materials by absorbing shocks from external shocks, EMI shielding materials for shielding electromagnetic waves, and electrode materials. .
이러한 분야 중 방충망에 대한 수요도 현재 상당히 높다. 건물에 설치된 창은 실내에서 실외를 관망할 수 있도록 하고, 실내에 자연채광이 이루어지도록 하는 기능 외에도 오염된 실내의 공기를 환기시켜 주기 위한 것으로, 이러한 창은 일정한 크기의 창틀 프레임에 미닫이 또는 여닫이 형태로 설치되고, 실내공기를 환기시킬 경우에는 창문을 개방시키게 되는데, 이 경우 개방된 창문을 통해 짧은 시간 내에 실내공기를 환기시킬 수 있다.Among these areas, the demand for insect screens is also quite high at present. In addition to the ability to view the indoors and outdoors in the room, and to provide natural light to the indoors, the windows installed in the building are used to ventilate the contaminated indoor air. When installed, and to ventilate the indoor air to open the window, in this case through the open window can be ventilated indoor air in a short time.
하지만, 환기가 이루어지는 동안 열려진 창문을 통해, 파리나 모기, 나방과 같은 벌레나 해충이 실내로 들어올 수 있다. 이를 방지하기 위하여, 방충망을 설치한다. 방충망은 일반적으로 방충망은 파리나 모기, 나방과 같은 벌레나 해충이 실내로 들어오지 못하도록 창문이나 출입문 등에 설치하는 그물을 말한다. 이러한 방충망은 나일론과 같은 합성수지, 그라스 화이바(유리섬유), 금속 등과 같은 다양한 재질로 제조된다.However, through ventilation, open windows can allow insects and pests such as flies, mosquitoes and moths to enter the room. To prevent this, install a screen. Insect screens are generally nets that are installed on windows or doors to prevent insects and insects such as flies, mosquitoes and moths from entering the room. These screens are made of various materials such as synthetic resins such as nylon, glass fibers (glass fibers), and metals.
통상적인 방충망은 가로와 세로 방향으로 와이어가 일정간격으로 배열되어 일정 크기의 격자가 형성된 메쉬망으로 형성되며, 메쉬망에 형성된 통공은 벌레나 해충이 통과하지 못할 정도의 크기를 갖는다.Conventional insect screen is a wire mesh is formed at a predetermined interval in the horizontal and vertical directions are formed as a mesh mesh having a certain size, the through-holes formed in the mesh network has a size enough to pass through the bugs or pests.
그러나 종래의 기술에 따른 방충망은 통공의 크기보다 작은 크기의 황사 먼지나 꽃가루, 미세 먼지 등을 차단하는 데에는 부적합하다.However, the insect screen according to the prior art is not suitable for blocking yellow dust, pollen, fine dust and the like smaller than the size of the through-holes.
미세먼지, 외부로부터의 소음, 매연, 스모그, 황사 또는 꽃가루가 여과 없이 실내로 유입되어 실내공기를 오염시키는 문제가 있고, 겨울철에 창문을 열어 환기를 시킬경우에는 차가운 실외공기가 실내로 유입되어 실내온도를 떨어뜨리고, 이로 인해 떨어진 실내온도를 상승시키기 위해 난방장치를 가동시킴에 따른 추가적인 에너지 손실이 발생하는 문제가 있다.Fine dust, noise from the outside, soot, smog, yellow dust or pollen enters the room without filtration and contaminates the indoor air.In case of opening the window in winter to ventilate, the cold outdoor air flows into the room. There is a problem in that an additional energy loss occurs by lowering the temperature, thereby causing the heating device to increase the room temperature.
이러한 문제점을 해결하기 위하여, 몇가지 제안된 기술이 있었으며, 그 중 하나로서, 대한민국 등록특허 10-1598756에서 '미세먼지 차단용 필터'를 개시하고 있으나, 이 기술은 탈부착이 가능한 필터를 방충막에 부착하는 것으로서, 장치를 추가적으로 부착하여야 하는 번거로움이 존재한다.In order to solve this problem, there have been some proposed techniques, and as one of them, Korean Patent No. 10-1598756 discloses a 'dust filter for fine dust', but this technique attaches a detachable filter to the screen. There is a hassle to additionally attach the device.
최근에는 황사 먼지와 같은 미세 오염물질을 차단할 수 있는 환경방충망이 제안되고 있다. 그러나, 이와 같은 환경방충망은 해충의 침입차단에는 효과를 발휘할 수 있으나 여전히 초미세먼지를 제거하는 데는 한계가 있다.Recently, environmental insect screens that can block fine contaminants such as yellow dust have been proposed. However, such an environmental insect insect net can exert an effect on blocking the infestation of pests, but there is still a limit to remove ultrafine dust.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 대한민국 등록특허 10-1598756(Patent Document 1) Republic of Korea Patent Registration 10-1598756
본 출원의 일 실시예에 따르면, 외부 장치를 방충망에 추가적으로 설치하는 번거로움 없이, 큰 먼지에서부터 초미세 먼지까지 필터링할 수 있는 초미세먼지 포집능이 우수한 다기능성 망을 제공한다.According to the exemplary embodiment of the present application, a multifunctional network having excellent ultrafine dust collecting capability capable of filtering from large dust to ultrafine dust is provided without the inconvenience of additionally installing an external device on the insect screen.
본 출원의 일 실시예에 따르면, 방충망에 간단히 나노와이어 또는 나노튜브를 부착하여, 통기성 뿐만 아니라 초미세먼지 포집능이 우수한 다기능성 망을 제공한다.According to one embodiment of the present application, by simply attaching nanowires or nanotubes to the insect screen, it provides a multi-functional network excellent in breathability as well as ultra fine dust collecting ability.
본 출원의 일 실시예에 따르면, 다양한 조성을 갖는 방충망 어디에도 적용가능한 초미세먼지 포집능이 우수한 다기능성 망을 제공한다.According to one embodiment of the present application, it is possible to provide a multifunctional network having excellent ultrafine dust collecting ability applicable to any insect screen having various compositions.
본 출원의 일 실시예에 따르면, 복잡한 제조공정을 최소화한 롤투롤(roll-to-roll) 방식을 채용하여, 연속 제조가 가능하게 함으로써 생산성이 향상된 초미세먼지 포집능이 우수한 다기능성 망의 제조방법을 제공한다.According to one embodiment of the present application, by adopting a roll-to-roll method that minimizes the complex manufacturing process, it is possible to manufacture a continuous multi-functional net fabrication method having excellent ultra-fine dust collecting ability improved productivity To provide.
본 출원의 일 실시예에 따르면, 다양한 분야, 예를 들면, 공기정화기기 필터용 망, 구조물강성 증진재, 외부충격 흡수재, EMI 차폐재, 전극재, 의료용 필터, 타이어내 지지망, 음향시설내 스피커 망, 마이크 망, 신발 밑창 또는 깔창 소재, 태양광 차단을 위한 선팅재, 조리도구 등에 이용할 수 있는 다기능성 망의 제조방법을 제공한다.According to an embodiment of the present application, various fields, for example, air purifier filter net, structure stiffness enhancer, external shock absorber, EMI shielding material, electrode material, medical filter, tire support network, speaker network in acoustic facilities Provides a method of manufacturing a multifunctional net that can be used for microphone nets, shoe soles or insole materials, sunscreens, cooking utensils, and the like.
본 출원은 다기능성 망에 관한 것이다. 예시적인 본 출원의 다기능성 망은 메쉬(mesh) 부재, 메쉬 부재의 표면에 부착된 촉매부 및 촉매부에 부착된 나노와이어(nanowire)를 포함하며, 나노와이어의 제1 단부는 상기 촉매부에 부착되어 고정되나, 제2 단부는 유동할 수 있어, 나노와이어가 외부의 힘에 의하여 유연한 움직임을 갖는다.The present application relates to a multifunctional network. An exemplary multifunctional network of the present application includes a mesh member, a catalyst portion attached to the surface of the mesh member, and a nanowire attached to the catalyst portion, wherein the first end of the nanowire is attached to the catalyst portion. While attached and fixed, the second end can flow, such that the nanowires have a flexible movement by external forces.
예시적인 본 출원의 다기능성 망에서, 메쉬 부재의 격자의 평균 크기는 0.5 내지 5.0 mm이다.In an exemplary multifunctional network of the present application, the average size of the gratings of the mesh member is 0.5 to 5.0 mm.
예시적인 본 출원의 다기능성 망에서, 메쉬 부재는 금속재 및 폴리머재로 이루어진 그룹으로부터 선택된 적어도 하나를 포함한다.In an exemplary multifunctional network of the present application, the mesh member includes at least one selected from the group consisting of metal materials and polymer materials.
예시적인 본 출원의 다기능성 망에서, 촉매부는 전이금속 (transition metal) 및 귀금속 (noble metal) 및 이들의 산화물로 이루어진 그룹으로부터 선택된 적어도 하나를 포함한다.In an exemplary multifunctional network of the present application, the catalyst portion includes at least one selected from the group consisting of transition metals and noble metals and oxides thereof.
예시적인 본 출원의 다기능성 망에서, 촉매부의 평균 크기는 2 내지 200 nm이다.In an exemplary multifunctional network of the present application, the average size of the catalytic moiety is 2 to 200 nm.
예시적인 본 출원의 다기능성 망에서, 나노와이어는 전이금속, 전이금속의 산화물, 희토류원소 및 희토류원소의 산화물로 이루어진 그룹으로부터 선택된 적어도 하나를 포함한다.In an exemplary multifunctional network of the present application, the nanowires comprise at least one selected from the group consisting of transition metals, oxides of transition metals, rare earth elements and oxides of rare earth elements.
예시적인 본 출원의 다기능성 망에서, 나노와이어는 Ag, Cu, C, Si, Ag2O, CuO, SiO2, TiO2, ZnO, WO3, MgO, Ti-MgO, Zn-MgO, W-MgO, 및 이들의 합금조직으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함한다.In an exemplary multifunctional network of the present application, the nanowires are Ag, Cu, C, Si, Ag 2 O, CuO, SiO 2 , TiO 2 , ZnO, WO 3 , MgO, Ti-MgO, Zn-MgO, W- MgO, and at least one selected from the group consisting of alloys thereof.
예시적인 본 출원의 다기능성 망에서, 나노와이어의 평균 직경은 5 내지 500 nm이고, 평균 길이는 0.5 내지 500 ㎛이다.In an exemplary multifunctional network of the present application, the nanowires have an average diameter of 5 to 500 nm and an average length of 0.5 to 500 μm.
예시적인 본 출원의 다기능성 망에서, 나노와이어에는 Fe, Zr 및 Chalcogene으로 이루어진 그룹으로부터 선택된 적어도 하나가 도핑된다.In an exemplary multifunctional network of the present application, the nanowires are doped with at least one selected from the group consisting of Fe, Zr and Chalcogene.
예시적인 본 출원의 다기능성 망에서, 나노와이어는 기능성 코팅층을 포함한다.In an exemplary multifunctional network of the present application, the nanowires comprise a functional coating layer.
예시적인 본 출원의 다기능성 망에서, 기능성 코팅층은 세균 또는 곤충을 제거하거나 퇴치하기 위하여 항균제 또는 방충제를 포함한다.In an exemplary multifunctional network of the present application, the functional coating layer includes an antimicrobial or insect repellent to remove or combat bacteria or insects.
본 출원은 다기능성 망의 제조방법에 관한 것이다. 예시적인 본 출원의 다기능성 망의 제조방법은 메쉬 부재를 준비하는 단계, 롤(roll)로 이송되는 메쉬 부재에 촉매부를 부착시키는 단계 및 촉매부가 부착된 메쉬 부재를 화학기상증착 챔버로 이송하여, 화학기상증착 방법에 의하여, 촉매부에 나노와이어를 성장시키는 단계를 포함한다.The present application relates to a method of manufacturing a multifunctional network. Exemplary method of manufacturing a multifunctional network of the present application comprises the steps of preparing a mesh member, attaching the catalyst portion to the mesh member to be transferred in a roll (roll) and transfer the mesh member attached to the catalyst to the chemical vapor deposition chamber, By chemical vapor deposition method, the step of growing nanowires in the catalyst portion.
예시적인 본 출원의 다기능성 망의 제조방법에서, 나노와이어가 Ag, Cu, C 및 Si으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 경우, 화학기상증착 방법은 불활성분위기에서 적용된다.In an exemplary method of making a multifunctional network of the present application, when the nanowire includes at least one selected from the group consisting of Ag, Cu, C and Si, the chemical vapor deposition method is applied in an inert atmosphere.
예시적인 본 출원의 다기능성 망의 제조방법에서, 나노와이어가 Ag2O, CuO, SiO2, TiO2, ZnO, WO3, MgO, Ti-MgO, Zn-MgO, W-MgO, 및 이들의 합금조직으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 경우, 화학기상증착 방법은 산소를 포함한 공기분위기에서 적용된다.In an exemplary method of making a multifunctional network of the present application, the nanowires are Ag 2 O, CuO, SiO 2 , TiO 2 , ZnO, WO 3 , MgO, Ti-MgO, Zn-MgO, W-MgO, and their In the case of containing at least one selected from the group consisting of alloying structures, the chemical vapor deposition method is applied in an air atmosphere containing oxygen.
예시적인 본 출원의 다기능성 망의 제조방법은 상기 나노와이어에 기능성 코팅층 형성하는 단계를 추가로 포함한다.An exemplary method of manufacturing a multifunctional network of the present application further includes forming a functional coating layer on the nanowires.
예시적인 본 출원의 다기능성 망의 제조방법에서, 기능성 코팅층은 세균 또는 곤충을 제거하거나 퇴치하기 위하여 항균제 또는 방충제를 포함한다.In an exemplary method of making a multifunctional network of the present application, the functional coating layer includes an antibacterial or insect repellent to remove or combat bacteria or insects.
본 출원의 일 실시예에 따르면, 외부 장치를 방충망에 추가적으로 설치하는 번거로움 없이, 큰 먼지에서부터 초미세 먼지까지 필터링할 수 있다.According to one embodiment of the present application, it is possible to filter from large dust to ultrafine dust without the trouble of additionally installing an external device in the insect screen.
본 출원의 일 실시예에 따르면, 방충망에 간단히 나노와이어 또는 나노튜브를 부착하여, 통기성 뿐만 아니라 미세먼지 포집능력을 향상시킬 수 있다.According to one embodiment of the present application, by simply attaching nanowires or nanotubes to the insect screen, it is possible to improve not only breathability but also fine dust collecting ability.
본 출원의 일 실시예에 따르면, 다양한 조성을 갖는 방충망 어디에도 적용 가능하다.According to one embodiment of the present application, it is applicable to any insect screen having various compositions.
본 출원의 일 실시예에 따르면, 방충망 이외에도 공기정화기기 필터용 망, 구조물강성 증진재, 외부충격 흡수재, EMI 차폐재, 전극재, 의료용 필터, 타이어내 지지망, 음향시설내 스피커 망, 마이크 망, 신발 밑창 또는 깔창 소재, 태양광 차단을 위한 선팅재, 조리도구 등에 이용할 수 있다.According to an embodiment of the present application, in addition to the insect screen, air purifier filter net, structure stiffness enhancer, external shock absorber, EMI shielding material, electrode material, medical filter, tire support network, speaker network in the acoustic facility, microphone network, shoes It can be used for sole or insole materials, sunscreens, cooking utensils, etc.
본 출원의 일 실시예에 따르면, 복잡한 제조공정을 최소화한 롤투롤(roll-to-roll) 방식을 채용하여, 연속 제조가 가능하게 함으로써 생산성을 향상시킬 수 있다.According to one embodiment of the present application, by adopting a roll-to-roll method that minimizes the complicated manufacturing process, it is possible to improve the productivity by enabling continuous manufacturing.
도 1은 종래의 방충망을 모식적으로 나타낸 도면이다.1 is a view schematically showing a conventional insect screen.
도 2는 본 출원의 일 실시예인 방충망을 모식적으로 나타낸 도면이다.2 is a view schematically showing an insect screen as an embodiment of the present application.
도 3은 본 출원의 일 실시예인 방충망을 모식적으로 나타낸 도면이다. 3 is a view schematically showing an insect screen as an embodiment of the present application.
도 4는 본 출원의 일 실시예인 방충망의 제조방법에 대한 플로우차트이다.4 is a flowchart illustrating a method of manufacturing a insect screen, which is an embodiment of the present application.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 출원을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 구성요소 등이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 구성요소 등이 존재하지 않거나 부가될 수 없음을 의미하는 것은 아니다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present application. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present application, the terms "comprise" or "having" are intended to indicate that a feature, component, or the like described in the specification exists, and one or more other features or components may not exist or be added. It does not mean nothing.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 출원이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
본 출원에서 사용된 용어 "나노"는 나노 미터(nm) 단위의 크기를 의미할 수 있고, 예를 들어, 1 내지 1,000 nm의 크기를 의미할 수 있으나, 이에 제한되는 것은 아니다. 또한, 본 명세서에서 용어 "나노와이어"는 나노 미터(nm) 단위의 평균 크기를 갖는 와이어를 의미할 수 있고, 예를 들어, 1 내지 1,000 nm의 평균 크기을 갖는 와이어를 의미할 수 있으나, 이에 제한되는 것은 아니다.As used herein, the term "nano" may mean a size in nanometers (nm), for example, may mean a size of 1 to 1,000 nm, but is not limited thereto. In addition, the term "nanowire" used herein may mean a wire having an average size in nanometers (nm), for example, may mean a wire having an average size of 1 to 1,000 nm, but is not limited thereto. It doesn't happen.
본 출원은 방충망 이외에도 공기정화기기 필터용 망, 구조물 강성 증진재, 외부충격 흡수재, EMI 차폐재, 전극재, 의료용 필터, 타이어내 지지망, 음향시설내 스피커 망, 마이크 망, 신발 밑창 또는 깔창 소재, 태양광 차단을 위한 선팅재, 조리도구 등에 이용할 수 있다. 다만, 이하에서는 방충망을 중심으로 설명한다. 이러한 설명이 본 출원을 방충망으로 한정하는 것은 아니다.In addition to insect screens, the present application covers air purifier filter nets, structural stiffness enhancers, external shock absorbers, EMI shields, electrode materials, medical filters, tire support nets, speaker nets in acoustic installations, microphone nets, shoe soles or insole materials, solar It can be used for light blocking materials, cooking materials, and the like. However, the following description will focus on the insect screen. This description does not limit the present application to insect screens.
이하, 첨부된 도면을 참조하여 본 출원의 초미세먼지 포집능이 우수한 기능성 방충망 및 이의 제조방법을 설명하며, 첨부된 도면은 예시적인 것으로, 본 출원의 기능성 방충망 및 이의 제조방법의 범위가 첨부된 도면에 의해 제한되는 것은 아니다.Hereinafter, with reference to the accompanying drawings, the ultrafine dust collecting ability of the present application will be described excellent functional screen and a manufacturing method thereof, the accompanying drawings are illustrative, the scope of the functional screen and the manufacturing method of the present application attached drawings It is not limited by.
도 1은 종래의 방충망을 모식화한 도면이고, 도 2는 본 출원의 일 실시예에 따른 기능성 방충망을 모식화한 도면이다.1 is a diagram schematically illustrating a conventional insect screen, and FIG. 2 is a diagram schematically illustrating a functional insect screen according to an embodiment of the present application.
본 출원의 상세한 설명을 위하여, 도 1을 포함하여, 본 출원을 설명한다. 도 1 내지 도 3에 도시한 바와 같이, 본 출원의 일 실시예에 따른 방충망(1)은 메쉬 부재(10), 메쉬 부재(10)의 표면에 부착된 촉매부(20) 및 촉매부(20)에 부착된 나노와이어(30)를 포함한다.For detailed description of the present application, the present application will be described, including FIG. 1. As shown in Figures 1 to 3, the insect screen 1 according to an embodiment of the present application is the mesh member 10, the catalyst portion 20 and the catalyst portion 20 attached to the surface of the mesh member 10 Nanowires 30 attached thereto).
메쉬 부재(10)는 그물망과 같은 구조를 갖는 구조체로써, 통기성이 우수한 구조체를 의미한다. 다만, 이에 한정되는 것은 아니다. 도 1 내지 3에는 단면이 정사각형으로 도시하였으나, 이에 한정되는 것은 아니다.The mesh member 10 is a structure having a structure such as a net, and means a structure having excellent breathability. However, the present invention is not limited thereto. 1 to 3, the cross section is shown as a square, but is not limited thereto.
또한, 메쉬 부재(10)의 격자의 평균 크기는 0.5 내지 5.0 mm인 것이 바람직하다. 다만, 이에 한정되는 것은 아니다. 격자의 평균 크기가 크면 통기성이 우수하나, 미세 먼지나 초미세 먼지 또한 용이하게 통과할 수 있다.Moreover, it is preferable that the average size of the grating | lattices of the mesh member 10 is 0.5-5.0 mm. However, the present invention is not limited thereto. A large average size of the grating provides good ventilation, but fine dust and ultra-fine dust can also pass through easily.
또한, 다양한 소재를 포함하는 메쉬 부재가 본 출원에 적용될 수 있다. 다만, 메쉬 부재(10)는 금속재 및 폴리머재로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 것이 바람직하다. 예시로서, 스테인레스 스틸 및 PET를 포함한다.In addition, a mesh member including various materials may be applied to the present application. However, the mesh member 10 preferably includes at least one selected from the group consisting of metal materials and polymer materials. By way of example, stainless steel and PET are included.
촉매부(20)는 메쉬 부재(10)에 부착된다. 도 3에 도시한 촉매부(20)는 하나의 예시일 뿐, 다양한 형태로 메쉬 부재(10)에 부착될 수 있다(도 2에는 촉매부 미도시). 후술하는 나노와이어(30)가 메쉬 부재(10)에 직접적으로 부착되기 어려운 경우가 많다. 촉매부(20)는 나노와이어(30)가 성장하는 개시점이 될 수 있다.The catalyst unit 20 is attached to the mesh member 10. The catalyst unit 20 shown in FIG. 3 is just one example, and may be attached to the mesh member 10 in various forms (not shown in FIG. 2). It is often difficult for the nanowire 30 to be described later to adhere directly to the mesh member 10. The catalyst unit 20 may be a starting point at which the nanowires 30 grow.
또한, 촉매부(20)는 나노와이어(30)를 성장시킬 수 있는 소재라면 그 종류를 특별히 한정하는 것은 아니지만 전이금속(transition metal) 및 귀금속(noble metal) 및 이들의 산화물로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 것이 바람직하다.In addition, the catalyst 20 is not particularly limited as long as it is a material capable of growing the nanowire 30, but at least selected from the group consisting of transition metals and noble metals and oxides thereof. It is preferable to include one.
이러한 예시로서, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, Re, Os, Ir, Pt 및 Au로 이루어진 군에서 선택되는 적어도 하나를 포함할 수 있다.By way of example, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, Re, Os, Ir, Pt and Au It may include at least one selected from the group consisting of.
또한, 촉매부(20)의 크기(직경)는 2 내지 200 nm일 수 있다. 이러한 범위의 크기를 통하여, 나노와이어(30)와 메쉬 부재(10)가 견고히 접착하도록 할 수 있다. 직경이 2 nm 보다 작은 경우에는 후술하는 공정에서 나노와이어가 성장된 촉매를 섬유에 부착 시 정전기적 인력을 적용할 경우, 섬유로의 포집 효율이 급격히 저하될 수 있고, 촉매부의 직경이 200nm 보다 큰 경우에는 나노와이어가 잘 성장되지 않거나, 튜브의 직경이 200nm 보다 큰 조대한(coarse) 나노와이어만 생성되어 방충망에 적용하기가 적절하지 않을 수 있다.In addition, the size (diameter) of the catalyst unit 20 may be 2 to 200 nm. Through the size of this range, the nanowire 30 and the mesh member 10 can be firmly adhered. If the diameter is smaller than 2 nm, when the electrostatic attraction is applied when the nanowire-grown catalyst is attached to the fiber in the process described below, the trapping efficiency to the fiber may be drastically reduced, and the diameter of the catalyst portion is larger than 200 nm. In this case, nanowires may not grow well, or only coarse nanowires having a diameter of a tube larger than 200 nm may be generated and may not be suitable for application to insect screens.
메쉬 부재(10)에 촉매부(20)를 부착하는 방법은 특별히 한정되는 것은 아니지만, 에어로졸 촉매 증착법(aerosol catalyst deposition) 또는 딥 코팅법(dip coating)을 통해서, 메쉬 부재(10)에 촉매부(20)를 부착할 수 있다. 에어로졸 촉매 증착법 및 딥 코팅법 각각 특별히 한정되는 조건이 적용되는 것은 아니지만, 본 출원에서 의도하는 바와 같이, 촉매부(20)를 메쉬 부재(10)에 접착하는 목적에 맞게 그 조건이나 공정이 제한될 수는 있다.The method of attaching the catalyst unit 20 to the mesh member 10 is not particularly limited, but the catalyst unit may be attached to the mesh member 10 through aerosol catalyst deposition or dip coating. 20) can be attached. The aerosol catalyst deposition method and the dip coating method are not particularly limited. However, the conditions or processes may be limited to the purpose of adhering the catalyst unit 20 to the mesh member 10 as intended in the present application. There is a number.
나노와이어(30)는 촉매부(20)에 부착된다. 도 2 및 도 3에 도시한 나노와이어(30)는 하나의 예시일 뿐, 다양한 형태로 촉매부(20)에 부착될 수 있다. 즉, 나노와이어의 제1 단부는 촉매부(20)에 부착되어 고정된다. 그러나, 반대쪽 단부인 제2 단부는 유동할 수 있어, 나노와이어(30)가 외부의 힘에 의하여 유연한 움직임을 갖을 수 있다.The nanowires 30 are attached to the catalyst unit 20. The nanowires 30 shown in FIGS. 2 and 3 are just examples, and may be attached to the catalyst unit 20 in various forms. That is, the first end of the nanowires is attached to and fixed to the catalyst unit 20. However, the second end, which is the opposite end, may flow, such that the nanowires 30 may have flexible movement by external forces.
또한, 나노와이어(30)는 전이금속, 전이금속의 산화물, 희토류원소 및 희토류원소의 산화물로 이루어진 그룹으로부터 선택된 적어도 하나를 포함한다. 또한, 나노와이어(30)는 Ag, Cu, C, Si, Ag2O, CuO, SiO2, TiO2, ZnO, WO3, MgO, Ti-MgO, Zn-MgO, W-MgO 및 이들의 합금조직으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함한다.In addition, the nanowire 30 includes at least one selected from the group consisting of transition metals, oxides of transition metals, rare earth elements and oxides of rare earth elements. In addition, the nanowires 30 may include Ag, Cu, C, Si, Ag 2 O, CuO, SiO 2 , TiO 2 , ZnO, WO 3 , MgO, Ti-MgO, Zn-MgO, W-MgO, and alloys thereof. At least one selected from the group consisting of tissues.
또한, 나노와이어(30)의 평균 직경은 5 내지 500 nm이고, 평균 길이는 0.5 내지 500 ㎛인 이다.In addition, the average diameter of the nanowire 30 is 5 to 500 nm, the average length is 0.5 to 500 ㎛.
또한, 나노와이어(30)는 화학기상증착법에 의하여, 촉매부(20)에 부착될 수 있다.In addition, the nanowires 30 may be attached to the catalyst unit 20 by chemical vapor deposition.
공기가 필터를 통과할 때, 입자는 몇 가지 메커니즘을 통해 유선(streamline)을 벗어나 필터 표면과 충돌하여 포집된다. 미세입자의 주요 포집 메커니즘은 확산(diffusion), 차단(interception), 관성충돌(inertial impaction), 중력침강(gravitational settling), 그리고 정전기력(electrical forces) 등이다.As air passes through the filter, the particles are trapped by colliding with the filter surface out of the streamline through several mechanisms. The major capture mechanisms of microparticles are diffusion, interception, inertial impaction, gravitational settling, and electrical forces.
본 출원에서, 미세입자 필터링하는 방법은 흘러가는 공기 내에 포함된 먼지 등의 입자에 인위적으로 외력을 가해주거나, 공기의 흐름 가운데에 장애물(obstacle) 즉, 나노와이어를 위치함으로써 결과적으로 공기 중에 포함되어 있는 미세입자를 분리해낼 수 있다.In the present application, the method for filtering fine particles is included in the air by artificially applying external force to particles such as dust contained in flowing air, or by placing an obstacle, ie, nanowire, in the middle of the air flow. The fine particles present can be separated.
기체 속에 부유하고 있는 미세입자들은 브라운 운동을 하게 되는데, 유동이 물체 주위를 흘러갈 때, 브라운 운동에 의해 유선을 벗어나 물체 에 도달하게 되는 입자는 물체에 부착되게 된다. 브라운 운동은 작은 크기의 입자일수록 더 활발하게 일어나므로, 이 원리는 초미세 먼지를 제거하는 가장 중요하게 작용하는 메커니즘일 수 있다.The fine particles suspended in the gas undergo Brownian motion. When the flow flows around the object, the particles that reach the object through the Brownian motion and reach the object are attached to the object. Since Brownian motion is more active with smaller particles, this principle may be the most important mechanism for removing ultra-fine dust.
비록 미세먼지의 궤도가 유선(streamline)으로부터 벗어나지 아니할지라도, 만약에 유선이 나노와이어 표면으로부터 입자의 반경보다 내부에 있을 때에는 입자가 여전히 포집된다. 실제의 유한한 크기를 가지는 입자는 브라운운동을 하지 않더라도 차단(interception) 효과에 의해서 포집 될 수 있다.Although the trajectory of the fine dust does not deviate from the streamline, the particle is still collected if the streamline is inside the radius of the particle from the nanowire surface. Real finite particles can be captured by the interception effect even without Brownian motion.
또한, 미세먼지의 유선은 나노와이어 근처에서 곡선을 이룬다. 유한한 질량을 가지고 흐름에 따라 이동하는 입자는 그들이 지니는 관성때문에 유선이 곡선인 경우 유선을 정확하게 쫓아가지 못한다. 만약 유선의 곡률이 심하고 입자의 질량이 크다면, 입자는 유선으로부터 매체의 표면으로 이탈하여 충돌하게 되며, 이를 통하여 미세 먼지를 포집 할 수 있다.In addition, the fine dust streamline curves near the nanowires. Particles that move with flow with finite mass do not correctly follow the mammary gland when the mammary gland is curved because of their inertia. If the curvature of the streamline is severe and the mass of the particle is large, the particles will collide and escape from the streamline to the surface of the medium, thereby collecting fine dust.
이러한 다양한 원리에 의하여, 다양한 크기의 먼지를 용이하게 포집할 수 있다.By these various principles, it is possible to easily collect dust of various sizes.
또한, 나노와이어(30)는 Fe, Zr 및 Chalcogene 으로 이루어진 그룹으로부터 선택된 적어도 하나가 도핑된다.In addition, the nanowire 30 is doped with at least one selected from the group consisting of Fe, Zr and Chalcogene.
또한, 나노와이어는 기능성 코팅층을 포함한다. 즉, 나노와이어(30) 표면에 기능성 코팅층을 형성된다. The nanowires also include a functional coating layer. That is, the functional coating layer is formed on the surface of the nanowire 30.
기능성 코팅층은 세균 또는 곤충을 제거하거나 퇴치하기 위하여 항균제 또는 방충제를 추가로 포함한다.The functional coating layer further includes an antimicrobial or insect repellent to remove or combat bacteria or insects.
여기서, 포집 효율은 하기 식 1과 같다.Here, collection efficiency is as following Formula 1.
[식 1][Equation 1]
Figure PCTKR2019010512-appb-I000001
Figure PCTKR2019010512-appb-I000001
여기서, η(dA)는 입자 제거효율을 의미하며, l은 필터의 깊이를 의미하며, E(dA)은 단일 섬유 효율을 의미하고, α는 와이어의 메쉬격자 내 충전밀도를 의미하며, df는 와이어의 직경을 의미한다.Where η (dA) is the particle removal efficiency, l is the depth of the filter, E (dA) is the single fiber efficiency, α is the packing density in the mesh grid of the wire, d f Means the diameter of the wire.
본 출원의 일 실시예에서, 기능성 코팅층은 다양한 추가적인 기능을 부가하도록 다양한 성분을 포함할 수 있다. In one embodiment of the present application, the functional coating layer may include various components to add various additional functions.
그래서, 방충망 이외에도 공기정화기기 필터용 망, 구조물 강성 증진재, 외부충격 흡수재, EMI 차폐재, 전극재, 의료용 필터, 타이어내 지지망, 음향시설내 스피커 망, 마이크 망, 신발 밑창 또는 깔창 소재, 태양광 차단을 위한 선팅재, 조리도구 등에 이용할 수 있다. So, in addition to insect screens, air purifier filter nets, structural stiffness enhancers, external shock absorbers, EMI shields, electrode materials, medical filters, tire support nets, speaker nets in acoustic facilities, microphone nets, shoe soles or insole materials, and solar Can be used for blocking materials, cooking materials, etc.
구체적으로, 다기능성 망은 배터리 전극재에 이용할 수 있다. 특히 평판형 배터리에 포함되는 망형태의 재료로 이용할 수 있다.Specifically, the multifunctional network can be used for the battery electrode material. In particular, it can be used as a net-like material contained in a flat panel battery.
또한, 다기능성 망은 의료용 필터로 이용할 수 있다. 입자 제거능 및 항균능이 있으므로, 의료용 기체 또는 액체 필터로 사용할 수 있다.In addition, the multifunctional network can be used as a medical filter. Particle removal ability and antibacterial activity, so it can be used as a medical gas or liquid filter.
또한, 다기능성 망은 타이어 내 지지망으로 이용할 수 있다. 나노섬유/와이어의 성장은 원재료의 강성을 증가시켜 주므로, 타이어 내 지지망으로 사용할 수 있다.In addition, the multifunctional network can be used as a support network in a tire. The growth of nanofibers / wires increases the stiffness of the raw material and can be used as a support net in tires.
또한, 다기능성 망은 스피커 또는 마이크 망과 같은 음향시설에 이용할 수 있다. 나노섬유/와이어의 성장은 원재료의 강성을 증가시켜 주므로, 스피커 망 그리고, 항균능이 존재하므로 마이크 망으로 사용할 수 있다. In addition, the multifunctional network can be used for acoustic facilities such as speaker or microphone networks. The growth of nanofibers / wires increases the stiffness of the raw material, and thus can be used as a microphone network because of the presence of a speaker network and antibacterial activity.
또한, 다기능성 망은 신발 밑창 또는 깔창 소재에 이용할 수 있다. 개선된 강성으로 밑창, 항균능으로 깔창 소재로 사용할 수 있다.Multifunctional nets are also available for shoe soles or insole materials. Improved rigidity can be used as insole material with sole and antibacterial activity.
또한, 다기능성 망은 태양광 차단을 위한 선팅재에 이용할 수 있다. 태양광을 흡수/또는 반사시키는 코팅망으로 폴리머 필름과 샌드위치화하여 선팅재로 사용할 수 있다.In addition, the multi-functional net can be used in the sunning material for blocking the sun. A coating network that absorbs and / or reflects sunlight can be sandwiched with a polymer film and used as a sintering material.
또한, 다기능성 망은 조리도구에 이용할 수 있다. 개선된 강성과 조절가능한 열전도도, 소수성을 기반으로 냄비 바닥, 후라이팬 등의 조리도구 바닥/표면소재로 사용할 수 있다. 또한, 보온/보냉병의 단열층으로도 사용할 수 있다.Multifunctional nets can also be used for cooking utensils. Based on improved stiffness, adjustable thermal conductivity, and hydrophobicity, it can be used as a cooker floor / surface material for pot bottoms and frying pans. Moreover, it can also be used as a heat insulation layer of a thermal insulation / cold storage bottle.
이러한 나열된 예시 이외에도, 다기능 망은 다양한 용도로 사용될 수 있다.In addition to these listed examples, the multifunctional network can be used for various purposes.
도 4는 초미세먼지 포집능이 우수한 기능성 방충망의 제조방법에 대한 플로우 차트이다. 4 is a flowchart illustrating a method of manufacturing a functional insect net having excellent ultrafine dust collecting ability.
도 4에 도시한 바와 같이, 먼저 메쉬 부재를 준비한다(S110). 메쉬 부재에 대한 설명은 상술한 기능성 방충망에서 상세히 제시하였으므로, 여기서는 생략한다.As shown in FIG. 4, first, a mesh member is prepared (S110). Since the description of the mesh member has been described in detail in the above-described functional screen, the description thereof will be omitted.
준비된 메쉬 부재를 롤(roll)로 이송하여, 촉매부를 부착시킨다(S120). 이 때, 롤투롤 방법에 의하여, 촉매부를 메쉬 부재에 부착한다. 메쉬 부재에 촉매부를 부착하는 방법은 특별히 한정되는 것은 아니지만, 에어로졸 촉매 증착법 또는 딥 코팅법을 통해서, 메쉬 부재에 촉매부를 부착할 수 있다. 에어로졸 촉매 증착법 및 딥 코팅법 각각 특별히 한정되는 조건이 적용되는 것은 아니지만, 본 출원에서 의도하는 바와 같이, 촉매부를 메쉬 부재에 접착하는 목적에 맞게 그 조건이나 공정이 제한될 수는 있다.The prepared mesh member is transferred to a roll to attach the catalyst unit (S120). At this time, the catalyst portion is attached to the mesh member by a roll-to-roll method. Although the method of attaching a catalyst part to a mesh member is not specifically limited, A catalyst part can be attached to a mesh member through an aerosol catalyst vapor deposition method or a dip coating method. The conditions that are specifically limited to the aerosol catalyst deposition method and the dip coating method are not particularly applied, but as intended in the present application, the conditions or processes may be limited to the purpose of adhering the catalyst portion to the mesh member.
그리고, 촉매부가 부착된 메쉬 부재를 화학기상증착 챔버로 이송하여, 화학기상증착 방법에 의하여, 촉매부에 나노와이어를 성장시킨다(S130).Then, the mesh member with the catalyst portion is transferred to the chemical vapor deposition chamber, and nanowires are grown on the catalyst portion by the chemical vapor deposition method (S130).
여기서, 화학기상증착법을 실시하기 위한 조건 또는 이를 실행할 수 있는 장치는 특별히 한정되는 것은 아니지만, 본 출원의 의도에 맞게 한정될 수 있다. Here, the conditions for carrying out the chemical vapor deposition method or the device capable of performing the same is not particularly limited, but may be limited to the intention of the present application.
또한, 나노와이어가 Ag, Cu, C 및 Si으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 경우, 상기 화학기상증착 방법은 불활성분위기에서 적용될 수 있다.In addition, when the nanowires include at least one selected from the group consisting of Ag, Cu, C and Si, the chemical vapor deposition method may be applied in an inert atmosphere.
또한, 나노와이어가 Ag2O, CuO, SiO2, TiO2, ZnO, WO3 MgO, Ti-MgO, Zn-MgO, W-MgO, 및 이들의 합금조직으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 경우, 상기 화학기상증착 방법은 산소를 포함한 공기분위기에서 적용될 수 있다.In addition, the nanowires include at least one selected from the group consisting of Ag 2 O, CuO, SiO 2 , TiO 2 , ZnO, WO 3 MgO, Ti-MgO, Zn-MgO, W-MgO, and alloys thereof. In this case, the chemical vapor deposition method may be applied in an air atmosphere containing oxygen.
이러한 제조방법은 나노와이어에 기능성 코팅막을 형성시키는 단계를 추가로 포함한다. 이러한 방법은 스프레이 코팅법 또는 액상 함침법에 의하여 구현될 수 있다. 여기서, 스프레이 코팅법 또는 액상 함침법은 특별히 한정되는 것은 아니며, 공지의 방법을 이용하는 것도 가능하다.This manufacturing method further includes the step of forming a functional coating film on the nanowires. Such a method may be implemented by spray coating or liquid impregnation. Here, the spray coating method or the liquid impregnation method is not particularly limited, and a known method may be used.
또한, 기능성 코팅층은 항균제 또는 방충제를 포함할 수 있다. 더불어, 기능성 코팅층은 상술한 바와 같은 다양한 기능을 위한 추가적인 성분을 포함할 수 있다. In addition, the functional coating layer may include an antibacterial or insect repellent. In addition, the functional coating layer may include additional components for various functions as described above.
[부호의 설명][Description of the code]
1: 방충망1: screen
10: 메쉬 부재10: mesh member
20: 촉매부20: catalytic part
30: 나노와이어30: nanowire

Claims (16)

  1. 메쉬(mesh) 부재;Mesh members;
    상기 메쉬 부재의 표면에 부착된 촉매부 및 A catalyst portion attached to the surface of the mesh member;
    상기 촉매부에 부착된 나노와이어(nanowire)를 포함하며,It comprises a nanowire (nanowire) attached to the catalyst portion,
    상기 나노와이어의 제1 단부는 상기 촉매부에 부착되어 고정되나, 제2 단부는 유동할 수 있어, 상기 나노와이어가 외부의 힘에 의하여 유연한 움직임을 갖는, 다기능성 망.The first end of the nanowire is fixed to the catalyst portion attached to, but the second end can flow, so that the nanowire has a flexible movement by the external force.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 메쉬 부재의 격자 평균크기는 0.5 내지 5.0 mm인 다기능성 망.The mesh size of the mesh member is a multi-functional net is 0.5 to 5.0 mm.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 메쉬 부재는 금속재 및 폴리머재로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 다기능성 망. The mesh member includes at least one selected from the group consisting of a metal material and a polymer material.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 촉매부는 전이금속 (transition metal) 및 귀금속 (noble metal) 및 이들의 산화물로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 다기능성 망.Wherein said catalyst portion comprises at least one selected from the group consisting of transition metals and noble metals and oxides thereof.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 촉매부의 크기는 2 내지 200 nm인 다기능성 망.The catalyst unit has a size of 2 to 200 nm multifunctional network.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 나노와이어는 전이금속, 전이금속의 산화물, 희토류원소 및 희토류원소의 산화물로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 다기능성 망.Wherein said nanowires comprise at least one selected from the group consisting of transition metals, oxides of transition metals, rare earth elements and oxides of rare earth elements.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 나노와이어는 Ag, Cu, C, Si, Ag2O, CuO, SiO2, TiO2, ZnO, WO3, MgO, Ti-MgO, Zn-MgO, W-MgO 및 이들의 합금조직으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 다기능성 망.The nanowire is a group consisting of Ag, Cu, C, Si, Ag 2 O, CuO, SiO 2 , TiO 2 , ZnO, WO 3 , MgO, Ti-MgO, Zn-MgO, W-MgO and alloys thereof A multifunctional network comprising at least one selected from.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 나노와이어의 평균 직경은 5 내지 500 nm이고, 평균 길이는 0.5 내지 500 ㎛인 다기능성 망.The nanowires have an average diameter of 5 to 500 nm and an average length of 0.5 to 500 μm.
  9. 제 1 항에 있어서, The method of claim 1,
    상기 나노와이어는 Fe, Zr 및 Chalcogene 으로 이루어진 그룹으로부터 선택된 적어도 하나가 도핑된 다기능성 망.The nanowire is a multifunctional network doped with at least one selected from the group consisting of Fe, Zr and Chalcogene.
  10. 제 1 항에 있어서, The method of claim 1,
    상기 나노와이어는 기능성 코팅층을 포함한 다기능성 망.The nanowire is a multifunctional network including a functional coating layer.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 기능성 코팅층은 세균 또는 곤충을 제거하거나 퇴치하기 위하여 항균제 또는 방충제를 포함하는 다기능성 망.The functional coating layer is a multifunctional network comprising an antibacterial or insect repellent to remove or combat bacteria or insects.
  12. 메쉬 부재를 준비하는 단계;Preparing a mesh member;
    롤(roll)로 이송되는 상기 메쉬 부재에 촉매부를 부착시키는 단계; 및Attaching a catalyst portion to the mesh member which is transferred in a roll; And
    상기 촉매부가 부착된 메쉬 부재를 화학기상증착 챔버로 이송하여, 화학기상증착 방법에 의하여, 상기 촉매부에 나노와이어를 성장시키는 단계를 포함하는 다기능성 망의 제조방법.Transferring the mesh member to which the catalyst unit is attached to a chemical vapor deposition chamber, and growing nanowires in the catalyst unit by a chemical vapor deposition method.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 나노와이어가 Ag, Cu, C 및 Si으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 경우, 상기 화학기상증착 방법은 불활성분위기에서 적용되는 다기능성 망의 제조방법.When the nanowires include at least one selected from the group consisting of Ag, Cu, C and Si, the chemical vapor deposition method is a method of manufacturing a multifunctional network is applied in an inert atmosphere.
  14. 제 12 항에 있어서,The method of claim 12,
    상기 나노와이어가 Ag2O, CuO, SiO2, TiO2, ZnO, WO3, MgO, Ti-MgO, Zn-MgO, W-MgO 및 이들의 합금조직으로 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 초미세먼지 포집능이 우수한 기능성 방충망. 이루어진 그룹으로부터 선택된 적어도 하나를 포함하는 경우, 상기 화학기상증착 방법은 산소를 포함한 공기분위기에서 적용되는 다기능성 망의 제조방법. Second nanowires include at least one selected from the group consisting of Ag 2 O, CuO, SiO 2 , TiO 2 , ZnO, WO 3 , MgO, Ti-MgO, Zn-MgO, W-MgO and alloys thereof Functional insect screen with excellent fine dust collecting ability. When at least one selected from the group consisting of, the chemical vapor deposition method is a method for producing a multifunctional network is applied in an air atmosphere containing oxygen.
  15. 제 12 항에 있어서,The method of claim 12,
    상기 제조 방법은 상기 나노와이어에 기능성 코팅층을 형성하는 단계를 추가로 포함하는 다기능성 망의 제조방법.The manufacturing method further comprises the step of forming a functional coating layer on the nanowires.
  16. 제 15 항에 있어서,The method of claim 15,
    상기 기능성 코팅층은 세균 또는 곤충을 제거하거나 퇴치하기 위하여 항균제 또는 방충제를 포함하는 다기능성 망의 제조방법.The functional coating layer is a method for producing a multifunctional network comprising an antibacterial or insect repellent to remove or combat bacteria or insects.
PCT/KR2019/010512 2018-08-17 2019-08-19 Multi-functional net and method for manufacturing same WO2020036473A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180095807 2018-08-17
KR10-2018-0095807 2018-08-17
KR10-2018-0105646 2018-09-05
KR1020180105646A KR102095778B1 (en) 2018-08-17 2018-09-05 Multi-functional net and method of preparing same

Publications (1)

Publication Number Publication Date
WO2020036473A1 true WO2020036473A1 (en) 2020-02-20

Family

ID=69525694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010512 WO2020036473A1 (en) 2018-08-17 2019-08-19 Multi-functional net and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2020036473A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050026526A1 (en) * 2003-07-30 2005-02-03 Verdegan Barry M. High performance filter media with internal nanofiber structure and manufacturing methodology
KR100656985B1 (en) * 2004-11-02 2006-12-13 한국에너지기술연구원 Nano-filter media production process and device
KR100832300B1 (en) * 2006-03-22 2008-05-26 한국에너지기술연구원 Production process of high-efficient metal filters onto which nanotubes or nanofibers are grown by direct synthesis
KR20110034291A (en) * 2009-09-28 2011-04-05 포항공과대학교 산학협력단 Nanowires and methods for manufacturing the same
KR20110053960A (en) * 2008-07-30 2011-05-24 바스프 에스이 Insecticide-impregnated nets and use thereof for protecting against pests

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050026526A1 (en) * 2003-07-30 2005-02-03 Verdegan Barry M. High performance filter media with internal nanofiber structure and manufacturing methodology
KR100656985B1 (en) * 2004-11-02 2006-12-13 한국에너지기술연구원 Nano-filter media production process and device
KR100832300B1 (en) * 2006-03-22 2008-05-26 한국에너지기술연구원 Production process of high-efficient metal filters onto which nanotubes or nanofibers are grown by direct synthesis
KR20110053960A (en) * 2008-07-30 2011-05-24 바스프 에스이 Insecticide-impregnated nets and use thereof for protecting against pests
KR20110034291A (en) * 2009-09-28 2011-04-05 포항공과대학교 산학협력단 Nanowires and methods for manufacturing the same

Similar Documents

Publication Publication Date Title
DE102018008259A1 (en) Filter systems for suspended particles with particle sizes from 400 pm to ≤500 μm and their use
WO2019177289A1 (en) Multilayer planar filter having visible light transmittance and high durability, for blocking fine particles by simultaneously applying electrostatic collection and physical collection, and manufacturing method therefor
WO2014010809A1 (en) Three-dimensional nanoparticle assembly structure and gas sensor using same
WO2020036473A1 (en) Multi-functional net and method for manufacturing same
KR101841086B1 (en) Net equipment for window having a characteristic of protecting fine dust and heavy metal using metal fiber
KR200425293Y1 (en) Harmful dust filtering net assembly
US11371916B1 (en) Passive sampling of airborne particles with the aid of natural air flow
KR102095778B1 (en) Multi-functional net and method of preparing same
WO2019221334A1 (en) Filter device comprising microfibers
JP2004286418A (en) Air filter
CN211115707U (en) Nanometer window screening of antifog haze pollen function of preventing
CN110613978A (en) Gas-phase filter medium and filter unit
KR101793387B1 (en) Ciliary filter and filtering apparatus having the same
CN204963150U (en) Novel air conditioner filter screen
CN208821424U (en) A kind of farm's bio-safety three proofings device with pre-washing function
KR200305712Y1 (en) mosquito net combined with air filter function
WO2013002530A9 (en) Dust and bad odor removal system and removal method thereof
WO2020076076A1 (en) Conductive filter unit, conductive filter module including conductive filter unit, and fine dust removal system including conductive filter module
JP2017063655A (en) Electrostatic seedling shelter and electrostatic field screen generator for use in the same
JP2000042328A (en) Air dust collector
KR102001233B1 (en) Micro dust entry prevention device
KR20200083066A (en) Manufacturing method of photocatalyst filter for windows and productstherof
KR20200097905A (en) Facilities near the bus stop on the road including fine dust protection and air purificationfunction and the fine dust comparative measurement system
CN109577815A (en) It is a kind of to remove haze window automatically
CN205477322U (en) Can dirt -proof compound screen window cloth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849415

Country of ref document: EP

Kind code of ref document: A1