WO2020034619A1 - 显示设备 - Google Patents

显示设备 Download PDF

Info

Publication number
WO2020034619A1
WO2020034619A1 PCT/CN2019/076652 CN2019076652W WO2020034619A1 WO 2020034619 A1 WO2020034619 A1 WO 2020034619A1 CN 2019076652 W CN2019076652 W CN 2019076652W WO 2020034619 A1 WO2020034619 A1 WO 2020034619A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color
image
supplementary
polarization
Prior art date
Application number
PCT/CN2019/076652
Other languages
English (en)
French (fr)
Inventor
余新
郭祖强
顾佳琦
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020034619A1 publication Critical patent/WO2020034619A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/04Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light by periodically varying the intensity of light, e.g. using choppers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity

Definitions

  • the present invention relates to the field of display technology, and in particular, to a display device.
  • the color gamut usually refers to the spectral trajectory of visible light that the human eye can see in nature.
  • the area of the region formed by the visible spectral trajectory is the maximum color gamut area that the human eye can see visible light.
  • display devices such as projectors, displays, and the like, which are composed of different display devices, use R, G, and B three-color display devices to reproduce and reproduce images.
  • the triangle formed by the R, G, and B primary colors of a display device is called the color gamut that the device can display.
  • the larger the gamut space area the more people feel the color presented The more vivid and vivid the picture is, however, how to make the display device achieve a wide color gamut display is an important technical issue in the industry.
  • the light sources of display devices such as laser projectors are generally divided into three categories.
  • One type is to excite phosphors of different colors by short-wavelength lasers to generate the primary color light of the three primary colors of red, green and blue.
  • Another type directly uses red, green and blue lasers as the three primary color light sources.
  • the third type is a combination of the first two types.
  • a blue laser light source is used as a short-wavelength excitation light source to excite phosphors to generate red-green primary color light, and itself as a blue primary color light.
  • the color gamut of this scheme is relatively small.
  • display devices using this technology can cover the full sRGB color gamut.
  • some enhancement processing such as adding a narrow-band optical filter to remove the yellow light spectrum from green and red light, the color gamut can be enhanced to achieve the DCI-P3 color gamut.
  • RGB laser display devices such as projectors
  • the first is speckle. Speckle is caused by the coherence of the laser, which causes the light reflected on the display plane to interfere with the phase difference caused by the fluctuation of the plane, resulting in uneven brightness distribution on the display screen. Although there are many inventions trying to solve the problem of laser speckle, the effect is not ideal.
  • the second is the high cost of RGB laser display devices. This is because the red and green lasers in RGB laser display devices are still immature under current technology. The efficiency of semiconductor green lasers is currently only below 20%, which is much lower than that of blue lasers on GaN substrates and red lasers on ternary substrates, and the cost is very high.
  • the efficiency of the red laser is similar to that of the blue laser, the temperature stability of the red laser is poor. Not only does the efficiency decrease significantly with increasing temperature, but the center wavelength also drifts. These two points make the RGB laser display device color shift with temperature changes. This requires adding a constant temperature device to the red laser to stabilize the working state of the red laser, which also means that a high-power cooling device is required to ensure the stable working temperature of the red laser, thereby greatly increasing the cost of the RGB laser display device.
  • the present invention proposes to combine laser fluorescence and complementary light such as RGB laser, which can effectively exert the advantages of both and make up for their respective deficiencies.
  • RGB laser complementary light
  • the color gamut range of the projection system can be effectively expanded.
  • the addition of fluorescence can greatly reduce the speckle effect of complementary light such as pure laser.
  • speckle cannot be completely eliminated, the addition of fluorescence makes the contrast of speckle greatly reduced without being noticed by the human eye. Because no high-power red and green laser supplementary light is needed, compared with RGB laser light sources, no complicated heat dissipation system is required, and the system cost is greatly reduced.
  • An existing display device usually uses a spatial light modulator to perform image modulation, and non-image light generated during the image modulation process.
  • the present invention considers recycling the non-image light.
  • a DMD Digital Micromirror Device
  • DLP Digital Light Processing
  • the light source sequentially emits R (red), G (green), B (blue) three-color light (or R (red), G (green), B (blue), W (white), etc. Multi-color), various colors of light are projected on the DMD chip.
  • the DMD chip After receiving the control signal of the DLP control system, the DMD chip reflects the light of different colors on the projection screen to form an image.
  • the DMD chip has hundreds of thousands or even millions of micromirrors, and one micromirror corresponds to one pixel.
  • a rotating device is set under each micromirror.
  • the micromirror Under the control of the digital driving signal output by the DLP control system, the micromirror can be flipped between the ON state and the OFF state.
  • the micromirror flip rate can reach Thousands of times per second.
  • FIG. 2 is a schematic diagram of a light path principle of a DMD chip using DLP projection technology to modulate an image.
  • the DMD chip includes a plurality of micromirrors 8. When the micromirrors 8 are in an ON state, the incident light 9 is reflected to the projection. The lens 10 finally emits an image; when the micromirror 8 is in the OFF state, the incident light 9 is reflected to the area outside the projection lens 10 and absorbed by the projector housing or reflected back and forth inside the housing and lost.
  • the DLP control system controls the number of times that the corresponding micromirror 8 is ON (total time) according to the grayscale value of each pixel in the image frame data, and the number of times (total time) that each micromirror 8 is ON determines the projection screen.
  • the micromirror 8 with the DMD chip in the ON state reflects the incident light to the projection lens 10 to form projection light, and the DMD chip also loses a considerable amount of light from the reflection of the micromirror 8 with the OFF state. Light other than the projection light is not effectively used.
  • the display device shown in FIG. 3 includes a light source 15, a polarization conversion device 13, a polarization combining sheet 16, a spatial light modulator 11, and a lens assembly 12.
  • the light emitted by the light source 15 is subjected to polarization conversion by the polarization conversion device 13. It is then incident on the spatial light modulator 11 and is provided to the lens assembly 12 through reflection in the ON state. In the OFF state, the light is polarized by the polarization conversion device 14 and reflected by the polarization combining plate 16 and is incident on the spatial light modulator 11 again.
  • the display device shown in FIG. 3 includes a light source 15, a polarization conversion device 13, a polarization combining sheet 16, a spatial light modulator 11, and a lens assembly 12.
  • the light emitted by the light source 15 is subjected to polarization conversion by the polarization conversion device 13. It is then incident on the spatial light modulator 11 and is provided to the lens assembly 12 through reflection in the ON state. In the OFF state, the light is
  • FIG. 4 Another design of a light recycling system based on a dual-optical spatial modulator is shown in FIG. 4.
  • the display device shown in FIG. 3 includes a light source 1, a first spatial light modulator 2, a relay element 5, 6, 7, 8, and the second spatial light modulator 3 and the lens assembly 4.
  • the light emitted from the light source 1 is modulated by the first spatial light modulator 2 to form a first light 18 for displaying an image and a first light 18 not for displaying an image.
  • the first light 17 is modulated by the light recycling system 19 and the second light 18 is modulated by the second piece of spatial light modulator 3, but the first piece of spatial light modulator 2 is limited to LCD or LCOS.
  • the light recycling system of the display device shown in FIG. 2 may include light guides and relay elements 5, 6, 7, and 8, and the lens assembly 4 may be provided corresponding to the second spatial light modulator 3. Projecting and displaying the image light emitted by the second piece of spatial light modulator 3.
  • the first type does not target display devices of existing dual-chip spatial light modulators
  • the second type has limitations on the types of spatial light modulators and needs to be improved.
  • the present invention provides a display device that can improve at least one of the above technical problems.
  • a display device includes a light source device, a first spatial light modulator, a second spatial light modulator, a first light recycling device, and a second light recycling device.
  • the light source device is configured to emit light of a first color.
  • the first spatial light modulator is configured to receive the first color light, the second color fluorescence, and the first color light emitted by the light source device;
  • Two-color supplementary light and modulating the first color light to generate a first color image light and modulating the second color fluorescence and second color supplemental light to generate a second color image light and non-projection light
  • the second spatial light A modulator for receiving the third color supplementary light and the third color fluorescence emitted by the light source device, and modulating the third color fluorescence and the third color supplementary light to generate a third color image light and non-projection light
  • the second and third color supplementary light can widen the color gamut of the second color fluorescence, so that the color gamut of the display device is wider and the display effect is better.
  • the second and third color supplementary light may also increase the brightness of the display device, thereby achieving high-brightness image display.
  • the first light recycling device and the second light recycling device are used for recycling the second and third color supplementary light in the non-projected light to the first spatial light modulator and the second spatial light modulator. Reusing it, while saving costs, it also makes the brightness of the second and third colors of the picture supplementary light enhanced, thereby increasing the brightness of the second and third colors of each pixel of the picture.
  • FIG. 1 is a comparison chart of color gamut ranges of several display devices using different light sources.
  • FIG. 2 is a schematic diagram of an optical path principle of a DMD chip using DLP projection technology to modulate an image.
  • FIG. 3 is a schematic diagram of the structure and optical path principle of a basic light recycling system of a one-piece spatial light modulator.
  • FIG. 4 is a schematic diagram of a structure and an optical path principle of another optical recycling system based on a dual optical spatial modulator.
  • FIG. 5 is a schematic block diagram of a display device according to a preferred embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an image modulation principle of the display device shown in FIG. 5.
  • FIG. 7 is a schematic structural diagram of a wavelength conversion system of the display device shown in FIG. 5.
  • FIG. 8 is a schematic diagram of a color gamut range of the display device shown in FIG. 5.
  • 9-11 are schematic diagrams of a system timing adopted by the display device 100.
  • FIG. 12 is a schematic diagram of the technical color gamut and color volume expansion of the display device shown in FIG. 5.
  • Second spatial light modulator 130 Second spatial light modulator 130
  • Second supplementary light source 115 Second supplementary light source 115
  • Excitation light source 111a Excitation light source 111a
  • the first light recycling device 160 is the first light recycling device 160
  • the present invention provides a display device for improving at least one of the technical problems mentioned above.
  • the display device includes a light source device, a first spatial light modulator, a second spatial light modulator, a first A light recycling device and a second light recycling device, the light source device is configured to emit a first color light, a second color fluorescence, a second color supplement light, a third color fluorescence, and a third color supplement light; the first space
  • the light modulator is configured to receive a first color light, a second color fluorescence, and a second color supplementary light from the light source device, and modulate the first color light to generate a first color image light and modulate the second color fluorescence and
  • the second color supplementary light generates second color image light and non-projection light;
  • the second spatial light modulator is configured to receive third color supplementary light and third color fluorescence emitted by the light source device, and modulate the third color
  • the fluorescence and the third color supplementary light generate third color image light and non-
  • the second and third color supplementary light can widen the color gamut of the second color fluorescence, so that the color gamut of the display device is wider and the display effect is better.
  • the second and third color supplementary light may also increase the brightness of the display device, thereby achieving high-brightness image display.
  • the first light recycling device and the second light recycling device are used for recycling the second and third color supplementary light in the non-projected light to the first spatial light modulator and the second spatial light modulator. Reusing it, while saving costs, it also makes the brightness of the second and third colors of the picture supplementary light enhanced, thereby increasing the brightness of the second and third colors of each pixel of the picture.
  • FIG. 5 is a block diagram of a display device 100 according to a preferred embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an image modulation principle of the display device 100 described in FIG. 5.
  • the display device 100 includes a light source device 110, a first spatial light modulator 120, a second spatial light modulator 130, an image synthesis device 150, a first light recycling device 160, and a second light recycling device 170.
  • the first spatial light modulator 120 and the second spatial light modulator 130 constitute a light modulation module, and are used to perform image modulation on light emitted by the light source device 110 according to image data to generate non-projected light and The projection light required for the image to be displayed.
  • the first light recycling device 160 and the second light recycling device 170 constitute the light recycling module, and are configured to recycle part of the non-projection light to the light modulation module for reuse.
  • the light source device 110 is configured to emit a first color light, a second color fluorescence, a second color supplement light, a third color fluorescence, and a third color supplement light.
  • the first spatial light modulator 120 is configured to receive a first color light, a second color fluorescence, and a second color supplementary light from the light source device 110, and modulate the first color light to generate a first color image light and The second color fluorescence and the second color supplementary light are modulated to generate a second color image light, and the first color image light and the second color image light are guided to the image synthesis device 150.
  • the device 160 is configured to recover the first color light in the first color non-image light and the second color supplement light in the second color non-image light to the first spatial light modulator 120 for reuse.
  • the second spatial light modulator 130 is configured to receive the third color supplement light and the third color fluorescence emitted by the light source device 110, and modulate the third color fluorescence and the third color supplement light to generate a third color.
  • Image light The image combining device 150 is configured to combine the first color image light with the second color image light and the third color image light emitted by the second spatial light modulator 130 to display an image.
  • the second spatial light modulator 130 modulates the third color fluorescence and the third color supplementary light, a third color non-image light is also generated.
  • the second light recycling device 170 is further configured to receive the second spatial light. At least part of the third color non-image light generated by the modulator 130 and at least part of the third color non-image light are recovered to the second spatial light modulator 130 for reuse.
  • the light source device 110 includes a wavelength conversion system 111, a spectroscopic device 140, a first supplementary light source 112, a first light combining element 113, a first polarization conversion device 114, a second supplementary light source 115, a first The two-light combining element 116 and the second polarization conversion device 117.
  • FIG. 7 is a schematic structural diagram of the wavelength conversion system 111.
  • the wavelength conversion system 111 includes an excitation light source 111a and a wavelength conversion element 111b.
  • the excitation light source 111a is used to emit excitation light
  • the wavelength conversion element 111b is used to convert a part of the excitation light into second color fluorescence and third color fluorescence
  • the wavelength conversion system 111 converts the wavelength conversion element 111b.
  • the second color fluorescence and the third color fluorescence are provided to the first light combining element 113, and another part of the excitation light is also provided as the first color light to the first light combining element 113.
  • the excitation light source 111a may be a laser light source, such as a blue laser light source, for emitting a blue laser light as the excitation light.
  • the wavelength conversion element 111b may be a color wheel, and is not limited to a transmissive type or a reflective type, and may include at least two segmented regions 111c that are sequentially arranged along a circumferential direction. When the wavelength conversion element operates, each segmented region 111c is sequentially located on the optical path where the excitation light is located. One of the segmented regions 111c may receive the excitation light and emit the excitation light as the first color light.
  • At least one segmented region 111c is provided with a phosphor for receiving the excitation light and generating a laser beam as the second color fluorescence and the third color fluorescence.
  • the phosphor may be yellow fluorescence Powder for emitting yellow fluorescence
  • the yellow fluorescence includes a green fluorescent component and a red fluorescent component
  • the green fluorescent component and the red fluorescent component are respectively used as the second color fluorescence and the third color fluorescence. That is, the first color light is a blue laser light, and the second color fluorescence and the third color fluorescence are green fluorescence and red fluorescence, respectively.
  • the first supplementary light source 112 is configured to emit the second color supplementary light to the first light combining element 113.
  • the first supplementary light source 112 may be a laser light source for emitting a second color laser as the second color supplementary light. As described above, the second color is green. Therefore, the first supplementary light source 112 Is a green laser light source for emitting a green laser light as the second color supplementary light.
  • the first light combining element 113 is configured to provide the second color fluorescent light and the third color fluorescent light with the second color supplementary light to provide light to the light splitting device 140.
  • the first light combining element 113 may be a wavelength combining light film, which transmits the second color supplementary light emitted by the first supplementary light source 112 and transmits the light emitted by the wavelength conversion system 111 (the first color light , Second color fluorescence, and third color fluorescence) to combine the second color supplementary light, the first color light, the second color fluorescence, and the third color fluorescence.
  • the first light combining element 113 may reflect the second color supplementary light and transmit light emitted by the wavelength conversion system 111 to combine light, or the first The light-combining element 113 may use an area-coated light-combining film or a polarized light-combining film to transmit or reflect the second color supplementary light and reflect or transmit the light emitted by the wavelength conversion system 111 to combine light. Not one by one here.
  • the spectroscopic device 140 is configured to guide the first color light, the second color fluorescence, and the second color supplementary light to the first spatial light modulator 120 and to direct the third color fluorescence to the second Spatial light modulator 130.
  • the first polarization conversion device 114 is located between the first light combining element 113 and the first spatial light modulator 120, and is configured to combine the second color fluorescence emitted by the light splitting device 140 with the first
  • the two-color complementary light is converted into the second-color fluorescence and the second-color complementary light in a first polarization state.
  • the light in the first polarization state may be one of S light or P light.
  • a relay lens 101 may be disposed between the first light combining element 113 and the first polarization conversion device 114 to collimate and guide light.
  • the second supplementary light source 115 is configured to emit the third color supplementary light to the second light combining element 116.
  • the second supplementary light source 115 may be a laser light source for emitting a third color laser as the third color supplementary light. As described above, the third color is red. Therefore, the second supplementary light source 115 Is a red laser light source for emitting a red laser light as the third color supplementary light.
  • the second light combining element 116 is located on an optical path between the light splitting device 140 and the second spatial light modulator 130.
  • the light splitting device 140 is configured to emit the third color fluorescence to the second light combining device.
  • a light element 116, the second supplementary light source 115 is configured to emit the third color supplementary light to the second light combination element 116, and the second light combination element 116 is configured to fluoresce the third color
  • the third color supplementary photosynthetic light is provided to the second spatial light modulator 130.
  • the second light combining element 116 may be a wavelength light combining film, a light combining film using an area coating, or a polarizing light combining film, which are not listed here one by one. It can be understood that a relay lens 102 may be provided between the second light combining element 116 and the second spatial light modulator 130 to collimate and guide light.
  • the second polarization conversion device 117 is located between the second light combining element 116 and the second spatial light modulator 130, and is configured to supplement the third color supplementary light emitted by the second light combining element 116.
  • the third color complementary light converted into the first polarization state or the second polarization state.
  • the first spatial light modulator 120 is a DMD spatial light modulator, and the first color light reflected when the first spatial light modulator 120 is in an ON state is used as the first spatial light modulator.
  • a color image light and the reflected second color fluorescence and second color supplementary light as the second color image light, and the first color image light and the second color image light are both provided to the image synthesis ⁇ 150 ⁇ Device 150.
  • the first spatial light modulator 120 reflects the first color light as a first color non-image light when its micromirror is in an OFF state, and reflects the second color fluorescence and the second color supplement Light is used as the second color non-image light.
  • the first light recycling device 160 includes a first switchable absorber 161, a first polarization conversion element 162, and a first polarization combining element 163.
  • the first switchable absorber 161 is configured to absorb or block the second color fluorescence in the second color non-image light, the first color light in the first color non-image light and the second color non-image light.
  • the second color complementary light in the image light is recovered by the first light recycling device 160 to the first spatial light modulator 120 for reuse.
  • the first switchable absorber 161 may be a narrow-band filter for absorbing or blocking the second color fluorescence in the second color non-image light, and the second color in the second color non-image light supplements Light can pass through the first switchable absorber 161.
  • the first color light, the second color fluorescence, and the second color supplementary light all have a first polarization state.
  • the first light recycling device 160 the first color light, the second color fluorescence, and the second color supplementary light are all guided to the first spatial light modulator 120 through the first polarization combining element 163,
  • the first color non-image light and the second color non-image light also have the first polarization state, and the first polarization conversion element 162 converts the first color light of the first color non-image light and all of the first color light.
  • the polarization state of the second color supplementary light in the second color non-image light is converted to a second polarization state, the first color light of the first color non-image light of the second polarization state, and the second color non-image
  • the second color supplementary light in the light is guided to the first polarization combining element 163, and the first polarization combining element 163 also causes the first color light of the first color of the second polarization state to be non-image light.
  • the second color complementary light in the second color non-image light is guided to the first spatial light modulator 120 for modulation again.
  • the first light recycling device 160 may further include a first guide element 164 and first relay elements 165 and 166, and the first guide element 164 and the first relay element 166 are located in the first The optical path between the spatial light modulator 120 and the first polarization conversion element 162 or the optical path between the first polarization conversion element 162 and the first polarization combining element 163 is for The first color non-image light and the second color non-image light are guided.
  • the first relay element 165 and 166 (such as a relay lens) are mainly located between the first guide element 164 and the first spatial light modulator 120 and the first guide element 165. An example is described with the first polarization conversion element 162.
  • the first light recycling device 160 may further include a light homogenizing device, and the light homogenizing device may be located between the first guide element 164 and the first relay elements 165 and 166 for The second color supplementary light is homogenized to form a uniform illumination spot, so that the second color supplementary light can be conveniently recycled and used in subsequent light paths.
  • the second spatial light modulator 130 is a DMD spatial light modulator.
  • the second spatial light modulator 130 supplements the third color fluorescence and the third color that are reflected when the micromirror is in an on state. Light is used as the third color image light, and the third color image light is provided to the image combining device 150.
  • the second spatial light modulator 130 reflects the third color fluorescence and the third color supplementary light as the third color non-image light when the micromirror is in an off state.
  • the second light recycling device 170 includes a second polarization combining element 173, a second polarization conversion element 172, and a second switchable absorber 171.
  • the second switchable absorber 171 is configured to absorb or block the third color fluorescence in the third color non-image light, and the third color supplement light in the third color non-image light is replaced by the second light.
  • the recovery device 170 recovers the second spatial light modulator 130 to be reused.
  • the second switchable absorber 171 may be a narrow-band filter for absorbing or blocking the third color fluorescence in the third color non-image light, and the third color in the third color non-image light supplements Light can pass through the second switchable absorber 171.
  • the third color fluorescence and the third color supplementary light may each have a polarization state (such as one of the first polarization state and the second polarization state), and the third color fluorescence and the third color supplementation
  • the light is all guided to the second spatial light modulator 130 through the second polarization combining element 173, and the third color complementary light among the third color non-image light also has the one polarization state
  • the second polarization conversion element 172 converts the polarization state of the third color supplementary light in the third color non-image light into another polarization state, and the third polarization non-image light in the third color non-image light
  • the three-color complementary light is guided to the second polarization combining light element 173, and the second polarization combining light element 173 also guides a third color complementary light in the third color non-image light of the other polarization state.
  • the second light recycling device 170 further includes a second guide element 174 and / or a second relay element 175, 176 (such as a relay lens), the second guide element 174, and / or the second relay element 174.
  • the relay elements 175 and 176 are located on the optical path between the second spatial light modulator 130 and the second polarization conversion element 172 or are located on the second polarization conversion element 172 and the second polarization combining element 173 The light path between is used to guide the third color non-image light.
  • the second light recycling device 170 may further include a light homogenizing device, and the light homogenizing device may be located between the second guide element 174 and the second relay elements 175 and 176 for The third color supplementary light is uniformized to form a uniform illumination spot, so that the third color supplementary light can be conveniently recycled and used in subsequent light paths.
  • the image combining device 150 includes a light combining device 151 and a lens assembly 152.
  • the light combining device 151 is configured to combine the first color image light and the second color image light emitted by the first spatial light modulator 120 with the light
  • the third color image light from the second spatial light modulator 130 photosynthesizes light.
  • the lens assembly 152 is configured to perform the first color image light, the second color image light, and the third color image light from the light combining device 151. Project to display the image.
  • the first color is blue
  • the second color is green
  • the third color is red
  • the second color may be red
  • the third color may also be green.
  • the first color light, the second color fluorescence, and the third color fluorescence are blue laser light, green fluorescence, and red fluorescence, respectively.
  • a color gamut range F1 that is, a color gamut range that the light emitted by the wavelength conversion system 111 can display is a first color gamut range F1.
  • the first color gamut range F1 may be a DCI color gamut range.
  • the first color light, the second color supplement light, and the third color supplement light are blue laser light, green laser light, and red laser light, respectively.
  • the color gamut range that the three supplementary lights can display together is a second color gamut range F2, where the second color gamut range F2 covers the first color gamut range F1 and has a portion that exceeds the first color gamut range F1.
  • the second color gamut range F2 may be a color gamut range REC.2020.
  • the first and second spatial light modulators 120 and 130 modulate the first color light, the second color fluorescence, the second color supplemental light, the third color fluorescence, and a third color light according to an image signal.
  • Color supplementary light to obtain different proportions of first color light, the second color fluorescence, the second color supplemental light, the third color fluorescence, and the third color supplementary light, so that the first color can be displayed
  • An image in any one of the color gamut ranges (for example, color gamut range F3) from the gamut range F1 to the second color gamut range F2.
  • the light source device 110 may be controlled to emit the first color light, the second color fluorescence, and the first Three-color fluorescence.
  • the first and second spatial light modulators 120 and 130 modulate the first color light, the second color fluorescence, and the third color fluorescence according to the corrected image data to obtain the first color gamut.
  • An image in the range F1 so that the image is displayed accurately.
  • the corrected image data may be the same as the original image data.
  • the light source device can be controlled to emit the first color Light, the second color supplementary light and the third color supplementary light, and the first and second spatial light modulators 120 and 130 modulate the first color light, the second color supplementary light and The third color is supplemented to obtain an image of the second color gamut range F2, so that the image is displayed accurately.
  • the color gamut range of the original image data of an image to be displayed falls between the first color gamut range F1 and the second color gamut range F2 (excluding the boundary line between the two color gamut ranges)
  • controlling the The light source device 110 emits the first color light, the second color fluorescence, the second color supplementary light, the third color fluorescence, and a third color supplementary light
  • the first and second spatial light modulators 120, 130 modulating the first color light, the second color fluorescence, the second color supplement light, the third color fluorescence, and the third color supplement light according to a corrected image data to obtain the first color light
  • An image of a color gamut range between the color gamut range F1 and the second color gamut range F2 so that the image is accurately displayed.
  • the corrected image data may include a first corrected image signal b corresponding to the first color light and a second corrected image corresponding to the second color fluorescence A signal g, a third corrected image signal gl corresponding to the second color supplementary light, a fourth corrected image signal r corresponding to the third color fluorescence, and a fifth corrected image signal rl corresponding to the third color supplementary light.
  • the first, second, third, fourth, and fifth corrected image signals are calculated based on the first color original signal B 0 , the second color original signal G 0, and the third color original signal R 0 .
  • the tristimulus value of the pixel obtained by calculating the original signals R 0 , G 0 , and B 0 and the first, second, third, fourth, and fifth corrected image signals r, g, b, and The tristimulus values of the pixels obtained by calculation of rl and gl are equal.
  • FIG. 9 is a schematic diagram of a first system timing adopted by the display device 100.
  • the excitation light source 111a emits a first color light (ie, blue laser light)
  • the wavelength conversion element 111b emits a third color fluorescence (ie, red fluorescence), thereby
  • the wavelength conversion system 111 emits the third color fluorescence to the first light combining element 113
  • the first supplementary light source 112 emits a second color supplementary light (that is, the green laser light) to the first combined light Element 113
  • the first light combining element 113 is configured to provide the first color light, the second color fluorescence, the third color fluorescence, and the second color supplementary photosynthesis light to the spectroscopic device 140
  • the spectroscopic device 140 is configured to direct the first color light, the second color fluorescence, and the second color supplementary light to the relay lens 101 and guide the third color fluorescence to the second light combining element
  • the relay lens 101 transmits the second color supplementary light to the first polarization conversion device 114, and the first polarization conversion device 114 converts the second color supplementary light into a second color supplement having a first polarization state.
  • the first polarization combining element 163 is connected Transmitting the second color supplementary light having the first polarization state from the first polarization conversion device 114 and transmitting the second color supplementary light having the first polarization state to the first spatial light modulator 120,
  • the first spatial light modulator 120 modulates the second color supplementary light according to an image signal (such as a corrected image signal gl) to generate a second color image light and a second color non-image light, and the second color image light is guided.
  • an image signal such as a corrected image signal gl
  • the second supplementary light source 115 emits third color supplementary light (ie, red laser light) to the second light combining element 116,
  • the combining light element 116 combines the third color fluorescence and the third color supplementary light, and the combined third color fluorescence and the third color supplementary light are transmitted to the second polarization through the relay lens 102.
  • a conversion device 117, and the second polarization conversion device 117 converts the third color fluorescence and the third color supplementary light to have a polarization state (either the first polarization state or the second polarization state).
  • This embodiment mainly uses Light converted to the first polarization state
  • the second light combining element 116 receives the third color fluorescence and the third color supplementary light having a polarization state and guides the third color fluorescence and the third color supplementary light having a polarization state (Such as transmission) to the second spatial light modulator 130, and the second spatial light modulator 130 modulates the third color fluorescence and the third color fluorescence having a polarization state according to an image signal (such as the corrected image signals rl and r).
  • the color supplementary light generates a third color image light and a third color non-image light.
  • the third color image light is reflected to the image combining device 150.
  • the light combining device 151 of the image combining device 150 receives the second color combining light.
  • the color image light and the third color image light provide the second color image light and the third color image to the lens assembly 152 after photosynthesizing and combining the second color image light and the third color image light.
  • the third color image light is projected to generate a second color image and a third color image.
  • the second color non-image light generated by the first spatial light modulator 120 is provided to the first switchable absorber 161,
  • the first switch-type absorber 161 emits a second color supplementary light of the second color non-image light.
  • the second color supplementary light has a first polarization state.
  • the second color supplementary light passes through the first relay element 165, the first guide element, and the first relay element 166 to the first polarization conversion element 162, and the first polarization conversion element 162 converts the second
  • the color complementary light is converted into a second color complementary light in a second polarization state, and the second color complementary light in the second polarization state is transmitted to the first polarization combining element 163 by the first polarization conversion element 162, so
  • the second polarized light combining element 163 and the second color complementary light recovered by the first light recycling device 160 are reflected to the first spatial light modulator 120, and the first spatial light modulator 120 may further be
  • the image signal (such as the corrected image signal gl) is adjusted.
  • the second color supplementary light generates a second color image light, and the second color image light is guided to the image synthesizing device 150 for further generating a second color image; the second spatial light modulator 130 generates The third color non-image light is provided to the second switchable absorber 171, and the second switchable absorber 171 emits a third color supplementary light of the third color non-image light, and the third The color complementary light has a polarization state (such as a first polarization state), and the third color complementary light emitted by the second switchable absorber 171 passes through the second relay element 175, the second guide element 174, and the second The relay element 176 to the second polarization conversion element 172, and the second polarization conversion element 172 converts the third color supplementary light into a third color supplementary light of another polarization state (such as the second polarization state) The third color supplementary light of another polarization state is transmitted by the second polarization conversion element 172 to the second polarization combining element 173, and the second
  • the excitation light source 111 a emits a first color light (ie, blue laser light), and the wavelength conversion element 111 b emits a second color fluorescence ( (Ie, green fluorescence), so that the wavelength conversion system 111 emits the second color fluorescence to the first light combining element 113, and the first supplementary light source 112 emits a second color supplementary light (that is, the green laser light) to
  • the first light combining element 113 reflects the second color fluorescent light to the relay lens 101 and transmits the second color supplementary light to the light splitting device 140.
  • the spectroscopic device 140 guides (eg, transmits) the second color fluorescence and the second color supplementary light to the relay lens 101, and the relay lens 101 supplements the second color fluorescence and the second color Light is transmitted to the first polarization conversion device 114, and the first polarization conversion device 114 converts the second color fluorescence and the second color supplementary light into a second color fluorescence and a second color supplement having a first polarization state Light, the first polarization combining element 163 receives The second color fluorescence and the second color supplementary light having the first polarization state emitted by the first polarization conversion device 114 are transmitted to the second color fluorescence and the second color supplementary light having the first polarization state to all
  • the first spatial light modulator 120 modulates the second color fluorescence and the second color supplementary light to generate a second color image according to an image signal (such as the image signal g and the corrected image signal gl).
  • the first spatial light modulator 120 also provides the second color image light to the image synthesizing device 150, the image synthesizing device 150 is configured to generate a second color image
  • the second supplementary light source 115 emits a third color supplementary light (ie, a red laser light) to the second light combining element 116, and the second light combination element 116 passes the third color supplementary light through the relay lens 102 is transmitted to the second polarization conversion device 117, and the second polarization conversion device 117 converts the third color supplementary light to have a polarization state (either the first polarization state or the second polarization state, this embodiment Examples are mainly converted to Light of a first polarization state), the second light combining element 116 receives the third color complementary light having a polarization state and guides (eg, transmits) the third color complementary light having a polarization state To the second spatial light modulator 130, the second spatial light modulator 130 modulates the third color complementary light having a polarization
  • the third-color image light is reflected to the image combining device 150, and the light combining device 151 of the image combining device 150 receives the second-color image light and the third-color image light
  • the second color image light and the third color image light are combined and provided to the lens assembly 152, and the lens component projects the second color image light and the third color image light to generate the The second color image and the third color image.
  • the second color non-image light generated by the first spatial light modulator 120 is provided to the first switchable absorber 161,
  • the first switchable absorber 161 absorbs the second color fluorescence and emits the second color supplementary light of the second color non-image light, the second color supplementary light has a first polarization state, and the first The second color supplementary light emitted from the switch-type absorber 161 passes through the first relay element 165, the first guide element, the first relay element 166 to the first polarization conversion element 162, and the first polarization
  • the conversion element 162 converts the second color supplementary light into a second color supplementary light of a second polarization state, and the second color supplementary light of the second polarization state is transmitted to the first polarization conversion element 162.
  • a polarization combining element 163, the first polarization combining element 163, the second color supplementary light recovered by the first light recycling device 160 is reflected to the first spatial light modulator 120, and the first space
  • the light modulator 120 may further (Such as correcting the image signal gl) modulating the second color supplementary light to generate a second color image light to the image synthesizing device 150 for further generating a second color image; the second spatial light modulator 130 generates the A third color non-image light is provided to the second switch-type absorber 171, and the second switch-type absorber 171 emits a third color supplement light of the third color non-image light, and the third color supplement
  • the light has a polarization state (such as a first polarization state), and the third color supplementary light emitted by the second switchable absorber 171 passes through the second relay element 175, the second guide element 174, and the second relay Element 176 to the second polarization conversion element 172, the second polarization conversion element 172 converts the
  • the excitation light source 111 a emits a first color light (ie, a blue laser light), and the wavelength conversion element 111 b emits the first color light to
  • the first light combining element 113 and the first supplementary light source 112 are turned off.
  • the first light combining element 113 reflects the first color light to the relay lens 101.
  • the first color light is transmitted to the first polarization conversion device 114, and the first polarization conversion device 114 converts the first color light into a first color light having a first polarization state, and the first polarization combination
  • the light element 163 receives the first color light having the first polarization state and transmits the first color light having the first polarization state to the first spatial light modulator. 120.
  • the first spatial light modulator 120 modulates the first color light according to an image signal (such as image signal b) to generate a first color image light and a first color non-image light.
  • the first spatial light modulator 120 The first color image light is also provided to the image combination.
  • the device 150 is configured to generate a first color image.
  • the second supplementary light source 115 emits a third color supplementary light (ie, a red laser light) to the second light combining element 116.
  • the second light combining element 116 converts the first light combining element 116.
  • the three-color complementary light is reflected to the relay lens 102, and the relay lens 102 transmits the third-color complementary light to the second polarization conversion device 117, and the second polarization conversion device 117 transmits the first color conversion light
  • the three-color complementary light is converted into light having one polarization state (either the first polarization state or the second polarization state, and in this embodiment, the light converted to the first polarization state is mainly described), and the second light combining element 116 receives the third color supplementary light having a polarization state (such as a first polarization state) and directs (eg, transmits) the third color supplementary light having a polarization state to the second spatial light modulator 130, so
  • the second spatial light modulator 130 modulates the third
  • the first color non-image light generated by the first spatial light modulator 120 is provided to the first switchable absorber 161,
  • the first switch-type absorber 161 emits the first color non-image light
  • the first color non-image light has a first polarization state
  • the first switch-type absorber 161 emits the first color non-image light.
  • the image light passes through the first relay element 165, the first guide element, and the first relay element 166 to the first polarization conversion element 162, and the first polarization conversion element 162 converts the first color non-image light
  • the first color non-image light converted into the second polarization state, and the first color non-image light in the second polarization state is transmitted by the first polarization conversion element 162 to the first polarization combining element 163,
  • the first polarization combining element 163 reflects the first color non-image light recovered by the first light recycling device 160 to the first spatial light modulator 120, and the first spatial light modulator 120 may further
  • the image signal (such as the corrected image signal b) is modulated.
  • the first color non-image light generates a first color image light
  • the first color image light is provided to the image synthesis device 150 for further generating a first color image
  • the third color non-image light is provided to the second switchable absorber 171, and the second switchable absorber 171 emits a third color supplementary light of the third color non-image light, and the third color
  • the supplementary light has a polarization state (such as a first polarization state), and the third color supplementary light emitted by the second switchable absorber 171 passes through the second relay element 175, the second guide element 174, and the second medium.
  • the second polarization conversion element 172 converts the third color supplementary light into a third color supplementary light of another polarization state, and the other polarization state
  • the third color complementary light (such as the second polarization state) is transmitted by the second polarization conversion element 172 to the second polarization combining element 173, the second polarization combining element 173, and the second light recycling device 170 recovered third light supplementary light reflection
  • the second spatial light modulator 120 may further modulate the third color supplementary light according to an image signal (such as the corrected image signals rl and r) to generate a third color image light and
  • the third color image light is provided to the image synthesis device 150 for further generating a third color image.
  • FIG. 10 is a schematic diagram of a second system timing adopted by the display device 100.
  • the excitation light source 111a emits a first color light (ie, blue laser light)
  • the wavelength conversion element 111b emits a third color fluorescence (ie, red fluorescence)
  • the wavelength conversion system 111 emits the third color fluorescence to the first light combining element 113
  • the first supplementary light source 112 emits a second color supplementary light (that is, the green laser light) to the first combined light Element 113
  • the first light combining element 113 reflects the third color fluorescence to the spectroscopic device 140 and transmits the second color supplementary light to the spectroscopic device 140
  • the spectroscopic device 140 transmits the A third color fluorescent light is guided to the second light combining element 116 and the second color complementary light is guided to the relay lens 101, and the relay lens 101 transmits the second color complementary light to all
  • the first color fluorescent light is guided to the second light combining element 116 and the
  • the first spatial light modulator 120 further receives a third color light.
  • the color fluorescence and the generated second color image light are provided to the image synthesis device 150 for generating a second color image, the second supplementary light source 115 is turned off, and the second light combining element 116 turns the third
  • the color fluorescence is transmitted to the second polarization conversion device 117 through the relay lens 102, and the second polarization conversion device 117 converts the third color fluorescence to have a polarization state (the first polarization state or the second polarization state
  • the polarization state is acceptable.
  • light converted to the first polarization state is mainly used to describe the light.
  • the second light combining element 116 receives the third color fluorescence having the polarization state and applies the polarization state.
  • Third color Light is guided (such as transmitted) to the second spatial light modulator 130, and the second spatial light modulator 130 modulates the third color fluorescence having a polarization state according to an image signal (such as a corrected image signal r) to generate a third Color image light and third color non-image light, the third color image light is reflected to the image combining device 150, and a light combining device 151 of the image combining device 150 receives the second color image light and the
  • the third color image light provides the second color image light and the third color image to the lens assembly 152 after photosynthesizing and combining the second color image light and the third color image.
  • the light is projected to generate a second color image and a third color image.
  • the second color non-image light generated by the first spatial light modulator 120 is provided to the first switchable absorber 161,
  • the first switch-type absorber 161 emits a second color supplementary light of the second color non-image light.
  • the second color supplementary light has a first polarization state.
  • the second color supplementary light passes through the first relay element 165, the first guide element, and the first relay element 166 to the first polarization conversion element 162, and the first polarization conversion element 162 converts the second
  • the color complementary light is converted into a second color complementary light in a second polarization state, and the second color complementary light in the second polarization state is transmitted to the first polarization combining element 163 by the first polarization conversion element 162, so
  • the second polarized light combining element 163 and the second color complementary light recovered by the first light recycling device 160 are reflected to the first spatial light modulator 120, and the first spatial light modulator 120 may further be
  • the image signal (such as the corrected image signal gl) is adjusted.
  • the second color supplementary light generates a second color image light to the image synthesizing device 150 for further generating a second color image;
  • the third color non-image light (which is The third color fluorescence) is provided to the second switch-type absorber 171, and the second switch-type absorber 171 absorbs the third color fluorescence, so that during the first period T1, the second The light recovery device 170 does not recover the third color light at this time.
  • the excitation light source 111a emits a first color light (ie, blue laser light), and the wavelength conversion element 111b emits a second color fluorescence ( (Ie, green fluorescence), so that the wavelength conversion system 111 emits the second color fluorescence to the first light combining element 113, the first supplementary light source 112 is turned off, and the first light combining element 113 turns the first Two-color fluorescence is reflected to the spectroscopic device 140, and the spectroscopic device 140 directs (transmits) the second-color fluorescence to the relay lens 101, and the relay lens 101 transmits the second-color fluorescence to The first polarization conversion device 114 converts the second color fluorescence into a second color fluorescence having a first polarization state, and the first polarization combining element 163 receives the first The second color fluorescence having a first polarization state emitted by
  • the first spatial light modulator 120 also provides the second color image light to the image synthesis device. 150 is used to generate a second color image.
  • the second supplementary light source 115 emits a third color supplementary light (ie, a red laser light) to the second light combining element 116.
  • the second light combining element 116 converts the third light
  • the color supplementary light is transmitted to the second polarization conversion device 117 through the relay lens 102, and the second polarization conversion device 117 converts the third color supplementary light to have a polarization state (a first polarization state or The second polarization state may be used.
  • light converted to the first polarization state is mainly used for description.
  • the second light combining element 116 receives the third color supplementary light having the polarization state and applies the light of the third color.
  • the third color supplementary light having a polarization state is guided (eg, transmitted) to the second spatial light modulator 130, and the second spatial light modulator 130 modulates the polarization state according to an image signal (such as a corrected image signal rl).
  • the third color complements the light to produce the first Color image light and third color non-image light
  • the third color image light is reflected to the image combining device 150
  • a light combining device 151 of the image combining device 150 receives the second color image light and the
  • the third color image light provides the second color image light and the third color image to the lens assembly 152 after photosynthesizing and combining the second color image light and the third color image.
  • the light is projected to generate a second color image and a third color image.
  • the second color non-image light (which is the second color fluorescence) generated by the first spatial light modulator 120 is provided to the The first switchable absorber 161 absorbs the second color fluorescence, and therefore, in the second period T2, the first light recycling device 160 does not perform the second color light Recycling; the third color non-image light generated by the second spatial light modulator 130 is provided to the second switchable absorber 171, and the second switchable absorber 171 emits the third A third color complementary light whose color is not image light, the third color complementary light has a polarization state (such as a first polarization state), and the third color complementary light emitted by the second switchable absorber 171 passes through the A second relay element 175, a second guide element 174, a second relay element 176 to the second polarization conversion element 172, and the second polarization conversion element 172 converts the third color supplementary light into another A third color of polarization complements the light, said another polarization state (such as
  • the excitation light source 111a emits a first color light (ie, blue laser light), and the wavelength conversion element 111b emits the first color light to The first light combining element 113 and the first supplementary light source 112 are turned off.
  • a first color light ie, blue laser light
  • the wavelength conversion element 111b emits the first color light to The first light combining element 113 and the first supplementary light source 112 are turned off.
  • the first light combining element 113 reflects the first color light to the light splitting device 140, and the light splitting device 140 reflects the first light
  • a color light is guided (eg, transmitted) to the relay lens 101, and the relay lens 101 transmits the first color light to the first polarization conversion device 114, and the first polarization conversion device 114 transmits
  • the first color light is converted into a first color light having a first polarization state, and the first polarization combining element 163 receives the first color light having the first polarization state from the first polarization conversion device 114 And transmitting the first color light having a first polarization state to the first spatial light modulator 120, and the first spatial light modulator 120 modulates the first color according to an image signal (such as an image signal b)
  • the first spatial light modulator 120 further provides the first color image light to the image synthesis device 150 for generating a first color image
  • the second supplementary light source 115 emits a third color supplementary light (ie
  • the second light combining element 116 reflects the third color complementary light to the relay lens 102, and the relay lens 102 reflects the third color complementary light Transmitted to the second polarization conversion device 117, and the second polarization conversion device 117 converts the third color supplementary light to have a polarization state (either the first polarization state or the second polarization state, this embodiment)
  • the second light combining element 116 receives the third color supplementary light having a polarization state (such as the first polarization state), and converts the light having the polarization state into light.
  • the third color supplementary light is guided (such as transmitted) to the second spatial light modulator 130, and the second spatial light modulator 130 modulates the third polarized state according to an image signal (such as a corrected image signal rl)
  • Color supplementary light produces a third color image light and a third color Color image light
  • the third color image light is reflected to the image combining device 150
  • the light combining device 151 of the image combining device 150 receives the first color image light and the third color image light.
  • the first color image light and the third color image light are combined and provided to the lens component 152, and the lens component 152 projects the first color image light and the third color image light to generate The first color image and the third color image.
  • the first color non-image light generated by the first spatial light modulator 120 is provided to the first switchable absorber 161,
  • the first switch-type absorber 161 emits the first color non-image light
  • the first color non-image light has a first polarization state
  • the first switch-type absorber 161 emits the first color non-image light.
  • the image light passes through the first relay element 165, the first guide element, and the first relay element 166 to the first polarization conversion element 162, and the first polarization conversion element 162 converts the first color non-image light
  • the first color non-image light converted into the second polarization state, and the first color non-image light in the second polarization state is transmitted by the first polarization conversion element 162 to the first polarization combining element 163,
  • the first polarization combining element 163 reflects the first color non-image light recovered by the first light recycling device 160 to the first spatial light modulator 120, and the first spatial light modulator 120 may further
  • the image signal (such as the corrected image signal b) is modulated.
  • the first color non-image light generates a first color image light
  • the first color image light is provided to the image synthesis device 150 for further generating a first color image
  • the third color non-image light is provided to the second switchable absorber 171, and the second switchable absorber 171 emits a third color supplementary light of the third color non-image light, and the third color
  • the supplementary light has a polarization state (such as a first polarization state), and the third color supplementary light emitted by the second switchable absorber 171 passes through the second relay element 175, the second guide element 174, and the second medium.
  • the second polarization conversion element 172 converts the third color supplementary light into a third color supplementary light of another polarization state, and the other polarization state
  • the third color complementary light (such as the second polarization state) is transmitted by the second polarization conversion element 172 to the second polarization combining element 173, the second polarization combining element 173, and the second light recycling device 170 third color supplementary light recovered
  • the second spatial light modulator 120 may further modulate the third color supplementary light according to an image signal (such as the corrected image signals rl and r) to generate a third color image light and
  • the third color image light is provided to the image synthesis device 150 for further generating a third color image.
  • FIG. 11 is a schematic diagram of a third system timing adopted by the display device 100.
  • the excitation light source 111a is turned off, so that the wavelength is converted.
  • the system 111 is turned off, the first supplementary light source 112 emits a second color supplementary light (ie, the green laser light) to the first light combining element 113, and the first light combination element 113 supplies the second color complementary light Transmitted to the relay lens 101 via the spectroscopic device 140, the relay lens 101 transmits supplementary light of a second color to the first polarization conversion device 114, and the first polarization conversion device 114 transmits a second color
  • the supplementary light is converted into a second color supplementary light having a first polarization state, and the first polarization combining element 163 receives the second color supplementary light having a first polarization state from the first polarization conversion device 114 and Transmitting the second color complementary light having a first polarization state to the first spatial light modulator 120, and the first spatial light modulator 120 modulates the second spatial light modulator 120 according to an image signal (such as a corrected image signal gl) Color supplement light produces Color image light and second color non-image light, the second
  • the light combining device 151 of the image combining device 150 receives the second color image light and the third color image light to convert the second color
  • the image light and the third color image are combined and provided to the lens assembly 152, and the lens component projects the second color image light and the third color image light to generate a second color image and a first color image.
  • the second color non-image light generated by the first spatial light modulator 120 is provided to the first switchable absorber 161,
  • the first switch-type absorber 161 emits a second color supplementary light of the second color non-image light.
  • the second color supplementary light has a first polarization state.
  • the second color supplementary light passes through the first relay element 165, the first guide element, and the first relay element 166 to the first polarization conversion element 162, and the first polarization conversion element 162 converts the second
  • the color complementary light is converted into a second color complementary light in a second polarization state, and the second color complementary light in the second polarization state is transmitted to the first polarization combining element 163 by the first polarization conversion element 162, so
  • the second polarized light combining element 163 and the second color complementary light recovered by the first light recycling device 160 are reflected to the first spatial light modulator 120, and the first spatial light modulator 120 may further be
  • the image signal (such as the corrected image signal gl) is adjusted.
  • the second color supplementary light generates a second color image light, and the second color image light is guided to the image synthesizing device 150 for further generating a second color image; the second spatial light modulator 130 generates The third color non-image light is provided to the second switchable absorber 171, and the second switchable absorber 171 emits a third color supplementary light of the third color non-image light, and the third The color complementary light has a polarization state (such as a first polarization state), and the third color complementary light emitted by the second switchable absorber 171 passes through the second relay element 175, the second guide element 174, and the second The relay element 176 to the second polarization conversion element 172, and the second polarization conversion element 172 converts the third color supplementary light into a third color supplementary light of another polarization state (such as the second polarization state) The third color supplementary light of another polarization state is transmitted by the second polarization conversion element 172 to the second polarization combining element 173, and the second
  • the excitation light source 111 a is turned off, so that the wavelength conversion system 111 is turned off, and the first supplementary light source 112 emits a second color supplement.
  • Light ie, the green laser light
  • the first light combining element 113 transmits the second color supplementary light to the relay lens 101 via the light splitting device 140
  • the relay lens 101 transmits the second color supplementary light to the first polarization conversion device 114
  • the first polarization conversion device 114 converts the second color supplementary light into a second light having a first polarization state.
  • the first polarization combining element 163 receives the second color supplementary light having a first polarization state emitted by the first polarization conversion device 114 and converts the second color having a first polarization state
  • the supplementary light is transmitted to the first spatial light modulator 120, and the first spatial light modulator 120 modulates the second color supplementary light to generate a second color image according to an image signal (such as the image signal g and the corrected image signal gl).
  • the first spatial light modulator 120 also provides the second color image light to the image synthesis device 150 for generating a second color image, and the second supplementary light source 115 emits a third color supplementary light (that is, Red laser light) to the second light combining element 116, the second light combining element 116 transmits the third color supplementary light to the second polarization conversion device 117 via the relay lens 102, and the first
  • the two polarization conversion device 117 converts the third color supplementary light to have a polarization state (either the first polarization state or the second polarization state, and this embodiment mainly describes the light converted to the first polarization state).
  • the second light combining element 116 receives the third color supplementary light having a polarization state and directs (eg transmits) the third color supplementary light having a polarization state to the second spatial light modulator 130
  • the second spatial light modulator 130 modulates the third color supplementary light having a polarization state according to an image signal (such as a corrected image signal rl) to generate a third color image light and a third color non-image light.
  • Color image light is reflected to the image Forming device 150, and light combining device 151 of the image synthesizing device 150 receives the second color image light and the third color image light, and combines the second color image light and the third color image to provide light To the lens assembly 152, the lens assembly projects the second color image light and the third color image light to generate a second color image and a third color image.
  • the second color non-image light generated by the first spatial light modulator 120 is provided to the first switchable absorber 161,
  • the first switch-type absorber 161 emits a second color supplementary light of the second color non-image light.
  • the second color supplementary light has a first polarization state.
  • the second color supplementary light passes through the first relay element 165, the first guide element, and the first relay element 166 to the first polarization conversion element 162, and the first polarization conversion element 162 converts the second
  • the color complementary light is converted into a second color complementary light in a second polarization state, and the second color complementary light in the second polarization state is transmitted to the first polarization combining element 163 by the first polarization conversion element 162, so
  • the second polarized light combining element 163 and the second color complementary light recovered by the first light recycling device 160 are reflected to the first spatial light modulator 120, and the first spatial light modulator 120 may further be
  • the image signal (such as the corrected image signal gl) is adjusted.
  • the second color supplementary light generates a second color image light
  • the second color image light is provided to the image synthesis device 150 for further generating a second color image
  • the second spatial light modulator 130 generates
  • the third color non-image light is provided to the second switchable absorber 171, and the second switchable absorber 171 emits a third color supplementary light of the third color non-image light
  • the third The color complementary light has a polarization state (such as a first polarization state)
  • the third color complementary light emitted by the second switchable absorber 171 passes through the second relay element 175, the second guide element 174, and the second Relay element 176 to the second polarization conversion element 172, the second polarization conversion element 172 converts the third color supplementary light into a third color supplementary light of another polarization state, and the other polarization
  • the third color complementary light in the state (such as the second polarization state) is transmitted by the second polarization conversion element 172 to the second polarization combining element
  • an image signal such as a corrected image signal r1
  • the excitation light source 111 a emits a first color light (ie, a blue laser light), and the wavelength conversion element 111 b emits the first color light to The first light combining element 113 and the first supplementary light source 112 are turned off.
  • a first color light ie, a blue laser light
  • the wavelength conversion element 111 b emits the first color light to The first light combining element 113 and the first supplementary light source 112 are turned off.
  • the first light combining element 113 reflects the first color light to the light splitting device 140, and the light splitting device 140 reflects the first light
  • a color light is guided (transmitted) to the relay lens 101, and the relay lens 101 transmits the first color light to the first polarization conversion device 114, and the first polarization conversion device 114 transmits the first color light
  • the first color light is converted into the first color light having the first polarization state
  • the first polarization combining element 163 receives the first color light having the first polarization state from the first polarization conversion device 114 and Transmitting the first color light having a first polarization state to the first spatial light modulator 120, and the first spatial light modulator 120 modulates the first color light according to an image signal (such as an image signal b)
  • the first color image light and the first color non-image light are generated, so
  • the first spatial light modulator 120 also provides the first color image light to the image synthesis device 150 for generating a first color image
  • the second light combining element 116 reflects the third color complementary light to the relay lens 102, and the relay lens 102 transmits the third color complementary light
  • the second polarization conversion device 117 converts the third color supplementary light to have a polarization state (either the first polarization state or the second polarization state, this embodiment mainly
  • the second light combining element 116 receives the third color supplementary light having a polarization state (such as the first polarization state) and converts the light having the polarization state
  • the third color supplementary light is guided (such as transmitted) to the second spatial light modulator 130, and the second spatial light modulator 130 modulates the third color having a polarization state according to an image signal (such as a corrected image signal rl).
  • Complementary light produces third color image light and third color Non-image light
  • the third color image light is reflected to the image combining device 150
  • the light combining device 151 of the image combining device 150 receives the first color image light and the third color image light.
  • the first color image light and the third color image light are combined and provided to the lens assembly 152, and the lens component projects the first color image light and the third color image light to generate a first A color image and a third color image.
  • the first color non-image light generated by the first spatial light modulator 120 is provided to the first switchable absorber 161,
  • the first switch-type absorber 161 emits the first color non-image light
  • the first color non-image light has a first polarization state
  • the first switch-type absorber 161 emits the first color non-image light.
  • the image light passes through the first relay element 165, the first guide element, and the first relay element 166 to the first polarization conversion element 162, and the first polarization conversion element 162 converts the first color non-image light
  • the first color non-image light converted into the second polarization state, and the first color non-image light in the second polarization state is transmitted by the first polarization conversion element 162 to the first polarization combining element 163,
  • the first polarization combining element 163 reflects the first color non-image light recovered by the first light recycling device 160 to the first spatial light modulator 120, and the first spatial light modulator 120 may further
  • the image signal (such as the corrected image signal b) is modulated.
  • the first color non-image light generates a first color image light
  • the first color image light is provided to the image synthesis device 150 for further generating a first color image
  • the third color non-image light is provided to the second switchable absorber 171, and the second switchable absorber 171 emits a third color supplementary light of the third color non-image light, and the third color
  • the supplementary light has a polarization state (such as a first polarization state), and the third color supplementary light emitted by the second switchable absorber 171 passes through the second relay element 175, the second guide element 174, and the second medium.
  • the second polarization conversion element 172 converts the third color supplementary light into a third color supplementary light of another polarization state, and the other polarization state
  • the third color complementary light (such as the second polarization state) is transmitted by the second polarization conversion element 172 to the second polarization combining element 173, the second polarization combining element 173, and the second light recycling device 170 recovered third light supplementary light reflection
  • the second spatial light modulator 120 may further modulate the third color supplementary light according to an image signal (such as the corrected image signals rl and r) to generate a third color image light and
  • the third color image light is provided to the image synthesis device 150 for further generating a third color image.
  • the display device 100 can control the light sources 111a, 112, 115 according to the requirements of the dynamic color gamut (such as judging by the color gamut of the image to be displayed according to the image data).
  • the switching timing and the modulation timing of the first and second spatial light modulators 120 and 130 are shown, and then the switching time of each light source 111a, 112, and 115 is changed to increase or decrease the fluorescence / laser ratio, or make the fluorescent laser time-division modulation, etc. Purpose, thereby displaying the image more accurately.
  • the color gamut range of REC 2020 can be achieved by adding a small amount of red and green lasers.
  • FIG. 12 is a schematic diagram of the technical color gamut and color volume expansion obtained by the display device 100 shown in FIG. 5 after measurement. Specifically, it is measured that the color gamut can be extended to the range of Rec. 2020 by adding a green laser and a red laser with a brightness of 5%, in which the peripheral shaded area shown in FIG. 12 is compared with the ordinary DCI-P3 color gamut The extended color gamut range of the range display device shows that the display effect of the display device 100 is better.
  • the second color supplement light and the third color supplement light are a green laser and a red laser. Since the pure laser has better monochromaticity, it can make the color gamut wider and more expensive. By recycling the pure laser It can increase the brightness of the solid-color laser on the screen while saving costs.
  • each pixel has 256 gray levels (0-255), irrespective of diffraction loss and other losses, then we call all pixels RGB gray levels of a frame as ( 255, 0, 0)
  • the red picture has 2.55 million "units" of red light. If only 1.2 million "units" of red lasers are needed in a frame, the utilization rate of red lasers is only 47% in the absence of a light recycling system. However, after the light recycling system is added, when the red laser is recycled only once, its utilization The rate rose to 71.9%, that is, without increasing the power consumption of the laser, the brightness of the red laser pixel on the screen increased by 53%.
  • the display device 100 according to the present invention has first and second spatial light modulators 120 and 130.
  • the dual-chip DMD system can improve the status of insufficient brightness or a certain color in a single-chip DMD system.
  • the display device 100 according to the present invention can use one of the spatial light modulators (120 or 130) to separately process red light, which can greatly improve the problem of insufficient red light and make the screen color more vivid. Due to the better monochromaticity of pure laser, it can make the color gamut wider and more expensive. Although the fluorescence is high, but the color is poor, it will reduce the color gamut. Therefore, the first and The second switch-type absorber ensures that only pure laser is recovered.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

一种显示设备包括光源装置、第一空间光调制器、第二空间光调制器、第一光回收装置及第二光回收装置,光源装置用来发出第一颜色光、第二颜色荧光、第二颜色补充光、第三颜色荧光及第三颜色补充光;第一空间光调制器用于调制第一颜色光产生第一颜色图像光及调制第二颜色荧光与第二颜色补充光产生第二颜色图像光及非投影光;第二空间光调制器调制第三颜色荧光及第三颜色补充光产生第三颜色图像光及非投影光,第一光回收装置将第一空间光调制器产生的非投影光中的第一颜色光与第二颜色补充光回收至第一空间光调制器再次利用;第二光回收装置将第二空间光调制器产生的非投影光中的第三颜色补充光回收至第二空间光调制器再次利用。

Description

显示设备 技术领域
本发明涉及显示技术领域,尤其涉及一种显示设备。
背景技术
色域通常指人眼在自然界能够看到的可见光的光谱轨迹,可见光谱轨迹所构成区域的面积即为人眼能够看到可见光的最大色域面积。目前,以不同显示器件构成的投影机、显示器等显示设备都是采用R、G、B三基色显示设备,对图像进行色彩还原再现。在一个指定的色度空间,如CIE1931xy色度空间,显示设备的R、G、B三基色所形成三角形称为该设备能够显示的色域,色域空间面积越大,则人们感觉呈现的色彩画面越鲜艳、越逼真,然而,如何使得所述显示设备可以实现较宽色域的显示是业界一种重要的技术课题。
激光投影机等显示设备的光源一般分为三大类,一类是通过短波长的激光激发不同颜色的荧光粉以产生红绿蓝三基色的基色光。另一类直接利用红绿蓝三色激光作为三基色光源。第三类是前两类的组合,一般蓝色激光光源既作为短波长的激发光源激发荧光粉以产生红绿基色光,本身又作为蓝色的基色光。这三种不同的实现技术各有优缺点。对于激光激发荧光粉或激光荧光混合的方案,因为氮化镓基底的半导体蓝光激光器具有效率高,寿命长,工作稳定的特点,利用蓝光半导体激光器激发荧光粉色轮的方案具有寿命长,效率高,设备稳定,成本低的特点。但是由于荧光粉激发的荧光(Laser phosphor)的频谱较宽,因而导致这种方案的色域比较小。一般利用此技术的显示设备能够覆盖完全的sRGB色域,通过一些增强处理,如加入窄带的光滤波器去除绿光和红光中的黄光光谱,能够增强其色域达到DCI-P3色域。但是窄带滤波会损失相当大的光亮度,从而使得显示设备的效率大大降低。采用纯RGB激光的显示设备,因为RGB激光具有很好的单色性,因而具有非常宽广的色域范围。利用RGB激光的显示设备(如投影***)能够轻易达到REC.2020色域标准,关于前述几种显示设备的色域比对图请参阅图1。
然而,RGB激光显示设备(如投影仪)也存在诸多缺点。第一是散斑。散斑是由于激光的相干性,导致在显示平面上反射的光由于平面的起伏产生的相位差引起干涉,导致显示画面出现亮度分布的不均匀。虽然有很多发明尝试解决激光散斑的问题,但是效果都不理想。第二是RGB激光显示设备的成本高。这是由于RGB激光显示设备中的红和绿激光在目前的技术下还不成熟。半导体绿激光的效率目前还 只能做到20%以下,远低于氮化镓衬底的蓝光激光器和三元衬底的红光激光器,且成本很高。而红激光虽然效率能做到和蓝激光差不多,但是红激光的温度稳定性差,不仅随着温度的增加其效率显著降低,而且中心波长也会发生漂移。这两点使得RGB激光显示设备随温度变化会出现偏色。这就需要对红激光器增加恒温装置以稳定红激光器的工作状态,这也意味着需要大功率的冷却装置来保证红激光的工作温度稳定,从而大大增加了RGB激光显示设备的成本。
针对以上,本发明提出将激光荧光和RGB激光等补充光相结合,能够有效的发挥两者的优势并弥补各自的不足。通过在激光荧光***中加入少量的红和绿激光作为补充光,能够有效拓展投影***的色域范围。并且由于荧光的加入,能够大大的减弱纯激光等补充光的散斑效应。虽然不能完全消除散斑,但是荧光的加入使得散斑的对比度大大的降低而不被人眼所察觉。由于不需要大功率的红绿激补充光,因而相比RGB激光光源不需要复杂的散热***,因而也大大降低了***的成本。
进一步地,如何对显示设备产生的非图像光进行回收再次利用以提高光利用率及画面亮度也是一个重要的问题。现有显示设备(如投影设备)通常采用空间光调制器进行图像调制,在图像调制过程中会产生的非图像光,本发明考虑对所述非图像光进行回收。具体地,一种采用DLP(Digital Light Procession,数字光处理)投影技术的DMD(Digital Micromirror Device,数字微镜设备)空间光调制器,由于其对比度高、器件寿命长、填充因子高等优点而被越来越广泛地应用。上述DLP投影技术中,光源时序的出射R(红)、G(绿)、B(蓝)三色光(或者,R(红)、G(绿)、B(蓝)、W(白)等更多色),各种色彩的光投射在DMD芯片上,DMD芯片在接受到DLP控制***的控制信号后,将不同色彩的光反射到投影屏幕上形成图像。
其中,DMD芯片由数十万乃至上百万个微镜,一个微镜对应一个像素。每个微镜的下方均设置有转动装置,在DLP控制***输出的数字驱动信号的控制下,微镜可以在ON状态和OFF状态这两种状态之间进行翻转,微镜翻转的速率可达几千次每秒。
如图2所示,图2是采用DLP投影技术的DMD芯片调制图像的光路原理示意图,所述DMD芯片包括多个微镜8,当微镜8处于ON状态时,将入射光9反射至投影镜头10最终出射成图像;当微镜8处于OFF状态时,将入射光9反射至投影镜头10之外的区域,被投影机外壳吸收或者在壳体内部来回反射损耗掉。DLP控制***根据图像帧数据中各像素的灰阶值控制对应微镜8处于ON状态的次数(总时长),而每一个微镜8处于ON状态的次数(总时长)又决定了投影屏幕上对应像素的亮度。
在图像调制过程中,DMD芯片处于ON状态的微镜8将入射光反 射至投影镜头10形成投影光,而DMD芯片也会将相当强度的光由OFF状态的微镜8的反射而损失掉,投影光以外的光没有得到有效利用。
针对以上,一种一片式空间光调制器的基本的光回收***设计如图3所示。具体地,图3所示的显示设备包括光源15、偏振转换装置13、偏振合光片16、空间光调制器11、及镜头组件12,光源15发出的光经过偏振转换装置13进行偏振转换后后入射到空间光调制器11上,ON状态时光经反射被提供到镜头组件12上,OFF状态时光经偏振转换装置14偏振转换和经偏振合光片16反射再次入射到空间光调制器11上以增强画面亮度。另一种基于双光空间调制器的光回收***设计如图4所示,具体地,图3所示的显示设备包括光源1、第一片空间光调制器2、中继元件5、6、7、8、第二片空间光调制器3及镜头组件4,光源1发出的光经第一片空间光调制器2调制后形成用于显示图像的第一光18和不用于显示图像的第二光17。第一光17经光回收***19后与第二光18再经第二片空间光调制器3进行调制,但其第一片空间光调制器2仅限于LCD或LCOS。其中,可以理解,图2所示的显示设备的光回收***可以包括光引导及中继元件5、6、7、8,镜头组件4则对应所述第二片空间光调制器3设置,可以对所述第二片空间光调制器3发出的图像光进行投影显示。
然而,上述两种设计也各自存在一定不足,如第一种未针对现有双片式空间光调制器的显示设备,第二种对空间光调制器的类型有所限制,有必要改善。
发明内容
有鉴于此,本发明提供一种可以改善上述至少一个技术问题的显示设备。
一种显示设备,所述显示设备包括光源装置、第一空间光调制器、第二空间光调制器、第一光回收装置及第二光回收装置,所述光源装置用来发出第一颜色光、第二颜色荧光、第二颜色补充光、第三颜色荧光及第三颜色补充光;所述第一空间光调制器用于接收所述光源装置发出的第一颜色光、第二颜色荧光、第二颜色补充光,并调制所述第一颜色光产生第一颜色图像光及调制所述第二颜色荧光与第二颜色补充光产生第二颜色图像光及非投影光;所述第二空间光调制器用于接收所述光源装置发出的第三颜色补充光及第三颜色荧光,并调制所述第三颜色荧光及所述第三颜色补充光产生第三颜色图像光及非投影光,所述第一空间光调制器发出的第一颜色图像光与第二颜色图像光及所述第二空间光调制器发出的第三颜色图像光合成以显示图像;所述第一光回收装置用来将所述第一空间光调制器产生的非投影光中的第一颜色光与第二颜色补充光回收至所述第一空间光调制器再次利用; 所述第二光回收装置用来将所述第二空间光调制器产生的非投影光中的第三颜色补充光回收至所述第二空间光调制器再次利用。
与现有技术相比较,本发明显示设备中,所述第二及第三颜色补充光可以拓宽所述第二颜色荧光的色域,使得所述显示设备的色域较宽,显示效果较好。另外,所述第二及第三颜色补充光也可以增加所述显示设备的亮度,从而达到高亮度的图像显示。此外,所述第一光回收装置及第二光回收装置用来将所述非投影光中的第二及第三颜色补充光回收至所述第一空间光调制器及第二空间光调制器再次利用,在节约成本的同时,也使得画面第二及第三颜色补充光的亮度增强,从而提高画面每个像素的第二及第三颜色补充光亮度。
附图说明
图1是几种采用不同光源的显示设备的色域范围比对图。
图2是采用DLP投影技术的DMD芯片调制图像的光路原理示意图。
图3是一种一片式空间光调制器的基本的光回收***的结构及光路原理示意图。
图4是另一种基于双光空间调制器的光回收***的结构及光路原理示意图。
图5是本发明一较佳实施方式的显示设备的方框示意图。
图6是图5所述显示设备的图像调制原理示意图。
图7是图5所示显示设备的波长转换***的结构示意图。
图8是图5所示显示设备的色域范围示意图。
图9-11是所述显示设备100采用的***时序示意图。
图12是图5所示显示设备的技术色域和色彩体积扩展示意图。
主要元件符号说明
显示设备          100
光源装置          110
第一空间光调制器  120
第二空间光调制器  130
分光装置          140
图像合成装置      150
波长转换***      111
第一补充光源      112
第一合光元件      113
第一偏振转换装置  114
第二补充光源      115
第二合光元件      116
第二偏振转换装置  117
激发光源          111a
波长转换元件      111b
分段区域          111c
中继透镜          101、102
第一光回收装置    160
第二光回收装置    170
第一开关式吸收体  161
第一偏振转换元件  162
第一偏振合光元件  163
第一引导元件      164
第一中继元件      165、166
第二偏振合光元件  173
第二偏振转换元件  172
第二开关式吸收体  171
第二引导元件      174
第二中继元件      175、176
合光装置          151
镜头组件          152
色域范围          F1、F2、F3
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
有鉴于此,本发明提出一种显示设备,用于改善上述提到的至少一个技术问题,具体地,所述显示设备包括光源装置、第一空间光调制器、第二空间光调制器、第一光回收装置及第二光回收装置,所述光源装置用来发出第一颜色光、第二颜色荧光、第二颜色补充光、第三颜色荧光及第三颜色补充光;所述第一空间光调制器用于接收所述光源装置发出的第一颜色光、第二颜色荧光、第二颜色补充光,并调制所述第一颜色光产生第一颜色图像光及调制所述第二颜色荧光与第二颜色补充光产生第二颜色图像光及非投影光;所述第二空间光调制器用于接收所述光源装置发出的第三颜色补充光及第三颜色荧光,并调制所述第三颜色荧光及所述第三颜色补充光产生第三颜色图像光及非投影光,所述第一空间光调制器发出的第一颜色图像光与第二颜色图像光及所述第二空间光调制器发出的第三颜色图像光合成以显示图像;所述第一光回收装置用来将所述第一空间光调制器产生的非投影光中的第一颜色光与第二颜色补充光回收至所述第一空间光调制器再次利用;所述第二光回收装置用来将所述第二空间光调制器产生的非投影光中的第三颜色补充光回收至所述第二空间光调制器再次利用。
与现有技术相比较,本发明显示设备中,所述第二及第三颜色补充光可以拓宽所述第二颜色荧光的色域,使得所述显示设备的色域较宽,显示效果较好。另外,所述第二及第三颜色补充光也可以增加所述显示设备的亮度,从而达到高亮度的图像显示。此外,所述第一光回收装置及第二光回收装置用来将所述非投影光中的第二及第三颜色补充光回收至所述第一空间光调制器及第二空间光调制器再次利用,在节约成本的同时,也使得画面第二及第三颜色补充光的亮度增强,从而提高画面每个像素的第二及第三颜色补充光亮度。
请参阅图5及图6,图5是本发明一较佳实施方式的显示设备100的方框示意图,图6是图5所述显示设备100的图像调制原理示意图。所述显示设备100包括光源装置110、第一空间光调制器120、第二空间光调制器130、图像合成装置150、第一光回收装置160及第二光回收装置170。其中,所述第一空间光调制器120与所述第二空间光调制器130构成光调制模块,用来依据图像数据对所述光源装110置发出的光进行图像调制以产生非投影光及待显示图像所需的投影光。所述第一光回收装置160与所述第二光回收装置170构成所述光回收模块,用来将所述非投影光中的部分光回收至所述光调制模块再次利用。
具体地,所述光源装置110用于发出第一颜色光、第二颜色荧光、第二颜色补充光、第三颜色荧光及第三颜色补充光。
所述第一空间光调制器120用于接收所述光源装置110发出的第一颜色光、第二颜色荧光、第二颜色补充光,并调制所述第一颜色光产生第一颜色图像光及调制所述第二颜色荧光与第二颜色补充光产生第二颜色图像光,以及将所述第一颜色图像光、所述第二颜色图像光引导至所述图像合成装置150。
所述第一空间光调制器120调制所述第一颜色光、第二颜色荧光与第二颜色补充光时还产生第一颜色非图像光及第二颜色非图像光,所述第一光回收装置160用于将所述第一颜色非图像光中的第一颜色光及所述第二颜色非图像光中的第二颜色补充光回收至所述第一空间光调制器120再次利用。
所述第二空间光调制器130用于接收所述光源装置110发出的第三颜色补充光及第三颜色荧光,并调制所述第三颜色荧光及所述第三颜色补充光产生第三颜色图像光。所述图像合成装置150用于将所述第一颜色图像光与第二颜色图像光及所述第二空间光调制器130发出的第三颜色图像光合成以显示图像。所述第二空间光调制器130调制所述第三颜色荧光与第三颜色补充光时还产生第三颜色非图像光,所述第二光回收装置170还用于接收所述第二空间光调制器130产生的第三颜色非图像光中的至少部分并将所述第三颜色非图像光中的至少部分回收至所述第二空间光调制器130再次利用。
进一步地,本实施方式中,所述光源装置110包括波长转换*** 111、分光装置140、第一补充光源112、第一合光元件113、第一偏振转换装置114、第二补充光源115、第二合光元件116、及第二偏振转换装置117。请参阅图7,图7是所述波长转换***111的结构示意图,所述波长转换***111包括激发光源111a及波长转换元件111b。
所述激发光源111a用于发出激发光,所述波长转换元件111b用于将一部分激发光转换为第二颜色荧光及第三颜色荧光,所述波长转换***111将所述波长转换元件111b转换的第二颜色荧光及第三颜色荧光提供至所述第一合光元件113,以及将另一部分激发光作为所述第一颜色光也提供至所述第一合光元件113。
所述激发光源111a可以为激光光源,如蓝色激光光源,用于发出蓝色激光作为所述激发光。所述波长转换元件111b可以为色轮,透射式或反射式不限,其可以包括沿圆周方向依次设置的至少两个分段区域111c。所述波长转换元件工作时,每个分段区域111c顺序位于所述激发光所在的光路上。其中一个分段区域111c可以接收所述激发光并发出所述激发光作为所述第一颜色光。至少一个分段区域111c设置有荧光粉,用于接收所述激发光并产生受激光作为所述第二颜色荧光及第三颜色荧光,在一种实施例中,所述荧光粉可以为黄色荧光粉,用于发出黄色荧光,所述黄色荧光包括绿色荧光成分及红色荧光成分,所述绿色荧光成分与所述红色荧光成分分别作为所述第二颜色荧光及第三颜色荧光。即,所述第一颜色光为蓝色激光,所述第二颜色荧光与所述第三颜色荧光分别为绿色荧光与红色荧光。
所述第一补充光源112用于发出所述第二颜色补充光至所述第一合光元件113。所述第一补充光源112可以为激光光源,用于发出第二颜色激光作为所述第二颜色补充光,如前所述,所述第二颜色为绿色,因此,所述第一补充光源112为绿色激光光源,用于发出绿色激光作为所述第二颜色补充光。
所述第一合光元件113用于将所述第二颜色荧光及第三颜色荧光与所述第二颜色补充光合光后提供至所述分光装置140。所述第一合光元件113可以为波长合光膜片,将所述第一补充光源112发出的第二颜色补充光透射以及将所述波长转换***111发出的光(所述第一颜色光、第二颜色荧光及第三颜色荧光)反射,从而将所述第二颜色补充光、所述第一颜色光、所述第二颜色荧光及第三颜色荧光合光。当然,可以理解,在变更实施方式中,所述第一合光元件113也可以反射所述第二颜色补充光且透射所述波长转换***111发出的光从而进行合光,或者所述第一合光元件113可以采用区域镀膜的合光膜片或偏振合光膜片,将所述第二颜色补充光透射或反射以及将所述波长转换***111发出的光反射或透射从而进行合光,此处不一一列举。
所述分光装置140用于将所述第一颜色光、第二颜色荧光及第二颜色补充光引导至所述第一空间光调制器120以及将所述第三颜色荧 光引导至所述第二空间光调制器130。
所述第一偏振转换装置114位于所述第一合光元件113与所述第一空间光调制器120之间,用于将所述分光装置140发出的所述第二颜色荧光与所述第二颜色补充光转换为第一偏振态的所述第二颜色荧光与所述第二颜色补充光。可以理解,所述第一偏振态的光可以为S光或P光中的一种。另外,所述第一合光元件113与所述第一偏振转换装置114之间可以设置有中继透镜101,用于对光线进行准直、引导等。
所述第二补充光源115用于发出所述第三颜色补充光至所述第二合光元件116。所述第二补充光源115可以为激光光源,用于发出第三颜色激光作为所述第三颜色补充光,如前所述,所述第三颜色为红色,因此,所述第二补充光源115为红色激光光源,用于发出红色激光作为所述第三颜色补充光。
所述第二合光元件116位于所述分光装置140及所述第二空间光调制器130之间的光路上,所述分光装置140用于发出所述第三颜色荧光至所述第二合光元件116,所述第二补充光源115用于发出所述第三颜色补充光至所述第二合光元件116,所述第二合光元件116用于将所述第三颜色荧光及所述第三颜色补充光合光后提供至所述第二空间光调制器130。同所述第一合光元件113一样,所述第二合光元件116可以为波长合光膜片、采用区域镀膜的合光膜片或偏振合光膜片,此处不一一列举。可以理解,所述第二合光元件116与所述第二空间光调制器130之间可以设置有中继透镜102,用于对光线进行准直、引导等。
所述第二偏振转换装置117位于所述第二合光元件116与所述第二空间光调制器130之间,用于将所述第二合光元件116发出的所述第三颜色补充光转换为第一偏振态或第二偏振态的所述第三颜色补充光。
更进一步地,所述第一空间光调制器120为DMD空间光调制器,所述第一空间光调制器120在其微镜处于开启(ON)状态时反射的第一颜色光作为所述第一颜色图像光以及将反射的所述第二颜色荧光及第二颜色补充光作为所述第二颜色图像光,所述第一颜色图像光及第二颜色图像光均被提供至所述图像合成装置150。所述第一空间光调制器120在其微镜处于关闭(OFF)状态时反射所述第一颜色光作为第一颜色非图像光,以及反射所述第二颜色荧光及所述第二颜色补充光作为所述第二颜色非图像光。
所述第一光回收装置160包括第一开关式吸收体161、第一偏振转换元件162、及第一偏振合光元件163。所述第一开关式吸收体161用于吸收或阻挡所述第二颜色非图像光中的第二颜色荧光,所述第一颜色非图像光中的第一颜色光及所述第二颜色非图像光中的第二颜色 补充光被所述第一光回收装置160回收至所述第一空间光调制器120以再次利用。所述第一开关式吸收体161可以为窄带滤波器,用于吸收或阻挡所述第二颜色非图像光中的第二颜色荧光,而所述第二颜色非图像光中的第二颜色补充光可以通过所述第一开关式吸收体161。
依据前述可知,经由所述第一偏振转换装置114,所述第一颜色光、第二颜色荧光与第二颜色补充光均具有第一偏振态。所述第一光回收装置160中,所述第一颜色光、第二颜色荧光与第二颜色补充光均经由所述第一偏振合光元件163引导至所述第一空间光调制器120,所述第一颜色非图像光及所述第二颜色非图像光也具有所述第一偏振态,所述第一偏振转换元件162将所述第一颜色非图像光的第一颜色光及所述第二颜色非图像光中的第二颜色补充光的偏振态转换为第二偏振态,所述第二偏振态的第一颜色非图像光的第一颜色光及所述第二颜色非图像光中的第二颜色补充光被引导至所述第一偏振合光元件163,所述第一偏振合光元件163还将所述第二偏振态的第一颜色非图像光的第一颜色光及所述第二颜色非图像光中的第二颜色补充光引导至所述第一空间光调制器120再次调制。可以理解,所述第一光回收装置160还可以包括第一引导元件164与第一中继元件165、166,所述第一引导元件164与所述第一中继元件166位于所述第一空间光调制器120与所述第一偏振转换元件162之间的光路上或者位于所述第一偏振转换元件162与所述第一偏振合光元件163之间的光路上,用于对所述第一颜色非图像光及所述第二颜色非图像光进行引导。本实施方式中,主要以所述第一中继元件165、166(如中继透镜)位于所述第一引导元件164与第一空间光调制器120之间及位于所述第一引导元件165与所述第一偏振转换元件162之间进行示例说明。进一步地,可以理解,所述第一光回收装置160还可以包括匀光装置,所述匀光装置可以位于第一引导元件164与第一中继元件165、166之间,用于对回收的第二颜色补充光进行匀光从而形成均匀的照明光斑,从而可方便在后续光路中对所述第二颜色补充光进行回收及利用。
具体地,所述第二空间光调制器130为DMD空间光调制器,所述第二空间光调制器130在其微镜处于开启(on)状态时反射的第三颜色荧光与第三颜色补充光作为所述第三颜色图像光,所述第三颜色图像光均被提供至所述图像合成装置150。所述第二空间光调制器130在其微镜处于关闭(off)状态时反射所述第三颜色荧光及所述第三颜色补充光作为所述第三颜色非图像光。
所述第二光回收装置170包括第二偏振合光元件173、第二偏振转换元件172、及第二开关式吸收体171。所述第二开关式吸收体171用于吸收或阻挡所述第三颜色非图像光中的第三颜色荧光,所述第三颜色非图像光中的第三颜色补充光被所述第二光回收装置170回收至所述第二空间光调制器130以再次利用。所述第二开关式吸收体171 可以为窄带滤波器,用于吸收或阻挡所述第三颜色非图像光中的第三颜色荧光,而所述第三颜色非图像光中的第三颜色补充光可以通过所述第二开关式吸收体171。
具体地,所述第三颜色荧光与第三颜色补充光可以均具有一种偏振态(如第一偏振态与第二偏振态中的一种),所述第三颜色荧光与第三颜色补充光均经由所述第二偏振合光元件173引导至所述第二空间光调制器130,所述第三颜色非图像光中的第三颜色补充光也具有所述一种偏振态,所述第二偏振转换元件172将所述第三颜色非图像光中的第三颜色补充光的偏振态转换为另一种偏振态,所述另一种偏振态的第三颜色非图像光中的第三颜色补充光被引导至所述第二偏振合光元件173,所述第二偏振合光元件173还将所述另一种偏振态的第三颜色非图像光中的第三颜色补充光引导至所述第二空间光调制器130再次调制。可以理解,所述第二光回收装置170还包括第二引导元件174及/或第二中继元件175、176(如中继透镜),所述第二引导元件174及/或所述第二中继元件175、176位于所述第二空间光调制器130与所述第二偏振转换元件172之间的光路上或者位于所述第二偏振转换元件172与所述第二偏振合光元件173之间的光路上,用于对所述第三颜色非图像光进行引导。进一步地,可以理解,所述第二光回收装置170还可以包括匀光装置,所述匀光装置可以位于第二引导元件174与第二中继元件175、176之间,用于对回收的第三颜色补充光进行匀光从而形成均匀的照明光斑,从而可方便在后续光路中对所述第三颜色补充光进行回收及利用。
所述图像合成装置150包括合光装置151及镜头组件152,所述合光装置151用于将所述第一空间光调制器120发出的第一颜色图像光及第二颜色图像光与所述第二空间光调制器130发出的第三颜色图像光合光,所述镜头组件152用于将所述合光装置151发出的第一颜色图像光、第二颜色图像光及第三颜色图像光进行投影以显示图像。
本实施方式中,所述第一颜色为蓝色,所述第二颜色为绿色,所述第三颜色为红色,但是,在变更实施方式中,所述第二颜色也可以为红色,所述第三颜色也可以为绿色。
可以理解,如前所述,所述第一颜色光、所述第二颜色荧光及所述第三颜色荧光分别为蓝激光、绿荧光及红荧光,三者共同可以展示的色域范围为第一色域范围F1,即所述波长转换***111发出的光可以展示的色域范围为第一色域范围F1,如图8所示,所述第一色域范围F1可以是DCI色域范围,如色域范围DCI-P3。所述第一颜色光、所述第二颜色补充光及第三颜色补充光分别为蓝激光、绿激光及红激光,因此所述第一颜色光、所述第二颜色补充光及第三颜色补充光三者共同可以展示的色域范围为第二色域范围F2,其中所述第二色域范围F2覆盖所述第一色域范围F1且具有超出所述第一色域范围F1的 部分,所述第二色域范围F2可以为色域范围REC.2020。
所述第一及第二空间光调制器120、130通过依据图像信号调制所述第一颜色光、所述第二颜色荧光、所述第二颜色补充光、所述第三颜色荧光及第三颜色补充光,进而获得不同比例的第一颜色光、所述第二颜色荧光、所述第二颜色补充光、所述第三颜色荧光及第三颜色补充光,进而可以展示所述第一色域范围F1至第二色域范围F2任意一个色域范围(如色域范围F3)的图像。
具体地,当一幅待显示图像的图像数据的色域范围在所述第一色域范围F1内,可以控制所述光源装置110发出所述第一颜色光、所述第二颜色荧光及第三颜色荧光,所述第一及第二空间光调制器120、130依据校正图像数据调制所述第一颜色光、所述第二颜色荧光及第三颜色荧光即可获得所述第一色域范围F1的图像,使得图像被准确显示。此时,所述校正图像数据可以与所述原始图像数据相同。
当一幅待显示图像的原始图像数据的色域范围落在所述第二色域范围F2的边界线上(或者及所述边界线以外),可以控制所述光源装置发出所述第一颜色光、所述第二颜色补充光及第三颜色补充光,所述第一及第二空间光调制器120、130依据校正图像数据调制所述第一颜色光、所述第二颜色补充光及第三颜色补充即可获得所述第二色域范围F2的图像,使得图像被准确显示。
当一幅待显示图像的原始图像数据的色域范围落在所述第一色域范围F1与第二色域范围F2之间(不包括两个色域范围的边界线)时,控制所述光源装置110发出所述第一颜色光、所述第二颜色荧光、所述第二颜色补充光、所述第三颜色荧光及第三颜色补充光,所述第一及第二空间光调制器120、130依据一校正图像数据调制所述第一颜色光、所述第二颜色荧光、所述第二颜色补充光、所述第三颜色荧光及第三颜色补充光即可获得所述第一色域范围F1与第二色域范围F2之间的色域范围的图像,使得图像被准确显示。
综上所述,当一幅待显示图像的原始图像数据的色域范围落在所述第一色域范围F1之外(如所述第二色域范围F2的边界线上、及以外、所述第一色域范围F1与第二色域范围F2之间),所述校正图像数据可以包括对应第一颜色光的第一校正图像信号b、对应所述第二颜色荧光的第二校正图像信号g、对应所述第二颜色补充光的第三校正图像信号gl、对应所述第三颜色荧光的第四校正图像信号r及对应所述第三颜色补充光的第五校正图像信号rl。所述第一、第二、第三、第四及第五校正图像信号是依据第一颜色原始信号B 0、第二颜色原始信号G 0及第三颜色原始信号R 0计算获得,其中依据所述原始信号R 0、G 0、B 0计算获得的所述像素的三刺激值与依据所述像素的第一、第二、第三、第四及第五校正图像信号r、g、b、rl、gl计算获得的所述像素的三刺激值相等。其中,在依据每个像素的原始信号R 0、G 0、B 0计算 所述校正图像信号r、g、b、rl、gl时,取rl 2+gl 2最小时的r、g、b、rl、gl的各数据值。
以下首先对所述显示设备100采用的***时序进行介绍。
请参阅图9,图9是所述显示设备100采用的第一种***时序示意图。在一帧图像的调制时段T的在第一时间段T1,所述激发光源111a发出第一颜色光(即蓝激光),所述波长转换元件111b发出第三颜色荧光(即红荧光),从而所述波长转换***111发出所述第三颜色荧光至所述第一合光元件113,所述第一补充光源112发出第二颜色补充光(即所述绿激光)至所述第一合光元件113,所述第一合光元件113用于将所述第一颜色光、第二颜色荧光及第三颜色荧光与所述第二颜色补充光合光后提供至所述分光装置140,所述分光装置140用于将所述第一颜色光、第二颜色荧光及第二颜色补充光至所述中继透镜101以及将所述第三颜色荧光引导至所述第二合光元件116,所述中继透镜101将所述第二颜色补充光透射至所述第一偏振转换装置114,所述第一偏振转换装置114将第二颜色补充光转换为具有第一偏振态的第二颜色补充光,所述第一偏振合光元件163接收所述第一偏振转换装置114发出的所述具有第一偏振态的第二颜色补充光并将所述具有第一偏振态的第二颜色补充光透射至所述第一空间光调制器120,所述第一空间光调制器120依据图像信号(如校正图像信号gl)调制所述第二颜色补充光产生第二颜色图像光及第二颜色非图像光,所述第二颜色图像光被引导(如透射)至所述图像合成装置150用于产生第二颜色图像;所述第二补充光源115发出第三颜色补充光(即红激光)至所述第二合光元件116,所述第二合光元件116将所述第三颜色荧光及第三颜色补充光合光,所述合光后的第三颜色荧光及第三颜色补充光经由所述中继透镜102透射至所述第二偏振转换装置117,所述第二偏振转换装置117将所述第三颜色荧光及第三颜色补充光转换为具有一种偏振态(第一偏振态或第二偏振态均可,本实施例主要以转换为第一偏振态的光进行说明)的光,所述第二合光元件116接收所述具有偏振态的第三颜色荧光及第三颜色补充光并将所述具有偏振态的第三颜色荧光及第三颜色补充光引导(如透射)至所述第二空间光调制器130,所述第二空间光调制器130依据图像信号(如校正图像信号rl与r)调制所述具有偏振态的第三颜色荧光及第三颜色补充光产生第三颜色图像光及第三颜色非图像光,所述第三颜色图像光被反射至所述图像合成装置150,所述图像合成装置150的合光装置151接收所述第二颜色图像光及所述第三颜色图像光将所述第二颜色图像光及所述第三颜色图像光合光后提供至所述镜头组件152,所述镜头组件对所述第二颜色图像光及所述第三颜色图像光进行投影从而产生第二颜色图像及第三颜色图像。
进一步地,如图9所示,在所述第一时段T1中,所述第一空间 光调制器120产生的所述第二颜色非图像光被提供至所述第一开关式吸收体161,所述第一开关式吸收体161发出所述第二颜色非图像光的第二颜色补充光,所述第二颜色补充光具有第一偏振态,所述第一开关式吸收体161发出的所述第二颜色补充光经由所述第一中继元件165、第一引导元件、第一中继元件166至所述第一偏振转换元件162,所述第一偏振转换元件162将所述第二颜色补充光转换为第二偏振态的第二颜色补充光,所述第二偏振态的第二颜色补充光被所述第一偏振转换元件162透射至所述第一偏振合光元件163,所述第一偏振合光元件163所述第一光回收装置160回收的所述第二颜色补充光反射至所述第一空间光调制器120,所述第一空间光调制器120可以进一步依据所述图像信号(如校正图像信号gl)调制所述第二颜色补充光产生第二颜色图像光,所述第二颜色图像光被引导至所述图像合成装置150用于进一步产生第二颜色图像;所述第二空间光调制器130产生的所述第三颜色非图像光被提供至所述第二开关式吸收体171,所述第二开关式吸收体171发出所述第三颜色非图像光的第三颜色补充光,所述第三颜色补充光具有偏振态(如第一偏振态),所述第二开关式吸收体171发出的所述第三颜色补充光经由所述第二中继元件175、第二引导元件174、第二中继元件176至所述第二偏振转换元件172,所述第二偏振转换元件172将所述第三颜色补充光转换为另一种偏振态(如第二偏振态)的第三颜色补充光,所述另一种偏振态的第三颜色补充光被所述第二偏振转换元件172透射至所述第二偏振合光元件173,所述第二偏振合光元件173所述第二光回收装置170回收的所述第三颜色补充光反射至所述第二空间光调制器130,所述第二空间光调制器120可以进一步依据图像信号(如校正图像信号rl与r)调制所述第三颜色补充光产生第三颜色图像光并提供所述第三颜色图像光至所述图像合成装置150用于进一步产生第三颜色图像。
如图9所示,在一帧图像的调制时段T的在第二时间段T2,所述激发光源111a发出第一颜色光(即蓝激光),所述波长转换元件111b发出第二颜色荧光(即绿荧光),从而所述波长转换***111发出所述第二颜色荧光至所述第一合光元件113,所述第一补充光源112发出第二颜色补充光(即所述绿激光)至所述第一合光元件113,所述第一合光元件113将所述第二颜色荧光反射至所述中继透镜101以及将所述第二颜色补充光透射至所述分光装置140,所述分光装置140将所述第二颜色荧光及所述第二颜色补充光引导(如透射)至所述中继透镜101,所述中继透镜101将所述第二颜色荧光及第二颜色补充光透射至所述第一偏振转换装置114,所述第一偏振转换装置114将所述第二颜色荧光及第二颜色补充光转换为具有第一偏振态的第二颜色荧光及第二颜色补充光,所述第一偏振合光元件163接收所述第一偏振转换装置114发出的所述具有第一偏振态的第二颜色荧光及第二颜 色补充光并将所述具有第一偏振态的第二颜色荧光及第二颜色补充光透射至所述第一空间光调制器120,所述第一空间光调制器120依据图像信号(如图像信号g及校正图像信号gl)调制所述第二颜色荧光及第二颜色补充光产生第二颜色图像光及第二颜色非图像光,所述第一空间光调制器120还将所述第二颜色图像光提供至所述图像合成装置150,所述图像合成装置150用于产生第二颜色图像,所述第二补充光源115发出第三颜色补充光(即红激光)至所述第二合光元件116,所述第二合光元件116将所述第三颜色补充光经由所述中继透镜102透射至所述第二偏振转换装置117,所述第二偏振转换装置117将所述第三颜色补充光转换为具有一种偏振态(第一偏振态或第二偏振态均可,本实施例主要以转换为第一偏振态的光进行说明)的光,所述第二合光元件116接收所述具有偏振态的第三颜色补充光并将所述具有偏振态的第三颜色补充光引导(如透射)至所述第二空间光调制器130,所述第二空间光调制器130依据图像信号(如校正图像信号rl)调制所述具有偏振态的第三颜色补充光产生第三颜色图像光及第三颜色非图像光,所述第三颜色图像光被反射至所述图像合成装置150,所述图像合成装置150的合光装置151接收所述第二颜色图像光及所述第三颜色图像光将所述第二颜色图像光及所述第三颜色图像光合光后提供至所述镜头组件152,所述镜头组件对所述第二颜色图像光及所述第三颜色图像光进行投影从而产生第二颜色图像及第三颜色图像。
进一步地,如图9所示,在所述第二时段T2中,所述第一空间光调制器120产生的所述第二颜色非图像光被提供至所述第一开关式吸收体161,所述第一开关式吸收体161吸收所述第二颜色荧光并发出所述第二颜色非图像光的第二颜色补充光,所述第二颜色补充光具有第一偏振态,所述第一开关式吸收体161发出的所述第二颜色补充光经由所述第一中继元件165、第一引导元件、第一中继元件166至所述第一偏振转换元件162,所述第一偏振转换元件162将所述第二颜色补充光转换为第二偏振态的第二颜色补充光,所述第二偏振态的第二颜色补充光被所述第一偏振转换元件162透射至所述第一偏振合光元件163,所述第一偏振合光元件163所述第一光回收装置160回收的所述第二颜色补充光反射至所述第一空间光调制器120,所述第一空间光调制器120可以进一步依据所述图像信号(如校正图像信号gl)调制所述第二颜色补充光产生第二颜色图像光至所述图像合成装置150用于进一步产生第二颜色图像;所述第二空间光调制器130产生的所述第三颜色非图像光被提供至所述第二开关式吸收体171,所述第二开关式吸收体171发出所述第三颜色非图像光的第三颜色补充光,所述第三颜色补充光具有偏振态(如第一偏振态),所述第二开关式吸收体171发出的所述第三颜色补充光经由所述第二中继元件175、第二引导元件174、第二中继元件176至所述第二偏振转换元件172, 所述第二偏振转换元件172将所述第三颜色补充光转换为另一种偏振态的第三颜色补充光,所述另一种偏振态(如第二偏振态)的第三颜色补充光被所述第二偏振转换元件172透射至所述第二偏振合光元件173,所述第二偏振合光元件173所述第二光回收装置170回收的所述第三颜色补充光反射至所述第二空间光调制器130,所述第二空间光调制器120可以进一步依据图像信号(如校正图像信号rl与r)调制所述第三颜色补充光产生第三颜色图像光并提供所述第三颜色图像光至所述图像合成装置150用于进一步产生第三颜色图像。
如图9所示,在一帧图像的调制时段T的在第三时间段T3,所述激发光源111a发出第一颜色光(即蓝激光),所述波长转换元件111b发出第一颜色光至所述第一合光元件113,所述第一补充光源112关闭,所述第一合光元件113将所述第一颜色光反射至所述中继透镜101,所述中继透镜101将所述第一颜色光透射至所述第一偏振转换装置114,所述第一偏振转换装置114将所述第一颜色光转换为具有第一偏振态的第一颜色光,所述第一偏振合光元件163接收所述第一偏振转换装置114发出的所述具有第一偏振态的第一颜色光并将所述具有第一偏振态的第一颜色光透射至所述第一空间光调制器120,所述第一空间光调制器120依据图像信号(如图像信号b)调制所述第一颜色光产生第一颜色图像光及第一颜色非图像光,所述第一空间光调制器120还将所述第一颜色图像光提供至所述图像合成装置150用于产生第一颜色图像,所述第二补充光源115发出第三颜色补充光(即红激光)至所述第二合光元件116,所述第二合光元件116将所述第三颜色补充光反射至所述中继透镜102,所述中继透镜102将所述第三颜色补充光透射至所述第二偏振转换装置117,所述第二偏振转换装置117将所述第三颜色补充光转换为具有一种偏振态(第一偏振态或第二偏振态均可,本实施例主要以转换为第一偏振态的光进行说明)的光,所述第二合光元件116接收所述具有偏振态(如第一偏振态)的第三颜色补充光并将所述具有偏振态的第三颜色补充光引导(如透射)至所述第二空间光调制器130,所述第二空间光调制器130依据图像信号(如校正图像信号rl)调制所述具有偏振态的第三颜色补充光产生第三颜色图像光及第三颜色非图像光,所述第三颜色图像光被反射至所述图像合成装置150,所述图像合成装置150的合光装置151接收所述第一颜色图像光及所述第三颜色图像光将所述第一颜色图像光及所述第三颜色图像光合光后提供至所述镜头组件152,所述镜头组件对所述第一颜色图像光及所述第三颜色图像光进行投影从而产生第一颜色图像及第三颜色图像。
进一步地,如图9所示,在所述第三时段T3中,所述第一空间光调制器120产生的所述第一颜色非图像光被提供至所述第一开关式吸收体161,所述第一开关式吸收体161发出所述第一颜色非图像光, 所述第一颜色非图像光具有第一偏振态,所述第一开关式吸收体161发出的所述第一颜色非图像光经由所述第一中继元件165、第一引导元件、第一中继元件166至所述第一偏振转换元件162,所述第一偏振转换元件162将所述第一颜色非图像光转换为第二偏振态的第一颜色非图像光,所述第二偏振态的第一颜色非图像光被所述第一偏振转换元件162透射至所述第一偏振合光元件163,所述第一偏振合光元件163所述第一光回收装置160回收的所述第一颜色非图像光反射至所述第一空间光调制器120,所述第一空间光调制器120可以进一步依据所述图像信号(如校正图像信号b)调制所述第一颜色非图像光产生第一颜色图像光,所述第一颜色图像光被提供至所述图像合成装置150用于进一步产生第一颜色图像;所述第二空间光调制器130产生的所述第三颜色非图像光被提供至所述第二开关式吸收体171,所述第二开关式吸收体171发出所述第三颜色非图像光的第三颜色补充光,所述第三颜色补充光具有偏振态(如第一偏振态),所述第二开关式吸收体171发出的所述第三颜色补充光经由所述第二中继元件175、第二引导元件174、第二中继元件176至所述第二偏振转换元件172,所述第二偏振转换元件172将所述第三颜色补充光转换为另一种偏振态的第三颜色补充光,所述另一种偏振态(如第二偏振态)的第三颜色补充光被所述第二偏振转换元件172透射至所述第二偏振合光元件173,所述第二偏振合光元件173所述第二光回收装置170回收的所述第三颜色补充光反射至所述第二空间光调制器130,所述第二空间光调制器120可以进一步依据图像信号(如校正图像信号rl与r)调制所述第三颜色补充光产生第三颜色图像光并提供所述第三颜色图像光至所述图像合成装置150用于进一步产生第三颜色图像。
请参阅图10,图10是所述显示设备100采用的第二种***时序示意图。在一帧图像的调制时段T的在第一时间段T1,所述激发光源111a发出第一颜色光(即蓝激光),所述波长转换元件111b发出第三颜色荧光(即红荧光),从而所述波长转换***111发出所述第三颜色荧光至所述第一合光元件113,所述第一补充光源112发出第二颜色补充光(即所述绿激光)至所述第一合光元件113,所述第一合光元件113将所述第三颜色荧光反射至所述分光装置140以及将所述第二颜色补充光透射至所述分光装置140,所述分光装置140将所述第三颜色荧光引导至所述第二合光元件116以及将所述第二颜色补充光引导至所述中继透镜101,所述中继透镜101将所述,第二颜色补充光透射至所述第一偏振转换装置114,所述第一偏振转换装置114将所述第二颜色补充光转换为具有第一偏振态的第三颜色荧光及第二颜色补充光,所述第一偏振合光元件163接收所述第一偏振转换装置114发出的所述具有第一偏振态的第二颜色补充光并将所述具有第一偏振态的第二颜色补充光透射至所述第一空间光调制器120,所述第一空间 光调制器120依据图像信号(如校正图像信号gl)调制所述第二颜色补充光产生第二颜色图像光及第二颜色非图像光,所述第一空间光调制器120还将接收到的第三颜色荧光以及产生的所述第二颜色图像光提供至所述图像合成装置150用于产生第二颜色图像,所述第二补充光源115关闭,所述第二合光元件116将所述第三颜色荧光经由所述中继透镜102透射至所述第二偏振转换装置117,所述第二偏振转换装置117将所述第三颜色荧光转换为具有一种偏振态(第一偏振态或第二偏振态均可,本实施例主要以转换为第一偏振态的光进行说明)的光,所述第二合光元件116接收所述具有偏振态的第三颜色荧光并将所述具有偏振态的第三颜色荧光引导(如透射)至所述第二空间光调制器130,所述第二空间光调制器130依据图像信号(如校正图像信号r)调制所述具有偏振态的第三颜色荧光产生第三颜色图像光及第三颜色非图像光,所述第三颜色图像光被反射至所述图像合成装置150,所述图像合成装置150的合光装置151接收所述第二颜色图像光及所述第三颜色图像光将所述第二颜色图像光及所述第三颜色图像光合光后提供至所述镜头组件152,所述镜头组件对所述第二颜色图像光及所述第三颜色图像光进行投影从而产生第二颜色图像及第三颜色图像。
进一步地,如图10所示,在所述第一时段T1中,所述第一空间光调制器120产生的所述第二颜色非图像光被提供至所述第一开关式吸收体161,所述第一开关式吸收体161发出所述第二颜色非图像光的第二颜色补充光,所述第二颜色补充光具有第一偏振态,所述第一开关式吸收体161发出的所述第二颜色补充光经由所述第一中继元件165、第一引导元件、第一中继元件166至所述第一偏振转换元件162,所述第一偏振转换元件162将所述第二颜色补充光转换为第二偏振态的第二颜色补充光,所述第二偏振态的第二颜色补充光被所述第一偏振转换元件162透射至所述第一偏振合光元件163,所述第一偏振合光元件163所述第一光回收装置160回收的所述第二颜色补充光反射至所述第一空间光调制器120,所述第一空间光调制器120可以进一步依据所述图像信号(如校正图像信号gl)调制所述第二颜色补充光产生第二颜色图像光至所述图像合成装置150用于进一步产生第二颜色图像;所述第二空间光调制器130产生的所述第三颜色非图像光(为所述第三颜色荧光)被提供至所述第二开关式吸收体171,所述第二开关式吸收体171吸收所述第三颜色荧光,因此在所述第一时段T1,所述第二光回收装置170此时不进行第三颜色光的回收。
如图10所示,在一帧图像的调制时段T的在第二时间段T2,所述激发光源111a发出第一颜色光(即蓝激光),所述波长转换元件111b发出第二颜色荧光(即绿荧光),从而所述波长转换***111发出所述第二颜色荧光至所述第一合光元件113,所述第一补充光源112关闭, 所述第一合光元件113将所述第二颜色荧光反射至所述分光装置140,所述分光装置140将所述第二颜色荧光引导(透射)至所述中继透镜101,所述中继透镜101将所述第二颜色荧光透射至所述第一偏振转换装置114,所述第一偏振转换装置114将所述第二颜色荧光转换为具有第一偏振态的第二颜色荧光,所述第一偏振合光元件163接收所述第一偏振转换装置114发出的所述具有第一偏振态的第二颜色荧光并将所述具有第一偏振态的第二颜色荧光透射至所述第一空间光调制器120,所述第一空间光调制器120依据图像信号(如图像信号g)调制所述第二颜色荧光产生第二颜色图像光及第二颜色非图像光,所述第一空间光调制器120还将所述第二颜色图像光提供至所述图像合成装置150用于产生第二颜色图像,所述第二补充光源115发出第三颜色补充光(即红激光)至所述第二合光元件116,所述第二合光元件116将所述第三颜色补充光经由所述中继透镜102透射至所述第二偏振转换装置117,所述第二偏振转换装置117将所述第三颜色补充光转换为具有一种偏振态(第一偏振态或第二偏振态均可,本实施例主要以转换为第一偏振态的光进行说明)的光,所述第二合光元件116接收所述具有偏振态的第三颜色补充光并将所述具有偏振态的第三颜色补充光引导(如透射)至所述第二空间光调制器130,所述第二空间光调制器130依据图像信号(如校正图像信号rl)调制所述具有偏振态的第三颜色补充光产生第三颜色图像光及第三颜色非图像光,所述第三颜色图像光被反射至所述图像合成装置150,所述图像合成装置150的合光装置151接收所述第二颜色图像光及所述第三颜色图像光将所述第二颜色图像光及所述第三颜色图像光合光后提供至所述镜头组件152,所述镜头组件对所述第二颜色图像光及所述第三颜色图像光进行投影从而产生第二颜色图像及第三颜色图像。
进一步地,如图10所示,在所述第二时段T2中,所述第一空间光调制器120产生的所述第二颜色非图像光(其为第二颜色荧光)被提供至所述第一开关式吸收体161,所述第一开关式吸收体161吸收所述第二颜色荧光,因此,在所述第二时段T2中,所述第一光回收装置160不进行第二颜色光的回收利用;所述第二空间光调制器130产生的所述第三颜色非图像光被提供至所述第二开关式吸收体171,所述第二开关式吸收体171发出所述第三颜色非图像光的第三颜色补充光,所述第三颜色补充光具有偏振态(如第一偏振态),所述第二开关式吸收体171发出的所述第三颜色补充光经由所述第二中继元件175、第二引导元件174、第二中继元件176至所述第二偏振转换元件172,所述第二偏振转换元件172将所述第三颜色补充光转换为另一种偏振态的第三颜色补充光,所述另一种偏振态(如第二偏振态)的第三颜色补充光被所述第二偏振转换元件172透射至所述第二偏振合光元件173,所述第二偏振合光元件173所述第二光回收装置170回收 的所述第三颜色补充光反射至所述第二空间光调制器130,所述第二空间光调制器120可以进一步依据图像信号(如校正图像信号rl与r)调制所述第三颜色补充光产生第三颜色图像光并提供所述第三颜色图像光至所述图像合成装置150用于进一步产生第三颜色图像。
如图10所示,在一帧图像的调制时段T的在第三时间段T3,所述激发光源111a发出第一颜色光(即蓝激光),所述波长转换元件111b发出第一颜色光至所述第一合光元件113,所述第一补充光源112关闭,所述第一合光元件113将所述第一颜色光反射至所述分光装置140,所述分光装置140将所述第一颜色光引导(如透射)至所述中继透镜101,所述中继透镜101将所述第一颜色光透射至所述第一偏振转换装置114,所述第一偏振转换装置114将所述第一颜色光转换为具有第一偏振态的第一颜色光,所述第一偏振合光元件163接收所述第一偏振转换装置114发出的所述具有第一偏振态的第一颜色光并将所述具有第一偏振态的第一颜色光透射至所述第一空间光调制器120,所述第一空间光调制器120依据图像信号(如图像信号b)调制所述第一颜色光产生第一颜色图像光及第一颜色非图像光,所述第一空间光调制器120还将所述第一颜色图像光提供至所述图像合成装置150用于产生第一颜色图像,所述第二补充光源115发出第三颜色补充光(即红激光)至所述第二合光元件116,所述第二合光元件116将所述第三颜色补充光反射至所述中继透镜102,所述中继透镜102将所述第三颜色补充光透射至所述第二偏振转换装置117,所述第二偏振转换装置117将所述第三颜色补充光转换为具有一种偏振态(第一偏振态或第二偏振态均可,本实施例主要以转换为第一偏振态的光进行说明)的光,所述第二合光元件116接收所述具有偏振态(如第一偏振态)的第三颜色补充光并将所述具有偏振态的第三颜色补充光引导(如透射)至所述第二空间光调制器130,所述第二空间光调制器130依据图像信号(如校正图像信号rl)调制所述具有偏振态的第三颜色补充光产生第三颜色图像光及第三颜色非图像光,所述第三颜色图像光被反射至所述图像合成装置150,所述图像合成装置150的合光装置151接收所述第一颜色图像光及所述第三颜色图像光将所述第一颜色图像光及所述第三颜色图像光合光后提供至所述镜头组件152,所述镜头组件152对所述第一颜色图像光及所述第三颜色图像光进行投影从而产生第一颜色图像及第三颜色图像。
进一步地,如图10所示,在所述第三时段T3中,所述第一空间光调制器120产生的所述第一颜色非图像光被提供至所述第一开关式吸收体161,所述第一开关式吸收体161发出所述第一颜色非图像光,所述第一颜色非图像光具有第一偏振态,所述第一开关式吸收体161发出的所述第一颜色非图像光经由所述第一中继元件165、第一引导元件、第一中继元件166至所述第一偏振转换元件162,所述第一偏 振转换元件162将所述第一颜色非图像光转换为第二偏振态的第一颜色非图像光,所述第二偏振态的第一颜色非图像光被所述第一偏振转换元件162透射至所述第一偏振合光元件163,所述第一偏振合光元件163所述第一光回收装置160回收的所述第一颜色非图像光反射至所述第一空间光调制器120,所述第一空间光调制器120可以进一步依据所述图像信号(如校正图像信号b)调制所述第一颜色非图像光产生第一颜色图像光,所述第一颜色图像光被提供至所述图像合成装置150用于进一步产生第一颜色图像;所述第二空间光调制器130产生的所述第三颜色非图像光被提供至所述第二开关式吸收体171,所述第二开关式吸收体171发出所述第三颜色非图像光的第三颜色补充光,所述第三颜色补充光具有偏振态(如第一偏振态),所述第二开关式吸收体171发出的所述第三颜色补充光经由所述第二中继元件175、第二引导元件174、第二中继元件176至所述第二偏振转换元件172,所述第二偏振转换元件172将所述第三颜色补充光转换为另一种偏振态的第三颜色补充光,所述另一种偏振态(如第二偏振态)的第三颜色补充光被所述第二偏振转换元件172透射至所述第二偏振合光元件173,所述第二偏振合光元件173所述第二光回收装置170回收的所述第三颜色补充光反射至所述第二空间光调制器130,所述第二空间光调制器120可以进一步依据图像信号(如校正图像信号rl与r)调制所述第三颜色补充光产生第三颜色图像光并提供所述第三颜色图像光至所述图像合成装置150用于进一步产生第三颜色图像。
请参阅图11,图11是所述显示设备100采用的第三种***时序示意图,在一帧图像的调制时段T的在第一时间段T1,所述激发光源111a关闭,从而所述波长转换***111关闭,所述第一补充光源112发出第二颜色补充光(即所述绿激光)至所述第一合光元件113,所述第一合光元件113将所述第二颜色补充光经由所述分光装置140透射至所述中继透镜101,所述中继透镜101将第二颜色补充光透射至所述第一偏振转换装置114,所述第一偏振转换装置114将第二颜色补充光转换为具有第一偏振态的第二颜色补充光,所述第一偏振合光元件163接收所述第一偏振转换装置114发出的所述具有第一偏振态的第二颜色补充光并将所述具有第一偏振态的第二颜色补充光透射至所述第一空间光调制器120,所述第一空间光调制器120依据图像信号(如校正图像信号gl)调制所述第二颜色补充光产生第二颜色图像光及第二颜色非图像光,所述第二颜色图像光被引导(如透射)至所述图像合成装置150用于产生第二颜色图像,所述第二补充光源115发出第三颜色补充光(即红激光)至所述第二合光元件116,所述第二合光元件116将所述第三颜色补充光合光,所述第三颜色补充光经由所述中继透镜102透射至所述第二偏振转换装置117,所述第二偏振转换装置117将所述第三颜色补充光转换为具有一种偏振态(第一 偏振态或第二偏振态均可,本实施例主要以转换为第一偏振态的光进行说明)的光,所述第二合光元件116接收所述具有偏振态的第三颜色补充光并将所述具有偏振态的第三颜色补充光引导(如透射)至所述第二空间光调制器130,所述第二空间光调制器130依据图像信号(如校正图像信号rl)调制所述具有偏振态的第三颜色补充光产生第三颜色图像光及第三颜色非图像光,所述第三颜色图像光被反射至所述图像合成装置150,所述图像合成装置150的合光装置151接收所述第二颜色图像光及所述第三颜色图像光将所述第二颜色图像光及所述第三颜色图像光合光后提供至所述镜头组件152,所述镜头组件对所述第二颜色图像光及所述第三颜色图像光进行投影从而产生第二颜色图像及第三颜色图像。
进一步地,如图11所示,在所述第一时段T1中,所述第一空间光调制器120产生的所述第二颜色非图像光被提供至所述第一开关式吸收体161,所述第一开关式吸收体161发出所述第二颜色非图像光的第二颜色补充光,所述第二颜色补充光具有第一偏振态,所述第一开关式吸收体161发出的所述第二颜色补充光经由所述第一中继元件165、第一引导元件、第一中继元件166至所述第一偏振转换元件162,所述第一偏振转换元件162将所述第二颜色补充光转换为第二偏振态的第二颜色补充光,所述第二偏振态的第二颜色补充光被所述第一偏振转换元件162透射至所述第一偏振合光元件163,所述第一偏振合光元件163所述第一光回收装置160回收的所述第二颜色补充光反射至所述第一空间光调制器120,所述第一空间光调制器120可以进一步依据所述图像信号(如校正图像信号gl)调制所述第二颜色补充光产生第二颜色图像光,所述第二颜色图像光被引导至所述图像合成装置150用于进一步产生第二颜色图像;所述第二空间光调制器130产生的所述第三颜色非图像光被提供至所述第二开关式吸收体171,所述第二开关式吸收体171发出所述第三颜色非图像光的第三颜色补充光,所述第三颜色补充光具有偏振态(如第一偏振态),所述第二开关式吸收体171发出的所述第三颜色补充光经由所述第二中继元件175、第二引导元件174、第二中继元件176至所述第二偏振转换元件172,所述第二偏振转换元件172将所述第三颜色补充光转换为另一种偏振态(如第二偏振态)的第三颜色补充光,所述另一种偏振态的第三颜色补充光被所述第二偏振转换元件172透射至所述第二偏振合光元件173,所述第二偏振合光元件173所述第二光回收装置170回收的所述第三颜色补充光反射至所述第二空间光调制器130,所述第二空间光调制器120可以进一步依据图像信号(如校正图像信号rl与r)调制所述第三颜色补充光产生第三颜色图像光并提供所述第三颜色图像光至所述图像合成装置150用于进一步产生第三颜色图像。
如图11所示,在一帧图像的调制时段T的在第二时间段T2,所 述激发光源111a关闭,从而所述波长转换***111关闭,所述第一补充光源112发出第二颜色补充光(即所述绿激光)至所述第一合光元件113,所述第一合光元件113将所述第二颜色补充光经由所述分光装置140透射至所述中继透镜101,所述中继透镜101将所述第二颜色补充光透射至所述第一偏振转换装置114,所述第一偏振转换装置114将所述第二颜色补充光转换为具有第一偏振态的第二颜色补充光,所述第一偏振合光元件163接收所述第一偏振转换装置114发出的所述具有第一偏振态的第二颜色补充光并将所述具有第一偏振态的第二颜色补充光透射至所述第一空间光调制器120,所述第一空间光调制器120依据图像信号(如图像信号g及校正图像信号gl)调制所述第二颜色补充光产生第二颜色图像光及第二颜色非图像光,所述第一空间光调制器120还将所述第二颜色图像光提供至所述图像合成装置150用于产生第二颜色图像,所述第二补充光源115发出第三颜色补充光(即红激光)至所述第二合光元件116,所述第二合光元件116将所述第三颜色补充光经由所述中继透镜102透射至所述第二偏振转换装置117,所述第二偏振转换装置117将所述第三颜色补充光转换为具有一种偏振态(第一偏振态或第二偏振态均可,本实施例主要以转换为第一偏振态的光进行说明)的光,所述第二合光元件116接收所述具有偏振态的第三颜色补充光并将所述具有偏振态的第三颜色补充光引导(如透射)至所述第二空间光调制器130,所述第二空间光调制器130依据图像信号(如校正图像信号rl)调制所述具有偏振态的第三颜色补充光产生第三颜色图像光及第三颜色非图像光,所述第三颜色图像光被反射至所述图像合成装置150,所述图像合成装置150的合光装置151接收所述第二颜色图像光及所述第三颜色图像光将所述第二颜色图像光及所述第三颜色图像光合光后提供至所述镜头组件152,所述镜头组件对所述第二颜色图像光及所述第三颜色图像光进行投影从而产生第二颜色图像及第三颜色图像。
进一步地,如图11所示,在所述第二时段T2中,所述第一空间光调制器120产生的所述第二颜色非图像光被提供至所述第一开关式吸收体161,所述第一开关式吸收体161发出所述第二颜色非图像光的第二颜色补充光,所述第二颜色补充光具有第一偏振态,所述第一开关式吸收体161发出的所述第二颜色补充光经由所述第一中继元件165、第一引导元件、第一中继元件166至所述第一偏振转换元件162,所述第一偏振转换元件162将所述第二颜色补充光转换为第二偏振态的第二颜色补充光,所述第二偏振态的第二颜色补充光被所述第一偏振转换元件162透射至所述第一偏振合光元件163,所述第一偏振合光元件163所述第一光回收装置160回收的所述第二颜色补充光反射至所述第一空间光调制器120,所述第一空间光调制器120可以进一步依据所述图像信号(如校正图像信号gl)调制所述第二颜色补充光 产生第二颜色图像光,所述第二颜色图像光被提供至所述图像合成装置150用于进一步产生第二颜色图像;所述第二空间光调制器130产生的所述第三颜色非图像光被提供至所述第二开关式吸收体171,所述第二开关式吸收体171发出所述第三颜色非图像光的第三颜色补充光,所述第三颜色补充光具有偏振态(如第一偏振态),所述第二开关式吸收体171发出的所述第三颜色补充光经由所述第二中继元件175、第二引导元件174、第二中继元件176至所述第二偏振转换元件172,所述第二偏振转换元件172将所述第三颜色补充光转换为另一种偏振态的第三颜色补充光,所述另一种偏振态(如第二偏振态)的第三颜色补充光被所述第二偏振转换元件172透射至所述第二偏振合光元件173,所述第二偏振合光元件173所述第二光回收装置170回收的所述第三颜色补充光反射至所述第二空间光调制器130,所述第二空间光调制器120可以进一步依据图像信号(如校正图像信号rl)调制所述第三颜色补充光产生第三颜色图像光并提供所述第三颜色图像光至所述图像合成装置150用于进一步产生第三颜色图像。
如图11所示,在一帧图像的调制时段T的在第三时间段T3,所述激发光源111a发出第一颜色光(即蓝激光),所述波长转换元件111b发出第一颜色光至所述第一合光元件113,所述第一补充光源112关闭,所述第一合光元件113将所述第一颜色光反射至所述分光装置140,所述分光装置140将所述第一颜色光引导(透射)至所述中继透镜101,所述中继透镜101将所述第一颜色光透射至所述第一偏振转换装置114,所述第一偏振转换装置114将所述第一颜色光转换为具有第一偏振态的第一颜色光,所述第一偏振合光元件163接收所述第一偏振转换装置114发出的所述具有第一偏振态的第一颜色光并将所述具有第一偏振态的第一颜色光透射至所述第一空间光调制器120,所述第一空间光调制器120依据图像信号(如图像信号b)调制所述第一颜色光产生第一颜色图像光及第一颜色非图像光,所述第一空间光调制器120还将所述第一颜色图像光提供至所述图像合成装置150用于产生第一颜色图像,所述第二补充光源115发出第三颜色补充光(即红激光)至所述第二合光元件116,所述第二合光元件116将所述第三颜色补充光反射至所述中继透镜102,所述中继透镜102将所述第三颜色补充光透射至所述第二偏振转换装置117,所述第二偏振转换装置117将所述第三颜色补充光转换为具有一种偏振态(第一偏振态或第二偏振态均可,本实施例主要以转换为第一偏振态的光进行说明)的光,所述第二合光元件116接收所述具有偏振态(如第一偏振态)的第三颜色补充光并将所述具有偏振态的第三颜色补充光引导(如透射)至所述第二空间光调制器130,所述第二空间光调制器130依据图像信号(如校正图像信号rl)调制所述具有偏振态的第三颜色补充光产生第三颜色图像光及第三颜色非图像光,所述第三颜色图像光被反射 至所述图像合成装置150,所述图像合成装置150的合光装置151接收所述第一颜色图像光及所述第三颜色图像光将所述第一颜色图像光及所述第三颜色图像光合光后提供至所述镜头组件152,所述镜头组件对所述第一颜色图像光及所述第三颜色图像光进行投影从而产生第一颜色图像及第三颜色图像。
进一步地,如图11所示,在所述第三时段T3中,所述第一空间光调制器120产生的所述第一颜色非图像光被提供至所述第一开关式吸收体161,所述第一开关式吸收体161发出所述第一颜色非图像光,所述第一颜色非图像光具有第一偏振态,所述第一开关式吸收体161发出的所述第一颜色非图像光经由所述第一中继元件165、第一引导元件、第一中继元件166至所述第一偏振转换元件162,所述第一偏振转换元件162将所述第一颜色非图像光转换为第二偏振态的第一颜色非图像光,所述第二偏振态的第一颜色非图像光被所述第一偏振转换元件162透射至所述第一偏振合光元件163,所述第一偏振合光元件163所述第一光回收装置160回收的所述第一颜色非图像光反射至所述第一空间光调制器120,所述第一空间光调制器120可以进一步依据所述图像信号(如校正图像信号b)调制所述第一颜色非图像光产生第一颜色图像光,所述第一颜色图像光被提供至所述图像合成装置150用于进一步产生第一颜色图像;所述第二空间光调制器130产生的所述第三颜色非图像光被提供至所述第二开关式吸收体171,所述第二开关式吸收体171发出所述第三颜色非图像光的第三颜色补充光,所述第三颜色补充光具有偏振态(如第一偏振态),所述第二开关式吸收体171发出的所述第三颜色补充光经由所述第二中继元件175、第二引导元件174、第二中继元件176至所述第二偏振转换元件172,所述第二偏振转换元件172将所述第三颜色补充光转换为另一种偏振态的第三颜色补充光,所述另一种偏振态(如第二偏振态)的第三颜色补充光被所述第二偏振转换元件172透射至所述第二偏振合光元件173,所述第二偏振合光元件173所述第二光回收装置170回收的所述第三颜色补充光反射至所述第二空间光调制器130,所述第二空间光调制器120可以进一步依据图像信号(如校正图像信号rl与r)调制所述第三颜色补充光产生第三颜色图像光并提供所述第三颜色图像光至所述图像合成装置150用于进一步产生第三颜色图像。
可以理解,如图9、10、11所示,所述显示设备100可以根据动态色域的要求(如依据图像数据通过对待显示图像的色域进行判断)来控制各光源111a、112、115的开关时序以及第一及第二空间光调制器120、130的调制时序示意,进而改变各光源111a、112、115的开关时长,达到增加或减少荧光/激光比例、或者使荧光激光分时调制等目的,从而更准确的显示图像。
更进一步地,对于采用本发明所述的显示设备100,经验证,通 过加入少量红、绿激光可以达到REC 2020的色域范围。请参阅图12,图12是图5所示显示设备100经测量获得的技术色域和色彩体积扩展示意图。具体地,经测量,通过加入5%亮度的绿色激光和红色激光,能够将色域扩展到Rec.2020的范围,其中,图12所示的***阴影区域为相较于普通DCI-P3色域范围的显示设备扩展的色域范围,可见,所述显示设备100的显示效果较好。
再进一步地,所述第二颜色补充光及第三颜色补充光为绿激光与红激光,由于纯激光单色性更好,能使色域范围更广,且价格更昂贵,通过回收纯激光,能在节约成本的同时,使画面纯色激光的亮度增强。
以红激光为例,假设有效画面中有10000个像素,每个像素有256个灰阶(0-255),不考虑衍射损耗和其他损耗,那么我们称一帧所有像素RGB灰阶都为(255,0,0)的红色画面有2550000个“单位”的红光。假如一帧画面中只需要1200000个“单位”的红激光,在没有光回收***的情况下,红激光的利用率只有47%,但加入光回收***后,当红激光只回收一次时,其利用率就升到了71.9%,也就是说,在不增加激光器功耗的情况下,画面上红激光像素的亮度就增加了53%。
此外,本发明所述的显示设备100具有第一及第二空间光调制器120与130,双片式DMD***可以改善单片式DMD***中亮度不够或某一种颜色不够的现状,在一种实施例中,本发明所述的显示设备100可以采用其中一片空间光调制器(120或130)单独处理红光,则可以大大改善红光不足的问题,使画面颜色更鲜艳。由于纯激光的单色性更好,能使色域范围更广,且价格更昂贵,而荧光虽然亮度高但颜色差,会降低色域范围,因此两个光循环***中均加入第一及第二开关式吸收体来保证回收的只有纯激光。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种显示设备,其特征在于,所述显示设备包括光源装置、第一空间光调制器、第二空间光调制器、第一光回收装置及第二光回收装置,
    所述光源装置用来发出第一颜色光、第二颜色荧光、第二颜色补充光、第三颜色荧光及第三颜色补充光;
    所述第一空间光调制器用于接收所述光源装置发出的第一颜色光、第二颜色荧光、第二颜色补充光,并调制所述第一颜色光产生第一颜色图像光及调制所述第二颜色荧光与第二颜色补充光产生第二颜色图像光及非投影光;
    所述第二空间光调制器用于接收所述光源装置发出的第三颜色补充光及第三颜色荧光,并调制所述第三颜色荧光及所述第三颜色补充光产生第三颜色图像光及非投影光,所述第一空间光调制器发出的第一颜色图像光与第二颜色图像光及所述第二空间光调制器发出的第三颜色图像光合成以显示图像;
    所述第一光回收装置用来将所述第一空间光调制器产生的非投影光中的第一颜色光与第二颜色补充光回收至所述第一空间光调制器再次利用;
    所述第二光回收装置用来将所述第二空间光调制器产生的非投影光中的第三颜色补充光回收至所述第二空间光调制器再次利用。
  2. 如权利要求1所述的显示设备,其特征在于,所述第一光回收装置包括第一开关式吸收体,所述第一开关式吸收体用于吸收或阻挡所述非图像光中的第二颜色荧光,所述非图像光中的第二颜色补充光被所述第一光回收装置回收至所述第一空间光调制器以再次利用。
  3. 如权利要求2所述的显示设备,其特征在于,所述第一光回收装置包括第一偏振合光元件与第一偏振转换元件,所述第一偏振合光元件用于将所述光源装置发出的第一偏振态的所述第一颜色光、第二颜色荧光与第二颜色补充光引导至所述第一空间光调制器,所述第一偏振转换元件用于将所述第一颜色非图像光中的第一颜色光及所述第二颜色非图像光中的第二颜色补充光的偏振态转换为第二偏振态,所述第二偏振态的第一颜色非图像光中的第一颜色光及所述第二颜色非图像光中的第二颜色补充光被引导至所述第一偏振合光元件,所述第一偏振合光元件还将所述第二偏振态的第一颜色非图像光中的第一颜色光及所述第二颜色非图像光中的第二颜色补充光引导至所述第一空间光调制器再次调制。
  4. 如权利要求3所述的显示设备,其特征在于,所述第二光回收装置包括第二开关式吸收体,所述第二开关式吸收体用于吸收或阻挡所述第三颜色非图像光中的第三颜色荧光,所述第三颜色非图像光中的第三颜色补充光被所述第二光回收装置回收至所述第二空间光调制 器以再次利用。
  5. 如权利要求4所述的显示设备,其特征在于,所述第一开关式吸收体包括窄带滤波器;所述第二开关式吸收体包括窄带滤波器。
  6. 如权利要求4所述的显示设备,其特征在于,所述第二光回收装置包括第二偏振合光元件与第二偏振转换元件,所述第二偏振合光元件用于将一种偏振态的所述第三颜色荧光与第三颜色补充光引导至所述第二空间光调制器,所述第二偏振转换元件用于将所述第三颜色非图像光中的第三颜色补充光的偏振态转换为另一种偏振态,所述另一种偏振态的第三颜色非图像光中的第三颜色补充光被引导至所述第二偏振合光元件,所述第二偏振合光元件还将所述另一种偏振态的第三颜色非图像光中的第三颜色补充光引导至所述第二空间光调制器再次调制。
  7. 如权利要求6所述的显示设备,其特征在于,所述光源装置包括波长转换***、分光装置、第一补充光源、第一合光元件、第一偏振转换装置,所述波长转换***包括激发光源及波长转换元件,所述激发光源用于发出激发光,所述波长转换元件用于将一部分激发光转换为所述第二颜色荧光及所述第三颜色荧光,所述波长转换***将所述波长转换元件转换的第二颜色荧光及第三颜色荧光提供至所述第一合光元件,以及将另一部分激发光作为所述第一颜色光也提供至所述第一合光元件,所述第一补充光源用于发出所述第二颜色补充光至所述第一合光元件,所述第一合光元件用于将所述第一颜色光、第二颜色荧光及第三颜色荧光与所述第二颜色补充光合光后提供至所述分光装置,所述分光装置用于将所述第一颜色光、第二颜色荧光及第二颜色补充光引导至所述第一空间光调制器以及将所述第三颜色荧光引导至所述第二空间光调制器;所述第一偏振转换装置位于所述第一合光元件与所述第一空间光调制器之间,用于将所述分光装置发出的所述第一颜色光、所述第二颜色荧光与所述第二颜色补充光转换为第一偏振态的所述第一颜色光、所述第二颜色荧光与所述第二颜色补充光。
  8. 如权利要求7所述的显示设备,其特征在于,所述光源装置还包括第二补充光源、第二合光元件、及第二偏振转换装置,所述第二合光元件位于所述分光装置及所述第二空间光调制器之间的光路上,所述分光装置用于发出所述第三颜色荧光至所述第二合光元件,所述第二补充光源用于发出所述第三颜色补充光至所述第二合光元件,所述第二合光元件用于将所述第三颜色荧光及所述第三颜色补充光合光后提供至所述第二空间光调制器;所述第二偏振转换装置位于所述第二合光元件与所述第二空间光调制器之间,用于将所述第二合光元件发出的所述第三颜色补充光转换为第一偏振态的所述第三颜色补充光。
  9. 如权利要求1所述的显示设备,其特征在于,所述显示设备包括图像合成装置,所述图像合成装置包括合光装置及镜头组件,所述 合光装置用于将所述第一空间光调制器发出的第一颜色图像光及第二颜色图像光与所述第二空间光调制器发出的第三颜色图像光合光,所述镜头组件用于将所述合光装置发出的第一颜色图像光、第二颜色图像光及第三颜色图像光进行投影以显示图像。
  10. 如权利要求1所述的显示设备,其特征在于,所述第一颜色光、所述第二颜色补充光及第三颜色补充光均为激光;所述第一颜色为蓝色,所述第二颜色为绿色与红色中的一种,所述第三颜色为绿色与红色中的另外一种。
PCT/CN2019/076652 2018-08-16 2019-03-01 显示设备 WO2020034619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810936633.1A CN110837199B (zh) 2018-08-16 2018-08-16 显示设备
CN201810936633.1 2018-08-16

Publications (1)

Publication Number Publication Date
WO2020034619A1 true WO2020034619A1 (zh) 2020-02-20

Family

ID=69524668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076652 WO2020034619A1 (zh) 2018-08-16 2019-03-01 显示设备

Country Status (2)

Country Link
CN (1) CN110837199B (zh)
WO (1) WO2020034619A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107450258A (zh) * 2016-06-01 2017-12-08 深圳市光峰光电技术有限公司 投影***
CN107479311A (zh) * 2014-06-23 2017-12-15 深圳市绎立锐光科技开发有限公司 光源***及投影设备
CN207067642U (zh) * 2017-05-26 2018-03-02 深圳市光峰光电技术有限公司 光源***及投影设备
CN107797368A (zh) * 2016-09-05 2018-03-13 深圳市光峰光电技术有限公司 双空间光调制***及使用该***进行光调节的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7959305B2 (en) * 2007-07-02 2011-06-14 Texas Instruments Incorporated Light recycling in a micromirror-based projection display system
WO2009032341A1 (en) * 2007-09-06 2009-03-12 Olympus Corporation Projection display system with varying light source
JP5446591B2 (ja) * 2009-08-24 2014-03-19 セイコーエプソン株式会社 プロジェクター
CN102645829B (zh) * 2011-12-02 2014-11-05 深圳市光峰光电技术有限公司 光源***及投影装置
CN105093776B (zh) * 2014-05-13 2020-08-25 深圳光峰科技股份有限公司 波长转换装置、光源***及投影***
US10386709B2 (en) * 2014-12-31 2019-08-20 Dolby Laboratories Licensing Corporation Methods and systems for high dynamic range image projectors
CN106444240B (zh) * 2015-08-04 2019-06-18 深圳光峰科技股份有限公司 投影***
CN108061995B (zh) * 2016-11-09 2020-05-15 深圳光峰科技股份有限公司 投影***
CN207164451U (zh) * 2017-08-04 2018-03-30 深圳市光峰光电技术有限公司 投影***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107479311A (zh) * 2014-06-23 2017-12-15 深圳市绎立锐光科技开发有限公司 光源***及投影设备
CN107450258A (zh) * 2016-06-01 2017-12-08 深圳市光峰光电技术有限公司 投影***
CN107797368A (zh) * 2016-09-05 2018-03-13 深圳市光峰光电技术有限公司 双空间光调制***及使用该***进行光调节的方法
CN207067642U (zh) * 2017-05-26 2018-03-02 深圳市光峰光电技术有限公司 光源***及投影设备

Also Published As

Publication number Publication date
CN110837199A (zh) 2020-02-25
CN110837199B (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
JP5226931B2 (ja) 高輝度広色域ディスプレイ装置および画像生成方法
US6807010B2 (en) Projection display apparatus having both incoherent and laser light sources
US7417799B2 (en) Multi-primary color display
EP3282315B1 (en) Light source system and projection system
TWI511576B (zh) 在使用發光二極體的投影系統中的多色原色光產生器
EP1596247A1 (en) Light source with four or five colours and projector
US8593579B2 (en) Projection display
WO2007026885A1 (ja) レーザ画像形成装置およびカラー画像形成方法
WO2019064985A1 (ja) 表示装置
US11359793B2 (en) Lighting apparatus and projection-type image display apparatus
CN110191327B (zh) 一种两片式lcd投影机
WO2019174274A1 (zh) 显示设备及显示方法
WO2019174271A1 (zh) 显示设备
US11404010B2 (en) Display apparatus, method for controlling same, and computer-readable storage medium
JP4143533B2 (ja) 光源装置、画像表示装置
KR100745242B1 (ko) 픽셀화된 컬러 이미지들을 표시면 상에 투영하기 위한 투영 시스템 및 방법
JP2014142524A (ja) 光源装置および投写型映像表示装置
WO2020034619A1 (zh) 显示设备
JP2004286963A (ja) 投射型表示装置
CN110870073A (zh) 具有两个发射显示器的彩色投影仪
JP4335664B2 (ja) 投射型映像表示装置、背面投射型映像表示装置、光学ユニット及びスクリーンユニット
JP4060162B2 (ja) 映像投影装置
WO2019174273A1 (zh) 图像处理装置、显示设备、图像处理与显示装置及方法
US8487953B2 (en) Image signal converting apparatus and image display apparatus
TWI581047B (zh) 投影系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19850508

Country of ref document: EP

Kind code of ref document: A1