WO2020031737A1 - 電源装置及びこれを備える車両 - Google Patents

電源装置及びこれを備える車両 Download PDF

Info

Publication number
WO2020031737A1
WO2020031737A1 PCT/JP2019/029345 JP2019029345W WO2020031737A1 WO 2020031737 A1 WO2020031737 A1 WO 2020031737A1 JP 2019029345 W JP2019029345 W JP 2019029345W WO 2020031737 A1 WO2020031737 A1 WO 2020031737A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply device
secondary battery
separator
battery cell
Prior art date
Application number
PCT/JP2019/029345
Other languages
English (en)
French (fr)
Inventor
豪 山城
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201980051360.5A priority Critical patent/CN112534631B/zh
Priority to US17/263,944 priority patent/US11962026B2/en
Priority to JP2020536464A priority patent/JP7296967B2/ja
Publication of WO2020031737A1 publication Critical patent/WO2020031737A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power supply device and a vehicle including the same.
  • the power supply device is used for a power supply device for driving a vehicle, a power supply device for power storage, and the like.
  • FIG. 16 shows a perspective view of a conventional power supply device 900
  • FIG. 17 shows an exploded perspective view thereof.
  • a plurality of secondary battery cells 901 are formed into a battery stack 910 that is stacked with a separator 940 interposed therebetween, and are fixed with a bind bar 930 in a state where both sides thereof are pressed by end plates 920.
  • the separator 940 of FIG. 17 is formed in a flat plate shape having a size that covers the entire surface of the secondary battery cell 901, and is interposed between adjacent secondary battery cells 901 to insulate them. I do.
  • the secondary battery cell expands and contracts when charging and discharging are repeated.
  • the amount of expansion tends to increase.
  • the expansion of the secondary battery cells forming the battery stack is suppressed via the end plate 920 and the bind bar 930, and a large load is applied to the bind bar and the end plate. .
  • Patent Document 1 can reduce the load applied to the bind bar and the end plate when inflated, but the effect is limited. Considering the situation where the amount of expansion due to the increase in capacity of secondary battery cells in recent years has been increased, the effect of reducing the load applied to the bind bar and the end plate during expansion may not be sufficient.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a power supply having a configuration capable of further reducing a load applied to a bind bar and an end plate when inflated as compared with the conventional configuration. It is an object of the present invention to provide an apparatus and a vehicle including the same.
  • a power supply device is a power supply device having a plurality of secondary battery cells each having a rectangular outer can open at one end and an open end closed by a sealing plate, and an insulation interposed between adjacent secondary battery cells. And a pair of end plates that cover both end surfaces of the battery stack in which the plurality of secondary battery cells are stacked, and a plurality of fastening members that fasten the end plates to each other.
  • the region on the sealing plate side has a lower deformability than other regions.
  • the portion of the separator that is in contact with the sealing plate is less likely to be deformed, and when the secondary battery cell expands, the connection between the sealing plate and the outer can is protected while the outer can is protected by other parts. Is allowed, and the deformation at the time of expansion can be reduced.
  • FIG. 2 is a perspective view illustrating the power supply device according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the power supply device of FIG.
  • FIG. 3 is a schematic vertical cross-sectional view of the power supply device of FIG. 1 taken along the line III-III.
  • FIG. 3 is a perspective view illustrating the separator of FIG. 2.
  • FIG. 5 is a schematic horizontal cross-sectional view showing a state in which a secondary battery cell has expanded along a line VV of the power supply device of FIG. 1.
  • FIG. 9 is a perspective view illustrating a separator of the power supply device according to the second embodiment.
  • FIG. 13 is a perspective view illustrating a separator of the power supply device according to the third embodiment.
  • FIG. 13 is a perspective view illustrating a separator of the power supply device according to the fourth embodiment. It is a perspective view showing the separator of the power supply device concerning Embodiment 5.
  • FIG. 10A is a main part vertical sectional view of a power supply device according to Embodiment 6, and FIG. 10B is a main part vertical cross sectional view showing a state where the secondary battery cell of FIG. 10A is expanded.
  • FIG. 17 is an exploded perspective view illustrating a separator of the power supply device according to the seventh embodiment.
  • FIG. 15 is an exploded perspective view illustrating a secondary battery cell of a power supply device according to Embodiment 8.
  • FIG. 2 is a block diagram illustrating an example in which a power supply device is mounted on a hybrid vehicle that runs on an engine and a motor.
  • FIG. 2 is a block diagram illustrating an example in which a power supply device is mounted on an electric vehicle running only by a motor. It is a block diagram showing the example applied to the power supply device for electric storage. It is a perspective view which shows the conventional power supply device.
  • FIG. 17 is an exploded perspective view illustrating the power supply device of FIG. 16. It is a perspective view which shows the separator of FIG. It is a perspective view which shows the example of another separator.
  • FIG. 18 is a schematic horizontal sectional view showing a battery stack in which secondary battery cells have expanded in the power supply device of FIG. 17.
  • the load of the secondary battery cell restrained by the end plate or the bind bar is reduced by allowing the expansion of the central portion of the outer can, but the end of the outer can located near the bind bar is reduced. It has been found that since the expansion of the outer can is suppressed, the load may concentrate on the end of the outer can and cause deformation and breakage. On the other hand, the present inventors have also found out that in the course of the examination, if the suppression of the expansion of the secondary battery cell is insufficient, the outer can may be damaged.
  • the secondary battery cell is configured to include an outer can having an opening, and a sealing plate for sealing the opening of the outer can, but if the outer can expands too much, a joining portion between the sealing plate and the outer can is formed. Load may be applied, which may cause breakage.
  • the present inventors in order to reduce the load on the bind bar and end plate during expansion, and to prevent breakage of the welded portion of the outer can and the sealing plate, to seal the outer can The present inventors have found that it is important to suppress the expansion in the vicinity of the plate while allowing the expansion of the battery cells in other portions, and have reached the present invention.
  • the power supply device is provided between a plurality of secondary battery cells each having an opening end of a rectangular outer can with one opening closed by a sealing plate, and adjacent secondary battery cells.
  • the battery pack includes an insulating separator, a pair of end plates that cover both end surfaces of the battery stack in which the plurality of secondary battery cells are stacked, and a plurality of fastening members that fasten the end plates to each other.
  • the region on the sealing plate side has a lower deformability than other regions.
  • a region of the separator on the side of the sealing plate of the secondary battery cell is made to protrude more than other regions. According to the above configuration, a portion of the separator that is in contact with the sealing plate side is protruded to suppress deformation of the outer can, thereby protecting a connection portion between the sealing plate and the outer can when the secondary battery cell expands.
  • the area in contact with the secondary battery cell the area in contact with both side surfaces, the area closer to the sealing plate side of the secondary battery cell. It is formed low.
  • the separator may be configured such that a region in contact with the secondary battery cell is formed in a flat surface up to left and right edges in the middle in the height direction, A first protruding surface protruding from the flat surface and extending along the sealing plate is formed on the sealing plate side of the cell.
  • the expansion in the vicinity of the sealing plate can be suppressed by the first protruding surface, and an area where expansion is allowed in the middle in the height direction is provided along the left and right edges of the outer can.
  • the area where expansion is allowed is defined over the left and right edges of the outer can, the deformation of the outer can allows the open deformation based on the ridge line of the outer can, so that stress concentration is reduced.
  • the expansion of the outer can can be allowed while preventing the occurrence of the outer can.
  • expansion of the outer peripheral portion of the wide surface of the outer can is suppressed, and only the central portion is allowed to expand.
  • the outer can is elongated and deformed. Is allowed, and stress may concentrate on the boundary between the pressed outer peripheral portion and the central portion where expansion is allowed. According to the above embodiment, in addition to the extension deformation, it is expected that the opening deformation is allowed, and the stress applied to the outer can can be reduced.
  • the separator forms a second protruding surface extending in parallel with the first protruding surface on a side opposite to the side on which the first protruding surface is provided, and forms the first protruding surface and the second protruding surface. They may be separated.
  • the first protruding surface may be formed linearly along a sealing plate of the secondary battery cell.
  • the flat surface lower than the first protruding surface may be formed between an edge of the separator in the direction of extension of the first protruding surface and a side edge of the separator.
  • a first step portion lower than the first protruding surface may be formed between a side surface of the separator in the longitudinal direction of the first protruding surface and an edge of the separator.
  • a vehicle according to another embodiment of the present invention includes the power supply device described above, a running motor supplied with power from the power supply device, a vehicle body including the power supply device and the motor, Wheels driven by a motor to cause the vehicle body to travel.
  • each element constituting the present invention may be configured such that a plurality of elements are formed of the same member and one member also serves as the plurality of elements, or conversely, the function of one member may be performed by a plurality of members. It can be realized by sharing.
  • the power supply device is mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle and supplies power to a traveling motor, a power supply for storing generated power of natural energy such as solar power generation or wind power generation, or It is used for various purposes such as a power source for storing electric power, and is particularly used as a power source suitable for high power and large current applications.
  • FIG. 1 is a perspective view of the power supply device 100 according to the first embodiment of the present invention
  • FIG. 2 is an exploded perspective view thereof
  • FIG. 3 is a vertical cross-sectional view taken along line III-III of FIG.
  • the power supply device 100 shown in these figures includes a plurality of secondary battery cells 1 having positive and negative electrode terminals 2 and a plurality of secondary battery cells 1 connected to the electrode terminals 2 of the plurality of secondary battery cells 1. Are connected in parallel and in series.
  • the plurality of secondary battery cells 1 are connected in parallel or in series via a bus bar 3.
  • the secondary battery cell 1 is a chargeable / dischargeable secondary battery.
  • a plurality of secondary battery cells 1 are connected in parallel to form a parallel battery group, and a plurality of parallel battery groups are connected in series, so that many secondary battery cells 1 are connected in parallel and in series. Connected.
  • a plurality of secondary battery cells 1 are stacked to form a battery stack 10.
  • a pair of end plates 20 are arranged on both end surfaces of the battery stack 10.
  • the ends of the fastening members 30 are fixed to the end plates 20 to fix the stacked secondary battery cells 1 in a pressed state.
  • the secondary battery cell 1 is a rectangular battery in which the outer shape of the main surface, which is a wide surface, is quadrangular, and has a thickness smaller than the width. Further, the secondary battery cell 1 is a chargeable / dischargeable secondary battery, and is a lithium ion secondary battery. However, the present invention does not specify a secondary battery cell as a prismatic battery or a lithium ion secondary battery. As the secondary battery cell, any rechargeable battery, for example, a non-aqueous electrolyte secondary battery other than a lithium ion secondary battery or a nickel water secondary battery cell can be used.
  • an electrode body in which positive and negative electrode plates are stacked is housed in an outer can 1a, filled with an electrolytic solution, and hermetically sealed.
  • the outer can 1a is formed in a square tubular shape whose bottom is closed, and the upper opening is hermetically closed with a metal plate sealing plate 1b.
  • the outer can 1a is manufactured by deep drawing a metal plate such as aluminum or an aluminum alloy.
  • the sealing plate 1b is made of a metal plate such as aluminum or an aluminum alloy, like the outer can 1a.
  • the sealing plate 1b is inserted into the opening of the outer can 1a, irradiates the boundary between the outer periphery of the sealing plate 1b and the inner periphery of the outer can 1a with laser light, and laser-welds the sealing plate 1b to the outer can 1a. It is fixed airtight. (Electrode terminal 2)
  • the secondary battery cell 1 has the sealing plate 1b, which is the top surface, as the terminal surface 1X, and the positive and negative electrode terminals 2 are fixed to both ends of the terminal surface 1X.
  • the electrode terminal 2 has a protruding portion in a columnar shape.
  • the protruding portion does not necessarily need to be formed in a columnar shape, but may be formed in a polygonal column shape or an elliptical column shape.
  • the positions of the positive and negative electrode terminals 2 fixed to the sealing plate 1b of the secondary battery cell 1 are such that the positive electrode and the negative electrode are left-right symmetric.
  • the secondary battery cells 1 are stacked by reversing the left and right sides, and the electrode terminals 2 of the positive electrode and the negative electrode approaching and approaching each other are connected by the bus bar 3, so that the adjacent secondary battery cells 1 can be connected in series.
  • the bus bar 3 Like that. (Battery laminate 10)
  • the plurality of secondary battery cells 1 are stacked so that the thickness direction of each of the secondary battery cells 1 is in the stacking direction to form a battery stack 10.
  • the battery stack 10 has a plurality of secondary battery cells 1 stacked such that the terminal surface 1X on which the positive and negative electrode terminals 2 are provided, and the sealing plate 1b in FIGS. (Separator 40)
  • the battery stack 10 has a separator 40 interposed between the adjacently stacked secondary battery cells 1.
  • the separator 40 is formed in a thin plate or sheet shape using an insulating material such as a resin.
  • the separator 40 has a plate shape having a size substantially equal to the facing surface of the secondary battery cell 1.
  • the separators 40 are stacked between the adjacent secondary battery cells 1 to insulate the adjacent secondary battery cells 1 from each other.
  • the power supply device 100 shown in FIGS. 2 and 3 has the end plates 20 arranged on both end surfaces of the battery stack 10.
  • the end separator 40 ' may be interposed between the end plate and the battery stack to insulate them.
  • the end face separator 40 ' can also be formed in a thin plate or sheet shape using an insulating material such as a resin. (Bus bar 3)
  • a metal bus bar 3 is connected to the positive and negative electrode terminals 2 of the adjacent secondary battery cells 1, and a plurality of secondary battery cells 1 are connected in parallel or in series via the bus bar 3. You.
  • the electrode terminals 2 of the plurality of adjacent secondary battery cells 1 are connected by the bus bar 3. , The plurality of secondary battery cells 1 are connected in parallel and in series.
  • the bus bar 3 is manufactured into a predetermined shape by cutting and processing a metal plate.
  • a metal having a small electric resistance and a light weight for example, an aluminum plate or a copper plate, or an alloy thereof can be used.
  • the metal plate of the bus bar 3 can also use other metals having low electric resistance and light weight, or alloys thereof.
  • a bus bar holder may be arranged between the battery stack 10 and the bus bar 3. By using the bus bar holder, the plurality of bus bars can be arranged at a fixed position on the upper surface of the battery stack while insulating the plurality of bus bars from each other and insulating the terminal surfaces of the secondary battery cells from the bus bars.
  • the end plates 20 are arranged at both ends of the battery stack 10 and are fastened via fastening members 30 arranged along both side surfaces of the battery stack 10.
  • the end plates 20 are disposed at both ends of the battery stack 10 in the stacking direction of the secondary battery cells 1 and outside the end face separator 40 ', and sandwich the battery stack 10 from both ends. (End face separator 40 ')
  • the end face separator 40 ' is not interposed between the secondary battery cells 1 but is interposed between the end plate 20 and the secondary battery cell 1. Since the end plate 20 does not need to consider the expansion like the secondary battery cell 1, it is necessary to form the first protruding surface 45 and the like on the surface facing the end plate 20 among the surfaces of the end face separator 40 '. , And can be formed on a second flat surface where the entire surface is flat. On the other hand, the other surface of the end surface separator 40 ', that is, the surface facing the secondary battery cell 1, forms the first protruding surface 45 and the flat surface 43 similarly to the separator 40 described above. However, the separator 40 described above can be used as it is as a cross-section separator. (Fastening member 30)
  • the fastening member 30 extends in the stacking direction of the battery stack 10, and both ends are fixed to end plates 20 arranged on both end surfaces of the battery stack 10.
  • the battery stack 10 is fastened in the stacking direction via the end plate 20.
  • the fastening member 30 is a metal plate having a predetermined width and a predetermined thickness along the side surface of the battery stack 10, and is disposed opposite to both side surfaces of the battery stack 10.
  • a metal plate such as iron, preferably a steel plate can be used.
  • the fastening member 30 made of a metal plate is bent into a predetermined shape by press molding or the like.
  • the fastening members 30 are arranged on the left and right side surfaces of the battery stack 10 so that the two fastening members 30 are vertically separated from each other.
  • Each fastening member 30 includes a main body 31 disposed along the side surface of the battery stack 10, and a fixing portion 32 which is bent at both ends of the main body 31 and is fixed to the outer surface of the end plate 20.
  • the main body 31 is formed in a string shape having a length substantially equal to the length of the battery stack 10.
  • the fastening members 30 are provided with fixing portions 32 by bending both end portions along the outer side surfaces of the end plates 20.
  • the fastening member 30 is fixed to the end plate 20 via a fastener 34 inserted into a through hole 33 provided at the tip of the fixing portion 32.
  • two fastening members 30 are arranged on the left and right side surfaces of the battery stack 10 so as to be vertically separated from each other.
  • the present invention is not limited to this configuration, and may include three or more fastening members, or one fastening member may be disposed on a side surface of the battery stack.
  • One fastening member can be formed in a size that substantially covers the side surface of the battery stack. If necessary, an opening may be formed in an intermediate portion of the fastening member.
  • the fastening members may be arranged on the upper and lower surfaces, in addition to being arranged on the left and right sides of the battery stack. (Details of separator 40)
  • the power supply device 100 is easily deformed, that is, easily deformed, in a region where the separator 40 and the secondary battery cell 1 are in contact with each other, particularly, in a region where the sealing plate 1 b of the secondary battery cell 1 is in contact with the separator 40. Is lower than other areas. By doing so, when the secondary battery cell 1 expands, it protects the connection portion between the sealing plate 1b and the outer can 1a, but allows deformation of the outer can 1a in other portions, and Deformation can be reduced.
  • the secondary battery cell expands and pushes the outer can from the inner surface by charging / discharging the electrode body housed inside the outer can, and as a result, the outer can expands.
  • the expansion amount has tended to increase.
  • the overall amount of expansion also increases according to the number of cells.
  • end plates are arranged on both end surfaces of the battery stack, and are fastened by fastening members such as bind bars.
  • the rectangular outer can of a secondary battery cell has an open top, from which a current collector or the like is introduced, the open end is sealed with a sealing plate, and the joint interface is welded by laser welding or the like. are doing.
  • the power supply device is required to have conflicting characteristics of permitting and regulating deformation, and it is not easy to achieve both.
  • the contact portion between the separator 40 and the secondary battery cell 1 is easily deformed, that is, the deformability is partially changed. The configuration is adopted.
  • FIG. 1 a perspective view of the separator 40 according to the first embodiment is shown in FIG.
  • the separator 40 shown in this figure includes a main surface portion 41 constituting a main surface, and guide portions 42 formed on both side surfaces of the main surface portion 41.
  • the guide portion 42 is formed in a wall shape protruding toward the front and back of the main surface portion 41 on the side surface of the main surface portion 41.
  • the guide portions 42 are formed by the guide portions 42 of the separators 40 arranged on the front surface and the rear surface of the secondary battery cells 1, respectively. 1 is formed so as to cover the side surface.
  • the main surface portion 41 forms a flat flat surface 43, and also forms a projecting surface 44 vertically.
  • the protruding surface 44 includes a first protruding surface 45 formed above the main surface portion 41 and a second protruding surface 46 formed below.
  • the first protruding surface 45 and the second protruding surface 46 slightly protrude from the flat portion, and are formed in a slip shape extending in the lateral direction.
  • the protruding amount of the protruding surface is, for example, 0.05 mm to 1 mm, preferably 0.1 to 0.8 mm, and more preferably about 0.6 mm.
  • the first protruding surface 45 and the second protruding surface 46 are preferably formed integrally with the separator 40.
  • the separator 40 is made of a material having excellent insulation and heat resistance.
  • engineering plastics such as polycarbonate and PBT resin can be mass-produced at low cost.
  • it is made of a resin with excellent heat resistance, a thermoplastic resin such as PPS, polypropylene, nylon, PET, polyvinylidene chloride, polyvinylidene fluoride, or a thermosetting resin such as polyimide, fluororesin, PDAP, silicone resin, or epoxy resin. You can also.
  • the first protruding surface 45 is provided so as to overlap with the portion where the sealing plate 1 b of the secondary battery cell 1 is joined or to be located in the vicinity thereof.
  • the first protruding surface 45 forms a first step portion 47 between the side surface in the longitudinal direction and the edge on the upper surface side of the separator 40.
  • the first protruding surface 45 is not extended to the guide portion 42 but is lower than the first protruding surface 45 to form a space between the separator 40 and the secondary battery cell 1.
  • the flat surface 43 of the main surface portion 41 is continuous to the left and right of the first protruding surface 45.
  • the belly portion of the outer can 1a protrudes, and as a reaction to warp another adjacent secondary battery cell or end plate 920. Then, the corners of these other secondary battery cells and the end plate 920 approach the secondary battery cell 901 side. In other words, the corners of the expanded secondary battery cell 901 are pushed from the surroundings, stress is concentrated on the corners, and the outer can 1a may be damaged. Therefore, in the present embodiment, as described above, while forming the first protruding surface 45, the first step portions 47 are formed on the left and right sides thereof. As a result, as shown in the horizontal sectional view of FIG. 5, the concentration of stress on the corners of the outer can 1a is reduced, and the protection of the secondary battery cell 1 is achieved. [Embodiment 2]
  • the width d1 of the first step portion 47 is designed according to the expected expansion amount of the outer can, the material (plasticity) of the outer can, and the like. It is desirable that the larger the amount of deformation of the secondary battery cell 1 is, the larger it is set.
  • the width W of the separator 40 for example, 0.05W ⁇ d1 ⁇ 0.3W, preferably 0.1W ⁇ d1 ⁇ 0.2W.
  • FIG. 6 shows a separator 40B of the power supply device according to the second embodiment.
  • the width d ⁇ b> 2 of the first step portion 47 is wider than that of the first embodiment, and the separator 40 ⁇ / b> B can correspond to the secondary battery cell 1 whose deformation amount is more severe than that of the first embodiment.
  • the second protruding surface 46 on the bottom surface side of the separator 40 in addition to the first protruding surface 45, not only the opening end side where the sealing plate 1b of the outer can 1a is welded but also the bottom plate side Can also be protected.
  • the second projecting surface 46 is preferably designed such that the first projecting surface 45 has the same projecting height.
  • the width of the second protruding surface 46 in other words, the width of the second step formed on the left and right of the second protruding surface 46 can be set to the same size as the first protruding surface 45.
  • the protruding height and length of the second protruding surface 46 may be different from those of the first protruding surface 45 according to the secondary battery cell 1.
  • the second protruding surface may be omitted.
  • FIG. 7 Such an example is shown in the perspective view of FIG. 7 as the separator 40C of the power supply device according to the third embodiment.
  • the separator 40C shown in this figure only the first protruding surface 45 is provided on the upper surface side of the flat surface 43 of the main surface portion 41, and the second protruding surface is not provided on the lower side. Even by using such a separator 40C, breakage of the welded portion of the sealing plate 1b can be effectively prevented.
  • FIG. 8 shows an example in which the width of the first protruding surface 45 is reduced to d2 as the separator 40D of the power supply device according to the fourth embodiment.
  • the first projecting surface 45 does not necessarily need to be provided along the upper end of the separator 40, and the position at which the first projecting surface is provided is arbitrarily adjusted according to the size and position of the secondary battery cell abutting on the separator. it can. That is, the shape of the separator can be larger than that of the secondary battery cell, and it is not always necessary to fix the separator to the upper end of the separator.
  • the first protruding surface in a region where the sealing plate is located or in the vicinity thereof in a state where the secondary battery cells and the separator are stacked, protection of the fixed portion of the sealing plate is achieved.
  • a perspective view of FIG. 9 illustrates a separator 40E of the power supply device according to the fifth embodiment.
  • the first protruding surface 45 is provided at a position slightly away from the upper end of the flat surface 43 of the main surface portion 41.
  • the arrangement position of the first protruding surface is determined according to the shape and size of the secondary battery cell and the separator so that the sealing plate can be effectively protected.
  • the present invention is not limited to this configuration, and the first protruding surface may be disposed at or near the upper portion of the current collector that causes expansion inside the secondary battery cell.
  • the cause of the expansion of the secondary battery cell 1 is due to the fact that the current collector 1c housed inside the outer can 1a expands due to charging and discharging.
  • FIG. 11 illustrates a separator 40F of the power supply device according to the seventh embodiment.
  • a first protruding surface 45F is attached to an upper portion of a separator 40F formed of a flat main surface portion 41.
  • the first protruding surface 45F is formed in advance of a resin plate or sheet or the like, and is fixed to the separator 40F with a double-sided tape or an adhesive.
  • an adhesive may be applied in advance to the back surface side of the first protruding surface 45F.
  • the tape material itself having heat resistance and insulation properties can be used as the first protruding surface 45F by attaching it to the separator 40F. According to this configuration, while using the existing separator, the first protruding surface having a desired length can be attached to an appropriate position to add a resistance function when the secondary battery cell expands.
  • the present invention is not limited to this configuration, and may be configured to adjust the easy deformability of the region where the separator contacts the sealing plate side of the secondary battery cell on the secondary battery cell side.
  • FIG. 12 Such an example is shown in the exploded perspective view of FIG. 12 as a battery stack of the power supply device according to the eighth embodiment. In the battery stack shown in this figure, a first protruding surface 45G is attached to the surface of the outer can 1a of the secondary battery cell 1.
  • the amount of deformation when the secondary battery cell 1 expands is suppressed by the first protruding surface 45G interposed in a region where the separator 40G and the sealing plate 1b side of the secondary battery cell 1 are in contact with each other.
  • the effect of protecting the connection site 1b is obtained.
  • the deformability of the region where the separator 40 and the sealing plate 1b side of the secondary battery cell 1 are in contact is relatively reduced as compared with other regions.
  • the adjustment of the easy-deformability can be realized not only by the shape but also by the difference of the material.
  • the same effect can be achieved by forming the separator from a composite material such that the hardness is high on the sealing plate side and the hardness is low in other regions.
  • by constructing the separator by combining a plurality of members having different materials, that is, different hardnesses it is possible to provide a structure in which such partial differences in hardness are provided.
  • the above power supply device can be used as a power supply for vehicles.
  • a vehicle equipped with a power supply device an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs on both an engine and a motor, or an electric vehicle that runs on only a motor can be used, and is used as a power source for these vehicles.
  • a large-capacity, high-output power supply device 100 will be described in which a number of the above-described power supply devices are connected in series or in parallel, and a necessary control circuit is added. . (Power supply unit for hybrid vehicles)
  • FIG. 13 shows an example in which a power supply device is mounted on a hybrid vehicle that runs on both an engine and a motor.
  • a vehicle HV equipped with the power supply device shown in this figure includes a vehicle main body 91, an engine 96 for driving the vehicle main body 91 and a driving motor 93, and wheels driven by the engine 96 and the driving motor 93. 97, a power supply device 100 for supplying electric power to the motor 93, and a generator 94 for charging a battery of the power supply device 100.
  • the power supply device 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV runs on both the motor 93 and the engine 96 while charging and discharging the battery of the power supply device 100.
  • the motor 93 is driven in a region where the engine efficiency is poor, for example, during acceleration or low-speed running, to run the vehicle.
  • the motor 93 is driven by being supplied with electric power from the power supply device 100.
  • the generator 94 is driven by the engine 96 or by regenerative braking when braking the vehicle, and charges the battery of the power supply device 100.
  • the vehicle HV may include a charging plug 98 for charging the power supply device 100, as shown in FIG. By connecting the charging plug 98 to an external power supply, the power supply device 100 can be charged. (Power supply for electric vehicles)
  • FIG. 14 shows an example in which a power supply device is mounted on an electric vehicle running only by a motor.
  • the vehicle EV equipped with the power supply device shown in this figure includes a vehicle body 91, a running motor 93 for running the vehicle body 91, wheels 97 driven by the motor 93, and a power supply to the motor 93. And a generator 94 that charges a battery of the power supply device 100.
  • the power supply device 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the motor 93 is driven by being supplied with electric power from the power supply device 100.
  • the generator 94 is driven by energy at the time of regenerative braking the vehicle EV, and charges the battery of the power supply device 100.
  • the vehicle EV includes a charging plug 98, and the power plug 100 can be charged by connecting the charging plug 98 to an external power supply. (Power storage system)
  • the present invention does not specify the use of the power supply device as a power supply of a motor that drives a vehicle.
  • the power supply device according to each embodiment can also be used as a power supply of a power storage system that charges a battery with power generated by solar power generation, wind power generation, or the like and stores the battery.
  • FIG. 15 illustrates a power storage system in which the battery of the power supply device 100 is charged by a solar cell and stored. As shown in the figure, the power storage system shown in the figure charges the battery of the power supply device 100 with electric power generated by a solar cell 82 disposed on a roof or a roof of a building 81 such as a house or a factory. Further, the power storage system supplies the power stored in power supply device 100 to load 83 via DC / AC inverter 85.
  • the power supply device can also be used as a power supply of a power storage system that charges and stores a battery using midnight power at night.
  • a power supply device that is charged with late-night power can charge with late-night power, which is surplus power of a power plant, and output power during the day when the power load increases, thereby limiting the daytime peak power to a small value.
  • the power supply device can also be used as a power supply for charging with both the output of the solar cell and the midnight power. This power supply device can effectively use both the power generated by the solar cell and the late-night power, and can efficiently store power while considering the weather and power consumption.
  • the power storage system as described above includes a backup power supply that can be mounted on a rack of a computer server, a backup power supply for a wireless base station such as a mobile phone, a power supply for home or factory storage, a power supply for street lights, and the like.
  • the present invention can be suitably used for a power storage device combined with a solar cell, a backup signal for a traffic light, a road traffic display, and the like.
  • the power supply device according to the present invention and a vehicle equipped with the power supply device are suitably used as a power supply for a large current used for a power supply of a motor for driving an electric vehicle such as a hybrid vehicle, a fuel cell vehicle, an electric vehicle, and an electric motorcycle. It can.
  • a power supply device of a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, or the like that can switch between an EV traveling mode and an HEV traveling mode can be given.
  • a power storage device combined with a solar cell such as a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power supply for home and factory use, a power supply for street lights, and the like. It can also be used as appropriate for applications such as backup power supplies for traffic lights and the like.
  • DC / AC inverter 91 ... Vehicle body, 93 ... Motor, 94 ... Generator, 95 ... DC / AC inverter, 96 ... Engine, 97 ... Wheels, 98 ... Charging plug, 900 ... power supply unit, 901 ... two Cells, 910 ... battery stack, 920 ... end plate, 930 ... bind bar, 940,940 '... separator, 941 ... recess, HV ... vehicle, EV ... vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

二次電池セルの膨張時の応力から二次電池セルを保護するために、電源装置(100)は、一方を開口した角形の外装缶(1a)の開口端を封口板(1b)で閉塞した複数の二次電池セル(1)と、隣接する二次電池セル(1)同士の間に介在される絶縁性のセパレータ(40)と、複数の二次電池セル(1)を積層した電池積層体(10)の両側端面を覆う一対のエンドプレート(20)と、エンドプレート(20)同士を締結する複数の締結部材(30)とを備える。この電源装置(100)は、セパレータ(40)と、二次電池セル(1)とが接する領域の内、封口板(1b)側の領域の易変形性を、他の領域よりも低くしている。これにより、セパレータ(40)の内、封口板(1b)側に接する部位を変形し難くし、二次電池セル(1)が膨張する際には封口板(1b)と外装缶(1a)の接続部分を保護しつつ、他の部分で外装缶(1a)の変形を許容して、膨張時の変形を緩和することができる。

Description

電源装置及びこれを備える車両
 本発明は、電源装置及びこれを備える車両に関する。
 電源装置は、車両の駆動用の電源装置や蓄電用の電源装置等に利用されている。この種の電源装置として、図16に、従来の電源装置900の斜視図を、図17にその分解斜視図を、それぞれ示す。この図に示すように複数枚の二次電池セル901は、セパレータ940を介在させて積層させた電池積層体910とし、その両面からエンドプレート920で押圧した状態にて、バインドバー930で固定される。図17のセパレータ940は、図18の斜視図に示すように、二次電池セル901の全面を覆う大きさの平板状に形成され、隣接する二次電池セル901間に介在されてこれらを絶縁する。
 一方、二次電池セルは、充放電を繰り返すと膨張、収縮する。特に近年の高容量化の要求に伴い、二次電池セル一枚あたりの高容量化が進んでいる結果として、膨張量も大きくなる傾向にある。上述の構成の電源装置では、エンドプレート920およびバインドバー930を介して、電池積層体を構成する二次電池セルの膨張を抑制する構成となっており、バインドバーやエンドプレートに大きな負荷がかかる。
 そこで、バインドバーやエンドプレートにかかる負荷を低減するために、図19に示すようにセパレータ940’の中央を窪ませる構造が提案されている。このセパレータ940’は、膨張時の膨らみを、セパレータ中央の窪み941で吸収することにより、膨張時のバインドバーやエンドプレートにかかる負荷を軽減している。
特許第6073583号公報
 上述のとおり、特許文献1の構成により、膨張時のバインドバーやエンドプレートにかかる負荷を軽減できるようになっているが、その効果は限定的である。近年の二次電池セルの高容量化に伴う膨張量が増加している状況を考慮すると、膨張時のバインドバーやエンドプレートにかかる負荷低減の効果が充分ではなくなるおそれがある。
 本発明は、このような背景に鑑みてなされたものであり、その目的の一は、従来の構成よりも、さらに膨張時のバインドバーやエンドプレートにかかる負荷を低減することのできる構成の電源装置及びこれを備える車両を提供することにある。
 本発明のある側面に係る電源装置は、一方を開口した角形の外装缶の開口端を封口板で閉塞した複数の二次電池セルと、隣接する二次電池セル同士の間に介在される絶縁性のセパレータと、前記複数の二次電池セルを積層した電池積層体の両側端面を覆う一対のエンドプレートと、前記エンドプレート同士を締結する複数の締結部材とを備える。この電源装置は、前記セパレータと、前記二次電池セルとが接する領域の内、前記封口板側の領域の易変形性を、他の領域よりも低くしている。
 上記構成によると、セパレータの内、封口板側に接する部位を変形し難くし、二次電池セルが膨張する際には封口板と外装缶の接続部分を保護しつつ、他の部分で外装缶の変形を許容して、膨張時の変形を緩和することができる。
実施形態1に係る電源装置を示す斜視図である。 図1の電源装置の分解斜視図である。 図1の電源装置のIII-III線における模式垂直断面図である。 図2のセパレータを示す斜視図である。 図1の電源装置のV-V線において二次電池セルが膨張した状態を示す模式水平断面図である。 実施形態2に係る電源装置のセパレータを示す斜視図である。 実施形態3に係る電源装置のセパレータを示す斜視図である。 実施形態4に係る電源装置のセパレータを示す斜視図である。 実施形態5に係る電源装置のセパレータを示す斜視図である。 図10Aは実施形態6に係る電源装置の要部垂直断面図、図10Bは図10Aの二次電池セルが膨張した状態を示す要部垂直断面図である。 実施形態7に係る電源装置のセパレータを示す分解斜視図である。 実施形態8に係る電源装置の二次電池セルを示す分解斜視図である。 エンジンとモータで走行するハイブリッド車に電源装置を搭載する例を示すブロック図である。 モータのみで走行する電気自動車に電源装置を搭載する例を示すブロック図である。 蓄電用の電源装置に適用する例を示すブロック図である。 従来の電源装置を示す斜視図である。 図16の電源装置を示す分解斜視図である。 図18のセパレータを示す斜視図である。 他のセパレータの例を示す斜視図である。 図17の電源装置で二次電池セルが膨張した電池積層体を示す模式水平断面図である。
 ます、本発明の一つの着目点について説明する。上記特許文献1に記載されているように、二次電池セルの膨張を許容することで、膨張時のバインドバーやエンドプレートにかかる負荷を軽減できる。しかしながら、本発明者らは、上記特許文献1に記載された構成では、二次電池セルの膨張量が増加すると、二次電池セルの外装缶の端部に応力が集中する可能性があることを見出した。具体的には、二次電池セル901が膨張すると、図20の模式平面図に示すように、エンドプレートがたわむ。エンドプレートは、バインドバーを介して、相対変位が規制されているが、負荷が大きくなると、エンドプレートが形状を維持できなくなる。その結果、エンドプレートやバインドバーによって拘束されている二次電池セルは、外装缶の中央部の膨張が許容されることで負荷が低減されるが、バインドバー近傍に位置する外装缶の端部の膨張は抑制されるため、外装缶の端部に負荷が集中して変形、破損する可能性があることを知見した。一方、本発明者らは、検討の過程で、二次電池セルの膨張の抑制が不充分であると、外装缶が破損する可能性があることも知見した。特に、二次電池セルは、開口を有する外装缶と、外装缶の開口を封止する封口板と備える構成となっているが、外装缶が膨張しすぎると、封口板と外装缶の接合部分に負荷がかかり、破断するおそれがある。以上の知見に基づいて、本発明者らは、膨張時のバインドバーやエンドプレートにかかる負荷を軽減しながら、外装缶と封口板の溶接部分の破断を防止するためには、外装缶の封口板近傍の膨張を抑制しつつ、その他の部分で、電池セルの膨張を許容するように構成することが重要であることを見出し、本発明に至った。
 本発明の一実施形態に係る電源装置は、一方を開口した角形の外装缶の開口端を封口板で閉塞した複数の二次電池セルと、隣接する二次電池セル同士の間に介在される絶縁性のセパレータと、前記複数の二次電池セルを積層した電池積層体の両側端面を覆う一対のエンドプレートと、前記エンドプレート同士を締結する複数の締結部材とを備える。この電源装置は、前記セパレータと、前記二次電池セルとが接する領域の内、前記封口板側の領域の易変形性を、他の領域よりも低くしている。
 この構成によると、二次電池セルが膨張する際に封口板と外装缶の接続部分を保護しながらも、他の部分では外装缶の変形を許容して、膨張時の変形を緩和することができる。
 本発明の一実施形態に係る電源装置は、前記セパレータの、前記二次電池セルの封口板側の領域を、他の領域よりも突出させている。上記構成により、セパレータの内、封口板側に接する部位を突出させて外装缶の変形を押さえ、二次電池セルの膨張時に封口板と外装缶の接続部分を保護することができる。
 また本発明の他の実施形態に係る電源装置は、前記セパレータの、前記二次電池セルと接する領域の内、両側の側面と接する領域を、前記二次電池セルの封口板側の領域よりも低く形成している。上記構成により、セパレータの内で、二次電池セルの膨張時に応力が集中しやすくなる左右の側面と接する領域を低くして、変形を許容する空間を形成することにより、応力を緩和して二次電池セルを保護できる。
 さらに本発明の他の実施形態に係る電源装置は、前記セパレータは、前記二次電池セルと接する領域を、高さ方向の中間において、左右の端縁まで平坦面に形成し、前記二次電池セルの封口板側に、前記平坦面よりも突出されて該封口板に沿って延伸された第一突出面を形成している。
 この構成によると、第一突出面により、封口板近傍の膨張を抑制することができ、高さ方向の中間において、外装缶の左右の端縁にかけて膨張が許容される領域が規定される。特に、膨張が許容される領域が外装缶の左右の端縁にかけて規定されることで、外装缶の変形が、外装缶の稜線を基点とした開き変形を許容することになるので、応力集中が生じることを防止しつつ、外装缶の膨張を許容できる特徴がある。例えば、特許文献1に例示される従来の構成では、外装缶の幅広面の外周部分の膨張が抑制され、中央部のみが膨張が許容されるが、この構成の場合、外装缶は、延び変形のみが許容されることになり、押圧されている外周部分と膨張が許容されている中央部の境界部分に応力が集中するおそれがある。上記実施形態によると、延び変形に加えて、開き変形も許容されることが期待でき、外装缶にかかる応力も低減できる。
 前記セパレータは、前記第一突出面を設けた側と反対側に、該第一突出面と平行状に延伸された第二突出面を形成して、前記第一突出面と第二突出面を分離させてもよい。
 前記第一突出面は、前記二次電池セルの封口板に沿って直線状に形成することもできる。
 前記セパレータの、前記第一突出面の延伸方向の端縁と、前記セパレータの側面側端縁との間に、前記第一突出面よりも低い前記平坦面を形成してもよい。
 また前記セパレータの、前記第一突出面の長手方向の側面と、前記セパレータの端縁との間に、前記第一突出面よりも低い第一段差部を形成することもできる。上記構成により、二次電池セルが膨張した際に外装缶の側面近傍に応力が集中する事態を避け、外装缶を保護して信頼性を高める効果が得られる。
 さらにまた本発明の他の実施形態に係る車両は、上記の電源装置と、該電源装置から電力供給される走行用のモータと、前記電源装置及び前記モータを搭載してなる車両本体と、前記モータで駆動されて前記車両本体を走行させる車輪とを備える。
 以下、本発明の実施形態を図面に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は以下のものに特定されない。また、本明細書は特許請求の範囲に示される部材を、実施形態の部材に特定するものでは決してない。特に実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一若しくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
 実施形態に係る電源装置は、ハイブリッド車や電気自動車などの電動車両に搭載されて走行モータに電力を供給する電源、太陽光発電や風力発電などの自然エネルギーの発電電力を蓄電する電源、あるいは深夜電力を蓄電する電源など、種々の用途に使用され、とくに大電力、大電流の用途に好適な電源として使用される。
[実施形態1]
 本発明の実施形態1に係る電源装置100の斜視図を図1に、その分解斜視図を図2に、図1のIII-III線における垂直断面図を図3に、それぞれ示す。これらの図に示す電源装置100は、正負の電極端子2を備える複数の二次電池セル1と、これら複数の二次電池セル1の電極端子2に接続されて、複数の二次電池セル1を並列かつ直列に接続するバスバー3を備える。複数の二次電池セル1は、バスバー3を介して並列や直列に接続される。二次電池セル1は、充放電可能な二次電池である。電源装置100は、複数の二次電池セル1が並列に接続されて並列電池グループを構成すると共に、複数の並列電池グループが直列に接続されて、多数の二次電池セル1が並列かつ直列に接続される。図1~図3に示す電源装置100は、複数の二次電池セル1を積層して電池積層体10を形成している。また電池積層体10の両端面には一対のエンドプレート20が配置される。このエンドプレート20同士に、締結部材30の端部を固定して、積層状態の二次電池セル1を押圧状態に固定する。
(二次電池セル1)
 二次電池セル1は、幅広面である主面の外形を四角形とする角形電池であって、幅よりも厚さを薄くしている。さらに、二次電池セル1は、充放電できる二次電池であって、リチウムイオン二次電池としている。ただし、本発明は、二次電池セルを角形電池には特定せず、またリチウムイオン二次電池にも特定しない。二次電池セルには、充電できる全ての電池、例えばリチウムイオン二次電池以外の非水系電解液二次電池やニッケル水二次電池セルなども使用できる。
 二次電池セル1は、正負の電極板を積層した電極体を外装缶1aに収納して、電解液を充填して気密に密閉している。外装缶1aは、図2に示すように、底を閉塞する四角い筒状に成形しており、この上方の開口部を金属板の封口板1bで気密に閉塞している。外装缶1aは、アルミニウムやアルミニウム合金などの金属板を深絞り加工して製作される。封口板1bは、外装缶1aと同じように、アルミニウムやアルミニウム合金などの金属板で製作される。封口板1bは、外装缶1aの開口部に挿入され、封口板1bの外周と外装缶1aの内周との境界にレーザー光を照射して、封口板1bを外装缶1aにレーザー溶接して気密に固定している。
(電極端子2)
 二次電池セル1は、天面である封口板1bを端子面1Xとして、この端子面1Xの両端部に正負の電極端子2を固定している。電極端子2は、突出部を円柱状としている。ただ、突出部は、必ずしも円柱状とする必要はなく、多角柱状又は楕円柱状とすることもできる。
 二次電池セル1の封口板1bに固定される正負の電極端子2の位置は、正極と負極が左右対称となる位置としている。これにより、二次電池セル1を左右反転させて積層し、隣接して接近する正極と負極の電極端子2をバスバー3で接続することで、隣接する二次電池セル1同士を直列に接続できるようにしている。
(電池積層体10)
 複数の二次電池セル1は、各二次電池セル1の厚さ方向が積層方向となるように積層されて電池積層体10を構成している。電池積層体10は、正負の電極端子2を設けている端子面1X、図2~図3においては封口板1bが同一平面となるように、複数の二次電池セル1を積層している。
(セパレータ40)
 電池積層体10は、隣接して積層される二次電池セル1同士の間に、セパレータ40を介在させている。セパレータ40は、樹脂等の絶縁材で薄いプレート状またはシート状に形成されている。セパレータ40は、二次電池セル1の対向面とほぼ等しい大きさのプレート状とする。このセパレータ40を互いに隣接する二次電池セル1の間に積層して、隣接する二次電池セル1同士を絶縁する。
 さらに、図2~図3に示す電源装置100は、電池積層体10の両端面にエンドプレート20を配置している。なおエンドプレートと電池積層体の間にも端面セパレータ40’を介在させて、これらを絶縁してもよい。端面セパレータ40’も、樹脂等の絶縁材で薄いプレート状またはシート状に形成できる。
(バスバー3)
 電池積層体10は、隣接する二次電池セル1の正負の電極端子2に金属製のバスバー3が接続されて、このバスバー3を介して複数の二次電池セル1が並列や直列に接続される。実施形態1に係る電源装置100は、複数の二次電池セル1が互いに積層される電池積層体10において、互いに隣接する複数の二次電池セル1の電極端子2同士をバスバー3で接続して、複数の二次電池セル1を並列かつ直列に接続する。
 バスバー3は、金属板を裁断、加工して所定の形状に製造される。バスバー3を構成する金属板には、電気抵抗が小さく、軽量である金属、例えばアルミニウム板や銅板、あるいはこれらの合金が使用できる。ただし、バスバー3の金属板は、電気抵抗が小さくて軽量である他の金属やこれらの合金も使用できる。また、電池積層体10とバスバー3との間にバスバーホルダを配置してもよい。バスバーホルダを用いることによって複数のバスバーを互いに絶縁し、かつ二次電池セルの端子面とバスバーとを絶縁しながら、複数のバスバーを電池積層体の上面の定位置に配置できる。
(エンドプレート20)
 エンドプレート20は、図1~図3に示すように、電池積層体10の両端に配置されると共に、電池積層体10の両側面に沿って配置される締結部材30を介して締結される。エンドプレート20は、電池積層体10の二次電池セル1の積層方向における両端であって、端面セパレータ40’の外側に配置されて電池積層体10を両端から挟着している。
(端面セパレータ40’)
 端面セパレータ40’は、通常のセパレータ40と異なり、二次電池セル1同士の間に介在されるのでなく、エンドプレート20と二次電池セル1の間に介在される。エンドプレート20は二次電池セル1のような膨張を考慮する必要がないため、端面セパレータ40’の面の内、エンドプレート20と対向する面については、第一突出面45等を形成する必要がなく、全面を平坦とした第二平坦面に形成することができる。一方で、端面セパレータ40’の他方の面、すなわち二次電池セル1と対向する面については、上述したセパレータ40と同様、第一突出面45や平坦面43を形成する。ただ、上述したセパレータ40をそのまま断面セパレータとして利用することもできる。
(締結部材30)
 締結部材30は、図1及び図2に示すように、電池積層体10の積層方向に延長されており、両端が電池積層体10の両端面に配置されたエンドプレート20に固定されて、このエンドプレート20を介して電池積層体10を積層方向に締結している。締結部材30は、電池積層体10の側面に沿う所定の幅と所定の厚さを有する金属板で、電池積層体10の両側面に対向して配置されている。この締結部材30には、鉄などの金属板、好ましくは、鋼板が使用できる。金属板からなる締結部材30は、プレス成形等により折曲加工されて所定の形状に形成される。
 締結部材30は、電池積層体10の左右の側面でそれぞれ、2本の締結部材30を上下に離間して配置している。各締結部材30は、電池積層体10の側面に沿って配置される本体部31と、この本体部31の両端で折曲されて、エンドプレート20の外側面に固定される固定部32とを備えている。本体部31は、電池積層体10の長さとほぼ等しい長さの紐状に形成されている。締結部材30は、両端を一対のエンドプレート20に固定するために、その両端部をエンドプレート20の外側面に沿うように折曲加工して固定部32を設けている。この締結部材30は、固定部32の先端に設けた貫通孔33に挿入される留め具34を介してエンドプレート20に固定される。
 なお図2等の例では、電池積層体10の左右の側面でそれぞれ、2本の締結部材30を上下に離間して配置している。ただ本発明は、締結部材をこの構成に限定せず、3本以上としたり、あるいは一の締結部材を電池積層体の側面に配置してもよい。一枚の締結部材は、電池積層体の側面をほぼ覆う大きさに形成することができる。また必要に応じて、締結部材の中間部分に開口部を形成してもよい。さらに締結部材は、電池積層体の左右に配置する他、上下面に配置する構成とすることもできる。
(セパレータ40の詳細)
 電源装置100は、セパレータ40と、二次電池セル1とが接する領域の内で、特に二次電池セル1の封口板1bがセパレータ40と接する領域について、その変形し易さ、すなわち易変形性を、他の領域よりも低くしている。このようにすることで、二次電池セル1が膨張する際に封口板1bと外装缶1aの接続部分を保護しながらも、他の部分では外装缶1aの変形を許容して、膨張時の変形を緩和することができる。
 二次電池セルは充放電によって外装缶の内部に収納した電極体が膨張して内面から外装缶を押し出し、この結果外装缶が膨張することが知られている。特に近年は電池容量の高容量化の要求が高まっていることから、これに伴って膨張量も大きくなる傾向にある。多数枚の二次電池セルを積層した電池積層体では、全体の膨張量もセル数に応じて大きくなる。
 一方、電池積層体は、二次電池セルとセパレータを交互に積層した状態で、両端面にエンドプレートを配置して、バインドバー等の締結部材で締結している。締結部材でエンドプレート同士を強く狭持した状態に締結することで、二次電池セルが上下に位置ずれしたり抜け落ちたりする事態を回避している。
 この状態で二次電池セルが膨張すると、図20に示すように端面に位置するエンドプレート920が、中間部分が二次電池セル901によって押し出される一方、両端はバインドバー930で引っ張られる結果、弓なりに反った状態となる(図20は説明のため、変形量を強調して表示させている)。この結果、エンドプレート920の端縁の隅部が反って二次電池セル901側に突出する結果、二次電池セル901の端縁が強く押されることになる。この状態では、二次電池セル901の側面に強い応力が集中する。これを防ぐためには、膨張時に応力が特定の部位に集中しないように、変形を吸収できるような構造が必要となる。
 また一方で、二次電池セルの外装缶が膨張すると、封口板との溶接部分が外れるおそれがあった。すなわち、一般に二次電池セルの角形の外装缶は、上面を開口しており、ここから集電体などを導入した後、開口端を封口板で封止し、接合界面をレーザー溶接等により溶接している。
 しかしながら、外装缶が膨張を繰り返すと、外装缶の開口端面と封口板との間のレーザー溶接部分が破断されるおそれがある。これを防ぐためには、外装缶と封口板との接合界面が離れないように、この部分を保護する必要があった。このことは、外装缶の膨張を防ぐ又は規制することに他ならず、上述した変形の許容とは逆のアプローチとなる。
 このように、電源装置においては変形の許容と規制という相反する特性が求められ、これらを両立されることは容易でなかった。これに対して本実施形態に係る電源装置100においては、セパレータ40と二次電池セル1との接触部分の変形し易さ、すなわち易変形性を部分的に変化させた、いわば剛性を不均一とした構成を採用している。
 具体的に実施形態1に係るセパレータ40の斜視図を図4に示す。この図に示すセパレータ40は、主面を構成する主面部41と、この主面部41の両側の側面に形成されたガイド部42を備えている。
 ガイド部42は、主面部41の側面において主面部41の表裏に向かって突出する壁状に形成されている。このガイド部42は、二次電池セル1とセパレータ40を交互に積層した際に、二次電池セル1の表面と裏面にそれぞれ配置されたセパレータ40のガイド部42同士でもって、二次電池セル1の側面を覆うように形成している。
 主面部41は、平坦な平坦面43を形成すると共に、上下に突出面44を形成している。図4の例では、突出面44として、主面部41の上側に形成された第一突出面45と、下側に形成された第二突出面46とを有する。これら第一突出面45及び第二突出面46は、平坦部から若干突出して、横方向に延長されたスリップ状に形成されている。突出面の突出量は、例えば0.05mm~1mmとし、好ましくは0.1~0.8mm、より好ましくは0.6mm程度とする。また、これら第一突出面45や第二突出面46は、好ましくはセパレータ40と一体に成形される。
 セパレータ40は、絶縁性、耐熱性に優れた材質で構成する。好ましくはポリカーボネートやPBT樹脂などのエンジニアリング・プラスチックで安価に多量生産できる。あるいは、耐熱特性に優れる樹脂、PPS、ポリプロピレン、ナイロン、PET、ポリ塩化ビニリデン、ポリフッ化ビニリデン等の熱可塑性樹脂、あるいはポリイミド、フッ素樹脂、PDAP、シリコン樹脂、エポキシ樹脂などの熱硬化性樹脂で製作することもできる。
 また第一突出面45は、図3の垂直断面図に示すように、二次電池セル1の封口板1bを接合した部位と重なるか、又はこの近傍に位置するように設けられる。
(第一段差部47)
 一方で第一突出面45は、長手方向の側面と、セパレータ40の上面側端縁との間に、第一段差部47を形成している。いいかえると、第一突出面45は、ガイド部42まで延伸されず、第一突出面45よりも低くすることで、セパレータ40と二次電池セル1との間に空間を形成している。図4の例では、主面部41の平坦面43を、第一突出面45の左右に連続させている。このようにしたことで、二次電池セル1が膨張した際に外装缶1aの側面近傍に応力が集中する事態を避け、外装缶1aを保護することでもって信頼性を向上できる。
 すなわち、二次電池セル1が膨張すると、図20の水平断面図に示すように、外装缶1aの腹の部分が突出する結果、隣接する他の二次電池セルやエンドプレート920が反り返る反作用として、これら他の二次電池セルやエンドプレート920の隅部が二次電池セル901側に迫り出してくる状態となる。いいかえると、膨張した二次電池セル901の隅部が周囲から押される状態となって、隅部に応力が集中し、外装缶1aが破損される可能性が生じる。そこで本実施形態においては、上述の通り、第一突出面45を形成しつつも、その左右に第一段差部47を形成している。この結果、図5の水平断面図に示すように、外装缶1aの隅部への応力集中が緩和されて、二次電池セル1の保護が図られるのである。
[実施形態2]
 第一段差部47の幅d1は、外装缶の想定される膨張量や外装缶の材質(塑性)等に応じて設計される。変形量が大きい二次電池セル1ほど、大きく設定することが望ましい。例えばセパレータ40の幅Wに対して、例えば0.05W≦d1≦0.3W、好ましくは0.1W≦d1≦0.2Wとする。実施形態2に係る電源装置のセパレータ40Bを図6に示す。このセパレータ40Bでは、第一段差部47の幅d2を実施形態1よりも広くしており、実施形態1よりも変形量が激しい二次電池セル1に対応させることができる。
(第二突出面46)
 また以上の例では、第一突出面45に加えて、セパレータ40の底面側に第二突出面46を設けることで、外装缶1aの封口板1bを溶接した開口端側のみならず、底板側の保護も図ることができる。第二突出面46は、好ましくは第一突出面45を同じ突出高さに設計される。また第二突出面46の幅、いいかえると第二突出面46の左右に形成された第二段差部の幅も、第一突出面45と同じ大きさに設定できる。ただ、二次電池セル1に応じて、第二突出面46の突出高さや長さを、第一突出面45と異ならせてもよい。
[実施形態3]
 一方で、封口板1bの疲労破壊のリスクに比べ、絞り出し加工等により一体に形成された外装缶1aの底面側が破壊されるリスクは低いということもできる。このような観点から、第二突出面を省略することもできる。このような例を実施形態3に係る電源装置のセパレータ40Cとして図7の斜視図に示す。この図に示すセパレータ40Cは、主面部41の平坦面43に、上部側に第一突出面45のみを設けており、下部側には第二突出面を設けていない。このようなセパレータ40Cを用いることでも、封口板1bの溶接部分の破断を効果的に阻止できる。
[実施形態4]
 またこのように第一突出面45のみを設ける構成においても、上述の通り第一突出面45の幅d1を適宜調整できることはいうまでもない。一例として、第一突出面45の幅をd2に短くした例を実施形態4に係る電源装置のセパレータ40Dとして図8に示す。
[実施形態5]
 また第一突出面45は、必ずしもセパレータ40の上端に沿って設ける必要はなく、セパレータと当接される二次電池セルの大きさや位置に応じて、第一突出面を設ける位置を任意に調整できる。すなわちセパレータの形状は、二次電池セルよりも大きくすることも可能であり、必ずしもセパレータの上端に固定する必要はない。二次電池セルとセパレータを積層した状態で、封口板の位置する領域やその近傍に第一突出面を配置することで、封口板の固定部分の保護が図られる。一例として、実施形態5に係る電源装置のセパレータ40Eを図9の斜視図に示す。この例では、第一突出面45を、主面部41の平坦面43の上端から少し離れた位置に第一突出面45を設けている。このように、二次電池セルやセパレータの形状、大きさに応じて、効果的に封口板を保護できる位置となるように第一突出面の配置位置が決定される。
[実施形態6]
 なお以上の例では、外装缶1aの封口板1bの溶接部分を保護するため、封口板1bの近傍に第一突出面45を設ける例を説明した。ただ本発明はこの構成に限らず、二次電池セルの内部で膨張の原因となる集電体の上部の位置やその近傍に、第一突出面を配置してもよい。このような例を図10A~図10Bを参照して説明する。これらの図に示すように、二次電池セル1が膨張する原因は、外装缶1aの内部に収納された集電体1cが充放電によって膨張することに起因する。このため、集電体1cの上部と対応させて第一突出面45を位置させることで、この部分での二次電池セルの変形を抑制し、これよりも上方にある封口板1bの溶接部分が変形して疲労破壊される事態を抑制できる。
[実施形態7]
 また以上の例では、第一突出面45や第二突出面46をセパレータ40に一体に成形した例を説明した。ただ本発明は、第一突出面や第二突出面をセパレータと一体成形する構成に限定するものでなく、これらを別部材で構成してもよい。例えば実施形態7に係る電源装置のセパレータ40Fを、図11の斜視図に示す。この例では、平板状の主面部41で構成されたセパレータ40Fの上部に、第一突出面45Fを貼付している。第一突出面45Fは、予め樹脂製の板やシート等で形成されており、両面テープや接着などでセパレータ40Fに固定される。あるいは第一突出面45Fの裏面側に接着材を予め塗布してもよい。また耐熱性、絶縁性を有するテープ材自体を、セパレータ40Fに貼付して第一突出面45Fとして利用することもできる。この構成によれば、既存のセパレータを利用しながら、所望の長さの第一突出面を適切な位置に貼付して、二次電池セル膨張時の耐性機能を付加することができる。
[実施形態8]
 さらにまた、以上の例では、セパレータ40と、二次電池セルの封口板1b側とが接する領域の易変形性を、セパレータ40側で調整する例について説明した。ただ本発明はこの構成に限らず、二次電池セル側で、セパレータと二次電池セルの封口板側とが接する領域の易変形性を調整する構成としてもよい。このような例を実施形態8に係る電源装置の電池積層体として、図12の分解斜視図に示す。この図に示す電池積層体は、二次電池セル1の外装缶1aの表面に、第一突出面45Gを貼付している。この構成によっても、セパレータ40Gと二次電池セル1の封口板1b側とが接する領域に介在された第一突出面45Gによって、二次電池セル1膨張時の変形量が抑制され、もって封口板1bの接続部位を保護する効果が得られる。
 さらに、以上の例では第一突出面45を付加することで、セパレータ40と、二次電池セル1の封口板1b側とが接する領域の易変形性を、他の領域よりも相対的に低下させる構成について説明したが、易変形性の調整を、形状でなく材質の違いによって実現することもできる。例えば、セパレータの材質を、封口板側で硬度を高く、それ以外の領域で硬度を低くするように、複合材料で構成することでも、同様の効果を実現できる。例えば材質すなわち硬度の異なる部材を複数組み合わせてセパレータを構成することで、このような部分的に硬度に差を持たせた構造を提供できる。
 以上の電源装置は、車載用の電源として利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッド車やプラグインハイブリッド車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。なお、車両を駆動する電力を得るために、上述した電源装置を直列や並列に多数接続して、さらに必要な制御回路を付加した大容量、高出力の電源装置100を構築した例として説明する。
(ハイブリッド車用電源装置)
 図13は、エンジンとモータの両方で走行するハイブリッド車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両本体91と、この車両本体91を走行させるエンジン96及び走行用のモータ93と、これらのエンジン96及び走行用のモータ93で駆動される車輪97と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。なお、車両HVは、図13に示すように、電源装置100を充電するための充電プラグ98を備えてもよい。この充電プラグ98を外部電源と接続することで、電源装置100を充電できる。
(電気自動車用電源装置)
 また、図14は、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両本体91と、この車両本体91を走行させる走行用のモータ93と、このモータ93で駆動される車輪97と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。また車両EVは充電プラグ98を備えており、この充電プラグ98を外部電源と接続して電源装置100を充電できる。
(蓄電システム)
 さらに、本発明は、電源装置の用途を、車両を走行させるモータの電源には特定しない。各実施形態に係る電源装置は、太陽光発電や風力発電等で発電された電力で電池を充電して蓄電する蓄電システムの電源として使用することもできる。図15は、電源装置100の電池を太陽電池で充電して蓄電する蓄電システムを示す。この図に示す蓄電システムは、図に示すように、家屋や工場等の建物81の屋根や屋上等に配置された太陽電池82で発電される電力で、電源装置100の電池を充電する。さらに、この蓄電システムは、電源装置100に蓄電した電力を、DC/ACインバータ85を介して負荷83に供給する。
 さらに、電源装置は、図示しないが、夜間の深夜電力を利用して電池を充電して蓄電する蓄電システムの電源として使用することもできる。深夜電力で充電される電源装置は、発電所の余剰電力である深夜電力で充電して、電力負荷の大きくなる昼間に電力を出力して、昼間のピーク電力を小さく制限することができる。さらに、電源装置は、太陽電池の出力と深夜電力の両方で充電する電源としても使用できる。この電源装置は、太陽電池で発電される電力と深夜電力の両方を有効に利用して、天候や消費電力を考慮しながら効率よく蓄電できる。
 以上のような蓄電システムは、コンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用または工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機や道路用の交通表示器などのバックアップ電源用などの用途に好適に利用できる。
 本発明に係る電源装置及びこれを備える車両は、ハイブリッド車、燃料電池自動車、電気自動車、電動オートバイ等の電動車両を駆動するモータの電源用等に使用される大電流用の電源として好適に利用できる。例えばEV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置が挙げられる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。
 100…電源装置、1…二次電池セル、1X…端子面、1a…外装缶、1b…封口板、1c…集電体、2…電極端子、3…バスバー、10…電池積層体、20…エンドプレート、30…締結部材、31…本体部、32…固定部、33…貫通孔、34…留め具、40、40B、40C、40D、40E、40F、40G…セパレータ、40’…端面セパレータ、41…主面部、42…ガイド部、43…平坦面、44…突出面、45、45F、45G…第一突出面、46…第二突出面、47…第一段差部、81…建物、82…太陽電池、83…負荷、85…DC/ACインバータ、91…車両本体、93…モータ、94…発電機、95…DC/ACインバータ、96…エンジン、97…車輪、98…充電プラグ、900…電源装置、901…二次電池セル、910…電池積層体、920…エンドプレート、930…バインドバー、940、940’…セパレータ、941…窪み、HV…車両、EV…車両。

Claims (9)

  1.  一方を開口した角形の外装缶の開口端を封口板で閉塞した複数の二次電池セルと、
     隣接する二次電池セル同士の間に介在される絶縁性のセパレータと、
     前記複数の二次電池セルを積層した電池積層体の両側端面を覆う一対のエンドプレートと、
     前記エンドプレート同士を締結する複数の締結部材と、を備える電源装置であって、
     前記セパレータと、前記二次電池セルとが接する領域の内で、前記セパレータと前記二次電池セルの封口板とが接する領域の易変形性を、他の領域よりも低くしてなる電源装置。
  2.  請求項1に記載の電源装置であって、
     前記セパレータは、前記二次電池セルの封口板と接する領域を、他の領域よりも突出させてなる電源装置。
  3.  請求項1又は2に記載の電源装置であって、
     前記セパレータは、前記二次電池セルと接する領域の内、両側の側面と接する領域を、前記二次電池セルの封口板と接する領域よりも低く形成してなる電源装置。
  4.  請求項1~3のいずれか一項に記載の電源装置であって、
     前記セパレータは、前記二次電池セルと接する領域を、
      高さ方向の中間において、左右の端縁まで平坦面に形成し、
      前記二次電池セルの封口板と接する側に、前記平坦面よりも突出されて該封口板に沿って延伸された第一突出面を形成してなる電源装置。
  5.  請求項4に記載の電源装置であって、
     前記セパレータは、前記第一突出面を設けた側と反対側に、該第一突出面と平行状に延伸された第二突出面を形成しており、
     前記第一突出面と第二突出面は、分離されてなる電源装置。
  6.  請求項4又は5に記載の電源装置であって、
     前記第一突出面は、前記二次電池セルの封口板に沿って直線状に形成されてなる電源装置。
  7.  請求項4~6のいずれか一項に記載の電源装置であって、
     前記セパレータの、前記第一突出面の延伸方向の端縁と、前記セパレータの側面側端縁との間に、前記第一突出面よりも低い前記平坦面が形成されてなる電源装置。
  8.  請求項4~7のいずれか一項に記載の電源装置であって、
     前記セパレータの、前記第一突出面の長手方向の側面と、前記セパレータの端縁との間に、前記第一突出面よりも低い第一段差部が形成されてなる電源装置。
  9.  請求項1~8のいずれか一に記載の電源装置を備える車両であって、
     前記電源装置と、該電源装置から電力供給される走行用のモータと、前記電源装置及び前記モータを搭載してなる車両本体と、前記モータで駆動されて前記車両本体を走行させる車輪とを備える車両。
PCT/JP2019/029345 2018-08-06 2019-07-26 電源装置及びこれを備える車両 WO2020031737A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980051360.5A CN112534631B (zh) 2018-08-06 2019-07-26 电源装置以及具有该电源装置的车辆
US17/263,944 US11962026B2 (en) 2018-08-06 2019-07-26 Power supply device and vehicle equipped therewith
JP2020536464A JP7296967B2 (ja) 2018-08-06 2019-07-26 電源装置及びこれを備える車両

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018147903 2018-08-06
JP2018-147903 2018-08-06

Publications (1)

Publication Number Publication Date
WO2020031737A1 true WO2020031737A1 (ja) 2020-02-13

Family

ID=69413276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029345 WO2020031737A1 (ja) 2018-08-06 2019-07-26 電源装置及びこれを備える車両

Country Status (4)

Country Link
US (1) US11962026B2 (ja)
JP (1) JP7296967B2 (ja)
CN (1) CN112534631B (ja)
WO (1) WO2020031737A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021158002A (ja) * 2020-03-27 2021-10-07 株式会社デンソー 電池モジュール
CN114976410A (zh) * 2021-02-26 2022-08-30 丰田自动车株式会社 蓄电装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024501592A (ja) * 2021-11-30 2024-01-15 寧徳時代新能源科技股▲分▼有限公司 電池及びその製造方法と製造設備、電力消費装置
CN115832561A (zh) * 2021-12-23 2023-03-21 宁德时代新能源科技股份有限公司 电池和用电装置
CN116387721A (zh) * 2021-12-23 2023-07-04 宁德时代新能源科技股份有限公司 电池和用电装置
LU501377B1 (en) * 2022-02-01 2023-08-02 Iee Sa Compression Device for Accurate Compression Load Management in a Battery Pack
CN114824617A (zh) * 2022-05-18 2022-07-29 中创新航科技股份有限公司 一种电池包、电池包的组装方法及电池簇

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282648A (ja) * 2007-05-10 2008-11-20 Toyota Motor Corp 組電池
JP2013149523A (ja) * 2012-01-20 2013-08-01 Gs Yuasa Corp 蓄電素子モジュール
JP2014010983A (ja) * 2012-06-28 2014-01-20 Sanyo Electric Co Ltd 電源装置及びこの電源装置を備える車両並びに蓄電装置
JP2016152203A (ja) * 2015-02-19 2016-08-22 日立オートモティブシステムズ株式会社 組電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5953925B2 (ja) * 2012-05-15 2016-07-20 三菱自動車工業株式会社 電池のエネルギ放出装置
CN102891271B (zh) * 2012-10-17 2015-02-25 安徽江淮汽车股份有限公司 一种变形约束电池组模块结构
CN104752649B (zh) * 2013-12-31 2017-10-31 比亚迪股份有限公司 用于动力电池模组的隔板、电池容纳组件和动力电池模组
WO2018023050A1 (en) * 2016-07-29 2018-02-01 Crynamt Management Llc High-density battery pack
PL3346517T3 (pl) * 2017-01-04 2024-04-08 Samsung Sdi Co., Ltd Układ baterii
CN107394082B (zh) * 2017-08-18 2022-12-13 北京普莱德新能源电池科技有限公司 一种方形电芯通用模组结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282648A (ja) * 2007-05-10 2008-11-20 Toyota Motor Corp 組電池
JP2013149523A (ja) * 2012-01-20 2013-08-01 Gs Yuasa Corp 蓄電素子モジュール
JP2014010983A (ja) * 2012-06-28 2014-01-20 Sanyo Electric Co Ltd 電源装置及びこの電源装置を備える車両並びに蓄電装置
JP2016152203A (ja) * 2015-02-19 2016-08-22 日立オートモティブシステムズ株式会社 組電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021158002A (ja) * 2020-03-27 2021-10-07 株式会社デンソー 電池モジュール
JP7331753B2 (ja) 2020-03-27 2023-08-23 株式会社デンソー 電池モジュール
CN114976410A (zh) * 2021-02-26 2022-08-30 丰田自动车株式会社 蓄电装置
JP2022131044A (ja) * 2021-02-26 2022-09-07 トヨタ自動車株式会社 蓄電装置
JP7448499B2 (ja) 2021-02-26 2024-03-12 トヨタ自動車株式会社 蓄電装置
CN114976410B (zh) * 2021-02-26 2024-04-12 丰田自动车株式会社 蓄电装置

Also Published As

Publication number Publication date
JP7296967B2 (ja) 2023-06-23
CN112534631B (zh) 2023-04-07
US20210320367A1 (en) 2021-10-14
CN112534631A (zh) 2021-03-19
US11962026B2 (en) 2024-04-16
JPWO2020031737A1 (ja) 2021-09-09

Similar Documents

Publication Publication Date Title
WO2020031737A1 (ja) 電源装置及びこれを備える車両
JP7348174B2 (ja) 電池モジュール及びこれを備える車両
CN112673520B (zh) 电源装置和具备电源装置的车辆以及蓄电装置
WO2021024772A1 (ja) 電源装置及びこれを用いた電動車両並びに蓄電装置
CN113632300B (zh) 电源装置和使用该电源装置的电动车辆以及蓄电装置
CN113646956B (zh) 电源装置和使用该电源装置的电动车辆以及蓄电装置、电源装置用紧固构件、电源装置的制造方法、电源装置用紧固构件的制造方法
US11929479B2 (en) Power supply device, vehicle having same, and buffer
US11817593B2 (en) Power supply device and vehicle provided with power supply device
CN113632305B (zh) 电源装置和使用该电源装置的电动车辆以及蓄电装置、电源装置用紧固构件、电源装置的制造方法、电源装置用紧固构件的制造方法
JP7374901B2 (ja) 電源装置及びこれを備える車両
JP2022078379A (ja) 電源装置及びこれを用いた電動車両並びに蓄電装置
WO2021157139A1 (ja) 電源装置及びこれを用いた電動車両並びに蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19848624

Country of ref document: EP

Kind code of ref document: A1