WO2020031508A1 - 排ガス浄化触媒用組成物及びそれを用いた排ガス浄化触媒 - Google Patents

排ガス浄化触媒用組成物及びそれを用いた排ガス浄化触媒 Download PDF

Info

Publication number
WO2020031508A1
WO2020031508A1 PCT/JP2019/023902 JP2019023902W WO2020031508A1 WO 2020031508 A1 WO2020031508 A1 WO 2020031508A1 JP 2019023902 W JP2019023902 W JP 2019023902W WO 2020031508 A1 WO2020031508 A1 WO 2020031508A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
composite oxide
mass
gas purifying
cza
Prior art date
Application number
PCT/JP2019/023902
Other languages
English (en)
French (fr)
Inventor
利春 守屋
克哉 岩品
翼 今井
弘幸 堀村
晃子 岩佐
駿平 鈴木
弘嗣 植野
Original Assignee
三井金属鉱業株式会社
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社, 本田技研工業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2020536361A priority Critical patent/JP7086196B2/ja
Publication of WO2020031508A1 publication Critical patent/WO2020031508A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides

Definitions

  • the present invention relates to an exhaust gas purifying catalyst composition and an exhaust gas purifying catalyst using the same.
  • an exhaust gas purifying catalyst for purifying three components of carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NO x ) discharged from an internal combustion engine such as a diesel engine or a gasoline engine has been proposed.
  • These three components have been purified mainly by a composition for an exhaust gas purification catalyst in which a noble metal such as Pt, Rh or Pd is supported on a metal oxide.
  • a composition in which copper oxide is supported on a metal oxide as a substitute for the noble metal has been proposed.
  • Patent Literature 1 discloses a carrier comprising a composite metal oxide containing ceria, zirconia, and alumina, wherein the content of ceria in the composite metal oxide is 50% by mass or more, and a carrier supported on the carrier.
  • a catalyst comprising copper oxide is described, and it is described as having excellent CO oxidation ability.
  • Patent Document 2 discloses a first purification member that contains a 3d transition element and does not contain a noble metal, and is disposed adjacent to the first purification member on both the upstream side and the downstream side in the exhaust gas passage direction with respect to the first purification member, An exhaust gas purifying catalyst including a second purifying member containing a noble metal is described.
  • the first purification member has Cu / ⁇ -Al 2 O 3 , Cu / Ce 0.30 Zr 0.50 La 0.05 Y 0.05 Oxide, and HC and CO. It is described that the purification of the waste can be achieved.
  • an object of the present invention is to provide an exhaust gas purifying catalyst composition which can solve the above-mentioned problems, and an exhaust gas purifying catalyst using the same.
  • the present inventors have intensively studied the structure of an exhaust gas purification catalyst composition may have a purifying performance superior NO x despite not using a noble metal.
  • the copper oxide is be supported relative to the composite oxide containing ceria, zirconia and alumina with a controlled content of alumina and ceria in a specific range, it gives excellent the NO x purification performance was found to be.
  • the present invention is based on the above findings, a composite oxide containing ceria, zirconia and alumina, and a composition for an exhaust gas purification catalyst comprising copper oxide supported on the composite oxide,
  • An object of the present invention is to provide a composition for an exhaust gas purifying catalyst, wherein the content of alumina in the composite oxide is 30% by mass or more and the content of ceria is less than 50% by mass.
  • the present invention also provides an exhaust gas purifying catalyst containing the composition for exhaust gas purifying catalyst.
  • the composition for an exhaust gas purifying catalyst of the present invention includes a composite oxide containing ceria, zirconia, and alumina (hereinafter, also referred to as “CZA composite oxide”), and copper oxide supported on the composite oxide.
  • CZA composite oxide a composite oxide containing ceria, zirconia, and alumina
  • CZA composite oxide is a composite oxide containing cerium, zirconium and aluminum.
  • the CZA composite oxide it is preferable that a part of alumina is present in a solid solution of ceria-zirconia in a solid solution.
  • the fact that ceria and zirconia are in a solid solution can be confirmed by X-ray diffraction measurement based on whether or not a single phase derived from the ceria-zirconia solid solution has been formed. Further, when the CZA composite oxide is subjected to X-ray diffraction measurement, a diffraction peak of ceria, zirconia or a ceria-zirconia solid solution and a diffraction peak of alumina are generally observed separately.
  • the present invention is less than 50 mass% content of ceria in the CZA composite oxide, and is excellent in purification performance of the NO x by supporting the copper oxide thereto. That is, a design in which the content of ceria in the CZA composite oxide is intentionally limited and copper oxide is supported on the design makes it possible to easily change the monovalent or divalent valence of copper in copper oxide.
  • the reaction between 2 O or O 2 and HC or CO is more activated. Above all, by H 2 produced by the oxidation reaction of HC or CO by in H 2 O reacts with NO x, considered to purification of the NO x progresses.
  • the content of ceria in the composite oxide is 50% by mass or more as in the technique described in Patent Document 1, due to its oxygen storage / release ability (hereinafter also referred to as “OSC”), Since CO and HC are exclusively oxidized by O 2 and the oxidation reaction by H 2 O is restricted, the desired NO x purification performance referred to in the present application cannot be obtained.
  • the content of ceria in the CZA composite oxide here includes both the amount of ceria that does not form a solid solution and the amount of ceria that forms a solid solution.
  • the content of alumina in the CZA composite oxide is set to 30% by mass or more, not only is it possible to suppress a decrease in the specific surface area of the CZA composite oxide, but also to improve the heat resistance of the composition for an exhaust gas purification catalyst.
  • the relative proportion of ceria in the CZA composite oxide can be reduced, and the NO x purification performance can be improved not only after the heat endurance at 900 ° C. or higher but also before the heat endurance.
  • the content of alumina in CZA composite oxide is preferably 30 mass% or more, more preferably 50 It is advantageous to set the amount to at least 70% by mass, more preferably at least 60% by mass, particularly preferably at least 70% by mass. This content is a value significantly higher than the content (about 11% by mass) of alumina in the CZA composite oxide in each example of Patent Document 1.
  • the upper limit of the content of alumina in from the viewpoint of particularly improving the the NO x purification performance in the previous thermal durability, preferably at most 98 mass%, more preferably not more than 95 wt%, 90 wt% or less Is more preferable.
  • the content of alumina in the CZA composite oxide is measured by the following method. First, the composition for exhaust gas purifying catalyst is dissolved to form a solution, and the amount of each element is measured by ICP-AES using the solution as a measurement object. Of the measured amounts of the respective elements, the amount of copper supported on the CZA composite oxide was determined, and the amounts of the remaining elements were converted to those oxides, and the total amount was 100, which was calculated as oxides. Calculate the percentage of the amount of aluminum.
  • Examples of the alumina contained in the CZA composite oxide include ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina and the like, and any of them can be used.
  • ⁇ -alumina because it has high thermal stability while maintaining the specific surface area of the composition for an exhaust gas purifying catalyst when combined with ceria-zirconia solid solution, ceria and / or zirconia.
  • Patent Document 1 describes a composite metal oxide containing ceria, zirconia, and alumina.
  • alumina is dispersed on the nm scale, it is possible to confirm the crystal structure of alumina as described above. Can not. As a result, the thermal stability is poor, so that the performance after heat durability in the present invention is poor.
  • Exhaust gas purifying catalyst composition of the present invention have excellent the NO x purification performance thermal durability previous state, in particular in a state not receiving yet a and 4 hours of heating above 900 ° C..
  • Exhaust gas purifying catalyst composition of the present invention in addition to it, even after receiving and 4 hours of heating 900 ° C. or higher, can maintain excellent the NO x purification performance.
  • the present inventor thinks as follows. In the CZA composite oxide, as described above, it is preferable that a part of alumina is dissolved in a solid solution of ceria-zirconia, while the remaining part is formed of a solid solution of ceria, zirconia and ceria-zirconia. Does not dissolve.
  • the solid solution of ceria, zirconia, and / or ceria-zirconia, and the alumina that does not form a solid solution with each other serve as diffusion barriers. Therefore, it is considered that aggregation of the same kind of oxides was suppressed and heat resistance was improved.
  • the composition for an exhaust gas purifying catalyst in which copper oxide is supported on a ceria-zirconia composite oxide having no alumina has no alumina serving as a diffusion barrier. likely to occur, catalytic activity area is reduced by phase separation of ceria and zirconia is caused by heating above 900 ° C., no sufficient the nO x purification performance.
  • the content of ceria in the CZA composite oxide is 35% by mass or less, than 25 wt% Is more preferably 20% by mass or less, and particularly preferably 15% by mass or less.
  • the lower limit of the content of the ceria is preferably from the viewpoint of enhancing the NO x purification performance in the state before the heat endurance is 1 mass% or more, further preferably 2.5 mass% or more, 5 mass % Is more preferable.
  • the ceria content in the CZA composite oxide is measured by a method similar to the method described above as a method for measuring the alumina content in the CZA composite oxide. Further, in view of enhancing the the NO x purification performance more, from the viewpoint of particularly improving both the NO x purification performance of the front and rear heat durability, the weight ratio of alumina for ceria in CZA composite oxide (alumina / ceria) is preferably 5 or more, 7 or more is more preferable, and 10 or more is further preferable.
  • the content of zirconia in the CZA composite oxide is 1 mass% or more, from the viewpoint of enhancing the the NO x purification performance after thermal endurance, more preferably 2.5 mass% or more, 5% More preferably, it is the above.
  • the upper limit of the amount of the zirconia in view of particularly increasing the the NO x purification performance in the state before the heat endurance, preferably 35 wt% or less, still more preferably 25% by mass or less, 20 wt % Is more preferable.
  • the zirconia content in the CZA composite oxide is measured by a method similar to the method described above as a method for measuring the alumina content in the CZA composite oxide.
  • each of the above-mentioned contents of alumina, ceria, and zirconia includes both the amount constituting the solid solution and the amount not constituting the solid solution in the CZA composite oxide. I do.
  • the content ratio (mass ratio) of ceria and zirconia in the CZA composite oxide is preferably 1 or more and 3 or less with respect to zirconia 1 from the viewpoint of thermal durability, and is preferably 1 or more and 2 or less. More preferably, there is.
  • the zirconia against ceria 1 in terms of the NO x purifying performance is 0.5 to 3, more preferably 0.5 to 2.
  • CZA composite oxide is preferable in that to contain a rare earth element other than cerium further enhance the NO x purification performance after thermal endurance.
  • Rare earth elements other than cerium include scandium, yttrium, lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. These rare earth elements can be contained in the CZA composite oxide as an oxide, for example. Two or more rare earth element oxides may be contained.
  • the oxide of a rare earth element other than cerium may or may not form a solid solution with ceria-zirconia solid solution, ceria or zirconia. Whether or not an oxide of a rare earth element other than cerium forms a solid solution with a ceria-zirconia solid solution can be confirmed by X-ray diffraction measurement.
  • the content of the oxide in the CZA composite oxide is such that copper oxide reacts with the oxide to lower the catalytic activity.
  • the content is preferably 5% by mass or less, more preferably 3% by mass or less.
  • the content is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more.
  • the amount of the rare earth oxide other than cerium includes both the amount of the rare earth oxide forming the solid solution and the amount of the rare earth oxide not forming the solid solution.
  • the method for producing the CZA composite oxide can be produced by, for example, a coprecipitation method, which is one of the liquid phase reaction methods.
  • a coprecipitation method a basic substance containing an aqueous solution of aluminum is contained in an acidic solution containing a water-soluble salt of cerium, a water-soluble salt of zirconium, and a water-soluble salt of a rare earth element other than cerium as necessary. After adding to obtain a precipitate, the precipitate is dried, and calcined in the air.
  • water-soluble salts of rare earth elements other than cerium, zirconium, and cerium include nitrates, oxalates, acetates, ammine complexes, and chlorides.
  • aqueous solution of aluminum a sodium aluminate solution is used, and as the other basic substance, ammonia water or the like is used.
  • the pH in the coprecipitation is controlled to be in the range of 6 to 10, and the precipitation temperature is controlled to be in the range of 48 to 80 ° C.
  • a surfactant may be further added to the obtained precipitate.
  • the precipitate is sufficiently stirred with water or the like, washed, filtered, and dried.
  • the surfactant can include any of polyvinyl alcohol (PVA), polyvinylamine, polyethylene glycol-200 (PEG-200), 2-propanol, ethanol, or a combination thereof.
  • the amount of the surfactant to be added is preferably in the range of 1% by mass to 30% by mass relative to the oxide equivalent of the metal constituting the water-soluble salt.
  • the firing of the precipitate is preferably performed at a temperature of 600 ° C. or higher from the viewpoint of reliable formation of the CZA composite oxide. When the calcination temperature is 900 ° C.
  • the upper limit of the firing temperature is preferably 1100 ° C. or less from the viewpoint of ensuring the dispersibility of the ceria-zirconia solid solution and ceria.
  • the firing time is preferably from 2 hours to 6 hours.
  • an oxygen-containing atmosphere such as the air
  • an inert gas atmosphere such as a nitrogen gas and an argon gas can be used.
  • the volume average particle diameter D 50 is 3 ⁇ m or more, preferably a point capable of increasing the gas diffusibility, and more preferably 7 ⁇ m or more.
  • the upper limit of D 50 is preferably from the viewpoint of adhesion to the substrate when used as a catalyst layer is 60 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the preferred range of D 50 D 50 of, and an exhaust gas purification catalyst composition for copper oxide-supporting composite oxide carrying copper oxide is the same range as the range described above as the preferred range of D 50 of CZA composite oxide .
  • D 50 of the CZA composite oxide, D 50 of the copper oxide-supporting composite oxide and D 50 of the exhaust gas purifying catalyst composition can be measured, for example, as follows. That is, after using an automatic sample feeder (“Microtorac SDC” manufactured by Microtrac Bell Inc.) for a laser diffraction particle size distribution measuring apparatus, the CZA composite oxide was put into an aqueous solvent, and 30 W ultrasonic waves were irradiated for 360 seconds. It is measured using a laser diffraction scattering type particle size distribution meter (“Microtrac MT3000II” manufactured by Microtrac Bell). The measurement conditions are obtained as an average value of particle refraction index 1.5, particle shape true sphere, solvent refraction index 1.3, set zero 30 seconds, measurement time 30 seconds, twice measurement. Pure water is used as the aqueous solvent.
  • an automatic sample feeder (“Microtorac SDC” manufactured by Microtrac Bell Inc.) for a laser diffraction particle size distribution measuring apparatus
  • the CZA composite oxide was put into an
  • the composition for an exhaust gas purifying catalyst of the present invention copper oxide particles are supported on CZA composite oxide particles.
  • Whether one particle carries another particle can be confirmed, for example, by measuring the particle size when observing the particle with a scanning electron microscope (hereinafter also referred to as “SEM”).
  • SEM scanning electron microscope
  • the average particle size of another particle present on the surface of one particle is preferably 10% or less, more preferably 3% or less, with respect to the average particle size of the one particle. It is particularly preferably 1% or less.
  • the average particle diameter here is an average value of the maximum Feret diameter of 30 or more particles observed by SEM.
  • the maximum Feret diameter is the maximum distance of a particle pattern between two parallel lines.
  • the copper oxide is supported on the CZA composite oxide, and is clearly different from the composite oxide of CZA and copper.
  • a composite oxide of CZA and copper as an exhaust gas purification catalyst composition, because the copper oxide and the exhaust gas component acting as an active hard contact, NO x purifying performance is hardly exerted.
  • copper oxide as in the present invention when it is made is supported in CZA composite oxide, and has excellent without the NO x purification performance inhibiting the catalytic performance as copper oxide.
  • the amount of copper oxide is an amount in terms of CuO.
  • the amount of copper oxide is preferably 3 parts by mass or more and 30 parts by mass or less, more preferably 6 parts by mass or more and 15 parts by mass or less based on 100 parts by mass of the CZA composite oxide.
  • the form of copper oxide supported on the composite oxide may be either CuO or Cu 2 O.
  • the preferable content of copper oxide in the exhaust gas purifying catalyst layer described later is also the same as the preferable range described above as the content of copper oxide in the composition for exhaust gas purifying catalyst.
  • the composition for an exhaust gas purifying catalyst may be composed of, for example, only a CZA composite oxide and copper oxide, but may also contain other components.
  • the component for example, as those mainly serving as a carrier, inorganic porous materials such as TiO 2 , SiO 2 , zeolite, MgO, MgAl 2 O 4 , CeO 2 , CeO 2 -ZrO 2 composite oxide, etc.
  • the proportion of CZA composite oxide occupied in the exhaust gas purifying catalyst composition is preferably not more than 60 wt% to 90 wt%, 70 wt% or more 87 It is more preferable that the content is not more than mass%.
  • the content of the CZA composite oxide in the composition for an exhaust gas purifying catalyst can be measured by the following method. That is, the composition for exhaust gas purifying catalyst is dissolved to form a solution, and the amount of each element is measured by ICP-AES using the solution as a measurement object. Next, an analysis field including only the CZA composite oxide supporting copper at a specific magnification is selected, and the element analysis is performed by the EDX. The difference between the amounts of the respective elements obtained from the ICP-AES and the results of the elemental analysis obtained by the EDX can be distinguished from the additives other than the CZA composite oxide such as the binder component. Can be specified.
  • the specific surface area of the CZA composite oxide in the composition for exhaust gas purifying catalyst is preferably 50 m 2 / g or more before heat endurance, because it is easy to obtain a desired amount of copper oxide and the dispersibility of copper oxide. less in order to increase sufficiently the NO x purification performance is secured, more preferably 60 m 2 / g or more, and particularly preferably 70m 2 / g or more.
  • the heat durability is preferably at least 15 m 2 / g, more preferably at least 20 m 2 / g.
  • the upper limit is preferably 140 m 2 / g or less, more preferably 130 m 2 / g or less.
  • the heat durability is preferably performed in the atmosphere at 900 ° C. for 4 hours, and then in an inert atmosphere such as nitrogen or argon at 950 ° C. for 4 hours.
  • the maintenance ratio of the specific surface area of the CZA composite oxide in the composition for exhaust gas purification catalyst is preferably 25% or more. , 35% or more.
  • the specific surface area is measured by the BET three-point method. Specifically, it is measured by the method described in Examples below.
  • the specific surface area and the maintenance ratio of the CZA composite oxide can be determined by measuring the CZA composite oxide supporting copper oxide.
  • the CZA composite oxide and the exhaust gas purification catalyst composition having a supported copper oxide to the composite oxide taking advantage of its excellent the NO x purification performance can be suitably used as an exhaust gas purifying catalyst.
  • the exhaust gas purifying catalyst having a catalyst layer formed on the substrate and the substrate surface a catalyst layer that is formed by the exhaust gas purifying catalyst composition, the exhaust gas purifying catalyst having an excellent the NO x purification performance Obtainable.
  • the shape of the substrate is not particularly limited, but is generally a honeycomb shape, a plate, a pellet, or the like, and is preferably a honeycomb.
  • Examples of the material of such a substrate include alumina (Al 2 O 3 ), mullite (3Al 2 O 3 -2SiO 2 ), cordierite (2MgO-2Al 2 O 3 -5SiO 2 ), and aluminum titanate. Ceramic materials such as (Al 2 TiO 5 ) and silicon carbide (SiC) and metal materials such as stainless steel can be used.
  • a slurry containing the water-soluble copper salt and the CZA composite oxide was applied to the surface of the substrate, dried, and calcined, whereby a catalyst layer composed of the exhaust gas-purifying catalyst composition of the present invention was formed on the substrate.
  • An exhaust gas purifying catalyst can be obtained.
  • a CZA composite oxide and, if necessary, other components are added to an aqueous solution containing a water-soluble salt of copper to prepare a slurry, and the slurry is applied to a substrate, dried, and fired.
  • an exhaust gas purifying catalyst may be formed.
  • the temperature at which the substrate coated with the slurry is fired is preferably 300 ° C to 800 ° C, more preferably 400 ° C to 600 ° C.
  • the firing time is preferably 0.5 hours to 10 hours, more preferably 1 hour to 3 hours. The firing can be performed, for example, in the atmosphere.
  • the amount of the composition for an exhaust gas purifying catalyst in the exhaust gas purifying catalyst is preferably 50 g / L or more when the base material is a honeycomb shape, from the viewpoint of obtaining heat resistance and exhaust gas purifying performance at a low temperature, and more preferably 70 g / L or more. More preferably, it is particularly preferably 85 g / L or more. On the other hand, it is preferably 220 g / L or less from the viewpoint of obtaining a suitable low-temperature activity while preventing a decrease in back pressure, more preferably 200 g / L or less, and particularly preferably 180 g / L or less. .
  • the amount of the composition for an exhaust gas purifying catalyst in the exhaust gas purifying catalyst referred to herein is an amount based on the volume based on the outer shape of the substrate, including all spaces in the substrate as a part of the volume of the substrate. .
  • the exhaust gas purifying catalyst composition of the present invention exhibit excellent the NO x purification performance in previous thermal endurance. Moreover, even when exposed to temperatures higher than 900 ° C. exhibits stable the NO x purification catalyst performance.
  • Such an exhaust gas purifying catalyst composition and an exhaust gas purifying catalyst can exhibit stable and high exhaust gas purifying performance when used in an internal combustion engine using a fossil fuel as a power source, such as a gasoline engine or a diesel engine.
  • a fossil fuel as a power source such as a gasoline engine or a diesel engine.
  • the composition for an exhaust gas purifying catalyst of the present invention is suitably used particularly for motorcycles.
  • Drying and firing in the production of the composition for exhaust gas purifying catalyst and the exhaust gas purifying catalyst were all performed in the air.
  • the specific surface area was determined by a BET three-point method using a specific surface area / pore distribution measuring device (model number: QUADRASORB @ SI) manufactured by Cantachrome. Helium was used as a measurement gas.
  • Example 1 (1) Manufacture of slurry for forming exhaust gas purification catalyst Using cerium nitrate hexahydrate, zirconyl nitrate dihydrate, yttrium nitrate aqueous solution and lanthanum nitrate aqueous solution, the total of cerium nitrate, zirconyl nitrate, yttrium nitrate and lanthanum nitrate was used. A nitrate aqueous solution having a concentration of 0.1 mol / L was formed.
  • the oxide-equivalent mass ratio of aluminum in the slurry to the mixed metal composed of Ce, Zr, Y and La was 40:60. After precipitation, the temperature was raised to 90 ° C, the slurry was aged for 30 minutes, and then cooled to 40 ° C. Next, PEG-200 as a surfactant was added to the slurry at a ratio of 30% by mass based on the total mass of the mixed metal in terms of oxide. The slurry was stirred for 1 hour, then collected and washed with deionized water. The obtained wet solid was dried in an oven at 120 ° C. for about 12 hours and sieved to obtain a dry powder. Next, the obtained powder was fired at 1000 ° C. for 4 hours to obtain a CZA composite oxide.
  • the amounts of Al 2 O 3 , ZrO 2 , CeO 2 , La 2 O 3 and Y 2 O 3 in the obtained CZA composite oxide were as shown in Table 1.
  • the volume average particle diameter D 50 of the resulting CZA composite oxide was measured by the above method, it was 10 [mu] m.
  • X-ray diffraction measurement of the CZA composite oxide confirmed that alumina was ⁇ -alumina.
  • the diffraction peak of the ceria-zirconia solid solution was shifted to the lower angle side, and that a part of alumina was dissolved in the ceria-zirconia solid solution. confirmed.
  • the powder of the CZA composite oxide obtained in the above (1) is added to an aqueous solution obtained by dissolving copper (II) nitrate trihydrate in ion-exchanged water and stirred, and then a zirconia binder is added.
  • a slurry for forming an exhaust gas purifying catalyst was obtained.
  • the composition of the slurry for forming an exhaust gas purifying catalyst has a composition ratio of 6.0% by mass of copper oxide, 85.5% by mass of CZA composite oxide, and 8.5% by mass of zirconia when the composition for an exhaust gas purifying catalyst is used.
  • the slurry for forming an exhaust gas purifying catalyst prepared in the above (1) was prepared using a honeycomb substrate made of stainless steel (manufactured by Koshi Giken Kogyo Co., Ltd., diameter 40 mm, axial length 60 mm, cell number 300 cpsi, volume 0. 0754 L), and excess slurry was blown off. Next, after drying by directing hot air at 70 ° C. directly onto the surface to which the composition is applied, baking is performed at 450 ° C. for 1 hour to remove nitrate, and an exhaust gas purifying catalyst in which a catalyst layer is formed on a stainless steel honeycomb substrate.
  • the catalyst layer was composed of the exhaust gas-purifying catalyst composition having the above composition, and was mainly composed of a powder in which copper oxide was supported on a CZA composite oxide.
  • the amount of the catalyst layer was 165 g / L based on the volume of the substrate.
  • the obtained catalyst powder sample was durable under the conditions described below. The specific surface area and the maintenance ratio of the specific surface area of the catalyst powder samples before and after the durability test were measured by the above-described method. Table 1 shows the results.
  • Examples 2 to 4> The amounts of cerium nitrate hexahydrate, zirconyl nitrate dihydrate, lanthanum nitrate aqueous solution, yttrium nitrate aqueous solution, and aluminum hydroxide used were determined based on the amounts of Al 2 O 3 , ZrO 2 , CeO 2 , and La 2 in the obtained CZA composite oxide.
  • a composition for an exhaust gas purifying catalyst and an exhaust gas purifying catalyst were obtained in the same manner as in Example 1 except that the amounts of O 3 and Y 2 O 3 were changed so as to be the values shown in Table 1. To obtain a catalyst powder sample as described in Example 1, it was measured for its D 50, were as shown in Table 1. Table 1 shows the results of measuring the specific surface area and the retention rate of the specific surface area of the catalyst powder samples before and after durability, as in Example 1.
  • Example 5 The particle size D 50 of the CZA composite oxide except for using the 24 ⁇ m was obtained an exhaust gas purifying catalyst composition, and the exhaust gas purifying catalyst in the same manner as in Example 3. To obtain a catalyst powder sample as described in Example 1, was measured in the D 50 in the same manner as in Example 1, it was as shown in Table 1. Table 1 shows the results of measuring the specific surface area and the retention rate of the specific surface area of the catalyst powder samples before and after durability, as in Example 1.
  • Example 1 a commercially available ceria-zirconia composite oxide was used instead of the CZA composite oxide (the amounts of ZrO 2 and CeO 2 are as shown in Table 1). Except for these, in the same manner as in Example 1, a composition for an exhaust gas purifying catalyst and an exhaust gas purifying catalyst were obtained.
  • the compositions of the exhaust gas purifying catalyst composition and the catalyst layer were 6.0% by mass of copper oxide, 85.5% by mass of ceria-zirconia composite oxide, and 8.5% by mass of zirconia.
  • Example 2 a commercially available La-stabilized ⁇ -alumina was used in place of the CZA composite oxide (the amounts of Al 2 O 3 and La 2 O 3 are as shown in Table 1). Except for these, in the same manner as in Example 1, a composition for an exhaust gas purifying catalyst and an exhaust gas purifying catalyst were obtained.
  • the compositions of the exhaust gas-purifying catalyst composition and the catalyst layer were 6.0% by mass of copper oxide, 85.5% by mass of alumina, and 8.5% by mass of zirconia.
  • the exhaust gas purifying catalyst before and after the durability test performed measurements of T50 and ⁇ 400 of the NO x in the following conditions to evaluate the purification performance of the NO x.
  • Table 2 shows the results.
  • ⁇ T50, ⁇ 400 measurement conditions> The exhaust gas purifying catalyst was disposed in a gas flow path, and a simulated exhaust gas having the following composition was passed. By gradually increasing the gas temperature flowing into the exhaust purification catalyst from room temperature to obtain the amount of NO x contained in exhaust gas that has passed through the catalyst, A: NO x detection amount of the catalyst unestablished, B: after catalyst installation NO x when the detected amount was determined the NO x purification rate by the following equation.
  • NO x purification rate (%) (AB) / A ⁇ 100
  • the NO x purification rate is calculated by defining the gas temperature of the catalyst when it reaches 50% and light-off temperature T50. ⁇ 400 performs the same measurement as T50, is the NO x purification rate when the temperature constant at 400 ° C. The exhaust gas flowing into the device. T50 means the better the lower the the NO x purification performance, Ita400 means the better the higher the NO x purification performance.
  • each example T50 is 346 ° C. or less before the durability, in ⁇ 400 91% or more, shows excellent the NO x purification performance.
  • Comparative Example 1 in which copper oxide was supported on a ceria-zirconia composite oxide that was not a CZA composite oxide
  • Comparative Example 2 in which copper oxide was supported on ⁇ -alumina, higher than in example inferior in the NO x purification performance.
  • T50 is 378 ° C. or less even after the durability, and high purification performance is maintained.
  • Comparative Example 1 is significantly higher than the embodiments T50, poor the NO x purification performance after endurance.
  • an exhaust gas purifying catalyst composition is excellent in purification performance of the NO x and exhaust gas purification catalyst is provided without using a noble metal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

排ガス浄化触媒用組成物は、セリア、ジルコニア及びアルミナを含む複合酸化物と、該複合酸化物に担持された酸化銅とを有する。前記複合酸化物中のアルミナの含有量が30質量%以上であり、セリアの含有量が50質量%未満である。前記複合酸化物100質量部に対して、前記酸化銅の含有量が3質量部以上30質量部以下であることが好ましい。前記酸化銅の含有量が3質量%以上30質量%以下であることも好ましい。前記複合酸化物中のアルミナの含有量が50質量%以上であり、前記複合酸化物中のセリアの含有量が2.5質量%以上であることも好ましい。

Description

排ガス浄化触媒用組成物及びそれを用いた排ガス浄化触媒
 本発明は、排ガス浄化触媒用組成物及びそれを用いた排ガス浄化触媒に関する。
 従来、ディーゼルエンジンやガソリンエンジン等の内燃機関から排出される一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO)の3成分を浄化する排ガス浄化触媒が提案されている。これら3成分は主にPt、Rh又はPd等の貴金属を金属酸化物に担持させた排ガス浄化触媒用組成物によって浄化されてきた。これに対し、近年貴金属の使用量を低減し、究極的には貴金属をなくすことを目的として、貴金属の代替として酸化銅を金属酸化物に担持させた組成物が提案されている。
 例えば特許文献1には、セリアとジルコニアとアルミナとを含有する複合金属酸化物からなり且つ前記複合金属酸化物中のセリアの含有量が50質量%以上である担体と、該担体に担持された酸化銅とを備える触媒が記載されており、CO酸化能に優れていると記載されている。
 特許文献2には、3d遷移元素を含有するとともに貴金属を含有しない第1浄化部材と、第1浄化部材に対する排ガスの通過方向上流側及び下流側の両側において前記第1浄化部材に隣接配置され、貴金属を含有する第2浄化部材とを含む排ガス浄化触媒が記載されている。特許文献2の実施例1は第1浄化部材がCu/θ-Al、Cu/Ce0.30Zr0.50La0.050.05Oxideを有しており、HC及びCOの浄化を図ることができると記載されている。
特開2011-183280号公報 特開2013-107056号公報
 触媒活性成分である貴金属の代わりに酸化銅を金属酸化物に担持させた排ガス浄化触媒用組成物においては、HC、CO及びNOのうち特にNO浄化性能の向上が最も大きな課題である。
 この点、特許文献1及び2にはNOの浄化性能を向上させるための排ガス浄化触媒用組成物の構成について何ら検討されていない。
 したがって、本発明は上述した課題を解決できる排ガス浄化触媒用組成物及びそれを用いた排ガス浄化触媒を提供することを課題としたものである。
 本発明者は、貴金属を使用しないにも関わらず優れたNOの浄化性能を有し得る排ガス浄化触媒用組成物の構成について鋭意検討した。その結果、驚くべきことに、アルミナ及びセリアの含有量を特定の範囲に制御したセリア、ジルコニア及びアルミナを含む複合酸化物に対して酸化銅を担持させることで、優れたNO浄化性能が得られることを見出した。
 本発明は前記知見に基づくものであり、セリア、ジルコニア及びアルミナを含む複合酸化物と、該複合酸化物に担持された酸化銅とを有する排ガス浄化触媒用組成物であって、
 前記複合酸化物中のアルミナの含有量が30質量%以上であり、セリアの含有量が50質量%未満である、排ガス浄化触媒用組成物を提供するものである。
 また本発明は、前記排ガス浄化触媒用組成物を含む排ガス浄化触媒を提供するものである。
 以下本発明を、その好ましい実施形態に基づき説明する。本発明の排ガス浄化触媒用組成物は、セリア、ジルコニア及びアルミナを含む複合酸化物(以下、「CZA複合酸化物」と記載することもある。)と、該複合酸化物に担持された酸化銅とを有する。
 CZA複合酸化物は、セリウム、ジルコニウム及びアルミニウムを含む複合酸化物である。該CZA複合酸化物中においては、セリア-ジルコニアの固溶体にアルミナの一部が固溶する形態で存在していることが好ましい。セリア及びジルコニアが固溶体となっていることは、X線回折測定により、セリア-ジルコニアの固溶体に由来する単相が形成されているか否かによって確認することができる。また、CZA複合酸化物をX線回折測定すると一般に、セリア、ジルコニアまたはセリア-ジルコニア固溶体の回折ピークと、アルミナの回折ピークが別に観察される。なお、CZA複合酸化物を、アルミナ粉末とセリア-ジルコニア粉末との混合物と区別する方法としては、例えばX線回折測定の結果から次のようにして判断する方法が挙げられる。まず、サンプルについてX線回折測定した場合に、セリア-ジルコニアの固溶体に由来するピーク(2θ=29°付近、34°付近及び48.5°付近の3カ所に存在)が、セリア-ジルコニアの固溶体にアルミナの一部が固溶することで、低角度側に2θ=1~2°程度ピークシフトしている場合には、そのサンプルはCZA複合酸化物であると判断できる。あるいは、Cuを担持させたサンプルに対して950℃、4時間の熱処理を施した後にX線回折測定した場合に、セリア-ジルコニアの固溶体に由来するピーク(2θ=29°付近、34°付近及び48.5°付近の3カ所に存在)が、セリア-ジルコニアの固溶体の分相によって2つ以上のピークに分かれている場合にはアルミナ粉末とセリア-ジルコニア粉末との混合物であると判断でき、ピークが1つのままである場合にはCZA複合酸化物であると判断できる。上記のX線回折測定の線源としては、CuKα線とすることが好ましい。なおX線回折ピーク位置に係る「付近」とは、±1.0°の範囲内であることを意味する。
 本発明においては、CZA複合酸化物中のセリアの含有量が50質量%未満であり、これに酸化銅を担持させることでNOの浄化性能に優れたものとなる。すなわち、CZA複合酸化物中のセリアの含有量を敢えて制限した設計とし、これに酸化銅を担持させることで、酸化銅中の銅の1~2価の価数変動が容易なものとなり、HO又はOと、HC又はCOとの反応がより活性化する。中でも、HOによるHC又はCOの酸化反応によって生じたHがNOと反応することで、NOの浄化が進むと考えられる。
 これに対し、特許文献1記載の技術のように複合酸化物中のセリアの含有量が50質量%以上であると、その酸素貯蔵放出能(以下「OSC」ともいう。)に起因して、COやHCが専らOによって酸化されてしまい、HOによる酸化反応が制限されてしまうため、本願でいう所望のNO浄化性能が得られない。
 なお、ここでいうCZA複合酸化物中のセリアの含有量には、固溶体を構成しないセリアの量及び固溶体を構成するセリアの量のいずれもが含まれるものとする。
 また、CZA複合酸化物中のアルミナの含有量を30質量%以上とすることにより、CZA複合酸化物の比表面積の低下を抑制して排ガス浄化触媒用組成物の耐熱性を向上させるだけでなく、CZA複合酸化物中のセリアの相対的割合を低下させることができ、900℃以上の熱耐久後のみならず、当該熱耐久前においてもNOの浄化性能が向上することができる。
 以上の利点を一層顕著なものとする観点から、特に熱耐久前におけるNO浄化性能を高める点から、CZA複合酸化物中のアルミナの含有量は、好ましくは30質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上、特に好ましくは70質量%以上に設定することが有利である。この含有量は、特許文献1の各実施例におけるCZA複合酸化物中のアルミナの含有量(約11質量%)に比べて大幅に高い値である。一方でアルミナの含有量の上限値は、特に熱耐久前におけるNO浄化性能を高める観点から、98質量%以下であることが好ましく、95質量%以下であることが更に好ましく、90質量%以下であることが一層好ましい。
 CZA複合酸化物におけるアルミナの含有量は次の方法で測定する。まず、排ガス浄化触媒用組成物を溶解させて溶液となし、該溶液を測定対象として、各元素の量をICP-AESで測定する。測定された各元素の量のうち、CZA複合酸化物に担持されている銅の量を求め、残りの元素の量をそれらの酸化物に換算して全量を100としたときの酸化物換算のアルミニウムの量の割合を算出する。
 CZA複合酸化物中に含まれるアルミナとしては、γ-アルミナ、β-アルミナ、δ-アルミナ、θ-アルミナ、α-アルミナ等が挙げられ、いずれを用いることもできる。特にθ-アルミナを用いることが、セリア-ジルコニア固溶体、セリア及び/又はジルコニアと組み合わせたとき排ガス浄化触媒用組成物の比表面積を維持しつつ熱的安定性が高いため好ましい。
 なお、特許文献1においてセリアとジルコニアとアルミナとを含有する複合金属酸化物が記載されているが、アルミナはnmスケールで分散されているため、上述のようなアルミナの結晶構造を確認することができない。それにより、熱的安定性に乏しいものとなるため、本発明でいう熱耐久後の性能に乏しいものとなる。
 本発明の排ガス浄化触媒用組成物は、熱耐久前の状態、具体的には900℃以上且つ4時間以上の加熱を未だ受けていない状態において優れたNO浄化性能を有する。それに加えて本発明の排ガス浄化触媒用組成物は、900℃以上且つ4時間以上の加熱を受けた後においても、優れたNO浄化性能を維持し得る。その理由の一つとして、本発明者は以下のように考えている。CZA複合酸化物において、上述した通り、アルミナはその一部が、セリア-ジルコニアの固溶体に固溶することが好ましい一方で、残りの部分は、セリア、ジルコニア及びセリア-ジルコニアの固溶体のいずれにも固溶しない。このため、セリア、ジルコニア及び/又はセリア-ジルコニアの固溶体と、それらに固溶しないアルミナとは互いに拡散の障壁となる。それゆえに同種の酸化物同士の凝集が抑制され耐熱性が向上したと考えられる。これに対し、アルミナを有さないセリア-ジルコニア複合酸化物に酸化銅を担持させた排ガス浄化触媒用組成物は、拡散の障壁となるアルミナが存在しないため、セリア-ジルコニア複合酸化物の凝集が起こりやすく、900℃以上の加熱によってセリア及びジルコニアの分相が起こることで触媒活性面積が減少し、十分なNO浄化性能が得られない。
 なお、NO浄化性能を一層高める観点、特に熱耐久前後のNO浄化性能をともに高める観点から、CZA複合酸化物におけるセリアの含有量は35質量%以下であることが好ましく、25質量%以下であることがより好ましく、20質量%以下であることが更に好ましく、15質量%以下であることが特に好ましい。一方、セリアの含有量の下限値は、熱耐久前の状態におけるNO浄化性能を高める観点から1質量%以上であることが好ましく、2.5質量%以上であることが更に好ましく、5質量%以上であることが一層好ましい。
 CZA複合酸化物におけるセリアの含有量は、CZA複合酸化物におけるアルミナの含有量の測定方法として上述した方法と同様の方法で測定される。
 また、NO浄化性能を一層高める観点、特に熱耐久前後のNO浄化性能をともに高める観点から、CZA複合酸化物中におけるセリアに対するアルミナの質量比(アルミナ/セリア)は、5以上が好ましく、7以上がより好ましく、10以上が更に好ましい。
 CZA複合酸化物におけるジルコニアの含有量は、1質量%以上であることが、熱耐久後のNO浄化性能を高める観点から好ましく、2.5質量%以上であることがより好ましく、5質量%以上であることが一層好ましい。一方、ジルコニアの含有量の上限値は、特に熱耐久前の状態におけるNO浄化性能を高める観点から、35質量%以下であることが好ましく、25質量%以下であることが更に好ましく、20質量%以下であることが一層好ましい。
 CZA複合酸化物におけるジルコニアの含有量は、CZA複合酸化物におけるアルミナの含有量の測定方法として上述した方法と同様の方法で測定される。
 上記の含有量の測定方法から判る通り、前述したアルミナ、セリア及びジルコニアの各含量には、CZA複合酸化物において固溶体を構成する量及び固溶体を構成していない量のいずれもが含まれるものとする。
 また、CZA複合酸化物中におけるセリアとジルコニアとの含有割合(質量比)としては、熱耐久性の観点からジルコニア1に対してセリアが1以上3以下であることが好ましく、1以上2以下であることがより好ましい。一方、NO浄化性能の観点からセリア1に対してジルコニアが0.5以上3以下であることが好ましく、0.5以上2以下であることがより好ましい。
 CZA複合酸化物は、セリウム以外の希土類元素を含んでいることが熱耐久後のNO浄化性能を一層高める点で好ましい。セリウム以外の希土類元素としては、スカンジウム、イットリウム、ランタン、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウムを挙げることができる。これらの希土類元素は、例えば酸化物としてCZA複合酸化物に含有されることができる。希土類元素の酸化物は2種以上含まれていてもよい。セリウム以外の希土類元素の酸化物は、セリア-ジルコニア固溶体、セリア又はジルコニアと固溶体を形成していてもよく、あるいは形成していなくてもよい。セリウム以外の希土類元素の酸化物がセリア-ジルコニア固溶体と固溶体を形成しているか否かは、X線回折測定によって確認できる。
 CZA複合酸化物がセリウム以外の希土類元素の酸化物を含有する場合、該酸化物のCZA複合酸化物中の含有量は、酸化銅が該酸化物と反応して触媒活性が低下してしまうのを防止する観点から、5質量%以下であることが好ましく、3質量%以下であることがより好ましい。他方、熱的安定性確保の観点から、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。
 セリウム以外の希土類元素酸化物の量には固溶体を構成する該希土類元素酸化物の量及び構成しない該希土類元素酸化物の量のいずれもが含まれるものとする。
 CZA複合酸化物の製造方法に特に制限はなく、例えば液相反応法のひとつである共沈法で製造することができる。共沈法としては、原料としてセリウムの水溶性塩と、ジルコニウムの水溶性塩と、必要に応じてセリウム以外の希土類元素の水溶性塩とを含む酸性溶液にアルミニウムの水溶液を含む塩基性物質を添加して、沈殿物を得た後、これを乾燥させ、大気中、焼成する方法を挙げることができる。セリウム、ジルコニウム、セリウム以外の希土類元素の水溶性塩としては、硝酸塩やシュウ酸塩、酢酸塩、アンミン錯体、塩化物が挙げられる。アルミニウムの水溶液としてはアルミン酸ナトリウム溶液が用いられ、その他塩基性物質としてはアンモニア水等が挙げられる。共沈殿におけるpHは6~10の範囲に、沈殿温度を48~80℃の範囲になるように制御される。
 得られた沈殿物に更に界面活性剤を添加しても良く、その場合これらを水等で十分に撹拌後洗浄しながら濾過され乾燥される。界面活性剤はポリビニルアルコール(PVA)、ポリビニルアミン、ポリエチレングリコール-200(PEG-200)、2-プロパノール、エタノールのいずれか、またはそれらの組み合わせを含むことが出来る。
 界面活性剤の投入量は水溶性塩を構成する金属の酸化物換算量に対して1質量%~30質量%の範囲にあることが好ましい。前記の沈殿物の焼成は600℃以上とすることが、CZA複合酸化物の確実な生成の観点から好ましい。焼成温度が900℃以上であると、アルミナとしてθ-アルミナを含むCZA複合酸化物が得られやすいので好ましい。焼成温度の上限は、セリア-ジルコニア固溶体及びセリアの分散性の確保の観点から1100℃以下であることが好ましい。焼成時間は2時間以上6時間以下であることが好ましい。焼成雰囲気は、例えば大気などの酸素含有雰囲気や、窒素ガス及びアルゴンガス等の不活性ガス雰囲気を用いることができる。
 CZA複合酸化物はその体積平均粒径D50が3μm以上であることが、ガス拡散性を高くし得る点で好ましく、7μm以上であることがより好ましい。一方、D50の上限値は、触媒層とした際の基材に対する密着性の観点から60μm以下であることが好ましく、40μm以下であることがより好ましい。酸化銅を担持した酸化銅担持複合酸化物のD50、及び排ガス浄化触媒用組成物のD50の好ましい範囲は、CZA複合酸化物のD50の好ましい範囲として上述した範囲と同様の範囲である。
 CZA複合酸化物のD50、酸化銅担持複合酸化物のD50、及び排ガス浄化触媒用組成物のD50は、例えば以下のように測定することができる。すなわち、レーザー回折粒子径分布測定装置用自動試料供給機(マイクロトラック・ベル社製「Microtorac SDC」)を用い、CZA複合酸化物を水性溶媒に投入し、30Wの超音波を360秒間照射した後、レーザー回折散乱式粒度分布計(マイクロトラック・ベル社製「マイクロトラックMT3000II」)を用いて測定する。測定条件は、粒子屈折率1.5、粒子形状真球形、溶媒屈折率1.3、セットゼロ30秒、測定時間30秒、2回測定の平均値として求める。水性溶媒としては純水を用いる。
 本発明の排ガス浄化触媒用組成物においては、CZA複合酸化物の粒子に酸化銅の粒子が担持されている。一の粒子が他の粒子を担持していることは、例えば走査型電子顕微鏡(以下「SEM」ともいう。)で粒子を観察したときの粒径の測定により確認できる。例えば、一の粒子の表面上に存在している他の粒子の平均粒径は、当該一の粒子の平均粒径に対して10%以下であることが好ましく、3%以下であることがより好ましく、1%以下であることが特に好ましい。ここでいう平均粒径とは、SEMで観察したときの30個以上の粒子の最大フェレ径の平均値である。最大フェレ径とは2本の平行線で挟まれた粒子図形の最大の距離である。
 なお、本発明においては酸化銅がCZA複合酸化物に担持されてなるものであり、CZAと銅との複合酸化物とは明確に異なるものである。CZAと銅との複合酸化物を排ガス浄化触媒用組成物として用いると、活性点である酸化銅と排ガス成分とが接触しにくいため、NO浄化性能が発揮されにくい。一方で、本発明のように酸化銅がCZA複合酸化物に担持されてなるものであると、酸化銅としての触媒性能を阻害すること無くNO浄化性能に優れたものとなる。
 CZA複合酸化物に酸化銅を担持させた排ガス浄化触媒用組成物における酸化銅の含有量は2.5質量%以上であることが、NO浄化性能を十分に高める点で好ましく、4.5質量%以上であることがより好ましく、5.5質量%以上であることが特に好ましい。一方、上限としては25質量%以下であることが、酸化銅の分散性を確保し、シンタリングを抑制する観点で好ましく、15質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。ここでいう酸化銅の量は、CuO換算の量である。同様の観点から、CZA複合酸化物100質量部に対する酸化銅の量は、好ましくは3質量部以上30質量部以下であり、より好ましくは6質量部以上15質量部以下である。
 なお、本発明において複合酸化物に担持される酸化銅の形態はCuO及びCuOのいずれであってもよい。また後述する排ガス浄化触媒層中の酸化銅の好ましい含有量も、排ガス浄化触媒用組成物における酸化銅の含有量として上述した好ましい範囲と同様である。
 排ガス浄化触媒用組成物は、例えばCZA複合酸化物及び酸化銅のみからなるものであってもよいが、それら以外の成分を含有してもよい。当該成分としては、例えば主に担体としての役割を果たすものとして、TiO、SiO、ゼオライト、MgO、MgAlなどの無機多孔質材料、CeO、CeO-ZrO複合酸化物などのOSC材料、Ba、Sr、Mg等のアルカリ土類金属化合物、バインダとしてのアルミナゾルやジルコニアゾル等が挙げられる。なお、これらの成分にも酸化銅が担持されても良い。
 優れたNO浄化性能及び耐熱性を得る点から、排ガス浄化触媒用組成物中に占めるCZA複合酸化物の割合は、60質量%以上90質量%以下であることが好ましく、70質量%以上87質量%以下であることがより好ましい。
 また、排ガス浄化触媒用組成物中のCZA複合酸化物の含有量は次の方法で測定できる。すなわち、排ガス浄化触媒用組成物を溶解させて溶液となし、該溶液を測定対象として、各元素の量をICP-AESで測定する。次いで、特定の倍率にて銅が担持されたCZA複合酸化物のみが含まれる分析視野を選択し、上記EDXにて元素分析を行う。そして、ICP-AESから求められた各元素の量からEDXにて求められた元素分析結果の差によって、バインダ成分などのCZA複合酸化物以外の添加材と区別することができ、CZA複合酸化物の含有量を特定できる。
 排ガス浄化触媒用組成物中のCZA複合酸化物の比表面積は、熱耐久前においては50m/g以上であることが、酸化銅の所望の担持量を得やすい点や酸化銅の分散性を確保しNO浄化性能を十分に高める点で好ましく、60m/g以上であることがより好ましく、70m/g以上であることが特に好ましい。一方、上限としては150m/g以下であることが、熱耐久による酸化銅の凝集を抑制しNO浄化性能を確保する点で好ましく、140m/g以下であることがより好ましく、130m/g以下であることが特に好ましい。
 一方、熱耐久後においては、15m/g以上であることが好ましく、20m/g以上であることがより好ましい。上限としては、140m/g以下であることが好ましく、130m/g以下であることがより好ましい。熱耐久は例えば大気中、900℃において4時間、次いで窒素やアルゴンなどの不活性雰囲気中、950℃において4時間の条件で行うことが好ましい。この条件において、排ガス浄化触媒用組成物中のCZA複合酸化物の比表面積の維持率(=熱耐久後の比表面積/熱耐久前の比表面積×100)は、25%以上であることが好ましく、35%以上であることがより好ましい。比表面積はBET3点法により測定される。具体的には後述の実施例の方法で測定される。CZA複合酸化物の比表面積やその維持率は、酸化銅を担持した状態のCZA複合酸化物について測定したものとすることができる。
 CZA複合酸化物と該複合酸化物に担持された酸化銅とを有する排ガス浄化触媒用組成物は、その優れたNO浄化性能を活かして、排ガス浄化触媒として好適に用いることができる。例えば、基材と基材表面に形成される触媒層とを有する排ガス浄化触媒において、触媒層を前記排ガス浄化触媒用組成物により形成することで、優れたNO浄化性能を有する排ガス浄化触媒を得ることができる。
 前記の基材の形状は、特に限定されるものではないが、一般的にはハニカム形状、板、ペレット等であり、好ましくはハニカムである。また、このような基材の材質としては、例えば、アルミナ(Al)、ムライト(3Al-2SiO)、コージェライト(2MgO-2Al-5SiO)、チタン酸アルミニウム(AlTiO)、炭化ケイ素(SiC)等のセラミックスや、ステンレス等の金属材料を挙げることができる。
 銅の水溶性塩及びCZA複合酸化物を含むスラリーを基材表面に塗布し、乾燥させ、焼成することで、本発明の排ガス浄化触媒用組成物からなる触媒層が基材上に形成された排ガス浄化触媒を得ることができる。例えば、CZA複合酸化物及び、必要に応じてその他の成分を、銅の水溶性塩を含有する水溶液に投入してスラリーを調製し、このスラリーを、基材に塗布し、乾燥、焼成して、排ガス浄化触媒を形成してもよい。得られる排ガス浄化触媒の触媒活性を高める点から、スラリーを塗布した基材を焼成する温度は300℃~800℃が好ましく、400℃~600℃がより好ましい。焼成時間は0.5時間~10時間が好ましく、1時間~3時間がより好ましい。焼成は例えば大気中で行うことができる。
 排ガス浄化触媒における排ガス浄化触媒用組成物の量は基材がハニカム形状の場合50g/L以上であることが、耐熱性及び低温での排ガス浄化性能が得られる点から好ましく、70g/L以上であることがより好ましく、85g/L以上であることが特に好ましい。一方、220g/L以下であることが背圧の低下を防止しつつ好適な低温活性が得られる点から好ましく、200g/L以下であることがより好ましく、180g/L以下であることが特に好ましい。
 ここでいう排ガス浄化触媒における排ガス浄化触媒用組成物の量は、基材におけるすべての空間部分も基材の体積の一部として含めた、基材の外形に基づく体積を基準とする量である。
 以上の通り、本発明の排ガス浄化触媒用組成物、及びそれを用いた排ガス浄化触媒は、熱耐久前において優れたNO浄化性能を示す。また、900℃以上の高温に曝されても安定したNO浄化触媒性能を示す。このような排ガス浄化触媒用組成物及び排ガス浄化触媒は、ガソリンエンジンやディーゼルエンジンなど化石燃料を動力源とする内燃機関に用いたときに、安定した高い排ガス浄化性能を発揮することができる。特に、二輪自動車に関しては四輪自動車に比べて排ガスの変動域がリッチ側(λ>1)に寄っているため、NO浄化反応が行なわれやすい環境にある。よって、本発明の排ガス浄化触媒用組成物は特に二輪自動車用途にて好適に用いられる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。なお、排ガス浄化触媒用組成物及び排ガス浄化触媒の製造における乾燥及び焼成はすべて大気中で行った。比表面積はカンタクローム社製比表面積・細孔分布測定装置(型番:QUADRASORB SI)を用い、BET3点法で求めた。測定用のガスとしてヘリウムを用いた。
 <実施例1>
(1)排ガス浄化触媒形成用スラリーの製造
 硝酸セリウム六水和物、硝酸ジルコニル二水和物、硝酸イットリウム水溶液、硝酸ランタン水溶液を使用し、硝酸セリウム、硝酸ジルコニル、硝酸イットリウム及び硝酸ランタンの合計の濃度が0.1mol/Lである硝酸塩水溶液を形成した。この硝酸塩水溶液は、硝酸セリウム、硝酸ジルコニル、硝酸イットリウム及び硝酸ランタンの酸化物換算質量比がCeO:ZrO:Y:La=33:25:1:1となる組成を有していた。次いで、アルミン酸ナトリウム水溶液を用意し、この硝酸塩水溶液中へアルミン酸ナトリウム水溶液を滴下し、75℃の温度でpH=7のスラリーを形成した。スラリー中のアルミニウムと、Ce、Zr、Y及びLaからなる混合金属との酸化物換算質量比は、40:60であった。
 沈殿後、温度を90℃に上げ、スラリーを30分間エージングし、次に40℃に冷却した。次に界面活性剤としてPEG-200を、混合金属の酸化物換算の総質量に対して30質量%の割合でスラリーに加えた。このスラリーを1時間撹拌し、次に収集して脱イオン水により洗浄した。得られた湿潤固体をオーブン中、120℃で約12時間、乾燥し、ふるいがけすると、乾燥粉末が得られた。次に、得られた粉末に1000℃で4時間、焼成を施すと、CZA複合酸化物が得られた。得られたCZA複合酸化物におけるAl、ZrO、CeO、La、Yの量は表1に示す通りであった。得られたCZA複合酸化物の体積平均粒径D50を上記方法で測定したところ、10μmであった。またCZA複合酸化物をX線回折測定し、アルミナがθ-アルミナであることを確認した。また上記の線源のX線回折測定において、セリア-ジルコニア固溶体の回折ピークが低角度側へシフトしていることが確認され、アルミナの一部がセリア-ジルコニア固溶体に固溶されていることが確認された。またZrO、CeO、La及びYが固溶体を形成していることをX線回折測定にて確認した。
 次いで、硝酸銅(II)三水和物をイオン交換水に溶解させてなる水溶液に、前記(1)で得られたCZA複合酸化物の粉末を加えて撹拌した後、ジルコニアバインダを添加して排ガス浄化触媒形成用スラリーを得た。排ガス浄化触媒形成用スラリーの組成は、排ガス浄化触媒用組成物とした際に酸化銅6.0質量%、CZA複合酸化物85.5質量%、及びジルコニア8.5質量%の構成比率となるよう調製した。
(2)排ガス浄化触媒の製造
 前記(1)で作製した排ガス浄化触媒形成用スラリーをステンレス製ハニカム基材(合志技研工業社製、直径40mm、軸方向長さ60mm、セル数300cpsi、体積0.0754L)に塗布した後、過剰なスラリーを吹き払った。次に70℃の熱風が組成物塗布面に直接当たるようにして乾燥後、450℃で1時間焼成して硝酸根を除去し、触媒層がステンレス製ハニカム基材上に形成された排ガス浄化触媒を得た。
 触媒層は上記組成の排ガス浄化触媒用組成物からなり、酸化銅がCZA複合酸化物に担持された粉末を主成分としたものであった。触媒層の量は基材体積に対して165g/Lであった。
 なお、D50測定用サンプルとして、実施例1で得られた触媒の一部をハニカム基材から圧壊して取出し、得られた触媒粉末サンプルについて、上記CZA複合酸化物のD50の測定方法と同じ方法でD50を測定したところ、表1に示す通りであった。
 更に、得られた触媒粉末サンプルについて、後述する条件の耐久を施した。耐久前後の触媒粉末サンプルについて比表面積及び比表面積の維持率を前記方法で測定した。結果を表1に示す。
 <実施例2~4>
 硝酸セリウム六水和物、硝酸ジルコニル二水和物、硝酸ランタン水溶液、硝酸イットリウム水溶液及び水酸化アルミニウムの使用量を、得られるCZA複合酸化物におけるAl、ZrO、CeO、La、Yの量が表1に示す値となるように変更した以外は実施例1と同様にして、排ガス浄化触媒用組成物及び排ガス浄化触媒を得た。
 実施例1と同様にして触媒粉末サンプルを得て、そのD50を測定したところ、表1に示す通りであった。
 また実施例1と同様に、耐久前後の触媒粉末サンプルについて比表面積及び比表面積の維持率を測定した結果を表1に示す。
 <実施例5>
 CZA複合酸化物の粒径D50を24μmとした以外は、実施例3と同様にして排ガス浄化触媒用組成物及び排ガス浄化触媒を得た。実施例1と同様にして触媒粉末サンプルを得て、そのD50を実施例1と同様にして測定したところ、表1に示す通りであった。
 また実施例1と同様に、耐久前後の触媒粉末サンプルについて比表面積及び比表面積の維持率を測定した結果を表1に示す。
 <比較例1>
 実施例1において、CZA複合酸化物の代わりに市販のセリア-ジルコニア複合酸化物を用いた(ZrO及びCeOの量は表1に示す通り)。これら以外は実施例1と同様にして、排ガス浄化触媒用組成物及び排ガス浄化触媒を得た。
 排ガス浄化触媒用組成物及び触媒層の組成は、酸化銅6.0質量%、セリア-ジルコニア複合酸化物85.5質量%、ジルコニア8.5質量%であった。実施例1と同様にして触媒粉末サンプルを得て、そのD50を測定したところ、表1に示す通りであった。
 また実施例1と同様に、耐久前後の触媒粉末サンプルについて比表面積及び比表面積の維持率を測定した結果を表1に示す。
 <比較例2>
 実施例1において、CZA複合酸化物の代わりに市販のLa安定化θ-アルミナを用いた(Al及びLaの量は表1に示す通り)。これら以外は実施例1と同様にして、排ガス浄化触媒用組成物及び排ガス浄化触媒を得た。
 排ガス浄化触媒用組成物及び触媒層の組成は、酸化銅6.0質量%、アルミナ85.5質量%、ジルコニア8.5質量%であった。実施例1と同様にして触媒粉末サンプルを得て、そのD50を測定したところ、表1に示す通りであった。
 また実施例1と同様に、耐久前後の触媒粉末サンプルについて比表面積及び比表面積の維持率を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 〔評価〕
 実施例1~5及び比較例1及び2の排ガス浄化触媒を、以下の条件の耐久試験に付した。
 <耐久条件>
 大気中、900℃において4時間焼成し、次いで窒素雰囲気中、950℃において4時間焼成する。
 前記耐久試験前後の排ガス浄化触媒について、下記条件のNOのT50及びη400の測定を行い、NOの浄化性能を評価した。結果を表2に示す。
 <T50、η400測定条件>
 排ガス浄化触媒をガス流通経路に配置し、下記組成の模擬排ガスを流通させた。排ガス浄化触媒に流入するガス温度を常温から漸次上昇させていき、触媒を通過した排ガスに含まれるNO量を求め、A:触媒未設置のNO検出量、B:触媒設置後のNO検出量としたときに、下記式にてNO浄化率を求めた。
NO浄化率(%)=(A-B)/A×100
 NO浄化率が50%に達したときの触媒のガス温度をライトオフ温度T50と定義して求めた。η400は、T50と同様の測定を行い、装置に流入する排ガスを400℃で温度一定としたときのNO浄化率である。T50は低いほどNO浄化性能に優れていることを意味し、η400は高いほどNO浄化性能に優れていることを意味する。
・模擬排ガス(組成は体積基準):CO:1.25%、C:1740ppmC、NO:2450ppm、O:0.6%、CO:14%、HO:10%、N:残部
・ガス流速:25L/min
・昇温速度:20℃/min
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、各実施例は、耐久前においてT50が346℃以下、η400が91%以上で、優れたNO浄化性能を示す。これに対し、CZA複合酸化物ではないセリア-ジルコニア複合酸化物に酸化銅を担持させた比較例1、及び、θ-アルミナに酸化銅を担持させた比較例2は、耐久前のT50が各実施例よりも高く、NO浄化性能に劣ることが判る。また各実施例は、耐久後においてもT50が378℃以下であり、高い浄化性能を維持している。これに対し、比較例1はT50が各実施例よりも大幅に高く、耐久後のNO浄化性能に劣る。
 本発明によれば、貴金属を用いなくてもNOの浄化性能に優れた排ガス浄化触媒用組成物及び排ガス浄化触媒が提供される。

Claims (7)

  1.  セリア、ジルコニア及びアルミナを含む複合酸化物と、該複合酸化物に担持された酸化銅とを有する排ガス浄化触媒用組成物であって、
     前記複合酸化物中のアルミナの含有量が30質量%以上であり、セリアの含有量が50質量%未満である、排ガス浄化触媒用組成物。
  2.  前記複合酸化物100質量部に対して、前記酸化銅の含有量が3質量部以上30質量部以下である、請求項1記載の排ガス浄化触媒用組成物。
  3.  前記複合酸化物中のアルミナの含有量が50質量%以上であり、前記複合酸化物中のセリアの含有量が2.5質量%以上である、請求項1又は2記載の排ガス浄化触媒用組成物。
  4.  前記複合酸化物中のジルコニアの含有量が1質量%以上35質量%以下である、請求項1ないし3の何れか1項に記載の排ガス浄化触媒用組成物。
  5.  前記複合酸化物中のアルミナがθ-アルミナである、請求項1ないし4の何れか1項に記載の排ガス浄化触媒用組成物。
  6.  体積平均粒径D50が3μm以上60μm以下である、請求項1ないし5の何れか1項に記載の排ガス浄化触媒用組成物。
  7.  請求項1~5のいずれか1項に記載の排ガス浄化触媒用組成物を含む排ガス浄化触媒。
PCT/JP2019/023902 2018-08-09 2019-06-17 排ガス浄化触媒用組成物及びそれを用いた排ガス浄化触媒 WO2020031508A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020536361A JP7086196B2 (ja) 2018-08-09 2019-06-17 排ガス浄化触媒用組成物及びそれを用いた排ガス浄化触媒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-150769 2018-08-09
JP2018150769 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020031508A1 true WO2020031508A1 (ja) 2020-02-13

Family

ID=69414742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023902 WO2020031508A1 (ja) 2018-08-09 2019-06-17 排ガス浄化触媒用組成物及びそれを用いた排ガス浄化触媒

Country Status (2)

Country Link
JP (1) JP7086196B2 (ja)
WO (1) WO2020031508A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022507A (ja) * 2011-07-20 2013-02-04 Toyota Motor Corp 排気浄化用触媒及びその製造方法
JP2014144426A (ja) * 2013-01-29 2014-08-14 Mitsui Mining & Smelting Co Ltd 排気ガス浄化触媒
JP2016032795A (ja) * 2014-07-31 2016-03-10 ダイハツ工業株式会社 排ガス浄化用触媒
JP2017221933A (ja) * 2016-06-16 2017-12-21 パシフィック インダストリアル デベロップメント コーポレイション 酸素貯蔵能(osc)を有するドープ触媒担体材料及びそれらの作製方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574222B2 (ja) * 2010-03-05 2014-08-20 株式会社豊田中央研究所 Co酸化触媒及びそれを用いた排ガス浄化方法
JP2012115771A (ja) * 2010-12-01 2012-06-21 Toyota Industries Corp 触媒とその製造方法
CN102553653B (zh) * 2010-12-22 2016-09-14 太平洋工业发展公司 具有储氧能力的催化剂载体材料及其制造方法
JP5652271B2 (ja) * 2011-03-10 2015-01-14 株式会社豊田中央研究所 排ガス浄化用触媒担体、それを用いた排ガス浄化用触媒及び排ガス浄化用触媒担体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022507A (ja) * 2011-07-20 2013-02-04 Toyota Motor Corp 排気浄化用触媒及びその製造方法
JP2014144426A (ja) * 2013-01-29 2014-08-14 Mitsui Mining & Smelting Co Ltd 排気ガス浄化触媒
JP2016032795A (ja) * 2014-07-31 2016-03-10 ダイハツ工業株式会社 排ガス浄化用触媒
JP2017221933A (ja) * 2016-06-16 2017-12-21 パシフィック インダストリアル デベロップメント コーポレイション 酸素貯蔵能(osc)を有するドープ触媒担体材料及びそれらの作製方法

Also Published As

Publication number Publication date
JPWO2020031508A1 (ja) 2021-09-16
JP7086196B2 (ja) 2022-06-17

Similar Documents

Publication Publication Date Title
JP6324953B2 (ja) 酸素貯蔵用の混合金属酸化物の複合体
KR101588484B1 (ko) 배기가스 정화용 촉매 및 이것을 이용한 배기가스 정화방법
JP6907890B2 (ja) 排ガス浄化用触媒
EP1415956A2 (en) A method for preparing metal oxide particles and an exhaust gas purifying catalyst
JP2014522725A (ja) パラジウム固溶体触媒および製造方法
JP6906624B2 (ja) 酸素吸放出材料、触媒、排ガス浄化システム、および排ガス処理方法
JP4730709B2 (ja) NOx吸蔵還元型触媒
JP3265534B2 (ja) 排ガス浄化用触媒
JP6763555B2 (ja) 排気ガス浄化触媒
JP6863799B2 (ja) 排ガス浄化用触媒
JP6715351B2 (ja) 排気ガス浄化触媒用デラフォサイト型酸化物及びこれを用いた排気ガス浄化触媒
JP2018522725A (ja) Nox吸蔵材料の製造方法
JP2005254047A (ja) 排ガス浄化触媒並びに、金属酸化物粒子及びその製造方法
JPWO2018147408A1 (ja) 排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒
US11141721B2 (en) Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using porous structure, and exhaust gas purification method
CN111278555B (zh) 废气净化用组合物
JP2022518113A (ja) ナノ結晶サイズのセリウム-ジルコニウム酸化物材料およびその製造方法
WO2021075316A1 (ja) 排気ガス浄化用触媒、排気ガスの浄化方法、及び排気ガス浄化用触媒の製造方法
JP7086196B2 (ja) 排ガス浄化触媒用組成物及びそれを用いた排ガス浄化触媒
JP6824467B2 (ja) 排ガス浄化用触媒
JP3885376B2 (ja) 排気ガス浄化用触媒及びその使用方法
US20230405569A1 (en) Exhaust gas purification catalyst
WO2022209154A1 (ja) 排ガス浄化用触媒及び排ガス浄化システム
EP4309785A1 (en) Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
EP2926901A1 (en) Exhaust gas purification catalyst, and exhaust gas purification filter and exhaust gas purification method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845956

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020536361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845956

Country of ref document: EP

Kind code of ref document: A1