WO2020031284A1 - エレベータ診断システム - Google Patents

エレベータ診断システム Download PDF

Info

Publication number
WO2020031284A1
WO2020031284A1 PCT/JP2018/029711 JP2018029711W WO2020031284A1 WO 2020031284 A1 WO2020031284 A1 WO 2020031284A1 JP 2018029711 W JP2018029711 W JP 2018029711W WO 2020031284 A1 WO2020031284 A1 WO 2020031284A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
door
landing
elevator
unit
Prior art date
Application number
PCT/JP2018/029711
Other languages
English (en)
French (fr)
Inventor
聡 西江
Original Assignee
株式会社日立ビルシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ビルシステム filed Critical 株式会社日立ビルシステム
Priority to CN201880095001.5A priority Critical patent/CN112384462B/zh
Priority to JP2020535389A priority patent/JP6987255B2/ja
Priority to PCT/JP2018/029711 priority patent/WO2020031284A1/ja
Publication of WO2020031284A1 publication Critical patent/WO2020031284A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present invention relates to an elevator diagnosis system for detecting an abnormality in a landing error of a car.
  • a shielding plate serving as a reference for position detection is installed at a predetermined position in the hoistway, and the shielding plate detection device provided in the car detects the shielding plate.
  • the car has been stopped at a desired landing position by controlling the car moving distance based on the detection position.
  • a desired landing position control is realized by controlling the landing position of the car based on the landing door while reducing the number of parts of the elevator system (Patent Document 1). 1).
  • Patent Literature 1 since it is necessary to use a control signal of an elevator system to measure a landing position, a relay-type elevator in which a control signal does not exist in the first place, and an elevator made by another company in which the meaning of the control signal is unknown, When an elevator system that cannot acquire a significant control signal is to be diagnosed, there has been a problem that it is not possible to measure a landing position or diagnose a landing error.
  • the present invention provides an elevator diagnostic system capable of detecting an abnormality even when the landing error is enlarged due to aging or the like, even when an elevator system that cannot acquire a significant control signal is to be diagnosed.
  • the purpose is to provide.
  • a landing door detection unit that is provided on the car door of the passenger car and detects the landing door
  • an acceleration measurement unit that is provided on the car door and measures acceleration
  • a moving amount measuring unit that measures a moving amount of the car from when the landing door detecting unit detects the landing door to when the car door is opened as a landing position after the acceleration measuring unit detects the deceleration of the car
  • an abnormality diagnosis unit for diagnosing an abnormal landing of the car on the basis of the amount of movement.
  • a hall door detection unit that detects the hall door
  • an acceleration measurement unit that is provided on the car door and measures acceleration
  • a travel distance measuring unit that measures the travel distance of the car from when the landing door detection unit detects the landing door to when the car stops as the landing position
  • an abnormal landing of the car based on the travel distance
  • an abnormality diagnosis unit for diagnosing the abnormality.
  • the elevator diagnosis system of the present invention even when an elevator system that cannot acquire a significant control signal is to be diagnosed, it is possible to detect the abnormality when the landing error is enlarged due to aging or the like. it can.
  • 1 is a schematic diagram of an elevator system according to one embodiment.
  • 1 is a configuration diagram of an elevator door opening and closing device according to one embodiment. The figure which shows the change of the speed and magnetic flux density observed during operation
  • 5 is a flowchart illustrating a diagnosis process of the elevator diagnosis system according to the embodiment.
  • 7 is a flowchart illustrating a process of detecting a current position of a car according to one embodiment.
  • FIG. 1 is a schematic diagram of an elevator system according to one embodiment of the present invention.
  • the elevator system of the present embodiment includes a car 1 that moves up and down between a plurality of landings facing a hoistway, a car door 2 attached to an opening of the car 1, and a car door 2 that opens and closes.
  • the diagnostic device 12 is connected to an external control center 13 via a wired or wireless communication line.
  • the three-axis acceleration sensor 4, the three-axis magnetic sensor 5, and the diagnostic device 12 can be attached even after the elevator system is installed. Constitute an independent elevator diagnostic system.
  • FIG. 1 illustrates a building having two landings, the number of landings may be three or more.
  • the diagnostic device 12 diagnoses the presence or absence of an abnormality in the landing error ⁇ of the car 1 based on the output signals of the three-axis acceleration sensor 4 and the three-axis magnetic sensor 5 and detects the position of the car 1.
  • the diagnostic device 12 is specifically a computer including an arithmetic device such as a CPU, a main storage device such as a semiconductor memory, an auxiliary storage device such as a hard disk, and hardware such as a communication device and a speaker.
  • the arithmetic unit executes the program loaded in the main storage device while referring to the database recorded in the auxiliary storage device, thereby realizing the above-described car position detection unit 12a and the like. A description will be given while omitting various well-known techniques as appropriate.
  • FIG. 2 is a diagram showing the configuration of the car door 2 and the door opening / closing device 3.
  • the car door 2 includes a right door panel 2R and a left door panel 2L.
  • the door opening / closing device 3 includes a door rail 3a serving as a track for both door panels, a door machine 3b for generating driving force for both door panels, a door driving belt 3c for transmitting driving force generated by the door machine 3b to both door panels, and a door. It comprises a door pulley 2d for a door driving belt 3c provided in a pair with the machine 3b.
  • the three-axis acceleration sensor 4 and the three-axis magnetic sensor 5 are arranged such that the opening / closing direction of the car door 2 is x near the closed end of the left door panel 2L and substantially in the middle in the height direction.
  • the car and the car 1 are installed so that the vertical direction of the car 1 is the y-axis and the front-rear direction of the car 1 is the z-axis.
  • FIGS. 1 and 2 illustrate a configuration in which one 3-axis acceleration sensor 4 and one 3-axis magnetic sensor 5 are provided at substantially the center of the car door 2, respectively, the upper and lower parts of the car door 2 are respectively illustrated.
  • the three-axis acceleration sensor 4 and the three-axis magnetic sensor 5 may be provided in the configuration. Note that the two sensors do not necessarily need to be three-axis sensors, and may omit the function of detecting acceleration or magnetic flux density in a direction unnecessary for processing described later.
  • FIG. 3 is an example of changes in speed and magnetic flux density observed during operation of the elevator system. Specifically, the car 1 moves from the lower floor, which is the standby floor, to the upper floor, which is the destination floor, After the car door 2 is opened and the passenger at the landing on the upper floor gets into the car 1, the elevator speed of the car 1, the opening / closing speed of the car door 2, which is observed until the car door 2 closes, and 3 3 illustrates the outputs of the axial magnetic sensor 5 in the z-axis direction and the x-axis direction.
  • FIGS. 3A and 3B show the speeds v y and v x obtained by integrating the y-axis acceleration a y and the x-axis direction acceleration a x detected by the three-axis acceleration sensor 4. These correspond to the ascending and descending speed of the car 1 (positive is the ascending speed, negative is the descending speed) and the opening and closing speed of the car door 2 (positive is the closing speed and negative is the opening speed). Further, FIG.
  • (d) is a magnetic flux density of a three-axis magnetic sensor 5 detects the z-axis direction M z and x-axis direction of the magnetic flux density M x, respectively, landing doors 10 direction of the metal detector This corresponds to a state (Low is detected and High is not detected) and the open / closed state of the car door 2 (Low is closed and High is open).
  • there to open and close in conjunction with the landing doors 10 Wakago door 2 respectively at time t f from time t c, the opening start time of landing doors 10, open completion time, closing the start time, even in the closed completion time.
  • the car 1 moves from the standby floor (lower floor) to the destination floor (upper floor), as shown in FIG. 3A, the car 1 passes through an acceleration period, a constant speed period, and a deceleration period in this order. Reach the destination floor (upper floor).
  • the magnetic flux density M z which corresponds to the longitudinal direction of the car 1 is increased.
  • the magnetic flux density Mz decreases because the vehicle approaches the landing door on the upper floor of the standby floor (lower floor), and the magnetic flux density Mz increases again as the distance from the landing door increases.
  • step S1 the traveling state detecting unit 12d compares the absolute value of the velocity v y obtained by integrating the acceleration a y is the output of the three-axis acceleration sensor 4, the predetermined threshold v Y_th (e.g. 8m / min) If the absolute value of the speed v y is larger, it is determined that the car 1 is traveling, and the process proceeds to the next step. On the other hand, if the absolute value of the speed v y is smaller, step S1 is repeated.
  • the predetermined threshold v Y_th e.g. 8m / min
  • step S2 when detecting the deceleration of the speed v y , the traveling state detection unit 12d determines that the car 1 has approached the destination floor and has started deceleration, and proceeds to the next step. On the other hand, when deceleration cannot be detected, the process returns to step S1.
  • step S3 the car position detector 12a detects the landing door 10 on the destination floor. Specifically, the car position detection unit 12a monitors the magnetic density Mz of the three-axis magnetic sensor 5, and when the magnetic density Mz becomes smaller than a predetermined threshold Mz_th , the three-axis magnetic sensor 5 attached to the car 1 It is determined to have reached the end of the hall door 10 of the destination floor (the time t b of Figure 3 (c)). On the other hand, if the magnetic density Mz is larger, step S3 is repeated.
  • step S4 the car movement amount measuring unit 12c measures the movement amount 1 of the car 1 after reaching the landing door 10 on the destination floor based on the acceleration ay output from the three-axis acceleration sensor 4.
  • step S5 the car position detection unit 12a confirms the current position (current floor F) of the car 1 by referring to the processing result (described later) of FIG. 5 executed in parallel with the processing of FIG. Then, the data is transmitted to the abnormality diagnosis unit 12e.
  • step S6 the car door open / close detection unit 12b detects the open / closed state of the car door 2. Specifically, the car door close detection unit 12b monitors the magnetic flux density M x is the output of the three-axis acceleration sensor 4, if it is larger than the predetermined threshold M X_th, 3 axes attached to the left door panel 2L The magnetic sensor 5 moves away from the right door panel 2R, determines that the car door 2 is in the open state (time tc in FIG. 3D ), and transmits a door opening operation detection signal to the car movement amount measuring unit 12c. On the other hand, if the direction of the magnetic density M x is small, the flow returns to step S3.
  • the opening and closing state of the car door 2 may determine the opening and closing state of the car door 2 based on the change in V x indicating the opening and closing speed of the car door 2 .
  • step S7 the car movement amount measurement unit 12c ends the measurement of the movement amount l when the door opening operation detection signal is received from the car door opening / closing detection unit 12b, and sets the measured movement amount l as the landing position L. This is transmitted to the diagnosis unit 12e.
  • steps S6 and S7 the movement amount l of the car 1 from the detection of the landing door 10 to the start of opening the car door 2 is set to the landing position L, but from the detection of the landing door 10 to the stop of the car 1
  • the moving amount 1 of the car 1 may be set as the landing position L.
  • step S8 the abnormality diagnosing unit 12e, either confirm the initial value L 0 of the landing position L that has currently corresponding to floor F obtained in step S5 is registered, if the initial value L 0 is not registered, in step S9, and stored in the initial value storage unit 12f as an initial value L 0 which currently corresponds to the floor F implantation position L obtained in step S7. On the other hand, if the initial value L 0 corresponding to the current floor F has been registered, the process proceeds to step S10.
  • step S10 the landing position L measured, implantation error storing difference between the initial value L 0 of the current stored in the initial value storage unit 12f corresponding to floor F, as implantation error ⁇ of the current floor F
  • the information is stored for each floor in the section 12g.
  • step S11 the abnormality diagnosis unit 12e detects an abnormality in the landing error ⁇ . Specifically, the abnormality diagnosis unit 12e compares the implantation error ⁇ obtained in step S10 with a predetermined threshold ⁇ th (for example, 20 mm), and when the implantation error ⁇ is larger, Is determined to be abnormal, and the process proceeds to step S12. On the other hand, if the landing error ⁇ is smaller, it is determined that there is no abnormality, and the processing in FIG. 4 ends.
  • a predetermined threshold ⁇ th for example, 20 mm
  • step S12 the abnormality diagnosing unit 12e transmits an alarm instruction to the abnormality alarming unit 12h.
  • the abnormality notification unit 12h Upon receiving the notification command, the abnormality notification unit 12h notifies the control center 13 of the current floor F where the abnormality has occurred and the landing error ⁇ as a pair of information.
  • the control center 13 that has received the abnormality report from the diagnostic device 12 contacts a specialized maintenance person and requests a work to correct the landing error ⁇ on the floor where the abnormality has occurred.
  • FIG. 5 is a process performed in parallel with FIG.
  • the maintenance staff uses a setting tool (not shown) to determine the total floor number F max and the initial stop floor F 0 of the elevator system. Registered.
  • step S51 the car position detection unit 12a determines whether the car 1 is traveling. This processing is equivalent to step S1 in FIG. If the vehicle is running, the process proceeds to step S52.
  • step S52 the car position detection unit 12a monitors the magnetic flux density Mz output from the three-axis magnetic sensor 5, and if the magnetic flux density Mz decreases, that is, if any metal is detected, the process proceeds to step S53.
  • step S53 the car position detection unit 12a uses the acceleration a y output from the three-axis acceleration sensor 4 to measure the amount of movement l of the car 1 in the y-axis direction during metal detection.
  • step S54 the car position detector 12a determines whether the metal detected in step 52 is the landing door 10. Specifically, the car position detection unit 12a compares the movement amount l obtained in step S53 with a predetermined threshold lth , and when the movement amount l is larger, determines that the metal being detected is the landing door 10. to decide.
  • the threshold l th may be set to any value that can detect the landing door 10. For example, the following value is set so that other metal devices in the hoistway are not determined to be the landing door 10. Should be set.
  • step S55 the car position detection unit 12a acquires the traveling direction information of the car 1 from the traveling state detection unit 12d, and if the traveling direction is rising, the current floor obtained by adding the first floor in step S56. Update to F. On the other hand, if the traveling direction is down, the current floor F is updated in step S57 by subtracting the first floor.
  • the control signals of the control device of the elevator system are used by using the output signals of the acceleration sensor and the magnetic sensor installed on the car door of the car. Without this, it is possible to diagnose an abnormality in the landing position of the car due to the influence of the aging of the elevator system or the like.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

従来は、着床位置の計測にはエレベータの制御信号が必要であったため、リレー式エレベータなど、有意な制御信号を取得できないエレベータにおいては、着床位置の計測や診断を実施できなかった。そこで、本発明のエレベータ診断システムでは、前記乗りかごのかごドアに設けられ、乗場ドアを検出する乗場ドア検出部と、前記かごドアに設けられ、加速度を計測する加速度計測部と、前記加速度計測部が前記乗りかごの減速を検出した後、前記乗場ドア検出部が前記乗場ドアを検出してから、前記かごドアが開くまでの前記乗りかごの移動量を着床位置として計測する移動量計測部と、前記移動量に基づいて、前記乗りかごの着床異常を診断する異常診断部と、を備え、有意な制御信号を取得できないエレベータシステムを診断対象とする場合であっても、着床誤差が経年劣化等により拡大したときに、その異常を検出することができるようにした。

Description

エレベータ診断システム
 本発明は、乗りかごの着床誤差の異常を検出するエレベータ診断システムに関する。
 従来のエレベータシステムでは、乗りかごの停止位置を制御するために、昇降路内の所定位置に位置検出の基準となる遮蔽板を設置し、乗りかごが備える遮蔽板検出装置が検出した遮蔽板の検出位置を基準に乗りかご移動距離を制御することで、乗りかごを所望の着床位置に停止させていた。
 しかしながら、このエレベータシステムでは、乗りかごが停止する階床の数に比例して、昇降路内に設置する遮蔽板を増やす必要があり、特に高層ビルにおいては、エレベータシステムの据え付け費用の増大を招いていた。
 そこで、遮蔽板に代え、乗り場ドアを基準にして乗りかごの着床位置を制御することで、エレベータシステムの部品点数を削減しつつ、所望の着床位置制御を実現するものがある(特許文献1)。
特開2001-39639号公報
 しかしながら、特許文献1では、着床位置の計測にエレベータシステムの制御信号の利用が必要であるため、そもそも制御信号が存在しないリレー式エレベータや、制御信号の意味が不明な他社製のエレベータなど、有意な制御信号を取得できないエレベータシステムを診断対象とする場合には、着床位置の計測や、着床誤差を診断できないという課題があった。
 そこで、本発明は、有意な制御信号を取得できないエレベータシステムを診断対象とする場合であっても、着床誤差が経年劣化等により拡大したときに、その異常を検出することができるエレベータ診断システムを提供することを目的とする。
 前記課題を解決するために、本発明のエレベータ診断システムでは、乗りかごのかごドアに設けられ、乗場ドアを検出する乗場ドア検出部と、かごドアに設けられ、加速度を計測する加速度計測部と、加速度計測部が乗りかごの減速を検出した後、乗場ドア検出部が乗場ドアを検出してから、かごドアが開くまでの乗りかごの移動量を着床位置として計測する移動量計測部と、移動量に基づいて、乗りかごの着床異常を診断する異常診断部と、を備えたものとした。
 また、乗りかごのかごドアに設けられ、乗場ドアを検出する乗場ドア検出部と、かごドアに設けられ、加速度を計測する加速度計測部と、加速度計測部が乗りかごの減速を検出した後、乗場ドア検出部が乗場ドアを検出してから、乗りかごが停止するまでの乗りかごの移動量を着床位置として計測する移動量計測部と、移動量に基づいて、乗りかごの着床異常を診断する異常診断部と、を備えたものとした。
 本発明のエレベータ診断システムによれば、有意な制御信号を取得できないエレベータシステムを診断対象とする場合であっても、着床誤差が経年劣化等により拡大したときに、その異常を検出することができる。
一実施例のエレベータシステムの概略図。 一実施例のエレベータのドア開閉装置の構成図。 一実施例の乗りかごの稼働中に観測される速度と磁束密度の変化を示す図。 一実施例のエレベータ診断システムの診断処理を示すフローチャート。 一実施例に係る乗りかごの現在位置の検出処理を示すフローチャート。
 以下、本発明の詳細を、添付の図面に従い説明する。
 図1は、本発明の一実施例に係るエレベータシステムの概略図である。ここに示すように、本実施例のエレベータシステムは、昇降路に面した複数の乗り場間を昇降する乗りかご1と、乗りかご1の開口に取り付けたかごドア2と、かごドア2を開閉するドア開閉装置3と、かごドア2の外側に設置した3軸加速度センサ4および3軸磁気センサ5と、乗りかご1を昇降させる巻上機6と、乗りかご1の昇降時の負荷を軽減するつり合いおもり7と、乗りかご1とつり合いおもり7の接触をさけるためのプーリ8と、乗りかご1とつり合いおもり7をつなぐ主ロープ9と、かごドア2のドア開閉と連動して開閉する金属製の乗り場ドア10と、エレベータシステムの運行を制御する制御装置11と、3軸加速度センサ4および3軸磁気センサ5の出力信号を基にエレベータシステムを診断する診断装置12から構成されている。また、診断装置12は、有線または無線の通信回線を介して外部の管制センター13と接続されている。
 なお、これらのうち、3軸加速度センサ4、3軸磁気センサ5、および、診断装置12は、エレベータシステムを据え付けた後であっても取り付け可能なものであり、従って、既設の制御装置11とは独立したエレベータ診断システムを構成するものである。また、図1では、乗り場数が2である建築物を例示しているが、乗り場数は3以上あってもよい。
 診断装置12は、3軸加速度センサ4と3軸磁気センサ5の出力信号に基づいて、乗りかご1の着床誤差δの異常の有無を診断するものであり、乗りかご1の位置を検出するかご位置検出部12aと、かごドア2の開閉状態を検出するかごドア開閉検出部12bと、乗りかご1の移動量lを計測するかご移動量計測部12cと、エレベータの走行状態を検出する走行状態検出部12dと、上記各部からの信号に基づいて乗りかご1の着床位置Lの異常の有無を診断する異常診断部12eと、異常診断部12eが最初に計測した着床位置Lの初期値Lを階床別に格納する初期値格納部12fと、後述する着床誤差δを階床別に格納する着床誤差格納部12gと、異常診断部12eが着床位置Lを異常と診断した場合に保守員に異常を通知する異常発報部12hと、より構成されている。
 なお、診断装置12は、具体的には、CPU等の演算装置、半導体メモリ等の主記憶装置、ハードディスク等の補助記憶装置、および、通信装置、スピーカーなどのハードウェアを備えた計算機である。そして、補助記憶装置に記録されたデータベースを参照しながら、主記憶装置にロードされたプログラムを演算装置が実行することで、上述したかご位置検出部12a等を実現するが、以下では、このような周知技術を適宜省略しながら説明する。
 図2は、かごドア2とドア開閉装置3の構成を表した図である。ここに示すように、かごドア2は、右ドアパネル2Rと左ドアパネル2Lより構成されている。また、ドア開閉装置3は、両ドアパネルの軌道となるドアレール3a、両ドアパネルの駆動力を発生させるドアマシン3b、ドアマシン3bで発生した駆動力を両ドアパネルに伝達するドア駆動用ベルト3c、ドアマシン3bと対に設けられたドア駆動用ベルト3c用のドアプーリ2d、より構成されている。
 ここで、上述した3軸加速度センサ4と3軸磁気センサ5は、本実施例では左ドアパネル2Lの閉端部付近であって高さ方向の略中間部に、かごドア2の開閉方向をx軸、乗りかご1の昇降方向をy軸、乗りかご1の前後方向をz軸となるよう設置している。なお、図1および図2では、3軸加速度センサ4と3軸磁気センサ5をかごドア2の略中間部に各々1つ設ける構成を例示しているが、かごドア2の上部と下部のそれぞれに3軸加速度センサ4と3軸磁気センサ5を設ける構成としてもよい。なお、両センサは、必ずしも3軸センサである必要はなく、後述する処理に不要な方向の加速度や磁束密度を検出する機能を省略したものとしても良い。
 図3は、エレベータシステムの稼働中に観測される速度と磁束密度の変化の一例であり、具体的には、乗りかご1が待機階である下階から目的階である上階に移動し、かごドア2が開き、上階の乗り場にいた乗客が乗りかご1に乗車した後、かごドア2が閉まる迄に観測される、乗りかご1の昇降速度と、かごドア2の開閉速度と、3軸磁気センサ5のz軸方向とx軸方向の出力を例示したものである。
 すなわち、図3(a)、(b)は、3軸加速度センサ4が検出したy軸方向の加速度aとx軸方向の加速度aを積分して求めた速度vと速度vであり、それぞれ、乗りかご1の昇降速度(正は昇り速度、負は降り速度)、かごドア2の開閉速度(正は閉速度、負は開速度)に相当する。また、図3(c)、(d)は、3軸磁気センサ5が検出したz軸方向の磁束密度Mとx軸方向の磁束密度Mであり、それぞれ、乗り場ドア10方向の金属検出状態(Lowは検出時、Highは非検出時)と、かごドア2の開閉状態(Lowは閉時、Highは開時)に相当する。
 また、図中、時刻tは乗りかご1が待機階(下階)の乗り場ドア10の上端部を通過した時刻、時刻tは乗りかご1が目的階(上階)の乗り場ドア10の下端部に到達した時刻、時刻tと時刻tはかごドア2の開開始時刻と開完了時刻、時刻tと時刻tはかごドア2の閉開始時刻と閉完了時刻を示す。なお、乗り場ドア10はかごドア2と連動して開閉するため、時刻tから時刻tはそれぞれ、乗り場ドア10の開開始時刻、開完了時刻、閉開始時刻、閉完了時刻でもある。
 乗りかご1が待機階(下階)から目的階(上階)へ移動する場合、図3(a)に示すように、乗りかご1は、加速期間、一定速期間、減速期間を順に経て、目的階(上階)へ到達する。この間、時刻t付近で下階の乗り場ドア10から遠ざかるため、図3(c)に示すように、乗りかご1の前後方向に相当する磁束密度Mが増加する。その後、待機階(下階)の上階の乗り場ドアに接近するため、磁束密度Mが減少し、当該乗り場ドアから遠ざかると、再び磁束密度Mが増加する。磁束密度Mの減少及び増加は、時刻t付近で目的階(上階)の乗り場ドア10に接近するまで繰り返す。従って、磁束密度Mと所定の閾値Mz_thの大小関係から、乗りかご1が乗り場ドア10の近傍にいるかを判定することができる。
 また、乗りかご1が目的階(上階)に到着すると、かごドア2の開開始時刻である時刻t以降、3軸磁気センサ5を閉端部付近に設置した左ドアパネル2Lが右ドアパネル2Rから遠ざかるため、図3(d)に示すように、かごドア2の開閉方向に相当する磁気密度Mが増加する。その後、かごドア2の閉完了時刻である時刻t付近より、左ドアパネル2Lが右ドアパネル2Rに接近するため、磁気密度Mが減少する。従って、磁束密度Mと所定の閾値Mx_thの大小関係から、かごドア2の開閉状態を判定することができる。
 次に、本実施例の診断装置12による、乗りかご1の着床位置の診断処理を、図4を用いて説明する。
 まず、ステップS1では、走行状態検出部12dは、3軸加速度センサ4の出力である加速度aを積分した速度vの絶対値と、所定の閾値vy_th(例えば8m/min)を比較し、速度vの絶対値の方が大きい場合は、乗りかご1が走行中であると判断し、次のステップに進む。一方、速度vの絶対値の方が小さい場合は、ステップS1を繰り返す。
 ステップS2では、走行状態検出部12dは、速度vの減速を検出した場合に、乗りかご1が目的階に接近し減速を開始したと判断し、次のステップに進む。一方、減速を検出できないときは、ステップS1に戻る。
 ステップS3では、かご位置検出部12aは、目的階の乗り場ドア10を検出する。具体的には、かご位置検出部12aは、3軸磁気センサ5の磁気密度Mを監視し、これが所定の閾値Mz_thより小さくなった場合、乗りかご1に取り付けた3軸磁気センサ5が目的階の乗り場ドア10の端部に到達したと判断する(図3(c)の時刻t)。一方、磁気密度Mの方が大きい場合は、ステップS3を繰り返す。
 ステップS4では、かご移動量計測部12cは、目的階の乗り場ドア10に到達した後の乗りかご1の移動量lを、3軸加速度センサ4が出力する加速度aに基づいて計測する。
 ステップS5では、かご位置検出部12aは、図4の処理と並列して実行される図5の処理結果(後述)を参照することで、乗りかご1の現在位置(現在階床F)を確認し、異常診断部12eに送信する。
 ステップS6では、かごドア開閉検出部12bは、かごドア2の開閉状態を検出する。具体的には、かごドア開閉検出部12bは、3軸加速度センサ4の出力である磁束密度Mを監視し、これが所定の閾値Mx_thより大きくなった場合、左ドアパネル2Lに取り付けた3軸磁気センサ5が右ドアパネル2Rから遠ざかり、かごドア2が開状態となったと判断し(図3(d)の時刻t)、かご移動量計測部12cにドア開動作検出信号を送信する。一方、磁気密度Mの方が小さい場合は、ステップS3に戻る。なお、ここでは、かごドア2の開閉状態を磁束密度Mに基づいて判別したが、かごドア2の開閉速度を示すVの変化に基づいてかごドア2の開閉状態を判別しても良い。
 ステップS7では、かご移動量計測部12cは、かごドア開閉検出部12bからドア開動作検出信号を受信した時点で移動量lの計測を終了し、計測した移動量lを着床位置Lとして異常診断部12eに送信する。なお、ステップS6、S7では、乗り場ドア10の検出からかごドア2の開開始までの乗りかご1の移動量lを着床位置Lとしたが、乗り場ドア10の検出から乗りかご1の停止までの乗りかご1の移動量lを着床位置Lとしても良い。
 ステップS8では、異常診断部12eは、ステップS5で得た現在階床Fに対応した着床位置Lの初期値Lが登録されているか確認し、初期値Lが未登録である場合、ステップS9では、ステップS7で得た着床位置Lを現在階床Fに対応した初期値Lとして初期値格納部12fに格納する。一方、現在階床Fに対応した初期値Lが登録済みである場合は、ステップS10へ進む。
 ステップS10では、計測した着床位置Lと、初期値格納部12fに格納された現在階床Fに対応した初期値Lの差を、現在階床Fの着床誤差δとして着床誤差格納部12gに階床毎に格納する。
 ステップS11では、異常診断部12eは、着床誤差δの異常を検出する。具体的には、異常診断部12eは、ステップS10で得た着床誤差δと所定の閾値δth(例えば、20mm)を比較し、着床誤差δの方が大きい場合、現在階床Fでの着床位置Lが異常であると判断し、ステップS12に進む。一方、着床誤差δの方が小さい場合は、異常なしと判断し、図4の処理を終了する。
 ステップS12では、異常診断部12eは、異常発報部12hに対し発報指令を送信する。発報指令を受けた異常発報部12hは、異常が発生した現在階床Fと着床誤差δを一対の情報として管制センター13に対し発報する。診断装置12からの異常発報を受信した管制センター13では、専門の保守員に連絡し、異常が発生した階床での着床誤差δの是正作業を依頼する。
 次に、本実施例の診断装置12による、乗りかご1の現在階床Fの検出処理を、図5を用いて説明する。なお、図5は、図4と並列して実施される処理である。また、図示を省略しているが、保守員は、本実施例のエレベータ診断システムを取り付ける際に、エレベータシステムの総階床数Fmaxと初期停止階Fを、図示しない設定ツールを使用して登録している。
 図5の処理が開始されると、まず、ステップS51では、かご位置検出部12aは、乗りかご1が走行中であるかを判定する。この処理は、図4のステップS1と同等であるので重複説明は省略する。そして、走行中である場合、ステップS52に進む。
 ステップS52では、かご位置検出部12aは、3軸磁気センサ5が出力する磁束密度Mを監視し、これが低下した場合、すなわち、何らかの金属を検出した場合、ステップS53に進む。
 ステップS53では、かご位置検出部12aは、3軸加速度センサ4が出力する加速度aを利用し、金属検出中の乗りかご1のy軸方向の移動量lを計測する。
 ステップS54では、かご位置検出部12aは、ステップ52で検出した金属が、乗り場ドア10であるかを判断する。具体的には、かご位置検出部12aは、ステップS53で得た移動量lと所定の閾値lthを比較し、移動量lの方が大きい場合、検出中の金属が乗り場ドア10であると判断する。ここで、閾値lthは、乗り場ドア10を検出できる任意の値を設定すればよいが、例えば、昇降路内の他の金属機器を乗り場ドア10と判断することがないように、以下の値を設定すれば良い。
 昇降路内の他の金属機器の最大高さ < 閾値lth < 乗り場ドア10の高さ/2
 ステップS55では、かご位置検出部12aは、走行状態検出部12dから乗りかご1の走行方向情報を取得し、走行方向が昇りであれば、ステップS56にて、1階床を加算した現在階床Fに更新する。一方、走行方向が降りであれば、ステップS57にて、1階床を減算した現在階床Fに更新する。
 以上で説明したように、本実施例のエレベータ診断システムによれば、乗りかごのかごドアに設置した加速度センサと磁気センサの出力信号を使用することにより、エレベータシステムの制御装置の制御信号を使用することなく、エレベータシステムの経年劣化などの影響による乗りかごの着床位置の異常を診断することができる。
 また、磁気センサを使用することでより精度の高いドア開閉動作を検出できるとともに、ドア開時点での着床位置を計測することができるため、実際の利用者が乗り降りする際の着床状態での着床位置の異常の有無を診断することができる。
1 乗りかご、2 かごドア、 2R 右ドアパネル、 2L 左ドアパネル、3 ドア開閉装置、 3a ドアレール、 3b ドアマシン、 3c ドア駆動ベルト、 3d ドアプーリ、4 3軸加速度センサ、5 3軸磁気センサ、6 巻上機、7 つり合いおもり、8 プーリ、9 主ロープ、10 乗り場ドア、11 制御装置、12 診断装置、 12a かご位置検出部、 12b かごドア開閉検出部、 12c かご移動量計測部、 12d 走行状態検出部、 12e 異常診断部、 12f 初期値格納部、 12g 着床誤差格納部、 12h 異常発報部

Claims (7)

  1.  複数の乗り場間を昇降する乗りかごを備えたエレベータシステムを診断するエレベータ診断システムであって、
     前記乗りかごのかごドアに設けられ、乗場ドアを検出する乗場ドア検出部と、
     前記かごドアに設けられ、加速度を計測する加速度計測部と、
     前記加速度計測部が前記乗りかごの減速を検出した後、前記乗場ドア検出部が前記乗場ドアを検出してから、前記かごドアが開くまでの前記乗りかごの移動量を着床位置として計測する移動量計測部と、
     前記移動量に基づいて、前記乗りかごの着床異常を診断する異常診断部と、
     を備えたことを特徴とするエレベータ診断システム。
  2.  複数の乗り場間を昇降する乗りかごを備えたエレベータシステムを診断するエレベータ診断システムであって、
     前記乗りかごのかごドアに設けられ、乗場ドアを検出する乗場ドア検出部と、
     前記かごドアに設けられ、加速度を計測する加速度計測部と、
     前記加速度計測部が前記乗りかごの減速を検出した後、前記乗場ドア検出部が前記乗場ドアを検出してから、前記乗りかごが停止するまでの前記乗りかごの移動量を着床位置として計測する移動量計測部と、
     前記移動量に基づいて、前記乗りかごの着床異常を診断する異常診断部と、
     を備えたことを特徴とするエレベータ診断システム。
  3.  請求項1または請求項2に記載のエレベータ診断システムであって、
     前記乗りかごの着床異常を管制センターまたは保守員に発報する異常発報部を備えることを特徴とするエレベータ診断システム。
  4.  請求項1または請求項2に記載のエレベータ診断システムであって、
     前記乗り場ドア検出部、前記加速度計測部、前記移動量計測部、および、前記異常診断部は、既設のエレベータシステムに後付けされたものであることを特徴とする、エレベータ診断システム。
  5.  請求項1または請求項2に記載のエレベータ診断システムであって、
     さらに、前記複数の乗り場毎に最初に計測した着床位置を初期値として記憶する初期値格納部と、
     前記複数の乗り場毎に最後に計測した着床位置と前記初期値の差分を着床誤差として記憶する着床誤差格納部と、
     を備えたことを特徴とするエレベータ診断システム。
  6.  複数の乗り場間を昇降する乗りかごを備えたエレベータシステムを診断するエレベータ診断システムであって、
     前記乗りかごのかごドアに設置された加速度センサと、
     前記かごドアに設置された磁気センサと、
     前記加速度センサの出力信号に基づき、前記乗りかごの走行状態を検出する走行状態検出部と、
     前記加速度センサの出力信号に基づき、前記乗りかごの移動量を計測するかご移動量計測部と、
     前記加速度センサと前記磁気センサの出力信号に基づき、前記乗りかごの現在位置を検出するかご位置検出部と、
     前記加速度センサまたは前記磁気センサの出力信号に基づき、前記かごドアの開閉状態を検出するかごドア開閉検出部と、
     前記走行状態検出部、前記かご移動量計測部、前記かご位置検出部、前記かごドア開閉検出部の出力信号に基づき、前記乗りかごの着床誤差を計測し、該着床誤差が所定の閾値を超過した場合に、着床異常と診断する異常診断部と、
     を備えたことを特徴とするエレベータ診断システム。
  7.  請求項6に記載のエレベータ診断システムであって、
     前記異常診断部は、前記磁気センサの出力信号に基づき、目的階の乗り場ドアを検出した後、前記かごドア開閉検出部が前記かごドアの開放を検出するまでの前記乗りかごの移動量を着床位置とし、前記着床位置の初期値と計測値の差分を着床誤差とすることを特徴とするエレベータ異常診断システム。
PCT/JP2018/029711 2018-08-08 2018-08-08 エレベータ診断システム WO2020031284A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880095001.5A CN112384462B (zh) 2018-08-08 2018-08-08 电梯诊断***
JP2020535389A JP6987255B2 (ja) 2018-08-08 2018-08-08 エレベータ診断システム
PCT/JP2018/029711 WO2020031284A1 (ja) 2018-08-08 2018-08-08 エレベータ診断システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029711 WO2020031284A1 (ja) 2018-08-08 2018-08-08 エレベータ診断システム

Publications (1)

Publication Number Publication Date
WO2020031284A1 true WO2020031284A1 (ja) 2020-02-13

Family

ID=69414055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029711 WO2020031284A1 (ja) 2018-08-08 2018-08-08 エレベータ診断システム

Country Status (3)

Country Link
JP (1) JP6987255B2 (ja)
CN (1) CN112384462B (ja)
WO (1) WO2020031284A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113716406A (zh) * 2020-05-25 2021-11-30 株式会社日立大厦*** 电梯诊断装置以及电梯诊断方法
WO2021253660A1 (zh) * 2020-06-18 2021-12-23 猫岐智能科技(上海)有限公司 电梯内危险事件判断方法及***
JP2022010769A (ja) * 2020-06-29 2022-01-17 株式会社日立ビルシステム かご位置特定装置およびかご位置特定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11767194B2 (en) * 2019-01-28 2023-09-26 Otis Elevator Company Elevator car and door motion monitoring

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146364A (en) * 1978-05-10 1979-11-15 Hitachi Ltd Elevator position detecting apparatus
JPS5882975A (ja) * 1981-11-12 1983-05-18 三菱電機株式会社 エレベ−タ管理装置
JPS63258381A (ja) * 1987-04-16 1988-10-25 北原 一孝 エレベ−タの停止位置制御装置
JPH0692559A (ja) * 1992-09-17 1994-04-05 Hitachi Building Syst Eng & Service Co Ltd エレベータの異常検出装置
WO2009150251A2 (de) * 2008-06-13 2009-12-17 Inventio Ag Aufzugsanlage und verfahren zur wartung einer solchen aufzugsanlage
JP2012180132A (ja) * 2009-06-29 2012-09-20 Mitsubishi Electric Corp エレベータ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023511B2 (ja) * 2006-02-27 2012-09-12 三菱電機ビルテクノサービス株式会社 エレベータ装置
CN101597001B (zh) * 2009-07-03 2011-01-05 江门市蒙德电气有限公司 一种用于检测电梯平层位置的检测装置
CN104860148B (zh) * 2010-06-18 2017-07-21 株式会社日立制作所 电梯***
JP5882975B2 (ja) * 2012-12-26 2016-03-09 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、及び記録媒体
CN104163374A (zh) * 2014-07-31 2014-11-26 江苏联康电子有限公司 一种轿厢防移动装置
CN105084141A (zh) * 2015-09-18 2015-11-25 广州日滨科技发展有限公司 一种实现电梯直接停靠的控制方法
CN106365008B (zh) * 2016-11-03 2019-10-25 广东卓梅尼技术股份有限公司 电梯轿厢意外移动保护自动化测试方法及测试***
CN206985416U (zh) * 2017-06-28 2018-02-09 山东海浪智能科技有限公司 一种感应电梯平层检测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146364A (en) * 1978-05-10 1979-11-15 Hitachi Ltd Elevator position detecting apparatus
JPS5882975A (ja) * 1981-11-12 1983-05-18 三菱電機株式会社 エレベ−タ管理装置
JPS63258381A (ja) * 1987-04-16 1988-10-25 北原 一孝 エレベ−タの停止位置制御装置
JPH0692559A (ja) * 1992-09-17 1994-04-05 Hitachi Building Syst Eng & Service Co Ltd エレベータの異常検出装置
WO2009150251A2 (de) * 2008-06-13 2009-12-17 Inventio Ag Aufzugsanlage und verfahren zur wartung einer solchen aufzugsanlage
JP2012180132A (ja) * 2009-06-29 2012-09-20 Mitsubishi Electric Corp エレベータ装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113716406A (zh) * 2020-05-25 2021-11-30 株式会社日立大厦*** 电梯诊断装置以及电梯诊断方法
JP2021185107A (ja) * 2020-05-25 2021-12-09 株式会社日立ビルシステム エレベータ診断装置、および、エレベータ診断方法
JP7284735B2 (ja) 2020-05-25 2023-05-31 株式会社日立ビルシステム エレベータ診断装置、および、エレベータ診断方法
WO2021253660A1 (zh) * 2020-06-18 2021-12-23 猫岐智能科技(上海)有限公司 电梯内危险事件判断方法及***
JP2022010769A (ja) * 2020-06-29 2022-01-17 株式会社日立ビルシステム かご位置特定装置およびかご位置特定方法
JP7395433B2 (ja) 2020-06-29 2023-12-11 株式会社日立ビルシステム かご位置特定装置およびかご位置特定方法

Also Published As

Publication number Publication date
JP6987255B2 (ja) 2021-12-22
CN112384462A (zh) 2021-02-19
CN112384462B (zh) 2021-12-07
JPWO2020031284A1 (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2020031284A1 (ja) エレベータ診断システム
JP6008995B2 (ja) エレベータ装置
US11724910B2 (en) Monitoring of conveyance system vibratory signatures
JP5055333B2 (ja) エレベータシステム
KR20180031032A (ko) 엘리베이터 장치
JP2011042480A (ja) エレベータ装置
JP6997680B2 (ja) エレベーター異常監視システム及びエレベーター異常監視方法
JP6646117B1 (ja) エレベータ制御装置
JP6190171B2 (ja) エレベータ
CN111252638B (zh) 用于监测电梯***的装置和方法
WO2011001764A1 (ja) エレベータ装置
JP6975108B2 (ja) エレベーター診断システム、および、エレベーターの診断方法
JP5721261B2 (ja) エレベータシステム
JP2014114157A (ja) エレベータの制御装置
JP4952366B2 (ja) エレベータ釣合い錘・調速機ロープ張り車のクリアランス管理測定装置及びその方法
JP7297101B2 (ja) エレベーター及びエレベーターの制御方法
JP7047972B2 (ja) エレベーターの滑り検出システム
WO2020026439A1 (ja) 健全性診断装置
CN108689273B (zh) 电梯超行程测试***和方法
JP2014088242A (ja) エレベータ用長周期振動検出装置およびエレベータ用長周期振動検出方法
JP2016055960A (ja) エレベータの地震自動復旧運転装置
WO2024042642A1 (ja) エレベーターのガイドレールの変形検出システムおよび変形検出方法
WO2024062534A1 (ja) ダブルデッキエレベーター
JP2011046530A (ja) エレベータの制御装置
JP2020179997A (ja) かご状態検出方法、および、かご状態検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929779

Country of ref document: EP

Kind code of ref document: A1