WO2020034511A1 - 压缩机和具有其的空调器 - Google Patents

压缩机和具有其的空调器 Download PDF

Info

Publication number
WO2020034511A1
WO2020034511A1 PCT/CN2018/121454 CN2018121454W WO2020034511A1 WO 2020034511 A1 WO2020034511 A1 WO 2020034511A1 CN 2018121454 W CN2018121454 W CN 2018121454W WO 2020034511 A1 WO2020034511 A1 WO 2020034511A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
hole
sliding
main shaft
storage tank
Prior art date
Application number
PCT/CN2018/121454
Other languages
English (en)
French (fr)
Inventor
胡余生
万鹏凯
魏会军
徐嘉
吴飞
罗发游
丁宁
郭霜
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020034511A1 publication Critical patent/WO2020034511A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the technical field of compressor manufacturing, and in particular, to a compressor and an air conditioner having the same.
  • the sliding vane compressor usually includes a cylinder, a main shaft and a sliding vane.
  • the main shaft rotates in the cylinder and drives the sliding vane to rotate.
  • the sliding vane protrudes from the sliding vane groove and contacts the inner peripheral wall of the cylinder under the action of centrifugal force.
  • the space in the cylinder is divided into multiple independent compression chambers. The volume of some of the compression chambers decreases with the rotation of the main shaft, thereby compressing the gas, and increasing the pressure of the gas through the exhaust port. The other part of the compression chamber The volume increases to complete the inhalation of the gas.
  • the main purpose of the present invention is to provide a compressor and an air conditioner with the same, in order to solve the unreasonable structure of the compressor in the prior art, and unable to flexibly control the oil pressure on the tail of the sliding blade, thereby causing compression.
  • the service life of the machine is reduced, leading to the problem of poor reliability of the compressor.
  • a compressor including: a main shaft and a sliding plate.
  • the main shaft has a sliding plate groove.
  • the sliding plate is telescopically disposed at the sliding plate groove.
  • the sliding blade tail cavity is formed between the sliding blade and the sliding blade groove;
  • the oil supply part has an oil storage tank and a throttling pipeline, and the throttling pipeline is used to connect the oil storage tank and the sliding blade tail cavity.
  • the throttling pipeline is a throttling hole provided in the oil supply part, and the throttling hole is plural, and the plurality of throttling holes are arranged at intervals around the circumferential direction of the main shaft.
  • a part of the plurality of throttle holes is an oil return hole, and the cross-sectional area of each oil return hole is sequentially reduced along the rotation direction of the main shaft.
  • the plurality of sliding blades are installed in the plurality of sliding blade grooves one by one, and each sliding blade tail formed between the plurality of sliding blades and the plurality of sliding blade grooves.
  • the cavity communicates with the oil storage tank through a throttle hole.
  • another part of the plurality of throttle holes is an oil inlet hole, and a side of the oil supply portion facing the tail cavity of the sliding plate has a communication groove, and each oil inlet hole communicates with the tail cavity of the sliding plate through the communication groove.
  • the compressor further includes a cylinder, an upper flange and a lower flange.
  • the main shaft is eccentrically assembled with the cylinder.
  • the upper flange and the lower flange are sleeved on the main shaft and abut the two end faces of the cylinder, respectively.
  • the blue and / or lower flange are used as the oil supply unit.
  • an orifice is provided in an end surface of the fuel supply portion facing the cylinder.
  • the oil supply part further has a mounting hole, and an inner wall of the mounting hole is provided with an annular oil storage groove, so that the oil storage groove is formed inside the oil supply part.
  • the main shaft has a central oil hole and a radial flow hole communicating with the central oil hole, and the radial flow hole is used to communicate the central oil hole with the oil storage tank.
  • the central oil hole communicates with a notch of the oil storage tank facing the main axis.
  • the main shaft is clearance-fitted with the inner wall of the hole of the mounting hole, and the opening of the radial flow hole facing the inner wall of the hole of the mounting hole and the slot of the oil storage tank are offset from each other in the axial direction of the main shaft.
  • the compressor further includes a gear oil pump, and the gear oil pump is sleeved on the lower end of the main shaft and is in contact with the lower flange.
  • an air conditioner including the above-mentioned compressor.
  • an oil supply part is provided, and the oil supply part has an oil storage tank and a throttling pipeline.
  • the throttling pipeline connects the oil storage tank and the sliding blade tail cavity, so that the throttling pipeline is used to
  • the oil pressure is controlled flexibly. Specifically, during the inhalation of the gas, that is, during the process of the sliding vane protruding from the sliding vane groove, the hydraulic oil in the oil storage tank flows to the sliding vane tail cavity through the throttle pipe.
  • the amount of hydraulic oil flowing from the oil storage tank to the sliding blade tail cavity is smaller than the volume change of the sliding blade tail cavity when the sliding blade is extended outward from the sliding blade groove, so that the oil pressure of the sliding blade tail cavity becomes low pressure; during the gas exhaust process, That is, during the sliding of the sliding blade into the sliding blade groove, the hydraulic oil in the tail cavity of the sliding blade flows to the oil storage tank through the throttling pipeline. Due to the provision of the throttling pipeline, the amount of hydraulic oil flowing from the sliding blade tail cavity to the storage tank is less When the sliding blade is retracted into the sliding blade groove, the volume of the sliding blade tail cavity changes, thereby increasing the oil pressure in the sliding blade tail cavity.
  • the structure of the compressor optimized in this application can flexibly control the oil pressure on the tail of the sliding blade, thereby avoiding a large frictional force on the head of the sliding blade, avoiding excessive wear of the sliding blade, and improving the use of the compressor.
  • Service life avoiding the detachment of the vane head from the inner peripheral wall of the cylinder, and improving the reliability of the compressor.
  • the air conditioner using the compressor provided in the present application also has high service life and reliability.
  • FIG. 1 shows an exploded structure diagram of a compressor according to the first embodiment of the present invention
  • FIG. 2 is a schematic bottom view of the structure of the compressor of FIG. 1 after assembly;
  • FIG. 3 is a schematic bottom view of the upper flange of the compressor of FIG. 1;
  • FIG. 4 is a schematic cross-sectional structure diagram of the compressor of FIG. 1 after assembly
  • FIG. 5 is a schematic cross-sectional view of a compressor after assembly according to a second embodiment of the present invention.
  • main shaft 100, main shaft body; 200, connecting rod segment; 11, sliding blade groove; 12, central oil hole; 13, flow hole; 20, sliding blade; 30, sliding blade tail cavity; 40, cylinder; 41, Receiving cavity; 42, air inlet; 43, exhaust; 50, upper flange; 51, oil storage tank; 52, throttle hole; 53, communication groove; 54, mounting hole; 60, lower flange; 70, gear pumps.
  • the air conditioner includes the compressors described above and below.
  • the compressor includes a main shaft 10, a sliding plate 20, and an oil supply unit.
  • the main shaft 10 has a sliding plate groove 11.
  • the sliding plate 20 is telescopically disposed at the sliding plate groove 11.
  • a sliding blade tail cavity 30 is formed between the sliding blade 20 and the sliding blade groove 11.
  • the oil supply part has an oil storage groove 51 and a throttling pipeline, and the throttling pipeline is used to communicate the oil storage groove 51 and the sliding blade tail cavity 30.
  • an oil supply section is provided, and the oil supply section has an oil storage tank 51 and a throttling pipeline, and the oil storage tank 51 and the sliding blade tail cavity 30 are communicated through the throttling pipeline, thereby using the throttling pipeline to
  • the oil pressure is flexibly controlled. Specifically, during the inhalation of the gas, that is, during the process of the sliding blade 20 protruding from the sliding blade groove 11, the hydraulic oil in the oil storage tank 51 flows to the sliding blade tail cavity 30 through the throttle pipe.
  • the amount of hydraulic oil flowing from the oil storage tank 51 to the sliding blade tail cavity 30 is smaller than the volume change of the sliding blade tail cavity 30 when the sliding blade 20 is extended outward from the sliding blade groove 11 so that the oil pressure of the sliding blade tail cavity 30 is Low pressure; during the gas exhaust process, that is, during the sliding of the sliding vane 20 into the sliding vane groove 11, the hydraulic oil in the sliding vane cavity 30 flows to the oil storage tank 51 through the throttle pipe.
  • the amount of hydraulic oil flowing from the sliding blade tail cavity 30 to the oil storage tank 51 is smaller than the volume change of the sliding blade tail cavity 30 when the sliding blade 20 is retracted into the sliding blade groove 11, thereby increasing the oil pressure in the sliding blade tail cavity 30.
  • the structure of the compressor optimized in the present application can flexibly control the oil pressure in the tail cavity 30 of the vane, that is, the oil pressure on the tail of the vane 20 is flexibly controlled, thereby avoiding the end of the vane 20
  • the large frictional force prevents excessive wear of the sliding plate 20, which increases the service life of the compressor, improves the energy efficiency of the compressor, prevents the head of the sliding plate 20 from detaching from the inner peripheral wall of the cylinder 40, and improves the reliability of the compressor.
  • the throttle pipe is a throttle hole 52 opened in the oil supply part, and the throttle hole 52 is plural.
  • the plurality of throttle holes 52 are arranged at intervals around the circumferential direction of the main shaft 10. In this way, the sliding plate 20 rotates with the main shaft 10 relative to the oil supply part.
  • the sliding plate tail cavity 30 communicates with the oil storage tank 51 through different throttle holes 52, so that the throttle holes 52 can be adjusted by adjusting The cross-sectional area of the hole is used to control the change in oil pressure of the sliding blade tail cavity 30 during the rotation with the main shaft 10.
  • a part of the plurality of throttle holes 52 is an oil return hole, and the cross-sectional area of each oil return hole decreases sequentially along the rotation direction of the main shaft 10.
  • the volume of the corresponding compression chamber decreases with the rotation of the main shaft 10, and the pressure of the gas increases continuously. The pressure is constantly increasing.
  • a part of the throttle hole 52 is an oil return hole.
  • the hydraulic oil in the tail cavity 30 of the sliding vane flows to the oil storage tank 51 through the oil return hole.
  • FIG. 2 there are multiple slide grooves 11 and multiple slides 20.
  • the multiple slides 20 are installed in the multiple slide grooves 11 one by one, and the multiple slides 20 and multiple slides
  • the sliding blade tail cavities 30 formed between the grooves 11 communicate with the oil storage tank 51 through a throttle hole 52 respectively.
  • a plurality of sliding blades 20 rotate together with the main shaft 10, and each sliding blade 20 is in a different working state. Accordingly, in order to ensure that the pressure of the sliding blade tail cavity 30 is stable, at the same time, one sliding blade tail cavity 30 passes only one orifice 52 It communicates with the oil storage tank 51 and controls the oil cross-sectional area of the throttle hole 52 to control the oil pressure in the tail cavity 30 of each sliding blade.
  • the other part of the plurality of throttle holes 52 is an oil inlet hole.
  • a side of the oil supply portion facing the slider tail cavity 30 has a communication groove 53.
  • Each oil inlet hole passes through the communication groove 53. It is in communication with the sliding blade tail cavity 30. Since the pressure on the head of the corresponding slider 20 is low during the gas inhalation process, a communication groove 53 can be provided to communicate at least two of the multiple oil inlet holes.
  • the hydraulic oil in the oil storage groove 51 flows to the communication groove 53 through a plurality of oil inlet holes, and then flows to the sliding blade tail cavity 30 through the communication groove 53.
  • the hole cross-sectional area of the oil inlet hole communicating with the communication groove 53 is the same.
  • the communication groove 53 may not be provided. In this way, during the process of the sliding piece 20 protruding outward from the sliding piece groove 11, the hydraulic oil in the oil storage groove 51 flows directly to the sliding piece tail cavity 30 through the oil inlet hole.
  • the compressor further includes a cylinder 40, an upper flange 50 and a lower flange 60.
  • the main shaft 10 is eccentrically assembled with the cylinder 40.
  • the upper flange 50 and the lower flange 60 are sleeved on the main shaft 10 and are respectively connected with the cylinder.
  • the two end faces of 40 are in contact with each other, and the upper flange 50 and / or the lower flange 60 serve as oil supply portions.
  • the structure of the compressor is optimized, and the upper flange 50 and / or the lower flange 60 are used as the oil supply unit.
  • the air cylinder 40 has a receiving cavity 41.
  • the main shaft 10 includes a main shaft body 100 and two connecting rod sections 200 located at both ends of the main shaft body 100.
  • the two connecting rod sections 200 are fitted with the upper flange 50 and the lower flange 60, respectively.
  • the main shaft body 100 It is rotatably disposed in the receiving chamber 41.
  • the side wall of the cylinder 40 is provided with an air inlet 42 and an exhaust port 43 which communicate with the receiving chamber 41.
  • the sliding plate 20 rotates with the main shaft 10 and communicates with the inner peripheral wall of the cylinder 40 and the main shaft.
  • the outer peripheral wall of the body 100 cooperates to form a compression cavity, and the compression cavity is divided into an intake section, a compression section, and an exhaust section.
  • the throttle hole 52 is opened on an end surface of the fuel supply portion facing the cylinder 40 side.
  • the oil supply section further has a mounting hole 54 assembled with the main shaft 10, and an inner wall of the mounting hole 54 is provided with an annular oil storage tank 51 so that the oil storage tank 51 is formed inside the oil supply section.
  • the upper flange 50 is used as the oil supply part, and the upper flange 50 has a mounting hole 54 to be assembled with the main shaft 10.
  • the oil storage tank 51 and the throttle hole 52 are opened on the end surface of the upper flange 50 facing the cylinder 40 and communicate with the oil storage tank 51.
  • a plurality of throttle holes 52 are provided at intervals around the circumferential direction of the mounting hole 54.
  • the flow holes 52 are arranged at intervals around the circumferential direction of the connecting rod segment 200.
  • An end surface of the upper flange 50 facing the cylinder 40 is further provided with a communication groove 53 to communicate at least two of the plurality of throttle holes 52.
  • the main shaft 10 has a central oil hole 12 and a radial flow hole 13 communicating with the central oil hole 12.
  • the radial flow hole 13 is used to communicate the central oil hole 12 with the oil storage tank 51.
  • the central oil hole 12 communicates with a notch of the oil storage tank 51 facing the main shaft 10. In this way, when the central oil hole 12 directly communicates with the notch of the oil storage tank 51 facing the main shaft 10, the oil pressure in the oil storage tank 51 becomes high pressure.
  • the compressor further includes a gear oil pump 70.
  • the gear oil pump 70 is sleeved on the lower end of the main shaft 10 and abuts against the lower flange 60. In this way, the gear oil pump 70 flows the hydraulic oil in the oil pool into the oil storage tank 51 through the central oil hole 12 and the radial flow hole 13, and uses the gear oil pump 70 to supply oil to the tail cavity 30 of the vane.
  • the gear oil pump 70 is replaced with an oil guide plate to supply oil to the sliding plate tail cavity 30.
  • the gear oil pump 70 may also be replaced with another structure for supplying oil to the sliding blade tail cavity 30.
  • the sliding blade 20 is extended from the sliding blade groove 11 on the main shaft 10 and then retracted.
  • the pressure of the compression chamber is gradually compressed from the suction pressure to the exhaust pressure, and the pressure on the head of the sliding blade 20 is gradually increased.
  • Increase in order to ensure that the head of the vane 20 and the inner peripheral wall of the cylinder 40 always contact, and also ensure that the contact force between the head of the vane 20 and the inner peripheral wall of the cylinder 40 is not too large, reducing the power of the compressor. Consumption, the oil pressure of the sliding blade tail cavity 30 also needs to be gradually increased.
  • the head of the vane 20 is low pressure, and the oil pressure in the tail cavity 30 of the vane may be low pressure.
  • the pressure of the head of the vane 20 is medium pressure (between the exhaust pressure and Between the suction pressure); when the pressure of the compression chamber of the slider 20 head reaches the discharge pressure, the oil pressure of the slider tail chamber 30 is higher than the discharge pressure.
  • the oil in the oil storage tank 51 flows to the sliding vane cavity 30 through the orifice 52 to form a throttling and the pressure is reduced.
  • the oil pressure in the sliding vane cavity 30 is low or medium pressure; when the sliding vane 20 returns In the sliding vane slot 11, the hydraulic oil in the sliding vane tail cavity 30 flows to the oil storage tank 51 through the orifice 52 to form a certain amount of oil.
  • the oil pressure in the sliding vane tail cavity 30 is high pressure.
  • the oil pressure in the sliding blade tail cavity 30 is related to the oil pressure in the oil storage tank 51, the cross-sectional area of the orifice 52 and the extension length of the orifice 52, and needs to be adjusted according to the actual situation.
  • the main shaft 10 fits the inner wall of the hole of the mounting hole 54, and the opening of the inner wall of the radial flow hole 13 facing the mounting hole 54 and the slot of the oil storage tank 51
  • the main shaft 10 is offset from the axial direction. In this way, the hydraulic oil in the central oil hole 12 is throttled through the fitting gap between the main shaft 10 and the inner wall of the hole of the mounting hole 54 and then enters the oil storage tank 51, and the oil pressure in the oil storage tank 51 is medium pressure.
  • the radial flow hole 13 is provided near the abutting surface between the oil supply portion and the cylinder 40 with respect to the oil storage tank 51.
  • the present application controls the size of the oil pressure in the oil storage tank 51 by adjusting the position of the radial flow hole 13.
  • the radial flow hole 13 includes a straight hole section and an enlarged hole section which are communicated in a direction away from the central oil hole 12.
  • the structure of the compressor optimized in the present application can flexibly control the oil pressure in the tail cavity 30 of the vane, that is, the oil pressure on the tail of the vane 20 is flexibly controlled, thereby avoiding the end of the vane 20
  • the large frictional force prevents excessive wear of the sliding plate 20, which increases the service life of the compressor, improves the energy efficiency of the compressor, prevents the head of the sliding plate 20 from detaching from the inner peripheral wall of the cylinder 40, and improves the reliability of the compressor.
  • the air conditioner using the compressor provided in the present application also has high service life and reliability.
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal”, “top, bottom” and the like indicate the orientation Or the positional relationship is usually based on the orientation or positional relationship shown in the drawings, only for the convenience of describing the present invention and simplifying the description. Unless otherwise stated, these orientation words do not indicate and imply the device or element referred to. It must have a specific orientation or be constructed and operated in a specific orientation, so it cannot be understood as a limitation on the scope of protection of the present invention; the orientation words “inside and outside” refer to the inside and outside relative to the outline of each component itself.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure Shows the spatial position relationship between one device or feature and other devices or features. It should be understood that spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device as described in the figures. For example, if a device in the figure is turned over, devices described as “above” or “above” other devices or constructions will be positioned “below the other devices or constructions” or “below” Other devices or constructs. " Thus, the exemplary term “above” may include both directions “above” and “below”. The device can also be positioned in other different ways (rotated 90 degrees or at other orientations), and the relative description of space used here is explained accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种压缩机,包括主轴(10)和滑片(20),主轴(10)具有滑片槽(11),滑片(20)可伸缩地设置在滑片槽(11)处,当滑片(20)伸出时,滑片(20)与滑片槽(11)之间形成滑片尾腔(30);供油部,供油部具有储油槽(51)和节流管路,节流管路用于连通储油槽(51)和滑片尾腔(30),其解决了压缩机的结构不合理,无法对滑片尾部所受的油压进行灵活地控制,从而导致压缩机的使用寿命降低,导致压缩机的使用可靠性差的问题。

Description

压缩机和具有其的空调器 技术领域
本发明涉及压缩机制造技术领域,具体而言,涉及一种压缩机和具有其的空调器。
背景技术
滑片式压缩机通常包括气缸、主轴和滑片,主轴在气缸内转动,并带动滑片转动,滑片在离心力的作用下由滑片槽中伸出并与气缸的内周壁抵接,将气缸内的空间分隔成多个独立的压缩室,一部分压缩室的体积随主轴的转动而减小,从而对气体进行压缩,使气体的压力增大后由排气口排出,另一部分压缩室的体积增大,从而完成气体的吸入。
为了保证滑片能够顺利地由滑片槽中伸出,并保证滑片头部始终与气缸的内周壁抵接,通常在滑片尾部的滑片尾腔内引入油池的液压油,以克服滑片头部所受的气体压力和摩擦力。但由于滑片头部所受的气体压力是不断变化的,即在气体的吸入过程中,相对应的滑片头部所受的压力为低压,在气体的排出过程中,相对应的滑片头部所受的压力为高压,因此,滑片尾部所受的油压也需要是不断变化的,但现有的压缩机的结构不合理,无法对滑片尾部所受的油压进行灵活地控制,导致滑片头部所受摩擦力较大,从而使滑片过度磨损,降低了压缩机的使用寿命,或者导致滑片头部与气缸的内周壁出现脱离,降低了压缩机的使用可靠性。
发明内容
本发明的主要目的在于提供一种压缩机和具有其的空调器,以解决现有技术中的压缩机的结构不合理,无法对滑片尾部所受的油压进行灵活地控制,从而导致压缩机的使用寿命降低,导致压缩机的使用可靠性差的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种压缩机,包括:主轴和滑片,主轴具有滑片槽,滑片可伸缩地设置在滑片槽处,当滑片伸出时,滑片与滑片槽之间形成滑片尾腔;供油部,供油部具有储油槽和节流管路,节流管路用于连通储油槽和滑片尾腔。
进一步地,节流管路为开设在供油部上的节流孔,节流孔为多个,多个节流孔绕主轴的周向间隔设置。
进一步地,多个节流孔中的一部分为回油孔,各回油孔的孔截面积沿主轴的转动方向依次减小。
进一步地,滑片槽为多个,滑片为多个,多个滑片一一对应地安装在多个滑片槽内,多个滑片和多个滑片槽之间形成的各滑片尾腔分别通过一个节流孔与储油槽连通。
进一步地,多个节流孔中的另一部分为进油孔,供油部的朝向滑片尾腔的一侧具有连通槽,各进油孔均通过连通槽与滑片尾腔连通。
进一步地,压缩机还包括气缸、上法兰和下法兰,主轴与气缸偏心装配,上法兰和下法兰套设在主轴上并分别与气缸的两个端面抵接,其中,上法兰和/或下法兰作为供油部。
进一步地,节流孔开设在供油部的朝向气缸一侧的端面上。
进一步地,供油部还具有安装孔,安装孔的孔内壁上开设有呈环形的储油槽,以使储油槽形成在供油部的内部。
进一步地,主轴具有中心油孔和与中心油孔连通的径向过流孔,径向过流孔用于将中心油孔与储油槽连通。
进一步地,中心油孔与储油槽的朝向主轴一侧的槽口连通。
进一步地,主轴与安装孔的孔内壁间隙配合,径向过流孔的朝向安装孔的孔内壁的孔口与储油槽的槽口在主轴的轴向上错位设置。
进一步地,压缩机还包括齿轮油泵,齿轮油泵套设在主轴的下端,并与下法兰抵接。
根据本发明的另一方面,提供了一种空调器,包括上述的压缩机。
应用本发明的技术方案,设置了供油部,供油部具有储油槽和节流管路,通过节流管路将储油槽和滑片尾腔连通,从而利用节流管路对滑片尾部所受的油压进行灵活地控制。具体来说,在气体的吸入过程中,即滑片由滑片槽中向外伸出的过程中,储油槽内的液压油通过节流管路流向滑片尾腔,由于设置了节流管路,液压油由储油槽流向滑片尾腔的量小于滑片由滑片槽向外伸出时滑片尾腔体积的变化,从而使滑片尾腔的油压为低压;在气体的排气过程中,即滑片向滑片槽内缩回的过程中,滑片尾腔内的液压油通过节流管路流向储油槽,由于设置了节流管路,液压油由滑片尾腔流向储油槽的量小于滑片向滑片槽内缩回时滑片尾腔体积的变化,从而使滑片尾腔内的油压升高。
本申请优化了的压缩机的结构,能够对滑片尾部所受的油压进行灵活地控制,从而避免滑片头部所受摩擦力较大,避免滑片过度磨损,提升了压缩机的使用寿命,避免滑片头部与气缸的内周壁出现脱离,提升了压缩机的使用可靠性。相应地,应用本申请提供的压缩机的空调器,也具有较高的使用寿命和使用可靠性。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的实施例一的压缩机的分解结构示意图;
图2示出了图1的压缩机装配后部分结构的仰视结构示意图;
图3示出了图1的压缩机的上法兰的仰视结构示意图;
图4示出了图1的压缩机装配后的剖视结构示意图;
图5示出了根据本发明的实施例二的压缩机装配后的剖视结构示意图。
其中,上述附图包括以下附图标记:
10、主轴;100、主轴本体;200、连接杆段;11、滑片槽;12、中心油孔;13、过流孔;20、滑片;30、滑片尾腔;40、气缸;41、容纳腔;42、进气口;43、排气口;50、上法兰;51、储油槽;52、节流孔;53、连通槽;54、安装孔;60、下法兰;70、齿轮油泵。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了解决现有技术中的压缩机的结构不合理,无法对滑片尾部所受的油压进行灵活地控制,从而导致压缩机的使用寿命降低,导致压缩机的使用可靠性差的问题,本发明提供了一种压缩机和具有其的空调器。其中,空调器包括上述和下述的压缩机。
实施例一
如图1所示,压缩机包括主轴10、滑片20和供油部,主轴10具有滑片槽11,滑片20可伸缩地设置在滑片槽11处,当滑片20伸出时,滑片20与滑片槽11之间形成滑片尾腔30,供油部具有储油槽51和节流管路,节流管路用于连通储油槽51和滑片尾腔30。
在本申请中,设置了供油部,供油部具有储油槽51和节流管路,通过节流管路将储油槽51和滑片尾腔30连通,从而利用节流管路对滑片尾部所受的油压进行灵活地控制。具体来说,在气体的吸入过程中,即滑片20由滑片槽11中向外伸出的过程中,储油槽51内的液压油通过节流管路流向滑片尾腔30,由于设置了节流管路,液压油由储油槽51流向滑片尾腔30的量小于滑片20由滑片槽11向外伸出时滑片尾腔30体积的变化,从而使滑片尾腔30的油压为低压;在气体的排气过程中,即滑片20向滑片槽11内缩回的过程中,滑片尾腔30内的液压油通过节流管路流向储油槽51,由于设置了节流管路,液压油由滑片尾腔30流向储油槽51的量小于滑片20向滑片槽11内缩回时滑片尾腔30体积的变化,从而使滑片尾腔30内的油压升高。
本申请优化了的压缩机的结构,能够对滑片尾腔30内的油压进行灵活地控制,即对滑片20尾部所受的油压进行灵活地控制,从而避免滑片20头部所受摩擦力较大,避免滑片20过度磨损,提升了压缩机的使用寿命,提高压缩机的能效,避免滑片20头部与气缸40的内周壁出现脱离,提升了压缩机的使用可靠性。
如图2和图3所示,节流管路为开设在供油部上的节流孔52,节流孔52为多个,多个节流孔52绕主轴10的周向间隔设置。这样,滑片20随主轴10相对于供油部转动,在主轴10转动的过程中,滑片尾腔30通过不同的节流孔52与储油槽51连通,从而能够通过调节各节流孔52的孔截面积,来控制滑片尾腔30在随主轴10转动过程中油压的变化。
如图2和图3所示,多个节流孔52中的一部分为回油孔,各回油孔的孔截面积沿主轴10的转动方向依次减小。回油孔的孔截面积越小,滑片尾腔30内的油压越高。具体来说,在滑片20向滑片槽11内缩回的过程中,相对应的压缩室的体积随主轴10的转动而减小,气体的压力不断增高,滑片20头部所受的压力不断增大,根据主轴10与供油部装配后的相对位置,一部分节流孔52为回油孔,滑片尾腔30内的液压油通过回油孔流向储油槽51,当各回油孔的孔截面积沿主轴10的转动方向依次减小时,滑片尾腔30内的油压逐渐增高,从而与滑片20头部所受的压力相对应。
如图2所示,滑片槽11为多个,滑片20为多个,多个滑片20一一对应地安装在多个滑片槽11内,多个滑片20和多个滑片槽11之间形成的各滑片尾腔30分别通过一个节流孔52与储油槽51连通。多个滑片20均随主轴10一起转动,各滑片20处于不同的工作状态,相应地,为了保证滑片尾腔30的压力稳定,同一时间,一个滑片尾腔30仅通过一个节流孔52与储油槽51连通,通过控制节流孔52的孔截面积,来控制各滑片尾腔30的油压。
如图2和图3所示,多个节流孔52中的另一部分为进油孔,供油部的朝向滑片尾腔30的一侧具有连通槽53,各进油孔均通过连通槽53与滑片尾腔30连通。由于在气体的吸入过程中,相对应的滑片20头部所受的压力均为低压,可以设置连通槽53,将多个进油孔中的至少两个连通,这样,在滑片20由滑片槽11中向外伸出的过程中,储油槽51内的液压油通过多个进油孔流向连通槽53,再通过连通槽53流向滑片尾腔30。
可选地,如图2所示,与连通槽53连通的进油孔的孔截面积相同。
在本申请一未图示实施例中,也可以不设置连通槽53。这样,滑片20由滑片槽11中向外伸出的过程中,储油槽51内的液压油通过进油孔直接流向滑片尾腔30。
如图1所示,压缩机还包括气缸40、上法兰50和下法兰60,主轴10与气缸40偏心装配,上法兰50和下法兰60套设在主轴10上并分别与气缸40的两个端面抵接,其中,上法兰50和/或下法兰60作为供油部。这样,在利用压缩机的原有结构的基础上,优化了压缩机的结构,将上法兰50和/或下法兰60作为供油部。
气缸40具有容纳腔41,主轴10包括主轴本体100和位于主轴本体100两端的两个连接杆段200,两个连接杆段200分别与上法兰50和下法兰60间隙配合,主轴本体100可转动地设置在容纳腔41内,气缸40的侧壁上开设有与容纳腔41连通的进气口42和排气口43,滑片20随主轴10转动,与气缸40的内周壁和主轴本体100的外周壁配合形成压缩腔,并将压缩腔分为吸气段、压缩段和排气段。
可选地,节流孔52开设在供油部的朝向气缸40一侧的端面上。供油部还具有与主轴10装配的安装孔54,安装孔54的孔内壁上开设有呈环形的储油槽51,以使储油槽51形成在供油部的内部。
在图1至图4示出的可选实施例中,将上法兰50作为供油部,上法兰50具有与主轴10装配的安装孔54,安装孔54的孔内壁上开设有呈环形的储油槽51,节流孔52开设在上法兰50朝向气缸40一侧的端面上并与储油槽51连通,多个节流孔52绕安装孔54的周向间隔设置,即多个节流孔52绕连接杆段200的周向间隔设置,上法兰50朝向气缸40一侧的端面上还开设有连通槽53,将多个节流孔52中的至少两个连通。
如图4所示,主轴10具有中心油孔12和与中心油孔12连通的径向过流孔13,径向过流孔13用于将中心油孔12与储油槽51连通。
其中,中心油孔12与储油槽51的朝向主轴10一侧的槽口连通。这样,当中心油孔12与储油槽51的朝向主轴10一侧的槽口直接连通时,储油槽51内的油压为高压。
可选地,如图1所示,压缩机还包括齿轮油泵70,齿轮油泵70套设在主轴10的下端,并与下法兰60抵接。这样,齿轮油泵70将油池内的液压油通过中心油孔12和径向过流孔13流入储油槽51,利用齿轮油泵70为滑片尾腔30供油。
在本申请一未图示实施例中,将齿轮油泵70替换为导油片,为滑片尾腔30供油。在申请的其他未图示实施例中,也可以将齿轮油泵70替换为其它为滑片尾腔30供油的结构。
压缩机在运行过程中,滑片20由主轴10上的滑片槽11先伸出后缩回,压缩腔的压力从吸气压力逐步压缩到排气压力,对滑片20头部的压力逐渐增大,为了保证滑片20头部与气缸40的内周壁始终抵接,同时还要保证滑片20头部与气缸40的内周壁之间的接触力不要太大,减小压缩机的功耗,滑片尾腔30的油压也需要逐渐增大。
在气体吸入过程中的滑片20头部都是低压,滑片尾腔30的油压为低压即可;在气体压缩过程中,滑片20头部的压力为中压(介于排气压力和吸气压力之间);当滑片20头部压缩腔的压力达到排气压力时,滑片尾腔30的油压要高于排气压力。
在滑片20伸出阶段,储油槽51的油通过节流孔52流向滑片尾腔30,形成节流,压力减低,滑片尾腔30内的油压为低压或中压;当滑片20退回滑片槽11时,滑片尾腔30的液压油通过节流孔52流向储油槽51,形成一定的憋油,滑片尾腔30内的油压为高压。滑片尾腔30内的油压与储油槽51内的油压、节流孔52的孔截面积以及节流孔52的延伸长度有关,需要根据实际来调整。
实施例二
与实施例一的区别在于,如图5所示,主轴10与安装孔54的孔内壁间隙配合,径向过流孔13的朝向安装孔54的孔内壁的孔口与储油槽51的槽口在主轴10的轴向上错位设置。 这样,中心油孔12内的液压油通过主轴10与安装孔54的孔内壁之间的配合间隙处节流后再进入储油槽51,储油槽51内的油压为中压。
在图5所示的实施例中,径向过流孔13相对于储油槽51靠近供油部与气缸40的抵接面设置。
本申请通过调整径向过流孔13的位置,来控制储油槽51内的油压大小。
可选地,径向过流孔13包括沿远离中心油孔12的方向相连通的直孔段和扩孔段。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
本申请优化了的压缩机的结构,能够对滑片尾腔30内的油压进行灵活地控制,即对滑片20尾部所受的油压进行灵活地控制,从而避免滑片20头部所受摩擦力较大,避免滑片20过度磨损,提升了压缩机的使用寿命,提高压缩机的能效,避免滑片20头部与气缸40的内周壁出现脱离,提升了压缩机的使用可靠性。
相应地,应用本申请提供的压缩机的空调器,也具有较高的使用寿命和使用可靠性。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上 方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种压缩机,其特征在于,包括:
    主轴(10)和滑片(20),所述主轴(10)具有滑片槽(11),所述滑片(20)可伸缩地设置在所述滑片槽(11)处,当所述滑片(20)伸出时,所述滑片(20)与所述滑片槽(11)之间形成滑片尾腔(30);
    供油部,所述供油部具有储油槽(51)和节流管路,所述节流管路用于连通所述储油槽(51)和所述滑片尾腔(30)。
  2. 根据权利要求1所述的压缩机,其特征在于,所述节流管路为开设在所述供油部上的节流孔(52),所述节流孔(52)为多个,多个所述节流孔(52)绕所述主轴(10)的周向间隔设置。
  3. 根据权利要求2所述的压缩机,其特征在于,所述多个节流孔(52)中的一部分为回油孔,各所述回油孔的孔截面积沿所述主轴(10)的转动方向依次减小。
  4. 根据权利要求2或3所述的压缩机,其特征在于,所述滑片槽(11)为多个,所述滑片(20)为多个,所述多个滑片(20)一一对应地安装在所述多个滑片槽(11)内,所述多个滑片(20)和所述多个滑片槽(11)之间形成的各所述滑片尾腔(30)分别通过一个所述节流孔(52)与所述储油槽(51)连通。
  5. 根据权利要求3所述的压缩机,其特征在于,所述多个节流孔(52)中的另一部分为进油孔,所述供油部的朝向所述滑片尾腔(30)的一侧具有连通槽(53),各所述进油孔均通过所述连通槽(53)与所述滑片尾腔(30)连通。
  6. 根据权利要求2所述的压缩机,其特征在于,所述压缩机还包括气缸(40)、上法兰(50)和下法兰(60),所述主轴(10)与所述气缸(40)偏心装配,所述上法兰(50)和所述下法兰(60)套设在所述主轴(10)上并分别与所述气缸(40)的两个端面抵接,其中,所述上法兰(50)和/或所述下法兰(60)作为所述供油部。
  7. 根据权利要求6所述的压缩机,其特征在于,所述节流孔(52)开设在所述供油部的朝向所述气缸(40)一侧的端面上。
  8. 根据权利要求6所述的压缩机,其特征在于,所述供油部还具有安装孔(54),所述安装孔(54)的孔内壁上开设有呈环形的所述储油槽(51),以使所述储油槽(51)形成在所述供油部的内部。
  9. 根据权利要求8所述的压缩机,其特征在于,所述主轴(10)具有中心油孔(12)和与所述中心油孔(12)连通的径向过流孔(13),所述径向过流孔(13)用于将所述中心油孔(12)与所述储油槽(51)连通。
  10. 根据权利要求9所述的压缩机,其特征在于,所述中心油孔(12)与所述储油槽(51)的朝向所述主轴(10)一侧的槽口连通。
  11. 根据权利要求9所述的压缩机,其特征在于,所述主轴(10)与所述安装孔(54)的孔内壁间隙配合,所述径向过流孔(13)的朝向所述安装孔(54)的孔内壁的孔口与所述储油槽(51)的槽口在所述主轴(10)的轴向上错位设置。
  12. 根据权利要求6所述的压缩机,其特征在于,所述压缩机还包括齿轮油泵(70),所述齿轮油泵(70)套设在所述主轴(10)的下端,并与所述下法兰(60)抵接。
  13. 一种空调器,其特征在于,包括权利要求1至12中任一项所述的压缩机。
PCT/CN2018/121454 2018-08-17 2018-12-17 压缩机和具有其的空调器 WO2020034511A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810942435.6A CN108843570B (zh) 2018-08-17 2018-08-17 压缩机和具有其的空调器
CN201810942435.6 2018-08-17

Publications (1)

Publication Number Publication Date
WO2020034511A1 true WO2020034511A1 (zh) 2020-02-20

Family

ID=64188544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121454 WO2020034511A1 (zh) 2018-08-17 2018-12-17 压缩机和具有其的空调器

Country Status (2)

Country Link
CN (1) CN108843570B (zh)
WO (1) WO2020034511A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852861A (zh) * 2020-07-03 2020-10-30 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机泵体组件、压缩机及包括其的空调***
CN114526238A (zh) * 2022-03-14 2022-05-24 珠海格力电器股份有限公司 压缩机以及具有其的空调器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108843570B (zh) * 2018-08-17 2023-08-25 珠海格力电器股份有限公司 压缩机和具有其的空调器
CN110966194B (zh) * 2019-10-16 2020-11-24 珠海格力电器股份有限公司 一种压缩机及滑片式压缩机背压控制结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455129A (en) * 1981-05-19 1984-06-19 Daikin Kogyo Co., Ltd. Multi-vane type compressor
WO2014103974A1 (ja) * 2012-12-26 2014-07-03 カルソニックカンセイ株式会社 気体圧縮機
CN105402125A (zh) * 2015-11-13 2016-03-16 珠海格力节能环保制冷技术研究中心有限公司 一种滑片式压缩机
CN106704184A (zh) * 2015-08-18 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、压缩机和换热***
CN107882728A (zh) * 2017-10-30 2018-04-06 珠海格力电器股份有限公司 旋叶式压缩机及其泵体组件
CN108843570A (zh) * 2018-08-17 2018-11-20 珠海格力电器股份有限公司 压缩机和具有其的空调器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017180285A (ja) * 2016-03-30 2017-10-05 株式会社豊田自動織機 圧縮機
CN107701447B (zh) * 2017-09-29 2019-08-06 珠海格力电器股份有限公司 一种压缩机的油路结构和压缩机
CN108087270B (zh) * 2017-11-08 2023-08-25 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的压缩机
CN108087271B (zh) * 2017-11-08 2024-07-09 珠海格力电器股份有限公司 泵体组件及具有其的压缩机
CN208686580U (zh) * 2018-08-17 2019-04-02 珠海格力电器股份有限公司 压缩机和具有其的空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455129A (en) * 1981-05-19 1984-06-19 Daikin Kogyo Co., Ltd. Multi-vane type compressor
WO2014103974A1 (ja) * 2012-12-26 2014-07-03 カルソニックカンセイ株式会社 気体圧縮機
CN106704184A (zh) * 2015-08-18 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、压缩机和换热***
CN105402125A (zh) * 2015-11-13 2016-03-16 珠海格力节能环保制冷技术研究中心有限公司 一种滑片式压缩机
CN107882728A (zh) * 2017-10-30 2018-04-06 珠海格力电器股份有限公司 旋叶式压缩机及其泵体组件
CN108843570A (zh) * 2018-08-17 2018-11-20 珠海格力电器股份有限公司 压缩机和具有其的空调器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852861A (zh) * 2020-07-03 2020-10-30 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机泵体组件、压缩机及包括其的空调***
CN114526238A (zh) * 2022-03-14 2022-05-24 珠海格力电器股份有限公司 压缩机以及具有其的空调器

Also Published As

Publication number Publication date
CN108843570B (zh) 2023-08-25
CN108843570A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
WO2020034511A1 (zh) 压缩机和具有其的空调器
CN107152392B (zh) 泵体组件、流体机械及换热设备
US8038415B2 (en) Variable capacity swash plate type compressor
WO2018018871A1 (zh) 一种压缩机泵体及压缩机
WO2020052418A1 (zh) 泵体组件及具有其的压缩机
WO2020042443A1 (zh) 压缩机的主轴、压缩机和空调器
WO2022242202A1 (zh) 压缩机及具有其的空调器
CN108916045B (zh) 泵体组件、流体机械及换热设备
CN208686580U (zh) 压缩机和具有其的空调器
WO2019052080A1 (zh) 泵体组件、流体机械及换热设备
CN108412751A (zh) 一种反向吸排自平衡型增压泵的液力端
CN110131160B (zh) 一种变排量叶片泵
JP2004092652A (ja) 圧縮機
US6212995B1 (en) Variable-displacement inclined plate compressor
US11319957B2 (en) Scroll compressor and vehicle having the same
CN207920841U (zh) 一种反向吸排自平衡型增压泵的液力端
CN214742066U (zh) 泵体组件及具有其的流体机械
CN111396313A (zh) 空调器、压缩机组件、压缩机及其泵体单元
CN209414142U (zh) 一种叶片泵转子
KR102118600B1 (ko) 압축기의 흡입 맥동 저감장치
WO2023226409A1 (zh) 流体机械和换热设备
CN112727766A (zh) 泵体组件及具有其的流体机械
CN110056505A (zh) 一种限压式内反馈节能型液压转向助力泵
JPS6111401A (ja) 回転型流体機械
CN212318295U (zh) 空调器、压缩机组件、压缩机及其泵体单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930130

Country of ref document: EP

Kind code of ref document: A1