WO2020029698A1 - 上行信道资源的指示及确定方法、基站、终端、介质 - Google Patents

上行信道资源的指示及确定方法、基站、终端、介质 Download PDF

Info

Publication number
WO2020029698A1
WO2020029698A1 PCT/CN2019/092980 CN2019092980W WO2020029698A1 WO 2020029698 A1 WO2020029698 A1 WO 2020029698A1 CN 2019092980 W CN2019092980 W CN 2019092980W WO 2020029698 A1 WO2020029698 A1 WO 2020029698A1
Authority
WO
WIPO (PCT)
Prior art keywords
subbands
harq
uplink data
control information
downlink control
Prior art date
Application number
PCT/CN2019/092980
Other languages
English (en)
French (fr)
Inventor
周欢
Original Assignee
北京展讯高科通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京展讯高科通信技术有限公司 filed Critical 北京展讯高科通信技术有限公司
Priority to EP19848365.3A priority Critical patent/EP3836468A4/en
Priority to US17/265,860 priority patent/US11552773B2/en
Publication of WO2020029698A1 publication Critical patent/WO2020029698A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • Embodiments of the present invention relate to the field of communications, and in particular, to a method for indicating and determining uplink channel resources, a base station, a terminal, and a medium.
  • the 3GPP standards organization supports the deployment of NR networks on unlicensed spectrum.
  • NR New Radio
  • the NR cell of the unlicensed spectrum is the main cell, and the user terminal (User Equipment, UE) directly accesses the NR cell of the unlicensed spectrum;
  • Long Term Evolution (LTE) cell accesses the NR cell of the unlicensed spectrum; 3.
  • the UE accesses the NR cell of the unlicensed spectrum through the NR cell.
  • LTE Long Term Evolution
  • the licensed spectrum and the unlicensed spectrum are combined in a manner similar to carrier aggregation, that is, a terminal and an evolved base station (Evolved NodeB, gNB) may work on both licensed and unlicensed spectrum. Also called NR-U (New RAT Unlicense) technology.
  • Evolved NodeB gNB
  • NR-U New RAT Unlicense
  • the physical uplink shared channel (PUSCH) transmission uses an interlace method, and each interlace is the basic unit of resource allocation, 20MHz / 10MHz interlace contains 10 physical resource blocks (PRBs) that are evenly distributed in the frequency domain.
  • interlace 0 is composed of resource block (RB) indexes 0, 10, 20, ..., 90. .
  • RB0 to RB9 constitute an interleaved resource group (cluster)
  • RB10 to RB19 are analogized to constitute an interleaved resource group (cluster) 1...
  • Each interleaved resource group includes 10 RBs, which belong to different interlace sets. .
  • LAA can adopt the Listen-Before-Talk (LBT) mechanism to achieve the coexistence of LAA and other systems of different operators in the unlicensed spectrum.
  • LBT Listen-Before-Talk
  • CCA clear channel assessment
  • a carrier or a bandwidth part supports a wide range of bandwidth, for example, it may be greater than 20 MHz, or it may be less than 20 MHz.
  • the existing uplink resource indication is in units of full carrier or full BWP, resulting in low resource utilization and poor NR network performance.
  • the technical problem solved by the embodiments of the present invention is how to improve the resource utilization and performance of the NR network.
  • an embodiment of the present invention provides an uplink channel resource indication method, which includes: using high-level signaling to indicate to a UE frequency domain resource information corresponding to N subbands included in a current carrier, where N> 1;
  • the control information indicates to the UE one or more subbands used to transmit uplink data, so that the UE uses the frequency domain resource information corresponding to the subbands used to transmit uplink data to transmit the uplink data.
  • Uplink data is transmitted in the frequency domain resources corresponding to the subbands.
  • the frequency domain resource information corresponding to the N subbands includes: N-1 CRB indexes; the N-1 CRB indexes are used to indicate the starting CRBs of the N subbands.
  • the indicating the one or more subbands for transmitting uplink data to the UE through the downlink control information includes: indicating the index of the one or more subbands for transmitting uplink data to the UE through a bitmap in the downlink control information. .
  • the indicating the one or more subbands for transmitting the uplink data to the UE by using the downlink control information includes: indicating the index of the one or more subbands for transmitting the uplink data to the UE by using a resource indication value in the downlink control information.
  • the one or more subband indexes indicating that the uplink data is transmitted to the UE by using the resource indication value in the downlink control information include: indicating one or more sub-bands that transmit uplink data by using X bits in the resource indication value Index of the band; where M is the total number of subbands contained in the current BWP, and ceil () is the rounding operator.
  • the indicating the one or more subbands for transmitting uplink data to the UE by using the downlink control information includes: indicating, by using a resource indicator value in the downlink control information, the start position and length.
  • the indication of the start position and length of the interleaved resource group for transmitting uplink data to the UE through the resource indication value in the downlink control information includes: instructing the UE to transmit uplink data through the Y bits in the resource indication value The start position and length of the interleaved resource group; where K is the total number of interleaved resource groups contained in the current BWP, and ceil () is the rounding operator.
  • An embodiment of the present invention provides a method for determining uplink channel resources, including: receiving high-level signaling sent by a base station, where the high-level signaling includes frequency domain resource information corresponding to N subbands included in a current carrier, where N> 1; receiving Downlink control information sent by a base station, where the downlink control information includes one or more subbands used to transmit uplink data, and based on the frequency domain resource information corresponding to the subband used to transmit uplink data, the uplink data is used to transmit the uplink data Transmit uplink data in the frequency domain resources corresponding to the subbands of.
  • the frequency domain resource information corresponding to the N subbands includes: N-1 CRB indexes; the N-1 CRB indexes are used to indicate the starting CRBs of the N subbands.
  • the downlink scheduling indicates that the access mode of the PUSCH channel is short LBT, all the subbands used for transmitting uplink data correspond to one PUSCH; when the downlink scheduling indicates that the access mode of the PUSCH channel is long LBT, all Each subband used to transmit uplink data corresponds to a PUSCH.
  • the transmitting uplink data using the frequency domain resource corresponding to the subband for transmitting uplink data includes: the one indicated by the downlink control information Or multiple subbands perform LBT detection; based on the LBT detection result, a subband that succeeds in LBT detection is selected as a candidate subband; and the frequency domain resources corresponding to the candidate subband are used to transmit uplink data.
  • the step of selecting a subband with successful LBT detection as a candidate subband includes: selecting a subband with the lowest index value or the highest index value among the subbands with successful LBT detection as a candidate subband.
  • the transmitting uplink data using the frequency domain resources corresponding to the candidate subbands further includes: determining a HARQ ID used by the PUSCH corresponding to the i-th slot based on the following formula: mod (n HARQ_ID + i, N HARQ ); where i is the relative index corresponding to the time slot for scheduling the PUSCH in the downlink control information, n HARQ_ID is the initial HARQ ID indicated in the downlink control information, N HARQ is the total number of HARQ IDs, and mod () is the remainder operator.
  • the transmitting uplink data using the frequency domain resource corresponding to the subband for transmitting uplink data includes: the one indicated by the downlink control information Or multiple subbands perform LBT detection; based on the results of the LBT detection, uplink data is transmitted using the frequency domain resources corresponding to all the subbands where the LBT detection is successful.
  • the multiple subbands correspond to the same PUSCH or different PUSCHs.
  • the transmitting uplink data of the frequency domain resources corresponding to all the subbands successfully detected using LBT further includes: determining a PUSCH usage corresponding to the i-th slot based on the following formula HARQ ID: mod (n HARQ_ID + i, N HARQ ); where i is the relative index corresponding to the time slot for scheduling PUSCH in the downlink control information, n HARQ_ID is the initial HARQ ID indicated in the downlink control information, and N HARQ is HARQ The total number of IDs. Mod () is the remainder operator.
  • each PUSCH corresponds to a different HARQ-ID version and / or a different RV version.
  • the transmitting uplink data of the frequency domain resources corresponding to all the subbands that have been successfully detected using the LBT further includes: determining the PUSCH corresponding to the jth subband based on the following formula: HARQ ID: mod (n HARQ_ID + i ⁇ M + j, N HARQ ); where M is the total number of subbands contained in the current BWP, j is the subband index, and j is 0 means the lowest frequency subband , I is the relative index corresponding to the time slot for scheduling PUSCH in the downlink control information, n HARQ_ID is the initial HARQ ID indicated in the downlink control information, N HARQ is the total number of HARQ IDs, and mod () is the remainder operator.
  • An embodiment of the present invention provides a base station, including: a first indication unit, adapted to indicate to a UE, by means of high-level signaling, frequency domain resource information corresponding to N subbands included in a current carrier, where N> 1; a second indication unit, adapted For indicating to the UE one or more subbands for transmitting uplink data by using downlink control information, so that the UE uses the frequency band resource information corresponding to the subbands for transmitting uplink data
  • the uplink data is transmitted in the frequency domain resource corresponding to the subband of the uplink data.
  • the frequency domain resource information corresponding to the N subbands includes: N-1 CRB indexes; the N-1 CRB indexes are used to indicate the starting CRBs of the N subbands.
  • the second indication unit is adapted to indicate to the UE an index of one or more subbands used to transmit uplink data by using a bitmap in the downlink control information.
  • the second indication unit is adapted to indicate to the UE an index of one or more subbands for transmitting uplink data by using a resource indication value in the downlink control information.
  • the second indication unit is adapted to indicate an index of one or more subbands for transmitting uplink data by using X bits in the resource indication value; where M is the total number of subbands contained in the current BWP, and ceil () is the rounding operator.
  • the second indication unit is adapted to indicate to the UE a start position and a length of an interleaved resource group for transmitting uplink data by using a resource indication value in the downlink control information.
  • the second indication unit is adapted to indicate to the UE the start position and length of the interleaved resource group for transmitting uplink data by using Y bits in the resource indication value; where K is the total number of interleaved resource groups contained in the current BWP, and ceil () is the rounding operator.
  • An embodiment of the present invention provides a terminal, including: a receiving unit adapted to receive high-level signaling sent by a base station, where the high-level signaling includes frequency domain resource information corresponding to N subbands included in a current carrier, where N> 1; processing A unit adapted to receive downlink control information sent by a base station, where the downlink control information includes one or more subbands for transmitting uplink data, and based on frequency domain resource information corresponding to the subbands for transmitting uplink data, using the The frequency domain resources corresponding to the subbands used to transmit uplink data transmit uplink data.
  • the frequency domain resource information corresponding to the N subbands includes: N-1 CRB indexes; the N-1 CRB indexes are used to indicate the starting CRBs of the N subbands.
  • the downlink scheduling indicates that the access mode of the PUSCH channel is short LBT, all the subbands used for transmitting uplink data correspond to one PUSCH; when the downlink scheduling indicates that the access mode of the PUSCH channel is long LBT, all Each subband used to transmit uplink data corresponds to a PUSCH.
  • the processing unit when the access mode of the PUSCH channel is long LBT, includes: a detection subunit adapted to perform LBT detection on the one or more subbands indicated by the downlink control information; and selecting a subunit Based on the LBT detection result, a subband successfully selected for LBT detection is selected as a candidate subband.
  • the first transmission subunit is suitable for transmitting uplink data using frequency domain resources corresponding to the candidate subband.
  • the selection subunit is adapted to select a subband with the lowest index value or the highest index value among the subbands that are successfully detected by the LBT as the candidate subbands.
  • the first transmission subunit is further adapted to determine the HARQ ID used by the PUSCH corresponding to the i-th slot based on the following formula: mod (n HARQ_ID + i, N HARQ ); where i is in the downlink control information
  • n HARQ_ID is the initial HARQ ID indicated in the downlink control information
  • N HARQ is the total number of HARQ IDs
  • mod () is the remainder operator.
  • the processing unit when the access mode of the PUSCH channel is long LBT, includes: a detection subunit adapted to perform LBT detection on the one or more subbands indicated by the downlink control information; a second transmission The subunit is adapted to transmit uplink data using frequency domain resources corresponding to all subbands that are successfully detected by the LBT based on the LBT detection result.
  • the multiple subbands correspond to the same PUSCH or different PUSCHs.
  • the second transmission subunit is further adapted to determine the HARQ ID used by the PUSCH corresponding to the i-th slot based on the following formula: mod (n HARQ_ID + i , N HARQ ); where i is the relative index corresponding to the time slot for scheduling PUSCH in the downlink control information, n HARQ_ID is the initial HARQ ID indicated in the downlink control information, N HARQ is the total number of HARQ IDs, and mod () is Take the remainder operator.
  • each PUSCH corresponds to a different HARQ-ID version and / or a different RV version.
  • the second transmission subunit is further adapted to determine the HARQ ID used by the PUSCH corresponding to the jth subband based on the following formula: mod (n HARQ_ID + i ⁇ M + j, N HARQ ); where M is the total number of subbands included in the current BWP, j is the subband index, and j is 0 indicating the lowest frequency subband in the frequency domain, and i is the PUSCH scheduling downlink control information.
  • the relative index corresponding to the time slot, n HARQ_ID is the initial HARQ ID indicated in the downlink control information, N HARQ is the total number of HARQ IDs, and mod () is the remainder operator.
  • An embodiment of the present invention provides a computer-readable storage medium.
  • the computer-readable storage medium is a non-volatile storage medium or a non-transitory storage medium, and computer instructions are stored thereon. When the computer instructions are executed, any one of the foregoing is executed. Steps of the method for indicating an uplink channel resource or the method for determining an uplink channel resource.
  • An embodiment of the present invention provides a base station, including a memory and a processor.
  • the memory stores computer instructions that can run on the processor, and the processor executes any one of the foregoing when the computer instructions are run. Steps of the method for indicating uplink channel resources.
  • An embodiment of the present invention provides a terminal, which includes a memory and a processor.
  • the memory stores computer instructions that can be run on the processor, and the processor executes any one of the foregoing when the computer instructions are run. Steps of a method for determining an uplink channel resource.
  • the embodiment of the present invention first indicates to the UE frequency domain resource information corresponding to the N subbands included in the current carrier through high-level signaling, and then indicates to the UE one or more subbands for transmitting uplink data through downlink control information, so that the UE can Based on the frequency domain resource information corresponding to the subband used to transmit the uplink data, the uplink data is transmitted. Since uplink resources can be indicated in units of subbands, resource utilization and performance of the NR network can be improved.
  • the frequency domain corresponding to the subband used to transmit uplink data may be used.
  • Resources transmit uplink data. Since uplink resources can be indicated in units of subbands, resource utilization and performance of the NR network can be improved.
  • FIG. 1 is a flowchart of a method for indicating an uplink channel resource according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a relationship between interlace, cluster, and subbands according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a HARQ ID provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another HARQ ID provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of still another HARQ ID provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of still another HARQ ID provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another HARQ ID provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another HARQ ID provided by an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for determining an uplink channel resource according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • a carrier or BWP supports a wide range of bandwidth, for example, it may be greater than 20MHz, or it may be less than 20MHz.
  • the existing uplink resource indication is in units of full carrier or full BWP, resulting in low resource utilization and poor NR network performance.
  • the embodiment of the present invention first indicates to the UE frequency domain resource information corresponding to the N subbands included in the current carrier through high-level signaling, and then indicates to the UE one or more subbands for transmitting uplink data through downlink control information, so that the UE can Based on the frequency domain resource information corresponding to the subband used to transmit the uplink data, the uplink data is transmitted. Since uplink resources can be indicated in units of subbands, resource utilization and performance of the NR network can be improved.
  • an embodiment of the present invention provides a method for indicating an uplink channel resource, which may include the following steps:
  • step S101 frequency domain resource information corresponding to the N subbands included in the current carrier is indicated to the UE through high-layer signaling, where N> 1.
  • the embodiment of the present invention considers indicating uplink resources in units of subbands.
  • the bandwidth corresponding to the subband is less than or equal to the bandwidth of the current carrier or the bandwidth of the current BWP (that is, the currently activated BWP).
  • the bandwidth of the subband may be 20MHz, 40MHz, or other values.
  • the bandwidth of the subband does not limit the protection scope of the present invention.
  • the high-level signaling may be cell-level high-level signaling, that is, to indicate to each UE to the UE the frequency domain resource information corresponding to the N subbands included in the current carrier.
  • the frequency domain resource information corresponding to the N subbands includes: N-1 Common Resource Block (CRB) indexes; the N-1 CRB indexes are used to indicate the start of the N subbands Start CRB. That is, from the first available CRB index of the carrier bandwidth to the first CRB index -1 to the first subband; from the first CRB index to the second CRB index to the second subband, ... From the N-1 CRB indexes to the highest CRB index of the carrier system bandwidth, the N-th subband ends.
  • CRB Common Resource Block
  • N 2, that is, the current carrier contains 2 subbands, and a CRB index is used to indicate the starting CRB of the 2 subbands.
  • a CRB index of x means: from the first available CRB index (for example, CRB6) of the carrier bandwidth to x-1 to the first subband; the highest CRB index from x to the carrier system bandwidth to the second subband band.
  • Step S102 Indicate to the UE one or more subbands for transmitting uplink data by using downlink control information, so that the UE uses the frequency domain resource information corresponding to the subbands for transmitting uplink data. Transmitting uplink data in a frequency domain resource corresponding to a subband that transmits uplink data.
  • one or more subbands can be scheduled for downlink transmission by using Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the bitmap in the downlink control information is used to indicate to the UE the index of one or more subbands used to transmit uplink data.
  • downlink scheduling indicates that the access mode of the uplink shared channel is short LBT.
  • the current carrier contains N subbands and the current BWP contains M subbands.
  • the DCI contains a bitmap of M bit lengths to indicate which subbands are available for Transmit upstream data.
  • the frequency domain resource indication information in each subband is the same.
  • the resource indication value (RIV) in the downlink control information is used to indicate to the UE the index of one or more subbands that transmit uplink data.
  • an index of one or more subbands for transmitting uplink data may be indicated by X bits in the resource indication value; where M is the total number of subbands contained in the current BWP, and ceil () is the rounding operator.
  • DCI indicates that the access mode of the uplink shared channel is short LBT.
  • the current carrier contains N subbands and the current BWP contains M subbands.
  • the DCI contains X bit length RIV fields to indicate which subbands are available for Transmit upstream data.
  • using RIV to indicate to the UE the index of one or more subbands for transmitting uplink data can only indicate continuous subbands, and each of them
  • the frequency domain resource indication information in each subband is the same. In actual applications, different implementation methods can be selected according to requirements.
  • the frequency domain resource allocation field in the DCI may also be used to indicate which interlace and which clusters are allocated, so that the UE determines one or more subbands for transmitting uplink data based on the cluster's starting position and length.
  • an embodiment of the present invention provides a schematic diagram of a relationship between interlace, cluster, and subbands, as shown in FIG. 2.
  • the current BWP corresponding bandwidth is 40 MHz, which is divided into subband 1 and subband 2, and the corresponding bandwidth of each subband is 20MHz.
  • Each subband corresponds to 10 clusters, which are cluster0 to cluster9.
  • Each cluster contains 10 RBs, RB0 to RB9, and the 10 RBs belong to different interlace sets.
  • interlace0 consists of RBs with an index of 0 in each cluster.
  • the start position and length of the interleaved resource group for transmitting uplink data may be indicated to the UE by the resource indication value in the downlink control information, so that the UE determines the transmission uplink data based on the start position and length of the interleaved resource group.
  • One or more subbands may be indicated to the UE by the resource indication value in the downlink control information, so that the UE determines the transmission uplink data based on the start position and length of the interleaved resource group.
  • the step of indicating the start position and length of the interleaved resource group for transmitting uplink data to the UE by using the resource indicator value in the downlink control information includes: sending the Y bit in the resource indicator value to the UE. Indicates the start position and length of the interleaved resource group for transmitting uplink data; where K is the total number of interleaved resource groups contained in the current BWP, and ceil () is the rounding operator.
  • the downlink control information may not carry subband information. It belongs to the protection scope of the embodiments of the present invention.
  • uplink data is transmitted. Since uplink resources can be indicated in units of subbands, resource utilization and performance of the NR network can be improved.
  • an embodiment of the present invention further provides a method for determining an uplink channel resource, as shown in FIG. 9.
  • the method for determining uplink channel resources may include the following steps:
  • Step S901 Receive high-level signaling sent by a base station, where the high-level signaling includes frequency domain resource information corresponding to N subbands included in the current carrier, where N> 1.
  • the base station may use the method in the embodiment corresponding to FIG. 1 to indicate the frequency domain resource information corresponding to the N subbands included in the current carrier, which will not be repeated here.
  • Step S902 Receive downlink control information sent by a base station, where the downlink control information includes one or more subbands used to transmit uplink data, and based on frequency domain resource information corresponding to the subbands used to transmit uplink data, use the application. Transmitting uplink data in a frequency domain resource corresponding to a subband that transmits uplink data.
  • the base station may use the method in the embodiment corresponding to FIG. 1 to indicate one or more subbands for transmitting uplink data, and details are not described herein again.
  • the frequency domain resource information corresponding to the N subbands may include: N-1 CRB indexes; the N-1 CRB indexes are used to indicate the starting CRBs of the N subbands.
  • an uplink physical sharing channel Physical Uplink, Shared Channel, PUSCH
  • PUSCH Physical Uplink, Shared Channel
  • the PUSCH channel access mode is short LBT, the method for transmitting uplink data All subbands correspond to one PUSCH; when the access mode of the PUSCH channel is long LBT, each subband used for transmitting uplink data corresponds to one PUSCH.
  • each subband used for transmitting uplink data corresponds to one PUSCH.
  • the transmitting uplink data using the frequency domain resources corresponding to the subbands for transmitting uplink data may include: Said one or more subbands perform LBT detection; based on the LBT detection results, a subband that succeeds in LBT detection is selected as a candidate subband; and the frequency domain resources corresponding to the candidate subbands are used to transmit uplink data.
  • one subband can be arbitrarily selected as a candidate subband among a plurality of subbands with successful LBT detection.
  • the selecting a subband that has been successfully detected by the LBT as a candidate subband includes: selecting a subband that has the lowest index value or the highest index value among the subbands that succeed in the LBT detection as the candidate subband.
  • the transmitting uplink data using the frequency domain resources corresponding to the candidate subband further includes: determining a HARQ ID used by a PUSCH corresponding to the i-th slot based on formula (1):
  • i is the relative index corresponding to the time slot for scheduling PUSCH in the downlink control information
  • n HARQ_ID is the initial HARQ ID indicated in the downlink control information
  • N HARQ is the total number of HARQ IDs
  • mod () is the remainder operator .
  • an embodiment of the present invention provides a schematic diagram of a HARQ ID, as shown in FIG. 3.
  • the current BWP includes two subbands, DCI schedules 4 time slots, the initial HARQ ID is 0, and only one subband (subband 2) LBT detection is successful.
  • the UE selects subband 2 to transmit PUSCH, and Based on formula (1), it is determined that the HARQ IDs used in slots slot0 to slot3 are 0, 1, 2, and 3, respectively.
  • FIG. 4 Another embodiment of the present invention provides a schematic diagram of another HARQ ID, as shown in FIG. 4.
  • the current BWP includes two subbands, that is, subband 1 and subband 2.
  • DCI schedules 4 time slots, the initial HARQ ID is 0, and both subbands successfully detect LBT. At this time, the UE selects a low index value.
  • Sub-band 1 transmits the PUSCH, and based on formula (1), it is determined that the HARQ IDs used in slots 0 to 3 are 0, 1, 2, and 3, respectively.
  • all subbands with successful LBT detection may be selected to transmit uplink data.
  • the transmitting uplink data using the frequency domain resource corresponding to the subband for transmitting uplink data includes: indicating the downlink control information.
  • LBT detection is performed on the one or more subbands; based on the LBT detection result, uplink data is transmitted using the frequency domain resources corresponding to all subbands that are successfully detected by the LBT.
  • the multiple subbands may correspond to the same PUSCH or different PUSCHs.
  • the UE may perform the LBT result , In the subbands indicated by the DCI through the base station, all subbands that succeed in LBT transmission are selected for PUSCH, and the PUSCH transmitted in each subband is the same.
  • the transmitting uplink data of the frequency domain resources corresponding to all the subbands successfully detected by using LBT further includes: determining the i-th one based on formula (1) The HARQ ID used by the PUSCH corresponding to the time slot.
  • FIG. 5 Another embodiment of the present invention provides a schematic diagram of another HARQ ID, as shown in FIG. 5.
  • the current BWP includes two subbands, DCI schedules 4 time slots, the initial HARQ ID is 0, and only one subband (subband 2) LBT detection is successful.
  • the UE selects subband 2 to transmit PUSCH, and Based on formula (1), it is determined that the HARQ IDs used in slots slot0 to slot3 are 0, 1, 2, and 3, respectively.
  • FIG. 6 Another embodiment of the present invention provides a schematic diagram of another HARQ ID, as shown in FIG. 6.
  • the current BWP includes two subbands, that is, subband 1 and subband 2.
  • DCI schedules 4 time slots, the initial HARQ ID is 0, and both subbands successfully detect LBT.
  • the UE selects subband 1 and subband.
  • Band 2 transmits the same PUSCH, and for subband 1 and subband 2, based on formula (1), it is determined that the HARQ IDs used for slots slot0 to slot3 are 0, 1, 2, and 3, respectively.
  • each PUSCH may use a different HARQ-ID version and / or a different Redundancy Version (RV) version.
  • RV Redundancy Version
  • the UE may perform the LBT result .
  • the subband indicated by the DCI all subbands with successful LBT transmission are selected for PUSCH. At this time, each subband corresponds to an independent PUSCH.
  • the UE when the UE successfully accesses multiple subbands, only one PUSCH is allowed on each successful subband, and the modulation and coding strategy (Modulation and Coding Scheme, MCS) of the PUSCH transmitted on multiple subbands is the same. The same is true for frequency domain interlace. The difference is that the PUSCH transmitted in each subband uses a different HARQ-ID and / or a different RV version.
  • MCS Modulation and Coding Scheme
  • transmitting uplink data in the frequency domain resources corresponding to all the subbands that have been successfully detected using LBT further includes: determining the j-th subband based on formula (2) With the HARQ ID of the corresponding PUSCH:
  • M is the total number of subbands included in the current BWP
  • j is the subband index
  • j is 0, which indicates the subband with the lowest frequency domain position.
  • n HARQ_ID is the initial HARQ ID indicated in the downlink control information
  • N HARQ is the total number of HARQ IDs
  • mod () is the remainder operator.
  • FIG. 7 Another embodiment of the present invention provides a schematic diagram of another HARQ ID, as shown in FIG. 7.
  • the current BWP includes two subbands, DCI schedules 4 time slots, the initial HARQ ID is 0, and only one subband (subband 2) LBT detection is successful.
  • the UE selects subband 2 to transmit PUSCH, Based on formula (2), it is determined that the HARQ IDs used in slots slot0 to slot3 are 1, 3, 5, and 7, respectively.
  • FIG. 8 Another embodiment of the present invention provides a schematic diagram of another HARQ ID, as shown in FIG. 8.
  • the current BWP includes two subbands, that is, subband 1 and subband 2.
  • DCI schedules 4 time slots, the initial HARQ ID is 0, and both subbands successfully detect LBT.
  • the UE selects subband 1 and subband.
  • Band 2 transmits PUSCH, and for subband 2, the HARQ IDs used for slots slot0 to slot3 are determined based on formula (2) are 1, 3, 5, and 7; for subband 1, slot 0 is determined based on formula (2)
  • the HARQ IDs used in ⁇ slot3 are 0, 2, 4, and 6, respectively.
  • the frequency of the subband used to transmit uplink data can be used.
  • Domain resources transmit uplink data. Since uplink resources can be indicated in units of subbands, resource utilization and performance of the NR network can be improved.
  • an embodiment of the present invention further provides a base station capable of implementing the foregoing method for indicating an uplink channel resource, as shown in FIG. 10.
  • the base station 10 may include a first instruction unit 101 and a second instruction unit 102, where:
  • the first instruction unit 101 is adapted to indicate to the UE frequency domain resource information corresponding to the N subbands included in the current carrier through high-layer signaling, where N> 1.
  • the second instruction unit 102 is adapted to indicate to the UE one or more subbands for transmitting uplink data by using downlink control information, so that the UE is based on a frequency domain corresponding to the subbands for transmitting uplink data. Resource information, using the frequency domain resources corresponding to the subbands for transmitting uplink data to transmit uplink data.
  • the frequency domain resource information corresponding to the N subbands includes: N-1 CRB indexes; the N-1 CRB indexes are used to indicate the starting CRBs of the N subbands.
  • the second indication unit 102 is adapted to indicate to the UE an index of one or more subbands for transmitting uplink data by using a bitmap in the downlink control information.
  • the second instruction unit 102 is adapted to indicate to the UE an index of one or more subbands for transmitting uplink data by using a resource indication value in the downlink control information.
  • the second indication unit 102 is adapted to indicate an index of one or more subbands for transmitting uplink data by using X bits in the resource indication value; where M is the total number of subbands contained in the current BWP, and ceil () is the rounding operator.
  • the second indication unit 102 is adapted to indicate to the UE a start position and a length of an interleaved resource group for transmitting uplink data by using a resource indication value in the downlink control information.
  • the second indication unit 102 is adapted to indicate to the UE the start position and length of the interleaved resource group for transmitting uplink data by using Y bits in the resource indication value; where K is the total number of interleaved resource groups contained in the current BWP, and ceil () is the rounding operator.
  • an embodiment of the present invention further provides a terminal capable of implementing the foregoing method for determining an uplink channel resource, as shown in FIG. 11.
  • the terminal 11 may include a receiving unit 111 and a processing unit 112, where:
  • the receiving unit 111 is adapted to receive high-level signaling sent by a base station, where the high-level signaling includes frequency domain resource information corresponding to N subbands included in the current carrier, where N> 1.
  • the processing unit 112 is adapted to receive downlink control information sent by a base station, where the downlink control information includes one or more subbands for transmitting uplink data, and is based on frequency domain resource information corresponding to the subbands for transmitting uplink data. Using the frequency domain resources corresponding to the subbands for transmitting uplink data to transmit uplink data.
  • the frequency domain resource information corresponding to the N subbands includes: N-1 CRB indexes; the N-1 CRB indexes are used to indicate the starting CRBs of the N subbands.
  • each subband used for transmitting uplink data corresponds to one PUSCH.
  • the processing unit 112 when the access mode of the PUSCH channel is long LBT, the processing unit 112 includes: a detection subunit (not shown), a selection subunit (not shown), and a first transmission subunit (not shown) Out), where:
  • the detection subunit is adapted to perform LBT detection on the one or more subbands indicated by the downlink control information.
  • the selecting subunit is adapted to select a subband that succeeds in LBT detection as a candidate subband based on the LBT detection result.
  • the first transmission subunit is adapted to transmit uplink data using a frequency domain resource corresponding to a candidate subband.
  • the selection subunit is adapted to select a subband with the lowest index value or the highest index value among the subbands that are successfully detected by the LBT as the candidate subbands.
  • the first transmission subunit is further adapted to determine the HARQ ID used by the PUSCH corresponding to the i-th slot based on the following formula:
  • n HARQ_ID is the initial HARQ ID indicated in the downlink control information
  • N HARQ is the total number of HARQ IDs
  • mod () is the remainder operator.
  • the processing unit 112 when the access mode of the PUSCH channel is a long LBT, the processing unit 112 includes: a detection subunit (not shown) and a second transmission subunit (not shown), where:
  • the detection subunit is adapted to perform LBT detection on the one or more subbands indicated by the downlink control information.
  • the second transmission subunit is adapted to transmit uplink data using frequency domain resources corresponding to all subbands that are successfully detected by the LBT based on the LBT detection result.
  • the multiple subbands correspond to the same PUSCH or different PUSCHs.
  • the second transmission subunit is further adapted to determine the HARQ ID used by the PUSCH corresponding to the i-th slot based on the following formula:
  • n HARQ_ID is the initial HARQ ID indicated in the downlink control information
  • N HARQ is the total number of HARQ IDs
  • mod () is the remainder operator.
  • each PUSCH corresponds to a different HARQ-ID version and / or a different RV version.
  • the second transmission subunit is further adapted to determine the HARQ ID used by the PUSCH corresponding to the jth subband based on the following formula:
  • M is the total number of subbands contained in the current BWP
  • j is the subband index
  • j is 0 indicating the lowest subband in the frequency domain
  • i is the relative index corresponding to the time slot for scheduling PUSCH in the downlink control information
  • n HARQ_ID is the initial HARQ ID indicated in the downlink control information
  • N HARQ is the total number of HARQ IDs
  • mod () is the remainder operator.
  • An embodiment of the present invention provides a computer-readable storage medium.
  • the computer-readable storage medium is a non-volatile storage medium or a non-transitory storage medium, and computer instructions are stored thereon. When the computer instructions are executed, any one of the foregoing is executed. Steps corresponding to the method for indicating an uplink channel resource or the method for determining an uplink channel resource are not described herein again.
  • An embodiment of the present invention provides a base station, including a memory and a processor.
  • the memory stores computer instructions capable of running on the processor, and the processor executes any one of the foregoing when the computer instructions are run. The steps corresponding to the method for indicating the uplink channel resource are not repeated here.
  • An embodiment of the present invention provides a terminal, including a memory and a processor.
  • the memory stores computer instructions capable of running on the processor, and the processor executes any one of the foregoing when the computer instructions are run. The steps corresponding to the method for determining the uplink channel resource are not repeated here.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium may include: ROM, RAM, disk or disc, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行信道资源的指示及确定方法、基站、终端、介质,所述上行信道资源的指示方法包括:通过高层信令向UE指示当前载波包含的N个子带对应的频域资源信息,其中N>1;通过下行控制信息向所述UE指示用于传输上行数据的一个或者多个子带,使得所述UE基于所述用于传输上行数据的子带对应的频域资源信息,使用所述用于传输上行数据的子带对应的频域资源传输上行数据。应用上述方案,可以提高NR网络的资源利用率和性能。

Description

上行信道资源的指示及确定方法、基站、终端、介质
本申请要求于2018年08月08日提交中国专利局、申请号为201810899832.X、发明名称为“上行信道资源的指示及确定方法、基站、终端、介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域,尤其涉及一种上行信道资源的指示及确定方法、基站、终端、介质。
背景技术
为了公平有效地利用非授权频谱,提高新无线(New Radio,NR)***的数据传输速率,3GPP标准组织支持在非授权频谱上部署NR网络。NR网络对非授权频谱的使用有三种方式:1、非授权频谱的NR小区为主小区,用户终端(User Equipment,UE)直接接入非授权频谱的NR小区;2、UE通过长期演进***(Long Term Evolution,LTE)小区接入非授权频谱的NR小区;3、UE通过NR小区接入非授权频谱的NR小区。对于方式2和方式3,授权频谱和非授权频谱通过类似于载波聚合的方式结合使用,即一个终端、演进型基站(Evolved Node B,gNB)可能同时工作在授权频谱和非授权频谱上。也称为NR-U(new RAT unlicense)技术。
在LTE授权频谱辅助接入(LAA,Licensed Assisted Access)技术中,物理上行共享信道(Physical Uplink Share Channel,PUSCH)传输采用交错集(interlace)的方式,每个interlace为资源分配的基本单 元,20MHz/10MHz的interlace包含频域上均匀分布的10个物理资源块(Physical Resource Block,PRB),如interlace 0由资源块(Resource Block,RB)索引为0、10、20、...、90组成。其中RB0~RB9构成交错资源组(cluster)0,依次类推RB10~RB19构成交错资源组(cluster)1……,每个交错资源组中均包含10个RB,分别属于不同的交错集(interlace)。
对于NR***,LAA可采用先听后说(Listen-Before-Talk,LBT)机制实现非授权频谱中不同运营商的LAA及其它***的共存。在LBT过程中,对于非授权频谱,在传输数据前需要先通空闲信道评估(Clear Channel Assessment,CCA)判断当前信道是否可用。
在现有的NR***中,一个载波或者带宽部分(Bandwidth Part,BWP)支持的带宽范围较大,例如,有可能大于20MHz,也有可能小于20MHz。现有的上行资源指示以全载波或者全BWP为单位,导致资源利用率低,NR网络性能较差。
发明内容
本发明实施例解决的技术问题是如何提高NR网络的资源利用率和性能。
为解决上述技术问题,本发明实施例提供一种上行信道资源的指示方法,包括:通过高层信令向UE指示当前载波包含的N个子带对应的频域资源信息,其中N>1;通过下行控制信息向所述UE指示用于传输上行数据的一个或者多个子带,使得所述UE基于所述用于传输上行数据的子带对应的频域资源信息,使用所述用于传输上行数据的子带对应的频域资源传输上行数据。
可选地,所述N个子带对应的频域资源信息包括:N-1个CRB索引;所述N-1个CRB索引用于指示N个子带的起始CRB。
可选地,所述通过下行控制信息向UE指示用于传输上行数据的 一个或者多个子带包括:通过下行控制信息中的比特图向UE指示用于传输上行数据的一个或者多个子带的索引。
可选地,所述通过下行控制信息向UE指示用于传输上行数据的一个或者多个子带包括:通过下行控制信息中的资源指示值向UE指示传输上行数据的一个或者多个子带的索引。
可选地,所述通过下行控制信息中的资源指示值向UE指示传输上行数据的一个或者多个子带索引包括:通过所述资源指示值中的X个比特指示传输上行数据的一个或者多个子带的索引;其中
Figure PCTCN2019092980-appb-000001
M为当前BWP包含的子带的总个数,ceil()为上舍入运算符。
可选地,所述通过下行控制信息向UE指示用于传输上行数据的一个或者多个子带包括:通过下行控制信息中的资源指示值向UE指示传输上行数据的交错资源组的起始位置和长度。
可选地,所述通过下行控制信息中的资源指示值向UE指示传输上行数据的交错资源组的起始位置和长度包括:通过所述资源指示值中的Y个比特向UE指示传输上行数据的交错资源组的起始位置和长度;其中
Figure PCTCN2019092980-appb-000002
K为当前BWP包含的交错资源组的总个数,ceil()为上舍入运算符。
本发明实施例提供一种上行信道资源的确定方法,包括:接收基站发送的高层信令,所述高层信令包括当前载波包含的N个子带对应的频域资源信息,其中N>1;接收基站发送的下行控制信息,所述下行控制信息包括用于传输上行数据的一个或者多个子带,并基于用于传输上行数据的子带对应的频域资源信息,使用所述用于传输上行数据的子带对应的频域资源传输上行数据。
可选地,所述N个子带对应的频域资源信息包括:N-1个CRB索引;所述N-1个CRB索引用于指示N个子带的起始CRB。
可选地,当下行调度指示PUSCH信道的接入方式为短LBT时,所述用于传输上行数据的所有子带对应一个PUSCH;当下行调度指示PUSCH信道的接入方式为长LBT时,所述用于传输上行数据的每个子带对应一个PUSCH。
可选地,当PUSCH信道的接入方式为长LBT时,所述使用所述用于传输上行数据的子带对应的频域资源传输上行数据包括:对所述下行控制信息指示的所述一个或者多个子带执行LBT检测;基于LBT检测结果,选取LBT检测成功的一个子带作为候选子带;使用候选子带对应的频域资源传输上行数据。
可选地,所述选取LBT检测成功的一个子带作为候选子带包括:在LBT检测成功的子带之中选取索引值最低或者索引值最高的子带作为候选子带。
可选地,所述使用候选子带对应的频域资源传输上行数据还包括:基于以下公式确定第i个时隙对应的PUSCH使用的HARQ ID:mod(n HARQ_ID+i,N HARQ);其中i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
可选地,当PUSCH信道的接入方式为长LBT时,所述使用所述用于传输上行数据的子带对应的频域资源传输上行数据包括:对所述下行控制信息指示的所述一个或者多个子带执行LBT检测;基于LBT检测结果,使用LBT检测成功的所有子带对应的频域资源传输上行数据。
可选地,对应每个时隙,所述多个子带对应相同的PUSCH或者不同的PUSCH。
可选地,当所述多个子带对应相同的PUSCH时,所述使用LBT检测成功的所有子带对应的频域资源传输上行数据还包括:基于以下公式确定第i个时隙对应的PUSCH使用的HARQ ID: mod(n HARQ_ID+i,N HARQ);其中i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
可选地,当所述多个子带对应不同的PUSCH时,每个PUSCH对应不同的HARQ-ID版本和/或不同的RV版本。
可选地,当所述多个子带对应不同的PUSCH时,所述使用LBT检测成功的所有子带对应的频域资源传输上行数据还包括:基于以下公式确定第j个子带对应的PUSCH使用的HARQ ID:mod(n HARQ_ID+i×M+j,N HARQ);其中M为当前BWP包含的子带的总个数,j为子带索引,且j为0表示频域位置最低的子带,i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
本发明实施例提供一种基站,包括:第一指示单元,适于通过高层信令向UE指示当前载波包含的N个子带对应的频域资源信息,其中N>1;第二指示单元,适于通过下行控制信息向所述UE指示用于传输上行数据的一个或者多个子带,使得所述UE基于所述用于传输上行数据的子带对应的频域资源信息,使用所述用于传输上行数据的子带对应的频域资源传输上行数据。
可选地,所述N个子带对应的频域资源信息包括:N-1个CRB索引;所述N-1个CRB索引用于指示N个子带的起始CRB。
可选地,所述第二指示单元,适于通过下行控制信息中的比特图向UE指示用于传输上行数据的一个或者多个子带的索引。
可选地,所述第二指示单元,适于通过下行控制信息中的资源指示值向UE指示传输上行数据的一个或者多个子带的索引。
可选地,所述第二指示单元,适于通过所述资源指示值中的X个比特指示传输上行数据的一个或者多个子带的索引;其中
Figure PCTCN2019092980-appb-000003
M为当前BWP包含的子带的总个数,ceil()为上舍入运算符。
可选地,所述第二指示单元,适于通过下行控制信息中的资源指示值向UE指示传输上行数据的交错资源组的起始位置和长度。
可选地,所述第二指示单元,适于通过所述资源指示值中的Y个比特向UE指示传输上行数据的交错资源组的起始位置和长度;其中
Figure PCTCN2019092980-appb-000004
K为当前BWP包含的交错资源组的总个数,ceil()为上舍入运算符。
本发明实施例提供一种终端,包括:接收单元,适于接收基站发送的高层信令,所述高层信令包括当前载波包含的N个子带对应的频域资源信息,其中N>1;处理单元,适于接收基站发送的下行控制信息,所述下行控制信息包括用于传输上行数据的一个或者多个子带,并基于用于传输上行数据的子带对应的频域资源信息,使用所述用于传输上行数据的子带对应的频域资源传输上行数据。
可选地,所述N个子带对应的频域资源信息包括:N-1个CRB索引;所述N-1个CRB索引用于指示N个子带的起始CRB。
可选地,当下行调度指示PUSCH信道的接入方式为短LBT时,所述用于传输上行数据的所有子带对应一个PUSCH;当下行调度指示PUSCH信道的接入方式为长LBT时,所述用于传输上行数据的每个子带对应一个PUSCH。
可选地,当PUSCH信道的接入方式为长LBT时,所述处理单元包括:检测子单元,适于对所述下行控制信息指示的所述一个或者多个子带执行LBT检测;选取子单元,适于基于LBT检测结果,选取LBT检测成功的一个子带作为候选子带;第一传输子单元,适于使用候选子带对应的频域资源传输上行数据。
可选地,所述选取子单元,适于在LBT检测成功的子带之中选 取索引值最低或者索引值最高的子带作为候选子带。
可选地,所述第一传输子单元,还适于基于以下公式确定第i个时隙对应的PUSCH使用的HARQ ID:mod(n HARQ_ID+i,N HARQ);其中i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
可选地,当PUSCH信道的接入方式为长LBT时,所述处理单元包括:检测子单元,适于对所述下行控制信息指示的所述一个或者多个子带执行LBT检测;第二传输子单元,适于基于LBT检测结果,使用LBT检测成功的所有子带对应的频域资源传输上行数据。
可选地,对应每个时隙,所述多个子带对应相同的PUSCH或者不同的PUSCH。
可选地,当所述多个子带对应相同的PUSCH时,所述第二传输子单元,还适于基于以下公式确定第i个时隙对应的PUSCH使用的HARQ ID:mod(n HARQ_ID+i,N HARQ);其中i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
可选地,当所述多个子带对应不同的PUSCH时,每个PUSCH对应不同的HARQ-ID版本和/或不同的RV版本。
可选地,当所述多个子带对应不同的PUSCH时,所述第二传输子单元,还适于基于以下公式确定第j个子带对应的PUSCH使用的HARQ ID:mod(n HARQ_ID+i×M+j,N HARQ);其中M为当前BWP包含的子带的总个数,j为子带索引,且j为0表示频域位置最低的子带,i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
本发明实施例提供一种计算机可读存储介质,计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述任一种所述上行信道资源的指示方法或者所述上行信道资源的确定方法的步骤。
本发明实施例提供一种基站,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述任一种所述上行信道资源的指示方法的步骤。
本发明实施例提供一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述任一种所述上行信道资源的确定方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明实施例首先通过高层信令向UE指示当前载波包含的N个子带对应的频域资源信息,然后再通过下行控制信息向UE指示用于传输上行数据的一个或者多个子带,使得UE可以基于用于传输上行数据的子带对应的频域资源信息,传输上行数据。由于可以以子带为单位指示上行资源,故可以提高NR网络的资源利用率和性能。
进一步,首先接收基站发送的高层信令,然后接收基站发送的下行控制信息,可以基于用于传输上行数据的子带对应的频域资源信息,使用用于传输上行数据的子带对应的频域资源传输上行数据。由于可以以子带为单位指示上行资源,故可以提高NR网络的资源利用率和性能。
附图说明
图1是本发明实施例提供的一种上行信道资源的指示方法的流程图;
图2是本发明实施例提供的一种interlace、cluster和子带的关系示意图;
图3是本发明实施例提供的一种HARQ ID的示意图;
图4是本发明实施例提供的另一种HARQ ID的示意图;
图5是本发明实施例提供的又一种HARQ ID的示意图;
图6是本发明实施例提供的再一种HARQ ID的示意图;
图7是本发明实施例提供的另一种HARQ ID的示意图;
图8是本发明实施例提供的又一种HARQ ID的示意图;
图9是本发明实施例提供的一种上行信道资源的确定方法的流程图;
图10是本发明实施例提供的一种基站的结构示意图;
图11是本发明实施例提供的一种终端的结构示意图。
具体实施方式
在现有的NR***中,一个载波或者BWP支持的带宽范围较大,例如,有可能大于20MHz,也有可能小于20MHz。现有的上行资源指示以全载波或者全BWP为单位,导致资源利用率低,NR网络性能较差。
本发明实施例首先通过高层信令向UE指示当前载波包含的N个子带对应的频域资源信息,然后再通过下行控制信息向UE指示用于传输上行数据的一个或者多个子带,使得UE可以基于用于传输上行数据的子带对应的频域资源信息,传输上行数据。由于可以以子带为单位指示上行资源,故可以提高NR网络的资源利用率和性能。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
参见图1,本发明实施例提供了一种上行信道资源的指示方法,可以包括如下步骤:
步骤S101,通过高层信令向UE指示当前载波包含的N个子带 对应的频域资源信息,其中N>1。
在具体实施中,由于现有的NR***以全载波或者全BWP为单位指示上行资源,导致资源利用率低,NR网络性能较差,故本发明实施例考虑以子带为单位指示上行资源。
在具体实施中,为了以子带为单位指示上行资源,首先需要通过高层信令向UE指示子带的配置信息,即子带对应的频域资源信息。
在具体实施中,所述子带对应的带宽小于等于当前载波的带宽或者当前BWP(即当前激活BWP)的带宽。
在实际应用中,所述子带的带宽可以为20MHz,也可以为40MHz,还可以为其他值,子带的带宽并不对本发明的保护范围造成限制。
在具体实施中,所述高层信令可以为小区级的高层信令,即面向每个小区向UE指示当前载波包含的N个子带对应的频域资源信息。
在具体实施中,所述N个子带对应的频域资源信息包括:N-1个公共资源块(Common Resource Block,CRB)索引;所述N-1个CRB索引用于指示N个子带的起始CRB。即从载波带宽的第一个可用的CRB索引起到第一个CRB索引-1止为第一个子带;从第一个CRB索引起到第二个CRB索引止为第二个子带,…,从N-1个CRB索引起到载波***带宽的最高的CRB索引止为第N个子带。
例如,N=2,即当前载波包含2个子带,使用1个CRB索引指示2个子带的起始CRB。CRB索引为x表示:从载波带宽的第一个可用的CRB索引(例如,CRB6)起至x-1止为第一个子带;从x到载波***带宽的最高CRB索引止为第2个子带。
步骤S102,通过下行控制信息向所述UE指示用于传输上行数据的一个或者多个子带,使得所述UE基于所述用于传输上行数据的子带对应的频域资源信息,使用所述用于传输上行数据的子带对应的频域资源传输上行数据。
在具体实施中,可以通过下行控制信息(Downlink Control Information,DCI)调度一个或者多个子带,用于上行传输。
在本发明一实施例中,通过下行控制信息中的比特图(bitmap),向UE指示用于传输上行数据的一个或者多个子带的索引。
例如,下行调度指示上行共享信道的接入方式为短LBT方式,当前载波包含N个子带,当前BWP包含M个子带,则DCI中包含M个比特长度的bitmap,用于指示哪些子带可用于传输上行数据。其中,每个子带内的频域资源指示信息相同。
在本发明一实施例中,通过下行控制信息中的资源指示值(Resource Indication Value,RIV)向UE指示传输上行数据的一个或者多个子带的索引。
在具体实施中,可以通过所述资源指示值中的X个比特指示传输上行数据的一个或者多个子带的索引;其中
Figure PCTCN2019092980-appb-000005
M为当前BWP包含的子带的总个数,ceil()为上舍入运算符。
例如,DCI指示上行共享信道的接入方式为短LBT方式,当前载波包含N个子带,当前BWP包含M个子带,则DCI中包含X个比特长度的RIV字段,用于指示哪些子带可用于传输上行数据。
与采用Bitmap向UE指示用于传输上行数据的一个或者多个子带的索引相比,采用RIV向UE指示传输上行数据的一个或者多个子带的索引,只能指示连续的子带,且其中每个子带内的频域资源指示信息相同,在实际应用中可以根据需求选择不同的实现方式。
在具体实施中,还可以通过DCI中的频域资源分配字段指示分配了哪些interlace和哪些cluster,使得UE基于cluster的起始位置和长度,确定传输上行数据的一个或者多个子带。
为了使本发明技术人员更好地理解和实施本发明,本发明实施例提供了一种interlace、cluster和子带的关系示意图,如图2所示。
参见图2,当前BWP对应的带宽为40MHz,划分为子带1和子带2,每个子带对应的带宽分别为20MHz。每个子带对应10个cluster,分别为cluster0至cluster9。每个cluster中包含10个RB,分别为RB0~RB9,且10个RB分别属于不同的交错集interlace。例如,interlace0由每个cluster中的索引为0的RB组成。
在具体实施中,可以通过下行控制信息中的资源指示值向UE指示传输上行数据的交错资源组的起始位置和长度,使得UE基于交错资源组的起始位置和长度,确定传输上行数据的一个或者多个子带。
在本发明一实施例中,所述通过下行控制信息中的资源指示值向UE指示传输上行数据的交错资源组的起始位置和长度包括:通过所述资源指示值中的Y个比特向UE指示传输上行数据的交错资源组的起始位置和长度;其中
Figure PCTCN2019092980-appb-000006
K为当前BWP包含的交错资源组的总个数,ceil()为上舍入运算符。
需要特别说明的是,对于特殊场景,当基站需要向UE指示用于传输上行数据的一个或者多个子带为:当前BWP内的所有子带时,下行控制信息中可以不携带子带信息,也属于本发明实施例的保护范围。
应用上述方案,首先通过高层信令向UE指示当前载波包含的N个子带对应的频域资源信息,然后再通过下行控制信息向UE指示用于传输上行数据的一个或者多个子带,使得UE可以基于用于传输上行数据的子带对应的频域资源信息,传输上行数据。由于可以以子带为单位指示上行资源,故可以提高NR网络的资源利用率和性能。
为使本领域技术人员更好的理解和实施本发明,本发明实施例还提供了一种上行信道资源的确定方法,如图9所示。
参见图9,所述上行信道资源的确定方法可以包括如下步骤:
步骤S901,接收基站发送的高层信令,所述高层信令包括当前载波包含的N个子带对应的频域资源信息,其中N>1。
在具体实施中,基站可以采用图1对应的实施例中的方法,指示当前载波包含的N个子带对应的频域资源信息,此处不再赘述。
步骤S902,接收基站发送的下行控制信息,所述下行控制信息包括用于传输上行数据的一个或者多个子带,并基于用于传输上行数据的子带对应的频域资源信息,使用所述用于传输上行数据的子带对应的频域资源传输上行数据。
在具体实施中,基站可以采用图1对应的实施例中的方法,指示用于传输上行数据的一个或者多个子带,此处不再赘述。
在具体实施中,所述N个子带对应的频域资源信息可以包括:N-1个CRB索引;所述N-1个CRB索引用于指示N个子带的起始CRB。
在具体实施中,可以通过下行调度指示上行链路物理共享信道(Physical Uplink Share Channel,PUSCH)信道的接入方式,当PUSCH信道的接入方式为短LBT时,所述用于传输上行数据的所有子带对应一个PUSCH;当PUSCH信道的接入方式为长LBT时,所述用于传输上行数据的每个子带对应一个PUSCH。
在本发明一实施例中,当下行调度指示PUSCH信道的接入方式为短LBT时,所述用于传输上行数据的所有子带对应一个PUSCH;当下行调度指示PUSCH信道的接入方式为长LBT时,所述用于传输上行数据的每个子带对应一个PUSCH。
在具体实施中,当PUSCH信道的接入方式为长LBT时,所述使用所述用于传输上行数据的子带对应的频域资源传输上行数据可以包括:对所述下行控制信息指示的所述一个或者多个子带执行LBT检测;基于LBT检测结果,选取LBT检测成功的一个子带作为候选子带;使用候选子带对应的频域资源传输上行数据。
在具体实施中,可以基于LBT检测结果,在LBT检测成功的多个子带中任意选择一个子带作为候选子带。
在本发明一实施例中,所述选取LBT检测成功的一个子带作为候选子带包括:在LBT检测成功的子带之中选取索引值最低或者索引值最高的子带作为候选子带。
在具体实施中,当只选择LBT检测成功的一个子带传输上行数据时,还需要确定第i个时隙对应的PUSCH使用的HARQ ID。
在本发明一实施中,所述使用候选子带对应的频域资源传输上行数据还包括:基于公式(1)确定第i个时隙对应的PUSCH使用的HARQ ID:
mod(n HARQ_ID+i,N HARQ)     (1)
其中:i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
为使本领域技术人员更好地理解和实施本发明,本发明实施例提供了一种HARQ ID的示意图,如图3所示。
参见图3,当前BWP包含两个子带,DCI调度了4个时隙,起始HARQ ID为0,只有一个子带(子带2)LBT检测成功,此时UE选择子带2传输PUSCH,且基于公式(1)确定时隙slot0~slot3使用的HARQ ID分别为0、1、2、3。
为使本领域技术人员更好地理解和实施本发明,本发明实施例提供了另一种HARQ ID的示意图,如图4所示。
参见图4,当前BWP包含两个子带,即子带1和子带2,DCI调度了4个时隙,起始HARQ ID为0,两个子带均LBT检测成功,此时UE选择索引值低的子带1传输PUSCH,且基于公式(1)确定时隙slot0~slot3使用的HARQ ID分别为0、1、2、3。
在具体实施中,可以基于LBT检测结果,选择LBT检测成功的所有子带传输上行数据。
在本发明一实施例中,当PUSCH信道的接入方式为长LBT时,所述使用所述用于传输上行数据的子带对应的频域资源传输上行数据包括:对所述下行控制信息指示的所述一个或者多个子带执行LBT检测;基于LBT检测结果,使用LBT检测成功的所有子带对应的频域资源传输上行数据。
在具体实施中,当使用LBT检测成功的所有子带对应的频域资源传输上行数据时,对应每个时隙,所述多个子带可以对应相同的PUSCH,也可以对应不同的PUSCH。
在具体实施中,当下行调度指示PUSCH的信道接入方式为长LBT方式,且DCI中的频域资源分配字段指示可以调度一个或多个子带内的频域资源时,UE可以根据LBT的结果,在基站通过DCI指示的子带中选择LBT成功的所有子带传输PUSCH,且每个子带内传输的PUSCH相同。
在本发明一实施例中,当所述多个子带对应相同的PUSCH时,所述使用LBT检测成功的所有子带对应的频域资源传输上行数据还包括:基于公式(1)确定第i个时隙对应的PUSCH使用的HARQ ID。
为使本领域技术人员更好地理解和实施本发明,本发明实施例提供了又一种HARQ ID的示意图,如图5所示。
参见图5,当前BWP包含两个子带,DCI调度了4个时隙,起始HARQ ID为0,只有一个子带(子带2)LBT检测成功,此时UE选择子带2传输PUSCH,且基于公式(1)确定时隙slot0~slot3使用的HARQ ID分别为0、1、2、3。
为使本领域技术人员更好地理解和实施本发明,本发明实施例提供了再一种HARQ ID的示意图,如图6所示。
参见图6,当前BWP包含两个子带,即子带1和子带2,DCI 调度了4个时隙,起始HARQ ID为0,两个子带均LBT检测成功,此时UE选择子带1和子带2传输相同的PUSCH,且对于子带1和子带2,基于公式(1)确定时隙slot0~slot3使用的HARQ ID分别为0、1、2、3。
在具体实施中,当所述一个或者多个子带对应不同的PUSCH时,每个PUSCH可以使用不同的HARQ-ID版本和/或不同的冗余版本(Redundancy Version,RV)版本。
在具体实施中,当下行调度指示PUSCH的信道接入方式为长LBT方式,且DCI中的频域资源分配字段指示可以调度一个或多个子带内的频域资源时,UE可以根据LBT的结果,在DCI指示的子带中选择LBT成功的所有子带传输PUSCH,此时每个子带都对应一个独立的PUSCH。
在具体实施中,当UE成功接入多个子带,每个成功的子带上都只允许传一个PUSCH,且多个子带上传输的PUSCH的调制与编码策略(Modulation and Coding Scheme,MCS)相同,频域interlace也相同。不同之处在于每个子带内传输的PUSCH使用不同的HARQ-ID和/或不同的RV版本。
在本发明一实施例中,当所述多个子带对应不同的PUSCH时,所述使用LBT检测成功的所有子带对应的频域资源传输上行数据还包括:基于公式(2)确定第j个子带对应的PUSCH使用的HARQ ID:
mod(n HARQ_ID+i×M+j,N HARQ)     (2)
其中:M为当前BWP包含的子带的总个数,j为子带索引,且j为0表示频域位置最低的子带。i为下行控制信息中调度PUSCH的时隙(slot)对应的相对索引,例如,调度S=4个时隙传输,则i=(0,1,…,S-1)。n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
为使本领域技术人员更好地理解和实施本发明,本发明实施例提 供了另一种HARQ ID的示意图,如图7所示。
参见图7,当前BWP包含两个子带,DCI调度了4个时隙,起始HARQ ID为0,只有一个子带(子带2)LBT检测成功,此时UE选择子带2传输PUSCH,且基于公式(2)确定时隙slot0~slot3使用的HARQ ID分别为1、3、5、7。
为使本领域技术人员更好地理解和实施本发明,本发明实施例提供了又一种HARQ ID的示意图,如图8所示。
参见图8,当前BWP包含两个子带,即子带1和子带2,DCI调度了4个时隙,起始HARQ ID为0,两个子带均LBT检测成功,此时UE选择子带1和子带2传输PUSCH,且对于子带2,基于公式(2)确定时隙slot0~slot3使用的HARQ ID分别为1、3、5、7;对于子带1,基于公式(2)确定时隙slot0~slot3使用的HARQ ID分别为0、2、4、6。
应用上述方案,首先接收基站发送的高层信令,然后接收基站发送的下行控制信息,可以基于用于传输上行数据的子带对应的频域资源信息,使用用于传输上行数据的子带的频域资源传输上行数据。由于可以以子带为单位指示上行资源,故可以提高NR网络的资源利用率和性能。
为使本领域技术人员更好的理解和实施本发明,本发明实施例还提供了一种能够实现上述上行信道资源的指示方法的基站,如图10所示。
参见图10,所述基站10可以包括:第一指示单元101、第二指示单元102,其中:
所述第一指示单元101,适于通过高层信令向UE指示当前载波包含的N个子带对应的频域资源信息,其中N>1。
所述第二指示单元102,适于通过下行控制信息向所述UE指示用于传输上行数据的一个或者多个子带,使得所述UE基于所述用于 传输上行数据的子带对应的频域资源信息,使用所述用于传输上行数据的子带对应的频域资源传输上行数据。
在本发明一实施例中,所述N个子带对应的频域资源信息包括:N-1个CRB索引;所述N-1个CRB索引用于指示N个子带的起始CRB。
在具体实施中,所述第二指示单元102,适于通过下行控制信息中的比特图向UE指示用于传输上行数据的一个或者多个子带的索引。
在具体实施中,所述第二指示单元102,适于通过下行控制信息中的资源指示值向UE指示传输上行数据的一个或者多个子带的索引。
在本发明一实施例中,所述第二指示单元102,适于通过所述资源指示值中的X个比特指示传输上行数据的一个或者多个子带的索引;其中
Figure PCTCN2019092980-appb-000007
M为当前BWP包含的子带的总个数,ceil()为上舍入运算符。
在具体实施中,所述第二指示单元102,适于通过下行控制信息中的资源指示值向UE指示传输上行数据的交错资源组的起始位置和长度。
在本发明一实施例中,所述第二指示单元102,适于通过所述资源指示值中的Y个比特向UE指示传输上行数据的交错资源组的起始位置和长度;其中
Figure PCTCN2019092980-appb-000008
K为当前BWP包含的交错资源组的总个数,ceil()为上舍入运算符。
在具体实施中,所述基站10的工作流程及原理可以参考上述实 施例中提供的方法中的描述,此处不再赘述。
为使本领域技术人员更好的理解和实施本发明,本发明实施例还提供了一种能够实现上述上行信道资源的确定方法的终端,如图11所示。
参见图11,所述终端11可以包括:接收单元111和处理单元112,其中:
所述接收单元111,适于接收基站发送的高层信令,所述高层信令包括当前载波包含的N个子带对应的频域资源信息,其中N>1。
所述处理单元112,适于接收基站发送的下行控制信息,所述下行控制信息包括用于传输上行数据的一个或者多个子带,并基于用于传输上行数据的子带对应的频域资源信息,使用所述用于传输上行数据的子带对应的频域资源传输上行数据。
在具体实施中,所述N个子带对应的频域资源信息包括:N-1个CRB索引;所述N-1个CRB索引用于指示N个子带的起始CRB。
在本发明一实施中,当下行调度指示PUSCH信道的接入方式为短LBT时,所述用于传输上行数据的所有子带对应一个PUSCH;当下行调度指示PUSCH信道的接入方式为长LBT时,所述用于传输上行数据的每个子带对应一个PUSCH。
在具体实施中,当PUSCH信道的接入方式为长LBT时,所述处理单元112包括:检测子单元(未示出)、选取子单元(未示出)和第一传输子单元(未示出),其中:
所述检测子单元,适于对所述下行控制信息指示的所述一个或者多个子带执行LBT检测。
所述选取子单元,适于基于LBT检测结果,选取LBT检测成功的一个子带作为候选子带。
所述第一传输子单元,适于使用候选子带对应的频域资源传输上 行数据。
在本发明一实施例中,所述选取子单元,适于在LBT检测成功的子带之中选取索引值最低或者索引值最高的子带作为候选子带。
在具体实施中,所述第一传输子单元,还适于基于以下公式确定第i个时隙对应的PUSCH使用的HARQ ID:
mod(n HARQ_ID+i,N HARQ);
其中i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
在具体实施中,当PUSCH信道的接入方式为长LBT时,所述处理单元112包括:检测子单元(未示出)和第二传输子单元(未示出),其中:
所述检测子单元,适于对所述下行控制信息指示的所述一个或者多个子带执行LBT检测。
所述第二传输子单元,适于基于LBT检测结果,使用LBT检测成功的所有子带对应的频域资源传输上行数据。
在本发明一实施例中,对应每个时隙,所述多个子带对应相同的PUSCH或者不同的PUSCH。
在具体实施中,当所述多个子带对应相同的PUSCH时,所述第二传输子单元,还适于基于以下公式确定第i个时隙对应的PUSCH使用的HARQ ID:
mod(n HARQ_ID+i,N HARQ);
其中i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
在本发明一实施例中,当所述多个子带对应不同的PUSCH时,每个PUSCH对应不同的HARQ-ID版本和/或不同的RV版本。
在具体实施中,当所述多个子带对应不同的PUSCH时,所述第二传输子单元,还适于基于以下公式确定第j个子带对应的PUSCH使用的HARQ ID:
mod(n HARQ_ID+i×M+j,N HARQ);
其中M为当前BWP包含的子带的总个数,j为子带索引,且j为0表示频域位置最低的子带,i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
在具体实施中,所述终端11的工作流程及原理可以参考上述实施例中提供的方法中的描述,此处不再赘述。
本发明实施例提供一种计算机可读存储介质,计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述任一种所述上行信道资源的指示方法或者上行信道资源的确定方法对应的步骤,此处不再赘述。
本发明实施例提供一种基站,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述任一种所述上行信道资源的指示方法对应的步骤,此处不再赘述。
本发明实施例提供一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述任一种所述上行信道资源的确定方法对应的步骤,此处不再赘述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、 磁盘或光盘等。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (39)

  1. 一种上行信道资源的指示方法,其特征在于,包括:
    通过高层信令向UE指示当前载波包含的N个子带对应的频域资源信息,其中N>1;
    通过下行控制信息向所述UE指示用于传输上行数据的一个或者多个子带,使得所述UE基于所述用于传输上行数据的子带对应的频域资源信息,使用所述用于传输上行数据的子带对应的频域资源传输上行数据。
  2. 根据权利要求1所述的上行信道资源的指示方法,其特征在于,
    所述N个子带对应的频域资源信息包括:N-1个CRB索引;所述N-1个CRB索引用于指示N个子带的起始CRB。
  3. 根据权利要求1所述的上行信道资源的指示方法,其特征在于,
    所述通过下行控制信息向UE指示用于传输上行数据的一个或者多个子带包括:
    通过下行控制信息中的比特图向UE指示用于传输上行数据的一个或者多个子带的索引。
  4. 根据权利要求1所述的上行信道资源的指示方法,其特征在于,
    所述通过下行控制信息向UE指示用于传输上行数据的一个或者多个子带包括:
    通过下行控制信息中的资源指示值向UE指示传输上行数据的一个或者多个子带的索引。
  5. 根据权利要求4所述的上行信道资源的指示方法,其特征在于,
    所述通过下行控制信息中的资源指示值向UE指示传输上行数据的一个或者多个子带索引包括:通过所述资源指示值中的X个比特指示传输上行数据的一个或者多个子带的索引;
    其中
    Figure PCTCN2019092980-appb-100001
    M为当前BWP包含的子带的总个数,ceil()为上舍入运算符。
  6. 根据权利要求1所述的上行信道资源的指示方法,其特征在于,
    所述通过下行控制信息向UE指示用于传输上行数据的一个或者多个子带包括:
    通过下行控制信息中的资源指示值向UE指示传输上行数据的交错资源组的起始位置和长度。
  7. 根据权利要求6所述的上行信道资源的指示方法,其特征在于,
    所述通过下行控制信息中的资源指示值向UE指示传输上行数据的交错资源组的起始位置和长度包括:通过所述资源指示值中的Y个比特向UE指示传输上行数据的交错资源组的起始位置和长度;
    其中
    Figure PCTCN2019092980-appb-100002
    K为当前BWP包含的交错资源组的总个数,ceil()为上舍入运算符。
  8. 一种上行信道资源的确定方法,其特征在于,包括:
    接收基站发送的高层信令,所述高层信令包括当前载波包含的N个子带对应的频域资源信息,其中N>1;
    接收基站发送的下行控制信息,所述下行控制信息包括用于传输上行数据的一个或者多个子带,并基于用于传输上行数据的子带对应的频域资源信息,使用所述用于传输上行数据的子带对应的频域资源传输上行数据。
  9. 根据权利要求8所述的上行信道资源的确定方法,其特征在于,
    所述N个子带对应的频域资源信息包括:N-1个CRB索引;所述N-1个CRB索引用于指示N个子带的起始CRB。
  10. 根据权利要求8所述的上行信道资源的确定方法,其特征在于,
    当下行调度指示PUSCH信道的接入方式为短LBT时,所述用于传输上行数据的所有子带对应一个PUSCH;
    当下行调度指示PUSCH信道的接入方式为长LBT时,所述用于传输上行数据的每个子带对应一个PUSCH。
  11. 根据权利要求10所述的上行信道资源的确定方法,其特征在于,
    当PUSCH信道的接入方式为长LBT时,所述使用所述用于传输上行数据的子带对应的频域资源传输上行数据包括:
    对所述下行控制信息指示的所述一个或者多个子带执行LBT检测;
    基于LBT检测结果,选取LBT检测成功的一个子带作为候选子带;
    使用候选子带对应的频域资源传输上行数据。
  12. 根据权利要求11所述的上行信道资源的确定方法,其特征在于,
    所述选取LBT检测成功的一个子带作为候选子带包括:
    在LBT检测成功的子带之中选取索引值最低或者索引值最高的子带作为候选子带。
  13. 根据权利要求11所述的上行信道资源的确定方法,其特征在于,
    所述使用候选子带对应的频域资源传输上行数据还包括:基于以下公式确定第i个时隙对应的PUSCH使用的HARQ ID:
    mod(n HARQ_ID+i,N HARQ);
    其中i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
  14. 根据权利要求10所述的上行信道资源的确定方法,其特征在于,当PUSCH信道的接入方式为长LBT时,所述使用所述用于传输上行数据的子带对应的频域资源传输上行数据包括:
    对所述下行控制信息指示的所述一个或者多个子带执行LBT检测;
    基于LBT检测结果,使用LBT检测成功的所有子带对应的频域资源传输上行数据。
  15. 根据权利要求14所述的上行信道资源的确定方法,其特征在于,
    对应每个时隙,所述多个子带对应相同的PUSCH或者不同的PUSCH。
  16. 根据权利要求15所述的上行信道资源的确定方法,其特征在于,
    当所述多个子带对应相同的PUSCH时,所述使用LBT检测成功的所有子带对应的频域资源传输上行数据还包括:基于以下公式确定第i个时隙对应的PUSCH使用的HARQ ID:
    mod(n HARQ_ID+i,N HARQ);
    其中i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
  17. 根据权利要求15所述的上行信道资源的确定方法,其特征在于,
    当所述多个子带对应不同的PUSCH时,每个PUSCH对应不同的HARQ-ID版本和/或不同的RV版本。
  18. 根据权利要求17所述的上行信道资源的确定方法,其特征在于,
    当所述多个子带对应不同的PUSCH时,所述使用LBT检测成功的所有子带对应的频域资源传输上行数据还包括:基于以下公式确定第j个子带对应的PUSCH使用的HARQ ID:
    mod(n HARQ_ID+i×M+j,N HARQ);
    其中M为当前BWP包含的子带的总个数,j为子带索引,且j为0表示频域位置最低的子带,i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ  ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
  19. 一种基站,其特征在于,包括:
    第一指示单元,适于通过高层信令向UE指示当前载波包含的N个子带对应的频域资源信息,其中N>1;
    第二指示单元,适于通过下行控制信息向所述UE指示用于传输上行数据的一个或者多个子带,使得所述UE基于所述用于传输上行数据的子带对应的频域资源信息,使用所述用于传输上行数据的子带对应的频域资源传输上行数据。
  20. 根据权利要求19所述的基站,其特征在于,所述N个子带对应的频域资源信息包括:N-1个CRB索引;所述N-1个CRB索引用于指示N个子带的起始CRB。
  21. 根据权利要求19所述的基站,其特征在于,所述第二指示单元,适于通过下行控制信息中的比特图向UE指示用于传输上行数据的一个或者多个子带的索引。
  22. 根据权利要求19所述的基站,其特征在于,所述第二指示单元,适于通过下行控制信息中的资源指示值向UE指示传输上行数据的一个或者多个子带的索引。
  23. 根据权利要求22所述的基站,其特征在于,所述第二指示单元,适于通过所述资源指示值中的X个比特指示传输上行数据的一个或者多个子带的索引;
    其中
    Figure PCTCN2019092980-appb-100003
    M为当前BWP包含的子带的总个数,ceil()为上舍入运算符。
  24. 根据权利要求19所述的基站,其特征在于,所述第二指示单元,适于通过下行控制信息中的资源指示值向UE指示传输上行数据的交错资源组的起始位置和长度。
  25. 根据权利要求24所述的基站,其特征在于,所述第二指示单元,适于通过所述资源指示值中的Y个比特向UE指示传输上行数据的交错资源组的起始位置和长度;
    其中
    Figure PCTCN2019092980-appb-100004
    K为当前BWP包含的交错资源组的总个数,ceil()为上舍入运算符。
  26. 一种终端,其特征在于,包括:
    接收单元,适于接收基站发送的高层信令,所述高层信令包括当前载波包含的N个子带对应的频域资源信息,其中N>1;
    处理单元,适于接收基站发送的下行控制信息,所述下行控制信息包括用于传输上行数据的一个或者多个子带,并基于用于传输上行数据的子带对应的频域资源信息,使用所述用于传输上行数据的子带对应的频域资源传输上行数据。
  27. 根据权利要求26所述的终端,其特征在于,所述N个子带对应的频域资源信息包括:N-1个CRB索引;所述N-1个CRB索引用于指示N个子带的起始CRB。
  28. 根据权利要求26所述的终端,其特征在于,当下行调度指示PUSCH信道的接入方式为短LBT时,所述用于传输上行数据的所有子带对应一个PUSCH;
    当下行调度指示PUSCH信道的接入方式为长LBT时,所述用于传输上行数据的每个子带对应一个PUSCH。
  29. 根据权利要求28所述的终端,其特征在于,当PUSCH信道的接入方式为长LBT时,所述处理单元包括:
    检测子单元,适于对所述下行控制信息指示的所述一个或者多个子带执行LBT检测;
    选取子单元,适于基于LBT检测结果,选取LBT检测成功的一个 子带作为候选子带;
    第一传输子单元,适于使用候选子带对应的频域资源传输上行数据。
  30. 根据权利要求29所述的终端,其特征在于,所述选取子单元,适于在LBT检测成功的子带之中选取索引值最低或者索引值最高的子带作为候选子带。
  31. 根据权利要求29所述的终端,其特征在于,所述第一传输子单元,还适于基于以下公式确定第i个时隙对应的PUSCH使用的HARQ ID:
    mod(n HARQ_ID+i,N HARQ);
    其中i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
  32. 根据权利要求28所述的终端,其特征在于,当PUSCH信道的接入方式为长LBT时,所述处理单元包括:
    检测子单元,适于对所述下行控制信息指示的所述一个或者多个子带执行LBT检测;
    第二传输子单元,适于基于LBT检测结果,使用LBT检测成功的所有子带对应的频域资源传输上行数据。
  33. 根据权利要求32所述的终端,其特征在于,对应每个时隙,所述多个子带对应相同的PUSCH或者不同的PUSCH。
  34. 根据权利要求33所述的终端,其特征在于,当所述多个子带对应相同的PUSCH时,所述第二传输子单元,还适于基于以下公式确定第i个时隙对应的PUSCH使用的HARQ ID:
    mod(n HARQ_ID+i,N HARQ);
    其中i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
  35. 根据权利要求33所述的终端,其特征在于,当所述多个子带对应不同的PUSCH时,每个PUSCH对应不同的HARQ-ID版本和/或不同的RV版本。
  36. 根据权利要求35所述的终端,其特征在于,当所述多个子带对应不同的PUSCH时,所述第二传输子单元,还适于基于以下公式确定第j个子带对应的PUSCH使用的HARQ ID:
    mod(n HARQ_ID+i×M+j,N HARQ);
    其中M为当前BWP包含的子带的总个数,j为子带索引,且j为0表示频域位置最低的子带,i为下行控制信息中调度PUSCH的时隙对应的相对索引,n HARQ_ID为下行控制信息中指示的起始HARQ ID,N HARQ为HARQ ID的总个数,mod()为取余数运算符。
  37. 一种计算机可读存储介质,计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机指令,其特征在于,所述计算机指令运行时执行权利要求1至7或者8至18中任一项所述方法的步骤。
  38. 一种基站,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求1至7中任一项所述方法的步骤。
  39. 一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求8至18中任一项所述方法的步骤。
PCT/CN2019/092980 2018-08-08 2019-06-26 上行信道资源的指示及确定方法、基站、终端、介质 WO2020029698A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19848365.3A EP3836468A4 (en) 2018-08-08 2019-06-26 METHOD OF DISPLAYING AND DETERMINING AN UPLINK CHANNEL RESOURCE AND BASE STATION, TERMINAL AND MEDIUM
US17/265,860 US11552773B2 (en) 2018-08-08 2019-06-26 Uplink channel resource indication method, uplink channel resource determination method, base station, terminal and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810899832.X 2018-08-08
CN201810899832.XA CN110830194B (zh) 2018-08-08 2018-08-08 上行信道资源的指示及确定方法、基站、终端、介质

Publications (1)

Publication Number Publication Date
WO2020029698A1 true WO2020029698A1 (zh) 2020-02-13

Family

ID=69413915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092980 WO2020029698A1 (zh) 2018-08-08 2019-06-26 上行信道资源的指示及确定方法、基站、终端、介质

Country Status (4)

Country Link
US (1) US11552773B2 (zh)
EP (1) EP3836468A4 (zh)
CN (1) CN110830194B (zh)
WO (1) WO2020029698A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116528370A (zh) * 2017-06-16 2023-08-01 华为技术有限公司 一种通信方法及装置
CN113225829B (zh) * 2018-04-04 2024-04-12 华为技术有限公司 一种发送、接收上行控制信息的方法及装置
US20230138473A1 (en) * 2020-03-17 2023-05-04 Beijing Xiaomi Mobile Software Co., Ltd. Communication method, apparatus, and device, and readable storage medium
WO2021195801A1 (en) * 2020-03-28 2021-10-07 Qualcomm Incorporated Multiple resources in channels for low latency communication in unlicensed band
CN113518390B (zh) * 2020-04-10 2022-09-09 展讯通信(上海)有限公司 上行数据传输方法、终端及可读存储介质
CN115209556A (zh) * 2021-04-08 2022-10-18 维沃移动通信有限公司 传输资源确定方法和设备
CN115866757A (zh) * 2021-09-24 2023-03-28 展讯通信(上海)有限公司 数据传输方向的指示方法及装置、通信装置
CN116133123A (zh) * 2021-11-12 2023-05-16 ***通信有限公司研究院 一种频域资源分配方法、装置及设备
CN118055500A (zh) * 2022-11-15 2024-05-17 维沃移动通信有限公司 频域资源确定方法、终端及网络侧设备
WO2024124582A1 (zh) * 2022-12-16 2024-06-20 北京小米移动软件有限公司 资源确定方法、装置、通信装置和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507486A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 用于上行数据传输的方法、网络设备和终端设备
CN106658742A (zh) * 2015-11-03 2017-05-10 中兴通讯股份有限公司 数据调度及传输的方法、装置及***

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404584B (zh) 2010-09-13 2014-05-07 腾讯科技(成都)有限公司 调整场景左右摄像机的方法及装置、3d眼镜、客户端
CN102404854B (zh) * 2011-11-04 2018-04-06 中兴通讯股份有限公司 一种上行解调参考信号的资源配置方法及***
CN107210886B (zh) * 2015-01-09 2020-12-08 三星电子株式会社 在无线通信***中传输用于终端的控制信道的方法和装置
WO2017126579A1 (ja) * 2016-01-20 2017-07-27 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN105722229B (zh) * 2016-02-05 2019-08-27 北京佰才邦技术有限公司 信道的选择方法和装置
US10904879B2 (en) * 2016-04-01 2021-01-26 Nokia Solutions And Networks Oy Rach preamble transmission and multiplexing with data and/or control signals
KR102329949B1 (ko) * 2016-07-05 2021-11-23 한국전자통신연구원 뉴머롤러지를 이용한 전송 방법 및 장치, 그리고 뉴머롤러지를 이용한 스케줄링 방법 및 장치
CN107743315B (zh) * 2016-08-11 2022-01-11 上海诺基亚贝尔股份有限公司 用于基于竞争的传输的方法和设备
WO2018084660A1 (ko) 2016-11-04 2018-05-11 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
CN108076518B (zh) * 2016-11-17 2021-01-05 华为技术有限公司 一种上行数据传输方法及设备
CN110050433B (zh) 2017-01-09 2022-07-05 苹果公司 用于无线通信***的带宽自适应
WO2019117688A1 (ko) * 2017-12-16 2019-06-20 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 장치
US10873423B2 (en) * 2018-02-15 2020-12-22 Huawei Technologies Co., Ltd. Systems and methods for allocation of uplink control channel resources in unlicensed spectrum
US11184776B2 (en) * 2018-07-16 2021-11-23 Kt Corporation Method and apparatus for performing wireless communication in unlicensed band

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507486A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 用于上行数据传输的方法、网络设备和终端设备
CN106658742A (zh) * 2015-11-03 2017-05-10 中兴通讯股份有限公司 数据调度及传输的方法、装置及***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Considerations of sub-band scheduling for 1.4 MHz MTC UE", 3GPP TSG RAN WG1 MEETING #80BIS, RL-151589, 10 April 2015 (2015-04-10), XP050949541 *
See also references of EP3836468A4 *

Also Published As

Publication number Publication date
CN110830194A (zh) 2020-02-21
CN110830194B (zh) 2020-10-30
EP3836468A1 (en) 2021-06-16
US11552773B2 (en) 2023-01-10
EP3836468A4 (en) 2022-05-11
US20210176028A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
WO2020029698A1 (zh) 上行信道资源的指示及确定方法、基站、终端、介质
EP3566382B1 (en) Method and user equipment for multi-carrier data transmission
US11395291B2 (en) Allocating transmission resources in communication networks that provide low latency services
US9538391B2 (en) Sharing frequencies in an OFDM-based wireless communication system
CN108633052B (zh) 一种资源配置方法、装置和设备
WO2018228500A1 (zh) 一种调度信息传输方法及装置
CN108811116A (zh) 传输控制信道的方法、网络设备、网络控制器和终端设备
US20200045733A1 (en) Uplink Scheduling For NR-U
WO2017132967A1 (zh) 数据发送方法、数据接收方法、用户设备及基站
EP3091800B1 (en) Method and apparatus for allocating resource to lte cell
US11456843B2 (en) Resource allocation method for sub-PRB uplink transmission
WO2017132964A1 (zh) 一种上行数据传输方法及相关设备
US11737086B2 (en) Resource scheduling indication method and apparatus and communication system
TW201824908A (zh) 傳輸信息的方法、網絡設備和終端設備
CN106658725B (zh) 一种数据传输方法及装置
CN104936293B (zh) 一种非授权频谱上的通信方法和装置
WO2020125289A1 (zh) 占有时隙的确定方法及装置、存储介质、用户终端
CN108811090B (zh) 一种资源分配指示方法、装置、网络侧设备及用户设备
CN111770473B (zh) 一种蜂窝车联网的非授权频谱接入与载波聚合方法及装置
WO2020125708A1 (zh) 上行控制信息的上报方法及装置、存储介质、用户终端
CN116458231A (zh) 通信方法、装置及***
WO2023123387A1 (zh) 一种资源分配指示域的大小的确定方法及终端设备、网络设备
CN110167156A (zh) 上行复用时频资源确定方法、用户终端及可读存储介质
CN112073975B (zh) 一种终端间多跳通信的非授权频谱边缘共享方法及装置
WO2023123383A1 (zh) 一种资源的指示方法及终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019848365

Country of ref document: EP

Effective date: 20210309