WO2020032973A1 - Dispositifs ophtalmiques - Google Patents

Dispositifs ophtalmiques Download PDF

Info

Publication number
WO2020032973A1
WO2020032973A1 PCT/US2018/046219 US2018046219W WO2020032973A1 WO 2020032973 A1 WO2020032973 A1 WO 2020032973A1 US 2018046219 W US2018046219 W US 2018046219W WO 2020032973 A1 WO2020032973 A1 WO 2020032973A1
Authority
WO
WIPO (PCT)
Prior art keywords
ophthalmic device
crosslinking agent
meth
reactive end
hydrophilic
Prior art date
Application number
PCT/US2018/046219
Other languages
English (en)
Inventor
Ivan M. Nuñez
Lynn COULLARD
Daniel J. Hook
Robert B. Steffen
Daniel M. Ammon
Jennifer M. HUNT
Analuz MARK
Original Assignee
Bausch & Lomb Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bausch & Lomb Incorporated filed Critical Bausch & Lomb Incorporated
Priority to JP2021531444A priority Critical patent/JP7357056B2/ja
Priority to CN201880096494.4A priority patent/CN112930487B/zh
Priority to KR1020217007301A priority patent/KR102551113B1/ko
Priority to CA3107771A priority patent/CA3107771A1/fr
Priority to EP18765235.9A priority patent/EP3834018A1/fr
Priority to PCT/US2018/046219 priority patent/WO2020032973A1/fr
Publication of WO2020032973A1 publication Critical patent/WO2020032973A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/10N-Vinyl-pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/049Contact lenses having special fitting or structural features achieved by special materials or material structures

Definitions

  • the present invention generally relates to ophthalmic devices such as contact lenses.
  • Ophthalmic devices such as contact lenses are made of various polymeric materials, including rigid gas permeable materials, soft elastomeric materials, and soft hydrogel materials.
  • the majority of contact lenses sold today are made of soft hydrogel materials.
  • Hydrogels are a cross-linked polymeric system that absorb and retain water, typically 10 to 80 percent by weight, and especially 20 to 70 percent water.
  • Hydrogel lenses are commonly prepared by polymerizing a lens-forming monomer mixture including at least one hydrophilic monomer, such as 2-hydroxyethyl methacrylate, N,N- dimethylacrylamide, N-vinyl-2-pyrrolidone, glycerol methacrylate, and methacrylic acid.
  • silicone hydrogel lenses In the case of silicone hydrogel lenses, a silicone-containing monomer is copolymerized with the hydrophilic monomers. Regardless of their water content, both hydrogel and non hydrogel siloxy and/or fluorinated contact lenses tend to have relatively hydrophobic, non- wettable surfaces.
  • an ophthalmic device which is a polymerization product of a monomeric mixture comprising: (a) a major amount of one or more non-silicone-containing hydrophilic monomers; (b) a crosslinking agent mixture comprising (i) one or more first crosslinking agents containing at least two ethylenically unsaturated reactive end groups, wherein the at least two ethylenically unsaturated reactive end groups are (meth)acrylate-containing reactive end groups and (ii) one or more second crosslinking agents containing at least two ethylenically unsaturated reactive end groups wherein at least one of the ethylenically unsaturated reactive end groups is a non-(meth)acrylate reactive end group, and (c) one or more hydrophilic polymers or copolymers comprising one or more hydrophilic units and a thio carbonyl thio fragment of a reversible addition fragmentation chain transfer (“
  • a method for making an ophthalmic device which comprises (a) providing a monomer mixture comprising (i) a major amount of one or more non-silicone-containing hydrophilic monomers; (ii) a crosslinking agent mixture comprising (1) one or more first crosslinking agents containing at least two ethylenically unsaturated reactive end groups, wherein the at least two ethylenically unsaturated reactive end groups are (methacrylate- containing reactive end groups and (2) one or more second crosslinking agents containing at least two ethylenically unsaturated reactive end groups wherein at least one of the ethylenically unsaturated reactive end groups is a non-(meth)acrylate reactive end group, and (iii) one or more hydrophilic polymers or copolymers comprising one or more hydrophilic units and a thio carbonyl thio fragment of a RAFT agent; (b) subject
  • the ophthalmic devices of the present invention advantageously exhibit suitable physical and chemical properties, e.g., oxygen permeability, lubriciousness and wettability, for prolonged contact with the body by polymerizing a monomeric mixture comprising: (a) a major amount of one or more first non-silicone-containing hydrophilic monomers; (b) one or more first crosslinking agents containing at least two ethylenically unsaturated reactive end groups, wherein the at least two ethylenically unsaturated reactive end groups are (meth)acrylate-containing reactive end groups and (ii) one or more second crosslinking agents containing at least two ethylenically unsaturated reactive end groups wherein at least one of the ethylenically unsaturated reactive end groups is a non- (meth)acrylate reactive end group, and (c) one or more hydrophilic polymers or copolymers comprising one or more hydrophilic units and a thio carbonyl thio fragment of
  • the illustrative embodiments described herein are directed to ophthalmic devices. Although the illustrative embodiments are applicable to a variety of ophthalmic devices, one particular illustrative embodiment is especially useful and advantageous for contact lenses.
  • the terms“opthalmic device” and“lens” refer to devices that reside in or on the eye. These devices can provide optical correction, wound care, drug delivery, diagnostic functionality or cosmetic enhancement or any combination of these properties. Representative examples of such devices include, but are not limited to, soft contact lenses, e.g., soft, hydrogel lenses, soft, non-hydrogel lenses and the like, intraocular lenses, overlay lenses, ocular inserts, optical inserts, bandage lenses and therapeutic lenses and the like.
  • a lens is considered to be“soft” if it can be folded back upon itself without breaking.
  • the ophthalmic devices such as contact lenses of the illustrative embodiments can be spherical, tone, bifocal, may contain cosmetic tints, opaque cosmetic patterns, combinations thereof and the like.
  • an ophthalmic device will have an equilibrium water content of at least about 45 weight percent. In another illustrative embodiment, an ophthalmic device will have an equilibrium water content of at least about 50 weight percent. In another illustrative embodiment, an ophthalmic device will have an equilibrium water content of at least about 60 weight percent. In another illustrative embodiment, an ophthalmic device will have an equilibrium water content of from about 50 weight percent to about 65 weight percent. In another illustrative embodiment, an ophthalmic device will have an equilibrium water content of from about 55 weight percent to about 65 weight percent. In one illustrative embodiment, an ophthalmic device will have a captive bubble contact angle of from about 30° to about 70°.
  • the ophthalmic devices are a polymerization product of a monomeric mixture comprising: (a) a major amount of one or more first non-silicone- containing hydrophilic monomers; (b) a crosslinking agent mixture comprising (i) one or more first crosslinking agents containing at least two ethylenically unsaturated reactive end groups, wherein the at least two ethylenically unsaturated reactive end groups are (meth)acrylate-containing reactive end groups and (ii) one or more second crosslinking agents containing at least two ethylenically unsaturated reactive end groups wherein at least one of the ethylenically unsaturated reactive end groups wherein at least one of the reactive end groups is a non-(meth)acrylate reactive end group, and (c) one or more hydrophilic polymers or copolymers comprising one or more hydrophilic units and a thio carbonyl thio fragment of a RAFT agent, wherein the
  • the monomeric mixture contains no silicone-containing monomer.
  • (meth)acrylate denotes either methacrylate or acrylate
  • (meth)acrylamide denotes either methacrylamide or acrylamide
  • Suitable non-silicone-containing hydrophilic monomers include amides, cyclic lactams, hydroxyl-containing (meth)acrylates, poly(alkene glycols) functionalized with polymerizable groups and the like and mixtures thereof.
  • amides include alkylamides such as N,N-dimethylacrylamide, N,N- dimethylmethacrylamide and the like and mixtures thereof.
  • cyclic lactams include N-vinyl-2-pyrrolidone, N-vinyl caprolactam, N-vinyl-2-piperidone and the like and mixtures thereof.
  • hydroxyl-containing (meth)acrylates include 2-hydroxyethyl methacrylate (HEMA), glycerol methacrylate and the like and mixtures thereof.
  • functionalized poly(alkene glycols) include poly(diethylene glycols) of varying chain length containing monomethacrylate or dimethacrylate end caps. In one embodiment, the poly(alkene glycol) polymer contains at least two alkene glycol monomeric units.
  • Still further examples are the hydrophilic vinyl carbonate or vinyl carbamate monomers disclosed in U.S. Patent No. 5,070,215, and the hydrophilic oxazolone monomers disclosed in U.S. Patent No. 4,910,277. Other suitable hydrophilic monomers will be apparent to one skilled in the art. Mixtures of the foregoing non-silicone-containing hydrophilic monomers can also be used in the monomeric mixtures herein.
  • a monomeric mixture will include a major amount of one or more first non-silicone-containing hydrophilic monomers which are one or more hydroxyl-containing (meth)acrylates. In another illustrative embodiment, a monomeric mixture will include a major amount of one or more first non-silicone- containing hydrophilic monomers which are 2-hydroxyethyl methacrylate.
  • the one or more non-silicone-containing hydrophilic monomers are present in the monomeric mixture in a major amount, e.g., an amount of at least about 70 weight percent or an amount of at least about 70 weight percent and up to about 95 weight percent or an amount of at least about 80 weight percent, or an amount of at least about 80 weight percent and up to about 95 weight percent based on the total weight of the monomeric mixture.
  • the monomeric mixture further includes a crosslinking agent mixture comprising (i) one or more first crosslinking agents containing at least two ethylenically unsaturated reactive end groups, wherein the ethylenically unsaturated reactive end groups are (meth)acrylate-containing reactive end groups and (ii) one or more second crosslinking agents containing at least two ethylenically unsaturated reactive end groups wherein at least one of the ethylenically unsaturated reactive end groups is a non-(meth)acrylate reactive end group.
  • useful one or more first crosslinking agents containing at least two ethylenically unsaturated reactive end groups, wherein the ethylenically unsaturated reactive end groups are (meth)acrylate-containing reactive end groups include one or more di-, tri- or tetra(meth)acrylate-containing crosslinking agents.
  • useful one or more di-, tri- or tetra(meth)acrylate-containing crosslinking agents include alkanepolyol di-, tri- or tetra(meth)acrylate-containing crosslinking agents such as, for example, one or more alkylene glycol di(meth)acrylate crosslinking agents, one or more alkylene glycol tri(meth)acrylate crosslinking agents, one or more alkylene glycol tetra(meth)acrylate crosslinking agents, one or more alkanediol di(meth)acrylate crosslinking agents, alkanediol tri(meth)acrylate crosslinking agents, alkanediol tetra(meth)acrylate crosslinking agents, agents, one or more alkanetriol di(meth)acrylate crosslinking agents, alkanetriol tri(meth)acrylate crosslinking agents, alkanetriol tetra(meth)acrylate crosslinking agents, alkanetriol tetra(me
  • one or more alkylene glycol di(meth)acrylate crosslinking agents include tetraethylene glycol dimethacrylate, ethylene glycol di(meth)acrylates having up to about 10 ethylene glycol repeating units, butyl eneglycol di(meth)acrylate and the like.
  • one or more alkanediol di(meth)acrylate crosslinking agents include butanediol di(meth)acrylate crosslinking agents, hexanediol di(meth)acrylate and the like.
  • one or more alkanetriol tri(meth)acrylate crosslinking agents are trimethylol propane trimethacrylate crosslinking agents.
  • one or more alkanetetraol tetra(meth)acrylate crosslinking agents are pentaerythritol tetramethacrylate crosslinking agents.
  • useful one or more second crosslinking agents containing at least two ethylenically unsaturated reactive end groups wherein at least one of the ethylenically unsaturated reactive end groups is a non-(meth)acrylate reactive end group include one or more di-, tri- or tetracarbamate-containing crosslinking agents, one or more di-, tri- or tetracarbonate-containing crosslinking agents, one or more isocyanurate-containing crosslinking agents and the like and mixtures thereof.
  • one or more di-, tri- or tetracarbamate- containing crosslinking agents include one or more di(N-vinylcarbamate)-containing crosslinking agents, one or more di(N-allylcarbamate)-containing crosslinking agents, one or more di(0-vinylcarbamate)-containing crosslinking agents, one or more di(0- allylcarbamate)-containing crosslinking agents, one or more tri(N-vinylcarbamate)- containing crosslinking agents, one or more tri(N-allylcarbamate)-containing crosslinking agents, one or more tri(0-vinylcarbamate)-containing crosslinking agents, one or more tri(0-allylcarbamate)-containing crosslinking agents, one or more tetra(N- vinylcarbamate)-containing crosslinking agents, one or more tetra (N-allylcarbamate)- containing crosslinking agents, one or more tetra(0-vinylcarbamate)-containing crosslinking agents,
  • di-, tri- or tetracarbonate- containing crosslinking agents include a di(0-vinylcarbonate)-containing crosslinking agent, a di(0-allylcarbonate)-containing crosslinking agent, a tri(O-vinylcarbonate)- containing crosslinking agent, a tri(0-allylcarbonate)-containing crosslinking agent, a tetra(0-vinylcarbonate)-containing crosslinking agent, a tetra(O-allylcarbonate)- containing crosslinking agent, and the like and mixtures thereof.
  • Representative examples of one or more isocyanurate-containing crosslinking agents include one or more diallyl isocyanurate, triallyl isocyanurate, divinyl isocyanurate, trivinyl isocyanurate, and the like and mixtures thereof.
  • one or more di-carbamate-containing crosslinking agents include bis (N-vinyl carbamates) having the following structure:
  • x is from 0 to 10.
  • one or more di-carbamate-containing crosslinking agents include bis (O-vinyl carbamates) having the following structure:
  • x is from 0 to 10.
  • one or more di-carbamate-containing crosslinking agents include diethylene glycol bis(N-vinylcarbamate), diethylene glycol bis(0- allylcarbamate), and the like and mixtures thereof.
  • the one or more second crosslinking agents are selected are from the group consisting of diethylene glycol bis(N-vinylcarbamate), diethylene glycol bis(N-allylcarbamate), diethylene glycol bis(O-vinylcarbamate), di ethylene glycol bis(O-allylcarbamate), and mixtures thereof, l,4-butanediol bis(N- vinylcarbamate), ethylene glycol bis(0-vinyl carbonate), diethylene glycol bis(0-vinyl carbonate), l,4-butanediol bis(0-vinyl carbonate) and mixtures thereof.
  • the one or more second crosslinking agents containing at least two ethylenically unsaturated reactive end groups include at least one allyl- containing reactive end group and at least one (meth)acrylate-containing reactive end group. In one embodiment, the one or more second crosslinking agents include allyl methacrylate.
  • the one or more first and/or second crosslinking agents are present in the monomeric mixture in an ophthalmic device-forming amount.
  • the one or more first crosslinking agents are present in the monomeric mixture in an amount of about 0.1 to about 2.0 weight percent, based on the total weight of the monomer mixture
  • the second crosslinking agent is present in the monomer mixture in an amount of about 0.05 to about 2.0 weight percent, based on the total weight of the monomer mixture.
  • the monomeric mixture further includes one or more hydrophilic polymers or copolymers comprising one or more hydrophilic units and a thio carbonyl thio fragment of a RAFT agent.
  • hydrophilic polymers or copolymers shall be understood to mean a hydrophilic polymer or copolymer containing polar or charged functional groups rendering it water-soluble.
  • Hydrophilic polymers or copolymers comprising one or more hydrophilic units and a thio carbonyl thio fragment of a RAFT agent are prepared via RAFT polymerization, i.e., monomers are polymerized via a RAFT mechanism to form the hydrophilic polymer or copolymers, e.g., a block or random copolymer in which the molecular weight of each of the blocks and the entire polymer can be precisely controlled.
  • RAFT polymerization is a radical polymerization technique that enables polymers to be prepared having a well-defined molecular architecture and low polydispersity.
  • the RAFT agents suitable for use herein are based upon thio carbonyl thio chemistry which is well known to those of ordinary skill in the art.
  • the RAFT agent can be, for example, a xanthate-containing compound, trithiocarbonate-containing compound, dithiocarbamate-containing compound or dithio ester-containing compound, wherein each compound contains a thiocarbonyl thio group.
  • RAFT agents that can be used herein is of the general formula: wherein Z is a substituted oxygen (e.g., xanthates (-0-R)), a substituted nitrogen (e.g., dithiocarbamates (-NRR)), a substituted sulfur (e.g., trithiocarbonates (-S-R)), a substituted or unsubstituted Ci-C 2 o alkyl or C 3 -C 25 unsaturated, or partially or fully saturated ring (e.g., dithioesters (-R)) or a carboxylic acid-containing group; and R is independently a straight or branched, substituted or unsubstituted Ci-C 30 alkyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, a substituted or unsubstituted C 3 -C 30 cycloalkylalkyl group, a substituted or unsubstituted C 3 --C
  • alkyl groups for use herein include, by way of example, a straight or branched alkyl chain radical containing carbon and hydrogen atoms of from 1 to about 30 carbon atoms and preferably from 1 to about 12 carbon atoms with or without unsaturation, to the rest of the molecule, e.g., methyl, ethyl, n-propyl, 1- methylethyl (isopropyl), n-butyl, n-pentyl, methylene, ethylene, etc., and the like.
  • a straight or branched alkyl chain radical containing carbon and hydrogen atoms of from 1 to about 30 carbon atoms and preferably from 1 to about 12 carbon atoms with or without unsaturation, to the rest of the molecule e.g., methyl, ethyl, n-propyl, 1- methylethyl (isopropyl), n-butyl, n-pentyl, methylene, ethylene, etc
  • cycloalkyl groups for use herein include, by way of example, a substituted or unsubstituted non-aromatic mono or multicyclic ring system of about 3 to about 30 carbon atoms and preferably from 3 to about 6 carbon atoms such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, perhydronapththyl, adamantyl and norbornyl groups, bridged cyclic groups or sprirobicyclic groups, e.g., spiro-(4, 4)-non-2-yl and the like, optionally containing one or more heteroatoms, e.g., O and N, and the like.
  • cycloalkylalkyl groups for use herein include, by way of example, a substituted or unsubstituted cyclic ring-containing radical containing from about 3 to about 30 carbon atoms and preferably from 3 to about 6 carbon atoms directly attached to the alkyl group which are then attached to the main structure of the monomer at any carbon from the alkyl group that results in the creation of a stable structure such as, for example, cyclopropylmethyl, cyclobutyl ethyl, cyclopentylethyl and the like, wherein the cyclic ring can optionally contain one or more heteroatoms, e.g., O and N, and the like.
  • a substituted or unsubstituted cyclic ring-containing radical containing from about 3 to about 30 carbon atoms and preferably from 3 to about 6 carbon atoms directly attached to the alkyl group which are then attached to the main structure of the monomer at any carbon from the alkyl group that results in the creation
  • cycloalkenyl groups for use herein include, by way of example, a substituted or unsubstituted cyclic ring-containing radical containing from about 3 to about 30 carbon atoms and preferably from 3 to about 6 carbon atoms with at least one carbon-carbon double bond such as, for example, cyclopropenyl, cyclobutenyl, cyclopentenyl and the like, wherein the cyclic ring can optionally contain one or more heteroatoms, e.g., O and N, and the like.
  • aryl groups for use herein include, by way of example, a substituted or unsubstituted monoaromatic or polyaromatic radical containing from about 5 to about 30 carbon atoms such as, for example, phenyl, naphthyl, tetrahydronapthyl, indenyl, biphenyl and the like, optionally containing one or more heteroatoms, e.g., O and N, and the like.
  • arylalkyl groups for use herein include, by way of example, a substituted or unsubstituted aryl group as defined herein directly bonded to an alkyl group as defined herein, e.g., -CH 2 C 6 H 5 , -C 2 H 5 C 6 H 5 and the like, wherein the aryl group can optionally contain one or more heteroatoms, e.g., O and N, and the like.
  • ester groups for use herein include, by way of example, a carboxylic acid ester having one to 20 carbon atoms and the like.
  • ether or polyether containing groups for use herein include, by way of example, an alkyl ether, cycloalkyl ether, cycloalkylalkyl ether, cycloalkenyl ether, aryl ether, arylalkyl ether wherein the alkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, aryl, and arylalkyl groups are as defined herein.
  • ether or polyether-containing groups include, by way of example, alkylene oxides, poly(alkylene oxide)s such as ethylene oxide, propylene oxide, butylene oxide, poly(ethylene oxide)s, polyethylene glycol)s, polypropylene oxide)s, poly(butylene oxide)s and mixtures or copolymers thereof, an ether or polyether group of the general formula -(R 2 OR 3 ) t , wherein R 2 is a bond, a substituted or unsubstituted alkyl, cycloalkyl or aryl group as defined herein and R 3 is a substituted or unsubstituted alkyl, cycloalkyl or aryl group as defined herein and t is at least 1, e.g., -CH 2 CH 2 OC 6 H 5 and CH 2 -CH 2 -CH 2 - 0-CH 2 -(CF 2 ) z -H where z is 1 to 6, -CH 2 CH 2 OC 2 H 5
  • alkyl or arylamide groups for use herein include, by way of example, an amide of the general formula -R 4 C(0)NR 5 R 6 wherein R 4 , R 5 and R 6 are independently Ci-C 30 hydrocarbons, e.g., R 4 can be alkylene groups, arylene groups, cycloalkylene groups and R 5 and R 6 can be alkyl groups, aryl groups, and cycloalkyl groups as defined herein and the like.
  • alkyl or arylamine groups for use herein include, by way of example, an amine of the general formula -R 7 N R 8 R 9 wherein R 7 is a C2-C30 alkylene, arylene, or cycloalkylene and R 8 and R 9 are independently C1-C30 hydrocarbons such as, for example, alkyl groups, aryl groups, or cycloalkyl groups as defined herein.
  • heterocyclic ring groups for use herein include, by way of example, a substituted or unsubstituted stable 3 to about 30 membered ring radical, containing carbon atoms and from one to five heteroatoms, e.g., nitrogen, phosphorus, oxygen, sulfur and mixtures thereof.
  • Suitable heterocyclic ring radicals for use herein may be a monocyclic, bicyclic or tricyclic ring system, which may include fused, bridged or spiro ring systems, and the nitrogen, phosphorus, carbon, oxygen or sulfur atoms in the heterocyclic ring radical may be optionally oxidized to various oxidation states.
  • the nitrogen atom may be optionally quaternized; and the ring radical may be partially or fully saturated (i.e., heteroaromatic or heteroaryl aromatic).
  • heterocyclic ring radicals include, but are not limited to, azetidinyl, acridinyl, benzodioxolyl, benzodioxanyl, benzofumyl, carbazolyl, cinnolinyl, dioxolanyl, indolizinyl, naphthyridinyl, perhydroazepinyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pyridyl, pteridinyl, purinyl, quinazolinyl, quinoxalinyl, quinolinyl, isoquinolinyl, tetrazoyl, imidazolyl, tetrahydroquinoliny
  • heteroaryl groups for use herein include, by way of example, a substituted or unsubstituted heterocyclic ring radical as defined herein.
  • the heteroaryl ring radical may be attached to the main structure at any heteroatom or carbon atom that results in the creation of a stable structure.
  • heteroarylalkyl groups for use herein include, by way of example, a substituted or unsubstituted heteroaryl ring radical as defined herein directly bonded to an alkyl group as defined herein.
  • the heteroarylalkyl radical may be attached to the main structure at any carbon atom from the alkyl group that results in the creation of a stable structure.
  • heterocyclic groups for use herein include, by way of example, a substituted or unsubstituted heterocylic ring radical as defined herein.
  • the heterocyclic ring radical may be attached to the main structure at any heteroatom or carbon atom that results in the creation of a stable structure.
  • heterocycloalkyl groups for use herein include, by way of example, a substituted or unsubstituted heterocylic ring radical as defined herein directly bonded to an alkyl group as defined herein.
  • the heterocycloalkyl radical may be attached to the main structure at any carbon atom in the alkyl group that results in the creation of a stable structure.
  • a carboxylic acid-containing group for use herein include, by way of example, a carboxylic acid group attached to the rest of the molecule via a linking group, e.g., of the general formula -R u C(0)OH, wherein R 11 is a bond, a substituted or unsubstituted alkylene group, a substituted or unsubstituted cycloalkylene group, a substituted or unsubstituted cycloalkyl alkylene group, a substituted or unsubstituted arylene or a substituted or unsubstituted arylalkylene group as defined herein, e.g.,
  • carboxylic acid group can be attached to the substituent or attached directly to alkylene group, cycloalkylene group, cycloalkylalkylene group, arylene or arylalkylene group.
  • RAFT agents for use herein include, but are not limited to, benzyl dodecyl trithiocarbonate, ethyl-2-dodecyl trithiocarbony) proprionate, S- sec propionic acid O-ethyl xanthate, a-ethyl xanthylphenylacetic acid, ethyl a-(o-ethyl xanthyl) proprionate, ethyl a-(ethyl xanthyl) phenyl acetate, ethyl 2-(dodecyl trithiocarbonyl) phenyl acetate, ethyl 2-(dodecyl trithiocarbonyl) propionate, 2- (dodecylthiocarbonylthiol)propanoic acid, and the like and mixtures thereof.
  • RAFT agents for use herein include, carboxylic acid trithiocarbonates as set forth below:
  • x is from 0 to 23
  • x is from 0 to 23
  • RAFT agent and is within the purview of one skilled in the art. Also, the working examples below provide guidance.
  • the RAFT agents can be prepared as exemplified in Schemes I-V below.
  • the hydrophilic polymers or copolymers described herein also contain one or more hydrophilic units.
  • the hydrophilic unit(s) is derived from at least one hydrophilic monomer.
  • Suitable hydrophilic monomer include, by way of example, acrylamides such as N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, and the like; acetamides such as N-vinyl-N-methyl acetamide, N-vinyl acetamide and the like; formamides such as N- vinyl-N-methyl formamide, N-vinyl formamide, and the like; cyclic lactams such as N- vinyl-2-pyrrolidone and the like; (meth)acrylated alcohols such as 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate and the like; (meth)acrylated poly(ethyleneglycol)s and the like; ethylenically unsaturated carboxylic acids such as methacrylic acid, acrylic acid and the like and mixtures thereof.
  • acrylamides such as N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, and the like
  • acetamides
  • the hydrophilic polymers or copolymers containing a thio carbonyl thio fragment of a RAFT agent can also include one or more hydrophilic units derived from an ethylenically unsaturated polymerizable monomer having ring opening reactive functionalities.
  • Such monomers may include one or more ring-opening reactive groups such as, for example, azlactone, epoxy, acid anhydrides, and the like.
  • Suitable polymerizable monomer having ring-opening reactive functionalities include, but are not limited to, glycidyl methacrylate (GMA), maleic anhydride, itaconic anhydride and the like and mixtures thereof.
  • the units derived from an ethylenically unsaturated polymerizable monomer having ring-opening reactive functionalities can be copolymerized with a hydrophilic comonomer to form the hydrophilic units in the resulting hydrophilic polymers.
  • comonomers useful to be copolymerized with the ring-opening reactive functionalities of the monomer to form hydrophilic polymers or copolymers used to prepare an ophthalmic device according to the present invention include those mentioned above, with dimethylacrylamide, hydroxyethyl methacrylate (HEMA), and/or N-vinylpyrrolidone being preferred.
  • the unit derived from the ethylenically unsaturated polymerizable hydrophilic monomers having ring-opening reactive functionalities can be subjected to a ring-opening reaction, e.g., by hydrolyzing with water, and form hydrophilic units in the resulting hydrophilic polymer.
  • the hydrophilic polymers or copolymers containing a thio carbonyl thio fragment of a RAFT agent can also include a unit derived from an ethylenically unsaturated polymerizable alkoxylated polymer.
  • Suitable ethylenically unsaturated polymerizable alkoxylated polymers include, by way of example, polymerizable polyethylene glycols having a number average molecular weight of up to, for example, about 2000 such as those with CTFA names PEG-200, PEG-400, PEG-600, PEG- 1000, and mixtures thereof.
  • Representative examples include PEG-200 methacrylate, PEG-400 methacrylate, PEG-600 methacrylate, PEG- 1000 methacrylate and the like and mixtures thereof.
  • the size of the units derived from an ethylenically unsaturated polymerizable alkoxylated polymer can vary widely, e.g., the number of units can range from 0 to about 20 mole % of the total number of units in the polymerization product or from 1 to about 10 mole % of the total number of units in the polymerization product.
  • the resulting hydrophilic polymers or copolymers can be in the form of homopolymers, block copolymers and random copolymers.
  • the one or more hydrophilic polymers or copolymers will have a number average molecular weight of at least about 30 kilo Daltons (kDa), e.g., a number average molecular weight of about 30 kDa to about 125 kDa.
  • the one or more hydrophilic polymers or copolymers will have a number average molecular weight of at least about 45 kDa, e.g., a number average molecular weight of about 45 kDa to about 100 kDa.
  • the one or more hydrophilic polymers or copolymers will have a number average molecular weight of at least about 60 kDa, e.g., a number average molecular weight of about 60 kDa to about 80 kDa.
  • the number average molecular weight of the one or more hydrophilic polymers or copolymers can be determined by Size Exclusion Chromatography (SEC) (also referred to as Gel Permeation Chromatography (GPC).
  • a is from about 10 to about 2,700.
  • x is from about 15 to about 3000 and y is from about 1 to about 250.
  • x is from about 12 to about 3000 and y is from about 1 to about 250.
  • the one or more hydrophilic polymers or copolymers comprising hydrophilic units and a thio carbonyl thio fragment of a RAFT agent are present in the monomeric mixture in an amount of about 0.5 to about 20 weight percent, based on the total weight of the monomer mixture. In one embodiment, the one or more hydrophilic polymers or copolymers comprising hydrophilic units and a thio carbonyl thio fragment of a RAFT agent are present in the monomeric mixture in an amount of about 0.5 to about 8.5 weight percent, based on the total weight of the monomer mixture.
  • the monomeric mixture may further include one or more hydrophobic monomers.
  • Suitable hydrophobic monomers include ethylenically unsaturated hydrophobic monomers such as, for example, (meth)acrylates-containing hydrophobic monomers, N-alkyl (meth)acrylamides-containing hydrophobic monomers, alkyl vinylcarbonates-containing hydrophobic monomers, alkyl vinylcarbamates-containing hydrophobic monomers, fluoroalkyl (meth)acrylates-containing hydrophobic monomers, N-fluoroalkyl (meth)acrylamides-containing hydrophobic monomers, N-fluoroalkyl vinylcarbonates-containing hydrophobic monomers, N-fluoroalkyl vinylcarbamates- containing hydrophobic monomers, silicone-containing (meth)acrylates-containing hydrophobic monomers, (meth)acrylamides-containing hydrophobic monomers, vinyl carbonates-containing hydrophobic monomers, vinyl carbamates-containing hydrophobic monomers, styre
  • R 1 is methyl or hydrogen
  • R 2 is -O- or -NH-
  • R 3 and R 4 are independently a divalent radical selected from the group consisting of -CH 2 -, -CHOH- and -CHR 6 -
  • R 5 and R 6 are independently a branched C 3 -C 8 alkyl group
  • R 7 is hydrogen or -OH
  • n is an integer of at least 1
  • m and p are independently 0 or an integer of at least 1, provided that the sum of m, p and n is 2, 3, 4 or 5.
  • hydrophobic monomers (b) represented by the structure of Formula I include, but are not limited to, 4-t-butyl-2- hy dr oxy cyclohexyl methacrylate (TBE); 4-t-butyl-2-hydroxycyclopentyl methacrylate; 4- t-butyl-2-hydroxycyclohexyl methacrylamide (TBA); 6-isopentyl-3-hydroxycyclohexyl methacrylate; 2-isohexyl-5-hydroxycyclopentyl methacrylamide, 4-t-butylcyclohexyl methacrylate, isobornyl methacrylate, adamntyl methacrylate, n-butyl methacrylate, n- hexyl methacrylate, lauryl methacrylate, benzyl methacrylate, and the like.
  • one or more hydrophobic monomers (b) include compounds of formula I wherein R 3 is -CH 2 -, m is 1 or 2, p is 0, and the sum of m and n is 3 or 4.
  • the one or more hydrophobic monomers will ordinarily be present in the monomeric mixture in an amount ranging from about 0.5 to about 25 or from about 1 to about 10 weight percent, based on the total weight of the monomeric mixture.
  • the monomeric mixture further includes one or more ultraviolet (UV) blockers.
  • UV blockers include one or more compounds of the following formula:
  • the monomeric mixture may further contain, as necessary and within limits not to impair the purpose and effect of the present invention, various additives such as an antioxidant, coloring agent, wetting agents, toughening agents and the like and other constituents as is well known in the art.
  • a suitable wetting agent can be glycerin, propylene glycol, mono or disaccharide, polyethylene glycol, ethoxylated glucose, and combinations thereof.
  • a suitable wetting agent can be a polymer containing carboxylic acid functionality, such as a polymer containing PAA.
  • Specific coating wetting agents include P(vinylpyrrolidinone(VP)-co-acrylic acid(AA)), P(methylvinylether-alt- maleic acid), P(acrylic acid-graft-ethyleneoxide), P(acrylic acid-co-methacrylic acid), P(acrylamide-co-AA), P(acrylamide-co-AA), P(AA-co-maleic), P(butadiene-maleic acid) and P(N-vinylpyrrolidone-co-vinyl acetate), Polyvinylalcohol.
  • the ophthalmic devices of the illustrative embodiments can be prepared by polymerizing the foregoing monomeric mixtures to form a product that can be subsequently formed into the appropriate shape by, for example, lathing, injection molding, compression molding, cutting and the like.
  • the initial mixture may be polymerized in tubes to provide rod-shaped articles, which are then cut into buttons. The buttons may then be lathed into contact lenses.
  • the ophthalmic devices such as contact lenses may be cast directly in molds, e.g., polypropylene molds, from the mixtures, e.g., by spincasting and static casting methods.
  • Spincasting methods are disclosed in U.S. Patent Nos. 3,408,429 and 3,660,545, and static casting methods are disclosed in U.S. Patent Nos. 4,113,224, 4,197,266, and 5,271,875.
  • Spincasting methods involve charging the mixtures to be polymerized to a mold, and spinning the mold in a controlled manner while exposing the mixture to a radiation source such as UV light.
  • Static casting methods involve charging the monomeric mixture between two mold sections, one mold section shaped to form the anterior lens surface and the other mold section shaped to form the posterior lens surface, and curing the mixture while retained in the mold assembly to form a lens, for example, by free radical polymerization of the mixture.
  • free radical reaction techniques to cure the lens material include thermal radiation, infrared radiation, electron beam radiation, gamma radiation, ultraviolet (UV) radiation, and the like; or combinations of such techniques may be used.
  • U.S. Patent No. 5,271,875 describes a static cast molding method that permits molding of a finished lens in a mold cavity defined by a posterior mold and an anterior mold. As an additional method, U.S. Patent No.
  • 4,555,732 discloses a process where an excess of a monomeric mixture is cured by spincasting in a mold to form a shaped article having an anterior lens surface and a relatively large thickness, and the posterior surface of the cured spincast article is subsequently lathed to provide a contact lens having the desired thickness and posterior lens surface.
  • Polymerization may be facilitated by exposing the mixture to heat and/or radiation, such as ultraviolet light, visible light, or high energy radiation.
  • a polymerization initiator may be included in the mixture to facilitate the polymerization step.
  • free radical thermal polymerization initiators include organic peroxides such as acetyl peroxide, lauroyl peroxide, decanoyl peroxide, stearoyl peroxide, benzoyl peroxide, tertiarylbutyl peroxypivalate, peroxydicarbonate, and the like.
  • UV initiators are those known in the art and include benzoin methyl ether, benzoin ethyl ether, Darocure ® 1173, 1164, 2273, 1116, 2959, 3331 (EM Industries) and Irgacure ® 651 and 184 (Ciba-Geigy), 2,2’Azobis(2-methylpropionitrile) (VAZO 64) and the like.
  • the initiator will be employed in the monomeric mixture at a concentration of about 0.01 to about 5 percent by weight of the total mixture.
  • Polymerization is generally performed in a reaction medium, such as, for example, a solution or dispersion using a solvent, e.g., water or an alkanol containing from 1 to 4 carbon atoms such as methanol, ethanol or propan-2-ol. Alternatively, a mixture of any of the above solvents may be used.
  • a solvent e.g., water or an alkanol containing from 1 to 4 carbon atoms such as methanol, ethanol or propan-2-ol.
  • a mixture of any of the above solvents may be used.
  • polymerization can be carried out for about 15 minutes to about
  • the resulting polymerization product can be dried under vacuum, e.g., for about 5 to about 72 hours or left in an aqueous solution prior to use.
  • the mixture may further include at least a diluent that is ultimately replaced with water when the polymerization product is hydrated to form a hydrogel.
  • the water content of the hydrogel is as described hereinabove, i.e., at least about 45 weight percent, or at least about 50 weight percent.
  • the amount of diluent used should be less than about 50 weight percent and in most cases, the diluent content will be less than about 30 weight percent.
  • the actual limit will be dictated by the solubility of the various monomers in the diluent.
  • the maximum amount of diluent which may be used will depend on the amount of swelling the diluent causes the final polymers. Excessive swelling will or may cause the copolymer to collapse when the diluent is replaced with water upon hydration.
  • Suitable diluents include, but are not limited to, ethylene glycol; glycerine; liquid poly(ethylene glycol); alcohols; alcohol/water mixtures; ethylene oxide/propylene oxide block copolymers; low molecular weight linear poly(2- hydroxyethyl methacrylate); glycol esters of lactic acid; formamides; ketones; dialkylsulfoxides; butyl carbitol; boric acid esters of polyhydric alcohols such as boric acid esters of glycerol and the like and mixtures thereof.
  • the lens may be desirable to remove residual diluent from the lens before edge-finishing operations which can be accomplished by evaporation at or near ambient pressure or under vacuum.
  • An elevated temperature can be employed to shorten the time necessary to evaporate the diluent.
  • the time, temperature and pressure conditions for the solvent removal step will vary depending on such factors as the volatility of the diluent and the specific monomeric components, as can be readily determined by one skilled in the art.
  • the mixture used to produce the hydrogel lens may further include crosslinking and wetting agents known in the prior art for making hydrogel materials.
  • the monomeric mixtures to be polymerized may further include a monomer for increasing the refractive index of the resultant polymerized product.
  • a monomer for increasing the refractive index of the resultant polymerized product examples include aromatic (meth) acrylates, such as phenyl (meth)acrylate, 2- phenylethyl (meth)acrylate, 2-phenoxyethyl methacrylate, and benzyl (meth)acrylate.
  • the ophthalmic devices such as contact lenses obtained herein may be subjected to optional machining operations.
  • the optional machining steps may include buffing or polishing a lens edge and/or surface.
  • machining processes may be performed before or after the product is released from a mold part, e.g., the lens is dry released from the mold by employing vacuum tweezers to lift the lens from the mold, after which the lens is transferred by means of mechanical tweezers to a second set of vacuum tweezers and placed against a rotating surface to smooth the surface or edges.
  • the lens may then be turned over in order to machine the other side of the lens.
  • the lens may then be transferred to individual lens packages containing a buffered saline solution.
  • the saline solution may be added to the package either before or after transfer of the lens.
  • Appropriate packaging designs and materials are known in the art.
  • a plastic package is releasably sealed with a film.
  • Suitable sealing films are known in the art and include foils, polymer films and mixtures thereof.
  • the sealed packages containing the lenses are then sterilized to ensure a sterile product.
  • Suitable sterilization means and conditions are known in the art and include, for example, autoclaving.
  • steps may be included in the molding and packaging process described above.
  • Such other steps can include, for example, coating the formed lens, surface treating the lens during formation (e.g., via mold transfer), inspecting the lens, discarding defective lenses, cleaning the mold halves, reusing the mold halves, and the like and combinations thereof.
  • Water % Two sets of six hydrated lenses or films are blotted dry on a piece of filter paper to remove excess water, and samples are weighed (wet weight). Samples are then placed in a microwave oven for 10 minutes inside ajar containing dessicant. The samples are then allowed to sit for 30 minutes to equilibrate to room temperature and reweighed (dry weight). The percent water is calculated from the wet and dry weights.
  • the contact angle was calculated at the digital frame just prior to contact line movement across the sample/air bubble interface.
  • the receding contact angle is defined as the angle measured in water as the air bubble is expanding across the sample surface (water is receding from the surface).
  • Modulus (g/mm 2 ) and %elongation were measured per ASTM 1708 employing an Instron (Model 4502) instrument where the film sample was immersed in borate buffered saline; an appropriate size of the film sample was gauge length 22 mm and width 4.75 mm, where the sample further has ends forming a dogbone shape to accommodate gripping of the sample with clamps of the Instron instrument, and a thickness of l00 ⁇ 50 microns.
  • Tear strength was measured according to ASTM D-1938 under the same physical conditions as for tensile modulus.
  • Sagittal depth (SAG) as measured on a Deltronic Comparator As measured on a Deltronic Comparator.
  • Refractive index (RI) was measured per typical methods on hydrated samples using a refractometer.
  • NVP N-vinyl-2-pyrrolidone
  • EGDMA Ethylene glycol dimethacrylate
  • VazoTM 64 azo bis-isobutylnitrile (AIBN)
  • Irgacure 819 (photoinitiator): a compound having the structure:
  • CIX-4 a compound having the structure:
  • SA monomer a compound having the structure:
  • PDMA-C2-RAFT a polymer having a number average molecular weight of 79.6 kDa and is of the following structure:
  • PDMA-C12-RAFT a polymer having a number average molecular weight of 62.6 kDa and is of the following structure:
  • PDMA-C18-RAFT a polymer having a number average molecular weight of 65.4 kDa and is of the following structure:
  • PVP-RAFT a polymer having a number average molecular weight of 53.1 kDa and is of the following structure:
  • x is 1 and n is 476.
  • TEGDMA Tetraethylene glycol dimethacrylate
  • TMPTMA Trimethyl olpropane trimethacrylate
  • 1,4 -butanediol dimethacrylate (l,4-DBDDMA): a compound of the following structure:
  • a monomer mix was made by mixing the following components, listed in Table 1 at amounts per weight.
  • the resultant monomeric mixture was cast into contact lenses by introducing the monomer mixture to a polypropylene mold assembly. Then, the mold assembly and monomer mixture were thermally cured for about 3.0 hours to form a contact lens. The resultant contact lenses were released from the mold assembly.
  • a monomer mix was made by mixing the following components, listed in
  • the resultant monomeric mixture was cast into contact lenses by introducing the monomer mixture to a polypropylene mold assembly. Then, the mold assembly and monomer mixture were thermally cured for about 3.0 hours to form a contact lens. The resultant contact lenses were released from the mold assembly.
  • a monomer mix was made by mixing the following components, listed in
  • the resultant monomeric mixture was cast into contact lenses by introducing the monomer mixture to a polypropylene mold assembly. Then, the mold assembly and monomer mixture were thermally cured for about 3.0 hours to form a contact lens. The resultant contact lenses were released from the mold assembly.
  • a monomer mix was made by mixing the following components, listed in
  • the resultant monomeric mixture was cast into contact lenses by introducing the monomer mixture to a polypropylene mold assembly. Then, the mold assembly and monomer mixture were thermally cured for about 3.0 hours to form a contact lens. The resultant contact lenses were released from the mold assembly.
  • a monomer mix was made by mixing the following components, listed in
  • the resultant monomeric mixture was cast into contact lenses by introducing the monomer mixture to a polypropylene mold assembly. Then, the mold assembly and monomer mixture were thermally cured for about 3.0 hours to form a contact lens. The resultant contact lenses were released from the mold assembly.
  • a monomer mix was made by mixing the following components, listed in Table 6 at amounts per weight. Table 6
  • the resultant monomeric mixture was cast into contact lenses by introducing the monomer mixture to a polypropylene mold assembly. Then, the mold assembly and monomer mixture were thermally cured for about 3.0 hours to form a contact lens. The resultant contact lenses were released from the mold assembly.
  • a monomer mix was made by mixing the following components, listed in
  • the resultant monomeric mixture was cast into contact lenses by introducing the monomer mixture to a polypropylene mold assembly. Then, the mold assembly and monomer mixture were thermally cured for about 3.0 hours to form a contact lens. The resultant contact lenses were released from the mold assembly.
  • a monomer mix was made by mixing the following components, listed in
  • the resultant monomeric mixture was cast into contact lenses by introducing the monomer mixture to a polypropylene mold assembly. Then, the mold assembly and monomer mixture were thermally cured for about 3.0 hours to form a contact lens. The resultant contact lenses were released from the mold assembly.
  • a monomer mix was made by mixing the following components, listed in
  • the resultant monomeric mixture was cast into contact lenses by introducing the monomer mixture to a polypropylene mold assembly. Then, the mold assembly and monomer mixture were thermally cured for about 3.0 hours to form a contact lens. The resultant contact lenses were released from the mold assembly
  • a monomer mix was made by mixing the following components, listed in
  • the resultant monomeric mixture was cast into contact lenses by introducing the monomer mixture to a polypropylene mold assembly. Then, the mold assembly and monomer mixture were thermally cured for about 3.0 hours to form a contact lens. The resultant contact lenses were released from the mold assembly.
  • a monomer mix was made by mixing the following components, listed in Table 11 at amounts per weight. Table 11
  • the resultant monomeric mixture was cast into contact lenses by introducing the monomer mixture to a polypropylene mold assembly. Then, the mold assembly and monomer mixture were thermally cured for about 3.0 hours to form a contact lens. The resultant contact lenses were released from the mold assembly.
  • a monomer mix was made by mixing the following components, listed in

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials For Medical Uses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Eyeglasses (AREA)

Abstract

L'invention concerne un dispositif ophtalmique qui est un produit de polymérisation d'un mélange monomère comprenant : (a) une quantité majeure d'un ou de plusieurs monomères hydrophiles ne contenant pas de silicone ; (b) un mélange d'agents de réticulation comprenant (i) un ou plusieurs premiers agents de réticulation contenant au moins deux groupes terminaux réactifs éthyléniquement insaturés, les au moins deux groupes terminaux réactifs éthyléniquement insaturés étant des groupes terminaux réactifs contenant du (méth)acrylate et (ii) un ou plusieurs seconds agents de réticulation contenant au moins deux groupes terminaux réactifs éthyléniquement insaturés, au moins un des groupes terminaux réactifs éthyléniquement insaturés étant un groupe terminal réactif non (méth)acrylate, et (c) un ou plusieurs polymères ou copolymères hydrophiles comprenant une ou plusieurs unités hydrophiles et un fragment thio carbonyle thio d'un agent de transfert de chaîne de fragmentation à addition réversible (« RAFT »), le dispositif ophtalmique ayant une teneur en eau d'équilibre d'au moins environ 45 pour cent en poids.
PCT/US2018/046219 2018-08-10 2018-08-10 Dispositifs ophtalmiques WO2020032973A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021531444A JP7357056B2 (ja) 2018-08-10 2018-08-10 眼科用デバイス
CN201880096494.4A CN112930487B (zh) 2018-08-10 眼科装置
KR1020217007301A KR102551113B1 (ko) 2018-08-10 2018-08-10 안과용 장치
CA3107771A CA3107771A1 (fr) 2018-08-10 2018-08-10 Dispositifs ophtalmiques
EP18765235.9A EP3834018A1 (fr) 2018-08-10 2018-08-10 Dispositifs ophtalmiques
PCT/US2018/046219 WO2020032973A1 (fr) 2018-08-10 2018-08-10 Dispositifs ophtalmiques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2018/046219 WO2020032973A1 (fr) 2018-08-10 2018-08-10 Dispositifs ophtalmiques

Publications (1)

Publication Number Publication Date
WO2020032973A1 true WO2020032973A1 (fr) 2020-02-13

Family

ID=63490682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/046219 WO2020032973A1 (fr) 2018-08-10 2018-08-10 Dispositifs ophtalmiques

Country Status (5)

Country Link
EP (1) EP3834018A1 (fr)
JP (1) JP7357056B2 (fr)
KR (1) KR102551113B1 (fr)
CA (1) CA3107771A1 (fr)
WO (1) WO2020032973A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111184685A (zh) * 2020-03-03 2020-05-22 常州晶丽光学科技有限公司 一种用于治疗眼表疾病的药物缓释型凝胶及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408429A (en) 1963-09-11 1968-10-29 Ceskoslovenska Akademie Ved Method for centrifugal casting a contact lens
US3660545A (en) 1961-12-27 1972-05-02 Ceskoslovenska Akademie Ved Method of centrifugally casting thin edged corneal contact lenses
US4113224A (en) 1975-04-08 1978-09-12 Bausch & Lomb Incorporated Apparatus for forming optical lenses
US4197266A (en) 1974-05-06 1980-04-08 Bausch & Lomb Incorporated Method for forming optical lenses
US4555732A (en) 1984-03-22 1985-11-26 Xerox Corporation Image sensor correction system
US4910277A (en) 1988-02-09 1990-03-20 Bambury Ronald E Hydrophilic oxygen permeable polymers
US5070215A (en) 1989-05-02 1991-12-03 Bausch & Lomb Incorporated Novel vinyl carbonate and vinyl carbamate contact lens material monomers
US5271875A (en) 1991-09-12 1993-12-21 Bausch & Lomb Incorporated Method for molding lenses
US20100317816A1 (en) * 2009-06-16 2010-12-16 Bausch & Lomb Incorporated Biomedical devices
US20100315588A1 (en) * 2009-06-16 2010-12-16 Bausch & Lomb Incorporated Biomedical devices
EP2443483A1 (fr) * 2009-06-16 2012-04-25 Bausch & Lomb Incorporated Macromonomères multibras, matériaux polymères et lentilles de contact les comprenant

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2554533T3 (es) * 2007-03-02 2015-12-21 Atex Technologies, Inc. Dispositivo médico textil con una transición cónica y método de fabricación
EP3424965B1 (fr) * 2007-07-10 2020-05-13 Bausch & Lomb Incorporated Agents de réticulation et son usage
US8138290B2 (en) * 2008-01-25 2012-03-20 Bausch & Lomb Incorporated High water content ophthalmic devices
CN104380148B (zh) 2012-05-25 2018-09-28 博士伦公司 完全聚合的阻隔紫外线的硅氧烷水凝胶镜片
US9249249B2 (en) * 2012-07-23 2016-02-02 Bausch & Lomb Incorporated Light absorbing compounds for optical polymers
US9389336B2 (en) * 2013-08-02 2016-07-12 Bausch & Lomb Incorporated Hydrogel monomer mix containing added water

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660545A (en) 1961-12-27 1972-05-02 Ceskoslovenska Akademie Ved Method of centrifugally casting thin edged corneal contact lenses
US3408429A (en) 1963-09-11 1968-10-29 Ceskoslovenska Akademie Ved Method for centrifugal casting a contact lens
US4197266A (en) 1974-05-06 1980-04-08 Bausch & Lomb Incorporated Method for forming optical lenses
US4113224A (en) 1975-04-08 1978-09-12 Bausch & Lomb Incorporated Apparatus for forming optical lenses
US4555732A (en) 1984-03-22 1985-11-26 Xerox Corporation Image sensor correction system
US4910277A (en) 1988-02-09 1990-03-20 Bambury Ronald E Hydrophilic oxygen permeable polymers
US5070215A (en) 1989-05-02 1991-12-03 Bausch & Lomb Incorporated Novel vinyl carbonate and vinyl carbamate contact lens material monomers
US5271875A (en) 1991-09-12 1993-12-21 Bausch & Lomb Incorporated Method for molding lenses
US20100317816A1 (en) * 2009-06-16 2010-12-16 Bausch & Lomb Incorporated Biomedical devices
US20100315588A1 (en) * 2009-06-16 2010-12-16 Bausch & Lomb Incorporated Biomedical devices
EP2443483A1 (fr) * 2009-06-16 2012-04-25 Bausch & Lomb Incorporated Macromonomères multibras, matériaux polymères et lentilles de contact les comprenant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111184685A (zh) * 2020-03-03 2020-05-22 常州晶丽光学科技有限公司 一种用于治疗眼表疾病的药物缓释型凝胶及其制备方法

Also Published As

Publication number Publication date
KR20210042376A (ko) 2021-04-19
EP3834018A1 (fr) 2021-06-16
CA3107771A1 (fr) 2020-02-13
CN112930487A (zh) 2021-06-08
JP7357056B2 (ja) 2023-10-05
KR102551113B1 (ko) 2023-07-04
JP2021535447A (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
JP5592946B2 (ja) バイオメディカルデバイス
EP2443485B1 (fr) Dispositifs biomédicaux
EP2443483B1 (fr) Macromonomères multibras, matériaux polymères et lentilles de contact les comprenant
EP2443486B1 (fr) Dispositifs biomédicaux
WO2010147874A1 (fr) Dispositifs biomédicaux, matériaux polymères et lentilles de contact les comprenant
EP2220134A2 (fr) Dispositifs biomédicaux
KR102551113B1 (ko) 안과용 장치
US10668676B2 (en) Ophthalmic devices
US10816698B2 (en) High water content ophthalmic devices
CN112930487B (zh) 眼科装置
EP3834017B1 (fr) Dispositifs ophtalmiques à haute teneur en eau
WO2023161325A1 (fr) Dispositifs ophtalmiques
WO2023148171A1 (fr) Agents de réticulation multifonctionnels et dispositifs ophtalmiques formés à partir de ceux-ci

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18765235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3107771

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021531444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217007301

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018765235

Country of ref document: EP

Effective date: 20210310