WO2020034360A1 - 恒温、恒压的岩芯保真舱 - Google Patents

恒温、恒压的岩芯保真舱 Download PDF

Info

Publication number
WO2020034360A1
WO2020034360A1 PCT/CN2018/108981 CN2018108981W WO2020034360A1 WO 2020034360 A1 WO2020034360 A1 WO 2020034360A1 CN 2018108981 W CN2018108981 W CN 2018108981W WO 2020034360 A1 WO2020034360 A1 WO 2020034360A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
constant
fidelity
core
core barrel
Prior art date
Application number
PCT/CN2018/108981
Other languages
English (en)
French (fr)
Inventor
高明忠
***
张茹
陈领
张泽天
张志龙
鲁义强
李聪
何志强
华夏
明传剑
彭高友
陆彤
Original Assignee
四川大学
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学, 深圳大学 filed Critical 四川大学
Publication of WO2020034360A1 publication Critical patent/WO2020034360A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
    • E21B25/10Formed core retaining or severing means

Definitions

  • the invention relates to the field of oil and gas field exploration, in particular to a rock core fidelity cabin with constant temperature and constant pressure.
  • cores are important data for discovering oil and gas layers and studying formations, oil layers, reservoirs, caps, structures, etc. Through the observation and study of cores, you can directly understand the lithology and physical properties of underground rocks. And oily, gas, aquatic characteristics.
  • Coring is the use of special coring tools to pull underground rocks into the ground during drilling.
  • This type of rock is called a core, which can be used to determine various properties of the rock and intuitively study the underground structure. And rock sedimentary environment, and understand the fluid properties.
  • the core tools are drilled into the well, and the core samples are drilled and stored in the core storage compartment. During the ascent, environmental parameters such as the temperature and pressure of the core storage compartment will decrease, making the core unable to maintain its state in the in-situ environment.
  • the invention aims to provide a constant temperature and constant pressure core fidelity capsule, which can automatically control the temperature and pressure in the fidelity capsule, which is beneficial to the core to maintain its state in the in-situ environment.
  • the thermostatic and constant pressure core fidelity capsule disclosed in the present invention includes a mechanical part and a control part, and the mechanical part includes an inner core barrel and an outer core core. And an accumulator, the outer core barrel is sleeved on the inner core barrel, the upper end of the inner core barrel is connected to a liquid nitrogen storage tank, and the liquid nitrogen storage tank is located in the outer core barrel, the storage The energy source communicates with the outer core barrel, and the outer core barrel is provided with a flap valve;
  • the control part includes an electric heater, a temperature sensor, an electric control valve provided between the inner core barrel and the liquid nitrogen storage tank, a pressure sensor, and a three-way stop valve provided between the accumulator and the outer core barrel.
  • A two ports of the three-way stop valve A are respectively connected to an accumulator and an external core barrel, a third port of the three-way stop valve A is connected to a pressure relief valve, and the three-way stop valve A is an electronically controlled valve.
  • the temperature sensor and the pressure sensor are connected to a processing unit.
  • the electric heater, the electric control valve, and the three-way stop valve A are all controlled by the processing unit.
  • the electric heater is used to heat the inside of the core.
  • the temperature sensor is used for the temperature sensor. For detecting the temperature in the fidelity cabin, the pressure sensor is used to detect the pressure in the fidelity cabin.
  • the electric heater is a resistance wire
  • the resistance wire is embedded in the inner wall of the outer core barrel
  • the resistance wire is coated with an insulating layer.
  • the present invention also includes a pressure gauge, which is connected to the outer core barrel through a three-way stop valve B.
  • a graphene layer is attached to an inner wall of the inner core cylinder.
  • the upper part of the inner core tube is filled with a dripping film-forming agent.
  • the flap valve includes a valve seat and a valve disc
  • the valve disc includes an elastic sealing ring, an elastic connecting bar, a sealing member, and a plurality of locking bars arranged in parallel in sequence.
  • the elastic connecting bar connects all the locking bars in series and All the lock bars are hooped together by the elastic sealing ring to form an integrated structure.
  • the lock bar has a card slot adapted to the elastic seal ring.
  • the elastic seal ring is installed in the card slot, and a seal is provided between two adjacent lock bars.
  • valve flap One end of the valve flap is movably connected to the upper end of the valve seat through a limit hinge; the valve flap is curved when it is not turned down, and the valve flap is in conformity with the outer wall of the inner core barrel; the valve flap is flat and covered when it is turned down. Upper end of valve seat.
  • a sealing cavity is provided on an inner wall of the outer coring cylinder, the flap is located in the sealing cavity, and the sealing cavity is in communication with the inner coring cylinder.
  • a sealing ring is provided on the inner wall of the outer core barrel, and the sealing ring is located below the flap valve.
  • the inner core barrel is made of PVC.
  • the power source of the control part is located on the outer core barrel.
  • the principle of the present invention is as follows: 1.
  • the temperature in the fidelity chamber is detected in real time by a temperature sensor, and compared with the in-situ temperature of the core tested before, and the electric heater is controlled to heat or the electric control valve is controlled according to the difference between the two temperatures. Open the injection of liquid nitrogen into the fidelity chamber to cool the fidelity chamber, so that the temperature in the constant fidelity chamber is the same as the core temperature in situ.
  • the pressure in the fidelity cabin is detected in real time by the pressure sensor, and compared with the in-situ pressure of the core tested before. Based on the difference between the two pressures, the on-off of the three-way stop valve A is controlled to make the The pressure increases to maintain the same pressure as the core in situ. Because the environmental pressure of the fidelity cabin during the lifting process is gradually reduced, the core in situ pressure is greater than the environmental pressure of the fidelity cabin during the lifting process, so the pressure is increased. Measures are sufficient.
  • the present invention can automatically heat and cool the fidelity capsule, which is beneficial for the core to maintain its state in the in-situ environment.
  • the invention can automatically pressurize the fidelity capsule, which is beneficial to the core to maintain its state in the in-situ environment.
  • the flap mechanism of the present invention can automatically close the fidelity cabin when the coring is completed, and has a simple structure, safety and reliability.
  • the graphene layer of the present invention can reduce the sliding resistance of the rock core on the inside of the PVC pipe, at the same time improve the strength and surface accuracy of the inside, and enhance the thermal conductivity.
  • the sealed cavity of the present invention can isolate the drilling fluid passing through the fidelity cavity.
  • FIG. 1 is a schematic structural diagram of the present invention
  • FIG. 2 is a schematic structural diagram of a flap valve when it is not turned down
  • FIG. 3 is a schematic structural diagram of a flap valve when it has been turned down
  • valve disc 4 is a schematic structural diagram of a valve disc
  • FIG. 5 is a schematic structural diagram of a sealed cavity
  • Figure 6 is a partial cross-sectional view of an inner core barrel
  • FIG. 7 is an electrical schematic diagram of the present invention.
  • the thermostatic and constant-pressure core core fidelity capsule disclosed in the present invention includes a mechanical part and a control part.
  • the mechanical part includes an inner core barrel 8, an outer core barrel 6 and an energy accumulator 29.
  • the device 29 communicates with the outer core barrel, the inner core barrel 8 is used to place the rock core 1, the outer core barrel 6 is set on the inner core barrel 6, the upper end of the inner core barrel 8 is connected to the liquid nitrogen storage tank 25, and the inner core is
  • An electric control valve 26 is provided on the communication pipe between the cylinder 8 and the liquid nitrogen storage tank 25.
  • the liquid nitrogen storage tank 25 is located inside the outer core cylinder 6, and the outer core cylinder 6 is provided with a flap valve 3.
  • the flap valve 3 includes a valve seat 36 and a valve disc 37
  • the valve disc 37 includes an elastic sealing ring 34, an elastic connecting bar 32, a seal, and a plurality of parallel arrays in order.
  • the lock strip 35 and the elastic connecting strip 32 connect all the lock strips 35 in series and hoop all the lock strips 35 together by the elastic seal ring 34 to form an integrated structure.
  • the lock strip 35 has a slot 31 adapted to the elastic seal ring.
  • An elastic seal ring 34 is installed in the slot 31, and a seal is provided between two adjacent lock bars 35.
  • One end of the valve flap 3 is movably connected to the upper end of the valve seat 36 through a limit hinge 33.
  • the valve flap 37 is In an arc shape, the valve flap 37 fits on the outer wall of the inner core barrel 8; the valve flap 37 is flat and covers the upper end of the valve seat 36 when it is turned down.
  • the control part includes an electric heater 214, a temperature sensor 5, and an electric control valve 26 provided in the pipeline.
  • the temperature sensor 5 is connected to the processing unit 24.
  • the electric heater 214 is connected to the power source 28 through a switch 27.
  • the control valves 26 are all controlled by the processing unit 24.
  • the electric heater is used to heat the inner core of the external core tube, and the temperature sensor 5 is used to detect the temperature in the fidelity cabin.
  • the electric heater 214 uses resistance wires, which are embedded in the outer core. The inner wall of the barrel, the resistance wire is coated with an insulating layer, and the power source 28 of the control part is located on the outer core barrel.
  • the control part also includes the pressure sensor 7, three-way stop valve A210, two ports of which are connected to the accumulator 29 and the outer core 6, respectively.
  • the third port of the three-way stop valve A210 is connected to the pressure relief valve. 211.
  • the three-way stop valve A210 is an electronically controlled valve.
  • the pressure sensor 7 and the three-way stop valve A210 are both connected to the processing unit 24.
  • the pressure sensor 7 is used to detect the pressure in the fidelity cabin.
  • the invention also includes a pressure gauge 212, which communicates with the outer core through a three-way stop valve B213.
  • the inner wall of the outer coring cylinder 6 is provided with a sealing cavity 39, which is in communication with the inner coring cylinder.
  • the inner core cylinder 8 is made of PVC.
  • a graphene layer 81 is attached to the inner wall of the inner core cylinder 8.
  • the upper part of the inner core cylinder 8 is filled with a dripping film-forming agent 82.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Control Of Fluid Pressure (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

一种恒温、恒压的岩芯保真舱,包括机械部分和控制部分,机械部分包括内取芯筒(8)、外取芯筒(6)和蓄能器(29),外取芯筒(6)套在内取芯筒(8)上,内取芯筒(8)上端连通液氮存储罐(25),液氮存储罐(25)位于外取芯筒(6)内,蓄能器(29)连通外取芯筒(6),外取芯筒(6)设有翻板阀(3);控制部分包括电加热器(214)、温度传感器(5)、设于管道A的电控阀(26)、压力传感器(7)、设于管道B上的三通截止阀A(210),三通截止阀A(210)的两个端口分别连接蓄能器(29)和外取芯筒(6),三通截止阀A(210)的第三端口连接泄压阀(211)。该岩芯保真舱能够自动控制保真舱内的温度和压力,有利于岩芯保持其在原位环境下的状态。

Description

恒温、恒压的岩芯保真舱 技术领域
本发明涉及油气田勘探领域,尤其涉及一种恒温、恒压的岩芯保真舱。
背景技术
在油气田勘探过程中,岩芯是发现油气层和研究地层、生油层、储油层、盖层、构造等的重要资料,通过对岩芯的观察研究,可以直接地了解地下岩层的岩性、物性和含油、气、水产状特征。油田投入开发后,要通过岩芯进一步研究和认识油层沉积特征,储层的物性、孔隙结构、润湿性、相对渗透率、岩相特征,油层物理模拟和油层水淹规律;认识和掌握不同开发阶段、不同含水阶段油层水淹特征,搞清剩余油分布,为油田开发方案设计,层系、井网调整和加密井提供科学依据。
取岩芯是在钻井过程中使用特殊的取芯工具把地下岩石成块地取到地面上来,这种成块的岩石叫做岩芯,通过它可以测定岩石的各种性质,直观地研究地下构造和岩石沉积环境,了解其中的流体性质等。在矿产勘探和开发过程中,需要按地质设计的地层层位和深度,开展钻进工作,向井内下入取芯工具,钻取出的岩芯样品,并存储在岩芯存储舱中,在设备上升过程中,岩芯存储舱的温度、压力等环境参数会降低,使得岩芯不能保持其在原位环境下的状态。
发明内容
本发明旨在提供恒温、恒压的岩芯保真舱,能够自动控制保真舱内的温度和压力,有利于岩芯保持其在原位环境下的状态。
为达到上述目的,本发明是采用以下技术方案实现的:本发明公开的恒温、 恒压的岩芯保真舱,包括机械部分和控制部分,所述机械部分包括内取芯筒、外取芯筒和蓄能器,所述外取芯筒套在内取芯筒上,所述内取芯筒上端连通液氮存储罐,,所述液氮存储罐位于外取芯筒内,所述蓄能器连通外取芯筒,所述外取芯筒设有翻板阀;
所述控制部分包括电加热器、温度传感器、设于内取芯筒与液氮存储罐之间的电控阀、压力传感器、设于蓄能器与外取芯筒之间的三通截止阀A,,所述三通截止阀A的两个端口分别连接蓄能器和外取芯筒,三通截止阀A的第三端口连接泄压阀,三通截止阀A为电控阀,所述温度传感器、压力传感器连接处理单元,所述电加热器、电控阀、三通截止阀A均受控于处理单元,所述电加热器用于对外取芯筒内部加热,所述温度传感器用于检测保真舱内的温度,所述压力传感器用于检测保真舱内的压力。
优选的,所述电加热器为电阻丝,所述电阻丝嵌装在外取芯筒的内壁,电阻丝涂覆绝缘层。
进一步的,本发明还包括压力表,所述压力表通过三通截止阀B连通外取芯筒。
进一步的,所述内取芯筒的内壁附着石墨烯层。
进一步的,所述内取芯筒上部填充滴水成膜剂。
优选的,所述翻板阀包括阀座和阀瓣,所述阀瓣包括弹性密封圈、弹性连接条、密封件和多个依次平行排列的锁条,弹性连接条将所有锁条串连并由弹性密封圈将所有锁条箍在一起形成整体结构,锁条上有与弹性密封圈适配的卡槽,弹性密封圈装在卡槽中,相邻两个锁条间设有密封件,阀瓣一端通过限位铰链活动连接在阀座上端;所述阀瓣在未翻下时为弧形,阀瓣与内取芯筒的外壁贴合;阀瓣在翻下时为平面并盖住阀座上端。
进一步的,所述外取芯筒内壁设有密封腔,所述翻板位于密封腔,所述密封腔与内取芯筒连通。
进一步的,所述外取芯筒内壁设有密封圈,所述密封圈位于翻板阀的下方。
优选的,所述内取芯筒为PVC材质。
优选的,所述控制部分的电源位于外取芯筒上。
本发明的原理如下:1、通过温度传感器实时检测保真舱内的温度,并与在先测试的岩芯原位温度比较,根据两个温度的差异,控制电加热器加热或者控制电控阀打开向保真舱内注入液氮冷却保真舱,从而恒定保真舱内的温度与岩芯原位温度相同。2、通过压力传感器实时检测保真舱内的压力,并与在先测试的岩芯原位压力比较,根据两个压力的差异,控制三通截止阀A的通断,使保真舱内的压力增加从而保持与岩芯原位压力相同,由于保真舱在提升过程中的环境压力是逐步减小的,岩芯原位压力大于保真舱在提升过程中的环境压力,故采用增压措施即可。
本发明的有益效果如下:
1、本发明可自动加热和冷却保真舱,有利于岩芯保持其在原位环境下的状态。
2、本发明可自动增压保真舱,有利于岩芯保持其在原位环境下的状态。
3、本发明的翻板机构能够在取芯完成时自动封闭保真舱,结构简单,安全可靠。
4、本发明的石墨烯层能够降低岩芯在PVC管内侧的滑动阻力,同时提高内侧的强度和表面精度,增强热导系数等。
5、本发明的密封腔可以隔绝通过保真腔内的钻井液。
附图说明
图1为本发明结构示意图;
图2为翻板阀未翻下时的结构示意图;
图3为翻板阀已翻下时的结构示意图;
图4为阀瓣的结构示意图;
图5为密封腔的结构示意图;
图6为内取芯筒的局部剖视图;
图7为本发明的电气原理图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。
本发明公开的恒温、恒压的岩芯保真舱,包括机械部分和控制部分,如图1所示,机械部分包括内取芯筒8、外取芯筒6和蓄能器29,蓄能器29连通外取芯筒,内取芯筒8用于放置岩芯1,外取芯筒6套在内取芯筒6上,内取芯筒8上端连通液氮存储罐25,内取芯筒8与液氮存储罐25之间的连通管道上设有电控阀26,液氮存储罐25位于外取芯筒6内,外取芯筒6设有翻板阀3。
具体的,如图2、图3、图4所示,翻板阀3包括阀座36和阀瓣37,阀瓣37包括弹性密封圈34、弹性连接条32、密封件和多个依次平行排列的锁条35,弹性连接条32将所有锁条35串连并由弹性密封圈34将所有锁条35箍在一起形成整体结构,锁条35上有与弹性密封圈适配的卡槽31,弹性密封圈34装在卡槽31中,相邻两个锁条35间设有密封件,阀瓣3一端通过限位铰链33活动连接在阀座36上端;阀瓣37在未翻下时为弧形,阀瓣37与内取芯筒8的外壁贴合;阀瓣37在翻下时为平面并盖住阀座36上端。
如图7所示,控制部分包括电加热器214、温度传感器5和设于管道的电控 阀26,温度传感器5连接处理单元24,电加热器214通过开关27连接电源28,开关27、电控阀26均受控于处理单元24,电加热器用于对外取芯筒内部加热,温度传感器5用于检测保真舱内的温度;电加热器214采用电阻丝,电阻丝嵌装在外取芯筒的内壁,电阻丝涂覆绝缘层,控制部分的电源28位于外取芯筒上。控制部分还包括压力传感器7、三通截止阀A210,三通截止阀A210的其中两个端口分别连接蓄能器29和外取芯筒6,三通截止阀A210的第三端口连接泄压阀211,三通截止阀A210为电控阀,压力传感器7、三通截止阀A210均连接处理单元24,压力传感器7用于检测保真舱内的压力。
本发明还包括压力表212,压力表212通过三通截止阀B213连通外取芯筒。
如图5所示,外取芯筒6内壁设有密封腔39,所述密封腔与内取芯筒连通。
如图6所示,内取芯筒8采用PVC材质,内取芯筒8的内壁附着石墨烯层81,内取芯筒8上部填充滴水成膜剂82。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 恒温、恒压的岩芯保真舱,其特征在于:包括机械部分和控制部分,所述机械部分包括内取芯筒、外取芯筒和蓄能器,所述外取芯筒套在内取芯筒上,所述内取芯筒上端连通液氮存储罐,所述液氮存储罐位于外取芯筒内,所述蓄能器连通外取芯筒,所述外取芯筒设有翻板阀;
    所述控制部分包括电加热器、温度传感器、设于内取芯筒与液氮存储罐之间的电控阀、压力传感器、设于蓄能器与外取芯筒之间的三通截止阀A,所述三通截止阀A的两个端口分别连接蓄能器和外取芯筒,三通截止阀A的第三端口连接泄压阀,三通截止阀A为电控阀,所述温度传感器、压力传感器连接处理单元,所述电加热器、电控阀、三通截止阀A均受控于处理单元,所述电加热器用于对外取芯筒内部加热,所述温度传感器用于检测保真舱内的温度,所述压力传感器用于检测保真舱内的压力。
  2. 根据权利要求1所述的恒温、恒压的岩芯保真舱,其特征在于:所述电加热器为电阻丝,所述电阻丝嵌装在外取芯筒的内壁,电阻丝涂覆绝缘层。
  3. 根据权利要求1所述的恒温、恒压的岩芯保真舱,其特征在于:还包括压力表,所述压力表通过三通截止阀B连通外取芯筒。
  4. 根据权利要求1所述的恒温、恒压的岩芯保真舱,其特征在于:所述内取芯筒的内壁附着石墨烯层。
  5. 根据权利要求2所述的恒温、恒压的岩芯保真舱,其特征在于:所述内取芯筒上部填充滴水成膜剂。
  6. 根据权利要求1-5任意一项所述的恒温、恒压的岩芯保真舱,其特征在于:所述翻板阀包括阀座和阀瓣,所述阀瓣包括弹性密封圈、弹性连接条、密封件和多个依次平行排列的锁条,弹性连接条将所有锁条串连并由弹性密封圈将所 有锁条箍在一起形成整体结构,锁条上有与弹性密封圈适配的卡槽,弹性密封圈装在卡槽中,相邻两个锁条间设有密封件,阀瓣一端通过限位铰链活动连接在阀座上端;所述阀瓣在未翻下时为弧形,阀瓣与内取芯筒的外壁贴合;阀瓣在翻下时为平面并盖住阀座上端。
  7. 根据权利要求6所述的恒温、恒压的岩芯保真舱,其特征在于:所述外取芯筒内壁设有密封腔,所述翻板位于密封腔,所述密封腔与内取芯筒连通。
  8. 根据权利要求6所述的恒温、恒压的岩芯保真舱,其特征在于:所述外取芯筒内壁设有密封圈,所述密封圈位于翻板阀的下方。
  9. 根据权利要求6所述的恒温、恒压的岩芯保真舱,其特征在于:所述内取芯筒为PVC材质。
  10. 根据权利要求1所述的恒温、恒压的岩芯保真舱,其特征在于:所述控制部分的电源位于外取芯筒上。
PCT/CN2018/108981 2018-08-13 2018-09-30 恒温、恒压的岩芯保真舱 WO2020034360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810917850.6A CN109113614B (zh) 2018-08-13 2018-08-13 恒温、恒压的岩芯保真舱
CN201810917850.6 2018-08-13

Publications (1)

Publication Number Publication Date
WO2020034360A1 true WO2020034360A1 (zh) 2020-02-20

Family

ID=64853275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108981 WO2020034360A1 (zh) 2018-08-13 2018-09-30 恒温、恒压的岩芯保真舱

Country Status (2)

Country Link
CN (1) CN109113614B (zh)
WO (1) WO2020034360A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109113611B (zh) * 2018-08-13 2023-08-22 四川大学 具有恒温功能的岩芯保真舱
CN109555494B (zh) * 2018-12-07 2024-05-14 深圳大学 保真取芯装置
CN109488241B (zh) * 2018-12-07 2024-05-14 深圳大学 保真取芯装置
CN113882823A (zh) * 2021-03-11 2022-01-04 四川大学 一种深部保温保压取芯器
CN113884327A (zh) * 2021-03-11 2022-01-04 深圳大学 一种深部保温保压取芯***
CN114034527B (zh) * 2021-10-28 2022-06-17 中国矿业大学 一种保真环境下岩石试验样品切割装置及切割方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000481A (en) * 1993-09-21 1999-12-14 Simulprobe Technologies, Inc. Method and apparatus for environmental sampling
CN102182414A (zh) * 2011-03-09 2011-09-14 浙江大学 和海底钻机配套的深海沉积物岩心保压装置及其使用方法
CN102561970A (zh) * 2011-12-20 2012-07-11 大连理工大学 一种天然气水合物天然岩芯的保真转移装置及方法
CN106124242A (zh) * 2016-06-01 2016-11-16 四川大学 原位保真取芯***及取芯方法
CN107165597A (zh) * 2017-07-10 2017-09-15 西南石油大学 一种绳索取芯工具及方法
CN108150122A (zh) * 2018-03-01 2018-06-12 中国地质调查局油气资源调查中心 一种泥页岩防碎裂自启动式冷冻取样器及其取样方法
CN108360994A (zh) * 2018-03-08 2018-08-03 吉林大学 冲击回转式天然气水合物孔底冷冻绳索取心钻具及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4825963A (en) * 1988-07-11 1989-05-02 Ruhle James L High-pressure waterjet/abrasive particle-jet coring method and apparatus
RU2200225C2 (ru) * 2001-04-12 2003-03-10 Общество с ограниченной ответственностью "ТюменНИИгипрогаз" Двойной керноизолирующий снаряд
CN201327453Y (zh) * 2008-03-14 2009-10-14 吉林大学 天然气水合物孔底冷冻取样器
CN101514614B (zh) * 2009-04-02 2011-12-28 吉林大学 干冰升华孔底冷冻保压取样器及取样方法
CN203022668U (zh) * 2012-12-08 2013-06-26 吉林大学 液氮孔底冷冻绳索取心钻具
CN105041251B (zh) * 2015-07-10 2017-03-08 吉林大学 天然气水合物孔底冷冻双弹卡绳索取心钻具及取心方法
CN209339889U (zh) * 2018-08-13 2019-09-03 四川大学 一种恒温、恒压的岩芯保真舱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000481A (en) * 1993-09-21 1999-12-14 Simulprobe Technologies, Inc. Method and apparatus for environmental sampling
CN102182414A (zh) * 2011-03-09 2011-09-14 浙江大学 和海底钻机配套的深海沉积物岩心保压装置及其使用方法
CN102561970A (zh) * 2011-12-20 2012-07-11 大连理工大学 一种天然气水合物天然岩芯的保真转移装置及方法
CN106124242A (zh) * 2016-06-01 2016-11-16 四川大学 原位保真取芯***及取芯方法
CN107165597A (zh) * 2017-07-10 2017-09-15 西南石油大学 一种绳索取芯工具及方法
CN108150122A (zh) * 2018-03-01 2018-06-12 中国地质调查局油气资源调查中心 一种泥页岩防碎裂自启动式冷冻取样器及其取样方法
CN108360994A (zh) * 2018-03-08 2018-08-03 吉林大学 冲击回转式天然气水合物孔底冷冻绳索取心钻具及方法

Also Published As

Publication number Publication date
CN109113614B (zh) 2020-03-06
CN109113614A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2020034360A1 (zh) 恒温、恒压的岩芯保真舱
WO2020034357A1 (zh) 岩芯保真舱
WO2020034358A1 (zh) 具有恒压功能的岩芯保真舱
WO2020133724A1 (zh) 岩样保真取芯装置
US7083009B2 (en) Pressure controlled fluid sampling apparatus and method
WO2020133726A1 (zh) 岩样原位保真取芯***
RU2407889C1 (ru) Способ определения анизотропии проницаемости пласта в лабораторных условиях
NO338490B1 (no) Fremgangsmåte, apparat og system for in-situ bestemmelse av en formasjonsparameter
CN209339889U (zh) 一种恒温、恒压的岩芯保真舱
NO20120866A1 (no) Apparat og fremgangsmåte for ventilaktuering
KR20120058181A (ko) 초임계 이산화탄소의 지층 내 주입효율 향상을 위한 유체온도 제어 시스템 및 방법
CN106769684B (zh) 页岩气扩散能力测试***
WO2020034359A1 (zh) 具有恒温功能的岩芯保真舱
CN210858702U (zh) 一种仿真环境水泥防窜能力评价装置
CN114608958A (zh) 气固热流化耦合下页岩真三轴力学特性测试装置及方法
WO2015026901A1 (en) Modified flow rate analysis
CN107631974B (zh) 一种致密砂岩蜡封岩心含水饱和度的获取方法
US10808520B2 (en) Smart well plug and method for inspecting the integrity of a barrier in an underground wellbore
CN216894376U (zh) 一种随钻地层流体取样单相保温储罐机构
KR101540669B1 (ko) 더블패커를 이용한 수리시험 장치
US3459264A (en) Pressure regulating valve assembly between open hole packers and method
CN111323359A (zh) 一种高压天然气-水***岩心自发渗吸测量装置及方法
CN207636225U (zh) 一种隧道内地应力测试装置
CN209339884U (zh) 一种岩芯保真舱
RU2527960C1 (ru) Способ исследования скважины

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930010

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18930010

Country of ref document: EP

Kind code of ref document: A1