WO2020032260A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2020032260A1
WO2020032260A1 PCT/JP2019/031651 JP2019031651W WO2020032260A1 WO 2020032260 A1 WO2020032260 A1 WO 2020032260A1 JP 2019031651 W JP2019031651 W JP 2019031651W WO 2020032260 A1 WO2020032260 A1 WO 2020032260A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
current
motor
value
electric motor
Prior art date
Application number
PCT/JP2019/031651
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 横塚
遠藤 修司
哉 中根
Original Assignee
日本電産エレシス株式会社
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産エレシス株式会社, 日本電産株式会社 filed Critical 日本電産エレシス株式会社
Priority to JP2020535921A priority Critical patent/JPWO2020032260A1/en
Priority to CN201980052573.XA priority patent/CN112544036A/en
Publication of WO2020032260A1 publication Critical patent/WO2020032260A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a control device and a control method for an electric motor used for, for example, an electric power steering device, an electric pump, and the like.
  • a multi-phase motor such as a brushless motor has been used as an electric motor which is a rotary drive source in an electric power steering device, an electric pump, a home appliance, various industrial machines, and the like.
  • a switching element included in the inverter circuit may generate heat or break down.
  • Japanese Patent Application Laid-Open Publication No. 2004-32848 detects an excess state (overcurrent) of a power supply current using an estimated value of a power supply current supplied to a three-phase inverter of a brushless DC motor, and detects an overcurrent.
  • a motor control device that stops the three-phase drive control of the brushless DC motor when it is performed is disclosed.
  • the motor control device disclosed in Japanese Patent Laid-Open Publication No. 2004-32848 converts a motor power consumption P obtained from a product of a q-axis current and a q-axis voltage or a product of an estimated value of an output torque and an angular velocity into a power supply voltage. Is multiplied by the power factor to obtain an estimated value of the power supply current.
  • the power factor uses an empirically obtained optimum value.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a motor control device capable of suppressing a load on a power supply that supplies a power supply current to an electric motor even when a load applied to the electric motor fluctuates. It is to provide.
  • an exemplary first invention of the present application is a motor control device that drives a multi-phase electric motor having three or more phases, and an inverter that supplies power from a power supply to the electric motor; Means for calculating a d-axis current and a q-axis current by performing coordinate conversion of a flowing actual current; means for calculating a motor rotation speed based on an output from a rotation angle sensor for detecting an angle of a rotation axis of the electric motor; An impedance error estimator for estimating an impedance error from an actual current value corresponding to each of the polyphases and a motor applied voltage value; the d-axis current; the q-axis current; a power supply voltage of the power supply; A power supply current estimator configured to calculate an estimated value of a power supply current from the power supply to the inverter by a first calculation logic that receives the rotation speed and the impedance
  • An exemplary second invention of the present application is an electric power steering apparatus that assists a driver of a vehicle or the like to operate a steering wheel, and an electric motor that assists the driver in steering, and the above-described exemplary first invention.
  • An exemplary third invention of the present application is a motor control device for an electric pump, comprising: an electric motor for driving a pump that sucks a liquid from a suction part and discharges the liquid from a discharge part to the outside; Means for controlling the drive of the electric motor by the motor control device according to the invention.
  • a fourth exemplary invention of the present application is a motor control method for driving a multi-phase electric motor of three or more phases, wherein an impedance error is estimated from an actual current and a motor applied voltage corresponding to each of the multi-phases. And a d-axis current and a q-axis current calculated from an actual current flowing through the electric motor, a power supply voltage of a power supply, a motor rotation speed of the electric motor, and the impedance error.
  • a step of calculating a limit value characterized in that it comprises a step of calculating a current command value, and a step of the generating the drive signal of the electric motor based on the current command value based on the torque limit value.
  • the output torque of the electric motor is limited based on the torque limit value obtained from the estimated value of the power supply current, even if the load applied to the electric motor fluctuates, it is taken out of the power supply to the electric motor.
  • the upper limit of the current can be limited, and the load on the power supply can be adjusted and suppressed.
  • FIG. 1 is a block diagram illustrating an overall configuration of a motor control device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a procedure for estimating the power supply current.
  • FIG. 3 is a flowchart illustrating a processing procedure of the torque control.
  • FIG. 4A shows an error between the estimated value of the power supply current and the actually measured value when the environmental temperature is 25 ° C. under condition 1.
  • FIG. 4B shows an error between the estimated value and the measured value of the power supply current when the environmental temperature is set to ⁇ 40 ° C. in the condition 1.
  • FIG. 4C shows an error between the estimated value of the power supply current and the actually measured value when the environmental temperature is set to 120 ° C. in the condition 1.
  • FIG. 4A shows an error between the estimated value of the power supply current and the actually measured value when the environmental temperature is 25 ° C. under condition 1.
  • FIG. 4B shows an error between the estimated value and the measured value of the power supply current when the environmental temperature is set to
  • FIG. 4D shows an error between the estimated value of the power supply current and the actually measured value when the environmental temperature is set to 25 ° C. in the condition 2.
  • FIG. 4E shows an error between the estimated value and the measured value of the power supply current when the environmental temperature is set to ⁇ 40 ° C. in the condition 2.
  • FIG. 4F shows an error between the estimated value and the actually measured value of the power supply current when the environmental temperature is set to 120 ° C. in the condition 2.
  • FIG. 5A shows a comparison result between the estimated value of the power supply current and the actually measured value when the power supply voltage is 9 V under the condition 3.
  • FIG. 5B shows a comparison result between the estimated value and the measured value of the power supply current when the power supply voltage is 13.5 V under the condition 3.
  • FIG. 5C shows a comparison result between the estimated value and the measured value of the power supply current when the power supply voltage is 16.5 V under the condition 3.
  • FIG. 6A shows the result of power supply current limitation when the environmental temperature is 25 ° C.
  • FIG. 6B shows the result of power supply current limitation when the environmental temperature is -40 ° C.
  • FIG. 6C shows the result of power supply current limitation when the environmental temperature is 120 ° C.
  • FIG. 7 is a schematic configuration of an electric power steering device equipped with the motor control device according to the embodiment.
  • FIG. 1 is a block diagram showing the overall configuration of the motor control device according to the embodiment of the present invention.
  • the motor control device 1 of FIG. 1 includes a motor control unit 10 that functions as a drive control unit of an electric motor 15 that is, for example, a three-phase brushless DC motor.
  • the motor control device 10 includes an observer control unit (impedance estimation unit) 31, a power supply current estimation unit 30 for obtaining an estimated power supply current supplied from the power supply BT to the inverter circuit (motor drive circuit) 23, and a variable As parameters, a torque limit value calculator 11 for calculating a torque limit value, a current command value calculator 12 for calculating a current command value based on the torque limit value, and the like are provided.
  • the PWM signal generation unit 21 of the motor control unit 10 generates an ON / OFF control signal (PWM signal) for a plurality of semiconductor switching elements (FETs) included in the inverter circuit 23 according to a voltage command value described later.
  • the semiconductor switching elements correspond to each phase (a phase, b phase, c phase) of the electric motor 15.
  • the switching element is also called a power element, and uses a switching element such as a MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) and an IGBT (Insulated Gate Bipolar Transistor).
  • MOSFET Metal-Oxide Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the inverter circuit 23 is supplied with power for driving the motor from the external battery BT via the power supply relay 27.
  • the power relay 27 is configured to be able to cut off the power from the battery BT, and may be configured by a semiconductor relay.
  • the motor drive current supplied to the electric motor 15 from the inverter circuit 23 as a motor drive circuit is detected by a current detection unit 25 including current sensors (not shown) arranged corresponding to each phase.
  • the current detection unit 25 detects, for example, a DC current flowing through a shunt resistor for detecting a motor drive current using an amplifier circuit including an operational amplifier or the like.
  • the output signal (current detection signal) from the current detection unit 25 is input to an A / D conversion unit (ADC) 40.
  • the ADC 40 converts an analog current value into a digital value by its A / D conversion function, and is input to the coordinate conversion unit 42 as three-phase currents Ia, Ib, and Ic.
  • the coordinate conversion unit 42 has a three-phase / two-phase conversion function, and calculates a current Id on the d-axis and a current on the q-axis based on the rotation angle ⁇ detected by the rotation angle sensor 51 and the three-phase currents Ia, Ib, and Ic. Calculate Iq. That is, the coordinate conversion unit 42 calculates the d-axis current and the q-axis current from the actual current.
  • the power supply current estimating unit 30 performs a calculation based on a power supply current estimation logic calculation formula based on the d-axis current Id, the q-axis current Iq, the power supply voltage V, the motor speed, and an impedance error described later.
  • An estimated value of the power supply current flowing from the power supply BT to the inverter circuit 23 is calculated.
  • the rotation speed of the motor is calculated by a rotation speed calculation unit (not shown) based on a rotation angle signal output from a rotation angle sensor 51 including a magnet provided on a rotation shaft of the electric motor 15 and an MR sensor opposed thereto, for example. Obtained together with ⁇ .
  • the observer control unit 31 estimates an impedance error for each phase using an adaptive observer (observer model). That is, the observer control unit 31 is an impedance error estimating unit.
  • the observer control unit 31 first calculates an observer voltage value V ob which is a calculated voltage value including the actual current I as shown in the following equation (1).
  • R th impedance of the motor [Delta] R th is the impedance error, L is the inductance. EMF is a back electromotive force.
  • the current command value calculation unit 12 obtains a current command value (target current value) from the command torque Tq, and as the current control unit, the PI control units 16a and 16b detect the current command values of the d axis and the q axis.
  • the d-axis and q-axis voltage command values are determined so that the difference between the current value and the current value becomes zero, and the coordinate conversion unit 17 calculates the motor applied voltage V * from the voltage command value and the rotation angle of the electric motor 15.
  • the observer control unit 31 obtains the difference between the motor applied voltage V * calculated by the coordinate conversion unit 17 and the observer voltage value Vob , as shown in the following equation (2), thereby obtaining the difference between the voltages to be applied. I understand.
  • Resistance value error [Delta] R tha of each phase determined by the observer controller 31, ⁇ R thb, ⁇ R thc is input to the offset gain calculation section 33 of the power supply current inference section 30. It should be noted that the impedance error can also be considered as a difference between a current value calculated by an inverse model of the motor and an actual current value.
  • the offset gain calculation unit 33 calculates the motor output offset gain Gain2 using Expression (3).
  • the loss calculation unit 34 obtains the motor power loss ⁇ from the d-axis current Id, the q-axis current Iq, and the offset gain Gain2 according to equation (4).
  • the power calculation unit 35 multiplies the rotation angular velocity ⁇ m output from the rotation angle sensor 51 by the motor torque T obtained from Expression (6), as shown in Expression (5) below.
  • the power consumption P of the electric motor is obtained.
  • is a current phase and is represented by Expression (8)
  • Gain1 is a fixed value.
  • the estimated power supply current calculation unit 37 obtains the power supply current estimated value Idc from the electric motor power consumption P, the motor power loss ⁇ , and the power supply voltage V, using Equation (9) as an arithmetic expression relating to the first calculation logic.
  • the torque limit value calculation unit 11 of the motor control unit 10 obtains a torque limit value using the power supply current estimation value Idc obtained by the power supply current estimation unit 30 using the first calculation logic as a variable (parameter). More specifically, the torque limit value of the electric motor 15 is calculated by using an expression (10) obtained by modifying the expression (9), which is an operation expression of the first calculation logic, as an operation expression relating to the second calculation logic.
  • T Lim is a torque limit value
  • I dcLim is a current value taken out of the power supply BT (current value to be limited)
  • ⁇ m is a rotational angular velocity
  • is a motor power loss
  • V is a power supply voltage.
  • the power supply current is estimated from the motor output offset gain, which is a variable necessary for the calculation of the power supply current estimated value and the calculation of the torque limit value, and the loss power obtained by back-calculating the resistance value variation corresponding to each phase.
  • the motor output offset gain which is a variable necessary for the calculation of the power supply current estimated value and the calculation of the torque limit value, and the loss power obtained by back-calculating the resistance value variation corresponding to each phase.
  • the current command value calculation unit 12 calculates a d-axis command current Id * as a magnetic field component and a q-axis command current as a torque component.
  • the command current Iq * is calculated.
  • the subtractor 13a calculates the difference (Dq) between the q-axis command current Iq * and the q-axis current Iq, and the subtractor 13b calculates the difference (Dd) between the d-axis command current Id * and the d-axis current Id. Is calculated. Then, Dq is input to the PI control unit 16a, and Dd is input to the PI control unit 16b.
  • the PI control unit 16a performs PI (proportional + integral) control so that Dq converges to zero, and calculates a q-axis voltage command value Vq * that is a q-axis voltage command value.
  • the PI control unit 16b calculates a d-axis voltage command value Vd * , which is a d-axis voltage command value, by performing PI (proportional + integral) control so that Dd converges to zero.
  • the q-axis voltage command value Vq * and the d-axis voltage command value Vd * are input to a coordinate conversion unit 17 having a two-phase / three-phase conversion function.
  • the coordinate conversion unit 17 converts Vq * , Vd * into voltage command values Va * , Vb * , Vc * , which are voltage command values for each of the three phases, based on the rotation angle ⁇ .
  • the converted voltage command values Va * , Vb * , Vc * are input to the PWM signal generation unit 21.
  • the observer control unit 31, the power supply current estimation unit 30, the torque limit value calculation unit 11, and the like are configured by a single microprocessor that operates by a control program (software) for performing power supply current estimation and torque limitation, which will be described later. Is also good.
  • Whether the value of the current flowing from the power supply to the electric motor exceeds the upper limit (threshold) can be determined, for example, by monitoring a change in the current value using a current sensor or the like. From the equilibrium relationship of Specifically, the current is estimated on the basis of energy supplied from the power supply to the electric motor, work (product of generated torque and rotation speed), friction, resistance, and the like. Then, an upper limit of the torque (torque limit value) is obtained from the estimated current value.
  • FIG. 2 is a flowchart illustrating a procedure for estimating the power supply current.
  • step S11 in FIG. 2 the observer control unit 31 estimates an impedance error from the actual current and the motor applied voltage corresponding to each of the three phases.
  • the impedance error of each phase corresponding to the environmental temperature is estimated using the adaptive observer as described above.
  • step S13 the offset gain calculator 33 of the power supply current estimator 30 obtains the motor output offset gain Gain2 from the average value of the impedance error of each phase and the like.
  • step S15 the loss calculator 34 calculates the motor power loss ⁇ based on the motor output offset gain Gain2 and the d-axis current and the q-axis current calculated from the actual current flowing through the electric motor.
  • the power calculator 35 calculates the power consumption P of the electric motor in step S17.
  • step S19 the estimated power supply current calculator 37 calculates the above-described equation (9) as the first calculation logic based on the power loss ⁇ , the power consumption P, and the power supply voltage V of the power supply calculated in the above steps. With this, the estimated value Idc of the power supply current supplied from the power supply to the electric motor is calculated.
  • FIG. 3 is a flowchart illustrating a processing procedure of the torque control.
  • step S21 in FIG. 3 it is determined whether or not the estimated value Idc of the power supply current obtained in the power supply current estimation processing shown in FIG. 2 exceeds a predetermined upper limit.
  • the upper limit value is set as a limit value (takeout current value) IdcLim of the current flowing from the power supply BT to the electric motor 15 in step S23.
  • step S25 the torque limit value T Lim of the electric motor 15 is calculated using the above-described equation (10) as the second calculation logic.
  • step S27 a current command value is calculated based on the torque limit value T Lim, and a drive signal (PWM signal) for the electric motor 15 is generated based on the current command value.
  • the power is calculated backward from the error of the resistance value, and the torque limit value is obtained based on the result. That is, the command torque is immediately limited by the set limit current IdcLim , and control is performed such that a current higher than the limit current is not supplied to the electric motor 15.
  • FIGS. 4A to 4F show estimated values obtained when the above-described power supply current is estimated, actual measured values of actual currents, and estimated and actual measured values in order to limit the current taken out from the power supply BT to the electric motor. This shows the error with respect to FIG.
  • the vertical axis represents current [A] / error [A]
  • the horizontal axis represents time [seconds].
  • 4A to 4C show the condition 1, that is, the torque instruction is 2 [Nm], the motor speed is 500 [rpm], the power supply voltage is 13.5 [V], the environmental temperature is 25 ° C., ⁇ 40 ° C., and The error between the estimated value of the power supply current and the actually measured value when the temperature is changed to 120 ° C. is shown.
  • 4D to 4F show the condition 2, that is, the torque instruction is 2 [Nm], the motor speed is 1500 [rpm], the power supply voltage is 13.5 [V], the environmental temperature is 25 ° C., ⁇ 40 ° C., and The error between the estimated value of the power supply current and the actually measured value when the temperature is changed to 120 ° C. is shown.
  • the error between the measured value and the estimated value is several amperes, for example, ⁇ 3 A or less. .
  • 5A to 5C show the condition 3, that is, the case where the rotation speed is changed from 0 to 1500 rpm and the voltage conditions (power supply voltage) are 9 [V], 13.5 [V], and 16.5 [V], respectively. 7 shows the comparison result between the estimated value of the power supply current and the actually measured value.
  • the vertical axis represents current [A]
  • the horizontal axis represents mechanical angular velocity (motor rotation speed) [rpm].
  • the ambient temperature was normal temperature.
  • the error between the measured value and the estimated value is several amperes (for example, ⁇ 3 A or less) even when the rotation speed and the power supply voltage are changed.
  • 6A to 6C show the case where the torque instruction is 2 [Nm], the motor speed is 1500 [rpm], the power supply voltage is 13.5 [V], and the environmental temperature is 25 ° C., ⁇ 40 ° C., and 120 ° C., respectively.
  • the result of the power supply current limitation when it is varied is shown.
  • the upper limit value of the power supply current when the restriction is applied is set to 20A.
  • the upper limit of the power supply current can be suppressed to a set threshold value (for example, 20 A) or less.
  • a set threshold value for example, 20 A
  • the motor control device can be used for various purposes such as electric power steering devices, electric pumps, home electric appliances such as washing machines, and various in-vehicle applications.
  • FIG. 7 is a schematic configuration of an electric power steering device equipped with the motor control device according to the present embodiment.
  • the electric power steering device 100 shown in FIG. 7 includes a motor control device 1 as an electronic control unit (Electronic Control Unit: ECU), a steering handle 102 as a steering member, a rotating shaft 103 connected to the steering handle 102, a pinion gear 106, A rack shaft 107 and the like are provided.
  • ECU Electronic Control Unit
  • the rotating shaft 103 is engaged with a pinion gear 106 provided at the tip thereof.
  • the rotation of the rotation shaft 103 is converted into a linear movement of the rack shaft 107 by the pinion gear 106, and a pair of wheels 105 a and 105 b provided at both ends of the rack shaft 107 at an angle corresponding to the amount of displacement of the rack shaft 107. Is steered.
  • the rotating shaft 103 is provided with a torque sensor 109 for detecting a steering torque when the steering handle 102 is operated, and the detected steering torque is sent to the motor control device 1.
  • the motor control device 1 generates a motor drive signal based on signals such as the steering torque acquired from the torque sensor 109 and the vehicle speed from a vehicle speed sensor (not shown), and outputs the signal to the electric motor 15.
  • Auxiliary torque for assisting the steering of the steering handle 102 is output from the electric motor 15 to which the motor drive signal is input, and the auxiliary torque is transmitted to the rotating shaft 103 via the reduction gear 104.
  • the rotation of the rotating shaft 103 is assisted by the torque generated by the electric motor 15, thereby assisting the driver in operating the steering wheel.
  • the upper limit value of the current supplied from the power supply to the electric motor can be limited, and the load on the power supply can be adjusted and suppressed.
  • the motor control device When the motor control device according to the present embodiment is used as, for example, a drive control device of an electric motor for driving a pump that sucks a liquid from a suction portion and discharges the liquid from a discharge portion to the outside, the same as the above-described electric power steering device Even if the load applied to the electric motor fluctuates, the upper limit of the current supplied from the power supply to the electric motor can be limited, and the load on the power supply can be adjusted and suppressed.
  • the motor control device calculates the estimated value of the power supply current supplied from the power supply to the inverter circuit by the first calculation logic, and uses the estimated power supply current value as a variable (parameter).
  • the current command value is calculated based on the torque limit value obtained by the second calculation logic.
  • a drive signal for the electric motor is generated based on the phase voltage command value obtained by converting the current command value.
  • the output torque of the electric motor can be limited based on the torque limit value, and the current flowing from the power supply to the electric motor can be limited.
  • the upper limit of the current taken from the power supply to the electric motor can be limited, and the load on the power supply can be adjusted and suppressed.
  • the accuracy of the estimated value of the power supply current can be increased to minimize the error between the estimated value of the power supply current and the actual current value. Therefore, the power supply can be protected by the power supply current limitation, and even if the environmental temperature changes, the power supply current can be kept within the target estimation error.
  • the adaptive observer is used to estimate the impedance error of each phase that fluctuates depending on the environmental temperature.
  • An impedance error (impedance fluctuation) in each phase of the electric motor can be easily and accurately estimated.
  • the embodiment of the present invention is not limited to the above-described example, and can be appropriately changed.
  • priorities may be assigned to commands such as current and voltage for adjusting the load, and control may be performed based on the priorities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

[Problem] To suppress load on a power supply for supplying power supply current to an electric motor even if variation in load occurs. [Solution] In the motor control device, an estimated value of power supply current supplied from a power supply BT to an inverter circuit 23 is calculated by a first calculation logic, and a torque limit value is obtained by a second calculation logic using the power supply current estimated value as a variable (parameter). A current command value is then calculated on the basis of the torque limit value, and a drive signal for an electric motor 15 is generated using a phase voltage command value obtained by converting the current command value.

Description

モータ制御装置Motor control device
 本発明は、例えば、電動パワーステアリング装置、電動ポンプ等に使用する電動モータの制御装置および制御方法に関する。 The present invention relates to a control device and a control method for an electric motor used for, for example, an electric power steering device, an electric pump, and the like.
 電動パワーステアリング装置、電動ポンプ、家電製品、各種産業機械等における回転駆動源である電動モータとして、従来よりブラシレスモータ等の多相モータが使用されている。この種の多相モータは、出力要求(モータ負荷)の増大によって電源より過大な電流が供給された場合、インバータ回路を構成するスイッチング素子が発熱、破壊等する可能性がある。 多 Conventionally, a multi-phase motor such as a brushless motor has been used as an electric motor which is a rotary drive source in an electric power steering device, an electric pump, a home appliance, various industrial machines, and the like. In this type of polyphase motor, when an excessive current is supplied from a power supply due to an increase in output demand (motor load), a switching element included in the inverter circuit may generate heat or break down.
 電動モータに加わる負荷(外乱)を考慮して制御を行う場合、その負荷調整に伴い電動モータの電流、電圧等を調整する必要がある。その際、電動モータへ電流を供給する電源にも、そのような電流、電圧等の調整に応じた負荷が加わる。 (4) When performing control in consideration of the load (disturbance) applied to the electric motor, it is necessary to adjust the current, voltage, and the like of the electric motor in accordance with the load adjustment. At this time, a load corresponding to the adjustment of the current, voltage, and the like is applied to a power supply that supplies a current to the electric motor.
 例えば日本国公開公報特開2004-32848号公報は、ブラシレス直流モータの3相インバータに給電される電源電流の推定値を用いて電源電流の過剰状態(過電流)を検出し、過電流が検出された場合、ブラシレス直流モータの3相駆動制御を停止するモータ制御装置を開示している。 For example, Japanese Patent Application Laid-Open Publication No. 2004-32848 detects an excess state (overcurrent) of a power supply current using an estimated value of a power supply current supplied to a three-phase inverter of a brushless DC motor, and detects an overcurrent. A motor control device that stops the three-phase drive control of the brushless DC motor when it is performed is disclosed.
日本国公開公報:特開2004-32848号公報Japanese Unexamined Patent Publication: JP-A-2004-32848
 日本国公開公報特開2004-32848号公報のモータ制御装置は、q軸電流とq軸電圧との積、あるいは出力トルクの推定値と角速度との積から求めたモータ消費電力Pを、電源電圧に力率を乗じた値で除することで、電源電流の推定値を求めている。力率は、経験的に求めた最適値を使用している。 The motor control device disclosed in Japanese Patent Laid-Open Publication No. 2004-32848 converts a motor power consumption P obtained from a product of a q-axis current and a q-axis voltage or a product of an estimated value of an output torque and an angular velocity into a power supply voltage. Is multiplied by the power factor to obtain an estimated value of the power supply current. The power factor uses an empirically obtained optimum value.
 しかしながら、日本国公開公報特開2004-32848号公報では、d軸電流Id*とd軸電圧Vd*をともに0(ゼロ)と仮定しているため、モータ消費電力Pの実効値が実際の値よりも小さくなり、正確な電流値を検出(推定)できないという問題がある。 However, in Japanese Patent Application Laid-Open Publication No. 2004-32848, since both the d-axis current Id * and the d-axis voltage Vd * are assumed to be 0 (zero), the effective value of the motor power consumption P becomes the actual value. Therefore, there is a problem that an accurate current value cannot be detected (estimated).
 このような従来の電源電流の推定方法は、電源電流の推定値と実際の電流の実測値との誤差が大きくなり、精度の高い電源電流の推定値を得ることが困難になる。その結果、モータへの過大な電流供給要求があった場合、電源より過大な電流が持ち出され、電源に対する負荷の制御(負荷の抑制)が十分に行えないという問題が生じる。 In such a conventional method of estimating the power supply current, the error between the estimated value of the power supply current and the actual measured value of the current becomes large, and it is difficult to obtain a highly accurate estimated value of the power supply current. As a result, when there is an excessive current supply request to the motor, an excessive current is taken out of the power supply, and a problem arises in that the load control (load suppression) for the power supply cannot be sufficiently performed.
 本発明は、上述した課題に鑑みてなされたものであり、その目的は、電動モータに加わる負荷に変動があっても、電動モータに電源電流を供給する電源への負荷を抑制できるモータ制御装置を提供することである。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a motor control device capable of suppressing a load on a power supply that supplies a power supply current to an electric motor even when a load applied to the electric motor fluctuates. It is to provide.
 上記の目的を達成し、上述した課題を解決する一手段として以下の構成を備える。すなわち、本願の例示的な第1の発明は、3相以上の多相の電動モータを駆動するモータ制御装置であって、電源からの電力を前記電動モータに供給するインバータと、前記電動モータに流れる実電流を座標変換することによりd軸電流およびq軸電流を算出する手段と、前記電動モータの回転軸の角度を検出する回転角センサからの出力に基づきモータ回転数を算出する手段と、前記多相の各相に対応した実電流値とモータ印加電圧値よりインピーダンス誤差を推定するインピーダンス誤差推定部と、前記d軸電流と、前記q軸電流と、前記電源の電源電圧と、前記モータ回転数と、前記インピーダンス誤差とを入力とする第1の算出ロジックにより、前記電源から前記インバータへの電源電流推定値を算出する電源電流推定部と、前記電源電流推定値を変数とする第2の算出ロジックにより前記電動モータのトルク制限値を演算するトルク制限値演算部と、前記トルク制限値に基づいて電流指令値を算出する電流指令値算出部と、前記電流指令値に基づいて前記電動モータの駆動信号を生成する駆動信号生成部とを備えることを特徴とする。 。The following configuration is provided as one means for achieving the above object and solving the above-mentioned problems. That is, an exemplary first invention of the present application is a motor control device that drives a multi-phase electric motor having three or more phases, and an inverter that supplies power from a power supply to the electric motor; Means for calculating a d-axis current and a q-axis current by performing coordinate conversion of a flowing actual current; means for calculating a motor rotation speed based on an output from a rotation angle sensor for detecting an angle of a rotation axis of the electric motor; An impedance error estimator for estimating an impedance error from an actual current value corresponding to each of the polyphases and a motor applied voltage value; the d-axis current; the q-axis current; a power supply voltage of the power supply; A power supply current estimator configured to calculate an estimated value of a power supply current from the power supply to the inverter by a first calculation logic that receives the rotation speed and the impedance error; A torque limit value calculation unit that calculates a torque limit value of the electric motor by a second calculation logic using a current estimation value as a variable, a current command value calculation unit that calculates a current command value based on the torque limit value, A drive signal generation unit that generates a drive signal for the electric motor based on the current command value.
 本願の例示的な第2の発明は、車両等の運転者のハンドル操作をアシストする電動パワーステアリング装置であって、前記運転者の操舵を補助する電動モータと、上記例示的な第1の発明に係るモータ制御装置により前記電動モータを駆動制御する手段とを備えることを特徴とする。 An exemplary second invention of the present application is an electric power steering apparatus that assists a driver of a vehicle or the like to operate a steering wheel, and an electric motor that assists the driver in steering, and the above-described exemplary first invention. Means for controlling the drive of the electric motor by the motor control device according to (1).
 本願の例示的な第3の発明は、電動ポンプ用モータ制御装置であって、液体を吸入部から吸入して吐出部から外部へ吐出するポンプ駆動用の電動モータと、上記例示的な第1の発明に係るモータ制御装置により前記電動モータを駆動制御する手段とを備えることを特徴とする。 An exemplary third invention of the present application is a motor control device for an electric pump, comprising: an electric motor for driving a pump that sucks a liquid from a suction part and discharges the liquid from a discharge part to the outside; Means for controlling the drive of the electric motor by the motor control device according to the invention.
 本願の例示的な第4の発明は、3相以上の多相の電動モータを駆動するモータ制御方法であって、前記多相の各相に対応した実電流とモータ印加電圧よりインピーダンス誤差を推定する工程と、前記電動モータに流れる実電流より演算したd軸電流およびq軸電流と、電源の電源電圧と、前記電動モータのモータ回転数と、前記インピーダンス誤差とに基づいて、前記電源から前記電動モータへ供給される電源電流の推定値を算出する工程と、記各相のインピーダンス誤差の平均値より求めたモータ出力オフセットゲインと、前記d軸電流と、前記q軸電流とに基づいて損失電力を算出する工程と、前記電源電流の推定値が所定の上限値を超えた場合、その上限値を前記電源から前記電動モータへの電流制限値として該電動モータのトルク制限値を演算する工程と、前記トルク制限値に基づいて電流指令値を算出する工程と、前記電流指令値に基づいて前記電動モータの駆動信号を生成する工程とを備えることを特徴とする。 A fourth exemplary invention of the present application is a motor control method for driving a multi-phase electric motor of three or more phases, wherein an impedance error is estimated from an actual current and a motor applied voltage corresponding to each of the multi-phases. And a d-axis current and a q-axis current calculated from an actual current flowing through the electric motor, a power supply voltage of a power supply, a motor rotation speed of the electric motor, and the impedance error. Calculating an estimated value of a power supply current supplied to the electric motor; a motor output offset gain obtained from an average value of impedance errors of the respective phases; a loss based on the d-axis current and the q-axis current; Calculating the power, and, when the estimated value of the power supply current exceeds a predetermined upper limit, setting the upper limit as a current limit value from the power supply to the electric motor, A step of calculating a limit value, characterized in that it comprises a step of calculating a current command value, and a step of the generating the drive signal of the electric motor based on the current command value based on the torque limit value.
 本発明によれば、電源電流の推定値より求めたトルク制限値をもとに電動モータの出力トルクを制限するので、電動モータに加わる負荷に変動があっても、電源から電動モータへ持ち出される電流の上限値を制限でき、電源への負荷を調整・抑制できる。 According to the present invention, since the output torque of the electric motor is limited based on the torque limit value obtained from the estimated value of the power supply current, even if the load applied to the electric motor fluctuates, it is taken out of the power supply to the electric motor. The upper limit of the current can be limited, and the load on the power supply can be adjusted and suppressed.
図1は、本発明の実施形態に係るモータ制御装置の全体構成を示すブロック図である。FIG. 1 is a block diagram illustrating an overall configuration of a motor control device according to an embodiment of the present invention. 図2は、電源電流の推定処理手順を示すフローチャートである。FIG. 2 is a flowchart illustrating a procedure for estimating the power supply current. 図3は、トルク制御の処理手順を示すフローチャートである。FIG. 3 is a flowchart illustrating a processing procedure of the torque control. 図4Aは、条件1において環境温度を25℃としたときの電源電流の推定値と実測値との誤差を示す。FIG. 4A shows an error between the estimated value of the power supply current and the actually measured value when the environmental temperature is 25 ° C. under condition 1. 図4Bは、条件1において環境温度を-40℃としたときの電源電流の推定値と実測値との誤差を示す。FIG. 4B shows an error between the estimated value and the measured value of the power supply current when the environmental temperature is set to −40 ° C. in the condition 1. 図4Cは、条件1において環境温度を120℃としたときの電源電流の推定値と実測値との誤差を示す。FIG. 4C shows an error between the estimated value of the power supply current and the actually measured value when the environmental temperature is set to 120 ° C. in the condition 1. 図4Dは、条件2において環境温度を25℃としたときの電源電流の推定値と実測値との誤差を示す。FIG. 4D shows an error between the estimated value of the power supply current and the actually measured value when the environmental temperature is set to 25 ° C. in the condition 2. 図4Eは、条件2において環境温度を-40℃としたときの電源電流の推定値と実測値との誤差を示す。FIG. 4E shows an error between the estimated value and the measured value of the power supply current when the environmental temperature is set to −40 ° C. in the condition 2. 図4Fは、条件2において環境温度を120℃としたときの電源電流の推定値と実測値との誤差を示す。FIG. 4F shows an error between the estimated value and the actually measured value of the power supply current when the environmental temperature is set to 120 ° C. in the condition 2. 図5Aは、条件3において電源電圧を9Vとした場合における電源電流の推定値と実測値との比較結果を示す。FIG. 5A shows a comparison result between the estimated value of the power supply current and the actually measured value when the power supply voltage is 9 V under the condition 3. 図5Bは、条件3において電源電圧を13.5Vとした場合における電源電流の推定値と実測値との比較結果を示す。FIG. 5B shows a comparison result between the estimated value and the measured value of the power supply current when the power supply voltage is 13.5 V under the condition 3. 図5Cは、条件3において電源電圧を16.5Vとした場合における電源電流の推定値と実測値との比較結果を示す。FIG. 5C shows a comparison result between the estimated value and the measured value of the power supply current when the power supply voltage is 16.5 V under the condition 3. 図6Aは、環境温度を25℃とした場合の電源電流制限の結果を示す。FIG. 6A shows the result of power supply current limitation when the environmental temperature is 25 ° C. 図6Bは、環境温度を-40℃とした場合の電源電流制限の結果を示す。FIG. 6B shows the result of power supply current limitation when the environmental temperature is -40 ° C. 図6Cは、環境温度を120℃とした場合の電源電流制限の結果を示す。FIG. 6C shows the result of power supply current limitation when the environmental temperature is 120 ° C. 図7は、実施形態に係るモータ制御装置を搭載した電動パワーステアリング装置の概略構成である。FIG. 7 is a schematic configuration of an electric power steering device equipped with the motor control device according to the embodiment.
 以下、本発明に係る実施形態について添付図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明の実施形態に係るモータ制御装置の全体構成を示すブロック図である。図1のモータ制御装置1は、例えば3相ブラシレスDCモータである電動モータ15の駆動制御部として機能するモータ制御部10を備える。モータ制御装置10は、オブザーバ制御部(インピーダンス推定部)31、電源BTからインバータ回路(モータ駆動回路)23へ供給される電源電流推定値を求める電源電流推定部30、電源電流推定値を変数(パラメータ)としてトルク制限値を求めるトルク制限値演算部11、トルク制限値をもとに電流指令値を算出する電流指令値演算部12等を備える。 FIG. 1 is a block diagram showing the overall configuration of the motor control device according to the embodiment of the present invention. The motor control device 1 of FIG. 1 includes a motor control unit 10 that functions as a drive control unit of an electric motor 15 that is, for example, a three-phase brushless DC motor. The motor control device 10 includes an observer control unit (impedance estimation unit) 31, a power supply current estimation unit 30 for obtaining an estimated power supply current supplied from the power supply BT to the inverter circuit (motor drive circuit) 23, and a variable As parameters, a torque limit value calculator 11 for calculating a torque limit value, a current command value calculator 12 for calculating a current command value based on the torque limit value, and the like are provided.
 モータ制御部10のPWM信号生成部21は、後述する電圧指令値にしたがって、インバータ回路23を構成する複数の半導体スイッチング素子(FET)のON/OFF制御信号(PWM信号)を生成する。半導体スイッチング素子は電動モータ15の各相(a相、b相、c相)に対応している。 The PWM signal generation unit 21 of the motor control unit 10 generates an ON / OFF control signal (PWM signal) for a plurality of semiconductor switching elements (FETs) included in the inverter circuit 23 according to a voltage command value described later. The semiconductor switching elements correspond to each phase (a phase, b phase, c phase) of the electric motor 15.
 スイッチング素子(FET)はパワー素子とも呼ばれ、例えば、MOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子を用いる。 The switching element (FET) is also called a power element, and uses a switching element such as a MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) and an IGBT (Insulated Gate Bipolar Transistor).
 インバータ回路23には、電源リレー27を介して外部バッテリBTよりモータ駆動用の電源が供給される。電源リレー27は、バッテリBTからの電力を遮断可能に構成され、半導体リレーで構成することもできる。 (4) The inverter circuit 23 is supplied with power for driving the motor from the external battery BT via the power supply relay 27. The power relay 27 is configured to be able to cut off the power from the battery BT, and may be configured by a semiconductor relay.
 モータ駆動回路としてのインバータ回路23より電動モータ15に供給されるモータ駆動電流は、各相に対応して配置した電流センサ(不図示)からなる電流検出部25で検出される。電流検出部25は、例えばモータ駆動電流検出用のシャント抵抗に流れる直流電流を、オペアンプ等からなる増幅回路を用いて検出する。 (4) The motor drive current supplied to the electric motor 15 from the inverter circuit 23 as a motor drive circuit is detected by a current detection unit 25 including current sensors (not shown) arranged corresponding to each phase. The current detection unit 25 detects, for example, a DC current flowing through a shunt resistor for detecting a motor drive current using an amplifier circuit including an operational amplifier or the like.
 電流検出部25からの出力信号(電流検出信号)は、A/D変換部(ADC)40に入力される。ADC40は、そのA/D変換機能によりアナログ電流値をデジタル値に変換し、3相電流Ia,Ib,Icとして座標変換部42に入力される。座標変換部42は3相/2相変換機能を有し、回転角センサ51で検出された回転角度θと3相電流Ia,Ib,Icより、d軸上の電流Idとq軸上の電流Iqを演算する。すなわち、座標変換部42は、実電流よりd軸電流とq軸電流を演算する。 The output signal (current detection signal) from the current detection unit 25 is input to an A / D conversion unit (ADC) 40. The ADC 40 converts an analog current value into a digital value by its A / D conversion function, and is input to the coordinate conversion unit 42 as three-phase currents Ia, Ib, and Ic. The coordinate conversion unit 42 has a three-phase / two-phase conversion function, and calculates a current Id on the d-axis and a current on the q-axis based on the rotation angle θ detected by the rotation angle sensor 51 and the three-phase currents Ia, Ib, and Ic. Calculate Iq. That is, the coordinate conversion unit 42 calculates the d-axis current and the q-axis current from the actual current.
 電源電流推定部30は、d軸電流Idと、q軸電流Iqと、電源電圧Vと、モータ回転数と、後述するインピーダンス誤差をもとに電源電流推定ロジック演算式による演算を行うことにより、電源BTからインバータ回路23へ流れる電源電流推定値を算出する。モータ回転数は、例えば電動モータ15の回転軸に設けた磁石と、それに対向するMRセンサを備える回転角センサ51から出力される回転角度信号に基づいて、不図示の回転数演算部で回転角度θとともに求める。 The power supply current estimating unit 30 performs a calculation based on a power supply current estimation logic calculation formula based on the d-axis current Id, the q-axis current Iq, the power supply voltage V, the motor speed, and an impedance error described later. An estimated value of the power supply current flowing from the power supply BT to the inverter circuit 23 is calculated. The rotation speed of the motor is calculated by a rotation speed calculation unit (not shown) based on a rotation angle signal output from a rotation angle sensor 51 including a magnet provided on a rotation shaft of the electric motor 15 and an MR sensor opposed thereto, for example. Obtained together with θ.
 オブザーバ制御部31は、適応オブザーバ(オブザーバモデル)を用いて各相毎のインピーダンス誤差を推定する。すなわち、オブザーバ制御部31はインピーダンス誤差推定部である。オブザーバ制御部31では、最初に下記の式(1)に示すように実電流Iからなる算出電圧値であるオブザーバ電圧値Vobを演算する。 The observer control unit 31 estimates an impedance error for each phase using an adaptive observer (observer model). That is, the observer control unit 31 is an impedance error estimating unit. The observer control unit 31 first calculates an observer voltage value V ob which is a calculated voltage value including the actual current I as shown in the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Rthはモータのインピーダンス、ΔRthはインピーダンス誤差、Lはインダクタンスである。また、EMFは逆起電力である。 In the formula (1), R th impedance of the motor, [Delta] R th is the impedance error, L is the inductance. EMF is a back electromotive force.
 ここで、電流指令値演算部12は、指示トルクTqから電流指令値(目標電流値)を求め、電流制御部として、PI制御部16a,16bが、d軸とq軸の電流指令値と検出電流値との差分をゼロにするようにd軸とq軸の電圧指令値を求め、さらに座標変換部17が、電圧指令値と電動モータ15の回転角度とからモータ印加電圧Vを演算する。オブザーバ制御部31では、下記の式(2)に示すように、座標変換部17で演算されたモータ印加電圧Vとオブザーバ電圧値Vobとの差分をとることで、印加すべき電圧の差分が分かる。 Here, the current command value calculation unit 12 obtains a current command value (target current value) from the command torque Tq, and as the current control unit, the PI control units 16a and 16b detect the current command values of the d axis and the q axis. The d-axis and q-axis voltage command values are determined so that the difference between the current value and the current value becomes zero, and the coordinate conversion unit 17 calculates the motor applied voltage V * from the voltage command value and the rotation angle of the electric motor 15. . The observer control unit 31 obtains the difference between the motor applied voltage V * calculated by the coordinate conversion unit 17 and the observer voltage value Vob , as shown in the following equation (2), thereby obtaining the difference between the voltages to be applied. I understand.
 そこで、式(2)において電圧の差分を実電流Iで除することによって、各相毎の電圧の差分をもとに各相毎の抵抗値の差分ΔRtha,ΔRthb,ΔRthcを演算することができる。 Therefore, computed by dividing the difference between the voltage at the actual current I in equation (2), the difference [Delta] R tha of the resistance value of each phase based on the difference between the voltage of each phase, [Delta] R thb, the [Delta] R thc be able to.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 オブザーバ制御部31で求めた各相毎の抵抗値誤差(インピーダンス誤差)ΔRtha,ΔRthb,ΔRthcは、電源電流推定部30のオフセットゲイン算出部33に入力される。なお、インピーダンス誤差は、モータの逆モデルより逆算した電流値と実電流値との差分と考えることもできる。 Resistance value error (impedance error) [Delta] R tha of each phase determined by the observer controller 31, ΔR thb, ΔR thc is input to the offset gain calculation section 33 of the power supply current inference section 30. It should be noted that the impedance error can also be considered as a difference between a current value calculated by an inverse model of the motor and an actual current value.
 オフセットゲイン算出部33は、式(3)により、モータ出力オフセットゲインGain2を算出する。ここでは、相毎のインピーダンス誤差のバラツキを考慮して、一相のインピーダンス誤差を代表値として使用せず、三相のインピーダンス誤差ΔRtha,ΔRthb,ΔRthcの平均値を使用する。 The offset gain calculation unit 33 calculates the motor output offset gain Gain2 using Expression (3). Here, in consideration of the variation of impedance error of each phase, without using an impedance error of one phase as a representative value, the three-phase impedance error [Delta] R tha, [Delta] R thb, using the average value of [Delta] R thc.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 損出算出部34は、d軸電流Idと、q軸電流Iqと、オフセットゲインGain2とから、式(4)によりモータ電力損失αを求める。 The loss calculation unit 34 obtains the motor power loss α from the d-axis current Id, the q-axis current Iq, and the offset gain Gain2 according to equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)において、Iα =Id+Iqである。 In the formula (4), which is I α 2 = Id 2 + Iq 2.
 一方、電力算出部35は、下記の式(5)に示すように、回転角センサ51からの出力である回転角速度ωと、式(6)より求められるモータトルクTとを乗算して、電動モータの消費電力Pを求める。 On the other hand, the power calculation unit 35 multiplies the rotation angular velocity ω m output from the rotation angle sensor 51 by the motor torque T obtained from Expression (6), as shown in Expression (5) below. The power consumption P of the electric motor is obtained.
 なお、式(6)において、Pはモータの極対数、Ψαはd軸鎖交磁束である。 In the equation (6), the P n motor pole pairs, is [psi alpha is d-axis flux linkage.
 また、d軸鎖交磁束Ψαは、式(7)で求められる。式(7)中のβは電流位相であって式(8)で表わされ、Gain1は固定値である。 Also, the d-axis flux linkage [psi alpha, determined by Equation (7). In Expression (7), β is a current phase and is represented by Expression (8), and Gain1 is a fixed value.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 推定電源電流算出部37は、上記の電動モータ消費電力P、モータ電力損失α、電源電圧Vより、式(9)を第1の算出ロジックに係る演算式として電源電流推定値Idcを求める。 The estimated power supply current calculation unit 37 obtains the power supply current estimated value Idc from the electric motor power consumption P, the motor power loss α, and the power supply voltage V, using Equation (9) as an arithmetic expression relating to the first calculation logic.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 モータ制御部10のトルク制限値演算部11は、電源電流推定部30で第1の算出ロジックを使用して求めた電源電流推定値Idcを変数(パラメータ)としてトルク制限値を求める。より具体的には、第1の算出ロジックの演算式である式(9)を変形した式(10)を第2の算出ロジックに係る演算式として、電動モータ15のトルク制限値を算出する。 (4) The torque limit value calculation unit 11 of the motor control unit 10 obtains a torque limit value using the power supply current estimation value Idc obtained by the power supply current estimation unit 30 using the first calculation logic as a variable (parameter). More specifically, the torque limit value of the electric motor 15 is calculated by using an expression (10) obtained by modifying the expression (9), which is an operation expression of the first calculation logic, as an operation expression relating to the second calculation logic.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、TLimはトルク制限値、IdcLimは、電源BTからの持ち出し電流値(制限したい電流値)、ωは回転角速度、αはモータ電力損失、Vは電源電圧である。 Here, T Lim is a torque limit value, I dcLim is a current value taken out of the power supply BT (current value to be limited), ω m is a rotational angular velocity, α is a motor power loss, and V is a power supply voltage.
 このように、電源電流推定値の算出とトルク制限値の演算に必要な変数であるモータ出力オフセットゲイン、各相対応の抵抗値変動分から逆算して求めた損失電力等から電源電流を推定することで、推定誤差の小さい、高精度の電源電流推定値を得ることができる。そして、電源電流推定値を算出するロジックを変形して、トルク制限値の演算ロジックとして使用することで、トルク制限値の演算を迅速化、簡素化できる。 As described above, the power supply current is estimated from the motor output offset gain, which is a variable necessary for the calculation of the power supply current estimated value and the calculation of the torque limit value, and the loss power obtained by back-calculating the resistance value variation corresponding to each phase. Thus, a highly accurate power supply current estimated value with a small estimation error can be obtained. Then, by modifying the logic for calculating the power supply current estimated value and using it as the torque limit value calculation logic, the calculation of the torque limit value can be speeded up and simplified.
 電流指令値演算部12は、指示トルクTqとトルク制限値制御部11より出力されたトルク制限値TLimをもとに、磁界成分であるd軸指令電流Idと、トルク成分であるq軸指令電流Iqを演算する。 Based on the command torque Tq and the torque limit value T Lim output from the torque limit value control unit 11, the current command value calculation unit 12 calculates a d-axis command current Id * as a magnetic field component and a q-axis command current as a torque component. The command current Iq * is calculated.
 減算器13aによって、q軸指令電流Iqとq軸電流Iqの差分(Dqとする)が演算され、減算器13bによって、d軸指令電流Idとd軸電流Idの差分(Ddとする)が演算される。そして、DqはPI制御部16aに入力され、DdはPI制御部16bに入力される。 The subtractor 13a calculates the difference (Dq) between the q-axis command current Iq * and the q-axis current Iq, and the subtractor 13b calculates the difference (Dd) between the d-axis command current Id * and the d-axis current Id. Is calculated. Then, Dq is input to the PI control unit 16a, and Dd is input to the PI control unit 16b.
 PI制御部16aは、Dqをゼロに収束させるようにPI(比例+積分)制御を行って、q軸電圧の指令値であるq軸電圧指令値Vqを算出する。同様に、PI制御部16bは、Ddをゼロに収束させるようにPI(比例+積分)制御を行うことで、d軸電圧の指令値であるd軸電圧指令値Vdを算出する。 The PI control unit 16a performs PI (proportional + integral) control so that Dq converges to zero, and calculates a q-axis voltage command value Vq * that is a q-axis voltage command value. Similarly, the PI control unit 16b calculates a d-axis voltage command value Vd * , which is a d-axis voltage command value, by performing PI (proportional + integral) control so that Dd converges to zero.
 q軸電圧指令値Vqとd軸電圧指令値Vdは、2相/3相変換機能を有する座標変換部17に入力される。座標変換部17は、回転角度θに基づいて、Vq、Vdを3相の各相毎の電圧指令値である電圧指令値Va、Vb、Vcに変換する。変換後の電圧指令値Va、Vb、Vcは、PWM信号生成部21に入力される。 The q-axis voltage command value Vq * and the d-axis voltage command value Vd * are input to a coordinate conversion unit 17 having a two-phase / three-phase conversion function. The coordinate conversion unit 17 converts Vq * , Vd * into voltage command values Va * , Vb * , Vc * , which are voltage command values for each of the three phases, based on the rotation angle θ. The converted voltage command values Va * , Vb * , Vc * are input to the PWM signal generation unit 21.
 なお、オブザーバ制御部31、電源電流推定部30、トルク制限値演算部11等は、後述する電源電流推定、およびトルク制限を行う制御プログラム(ソフトウェア)によって動作する単一のマイクロプロセッサで構成してもよい。 The observer control unit 31, the power supply current estimation unit 30, the torque limit value calculation unit 11, and the like are configured by a single microprocessor that operates by a control program (software) for performing power supply current estimation and torque limitation, which will be described later. Is also good.
 次に、本実施形態に係るモータ制御装置における電動モータの駆動・制御方法について説明する。 Next, a method of driving and controlling the electric motor in the motor control device according to the present embodiment will be described.
 電源から電動モータへ流れる電流値が上限値(閾値)を越えたかどうかは、例えば、電流センサ等を用いて電流値の変化を監視することで判断できるが、本実施形態では、電動モータにおけるエネルギの平衡関係から推定する。具体的には、電源から電動モータに供給されるエネルギ、仕事量(発生トルクと回転速度との積)、摩擦、抵抗等による損失をもとに電流を推定する。そして、この電流推定値からトルクの上限(トルク制限値)を求める。 Whether the value of the current flowing from the power supply to the electric motor exceeds the upper limit (threshold) can be determined, for example, by monitoring a change in the current value using a current sensor or the like. From the equilibrium relationship of Specifically, the current is estimated on the basis of energy supplied from the power supply to the electric motor, work (product of generated torque and rotation speed), friction, resistance, and the like. Then, an upper limit of the torque (torque limit value) is obtained from the estimated current value.
 最初に本実施形態に係るモータ制御装置における電源電流の推定値算出方法について説明する。図2は、電源電流の推定処理手順を示すフローチャートである。 First, a method of calculating the estimated value of the power supply current in the motor control device according to the present embodiment will be described. FIG. 2 is a flowchart illustrating a procedure for estimating the power supply current.
 図2のステップS11においてオブザーバ制御部31は、3相の各相に対応した実電流とモータ印加電圧よりインピーダンス誤差を推定する。ここでは、上述したように適応オブザーバを用いて、環境温度に対応した各相毎のインピーダンス誤差を推定する。 {Circle around (2)} In step S11 in FIG. 2, the observer control unit 31 estimates an impedance error from the actual current and the motor applied voltage corresponding to each of the three phases. Here, the impedance error of each phase corresponding to the environmental temperature is estimated using the adaptive observer as described above.
 次にステップS13において、電源電流推定部30のオフセットゲイン算出部33は、各相のインピーダンス誤差の平均値等よりモータ出力オフセットゲインGain2を求める。続くステップS15において、損失算出部34は、上記のモータ出力オフセットゲインGain2と、電動モータに流れる実電流より演算したd軸電流およびq軸電流とに基づいてモータ電力損失αを算出する。そして、電力算出部35は、ステップS17で、電動モータの消費電力Pを算出する。 Next, in step S13, the offset gain calculator 33 of the power supply current estimator 30 obtains the motor output offset gain Gain2 from the average value of the impedance error of each phase and the like. In the following step S15, the loss calculator 34 calculates the motor power loss α based on the motor output offset gain Gain2 and the d-axis current and the q-axis current calculated from the actual current flowing through the electric motor. Then, the power calculator 35 calculates the power consumption P of the electric motor in step S17.
 ステップS19において、推定電源電流算出部37は、上記のステップで算出した電力損失α、消費電力P、および電源の電源電圧Vをもとに、上述した第1の算出ロジックとしての式(9)によって、電源から電動モータへ供給される電源電流の推定値Idcを算出する。 In step S19, the estimated power supply current calculator 37 calculates the above-described equation (9) as the first calculation logic based on the power loss α, the power consumption P, and the power supply voltage V of the power supply calculated in the above steps. With this, the estimated value Idc of the power supply current supplied from the power supply to the electric motor is calculated.
 次に、本実施形態に係るモータ制御装置におけるトルク制御方法について説明する。図3は、トルク制御の処理手順を示すフローチャートである。 Next, a torque control method in the motor control device according to the present embodiment will be described. FIG. 3 is a flowchart illustrating a processing procedure of the torque control.
 図3のステップS21では、図2に示す電源電流の推定処理で得た電源電流の推定値Idcが所定の上限値を超えているか否かを判断する。電源電流推定値Idcが所定の上限値を超えた場合、ステップS23において、その上限値を、電源BTから電動モータ15へ流れる電流の制限値(持ち出し電流値)IdcLimとして設定する。 In step S21 in FIG. 3, it is determined whether or not the estimated value Idc of the power supply current obtained in the power supply current estimation processing shown in FIG. 2 exceeds a predetermined upper limit. When the power supply current estimated value Idc exceeds the predetermined upper limit value, the upper limit value is set as a limit value (takeout current value) IdcLim of the current flowing from the power supply BT to the electric motor 15 in step S23.
 続くステップS25で、上述した第2の算出ロジックとしての式(10)を使用して、電動モータ15のトルク制限値TLimを算出する。 In the following step S25, the torque limit value T Lim of the electric motor 15 is calculated using the above-described equation (10) as the second calculation logic.
 ステップS27では、上記のトルク制限値TLimに基づいて電流指令値を算出し、さらに、その電流指令値に基づいて電動モータ15の駆動信号(PWM信号)を生成する。その結果、電動モータ15に加わる負荷に変動があっても、電源BTから電動モータ15へ持ち出される電流の上限値が制限され、電源BTへの負荷を調整・抑制できる。 In step S27, a current command value is calculated based on the torque limit value T Lim, and a drive signal (PWM signal) for the electric motor 15 is generated based on the current command value. As a result, even if the load applied to the electric motor 15 fluctuates, the upper limit value of the current taken out from the power supply BT to the electric motor 15 is limited, and the load on the power supply BT can be adjusted and suppressed.
 ここでは、上記の式(9)、式(10)等で示すように、抵抗値の誤差から電力を逆算し、その結果をもとにトルクの制限値を求めている。すなわち、設定された制限電流IdcLimによって直ちに指示トルクが制限され、電動モータ15には制限電流以上の電流が供給されない制御が行われる。 Here, as shown in the above equations (9) and (10), the power is calculated backward from the error of the resistance value, and the torque limit value is obtained based on the result. That is, the command torque is immediately limited by the set limit current IdcLim , and control is performed such that a current higher than the limit current is not supplied to the electric motor 15.
 次に、本実施形態に係るモータ制御装置における電流制限処理とその効果について説明する。図4A~図4Fは、電源BTから電動モータへの持ち出し電流を制限するために、上述した電源電流の推定を行った場合の推定値と、実際の電流の実測値と、推定値と実測値との誤差を示している。 Next, the current limiting process and its effect in the motor control device according to the present embodiment will be described. FIGS. 4A to 4F show estimated values obtained when the above-described power supply current is estimated, actual measured values of actual currents, and estimated and actual measured values in order to limit the current taken out from the power supply BT to the electric motor. This shows the error with respect to FIG.
 図4A~図4Fにおいて、縦軸は電流[A]/誤差[A]であり、横軸は時間[秒]である。 4A to 4F, the vertical axis represents current [A] / error [A], and the horizontal axis represents time [seconds].
 図4A~図4Cは条件1、すなわち、トルク指示が2[Nm]、モータ回転数が500[rpm]、電源電圧が13.5[V]で、環境温度を25℃、-40℃、および120℃に変動させた場合における、電源電流の推定値と実測値との誤差を示す。 4A to 4C show the condition 1, that is, the torque instruction is 2 [Nm], the motor speed is 500 [rpm], the power supply voltage is 13.5 [V], the environmental temperature is 25 ° C., −40 ° C., and The error between the estimated value of the power supply current and the actually measured value when the temperature is changed to 120 ° C. is shown.
 図4D~図4Fは条件2、すなわち、トルク指示が2[Nm]、モータ回転数が1500[rpm]、電源電圧が13.5[V]で、環境温度を25℃、-40℃、および120℃にそれぞれ変動させた場合における、電源電流の推定値と実測値との誤差を示す。 4D to 4F show the condition 2, that is, the torque instruction is 2 [Nm], the motor speed is 1500 [rpm], the power supply voltage is 13.5 [V], the environmental temperature is 25 ° C., −40 ° C., and The error between the estimated value of the power supply current and the actually measured value when the temperature is changed to 120 ° C. is shown.
 図4A~図4Fから明らかなように、条件1および条件2において、温度を変化させた場合であっても、実測値と推定値との誤差は数アンペア、例えば±3A以下となることが分かる。 As is clear from FIGS. 4A to 4F, even when the temperature is changed under the conditions 1 and 2, the error between the measured value and the estimated value is several amperes, for example, ± 3 A or less. .
 図5A~図5Cは条件3、すなわち、回転数を0~1500rpmに変化させ、電圧条件(電源電圧)をそれぞれ9[V]、13.5[V]、16.5[V]とした場合における電源電流の推定値と実測値との比較結果を示す。 5A to 5C show the condition 3, that is, the case where the rotation speed is changed from 0 to 1500 rpm and the voltage conditions (power supply voltage) are 9 [V], 13.5 [V], and 16.5 [V], respectively. 7 shows the comparison result between the estimated value of the power supply current and the actually measured value.
 図5A~図5Cにおいて、縦軸は電流[A]、横軸は機械角速度(モータ回転数)[rpm]である。なお、条件3では、環境温度を常温とした。 5A to 5C, the vertical axis represents current [A], and the horizontal axis represents mechanical angular velocity (motor rotation speed) [rpm]. In the condition 3, the ambient temperature was normal temperature.
 図5A~図5Cより、回転数および電源電圧を変化させた場合であっても、実測値と推定値との誤差は数アンペア(例えば±3A以下)となっていることが分かる。 5A to 5C that the error between the measured value and the estimated value is several amperes (for example, ± 3 A or less) even when the rotation speed and the power supply voltage are changed.
 図6A~図6Cは、トルク指示を2[Nm]、モータ回転数を1500[rpm]、電源電圧を13.5[V]とし、環境温度を25℃、-40℃、および120℃にそれぞれ変動させた場合の電源電流制限の結果を示す。ここでは、制限をかけた際の電源電流の上限値を20Aに設定した。 6A to 6C show the case where the torque instruction is 2 [Nm], the motor speed is 1500 [rpm], the power supply voltage is 13.5 [V], and the environmental temperature is 25 ° C., −40 ° C., and 120 ° C., respectively. The result of the power supply current limitation when it is varied is shown. Here, the upper limit value of the power supply current when the restriction is applied is set to 20A.
 図6A~図6Cから分かるように、電源電流制限がある場合(すなわち、電源の保護がある場合)には、電源電流の上限を設定した閾値(例えば20A)以下に抑えることができる。その結果、このような電源電流制限により、電源電圧への負荷を抑えることができる。 6A to 6C, when there is a power supply current limit (that is, when there is power supply protection), the upper limit of the power supply current can be suppressed to a set threshold value (for example, 20 A) or less. As a result, the load on the power supply voltage can be suppressed by such power supply current limitation.
 本実施形態に係るモータ制御装置は、例えば、電動パワーステアリング装置、電動ポンプ、洗濯機等の家電用途、各種車載用途等、様々な用途に使用できる。 The motor control device according to the present embodiment can be used for various purposes such as electric power steering devices, electric pumps, home electric appliances such as washing machines, and various in-vehicle applications.
 図7は、本実施形態に係るモータ制御装置を搭載した電動パワーステアリング装置の概略構成である。図7の電動パワーステアリング装置100は、電子制御ユニット(Electronic Control Unit: ECU)としてのモータ制御装置1、操舵部材であるステアリングハンドル102、ステアリングハンドル102に接続された回転軸103、ピニオンギア106、ラック軸107等を備える。 FIG. 7 is a schematic configuration of an electric power steering device equipped with the motor control device according to the present embodiment. The electric power steering device 100 shown in FIG. 7 includes a motor control device 1 as an electronic control unit (Electronic Control Unit: ECU), a steering handle 102 as a steering member, a rotating shaft 103 connected to the steering handle 102, a pinion gear 106, A rack shaft 107 and the like are provided.
 回転軸103は、その先端に設けられたピニオンギア106に噛み合っている。ピニオンギア106により、回転軸103の回転運動がラック軸107の直線運動に変換され、ラック軸107の変位量に応じた角度に、そのラック軸107の両端に設けられた一対の車輪105a,105bが操舵される。 The rotating shaft 103 is engaged with a pinion gear 106 provided at the tip thereof. The rotation of the rotation shaft 103 is converted into a linear movement of the rack shaft 107 by the pinion gear 106, and a pair of wheels 105 a and 105 b provided at both ends of the rack shaft 107 at an angle corresponding to the amount of displacement of the rack shaft 107. Is steered.
 回転軸103には、ステアリングハンドル102が操作された際の操舵トルクを検出するトルクセンサ109が設けられており、検出された操舵トルクはモータ制御装置1へ送られる。モータ制御装置1は、トルクセンサ109より取得した操舵トルク、車速センサ(不図示)からの車速等の信号に基づくモータ駆動信号を生成し、その信号を電動モータ15に出力する。 ト ル ク The rotating shaft 103 is provided with a torque sensor 109 for detecting a steering torque when the steering handle 102 is operated, and the detected steering torque is sent to the motor control device 1. The motor control device 1 generates a motor drive signal based on signals such as the steering torque acquired from the torque sensor 109 and the vehicle speed from a vehicle speed sensor (not shown), and outputs the signal to the electric motor 15.
 モータ駆動信号が入力された電動モータ15からは、ステアリングハンドル102の操舵を補助するための補助トルクが出力され、その補助トルクが減速ギア104を介して回転軸103に伝達される。その結果、電動モータ15で発生したトルクによって回転軸103の回転がアシストされることで、運転者のハンドル操作を補助する。 補助 Auxiliary torque for assisting the steering of the steering handle 102 is output from the electric motor 15 to which the motor drive signal is input, and the auxiliary torque is transmitted to the rotating shaft 103 via the reduction gear 104. As a result, the rotation of the rotating shaft 103 is assisted by the torque generated by the electric motor 15, thereby assisting the driver in operating the steering wheel.
 このように電動パワーステアリング用のモータ制御装置において、電動モータに加わる負荷が変動しても、電源から電動モータへ供給される電流の上限値を制限でき、電源への負荷を調整・抑制できる。 As described above, in the motor control device for electric power steering, even if the load applied to the electric motor fluctuates, the upper limit value of the current supplied from the power supply to the electric motor can be limited, and the load on the power supply can be adjusted and suppressed.
 本実施形態に係るモータ制御装置を、例えば、液体を吸入部から吸入して吐出部から外部へ吐出するポンプ駆動用の電動モータの駆動制御装置として使用した場合、上記の電動パワーステアリング装置と同様、電動モータに加わる負荷が変動しても、電源から電動モータへ供給される電流の上限値を制限でき、電源への負荷を調整・抑制できる。 When the motor control device according to the present embodiment is used as, for example, a drive control device of an electric motor for driving a pump that sucks a liquid from a suction portion and discharges the liquid from a discharge portion to the outside, the same as the above-described electric power steering device Even if the load applied to the electric motor fluctuates, the upper limit of the current supplied from the power supply to the electric motor can be limited, and the load on the power supply can be adjusted and suppressed.
 以上説明したように本実施形態に係るモータ制御装置は、第1の算出ロジックによって、電源からインバータ回路へ供給される電源電流の推定値を算出し、その電源電流推定値を変数(パラメータ)とする第2の算出ロジックによって求めたトルク制限値をもとに電流指令値を算出する。そして、その電流指令値を変換して得た相電圧指令値により電動モータの駆動信号を生成する。 As described above, the motor control device according to the present embodiment calculates the estimated value of the power supply current supplied from the power supply to the inverter circuit by the first calculation logic, and uses the estimated power supply current value as a variable (parameter). The current command value is calculated based on the torque limit value obtained by the second calculation logic. Then, a drive signal for the electric motor is generated based on the phase voltage command value obtained by converting the current command value.
 こうすることで、トルク制限値をもとに電動モータの出力トルクを制限して、電源から電動モータへ流れる電流に対して制限をかけることができる。その結果、電動モータに加わる負荷に変動があっても、電源から電動モータへ持ち出される電流の上限値を制限でき、電源への負荷を調整・抑制できる。 Thus, the output torque of the electric motor can be limited based on the torque limit value, and the current flowing from the power supply to the electric motor can be limited. As a result, even if the load applied to the electric motor fluctuates, the upper limit of the current taken from the power supply to the electric motor can be limited, and the load on the power supply can be adjusted and suppressed.
 さらには、電源電流推定値の精度を上げて、電源電流推定値と実電流値との誤差を最小化できる。よって、電源電流制限により電源を保護できるとともに、環境温度が変化しても、電源電流を、目標とする推定誤差内に収めることができる。 Furthermore, the accuracy of the estimated value of the power supply current can be increased to minimize the error between the estimated value of the power supply current and the actual current value. Therefore, the power supply can be protected by the power supply current limitation, and even if the environmental temperature changes, the power supply current can be kept within the target estimation error.
 また、電源電流推定値を算出する際、適応オブザーバを用いて、環境温度によって変動する各相毎のインピーダンス誤差を推定することで、温度センサ等を追加することなく、多相(3相)の電動モータの各相におけるインピーダンス誤差(インピーダンス変動)を容易、かつ高精度に推定できる。 In addition, when calculating the estimated value of the power supply current, the adaptive observer is used to estimate the impedance error of each phase that fluctuates depending on the environmental temperature. An impedance error (impedance fluctuation) in each phase of the electric motor can be easily and accurately estimated.
 本発明の実施形態は上述した例に限定されず、適宜変更可能である。例えば、電動モータに負荷が加わった場合、その負荷の調整を行うための電流・電圧等の指令に対して優先順位をつけ、その優先順位に基づいて制御を行うようにしてもよい。 The embodiment of the present invention is not limited to the above-described example, and can be appropriately changed. For example, when a load is applied to the electric motor, priorities may be assigned to commands such as current and voltage for adjusting the load, and control may be performed based on the priorities.
 この場合、電動モータの出力(トルク)に対して影響の小さい(すなわち、優先順位が低い)負荷に対する調整のために電流指令値を与える際、その電流指令値に対して上限値を設定し、電動モータの出力であるトルクも、あらかじめ設定する上限値を超えないように制限をかけることができる。 In this case, when giving a current command value for adjustment to a load having a small effect on the output (torque) of the electric motor (that is, a low priority order), an upper limit value is set for the current command value, The torque, which is the output of the electric motor, can also be restricted so as not to exceed a preset upper limit.
1 モータ制御装置
10 モータ制御部
11 トルク制限値演算部
12 電流指令値演算部
15 電動モータ
16a,16b PI制御部
17,42 座標変換部
21 PWM信号生成部
23 インバータ回路
25 電流検出部
27 電源リレー
30 電源電流推定部
31 オブザーバ制御部
33 オフセットゲイン算出部
34 損出算出部
35 電力算出部
37 推定電源電流算出部
40 A/D変換部(ADC)
51 回転角センサ
102 ステアリングハンドル
103 回転軸
104 減速ギア
106 ピニオンギア
107 ラック軸
109 トルクセンサ
BT 外部バッテリ

 
REFERENCE SIGNS LIST 1 motor control device 10 motor control unit 11 torque limit value calculation unit 12 current command value calculation unit 15 electric motors 16a, 16b PI control unit 17, 42 coordinate conversion unit 21 PWM signal generation unit 23 inverter circuit 25 current detection unit 27 power supply relay Reference Signs List 30 power supply current estimator 31 observer controller 33 offset gain calculator 34 loss calculator 35 power calculator 37 estimated power supply current calculator 40 A / D converter (ADC)
51 Rotation angle sensor 102 Steering handle 103 Rotation shaft 104 Reduction gear 106 Pinion gear 107 Rack shaft 109 Torque sensor BT External battery

Claims (12)

  1.  3相以上の多相の電動モータを駆動するモータ制御装置であって、
     電源からの電力を前記電動モータに供給するインバータと、
     前記電動モータに流れる実電流を座標変換することによりd軸電流およびq軸電流を算出する手段と、
     前記電動モータの回転軸の角度を検出する回転角センサからの出力に基づきモータ回転数を算出する手段と、
     前記多相の各相に対応した実電流値とモータ印加電圧値よりインピーダンス誤差を推定するインピーダンス誤差推定部と、
     前記d軸電流と、前記q軸電流と、前記電源の電源電圧と、前記モータ回転数と、前記インピーダンス誤差とを入力とする第1の算出ロジックにより、前記電源から前記インバータへの電源電流推定値を算出する電源電流推定部と、
     前記電源電流推定値を変数とする第2の算出ロジックにより前記電動モータのトルク制限値を演算するトルク制限値演算部と、
     前記トルク制限値に基づいて電流指令値を算出する電流指令値算出部と、
     前記電流指令値に基づいて前記電動モータの駆動信号を生成する駆動信号生成部と、を備えるモータ制御装置。
    A motor control device for driving a multi-phase electric motor of three or more phases,
    An inverter that supplies power from a power supply to the electric motor;
    Means for calculating a d-axis current and a q-axis current by performing coordinate conversion on an actual current flowing through the electric motor;
    Means for calculating a motor rotation speed based on an output from a rotation angle sensor that detects an angle of a rotation axis of the electric motor,
    An impedance error estimating unit that estimates an impedance error from an actual current value and a motor applied voltage value corresponding to each of the polyphases,
    Estimating a power supply current from the power supply to the inverter by a first calculation logic that inputs the d-axis current, the q-axis current, the power supply voltage of the power supply, the motor rotation speed, and the impedance error. A power supply current estimator for calculating a value,
    A torque limit value calculation unit that calculates a torque limit value of the electric motor by a second calculation logic that uses the power supply current estimated value as a variable;
    A current command value calculation unit that calculates a current command value based on the torque limit value,
    A drive signal generation unit that generates a drive signal for the electric motor based on the current command value.
  2.  前記トルク制限値は前記電動モータの出力トルクの上限値であり、前記トルク制限値演算部は、前記電源電流推定値に基づいて設定した電源電流の上限値をもとに前記トルク制限値を演算する請求項1に記載のモータ制御装置。 The torque limit value is an upper limit value of an output torque of the electric motor, and the torque limit value calculation unit calculates the torque limit value based on a power supply current upper limit value set based on the power supply current estimation value. The motor control device according to claim 1.
  3.  前記トルク制限値を演算する前記第2の算出ロジックは、あらかじめ設定した電源電流の制限値と前記電源電圧との積から所定の損失電力を減じて求めた電力値を、前記モータ回転角速度で除する算出ロジックである請求項1に記載のモータ制御装置。 The second calculation logic for calculating the torque limit value divides a power value obtained by subtracting a predetermined loss power from a product of a preset power supply current limit value and the power supply voltage by the motor rotation angular velocity. The motor control device according to claim 1, wherein the control logic is a calculation logic that performs the calculation.
  4.  前記第1の算出ロジックと前記第2の算出ロジックは入力を共通にし、該第1の算出ロジックに係る演算式を変形した該第2の算出ロジックに係る演算式を使用して前記トルク制限値を演算する請求項3に記載のモータ制御装置。 The first calculation logic and the second calculation logic have a common input, and the torque limit value is calculated using an arithmetic expression related to the second calculation logic obtained by modifying an arithmetic expression related to the first calculation logic. The motor control device according to claim 3, which calculates
  5.  前記電源電流推定部は、
     前記各相のインピーダンス誤差の平均値をもとにモータ出力オフセットゲインを求めるゲイン算出部を有し、
     前記モータ出力オフセットゲインと、前記d軸電流と、前記q軸電流とに基づいて前記損失電力を算出する請求項3に記載のモータ制御装置。
    The power supply current estimator,
    A gain calculator for calculating a motor output offset gain based on an average value of the impedance errors of the respective phases,
    4. The motor control device according to claim 3, wherein the loss power is calculated based on the motor output offset gain, the d-axis current, and the q-axis current. 5.
  6.  前記インピーダンス誤差推定部は、少なくとも前記電動モータの各相の実電流値と、前記電動モータの各相の印加電圧とを入力とする適応オブザーバを用いて、環境温度によって変動する前記各相毎のインピーダンス誤差を推定する請求項1に記載のモータ制御装置。 The impedance error estimating unit uses an adaptive observer that receives at least an actual current value of each phase of the electric motor and an applied voltage of each phase of the electric motor, and for each of the phases that fluctuates depending on an environmental temperature. The motor control device according to claim 1, wherein the impedance error is estimated.
  7.  車両等の運転者のハンドル操作をアシストする電動パワーステアリング装置であって、
     前記運転者の操舵を補助する電動モータと、
     請求項1~6のいずれか1項に記載のモータ制御装置により前記電動モータを駆動制御する手段と、を備えることを特徴とする電動パワーステアリング用モータ制御装置。
    An electric power steering device that assists a driver to operate a steering wheel of a vehicle or the like,
    An electric motor to assist the driver in steering,
    A motor control device for electric power steering, comprising: means for controlling the drive of the electric motor by the motor control device according to any one of claims 1 to 6.
  8.  請求項7に記載の電動パワーステアリング用モータ制御装置を備えたことを特徴とする電動パワーステアリングシステム。 An electric power steering system comprising the motor control device for electric power steering according to claim 7.
  9.  液体を吸入部から吸入して吐出部から外部へ吐出するポンプ駆動用の電動モータと、
     請求項1~6のいずれか1項に記載のモータ制御装置により前記電動モータを駆動制御する手段と、を備えることを特徴とする電動ポンプ用モータ制御装置。
    An electric motor for driving a pump for sucking liquid from the suction part and discharging the liquid from the discharge part to the outside,
    A motor control device for an electric pump, comprising: means for controlling the drive of the electric motor by the motor control device according to any one of claims 1 to 6.
  10.  3相以上の多相の電動モータを駆動するモータ制御方法であって、
     前記多相の各相に対応した実電流とモータ印加電圧よりインピーダンス誤差を推定する工程と、
     前記電動モータに流れる実電流より演算したd軸電流およびq軸電流と、電源の電源電圧と、前記電動モータのモータ回転数と、前記インピーダンス誤差とに基づいて、前記電源から前記電動モータへ供給される電源電流の推定値を算出する工程と、
     前記各相のインピーダンス誤差の平均値より求めたモータ出力オフセットゲインと、前記d軸電流と、前記q軸電流とに基づいて損失電力を算出する工程と、
     前記電源電流の推定値が所定の上限値を超えた場合、その上限値を前記電源から前記電動モータへの電流制限値として該電動モータのトルク制限値を演算する工程と、
     前記トルク制限値に基づいて電流指令値を算出する工程と、
     前記電流指令値に基づいて前記電動モータの駆動信号を生成する工程と、を備えるモータ制御方法。
    A motor control method for driving a multi-phase electric motor of three or more phases,
    Estimating an impedance error from an actual current and a motor applied voltage corresponding to each of the polyphases,
    The electric power is supplied from the power supply to the electric motor based on the d-axis current and the q-axis current calculated from the actual current flowing in the electric motor, the power supply voltage of the power supply, the motor rotation speed of the electric motor, and the impedance error. Calculating an estimated value of the power supply current to be performed;
    Calculating a power loss based on the motor output offset gain obtained from an average value of the impedance errors of the respective phases, the d-axis current, and the q-axis current;
    When the estimated value of the power supply current exceeds a predetermined upper limit, calculating the torque limit value of the electric motor using the upper limit as a current limit value from the power supply to the electric motor,
    Calculating a current command value based on the torque limit value;
    Generating a drive signal for the electric motor based on the current command value.
  11.  前記トルク制限値の演算工程は、前記電流制限値と前記電源の電圧との積から前記損失電力を減じて求めた電力値を、前記モータ回転数より演算したモータ回転角速度で除することで該トルク制限値を演算する請求項10に記載のモータ制御方法。 The torque limit value calculating step is performed by dividing a power value obtained by subtracting the loss power from a product of the current limit value and the voltage of the power supply by a motor rotation angular speed calculated from the motor rotation speed. The motor control method according to claim 10, wherein a torque limit value is calculated.
  12.  少なくとも前記電動モータの各相の実電流値と、前記電動モータの各相の印加電圧とを入力とする適応オブザーバを用いて環境温度によって変動する前記各相毎のインピーダンス誤差を推定する請求項10に記載のモータ制御方法。


     
    11. An impedance error for each phase, which fluctuates depending on environmental temperature, is estimated using an adaptive observer that receives at least an actual current value of each phase of the electric motor and an applied voltage of each phase of the electric motor. 3. The motor control method according to 1.


PCT/JP2019/031651 2018-08-09 2019-08-09 Motor control device WO2020032260A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020535921A JPWO2020032260A1 (en) 2018-08-09 2019-08-09 Motor control device
CN201980052573.XA CN112544036A (en) 2018-08-09 2019-08-09 Motor control device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862716381P 2018-08-09 2018-08-09
US62/716,381 2018-08-09
JP2019-102957 2019-05-31
JP2019102957 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020032260A1 true WO2020032260A1 (en) 2020-02-13

Family

ID=69414162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031651 WO2020032260A1 (en) 2018-08-09 2019-08-09 Motor control device

Country Status (3)

Country Link
JP (1) JPWO2020032260A1 (en)
CN (1) CN112544036A (en)
WO (1) WO2020032260A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220086266A (en) * 2020-12-16 2022-06-23 현대모비스 주식회사 Apparatus for estimating angular velocity of dc motor in motor driven power steering system and method thereof
JP7501441B2 (en) 2021-05-10 2024-06-18 株式会社明電舎 Motor cooling device and method for controlling the motor cooling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073381A (en) * 2003-08-25 2005-03-17 Fuji Electric Systems Co Ltd Motor drive controller
JP2009119899A (en) * 2007-11-12 2009-06-04 Hitachi Ltd Power steering apparatus
JP2017103918A (en) * 2015-12-02 2017-06-08 三菱電機株式会社 Control device for rotary electric machine and control method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218692A (en) * 2011-04-13 2012-11-12 Jtekt Corp Electric power steering device
JP5772173B2 (en) * 2011-04-13 2015-09-02 株式会社ジェイテクト Electric power steering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073381A (en) * 2003-08-25 2005-03-17 Fuji Electric Systems Co Ltd Motor drive controller
JP2009119899A (en) * 2007-11-12 2009-06-04 Hitachi Ltd Power steering apparatus
JP2017103918A (en) * 2015-12-02 2017-06-08 三菱電機株式会社 Control device for rotary electric machine and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220086266A (en) * 2020-12-16 2022-06-23 현대모비스 주식회사 Apparatus for estimating angular velocity of dc motor in motor driven power steering system and method thereof
KR102496766B1 (en) * 2020-12-16 2023-02-07 현대모비스 주식회사 Apparatus for estimating angular velocity of dc motor in motor driven power steering system and method thereof
JP7501441B2 (en) 2021-05-10 2024-06-18 株式会社明電舎 Motor cooling device and method for controlling the motor cooling device

Also Published As

Publication number Publication date
CN112544036A (en) 2021-03-23
JPWO2020032260A1 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
JP5130716B2 (en) Motor control device and electric power steering device
JP4881635B2 (en) Vector controller for permanent magnet motor
JP4379702B2 (en) Brushless motor control device
US10333440B2 (en) Motor control apparatus and electric power steering system
WO2009123107A1 (en) Motor control device and electric power steering device
US9407177B2 (en) Rotating electric machine control device and electric power steering apparatus
JP5495018B2 (en) Motor control device
WO2010001579A1 (en) Motor control device and vehicle-steering device comprising same
JP5267848B2 (en) Motor control device
WO2020032260A1 (en) Motor control device
JP2009060688A (en) Controller for synchronous motors
WO2018047524A1 (en) Motor control method, motor control system, and electric power steering system
JP5719177B2 (en) Electric power steering device
JP5397664B2 (en) Motor control device
JPWO2018159101A1 (en) Motor control method, motor control system, and electric power steering system
WO2018159104A1 (en) Motor control method, motor control system, and electric power steering system
WO2021054033A1 (en) Motor control device and motor control method
JP5641299B2 (en) Motor control device and vehicle steering device
JPWO2018159103A1 (en) Motor control method, motor control system, and electric power steering system
JP2019050684A (en) Controller of power steering device
JP2004032848A (en) Motor controller and motor-driven power steering system
JP2008155683A (en) Electric power steering device
JP2020036452A (en) Control device for rotary electric machine
JP2005059777A (en) Electrically powered steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846103

Country of ref document: EP

Kind code of ref document: A1