WO2019177289A1 - Multilayer planar filter having visible light transmittance and high durability, for blocking fine particles by simultaneously applying electrostatic collection and physical collection, and manufacturing method therefor - Google Patents

Multilayer planar filter having visible light transmittance and high durability, for blocking fine particles by simultaneously applying electrostatic collection and physical collection, and manufacturing method therefor Download PDF

Info

Publication number
WO2019177289A1
WO2019177289A1 PCT/KR2019/002436 KR2019002436W WO2019177289A1 WO 2019177289 A1 WO2019177289 A1 WO 2019177289A1 KR 2019002436 W KR2019002436 W KR 2019002436W WO 2019177289 A1 WO2019177289 A1 WO 2019177289A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh
nanofiber web
web layer
visible light
chargeable
Prior art date
Application number
PCT/KR2019/002436
Other languages
French (fr)
Korean (ko)
Inventor
정진태
추정현
한상범
Original Assignee
주식회사 웰테크글로벌
주식회사 이소아이앤씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 웰테크글로벌, 주식회사 이소아이앤씨 filed Critical 주식회사 웰테크글로벌
Publication of WO2019177289A1 publication Critical patent/WO2019177289A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0492Surface coating material on fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing

Definitions

  • the present invention relates to a multi-layered planar filter having a visible light transmittance and high durability, and a method for manufacturing the same, which block fine dust by simultaneously applying electrostatic collection and physical collection.
  • a filter is a filtration device that filters foreign substances in a fluid and is classified into a liquid filter and an air filter.
  • air filters are used in semiconductor manufacturing, computer equipment assembly, hospitals, etc. to remove biologically harmful substances such as microparticles such as dust, biological particles such as bacteria or mold, bacteria, etc. It is used in food processing factories, agriculture, forestry and fisheries, and is widely used in dusty workplaces and thermal power plants.
  • Such fine dust blocking facilities include a filter method, a scrubber method, and an electrostatic precipitator method.
  • the fine dust blocking filter network using the filter physically collects the fine dust by the effects of inertia, blocking, diffusion, and gravity, or static electricity. It can collect electrically by.
  • the principle of physically collecting fine dust by the inertia, blocking, diffusion, and gravity effects is that fine dust approaches the filter through the flow of air and is trapped on the fiber of the filter by the inertia to escape from the airflow, It is the effect of being trapped in the pores of the fiber of the filter by the size, or is trapped in the fiber due to the diffusion of fine dust in Brown movement irrespective of the flow of air or out of the flow due to gravity.
  • the electrical effect by the static electricity is the effect that the fine dust suspended in the air has an electric polarization and is collected by the electrostatic force on the fibers of the filter forming an electric field, that is, a magnetic field around, or induced charge is generated on the fiber surface .
  • the specific surface area is very high and the pore size of the nanoscale is higher than that of the conventional filter, and thus, fine dust having a size of 10 ⁇ m or less can be collected more efficiently.
  • Korean Patent Publication No. 10-2017-0120372 discloses a window filter for blocking fine dust and a method of manufacturing the same.
  • the present invention discloses a method of protecting a nanofiber layer with a medium such as a polyester mesh after high temperature spinning of a nanofiber on a substrate such as a polyester mesh.
  • the filter of the present invention requires a large number of nanofiber web layers to secure sufficient dust collecting performance by collecting fine dust only with a simple physical effect. As a result, the air permeability is lowered, the air permeability is sharply lowered, and the visible light transmittance including light is deteriorated to impair the external view.
  • Korean Patent No. 10-1668395 discloses a filter having nanofibers and a method of manufacturing the same.
  • the filter which fixes a nanofiber to the surface of a base material with a binder is disclosed.
  • the filter of the present invention has the disadvantage that the nanofibers are directly exposed to the outside, so that the nanofibers cannot be damaged by friction.
  • Korean Patent No. 10-1144448 discloses an electrostatic filter manufacturing method and an electrostatic filter using the same.
  • the present invention discloses a method for producing an electrostatic filter by manufacturing a nonwoven fabric as an electrostatic filter material by penetrating an electrostatic material together with a binder to make the woven fiber semi-permanently exhibit an electrostatic force.
  • the filter of the present invention is a filter that is applied inside a mechanical device such as an air filter of an automobile. When the light transmittance including visible light is not secured, when used in a window or a door, the outside view cannot be seen.
  • an aspect of the present invention provides a visible light transmissive multilayer structure planar filter for fine dust blocking which simultaneously performs physical collection and electrostatic collection. Particularly, visible light for blocking fine dust, which has high visible light transmittance, can be seen on the outside even when installed in windows or doors, and has excellent wear strength due to external qualification and excellent durability.
  • a transparent multilayer planar filter Provided is a transparent multilayer planar filter.
  • a fiber comprising: a chargeable mesh substrate knitted or woven with filament yarn formed by coating a chargeable polymer resin on a fiber; A nanofiber web layer laminated on one surface of the substrate by spinning; And a mesh structure knitted or woven with monofilament yarns, wherein the unit mesh constituting the mesh structure has a polygonal structure of hexagonal shape or more; stacked in sequence, and the protective mesh is attached to the nanofiber web layer.
  • a visible light-transmitting multilayered planar filter for dust blocking is provided.
  • the fibers may be any one or more fibers selected from the group consisting of glass fibers, aluminum fibers, steel fibers, high strength polyethylene fibers, metaaramid fibers, and paraaramid fibers. .
  • the chargeable polymer resin may have a positive charge affinity value of +30 nC / J or more or a negative charge affinity value of ⁇ 30 nC / J or less It may have a triboelectric coefficient in the range (negative charge affinity value).
  • the chargeable polymer resin in any one of the first aspect to the third aspect is one or two selected from the group consisting of polyvinyl chloride, polypropylene, polyamide and polyethylene terephthalate. It may be more than one species.
  • the nanofiber web layer is composed of nanofibers having a diameter of 500 nm to 1.5 ⁇ m and has a basis weight in the range of 0.1 to 2 g / m 2. Can be.
  • the protective mesh may be provided with chargeability.
  • a method of fabricating a nonwoven fabric comprising: (S1) obtaining a chargeable mesh substrate knitted or woven from a filament yarn formed by coating a high-strength fibrous polymer resin; (S2) nanofibers on the surface of the chargeable mesh substrate Spinning to form a nanofiber web layer; And (S3) attaching a protective mesh on the nanofiber web layer having a mesh structure knitted or woven with monofilament yarn, wherein the unit mesh constituting the mesh structure has a polygonal structure of hexagonal shape or more.
  • the method may further include applying a binder to the nanofiber web layer between steps (S2) and (S3).
  • Visible light-transmitting multilayer structure plane filter for fine dust blocking by using a chargeable mesh substrate knitted or woven with filament yarn formed by coating a high-strength fibrous polymer resin on the high-strength fibers, the fine dust electrostatic Can be captured.
  • Visible light-transmitting multilayer filter plane filter for blocking fine dust is because both the electrostatic collection by the electrostatic mesh substrate and the physical collection by the nanofiber web layer, so that fine dust and / or yellow dust Since the filtration capacity is maximized, even when the nanofiber web layer is used in a lower basis weight, it has excellent fine dust barrier properties, has an appropriate level of porosity, and has a high light transmittance to ensure sufficient visible light transmission so that the external view is not obstructed.
  • one side of the nanofiber web layer is provided with a chargeable mesh base material having a certain strength
  • the other side of the nanofiber web layer is provided with a protective mesh, excellent in air permeability, visible light transmittance and dust collection efficiency, Falling of the nanofiber web layer due to the environment can be prevented, and the multi-layered planar filter can be used to wash the brush, for example, to have durability.
  • each unit mesh constituting the protective mesh is formed to have a polygonal shape of hexagon or more, the adhesion of the protective mesh to the nanofiber web layer and the chargeable mesh substrate is greatly improved, and as a result, the life of the multi-layered planar filter This will have a longer effect.
  • the multi-layered planar filter according to the present invention can be produced by a simple process in which a nanofiber web layer is radiated on a chargeable mesh structure and a protective mesh is laminated thereon, so that the process efficiency is higher than that of a conventional lattice filter. This has an excellent advantage.
  • FIG. 1 is a side view schematically showing a multi-layered planar filter for blocking fine dust according to an embodiment of the present invention.
  • FIG. 2 is a plan view schematically showing a planar filter for visible light transmissive multilayer structure for preventing fine dust according to an embodiment of the present invention.
  • FIG. 3 is an SEM image of a visible light transmissive multilayer structure planar filter for blocking fine dust according to an embodiment of the present invention.
  • FIG. 4 is a view showing fine dust is physically collected (in a circle denoted by '1') or electrostatically collected (in a circle denoted by '2') in a visible light-transmitting multilayer structure planar filter for blocking fine dust according to an embodiment of the present invention. SEM image.
  • a chargeable mesh substrate knitted or woven with filament yarn formed by coating a chargeable polymer resin on a fiber; A nanofiber web layer laminated on one surface of the substrate by spinning; And a mesh structure knitted or woven with monofilament yarns, wherein the unit mesh constituting the mesh structure has a polygonal structure of hexagonal shape or more; stacked in sequence, and the protective mesh is attached to the nanofiber web layer.
  • a visible light-transmitting multilayered planar filter for dust blocking is provided.
  • FIG. 1 A side view of a visible light transmitting multilayer structure planar filter for fine dust blocking according to an embodiment of the present invention is shown in FIG. 1.
  • the chargeable mesh substrate 50 is located at the lowest layer
  • the nanofiber web layer 51 is positioned on the chargeable mesh substrate 50
  • the protective mesh 53 is positioned on the nanofiber web layer 51. .
  • the chargeable mesh base 50 may be knitted or woven into a filament yarn formed by coating a chargeable polymer resin on a fiber.
  • the filament yarn according to an aspect of the present invention may be in a form in which fibers constitute an inner core and a chargeable polymer resin constitutes a sheath.
  • the cross section of the filament yarn may be a shape such as a circle, an ellipse, a square, a rectangle, but is not limited thereto.
  • the chargeable mesh substrate 50 has a thickness of 0.1 to 0.5 mm to impart a certain level or more of mechanical strength to the multilayered flat filter, and is well permeable to ensure air permeability while simultaneously transmitting light to provide excellent visible light. It may have a 10 to 30 mesh eye size to ensure transmission. The eye may have a shape such as square, rectangle, rhombus, oval, hexagon, but is not limited thereto. In addition, the chargeable mesh substrate 50 may have a basis weight of 100 to 150 g / m 2 so that the multi-layered planar filter has an ideal level of mechanical strength and ensures excellent visible light transmission.
  • a high-strength fiber may be used so that the fine dust-blocking visible light-transmissive multilayered flat filter has excellent wear strength and the mesh structure is maintained in a constant shape.
  • the high strength fibers include glass fiber, steel fiber, aluminum fiber, ultra high molecular weight polyethylene (UHMWPE), meta-aramid fiber (m-Aramid), para-aramid fiber (p-Aramid) May be, but is not limited thereto.
  • the chargeable polymer resin is applied so that the filament yarn has a chargeability to electrostatically collect fine dust and / or yellow sand.
  • the fiber itself has chargeability and has a certain strength, it is understood that the aspect in which the chargeable polymer resin is not coated also corresponds to the present invention.
  • the chargeable polymer resin may be one in which the resin itself has chargeability, charged with charge by adding an additive to the resin, or charged with resin by water treatment.
  • Such a chargeable polymer resin has a triboelectric coefficient in the range of positive charge affinity value of +30 nC / J or higher or negative charge affinity value of -30 nC / J or lower. Can be.
  • Non-limiting examples of the chargeable polymer resin usable in the present invention include polyvinyl chloride (PVC, triboelectric coefficient -100nC / J), polypropylene (Polypropylene, triboelectric coefficient -90nC / J), polyamide (Polyamide, friction) Electrical coefficient + 30nC / J), polyethylene terephtalate (polyethylene terephtalate, triboelectric coefficient -40nC / J), but are not limited thereto. Since polyvinyl chloride is charged only by friction with air without an additive, it is preferable for the purpose of the present invention to block fine dust or yellow sand.
  • PVC polyvinyl chloride
  • polypropylene Polypropylene, triboelectric coefficient -90nC / J
  • polyamide Polyamide, friction
  • polyethylene terephtalate polyethylene terephtalate, triboelectric coefficient -40nC
  • the fibers constituting the filament yarn and the chargeable polymer resin may be manufactured so that the fibers occupy 40% to 60% of the filament yarn thickness to satisfy appropriate mechanical strength and electrostatic collection. That is, the ratio of the fiber: chargeable polymer resin in the thickness is 4: 6 to 6: 4.
  • the filament has a total glass thickness of 0.24 mm and a polyvinyl chloride thickness of 0.16 mm. It may be made of yarn or glass fiber thickness of 0.2 mm and polyvinyl chloride of 0.3 mm can be made of filament yarn of a total thickness of 0.5 mm.
  • One surface of the chargeable mesh substrate is laminated with a nanofiber web layer 51 having nanofibers spinning and having a web shape.
  • the nanofibers may be formed to have a diameter of 500 nm to 1.5 ⁇ m, preferably 0.7 ⁇ m to 1.0 ⁇ m, for physical collection of fine dust and / or yellow sand. If the diameter of the nanofibers is less than 500 nm, the durability against external magnetic poles is insufficient, and if the diameter of the nanofibers is larger than 1.5 ⁇ m, the size of the pores formed in the nanofiber web layer 51 becomes too large, and the fine dust trapping ability is significantly reduced.
  • the nanofiber web layer 51 formed from the nanofibers may be spun at 0.1 to 2 g / m 2, preferably 0.5 to 1 g / m 2 basis weight.
  • the nanofiber web layer 51 has a basis weight of less than 0.1 g / m 2, the amount of the nanofiber web layer 51 is small so that the size of the filter hole becomes large, so that fine dust cannot be effectively collected. That is, it becomes difficult to collect fine dust, such as '1' shown in FIG.
  • the nanofiber web layer 51 has a basis weight of more than 2 g / m2, the light transmittance is lowered, so that the proper visible light transmittance is not secured, so when using a multi-layered planar filter employing such a nanofiber web layer 51, the external perspective It also hurts the air permeability and lowers the air permeability.
  • visible light transmittance refers to the percentage of the visible light spectrum (380 to 780 nanometer wavelength range) transmitted through a multilayer planar filter, borrowing from standard ISO 9050 using simulated light type D65. Is measured. ISO 9050 is for glass windows, but the same procedure can be applied to multilayer planar filters that are taped or otherwise attached to glass windows.
  • visible light transmittance refers to “visible light transmittance” when the visible light transmittance measured as described above is 40% or more.
  • the nanofiber web layer 51 may have a form in which a polymer resin having a dipole moment of 2.0 D or more is melt spun or the polymer resin is dissolved in a predetermined organic solvent and spun.
  • Non-limiting examples of polymer resins having a dipole moment of 2.0 D or more include polyacrylonitrile (3.6D), polyvinylpyrrolidone (2.3D), and polyvinylidene fluoride (PVDF, 2.1D). Compounds such as, but are not limited thereto.
  • polymer resins such as polytetrafluoroethylene (1.6D), polyvinyl alcohol (1.2D), and polypropylene (0.7D) have a dipole moment of less than 2.0 D, and thus are used as nanofiber web layers in the present invention. This may require a separate treatment.
  • the organic solvent dissolving the polymer resin is selected from the group consisting of dimethylacetamide (DMAC), dimethyl sulfoxide (DMSO) and acetone.
  • DMAC dimethylacetamide
  • DMSO dimethyl sulfoxide
  • acetone One or more solvents may be mentioned, but are not limited thereto.
  • the nanofibers may be present in the form of a web on the chargeable mesh substrate 50 made of filament yarn, and may also exist in the mesh eye formed by the filament yarn to physically collect fine dust and / or yellow sand.
  • the protective mesh 53 has a mesh structure knitted or woven by monofilament yarn, and the unit mesh constituting the mesh structure has a polygonal structure of hexagonal shape or more.
  • the protective mesh 53 is laminated on the nanofiber web layer 51 to prevent the nanofiber web layer 51 from being detached and to improve the wear strength of the multilayer flat filter.
  • the protective mesh 53 may be treated to have chargeability to assist in collecting fine dust and / or yellow sand.
  • the protective mesh 53 is knitted or woven into monofilament yarns.
  • the protective mesh 53 is knitted or woven using braid, a problem may arise in that the braided yarn is peeled off while the multilayered planar filter is in use.
  • the monofilament yarn has a smaller surface area than that of the coarse yarn, the adhesion between the electrostatic mesh substrate 50 and the nanofiber web layer 51 is weaker than that of the coarse yarn. It can be made in the shape of a cross-sectional shape such as the cross section to complement the adhesion of the monofilament yarn.
  • the monofilament yarns constituting the protective mesh 53 may be made from at least one selected from the group consisting of synthetic fibers, for example, polyolefins, polyesters and polyamides, which are easily charged with static electricity.
  • the monofilament yarn may have a thickness of 1 to 100 ⁇ m and may be woven or knitted to have an eye size of 10 to 30 mesh, but the thickness and eye size are not limited thereto.
  • the unit mesh constituting the protective mesh 53 may have a polygonal shape of hexagon or more.
  • the nanofiber web layer 51 is located between the chargeable mesh substrate 50 and the protective mesh 53, but the nanofiber web layer 51 is formed of very thin nanofibers and Since the basis weight is also relatively small, the protective mesh 53 has a portion in direct contact with not only the nanofiber web layer 51 but also the chargeable mesh substrate 50.
  • the protective mesh 53 is charged. It is preferable to adhere firmly to the mesh mesh substrate 50 and the nanofiber web layer 51. Therefore, it is necessary to increase the area where the protective mesh 53 is in contact with the nanofiber web layer 51 and the chargeable mesh substrate 50.
  • the contact with the protective mesh 53 per mesh of the chargeable mesh base 50 is 6 Since more than two structures can be obtained, adhesive strength becomes high. As a result, efficient management of the multilayered planar filter is possible.
  • the protective mesh 53 can also be treated to be chargeable.
  • the monofilament yarn used in the protective mesh 53 may be treated with an electrostatic material in advance, or the electrostatic material may be treated with the protective mesh 53 knitted or woven with the monofilament yarn.
  • electrostatic materials include Calixarenes.
  • the above-described fine dust blocking visible light-transmitting multilayer structure planar filter according to an embodiment of the present invention in which the above-mentioned electrified mesh substrate 50, nanofiber web layer 51, and protective mesh 53 are sequentially stacked, from above
  • FIG. 1 the chargeable mesh substrate 50 is made in the form of a grid mesh
  • the nanofiber web layer 51 is radiated in a random form thereon
  • the protective mesh 53 is located. 2 is not drawn in proportion to the actual dimensions for easy understanding, and for an image of the first visible visible light transmissive multilayer structure planar filter according to an embodiment of the present invention, see FIG. 3 and the description thereof. do.
  • a binder may be applied, thermally fused, or both to ensure that the protective mesh 53 is more firmly adhered to the chargeable mesh substrate 50 and the nanofiber web layer 51.
  • the binder may be applied or applied to all or part of the nanofiber web layer 51 in contact with the protective mesh 53.
  • binders that can be used include, but are not limited to, organic binders such as polyurethane, acrylic, rubber, polyvinylidene fluoride and inorganic binders such as aluminum phosphate. It is preferable to use an organic binder for the same kind of material as the nanofiber web layer.
  • Thermal fusion may be performed after the protective mesh 53 is laminated on the nanofiber web layer 51. Thermal fusion may be applied to all or a portion of the nanofiber web layer 51 in contact with the protective mesh 53.
  • Visible dust-transmitting multilayer filter plane filter of the present invention having the above-described structure, the (S1) preparing a chargeable mesh substrate; (S2) forming a nanofiber web layer; And (S3) nanofiber web layer protection step; may be obtained by a process comprising, but is not limited thereto. It looks at each of the above steps below.
  • fibers are coated with a chargeable polymer resin to obtain filament yarns and the filament yarns are knitted or woven to provide a chargeable mesh substrate.
  • polymer resins and filament yarns used in this step see the above description.
  • nanofibers are spun on the surface of the chargeable mesh substrate to form a nanofiber web layer.
  • Methods of spinning nanofibers to form nanofiber web layers are well known.
  • the nanofiber web layer may be melted by dissolving the polymer resin or by dissolving the polymer resin in an organic solvent and spinning by electrospinning, flash spinning, or rotary force spinning, but is not limited thereto. In particular, it is preferable to radiate directly on the chargeable mesh substrate from the electrospinning apparatus.
  • a binder may be applied onto the nanofiber web layer as necessary.
  • the binder application method is not particularly limited and may be applied, for example, through a nozzle placed on the nanofiber web layer.
  • the fibers constituting the protective mesh and the electrostatic material used for the protective mesh treatment, refer to the above description.
  • the electrostatic material may be treated with the filament yarn before the monofilament yarns are woven or knitted with the protective mesh or after the monofilament yarns have been woven or knitted.
  • Such electrostatic materials may be treated to monofilament yarns by methods such as coating, spraying, dipping and the like.
  • the laminate composed of the electrostatic mesh substrate, the nanofiber web layer, and the protective mesh 53 formed as described above is press-bonded using a roller capable of applying heat and pressure as necessary to form a multilayered planar filter according to the present invention. Can be.
  • Polyvinyl chloride was coated on the glass fibers to produce a filament yarn having a diameter of 0.4 mm, thereby preparing a charged mesh substrate having an eye size of 20 mesh at a basis weight of 150 g / m 2.
  • the total thickness of the filament yarn was made of 40% glass fiber and 60% polyvinyl chloride.
  • a polyvinylidene fluoride is prepared by dissolving polyvinylidene fluoride in a 50:50 wt% mixed solvent of dimethylformamide and acetone, and then spun at 1.5 g / m 2 basis weight on the chargeable mesh substrate through an electrospinning method. A web layer was formed.
  • the polyurethane was then spray coated onto the nanofiber web layer in an amount of 1 g / m 2 with a binder.
  • the protective mesh is knitted in a mesh structure so that the unit mesh has a hexagonal shape and laminated on a nanofiber web layer Passing through the fusion roller to prepare a planar filter that can be protected both sides of the nanofiber web with a chargeable mesh substrate and a protective mesh.
  • the filter was prepared in the same manner.
  • Filters were prepared in the same manner as in the above example except that the protective mesh was not laminated.
  • the filter was prepared in the same manner except that the protective mesh was not laminated and the basis weight of the nanofiber web layer was 3 g / m 2.
  • the filter was prepared in the same manner as in the above example except that the protective mesh was laminated with a square mesh instead of a hexagonal mesh.
  • FIG. 3 The SEM image of the visible light-transmissive multilayer structure planar filter prepared in the example is shown in FIG. 3.
  • a very thin nanofiber web layer (B) is spun in a spider web form on a chargeable mesh substrate (A) made of filament yarn formed by coating a chargeable polymer resin on a fiber.
  • the protective mesh (C) is made from monofilament yarn so that the unit mesh has a hexagonal shape, and is radiated onto the nanofiber web layer (B).
  • the protective mesh (C) is present on the nanofiber web layer (B), but since the fibers constituting the nanofiber web layer are used in a very thin and relatively small basis weight, the protective mesh (C) is also used for the chargeable mesh substrate (A).
  • the protective mesh (C) ensures a constant adhesive force not only for the nanofiber web layer (B) but also for the chargeable mesh base material (A).
  • the hexagonal unit mesh constituting the protective mesh (C) is in contact with the chargeable mesh substrate (A), that is, increase the contact to secure a certain level of adhesion.
  • FIG. 4 is an SEM image photographed at a higher magnification than in FIG. 3, showing a fine dust-blocking visible light-transmitting multilayer structure flat filter of an embodiment. 4, the form in which the fine dust is physically collected in the nanofiber web layer (circle denoted as '1') and the form in which the fine dust is electrostatically collected in the nanofiber web layer (circle denoted '2'). You can check.
  • the fine dust physically collected in the nanofiber web layer may be relatively large fine dust, for example, fine dust having a size of about 20 ⁇ m.
  • the fine dust that is electrostatically trapped in the nanofiber web layer may be relatively small fine dust, such as fine dust of about 3 ⁇ m in size.
  • the dust collection efficiency, air permeability, wear strength and peel strength of the Examples and Comparative Examples were measured in order to evaluate the performance and durability of the particulate filter for blocking the visible light-transmitting multilayer structure manufactured in Examples and Comparative Examples.
  • air permeability was measured using JIS L 1096 method, and the filter was measured at a pressure of 125 Pa in an area of 38 cm 2.
  • Dust collection efficiency was measured with wind speed of 1m / s using ASHRAE STANDARD 52.1.
  • the wear strength was measured by applying option 1 of the Martindale test method to the occurrence of puncture in the nanofiber web and more than 50% damage. Each test result is shown in Table 1.
  • Example Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Air permeability (cm 3 / cm 2 / s) 413 408 405 409 269 397 Dust collection efficiency (%) 92 89 88 83 92 88 Visible light transmittance (% T) 42.6-49.6 41.5 ⁇ 49.3 42.1-49.4 44.3 ⁇ 51.2 29.8-30.2 43.1-49.3 Wear strength (times) 151 81 134 4 7 58
  • Example 1 shows that the example using the glass fiber coated with polyvinyl chloride significantly increased the wear strength as compared with Comparative Example 1 not.
  • Example 2 Comparing Example 2 and Comparative Example 2, it is shown that the Example using the glass fiber coated with polyvinyl chloride increased the dust collection efficiency compared to Comparative Example 2 not.
  • Comparing Example 3 and Comparative Example 3 it is shown that the example in which the nanofiber web layer is protected by the protective mesh has a significant increase in wear strength compared to Comparative Example 3, which is not.
  • planar filter for preventing fine dust of a highly durable multilayer structure applying simultaneous electrostatic collection and physical collection is for illustration as described above, and the embodiments are all or part so that various modifications can be made. May optionally be combined.

Abstract

Provided are a visible light-transmissive multilayer planar filter for blocking fine particles, and a manufacturing method therefor, the multilayer planar filter sequentially comprising: a charged mesh substrate knitted or woven with a filament yarn formed by coating a charged polymer resin on a fiber; a nanofiber web layer spun and layered on one surface of the substrate; and a protective mesh having a mesh structure knitted or woven with a monofilament yarn, wherein the mesh structure is formed of unit meshes having a polygonal structure that has at least six angles, and thus both electrostatic collection by the charged mesh substrate and physical collection by the nanofiber web layer occur so as to maximize the filtering out of fine particles and/or yellow dust, such that an excellent fine particles-blocking property is obtained even though a smaller basis weight of the nanofiber web layer is used, and sufficient visible light transmission is ensured because of high light transmittance such that a field of vision from the outside is not obstructed.

Description

정전기적 포집과 물리적 포집을 동시 적용하여 미세먼지를 차단하는, 가시광선 투과성 및 고내구성의 다층구조 평면 필터 및 이의 제조방법 Multi-layered planar filter with visible light transmittance and high durability that blocks fine dust by applying electrostatic collection and physical collection simultaneously and its manufacturing method
본 발명은, 정전기적 포집과 물리적 포집을 동시 적용하여 미세먼지를 차단하는, 가시광선 투과성 및 고내구성의 다층구조 평면 필터 및 이의 제조방법에 관한 것이다. The present invention relates to a multi-layered planar filter having a visible light transmittance and high durability, and a method for manufacturing the same, which block fine dust by simultaneously applying electrostatic collection and physical collection.
본 출원은 2018년 3월 15일자로 출원된 한국 특허출원 번호 제10-2018-0030097호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.This application is a priority application for Korean Patent Application No. 10-2018-0030097 filed March 15, 2018, and all contents disclosed in the specification and drawings of the application are incorporated herein by reference.
일반적으로 필터는 유체 속의 이물질을 걸러내는 여과장치로서 액체필터와 에어필터로 분류된다. 이 중 에어필터는 첨단산업의 발달과 함께 첨단제품의 불량방지를 위해 공기 중의 먼지 등 미립자, 세균이나 곰팡이 등의 생물 입자, 박테리아 등과 같은 생물학적으로 유해한 것이 제거되는 반도체 제조, 전산기기 조립, 병원, 식품가공공장, 농림수산 분야에서 사용되며, 먼지가 많이 발생하는 작업장이나 화력발전소 등에도 광범위하게 사용된다.Generally, a filter is a filtration device that filters foreign substances in a fluid and is classified into a liquid filter and an air filter. Among these, air filters are used in semiconductor manufacturing, computer equipment assembly, hospitals, etc. to remove biologically harmful substances such as microparticles such as dust, biological particles such as bacteria or mold, bacteria, etc. It is used in food processing factories, agriculture, forestry and fisheries, and is widely used in dusty workplaces and thermal power plants.
특히, 최근 자동차 배기가스, 공장이나 발전소 등에서 석탄·석유 등 화석연료를 태울 때 발생하는 매연, 건설현장과 같은 작업장에서 발생하는 날림 먼지, 소각 시 발생하는 소각 연기 등으로 인한 미세먼지와 황사로 인해 대기 오염이 심해져, 시계(視界) 방해로 인한 각종 사고의 위험이 커질 뿐만 아니라, 인체에도 호흡기를 거쳐 폐 등에 침투하거나 혈관을 따라 체내로 이동하여 각종 질병을 일으킬 위험이 높아졌다. 세계보건기구(WHO) 산하의 국제암연구소(IARC)에서는 2013년 미세먼지를 1군 발암물질로 지정한 바 있다.In particular, due to the fine dust and yellow dust caused by the exhaust fumes from automobiles, factories, power plants, etc. Increasing air pollution has increased the risk of accidents caused by disturbance of the clock, as well as increasing the risk of causing various diseases by penetrating into the lungs through the respiratory system or moving into the body along blood vessels. The International Cancer Research Institute (IARC) under the World Health Organization (WHO) designated fine dust as a group 1 carcinogen in 2013.
이와 같은 배경으로 미세먼지나 황사 등에 의한 실내 대기 오염을 막기 위해 일반 가정집이나 사무실, 병원 등의 각종 건물에서는 창문이나 출입문 등에 가시광선 투과율이 소정 비율 이상인 가시광선 투과성 미세먼지 차단용 시설을 설치하고 있다.Against this backdrop, in order to prevent indoor air pollution caused by fine dust or yellow dust, various buildings such as homes, offices, and hospitals have installed visible light-transmitting fine dust blocking facilities with visible light transmittance of more than a predetermined ratio in windows and doors. .
이와 같은 미세먼지 차단용 시설에는 필터 방식, 스크러버 방식, 전기집진기 방식이 있으며, 이 중 필터를 사용한 미세먼지 차단 필터망은 미세먼지를 관성, 차단, 확산, 중력의 효과에 의해 물리적으로 포집하거나 정전기에 의해 전기적으로 포집할 수 있다.Such fine dust blocking facilities include a filter method, a scrubber method, and an electrostatic precipitator method. Among them, the fine dust blocking filter network using the filter physically collects the fine dust by the effects of inertia, blocking, diffusion, and gravity, or static electricity. It can collect electrically by.
상기 관성, 차단, 확산, 중력 효과에 의해 미세먼지를 물리적으로 포집하는 원리는 미세먼지가 공기의 흐름을 타고 필터에 접근하다가 자신의 관성에 의해 기류로부터 벗어나 필터의 섬유에 포집되거나, 미세먼지의 크기에 의해 필터의 섬유의 기공에 포집되거나, 공기의 흐름과 관계없이 브라운 운동을 하고 있는 미세먼지들의 확산 때문에 섬유에 포집되거나 중력 때문에 흐름을 벗어나 섬유에 포집되는 효과이다.The principle of physically collecting fine dust by the inertia, blocking, diffusion, and gravity effects is that fine dust approaches the filter through the flow of air and is trapped on the fiber of the filter by the inertia to escape from the airflow, It is the effect of being trapped in the pores of the fiber of the filter by the size, or is trapped in the fiber due to the diffusion of fine dust in Brown movement irrespective of the flow of air or out of the flow due to gravity.
상기 정전기에 의한 전기적 효과는 공기 중에 부유하고 있는 미세먼지가 전기분극을 가지고 주위에 전계 즉, 자기장을 형성하고 있는 필터의 섬유에 정전기력으로 포집되거나, 유도 전하가 발생되어 섬유 표면에 포집되는 효과이다.The electrical effect by the static electricity is the effect that the fine dust suspended in the air has an electric polarization and is collected by the electrostatic force on the fibers of the filter forming an electric field, that is, a magnetic field around, or induced charge is generated on the fiber surface .
이러한 나노섬유를 포함하는 필터를 사용하는 경우 기존의 필터에 비하여 비표면적이 매우 높고, 나노 급의 기공 사이즈를 가지게 되므로, 10㎛ 이하의 크기를 가지는 미세먼지를 보다 효율적으로 포집할 수 있다.In the case of using a filter including such nanofibers, the specific surface area is very high and the pore size of the nanoscale is higher than that of the conventional filter, and thus, fine dust having a size of 10 μm or less can be collected more efficiently.
또한, 필터를 구성하는 성분의 일부 혹은 전체에 정전기 대전이 쉬운 물질을 사용할 경우, 미세먼지가 부유하고 있는 공기가 흐르면서 마찰에 의한 자연스러운 정전기가 형성되어 정전기 효과에 의한 미세먼지 포집을 효율적으로 할 수 있게 된다.In addition, when a substance which is easy to electrostatically charge is used on part or all of the components constituting the filter, air in which fine dust is suspended flows to form natural static electricity due to friction, so that fine dust collection by the electrostatic effect can be efficiently performed. Will be.
다만, 나노섬유를 단독으로 이용한 필터의 경우, 나노섬유만을 이용하여 망상 구조를 형성하므로 외부 자극에 대한 내구성이 떨어져, 필터가 손상되고, 손상된 나노섬유가 또 다른 오염을 일으킨다는 단점을 가지고 있다. However, in the case of the filter using nanofibers alone, since the network structure is formed using only the nanofibers, durability against external stimuli is reduced, the filter is damaged, and the damaged nanofibers cause another pollution.
대한민국 공개특허 제10-2017-0120372호에서는 미세먼지 차단용 윈도우 필터 및 이의 제조방법에 관하여 개시하고 있다. 이 발명에서는 폴리에스터 메쉬 등의 기재 위에 나노섬유를 고온 방사한 후, 폴리에스터 메쉬 등의 여재로 나노섬유 층을 보호하는 방법에 관하여 개시하고 있다. 하지만 이 발명의 필터는, 단순 물리적인 효과로만 미세먼지를 포집하는 방식으로 충분한 미세먼지 포집 성능을 확보하기 위해 나노섬유 웹층을 많이 필요로 한다. 그 결과, 공기투과도가 저하되어 통풍성이 급격히 떨어지게 되고 빛을 포함한 가시광선 투과율이 나빠져 외부 전망을 해치게 되는 단점을 가진다.Korean Patent Publication No. 10-2017-0120372 discloses a window filter for blocking fine dust and a method of manufacturing the same. The present invention discloses a method of protecting a nanofiber layer with a medium such as a polyester mesh after high temperature spinning of a nanofiber on a substrate such as a polyester mesh. However, the filter of the present invention requires a large number of nanofiber web layers to secure sufficient dust collecting performance by collecting fine dust only with a simple physical effect. As a result, the air permeability is lowered, the air permeability is sharply lowered, and the visible light transmittance including light is deteriorated to impair the external view.
대한민국 등록특허 제10-1668395호에서는 나노섬유를 구비한 필터 및 이의 제조방법에 관하여 개시하고 있다. 이 발명에서는 바인더로 기재의 표면에 나노섬유를 고정하는 필터를 개시하고 있다. 하지만, 이 발명의 필터는 나노섬유가 직접적으로 외부에 노출되어 있어, 마찰에 의한 나노섬유 손상을 막을 수 없다는 단점을 가진다. Korean Patent No. 10-1668395 discloses a filter having nanofibers and a method of manufacturing the same. In this invention, the filter which fixes a nanofiber to the surface of a base material with a binder is disclosed. However, the filter of the present invention has the disadvantage that the nanofibers are directly exposed to the outside, so that the nanofibers cannot be damaged by friction.
대한민국 등록특허 제10-1144448호에서는 정전필터제조방법 및 이를 적용한 정전필터에 관하여 개시하고 있다. 이 발명에서는 정전필터재인 부직포 원단을 제조할 때, 바인더와 함께 정전물질을 내부 섬유 조직에 침투시켜, 직조된 섬유에 정전기력을 반영구적으로 띄게 함으로써, 정전필터를 제조하는 방법에 관하여 개시하고 있다. 하지만 이 발명의 필터는 자동차의 에어필터와 같은 기계장치 내부에 적용되는 필터로, 가시광선을 포함한 빛 투과율이 확보되지 않아 창문이나 출입문 같은 곳에 사용하게 되면 외부 전망을 볼 수 없게 된다.Korean Patent No. 10-1144448 discloses an electrostatic filter manufacturing method and an electrostatic filter using the same. The present invention discloses a method for producing an electrostatic filter by manufacturing a nonwoven fabric as an electrostatic filter material by penetrating an electrostatic material together with a binder to make the woven fiber semi-permanently exhibit an electrostatic force. However, the filter of the present invention is a filter that is applied inside a mechanical device such as an air filter of an automobile. When the light transmittance including visible light is not secured, when used in a window or a door, the outside view cannot be seen.
상기 문제점을 해결하기 위해 본 발명의 일 양태에서는 물리적 포집 및 정전기적 포집이 동시에 이루어지는 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터를 제공한다. 특히, 가시광선 투과율이 높아 창문이나 출입문에 설치하여도 외부 전망을 볼 수 있고 외부 자격에 의한 마모강도가 우수하며 내구성이 우수한, 정전기적 포집과 물리적 포집이 동시에 이루어지도록 한 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터를 제공한다.In order to solve the above problems, an aspect of the present invention provides a visible light transmissive multilayer structure planar filter for fine dust blocking which simultaneously performs physical collection and electrostatic collection. Particularly, visible light for blocking fine dust, which has high visible light transmittance, can be seen on the outside even when installed in windows or doors, and has excellent wear strength due to external qualification and excellent durability. Provided is a transparent multilayer planar filter.
본 발명의 다른 양태에서는 상기 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터의 제조방법을 제공한다.In another aspect of the present invention, there is provided a method for manufacturing the fine dust blocking visible light transmissive multilayer structure planar filter.
본 발명의 제1 양태에 따르면, 섬유에 대전성 고분자 수지가 피복되어 형성된 필라멘트사로 편직 또는 제직된 대전성 메쉬 기재; 상기 기재의 일면에 방사되어 적층된 나노섬유 웹층; 및 모노 필라멘트사로 편직 또는 제직된 메쉬 구조를 가지며, 상기 메쉬 구조를 구성하는 단위 메쉬가 육각 이상의 다각형 구조를 갖는 보호 메쉬;가 순차로 적층되어 있으며, 상기 보호 메쉬가 나노섬유 웹층에 부착되어 있는 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터가 제공된다.According to a first aspect of the present invention, there is provided a fiber comprising: a chargeable mesh substrate knitted or woven with filament yarn formed by coating a chargeable polymer resin on a fiber; A nanofiber web layer laminated on one surface of the substrate by spinning; And a mesh structure knitted or woven with monofilament yarns, wherein the unit mesh constituting the mesh structure has a polygonal structure of hexagonal shape or more; stacked in sequence, and the protective mesh is attached to the nanofiber web layer. A visible light-transmitting multilayered planar filter for dust blocking is provided.
본 발명의 제2 양태에 따르면, 상기 제1 양태에서 상기 섬유는 유리 섬유, 알루미늄 섬유, 스틸 섬유, 고강력 폴리에틸렌 섬유, 메타아라미드 섬유 및 파라아라미드 섬유로 이루어진 군으로부터 선택된 어느 하나 이상의 섬유일 수 있다.According to a second aspect of the present invention, in the first aspect, the fibers may be any one or more fibers selected from the group consisting of glass fibers, aluminum fibers, steel fibers, high strength polyethylene fibers, metaaramid fibers, and paraaramid fibers. .
본 발명의 제3 양태에 따르면, 상기 제1 또는 제2 양태에서 상기 대전성 고분자 수지는 +30nC/J 이상의 양전하 친화도 값(positive charge affinity value) 혹은 -30 nC/J 이하의 음전하 친화도 값(negative charge affinity value) 범위의 마찰전기(triboelectric) 계수를 가질 수 있다.According to a third aspect of the present invention, in the first or second aspect, the chargeable polymer resin may have a positive charge affinity value of +30 nC / J or more or a negative charge affinity value of −30 nC / J or less It may have a triboelectric coefficient in the range (negative charge affinity value).
본 발명의 제4 양태에 따르면, 상기 제1 양태 내지 제3 양태중 어느 하나의 양태에서 상기 대전성 고분자 수지는 폴리염화비닐, 폴리프로필렌, 폴리아마이드 및 폴리에틸렌 테레프탈레이트로 이루어진 군으로부터 선택된 1종 또는 2종 이상일 수 있다.According to a fourth aspect of the present invention, the chargeable polymer resin in any one of the first aspect to the third aspect is one or two selected from the group consisting of polyvinyl chloride, polypropylene, polyamide and polyethylene terephthalate. It may be more than one species.
본 발명의 제5 양태에 따르면, 상기 제1 양태 내지 제4 양태중 어느 하나의 양태에서 상기 나노섬유 웹층이 500㎚ 내지 1.5㎛ 직경을 갖는 나노섬유로 이루어져 있고 0.1 내지 2g/㎡ 범위의 평량을 가질 수 있다.According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the nanofiber web layer is composed of nanofibers having a diameter of 500 nm to 1.5 μm and has a basis weight in the range of 0.1 to 2 g / m 2. Can be.
본 발명의 제6 양태에 따르면, 상기 제1 양태 내지 제5 양태중 어느 하나의 양태에서 상기 보호 메쉬가 대전성을 구비할 수 있다.According to the sixth aspect of the present invention, in any one of the first to fifth aspects, the protective mesh may be provided with chargeability.
본 발명의 제7 양태에 따르면, (S1) 고강도 섬유에 대전성 고분자 수지가 피복되어 형성된 필라멘트사로 편직 또는 제직된 대전성 메쉬 기재를 수득하는 단계;(S2) 대전성 메쉬 기재의 표면에 나노섬유를 방사하여 나노섬유 웹층을 형성하는 단계; 및 (S3) 모노 필라멘트사로 편직 또는 제직된 메쉬 구조를 가지며 상기 메쉬 구조를 구성하는 단위 메쉬가 육각 이상의 다각형 구조를 갖는 것인 보호 메쉬를 나노섬유 웹층 위에 부착하는 단계;를 포함하는 상기 제1양태에 기재된 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터의 제조방법이 제공된다.According to a seventh aspect of the present invention, there is provided a method of fabricating a nonwoven fabric, comprising: (S1) obtaining a chargeable mesh substrate knitted or woven from a filament yarn formed by coating a high-strength fibrous polymer resin; (S2) nanofibers on the surface of the chargeable mesh substrate Spinning to form a nanofiber web layer; And (S3) attaching a protective mesh on the nanofiber web layer having a mesh structure knitted or woven with monofilament yarn, wherein the unit mesh constituting the mesh structure has a polygonal structure of hexagonal shape or more. Provided is a method for producing a fine dust-blocking visible light-transmissive multilayer structure planar filter as described in.
상기 제8 양태에 있어서, (S2) 단계와 (S3) 단계 사이에, 나노섬유 웹층에 바인더를 도포하는 단계를 더 포함할 수 있다.In the eighth aspect, the method may further include applying a binder to the nanofiber web layer between steps (S2) and (S3).
본 발명의 일 양태에 따른 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터는, 고강도 섬유에 대전성 고분자 수지가 피복되어 형성된 필라멘트사로 편직 또는 제직된 대전성 메쉬 기재를 사용하여, 미세먼지를 정전기적으로 포집할 수 있다.Visible light-transmitting multilayer structure plane filter for fine dust blocking according to an aspect of the present invention, by using a chargeable mesh substrate knitted or woven with filament yarn formed by coating a high-strength fibrous polymer resin on the high-strength fibers, the fine dust electrostatic Can be captured.
본 발명의 일 양태에 따른 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터는 대전성 메쉬 기재에 의한 정전기적 포집과 나노섬유 웹층에 의한 물리적 포집이 둘 다 이루어지므로, 미세먼지 및/또는 황사에 대하여 극대화된 여과 능력을 갖게 되므로 나노섬유 웹층이 보다 적은 평량으로 사용되더라도 우수한 미세먼지 차단성을 갖게 되고, 적절한 수준의 기공률을 가지며, 빛 투과율이 높아 충분한 가시광선 투과가 확보되므로 외부 시야를 가리지 않는다. Visible light-transmitting multilayer filter plane filter for blocking fine dust according to an aspect of the present invention is because both the electrostatic collection by the electrostatic mesh substrate and the physical collection by the nanofiber web layer, so that fine dust and / or yellow dust Since the filtration capacity is maximized, even when the nanofiber web layer is used in a lower basis weight, it has excellent fine dust barrier properties, has an appropriate level of porosity, and has a high light transmittance to ensure sufficient visible light transmission so that the external view is not obstructed.
또한, 나노섬유 웹층의 일 면에 일정한 강도를 갖는 대전성 메쉬 기재가 구비되어 있고 나노섬유 웹층의 다른 면에 보호 메쉬가 구비되어 있어, 공기 투과도, 가시광선 투과율 및 분진포집효율이 우수하면서도, 외부 환경에 의한 나노섬유 웹층의 탈락이 방지되고 다층구조 평면 필터를 솔 세척 등으로 세척하여 사용할 수 있는 내구성을 가질 수 있다. In addition, one side of the nanofiber web layer is provided with a chargeable mesh base material having a certain strength, and the other side of the nanofiber web layer is provided with a protective mesh, excellent in air permeability, visible light transmittance and dust collection efficiency, Falling of the nanofiber web layer due to the environment can be prevented, and the multi-layered planar filter can be used to wash the brush, for example, to have durability.
특히, 보호 메쉬를 구성하는 각각의 단위 메쉬가 육각 이상의 다각형 형상을 갖도록 형성됨에 따라, 나노섬유 웹층 및 대전성 메쉬 기재에 대한 보호 메쉬의 접착력이 크게 향상되고, 그 결과, 다층구조 평면 필터의 수명이 길어지는 효과를 갖게 된다. In particular, as each unit mesh constituting the protective mesh is formed to have a polygonal shape of hexagon or more, the adhesion of the protective mesh to the nanofiber web layer and the chargeable mesh substrate is greatly improved, and as a result, the life of the multi-layered planar filter This will have a longer effect.
또한, 본 발명에 따른 다층구조 평면 필터가, 대전성 메쉬 구조 상에 나노섬유 웹층이 방사되고, 그 위에 보호 메쉬가 적층되는 단순한 공정에 의해 제작될 수 있으므로, 기존의 격자형 필터에 비해 공정 효율성이 우수한 장점을 갖게 된다. In addition, the multi-layered planar filter according to the present invention can be produced by a simple process in which a nanofiber web layer is radiated on a chargeable mesh structure and a protective mesh is laminated thereon, so that the process efficiency is higher than that of a conventional lattice filter. This has an excellent advantage.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것으로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings attached to this specification are illustrative of the preferred embodiments of the present invention, together with the detailed description of the invention to serve to further understand the spirit of the present invention, the present invention described in those drawings It should not be construed as limited to.
도 1은 본 발명의 일 실시양태에 따른 미세먼지 차단용 다층구조 평면 필터를 개략적으로 나타낸 측면도이다.1 is a side view schematically showing a multi-layered planar filter for blocking fine dust according to an embodiment of the present invention.
도 2는 본 발명의 일 실시양태에 따른 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터를 개략적으로 나타낸 평면도이다.2 is a plan view schematically showing a planar filter for visible light transmissive multilayer structure for preventing fine dust according to an embodiment of the present invention.
도 3은 본 발명의 일 실시양태에 따른 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터의 SEM 이미지이다.FIG. 3 is an SEM image of a visible light transmissive multilayer structure planar filter for blocking fine dust according to an embodiment of the present invention.
도 4는 본 발명의 일 실시양태에 따른 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터에 미세먼지가 물리적 포집('1'로 표시된 원내)되거나 또는 정전기적 포집('2'로 표시된 원내)된 SEM 이미지이다.4 is a view showing fine dust is physically collected (in a circle denoted by '1') or electrostatically collected (in a circle denoted by '2') in a visible light-transmitting multilayer structure planar filter for blocking fine dust according to an embodiment of the present invention. SEM image.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiments of the present invention and do not represent all of the technical spirit of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
본 발명의 바람직한 실시 형태에 따르면, 섬유에 대전성 고분자 수지가 피복되어 형성된 필라멘트사로 편직 또는 제직된 대전성 메쉬 기재; 상기 기재의 일면에 방사되어 적층된 나노섬유 웹층; 및 모노 필라멘트사로 편직 또는 제직된 메쉬 구조를 가지며, 상기 메쉬 구조를 구성하는 단위 메쉬가 육각 이상의 다각형 구조를 갖는 보호 메쉬;가 순차로 적층되어 있으며, 상기 보호 메쉬가 나노섬유 웹층에 부착되어 있는 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터가 제공된다. According to a preferred embodiment of the present invention, a chargeable mesh substrate knitted or woven with filament yarn formed by coating a chargeable polymer resin on a fiber; A nanofiber web layer laminated on one surface of the substrate by spinning; And a mesh structure knitted or woven with monofilament yarns, wherein the unit mesh constituting the mesh structure has a polygonal structure of hexagonal shape or more; stacked in sequence, and the protective mesh is attached to the nanofiber web layer. A visible light-transmitting multilayered planar filter for dust blocking is provided.
본 발명의 일 실시양태에 따른 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터의 측면도가 도 1에 도시되어 있다. 도 1에 따르면, 대전성 메쉬 기재(50)가 최하층에 위치하고, 나노섬유 웹층(51)이 대전성 메쉬 기재(50) 위에 위치하며, 나노섬유 웹층(51) 위에 보호 메쉬(53)가 위치한다.A side view of a visible light transmitting multilayer structure planar filter for fine dust blocking according to an embodiment of the present invention is shown in FIG. 1. According to FIG. 1, the chargeable mesh substrate 50 is located at the lowest layer, the nanofiber web layer 51 is positioned on the chargeable mesh substrate 50, and the protective mesh 53 is positioned on the nanofiber web layer 51. .
대전성 메쉬 기재(50)는 섬유에 대전성 고분자 수지가 피복되어 형성된 필라멘트사로 편직 또는 제직될 수 있다. 예컨대, 본 발명의 일 양태에 따른 필라멘트사는 섬유가 내부 코어(core)를 구성하고, 대전성 고분자 수지가 시쓰(sheath)를 구성하는 형태일 수 있다. 상기 필라멘트사의 단면은 원형, 타원형, 정사각형, 직사각형과 같은 형상일 수 있으나, 이에 한정되는 것은 아니다. The chargeable mesh base 50 may be knitted or woven into a filament yarn formed by coating a chargeable polymer resin on a fiber. For example, the filament yarn according to an aspect of the present invention may be in a form in which fibers constitute an inner core and a chargeable polymer resin constitutes a sheath. The cross section of the filament yarn may be a shape such as a circle, an ellipse, a square, a rectangle, but is not limited thereto.
대전성 메쉬 기재(50)는 다층구조 평면 필터에 일정 수준 이상의 기계적 강도를 부여하기 위해 0.1 내지 0.5㎜ 두께를 가지며, 공기가 잘 투과되어 환기성을 확보함과 동시에 빛이 잘 투과되어 우수한 가시광선 투과가 확보되도록 10 내지 30 메쉬(mesh) 눈 크기를 가질 수 있다. 상기 눈은 정사각형, 직사각형, 마름모, 타원형, 육각형과 같은 형태를 가질 수 있으나, 이에 제한되는 것은 아니다. 또한, 대전성 메쉬 기재(50)는 다층구조 평면 필터가 이상 수준 이상의 기계적 강도를 갖고 우수한 가시광선 투과를 확보하도록 100 내지 150 g/㎡의 평량을 가질 수 있다. The chargeable mesh substrate 50 has a thickness of 0.1 to 0.5 mm to impart a certain level or more of mechanical strength to the multilayered flat filter, and is well permeable to ensure air permeability while simultaneously transmitting light to provide excellent visible light. It may have a 10 to 30 mesh eye size to ensure transmission. The eye may have a shape such as square, rectangle, rhombus, oval, hexagon, but is not limited thereto. In addition, the chargeable mesh substrate 50 may have a basis weight of 100 to 150 g / m 2 so that the multi-layered planar filter has an ideal level of mechanical strength and ensures excellent visible light transmission.
상기 섬유로는, 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터가 우수한 마모강도를 갖고 메쉬 구조가 일정한 형태로 유지되도록 하기 위해 고강도 섬유가 사용될 수 있다. 상기 고강도 섬유의 비제한적인 예로 유리섬유, 스틸섬유, 알루미늄섬유, 고강력폴리에틸렌섬유(Ultra high molecular weight Polyethylene, UHMWPE), 메타아라미드섬유(m-Aramid), 파라아라미드섬유(p-Aramid)를 들 수 있으나, 이에 제한되는 것은 아니다. As the fiber, a high-strength fiber may be used so that the fine dust-blocking visible light-transmissive multilayered flat filter has excellent wear strength and the mesh structure is maintained in a constant shape. Non-limiting examples of the high strength fibers include glass fiber, steel fiber, aluminum fiber, ultra high molecular weight polyethylene (UHMWPE), meta-aramid fiber (m-Aramid), para-aramid fiber (p-Aramid) May be, but is not limited thereto.
상기 대전성 고분자 수지는 필라멘트사가 대전성을 구비하여 미세먼지 및/또는 황사를 정전기적으로 포집하도록 적용된다. 다만, 섬유 자체가 대전성을 구비하면서 일정 강도를 갖는 경우에는 대전성 고분자 수지가 피복되지 않은 양태도 본 발명에 해당하는 것으로 이해한다. The chargeable polymer resin is applied so that the filament yarn has a chargeability to electrostatically collect fine dust and / or yellow sand. However, when the fiber itself has chargeability and has a certain strength, it is understood that the aspect in which the chargeable polymer resin is not coated also corresponds to the present invention.
대전성 고분자 수지는 수지 자체가 대전성을 구비한 것이거나, 또는, 수지에 첨가제를 투입하여 대전성이 부여된 것이거나, 또는, 수지를 수처리에 의해 전하 부여된 것일 수 있다. 이러한 대전성 고분자 수지는 + 30nC/J 이상의 양전하 친화도 값(positive charge affinity value) 혹은 -30 nC/J 이하의 음전하 친화도 값(negative charge affinity value) 범위의 마찰전기(triboelectric) 계수를 갖는 것일 수 있다. 본 발명에서 사용가능한 대전성 고분자 수지의 비제한적인 예로는 폴리염화비닐(PVC, 마찰전기 계수 -100nC/J), 폴리프로필렌(Polypropylene, 마찰전기 계수 -90nC/J), 폴리아마이드(Polyamide, 마찰전기 계수 +30nC/J), 폴리 에틸렌 테레프탈레이트(Polyethylene terephtalate, 마찰전기 계수 -40nC/J)를 들 수 있으나, 이에 제한되는 것은 아니다. 폴리염화비닐이 별도 첨가제없이 공기와의 마찰만으로 대전되기 때문에 미세먼지 또는 황사 등을 차단하기 위한 본 발명의 목적상 바람직하다. The chargeable polymer resin may be one in which the resin itself has chargeability, charged with charge by adding an additive to the resin, or charged with resin by water treatment. Such a chargeable polymer resin has a triboelectric coefficient in the range of positive charge affinity value of +30 nC / J or higher or negative charge affinity value of -30 nC / J or lower. Can be. Non-limiting examples of the chargeable polymer resin usable in the present invention include polyvinyl chloride (PVC, triboelectric coefficient -100nC / J), polypropylene (Polypropylene, triboelectric coefficient -90nC / J), polyamide (Polyamide, friction) Electrical coefficient + 30nC / J), polyethylene terephtalate (polyethylene terephtalate, triboelectric coefficient -40nC / J), but are not limited thereto. Since polyvinyl chloride is charged only by friction with air without an additive, it is preferable for the purpose of the present invention to block fine dust or yellow sand.
필라멘트사를 구성하는 섬유 및 대전성 고분자 수지는 적절한 기계적 강도 및 정전기적 포집을 만족시키기 위해 필라멘트사 두께 중 섬유가 40% ~ 60%를 차지하도록 제조될 수 있다. 즉, 두께에서 차지하는 섬유:대전성 고분자 수지의 비율은 4:6 내지 6:4 이다. 예컨대, 내부 코어로 유리섬유가 사용되고, 대전성 고분자 수지로 폴리염화비닐이 사용되어 필라멘트사를 구성할 때, 유리섬유 두께가 0.24 mm 이고 폴리염화비닐 두께가 0.16 mm이 되어 총 두께 0.40 mm의 필라멘트사로 제조되거나 혹은 유리섬유 두께가 0.2 mm 이고 폴리염화비닐이 0.3 mm이 되어 총 두께 0.5 mm의 필라멘트사로 제조될 수 있다. The fibers constituting the filament yarn and the chargeable polymer resin may be manufactured so that the fibers occupy 40% to 60% of the filament yarn thickness to satisfy appropriate mechanical strength and electrostatic collection. That is, the ratio of the fiber: chargeable polymer resin in the thickness is 4: 6 to 6: 4. For example, when a fiberglass is used as the inner core and polyvinyl chloride is used as the chargeable polymer resin to form a filament yarn, the filament has a total glass thickness of 0.24 mm and a polyvinyl chloride thickness of 0.16 mm. It may be made of yarn or glass fiber thickness of 0.2 mm and polyvinyl chloride of 0.3 mm can be made of filament yarn of a total thickness of 0.5 mm.
상기 대전성 메쉬 기재의 일면에는 나노섬유가 방사되어 웹 형태를 갖는 나노섬유 웹층(51)로 적층되어 있다.One surface of the chargeable mesh substrate is laminated with a nanofiber web layer 51 having nanofibers spinning and having a web shape.
나노섬유는 미세먼지 및/또는 황사의 물리적 포집을 위해 500 ㎚ 내지 1.5 ㎛ 직경, 바람직하게는 0.7 ㎛ 내지 1.0 ㎛ 직경을 갖도록 형성될 수 있다. 나노섬유 직경이 500 nm 미만인 경우에는 외부 자극에 대한 내구성이 부족하게 되고, 1.5 ㎛을 초과하는 경우에는 나노섬유 웹층(51)에 형성되는 구멍의 크기가 지나치게 커져서 미세먼지 포집능이 현저히 저하된다.The nanofibers may be formed to have a diameter of 500 nm to 1.5 μm, preferably 0.7 μm to 1.0 μm, for physical collection of fine dust and / or yellow sand. If the diameter of the nanofibers is less than 500 nm, the durability against external magnetic poles is insufficient, and if the diameter of the nanofibers is larger than 1.5 µm, the size of the pores formed in the nanofiber web layer 51 becomes too large, and the fine dust trapping ability is significantly reduced.
나노섬유로부터 형성된 나노섬유 웹층(51)은 0.1 내지 2g/㎡, 바람직하게는 0.5 내지 1g/㎡ 평량으로 방사될 수 있다. 나노섬유 웹층(51)이 0.1g/㎡ 미만의 평량을 갖는 경우에는 나노섬유 웹층(51)의 양이 적어 필터 구멍의 크기가 커져서, 미세먼지를 효과적으로 포집할 수 없게 된다. 즉, 도 4에 도시된 '1'과 같은 미세먼지 포집이 곤란하게 된다. 또한, 나노섬유 웹층(51)이 2g/㎡ 초과의 평량을 갖는 경우에는 빛 투과율이 낮아져 적절한 가시광선 투과율이 확보되지 못하므로, 이러한 나노섬유 웹층(51)을 채용한 다층구조 평면 필터 사용시 외부 전망을 해치게 되고, 또한 공기투과도가 낮아져 환기성이 떨어지게 된다.The nanofiber web layer 51 formed from the nanofibers may be spun at 0.1 to 2 g / m 2, preferably 0.5 to 1 g / m 2 basis weight. When the nanofiber web layer 51 has a basis weight of less than 0.1 g / m 2, the amount of the nanofiber web layer 51 is small so that the size of the filter hole becomes large, so that fine dust cannot be effectively collected. That is, it becomes difficult to collect fine dust, such as '1' shown in FIG. In addition, when the nanofiber web layer 51 has a basis weight of more than 2 g / ㎡, the light transmittance is lowered, so that the proper visible light transmittance is not secured, so when using a multi-layered planar filter employing such a nanofiber web layer 51, the external perspective It also hurts the air permeability and lowers the air permeability.
본원 명세서에서 “가시광선 투과율” 이라 함은 다층구조 평면 필터를 통과하여 전달되는 가시광선 스펙트럼 (380 내지 780 나노미터 파장 범위)의 백분율을 의미하는 것으로, 모의 광 타입 D65를 이용한 표준 ISO 9050를 차용하여 측정된다. ISO 9050는 유리창에 대한 것이지만, 동일한 절차가 유리 창문에 테이핑되거나 달리 부착되는 다층구조 평면 필터에 적용될 수 있다.As used herein, the term "visible light transmittance" refers to the percentage of the visible light spectrum (380 to 780 nanometer wavelength range) transmitted through a multilayer planar filter, borrowing from standard ISO 9050 using simulated light type D65. Is measured. ISO 9050 is for glass windows, but the same procedure can be applied to multilayer planar filters that are taped or otherwise attached to glass windows.
또한, 본원 명세서에서 "가시광선 투과성"이라 함은 전술한 바와 같이 측정된 가시광선 투과율이 40% 이상인 경우에 '가시광선 투과성'인 것으로 지칭한다.In addition, the term "visible light transmittance" as used herein refers to "visible light transmittance" when the visible light transmittance measured as described above is 40% or more.
상기 나노섬유 웹층(51)은 쌍극자 모멘트가 2.0 D 이상인 고분자 수지가 용융 방사되거나 혹은 상기 고분자 수지가 소정의 유기 용매에 용해되어 방사된 형태일 수 있다. The nanofiber web layer 51 may have a form in which a polymer resin having a dipole moment of 2.0 D or more is melt spun or the polymer resin is dissolved in a predetermined organic solvent and spun.
쌍극자 모멘트가 2.0 D 이상인 고분자 수지의 비제한적인 예로는 폴리아크릴로니트릴(Polyacrylonitrile, 3.6D), 폴리비닐피롤리돈(Polyvinylpyrrolidone, 2.3D), 폴리비닐리덴플루오라이드(Polyvinylidene fluoride, PVDF, 2.1D)와 같은 화합물을 들 수 있으나, 이에 제한되는 것은 아니다. 그 밖에, 폴리테트라플루오로에틸렌(1.6D), 폴리비닐알코올(1.2D), 폴리프로필렌(0.7D)과 같은 고분자 수지는 2.0 D 미만의 쌍극자 모멘트를 가지므로, 본 발명에서 나노섬유 웹층으로 사용하기 위해서는 별도 처리가 필요할 수 있다. Non-limiting examples of polymer resins having a dipole moment of 2.0 D or more include polyacrylonitrile (3.6D), polyvinylpyrrolidone (2.3D), and polyvinylidene fluoride (PVDF, 2.1D). Compounds such as, but are not limited thereto. In addition, polymer resins such as polytetrafluoroethylene (1.6D), polyvinyl alcohol (1.2D), and polypropylene (0.7D) have a dipole moment of less than 2.0 D, and thus are used as nanofiber web layers in the present invention. This may require a separate treatment.
상기 고분자 수지가 유기 용매에 용해되어 방사되는 경우, 고분자 수지를 용해시키는 유기 용매로 디메틸아세트아마이드(Dimethylacetamide, DMAC), 디메틸설폭사이드(Dimethyl sulfoxide, DMSO) 및 아세톤(Acetone)으로 이루어지는 군에서 선택되는 1종 이상의 용매를 들 수 있으나, 이에 제한되는 것은 아니다.When the polymer resin is dissolved and spun in an organic solvent, the organic solvent dissolving the polymer resin is selected from the group consisting of dimethylacetamide (DMAC), dimethyl sulfoxide (DMSO) and acetone. One or more solvents may be mentioned, but are not limited thereto.
상기 나노섬유는 필라멘트사로 제조한 대전성 메쉬 기재(50) 상에 웹 형태로 존재할 수 있으며, 필라멘트사에 의해 형성된 메쉬 눈에도 존재하여, 미세먼지 및/또는 황사를 물리적으로 포집한다.The nanofibers may be present in the form of a web on the chargeable mesh substrate 50 made of filament yarn, and may also exist in the mesh eye formed by the filament yarn to physically collect fine dust and / or yellow sand.
보호 메쉬(53)는 모노 필라멘트사로 편직 또는 제직된 메쉬 구조를 가지며, 상기 메쉬 구조를 구성하는 단위 메쉬가 육각 이상의 다각형 구조를 갖는 것이다. 상기 보호 메쉬(53)는 나노섬유 웹층(51) 상에 적층되어 나노섬유 웹층(51)이 탈리되는 것을 방지하고 다층구조 평면 필터의 마모강도를 향상시킨다. 또한, 보호 메쉬(53)는 대전성을 구비하도록 처리되어 미세먼지 및/또는 황사의 포집에 일조할 수 있다. The protective mesh 53 has a mesh structure knitted or woven by monofilament yarn, and the unit mesh constituting the mesh structure has a polygonal structure of hexagonal shape or more. The protective mesh 53 is laminated on the nanofiber web layer 51 to prevent the nanofiber web layer 51 from being detached and to improve the wear strength of the multilayer flat filter. In addition, the protective mesh 53 may be treated to have chargeability to assist in collecting fine dust and / or yellow sand.
보호 메쉬(53)는 모노 필라멘트사로 편직 또는 제직된다. 보호 메쉬(53)가 합사(braid)를 사용하여 편직 또는 제직되는 경우, 다층구조 평면 필터가 사용되는 동안에 합사가 풀리면서 필링(peeling)되는 문제가 발생할 수 있다. 다만, 모노 필라멘트사는 합사에 비해 표면적이 적어서 대전성 메쉬 기재(50)과 나노섬유 웹층(51)과의 접착성이 합사에 비해 약하기 때문에, 모노 필라멘트사의 단면을 삼각형 단면, C형 단면, Y형 단면과 같은 이형 단면 형태로 제작하여 모노 필라멘트사의 접착성을 보완할 수 있다.The protective mesh 53 is knitted or woven into monofilament yarns. When the protective mesh 53 is knitted or woven using braid, a problem may arise in that the braided yarn is peeled off while the multilayered planar filter is in use. However, since the monofilament yarn has a smaller surface area than that of the coarse yarn, the adhesion between the electrostatic mesh substrate 50 and the nanofiber web layer 51 is weaker than that of the coarse yarn. It can be made in the shape of a cross-sectional shape such as the cross section to complement the adhesion of the monofilament yarn.
보호 메쉬(53)를 구성하는 모노 필라멘트사는 정전기가 대전되기 쉬운 합성섬유, 예컨대, 폴리올레핀(Polyolefin), 폴리에스테르 및 폴리아마이드로 이루어진 군으로부터 선택된 1종 이상으로부터 제조될 수 있다. 또한, 모노 필라멘트사는 1 내지 100㎛ 두께를 갖는 것일 수 있으며 10 내지 30메쉬의 눈 크기를 가지도록 직조 혹은 편직될 수 있으나, 두께 및 눈 크기가 상기에 한정되는 것은 아니다.The monofilament yarns constituting the protective mesh 53 may be made from at least one selected from the group consisting of synthetic fibers, for example, polyolefins, polyesters and polyamides, which are easily charged with static electricity. In addition, the monofilament yarn may have a thickness of 1 to 100㎛ and may be woven or knitted to have an eye size of 10 to 30 mesh, but the thickness and eye size are not limited thereto.
보호 메쉬(53)를 구성하는 단위 메쉬는 육각 이상의 다각형 형태를 가질 수 있다. 본 발명에 따른 다층구조 평면 필터에서 나노섬유 웹층(51)은 대전성 메쉬 기재(50)와 보호 메쉬(53) 사이에 위치하지만, 나노섬유 웹층(51)이 매우 얇은 나노섬유로 형성되어 있고 그 평량 또한 비교적 적기 때문에 보호 메쉬(53)는 나노섬유 웹층(51)뿐만 아니라 대전성 메쉬 기재(50)와 직접 접촉되는 부분이 있으며, 다층구조 평면 필터의 내구성을 높이기 위해서는 보호 메쉬(53)가 대전성 메쉬 기재(50) 및 나노섬유 웹층(51)에 견고하게 부착되는 것이 바람직하다. 따라서, 보호 메쉬(53)가 나노섬유 웹층(51) 및 대전성 메쉬 기재(50)와 접촉되는 면적을 증가시킬 필요가 있다. 이를 위해 보호 메쉬(53)를 구성하는 단위 메쉬 형태를 육각 이상의 다각형이 되도록 모노 필라멘트사를 편직 또는 제직할 경우, 대전성 메쉬 기재(50)의 메쉬 1칸 당 보호 메쉬(53)와의 접점이 6개 이상인 구조를 얻을 수 있게 되어 접착 강도가 높아진다. 그 결과, 다층구조 평면 필터의 효율적 관리가 가능해진다.The unit mesh constituting the protective mesh 53 may have a polygonal shape of hexagon or more. In the multilayered planar filter according to the present invention, the nanofiber web layer 51 is located between the chargeable mesh substrate 50 and the protective mesh 53, but the nanofiber web layer 51 is formed of very thin nanofibers and Since the basis weight is also relatively small, the protective mesh 53 has a portion in direct contact with not only the nanofiber web layer 51 but also the chargeable mesh substrate 50. To increase the durability of the multilayer flat filter, the protective mesh 53 is charged. It is preferable to adhere firmly to the mesh mesh substrate 50 and the nanofiber web layer 51. Therefore, it is necessary to increase the area where the protective mesh 53 is in contact with the nanofiber web layer 51 and the chargeable mesh substrate 50. To this end, when the monofilament yarn is knitted or woven such that the unit mesh form constituting the protective mesh 53 is a hexagon or more polygon, the contact with the protective mesh 53 per mesh of the chargeable mesh base 50 is 6 Since more than two structures can be obtained, adhesive strength becomes high. As a result, efficient management of the multilayered planar filter is possible.
보호 메쉬(53)는 또한 대전성을 갖도록 처리될 수 있다. 이를 위해, 보호 메쉬(53)에 사용되는 모노 필라멘트사를 미리 정전 물질로 처리하거나 혹은 모노 필라멘트사로 편직 또는 제직된 보호 메쉬(53)에 정전 물질을 처리할 수 있다. 정전 물질의 비제한적인 예로는 칼리자레인(Calixarenes)을 들 수 있다. The protective mesh 53 can also be treated to be chargeable. To this end, the monofilament yarn used in the protective mesh 53 may be treated with an electrostatic material in advance, or the electrostatic material may be treated with the protective mesh 53 knitted or woven with the monofilament yarn. Non-limiting examples of electrostatic materials include Calixarenes.
전술한 대전성 메쉬 기재(50), 나노섬유 웹층(51) 및 보호 메쉬(53)가 순차로 적층되어 있는, 본 발명의 일 실시양태에 따른 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터를 위에서 본 상면도가 도 2에 개시되어 있다. 도 2에 따르면, 대전성 메쉬 기재(50)가 격자 무늬의 메쉬 형태로 제조되어 있고, 그 위에 나노섬유 웹층(51)이 무작위 형태로 방사되어 있으며, 나노섬유 웹층(51) 위에 육각형 벌집 형태의 보호 메쉬(53)가 위치하고 있다. 이러한 도 2는 쉬운 이해를 위해 실제 치수에 비례하게 작성되지 않은 것으로, 실제 본 발명의 일 실시양태에 따른 미세먼저 차단용 가시광선 투과성 다층구조 평면 필터의 이미지에 대해서는 도 3 및 이에 대한 설명을 참조한다. The above-described fine dust blocking visible light-transmitting multilayer structure planar filter according to an embodiment of the present invention, in which the above-mentioned electrified mesh substrate 50, nanofiber web layer 51, and protective mesh 53 are sequentially stacked, from above This top view is shown in FIG. According to Figure 2, the chargeable mesh substrate 50 is made in the form of a grid mesh, the nanofiber web layer 51 is radiated in a random form thereon, the hexagonal honeycomb form on the nanofiber web layer 51 The protective mesh 53 is located. 2 is not drawn in proportion to the actual dimensions for easy understanding, and for an image of the first visible visible light transmissive multilayer structure planar filter according to an embodiment of the present invention, see FIG. 3 and the description thereof. do.
선택적으로, 보호 메쉬(53)가 대전성 메쉬 기재(50)과 나노섬유 웹층(51)에 보다 견고하게 접착되도록 하기 위해 바인더를 적용하거나, 열융착하거나 혹은 이들 둘다를 적용할 수 있다.Optionally, a binder may be applied, thermally fused, or both to ensure that the protective mesh 53 is more firmly adhered to the chargeable mesh substrate 50 and the nanofiber web layer 51.
바인더는 보호 메쉬(53)와 접하는 나노섬유 웹층(51)의 전체 혹은 일부에만 도포 혹은 적용될 수 있다. 사용가능한 바인더의 비제한적인 예에는 폴리우레탄계, 아크릴계, 고무계, 폴리비닐리덴플루오라이드와 같은 유기 바인더와 알루미늄 포스페이트와 같은 무기 바인더가 있으나 이에 한정하지 않는다. 나노섬유 웹층과 동일한 종류의 물질을 유기 바인더를 사용하는 것이 바람직하다.The binder may be applied or applied to all or part of the nanofiber web layer 51 in contact with the protective mesh 53. Non-limiting examples of binders that can be used include, but are not limited to, organic binders such as polyurethane, acrylic, rubber, polyvinylidene fluoride and inorganic binders such as aluminum phosphate. It is preferable to use an organic binder for the same kind of material as the nanofiber web layer.
열융착은 나노섬유 웹층(51)에 보호 메쉬(53)를 적층한 후에 수행될 수 있다. 보호 메쉬(53)와 접하는 나노섬유 웹층(51)의 전체 또는 일부에만 열융착이 적용될 수 있다.Thermal fusion may be performed after the protective mesh 53 is laminated on the nanofiber web layer 51. Thermal fusion may be applied to all or a portion of the nanofiber web layer 51 in contact with the protective mesh 53.
전술한 구조를 갖는 본 발명의 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터는, (S1) 대전성 메쉬 기재의 준비단계; (S2) 나노섬유 웹층 형성단계; 및 (S3) 나노섬유 웹층 보호 단계;를 포함하는 공정에 의해 수득될 수 있으나, 이에 제한되는 것은 아니다. 하기에서 상기 각 단계에 대해 살펴본다.Visible dust-transmitting multilayer filter plane filter of the present invention having the above-described structure, the (S1) preparing a chargeable mesh substrate; (S2) forming a nanofiber web layer; And (S3) nanofiber web layer protection step; may be obtained by a process comprising, but is not limited thereto. It looks at each of the above steps below.
(S1) (S1) 대전성Daejeon 메쉬Mesh 기재의 준비단계 Preparation Step
통상적인 기술에 따라, 섬유에 대전성 고분자 수지를 피복하여 필라멘트사를 수득하고 상기 필라멘트사를 편직 또는 제직하여 대전성 메쉬 기재를 제공한다. 본 단계에서 사용되는 섬유, 고분자 수지, 필라멘트사에 대해서는 전술한 내용을 참조한다.According to a conventional technique, fibers are coated with a chargeable polymer resin to obtain filament yarns and the filament yarns are knitted or woven to provide a chargeable mesh substrate. For the fibers, polymer resins and filament yarns used in this step, see the above description.
(S2) 나노섬유 (S2) nanofiber 웹층Web layer 형성단계 Formation stage
이어서, 대전성 메쉬 기재의 표면에 나노섬유를 방사하여 나노섬유 웹층을 형성한다. 나노섬유를 방사하여 나노섬유 웹층을 형성하는 방법은 잘 알려져 있다.Subsequently, nanofibers are spun on the surface of the chargeable mesh substrate to form a nanofiber web layer. Methods of spinning nanofibers to form nanofiber web layers are well known.
나노섬유 웹층의 구조 및 나노섬유 웹층에 사용되는 고분자 수지에 대해서는 전술한 내용을 참조한다.For the structure of the nanofiber web layer and the polymer resin used in the nanofiber web layer, refer to the above description.
나노섬유 웹층은 고분자 수지를 용융시키거나 혹은 고분자 수지를 유기 용매에 용해시켜 전기방사, 플래시방사, 로터리 포스 방사의 방법으로 방사할 수 있으나, 이에 한정되지 않는다. 특히, 전기방사 장치로부터 대전성 메쉬 기재 상에 직접 방사하는 것이 바람직하다.The nanofiber web layer may be melted by dissolving the polymer resin or by dissolving the polymer resin in an organic solvent and spinning by electrospinning, flash spinning, or rotary force spinning, but is not limited thereto. In particular, it is preferable to radiate directly on the chargeable mesh substrate from the electrospinning apparatus.
이 후, 필요에 따라, 나노섬유 웹층 상에 바인더를 도포할 수 있다. 바인더 도포 방법은 특별히 제한되지 않으며, 예를 들어 바인더를 나노섬유 웹층 상에 위치시킨 노즐을 통해 도포할 수 있다. Thereafter, a binder may be applied onto the nanofiber web layer as necessary. The binder application method is not particularly limited and may be applied, for example, through a nozzle placed on the nanofiber web layer.
(S3) 나노섬유 (S3) nanofiber 웹층Web layer 보호 단계 Protection steps
이어서, 나노섬유 웹층 위에 보호 메쉬를 부착하는 공정을 수행한다.Subsequently, a process of attaching a protective mesh on the nanofiber web layer is performed.
보호 메쉬의 구조, 보호 메쉬를 구성하는 섬유, 보호 메쉬 처리에 사용되는 정전 물질에 대해서는 전술한 내용을 참조한다.For the structure of the protective mesh, the fibers constituting the protective mesh, and the electrostatic material used for the protective mesh treatment, refer to the above description.
정전 물질은 모노 필라멘트사가 보호 메쉬로 직조 혹은 편직되기 전에 필라멘트사에 처리되거나 혹은 모노 필라멘트사의 직조 혹은 편직이 이루어진 후에 처리될 수 있다. 이러한 정전 물질은 코팅, 스프레잉, 침지 등의 방법을 통해 모노 필라멘트사에 처리될 수 있다.The electrostatic material may be treated with the filament yarn before the monofilament yarns are woven or knitted with the protective mesh or after the monofilament yarns have been woven or knitted. Such electrostatic materials may be treated to monofilament yarns by methods such as coating, spraying, dipping and the like.
이와 같이 형성된 대전성 메쉬 기재, 나노섬유 웹층 및 보호 메쉬(53)로 구성된 적층체는, 필요에 따라 열과 압력을 줄 수 있는 롤러를 이용하여 가압 접착되어 본 발명에 따른 다층구조 평면 필터로 형성될 수 있다.The laminate composed of the electrostatic mesh substrate, the nanofiber web layer, and the protective mesh 53 formed as described above is press-bonded using a roller capable of applying heat and pressure as necessary to form a multilayered planar filter according to the present invention. Can be.
이하에서는 본 발명의 실시예를 통하여 보다 구체적으로 설명한다. 그러나 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어서는 안된다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter will be described in more detail through embodiments of the present invention. However, embodiments may be modified in many different forms and should not be construed as limited to the embodiments set forth below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
[실시예]EXAMPLE
유리섬유에 폴리염화비닐을 피복시켜 0.4mm 직경을 갖는 필라멘트사를 제조하여, 150g/㎡의 평량으로 20 메쉬의 눈 크기를 가지는 대전성 메쉬 기재를 제조하였다. 상기 필라멘트사의 총 두께는 유리섬유 40% 및 폴리염화비닐 60%로 이루어졌다. 이어서, 디메틸포름아마이드와 아세톤의 50:50 wt% 혼합용매에 폴리비닐리덴플루오라이드를 녹여 고분자 용액을 준비한 다음, 전기방사 방법을 통하여 상기 대전성 메쉬 기재에 1.5g/㎡ 평량으로 방사하여 나노섬유 웹층을 형성시켰다. 이어서, 바인더로 폴리우레탄을 1g/㎡ 양으로 나노섬유 웹층에 스프레이 코팅하였다. 여기에, 정전 물질(칼리자레인)이 처리된 10㎛ 두께의 폴리에틸렌 테레프탈레이트 모노 필라멘트사를 이용하여, 단위 메쉬가 육각 형상을 갖도록 메쉬 구조로 보호 메쉬를 편직하고 나노섬유 웹층에 적층한 후 열융착 롤러에 통과시켜 대전성 메쉬 기재와 보호 메쉬로 나노섬유 웹의 양쪽이 보호 받을 수 있는 평면 필터를 제조하였다.Polyvinyl chloride was coated on the glass fibers to produce a filament yarn having a diameter of 0.4 mm, thereby preparing a charged mesh substrate having an eye size of 20 mesh at a basis weight of 150 g / m 2. The total thickness of the filament yarn was made of 40% glass fiber and 60% polyvinyl chloride. Subsequently, a polyvinylidene fluoride is prepared by dissolving polyvinylidene fluoride in a 50:50 wt% mixed solvent of dimethylformamide and acetone, and then spun at 1.5 g / m 2 basis weight on the chargeable mesh substrate through an electrospinning method. A web layer was formed. The polyurethane was then spray coated onto the nanofiber web layer in an amount of 1 g / m 2 with a binder. Here, using a 10 μm-thick polyethylene terephthalate monofilament yarn treated with an electrostatic material (calizarane), the protective mesh is knitted in a mesh structure so that the unit mesh has a hexagonal shape and laminated on a nanofiber web layer Passing through the fusion roller to prepare a planar filter that can be protected both sides of the nanofiber web with a chargeable mesh substrate and a protective mesh.
[비교예1] Comparative Example 1
상기 실시예에서 유리섬유로 보강되지 않은 폴리염화비닐로 만든 기재를 사용한 것을 제외하고는 동일하게 필터를 제조하였다.Except for using a substrate made of polyvinyl chloride not reinforced with glass fibers in the above embodiment, the filter was prepared in the same manner.
[비교예2] Comparative Example 2
상기 실시예에서 폴리염화비닐이 코팅되지 않은 유리섬유로 만든 기재를 사용한 것을 제외하고는 동일하게 필터를 제조하였다.Except for using a substrate made of glass fibers not coated with polyvinyl chloride in the above Example was prepared the filter.
[비교예3] Comparative Example 3
상기 실시예에서 보호 메쉬를 적층하지 않은 것을 제외하고는 동일하게 필터를 제조하였다.Filters were prepared in the same manner as in the above example except that the protective mesh was not laminated.
[비교예4] Comparative Example 4
상기 실시예에서 보호 메쉬를 적층하지 않고, 나노섬유 웹층의 평량을 3g/㎡로 한 것을 제외하고는 동일하게 필터를 제조하였다.The filter was prepared in the same manner except that the protective mesh was not laminated and the basis weight of the nanofiber web layer was 3 g / m 2.
[비교예5] Comparative Example 5
상기 실시예에서 보호 메쉬를 육각 메쉬가 아닌 사각 메쉬로 제조한 것을 적층한 것을 제외하고는 동일하게 필터를 제조하였다.The filter was prepared in the same manner as in the above example except that the protective mesh was laminated with a square mesh instead of a hexagonal mesh.
SEMSEM 이미지 image
실시예에서 제조된 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터의 SEM 이미지가 도 3에 있다. 도 3에 따르면, 섬유에 대전성 고분자 수지가 피복되어 형성된 필라멘트사로 이루어진 대전성 메쉬 기재(A) 상에 매우 얇은 나노섬유 웹층(B)이 거미줄 형태로 방사되어 있는 것을 확인할 수 있다. 한편, 보호 메쉬(C)는 단위 메시가 육각 형상을 갖도록 모노 필라멘트사로부터 제작되어, 나노섬유 웹층(B) 상에 방사되어 있다. 상기 보호 메쉬(C)는 나노섬유 웹층(B) 상에 존재하지만, 나노섬유 웹층을 구성하는 섬유가 매우 얇고 비교적 적은 평량으로 사용되기 때문에, 보호 메쉬(C)는 대전성 메쉬 기재(A)에도 접해있다. 따라서, 보호 메쉬(C)는 나노섬유 웹층(B)뿐만 아니라 대전성 메쉬 기재(A)에 대해서도 일정한 접착력을 확보하는 것이 바람직하다. 이를 위해, 보호 메쉬(C)를 구성하는 육각형 단위 메쉬가 대전성 메쉬 기재(A)에 대해 접하는 위치, 즉, 접점을 증가시켜 일정 수준의 접착력을 확보한다.The SEM image of the visible light-transmissive multilayer structure planar filter prepared in the example is shown in FIG. 3. According to FIG. 3, it can be seen that a very thin nanofiber web layer (B) is spun in a spider web form on a chargeable mesh substrate (A) made of filament yarn formed by coating a chargeable polymer resin on a fiber. On the other hand, the protective mesh (C) is made from monofilament yarn so that the unit mesh has a hexagonal shape, and is radiated onto the nanofiber web layer (B). The protective mesh (C) is present on the nanofiber web layer (B), but since the fibers constituting the nanofiber web layer are used in a very thin and relatively small basis weight, the protective mesh (C) is also used for the chargeable mesh substrate (A). Abut Therefore, it is preferable that the protective mesh (C) ensures a constant adhesive force not only for the nanofiber web layer (B) but also for the chargeable mesh base material (A). To this end, the hexagonal unit mesh constituting the protective mesh (C) is in contact with the chargeable mesh substrate (A), that is, increase the contact to secure a certain level of adhesion.
도 4는, 실시예의 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터를 도 3에서보다 더 고배율로 확대하여 촬영한 SEM 이미지이다. 도 4로부터, 나노섬유 웹층에 미세먼지가 물리적으로 포집되어 있는 형태('1'로 표기한 원)와 나노섬유 웹층에 미세먼지가 정전기적으로 포집되어 있는 형태('2'로 표기한 원)를 확인할 수 있다. 나노섬유 웹층에 물리적으로 포집되는 미세먼지는 상대적으로 크기가 큰 미세먼지, 예컨대 약 20 ㎛ 크기의 미세먼지일 수 있다. 나노섬유 웹층에 정전기적으로 포집되는 미세먼지는 상대적으로 작은 크기의 미세먼지, 예컨대 약 3 ㎛ 크기의 미세먼지일 수 있다.FIG. 4 is an SEM image photographed at a higher magnification than in FIG. 3, showing a fine dust-blocking visible light-transmitting multilayer structure flat filter of an embodiment. 4, the form in which the fine dust is physically collected in the nanofiber web layer (circle denoted as '1') and the form in which the fine dust is electrostatically collected in the nanofiber web layer (circle denoted '2'). You can check. The fine dust physically collected in the nanofiber web layer may be relatively large fine dust, for example, fine dust having a size of about 20 μm. The fine dust that is electrostatically trapped in the nanofiber web layer may be relatively small fine dust, such as fine dust of about 3 μm in size.
물성 평가Property evaluation
상기 실시예 및 비교예에서 제조된 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터의 성능과 내구성을 평가하기 위하여 실시예와 비교예의 분진포집효율, 공기투과도, 마모강도, 박리강도를 측정하였다. 이때 공기투과도는 JIS L 1096 방법을 사용하였으며, 필터 38㎠ 면적에 125 Pa의 압력으로 측정하였다. 분진포집효율은 ASHRAE STANDARD 52.1을 적용하여 1m/s의 풍속으로 측정하였다. 마모강도는 마틴데일 시험 방법 중 옵션 1을 적용하여 나노 섬유 웹에 구멍이 발생하여 50% 이상 손상되었을 때의 횟수를 측정하였다. 각각의 시험결과는 표 1에 나타낸다.The dust collection efficiency, air permeability, wear strength and peel strength of the Examples and Comparative Examples were measured in order to evaluate the performance and durability of the particulate filter for blocking the visible light-transmitting multilayer structure manufactured in Examples and Comparative Examples. At this time, air permeability was measured using JIS L 1096 method, and the filter was measured at a pressure of 125 Pa in an area of 38 cm 2. Dust collection efficiency was measured with wind speed of 1m / s using ASHRAE STANDARD 52.1. The wear strength was measured by applying option 1 of the Martindale test method to the occurrence of puncture in the nanofiber web and more than 50% damage. Each test result is shown in Table 1.
실시예Example 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5
공기투과도(cm 3/cm 2/s)Air permeability (cm 3 / cm 2 / s) 413413 408408 405405 409409 269269 397397
분진포집효율 (%)Dust collection efficiency (%) 9292 8989 8888 8383 9292 8888
가시광선투과율 (%T)Visible light transmittance (% T) 42.6~49.642.6-49.6 41.5~49.341.5 ~ 49.3 42.1~49.442.1-49.4 44.3~51.244.3 ~ 51.2 29.8~30.229.8-30.2 43.1~49.343.1-49.3
마모강도 (회)Wear strength (times) 151151 8181 134134 44 77 5858
표 1에 나타난 바와 같이,실시예와 비교예1을 비교하면, 폴리염화비닐로 코팅된 유리섬유를 사용한 실시예가 그러지 않은 비교예1에 비하여 마모강도가 크게 증가했음을 나타낸다.As shown in Table 1, comparing Example 1 with Comparative Example 1 shows that the example using the glass fiber coated with polyvinyl chloride significantly increased the wear strength as compared with Comparative Example 1 not.
실시예와 비교예2를 비교하면, 폴리염화비닐로 코팅된 유리섬유를 사용한 실시예가 그러지 않은 비교예2에 비하여 분진포집효율이 증가했음을 나타낸다.Comparing Example 2 and Comparative Example 2, it is shown that the Example using the glass fiber coated with polyvinyl chloride increased the dust collection efficiency compared to Comparative Example 2 not.
실시예와 비교예3을 비교하면, 보호 메쉬로 나노섬유 웹층을 보호하는 실시예가 그러지 않은 비교예3에 비하여 마모강도가 크게 증가했음을 나타낸다.Comparing Example 3 and Comparative Example 3, it is shown that the example in which the nanofiber web layer is protected by the protective mesh has a significant increase in wear strength compared to Comparative Example 3, which is not.
실시예와 비교예4를 비교하면, 분진포집효율은 유의미한 차이가 나지 않지만, 나노섬유 웹층을 2배로 증가시켜, 공기투과도와 가시광선 투과율이 현저하게 감소한 것을 나타낸다.Comparing Example 4 with Comparative Example 4, the dust collection efficiency is not significantly different, but the nanofiber web layer is doubled, indicating that the air permeability and visible light transmittance are significantly reduced.
실시예와 비교예5를 비교하면, 육각 메쉬를 사용한 실시예가 그러지 않은 비교예5에 비하여 비교적 높은 내구성을 가지는 것을 나타낸다.Comparing Example with Comparative Example 5, it shows that the Example using the hexagonal mesh has a relatively high durability as compared with Comparative Example 5 not.
상기로부터, 실시예의 필터망이 정전성 보호 메쉬에 의하여 내구성이 크게 향상되었음에도 불구하고 공기투과도와 가시광선 투과율이 저하되지 않으며, 정전기적 원리와 물리적 원리를 동시에 적용하여 높은 분진포집효율을 발휘하는 정전기적 포집과 물리적 포집을 동시 적용한 고내구성 다층구조의 미세먼지 차단용 평면 필터인 것으로 나타났다.From the above, although the durability of the filter network of the embodiment is greatly improved by the electrostatic protective mesh, air permeability and visible light transmittance do not decrease, and electrostatics exhibiting high dust collection efficiency by simultaneously applying electrostatic and physical principles It has been shown to be a planar filter for fine dust blocking with a highly durable multilayer structure applying miracle and physical collection simultaneously.
이상의 본 발명에 따른 정전기적 포집과 물리적 포집을 동시 적용한 고내구성 다층구조의 미세먼지 차단용 평면 필터는 상기한 바와 같이 설명의 예시를 위한 것이며, 상기 실시예들은 다양한 변형이 있을 수 있도록 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.The planar filter for preventing fine dust of a highly durable multilayer structure applying simultaneous electrostatic collection and physical collection according to the present invention is for illustration as described above, and the embodiments are all or part so that various modifications can be made. May optionally be combined.

Claims (8)

  1. 섬유에 대전성 고분자 수지가 피복되어 형성된 필라멘트사로 편직 또는 제직된 대전성 메쉬 기재;A chargeable mesh substrate knitted or woven from filament yarn formed by coating a chargeable polymer resin on a fiber;
    상기 기재의 일면에 방사되어 적층된 나노섬유 웹층; 및 A nanofiber web layer laminated on one surface of the substrate by spinning; And
    모노 필라멘트사로 편직 또는 제직된 메쉬 구조를 가지며, 상기 메쉬 구조를 구성하는 단위 메쉬가 육각 이상의 다각형 구조를 갖는 보호 메쉬;가 순차로 적층되어 있으며,A protective mesh having a mesh structure knitted or woven with monofilament yarns, wherein the unit mesh constituting the mesh structure has a polygonal structure of hexagonal shape or more;
    상기 보호 메쉬가 나노섬유 웹층에 부착된,The protective mesh is attached to the nanofiber web layer,
    미세먼지 차단용 가시광선 투과성 다층구조 평면 필터.Visible light-transmissive multilayer planar filter for fine dust blocking.
  2. 제 1항에 있어서,The method of claim 1,
    상기 섬유는 유리 섬유, 알루미늄 섬유, 스틸 섬유, 고강력 폴리에틸렌 섬유, 메타아라미드 섬유 및 파라아라미드 섬유로 이루어진 군으로부터 선택된 어느 하나 이상의 섬유인 것을 특징으로 하는 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터.Said fiber is any one or more fibers selected from the group consisting of glass fibers, aluminum fibers, steel fibers, high-strength polyethylene fibers, metaaramid fibers and paraaramid fibers.
  3. 제 1항에 있어서,The method of claim 1,
    상기 대전성 고분자 수지는 + 30nC/J 이상의 양전하 친화도 값(positive charge affinity value) 혹은 -30 nC/J 이하의 음전하 친화도 값(negative charge affinity value) 범위의 마찰전기(triboelectric) 계수를 가지는 것임을 특징으로 하는 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터.The chargeable polymer resin has a triboelectric coefficient in the range of positive charge affinity value of +30 nC / J or more or negative charge affinity value of -30 nC / J or less. Visible light-transmitting multilayer filter plane filter for fine dust blocking.
  4. 제 1항에 있어서,The method of claim 1,
    상기 대전성 고분자 수지는 폴리염화비닐, 폴리프로필렌, 폴리아마이드 및 폴리에틸렌 테레프탈레이트로 이루어진 군으로부터 선택된 1종 또는 2종 이상인 것을 특징으로 하는 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터.The chargeable polymer resin is one or two or more selected from the group consisting of polyvinyl chloride, polypropylene, polyamide, and polyethylene terephthalate.
  5. 제 1항에 있어서,The method of claim 1,
    상기 나노섬유 웹층이 500 ㎚ 내지 1.5 ㎛ 직경을 갖는 나노섬유로 이루어져 있고 0.1 g/㎡ 내지 2 g/㎡ 범위의 평량을 가지는 것을 특징으로 하는 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터.The nanofiber web layer is composed of nanofibers having a diameter of 500 nm to 1.5 μm and has a basis weight in the range of 0.1 g / m 2 to 2 g / m 2.
  6. 제 1항에 있어서,The method of claim 1,
    상기 보호 메쉬가 대전성을 구비하는 것을 특징으로 하는 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터.Visible light-transmitting multilayer filter plane filter for blocking fine dust, characterized in that the protective mesh has a chargeability.
  7. (S1) 고강도 섬유에 대전성 고분자 수지가 피복되어 형성된 필라멘트사로 편직 또는 제직된 대전성 메쉬 기재를 수득하는 단계;(S1) obtaining a chargeable mesh substrate knitted or woven from a filament yarn formed by coating the high-strength fibers with a chargeable polymer resin;
    (S2) 대전성 메쉬 기재의 표면에 나노섬유를 방사하여 나노섬유 웹층을 형성하는 단계; 및(S2) forming nanofiber web layers by spinning nanofibers on the surface of the chargeable mesh substrate; And
    (S3) 모노 필라멘트사로 편직 또는 제직된 메쉬 구조를 가지며 상기 메쉬 구조를 구성하는 단위 메쉬가 육각 이상의 다각형 구조를 갖는 것인 보호 메쉬를 나노섬유 웹층 위에 부착하는 단계;(S3) attaching a protective mesh on the nanofiber web layer having a mesh structure knitted or woven with monofilament yarn, wherein the unit mesh constituting the mesh structure has a polygonal structure of hexagonal shape or more;
    를 포함하는 제1항에 기재된 미세먼지 차단용 가시광선 투과성 다층구조 평면 필터의 제조방법.The method for producing a fine dust-blocking visible light-transmissive multilayer structure planar filter according to claim 1.
  8. 제7항에 있어서,The method of claim 7, wherein
    (S2) 단계와 (S3) 단계 사이에, 나노섬유 웹층에 바인더를 도포하는 단계를 더 포함하는 것을 특징으로 하는 제조방법.Between (S2) and (S3), the manufacturing method characterized by further comprising applying a binder to the nanofiber web layer.
PCT/KR2019/002436 2018-03-15 2019-02-28 Multilayer planar filter having visible light transmittance and high durability, for blocking fine particles by simultaneously applying electrostatic collection and physical collection, and manufacturing method therefor WO2019177289A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180030097A KR101884365B1 (en) 2018-03-15 2018-03-15 Multilayer filter with excellent visible light transmittance and durability for blocking fine dust by electrostatic capture and physical capture and a method of manufacturing the multilayer filter
KR10-2018-0030097 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019177289A1 true WO2019177289A1 (en) 2019-09-19

Family

ID=63227643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002436 WO2019177289A1 (en) 2018-03-15 2019-02-28 Multilayer planar filter having visible light transmittance and high durability, for blocking fine particles by simultaneously applying electrostatic collection and physical collection, and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101884365B1 (en)
WO (1) WO2019177289A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114059233A (en) * 2021-11-17 2022-02-18 东华大学 Transparent nanofiber membrane, preparation method thereof and application of transparent nanofiber membrane to transparent mask

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101884365B1 (en) * 2018-03-15 2018-08-01 주식회사 웰테크글로벌 Multilayer filter with excellent visible light transmittance and durability for blocking fine dust by electrostatic capture and physical capture and a method of manufacturing the multilayer filter
KR102120564B1 (en) * 2018-11-23 2020-06-16 정승혁 transflective front and rear screen using nanofiber web as image forming material manufacturing method thereof
KR102229668B1 (en) * 2019-01-11 2021-03-19 충남대학교산학협력단 Reusable filter for blocking particulate matter and manufacturing thereof
KR102129418B1 (en) * 2019-04-03 2020-07-03 유해경 Filter for blocking fine dust with nano fiber and preparing method same
KR102010953B1 (en) * 2019-04-10 2019-08-14 주식회사 티엔솔루션 nano-fiber composite mesh for blocking ultra-fine dust having high air permeability
KR102039704B1 (en) * 2019-06-14 2019-12-03 김상윤 Apparatus and method for manufacturing a filter of visible light transmitting multilayer structure for blocking fine dusts
KR102660133B1 (en) * 2020-03-11 2024-04-24 최광현 Net for blocking fine dust and virus using static electricity and articles having the same
KR102614920B1 (en) * 2020-05-13 2023-12-15 세종대학교산학협력단 Air filter for collecting fine dust particles
KR102605044B1 (en) * 2020-12-09 2023-11-24 주식회사 원에어 Air filter for air purification with nanofiber webs having different pattern layers
KR102319116B1 (en) * 2021-01-25 2021-10-28 강태순 Mesh for Blocking Fine Dust

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120098939A (en) * 2009-12-30 2012-09-05 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Filtering face-piece respirator having an auxetic mesh in the mask body
KR101668395B1 (en) * 2016-05-31 2016-10-21 주식회사 아담스컴퍼니 Filter with Nano Fiber and Manufacturing Thereof
EP2846879B1 (en) * 2012-05-07 2017-06-14 3M Innovative Properties Company Molded respirator having outer cover web joined to mesh and method of making it
KR20180007817A (en) * 2016-07-14 2018-01-24 (주)에프티이앤이 2-layer filter for blocking fine and yellow dust containing nanofiber web and its manufacturing method
KR101884365B1 (en) * 2018-03-15 2018-08-01 주식회사 웰테크글로벌 Multilayer filter with excellent visible light transmittance and durability for blocking fine dust by electrostatic capture and physical capture and a method of manufacturing the multilayer filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120098939A (en) * 2009-12-30 2012-09-05 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Filtering face-piece respirator having an auxetic mesh in the mask body
EP2846879B1 (en) * 2012-05-07 2017-06-14 3M Innovative Properties Company Molded respirator having outer cover web joined to mesh and method of making it
KR101668395B1 (en) * 2016-05-31 2016-10-21 주식회사 아담스컴퍼니 Filter with Nano Fiber and Manufacturing Thereof
KR20180007817A (en) * 2016-07-14 2018-01-24 (주)에프티이앤이 2-layer filter for blocking fine and yellow dust containing nanofiber web and its manufacturing method
KR101884365B1 (en) * 2018-03-15 2018-08-01 주식회사 웰테크글로벌 Multilayer filter with excellent visible light transmittance and durability for blocking fine dust by electrostatic capture and physical capture and a method of manufacturing the multilayer filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114059233A (en) * 2021-11-17 2022-02-18 东华大学 Transparent nanofiber membrane, preparation method thereof and application of transparent nanofiber membrane to transparent mask
CN114059233B (en) * 2021-11-17 2022-09-16 东华大学 Transparent nanofiber membrane, preparation method thereof and application of transparent nanofiber membrane to transparent mask

Also Published As

Publication number Publication date
KR101884365B1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2019177289A1 (en) Multilayer planar filter having visible light transmittance and high durability, for blocking fine particles by simultaneously applying electrostatic collection and physical collection, and manufacturing method therefor
WO2021045561A1 (en) Vibration-proof net for blocking fine dust
WO2016195287A1 (en) Mask having adsorption membrane provided therein
WO2022145604A1 (en) Washable fine dust filter module using nanofibers
US6336948B1 (en) Fire-retardant filter medium and air filter unit
WO2016195285A1 (en) Gas filter
WO2019132139A1 (en) Method for manufacturing air-circulating type fine dust proof mesh using nano-fiber
KR101668395B1 (en) Filter with Nano Fiber and Manufacturing Thereof
WO2016195288A1 (en) Adsorptive membrane
WO2017111317A1 (en) Cartridge filter using nanofiber composite fiber yarn and method for manufacturing same
WO2021015554A1 (en) Filter medium and composite filter including same
KR102210832B1 (en) Ventilating window with dustproofing and rainwater proofing
KR20180040750A (en) Yellow sand screen
WO2017047980A1 (en) Photocatalyst functional nonwoven fabric, and method for producing same
KR102129418B1 (en) Filter for blocking fine dust with nano fiber and preparing method same
WO2016013836A1 (en) Deodorizing filter material, and deodorizing-dustproof composite filter using same
KR102039704B1 (en) Apparatus and method for manufacturing a filter of visible light transmitting multilayer structure for blocking fine dusts
KR102010953B1 (en) nano-fiber composite mesh for blocking ultra-fine dust having high air permeability
KR102333444B1 (en) Mesh window with ultra-fine dust-proof nano filter for easy installation and maintenance
WO2013168883A1 (en) Filter medium having dual-layer structure consisting of high-density layer and low-density layer
CN211115707U (en) Nanometer window screening of antifog haze pollen function of preventing
WO2021206256A1 (en) Stretcher for elastic material, air permeability-controllable air filter unit comprising same, and mask comprising air filter unit
JP7228187B2 (en) Building material net and its manufacturing method
KR102092199B1 (en) Manufacturing method of fine dust filter
KR102587194B1 (en) Anti-viral filter media, air filter unit and air conditioning apparatus comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768504

Country of ref document: EP

Kind code of ref document: A1