WO2020029161A1 - 呼吸方式检测方法、装置、处理设备和*** - Google Patents

呼吸方式检测方法、装置、处理设备和*** Download PDF

Info

Publication number
WO2020029161A1
WO2020029161A1 PCT/CN2018/099561 CN2018099561W WO2020029161A1 WO 2020029161 A1 WO2020029161 A1 WO 2020029161A1 CN 2018099561 W CN2018099561 W CN 2018099561W WO 2020029161 A1 WO2020029161 A1 WO 2020029161A1
Authority
WO
WIPO (PCT)
Prior art keywords
breathing
waveform
signal waveform
breathing signal
abdominal
Prior art date
Application number
PCT/CN2018/099561
Other languages
English (en)
French (fr)
Inventor
叶飞
Original Assignee
深圳市大耳马科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大耳马科技有限公司 filed Critical 深圳市大耳马科技有限公司
Priority to PCT/CN2018/099561 priority Critical patent/WO2020029161A1/zh
Publication of WO2020029161A1 publication Critical patent/WO2020029161A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/18Exercising apparatus specially adapted for particular parts of the body for improving respiratory function

Definitions

  • the invention belongs to the medical field, and particularly relates to a method, a device, a processing device and a system for detecting a breathing pattern.
  • Respiration is one of the vital vital signs of the human body, which helps to understand the overall health of the human body and sleep quality.
  • the monitoring of breathing patterns is of great significance for the prevention and diagnosis of respiratory diseases and the prevention and diagnosis of cardiovascular diseases.
  • Breathing can be divided into chest breathing, abdominal breathing and combined chest-belly breathing.
  • chest breathing also known as rib breathing method and horizontal breathing method
  • chest breathing relies on the lateral expansion of the ribs to inhale, and the intercostal external muscles are used to lift the ribs to enlarge the rib cage.
  • shoulder-type breathing clavicle-style breathing, or high-chest breathing.
  • Thoracic breathing completely uses the chest to control the breath. After the breath is sucked into the lungs, it is squeezed outward from the chest. In this breathing method, the lower lung lobes cannot be exercised. If they are used for a long time, the lungs will easily age, lose elasticity, and deteriorate their respiratory function. Metabolism, resulting in decreased resistance and suffering from respiratory diseases. Most people, especially women, use chest breathing, which is bad for their health in the long run.
  • the chest-belly combined breathing method expands the chest, ribs, abdomen, and waist at the same time when inhaling, maximally inhaling the air, so that the amount of air inhaled by the lungs is larger than the previous two methods.
  • abdominal breathing should be learned first, then combined with chest expansion, which is combined chest-abdominal breathing.
  • the sensor is sensitive to pressure changes caused by changes in vibration displacement, the pressure changes caused by the exhalation and inhalation of the body are related to the measurement position of the sensor, and the breathing waveforms that may be obtained at different positions are different. Therefore, when the breathing mode is directly detected by the sensor, It is difficult to judge the body's exhalation and inhalation bands from the breathing waveform, and it is even more difficult to determine whether the breathing mode of the body under test is chest breathing, abdominal breathing or combined chest-abdominal breathing.
  • the purpose of the present invention is to provide a method, a device, a computer-readable storage medium, a processing device, and a system for detecting a breathing pattern, which aim to solve the problem that it is difficult to determine the actual breathing pattern in the prior art method of obtaining a breathing waveform through a vibration sensor.
  • a method for detecting a breathing mode includes the following steps:
  • the present invention also provides a breathing mode detection device, the detection device includes:
  • An acquisition module configured to acquire an abdominal breathing signal waveform and a reference breathing signal waveform of the body during a period of time;
  • a judging module for judging the synchronization between the abdominal breathing signal waveform and the fluctuations of the reference breathing signal waveform; when the abdominal breathing signal waveform is opposite to the fluctuations of the reference breathing signal waveform, determining that the body adopts a chest type Breathe.
  • a computer-readable storage medium stores a computer program, and the computer program, when executed by a processor, implements the steps of the breathing mode detection method of the present invention.
  • the present invention also provides a breathing mode detection and processing device, including:
  • One or more processors are One or more processors;
  • One or more computer programs stored in the memory wherein the computer program is configured to be executed by the processor, and is characterized in that the processor implements the breathing mode detection of the present invention when the processor executes the computer program Method steps.
  • the present invention also provides a breathing mode detection system, the detection system includes:
  • a generation module configured to generate an abdominal breathing signal or a chest breathing signal waveform, and a reference breathing signal waveform
  • the breathing mode detection processing device of the present invention connected to the generating module.
  • the breathing mode of the body within a certain period of time is identified by the vibration sensor, so that the breathing mode of each time period during sleep can be analyzed, thereby providing useful information to the body to improve the breathing mode suggestion, and the breathing mode detection method in the invention It can also be used as a tool to evaluate the results of abdominal breathing or chest-abdominal combined breathing training or delayed statistical feedback, and help people with chest breathing to gradually improve their breathing patterns.
  • FIG. 1 is a schematic flowchart of a breathing mode detection method according to an embodiment of the present invention.
  • FIGS. 2A-2B are schematic diagrams of chest data and abdominal data signals obtained in an embodiment of the present invention.
  • 3A-3B are schematic diagrams of a BCG signal and a reference breathing signal collected in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating the correspondence between the vibration sensor and the body position according to the embodiment of the present invention.
  • 5A-5D are schematic diagrams of chest data, abdominal data, BCG signals, and reference breathing signal waveforms corresponding to chest breathing of the body in the embodiment of the present invention.
  • 6A-6D are schematic waveform diagrams of chest data, abdominal data, BCG signals, and reference breathing signals corresponding to the body using abdominal breathing in the embodiment of the present invention.
  • FIGS. 7A-7D are schematic diagrams of chest data, abdominal data, BCG signals, and reference breathing signal waveforms corresponding to a combination of thoracoabdominal breathing by the body according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of functional modules of a breathing mode detection device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of functional modules of a breathing mode detection and processing device according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of functional modules of a breathing mode detection system according to an embodiment of the present invention.
  • the method for detecting a breathing mode in the embodiment of the present invention includes the following steps:
  • a plurality of vibration sensors are used to obtain the respiratory signal waveforms corresponding to the chest and abdomen of the body during a period of time, and to obtain the body's exhalation and inhalation during this period The reference breathing signal waveform of the gas process.
  • the vibration sensor includes an acceleration sensor, a pressure sensor, a displacement sensor, or a sensor that converts an equivalent amount of a physical quantity on the basis of acceleration, pressure, and displacement.
  • the vibration sensor is an optical fiber sensor.
  • the vibration sensor collects an original vibration signal of the body, and the original vibration signal includes a body breathing signal, a heart beat signal, an environmental micro vibration signal, an interference signal caused by the body movement, and a noise signal of the circuit itself. Therefore, obtaining a breathing signal waveform by the vibration sensor includes filtering the original vibration signal to capture a breathing waveform signal.
  • the filtering uses one or more combined filtering methods such as an IIR filter, a FIR filter, a wavelet filter, a zero-phase bidirectional filter, an average filter, and a smoothing filter.
  • the chest data and the abdomen data signals where the solid line represents the original vibration signal of the body, and the dashed line represents the waveform of the breathing signal captured from the original vibration signal through preprocessing such as filtering.
  • the reference breathing signal waveform is obtained from an original vibration signal collected by a vibration sensor, or obtained by an external means.
  • the external means include end-expiratory carbon dioxide, monitoring nasal airflow intake and exhaust, monitoring electrocardiogram or pulse wave reverse push breathing, and the like.
  • the reference breathing signal waveform is obtained from the original vibration signal of the vibration sensor, specifically by selecting a better original vibration signal from the original vibration signal corresponding to the chest or abdomen, and then selecting the better original vibration signal from the comparison.
  • the best original vibration signal is obtained from the Ballisticocardiogram (BCG) signal, and finally the reference breathing signal waveform corresponding to the exhalation and inhalation is obtained through the back-variation of the center rate of the BCG signal.
  • BCG Ballisticocardiogram
  • the breathing signal waveform is inferred from the time difference between adjacent “J” peaks in the characteristic event in the BCG signal.
  • the heartbeat detection characteristic peak "J" peak selected from the BCG signal is a relatively narrow spike, and there will be a sharper falling edge after the spike ends, gradually falling to the heartbeat The lowest point of the waveform. It is true that there is a difference between the "J” peak and the "J” peak of the classic BCG signal, but both represent the maximum value of a certain physical quantity of acceleration, pressure, and displacement induced by the ejection-induced vibration effect by the vibration sensor. "Describes the peak.
  • the "J" peak of the filtered BCG signal is used for heartbeat division.
  • the interval between each "J” peak and the previous “J” peak is calculated as the "J-J” interval.
  • Each interval time has been identified in the figure.
  • the "J-J” interval at the first "J” peak is the same as the previous "J” peak time interval.
  • the previous waveform is not drawn in the figure.
  • the time at which each "J” peak is located is taken as the abscissa, and the "J-J” interval is used as the ordinate to plot the change in heartbeat width over time.
  • the "J” peak also presents a "high and low” contour along with the exhalation (inhalation) process.
  • FIG. 3B shows a breathing waveform obtained based on cubic spline fitting extraction.
  • the basic parameter breathing frequency can be calculated, and according to the cardiopulmonary coupling effect, it can be judged that the waveform goes to the lower part as the inspiration process.
  • the waveform Going high is an exhalation process.
  • the reference breathing signal waveform is derived by using the same event event interval of BCG signals as time changes. It can be understood that in other embodiments, the time interval of different characteristic events in a single cardiac cycle in BCG signals can be changed with time. The variation derives the reference breathing signal waveform.
  • the vibration sensor 10 is placed on a contact surface behind a flat body. Understandably, the vibration sensor 10 may be further placed on a contact surface behind the supine body at a certain inclination angle, a wheelchair or other contact surface on the back of the body.
  • the vibration sensor 10 includes at least one first sensor 11 corresponding to the chest of the body and at least one second sensor 12 corresponding to the abdomen of the body.
  • the chest breathing signal waveform, the abdominal breathing signal waveform, and the reference breathing signal waveform are synchronized in the same time period: within a time period, when the peak / valley of the chest breathing signal waveform and the reference breathing signal waveform are Corresponding to the peak / valley of the body, and when the peak / valley of the abdominal breathing signal waveform corresponds to the valley / peak of the reference breathing signal waveform, it is determined that the body performs chest breathing during this period of time; within a period of time When the crest / valley of the abdominal breathing signal waveform corresponds to the crest / valley of the reference breathing signal waveform, and the crest / valley of the chest breathing signal waveform corresponds to the trough / peak of the reference breathing signal waveform, It is determined that the body performs abdominal breathing during this time period; within a time period, when the peak / valley of the chest breathing signal waveform, the peak / valley of the abdominal breathing signal waveform, and the peak / valley of the reference breathing signal waveform
  • FIGS. 5A-5D sequentially show the chest data signal, abdominal data signal, BCG signal, and reference breathing signal waveform of the body collected in the same time period.
  • FIGS. 5A-5B show that in the chest data signal and the abdomen data signal, the solid line represents the original vibration signal, and the dashed line represents the respiratory signal waveform after preprocessing such as filtering the original vibration signal.
  • Figure 5C is the BCG signal of the body during the same period of time.
  • the BCG signal can be obtained by the original vibration signal of Figure 5A or 5B, or it can be obtained by synchronously collecting the original vibration signal of other parts of the body through a vibration sensor, or BCG signals of the body collected by other sensors simultaneously.
  • FIG. 5D is obtained based on the heart rate variability of the BCG signal in FIG. 5C.
  • the peak / valley of the chest breathing signal waveform is consistent with the peak / valley of the reference breathing signal waveform, and the crest / valley of the abdominal breathing signal waveform is The valley / peak of the reference breathing signal waveform corresponds, thereby judging that the body adopts chest breathing.
  • FIG. 6A-6D sequentially show the chest data signal, abdominal data signal, BCG signal, and reference breathing signal waveform of the body collected in the same time period.
  • the solid line in the chest data signal and the abdominal data signal represents the original vibration signal
  • the dashed line represents the respiratory signal waveform after preprocessing such as filtering the original vibration signal.
  • the BCG signal can be obtained by the original vibration signal of FIG. 6A or FIG. 6B, and can also be obtained by synchronously collecting the original vibration signal of other parts of the body through a vibration sensor, or the body BCG signal collected by other sensors.
  • the reference breathing signal waveform shown in FIG. 6D is obtained by inverse calculation based on the heart rate variability of the BCG signal described in FIG. 6C.
  • the peak / valley of the waveform of the abdominal breathing signal corresponds to the peak / valley of the reference breathing signal waveform
  • the peak / valley of the chest waveform corresponds to the With reference to the valley / peak correspondence of the breathing signal waveform, it is determined that the body has adopted abdominal breathing during this time period.
  • the 7A-7D sequentially show the chest data signal, abdominal data signal, BCG signal, and reference breathing signal waveform of the body collected in the same time period.
  • the solid line in the chest data signal and the abdominal data signal represents the original vibration signal
  • the dashed line represents the respiratory signal waveform after preprocessing such as filtering the original vibration signal.
  • the BCG signal can be obtained by the original vibration signal of FIG. 7A or FIG. 7B, and can also be obtained by synchronously collecting the original vibration signal of other parts of the body through a vibration sensor, or the body BCG signal synchronously collected by other sensors.
  • the reference breathing signal waveform shown in FIG. 7D is obtained by inverse calculation based on the heart rate variability of the BCG signal shown in FIG. 7C.
  • three breathing modes namely, chest breathing, abdominal breathing, and chest-abdominal combined breathing
  • chest breathing modes namely, chest breathing, abdominal breathing, and chest-abdominal combined breathing
  • abdominal breathing modes namely, abdominal breathing, and chest-abdominal combined breathing
  • thoraco-abdominal breathing and non-thoraco-abdominal breathing depending on the specific situation You only need to deploy corresponding sensors in the body, and then judge the body's breathing mode by the above method.
  • the judging machine uses non-thoracic breathing.
  • the breathing mode of the body within a certain period of time is identified by the vibration sensor, so that the breathing mode of each time period during sleep can be analyzed, thereby providing useful information to the body to improve the breathing mode suggestion.
  • the breathing mode in the present invention The detection method can be used as a tool to evaluate the feedback of abdominal breathing or chest-abdominal combined breathing training results or delayed statistical feedback, and help people with chest breathing to gradually improve their breathing patterns.
  • the present invention further provides a breathing mode detection device 200.
  • the breathing mode detection device 200 includes an obtaining module 210 and a determining module 220.
  • the obtaining module 210 is configured to obtain the abdominal breathing signal waveform, the chest breathing signal waveform, and the reference breathing signal waveform of the body during a period of time.
  • the determining module 220 is configured to determine synchronization between the abdominal breathing signal waveform and the reference breathing signal waveform in the time period, when the abdominal breathing signal waveform and the reference breathing signal waveform fluctuate. When the sex is opposite, it is judged that the body adopts chest breathing.
  • the determination module 220 may be further configured to determine synchronization of the abdominal breathing signal waveform, the chest breathing signal waveform, and the reference breathing signal waveform.
  • the waveform of the abdominal breathing signal is the same as the waveform of the reference breathing signal, and the waveform of the chest breathing is opposite to the waveform of the reference breathing signal, it is determined that the body adopts abdominal breathing.
  • the undulations of the chest breathing signal waveform, the abdominal breathing signal waveform, and the reference breathing signal waveform are all the same, it is determined that the body adopts thoracoabdominal combined breathing.
  • the breathing mode detection device of the present invention and the breathing signal detection method of the present invention belong to the same inventive concept, and the specific implementation process thereof can be referred to the entire description of the entire specification, and is not repeated here.
  • the present invention also provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the method in the breathing mode detection method according to the embodiment of the present invention is implemented. step.
  • the present invention further provides a breathing mode detection processing device 300, which includes one or more processors 310, a memory 320, and one or more computer programs.
  • the processor 310 is connected to the memory 320 through a bus, and the one or more computer programs are stored in the memory 320 and configured to be executed by one or more processors 310, which are executed by the processor 310
  • the computer program implements steps in the breathing mode detection method in the embodiment of the present invention.
  • the present invention also provides a breathing mode detection system 400, which includes:
  • a generating module 410 configured to generate an abdominal breathing signal waveform, a chest breathing signal waveform, and a reference breathing signal waveform
  • the breathing mode detection and processing device 300 connected to the generating module 410.
  • the generating module 410 includes a plurality of vibration sensors for generating an abdominal breathing signal waveform, a chest breathing signal waveform, and a reference breathing signal waveform.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium may include: Read-only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明适用于医学领域,提供了一种呼吸方式检测方法、装置、处理设备和***。所述检测方法通过振动传感器识别机体在一定时间段内的呼吸方式,从而可以分析睡眠期间各个时间段的呼吸方式,从而提供有益信息给机体以改善呼吸方式建议,本发明中呼吸方式检测方法进一步可以作为评测腹式呼吸或胸腹式联合呼吸训练成果反馈或延时统计反馈的工具,帮助胸式呼吸的人群逐步改善呼吸方式。

Description

呼吸方式检测方法、装置、处理设备和*** 技术领域
本发明属于医学领域,尤其涉及一种呼吸方式的检测方法、装置、处理设备和***。
背景技术
呼吸是人体重要的生命体征之一,有助于了解人体整体健康状况和睡眠品质。通过呼吸方式的监测,对呼吸疾病预防及诊断、心血管疾病预防及诊断等具有非常重要意义。
呼吸可分为胸式呼吸、腹式呼吸以及胸腹式联合呼吸法。其中胸式呼吸(也称肋式呼吸法、横式呼吸法)单靠肋骨的侧向扩张来吸气,用肋间外肌上举肋骨以扩大胸廓。其甚者吸气时双肩上抬,气息吸得浅,因此又称为肩式呼吸法、锁骨式呼吸法或高胸式呼吸法等。胸式呼吸完全用胸部控制气息,气吸到肺里后,由胸部向外挤压,气息浅,吸气量达不到最大值,同时气流不稳定,气息也不能持久。这种呼吸方法中下肺叶得不到锻炼,长期废用,则容易使肺叶老化,弹性减退,呼吸功能变差,无法获得充足的氧气,满足不了各组织器官对氧的需求,继而影响机体的新陈代谢,导致抵抗力下降,罹患呼吸道疾病。大多数人,特别是女性,大都采用胸式呼吸,长此以往十分不利于身体健康。
相比胸式呼吸,腹式呼吸则是让横膈膜上下移动。吸气时将横隔肌下沉,尽量扩大腹部与腰部,即所谓“气沉丹田”。呼气时,丹田要绷住劲,逐渐均匀地将气吹出。腹式深呼吸是健肺的好方法,不仅弥补了胸式呼吸的缺陷,且可使中下肺叶的肺泡在换气中得到强化,从而延缓老化,保持良好弹性,防止肺的纤维化。这种呼吸方法是能够通过训练来学习、巩固和掌握的,是一种正确的呼吸方法。
胸腹式联合呼吸法吸气时胸部、肋部、腹部、腰部同时向外扩张,最大限度地将气吸入,这样肺吸入的空气量比前两种方法都要大。一般地,应先学会腹式呼吸,熟练后再加上胸部扩展动作,即为胸腹式联合呼吸。
由于传感器敏感的是振动位移变化引起的压力变化,机体呼气和吸气过程引起压力变化与传感器的测量位置相关,不同位置可能得到的呼吸波形具差异性,因此直接通过传感器检测呼吸方式时,难以从呼吸波形中判断机体呼气和吸气的波段,从而更难判断被测机体的呼吸方式为胸式呼吸、腹式呼吸或胸腹联合呼吸。
技术问题
本发明的目的在于提供一种呼吸方式的检测方法、装置、计算机可读存储介质、处理设备和***,旨在解决现有技术通过振动传感器获取呼吸波形的方法难以判断实际呼吸方式的问题。
技术解决方案
一种呼吸方式的检测方法,包括如下步骤:
通过至少一振动传感器获取机体在一时间段中的腹部呼吸信号波形,以及获取在该时间段内能表征机体呼气和吸气过程的参考呼吸信号波形;
判断腹部呼吸信号波形和参考呼吸信号波形在该时间段内的波形起伏同步性,当所述腹部呼吸信号波形与所述参考呼吸信号波形在该时间段内起伏相反时,则机体采用胸式呼吸。
进一步地,本发明还提供一种呼吸方式检测装置,所述检测装置包括:
获取模块,用于获取机体在一时间段中的腹部呼吸信号波形、参考呼吸信号波形;以及
判断模块,用于判断所述腹部呼吸信号波形与所述参考呼吸信号波形的起伏的同步性,当所述腹部呼吸信号波形与所述参考呼吸信号波形起伏性相反时,则判断机体采用胸式呼吸。
进一步地,一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明所述呼吸方式检测方法的步骤。
进一步地,本发明还提供一种呼吸方式检测处理设备,包括:
一个或多个处理器;
存储器;以及
存储在所述存储器中的一个或者多个计算机程序,所述计算机程序被配置为由所述处理器执行,其特征在于:所述处理器执行所述计算机程序时实现本发明所述呼吸方式检测方法的步骤。
进一步地,本发明还提供一种呼吸方式检测***,所述检测***包括:
生成模块,被配置为用于生成腹部呼吸信号或胸部呼吸信号波形、以及生成参考呼吸信号波形;和
与所述生成模块连接的本发明所述呼吸方式检测处理设备。
有益效果
在本发明中,通过振动传感器识别机体在一定时间段内的呼吸方式,从而可以分析睡眠期间各个时间段的呼吸方式,从而提供有益信息给机体以改善呼吸方式建议,本发明中呼吸方式检测方法进一步可以作为评测腹式呼吸或胸腹式联合呼吸训练成果反馈或延时统计反馈的工具,帮助胸式呼吸的人群逐步改善呼吸方式。
附图说明
图1所示为本发明实施例中所述呼吸方式检测方法流程示意图。
图2A-2B所示为本发明实施例中获取的胸部数据、腹部数据信号示意图。
图3A-3B所示为本发明实施例中采集的BCG信号及参考呼吸信号示意图。
图4所示为本发明实施例中所述振动传感器与机***置对应示意图。
图5A-5D所示为本发明实施例中机体的胸式呼吸对应的胸部数据、腹部数据、BCG信号以及参考呼吸信号波形示意图。
图6A-6D所示为本发明实施例中机体采用腹式呼吸对应的胸部数据、腹部数据、BCG信号以及参考呼吸信号波形示意图。
图7A-7D所示为本发明实施例中机体采用胸腹联合呼吸对应的胸部数据、腹部数据、BCG信号以及参考呼吸信号波形示意图。
图8所示为本发明实施例提供的呼吸方式检测装置的功能模块示意图。
图9是本发明实施例提供的呼吸方式检测处理设备的功能模块示意图。
图10是本发明实施例提供的呼吸方式检测***的功能模块示意图。
本发明的最佳实施方式
为了使本发明的目的、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
如图1所示,本发明实施例中所述呼吸方式的检测方法包括如下步骤:
S101:如图2A-2B及图3A-3B所示,通过多个振动传感器获取机体在一段时间段中胸部和腹部对应的呼吸信号波形,以及获取在该时间段内能表征机体呼气和吸气过程的参考呼吸信号波形。
所述振动传感器包括加速度传感器、压力传感器、位移传感器或者以加速度、压力、位移为基础将物理量等效性转换的传感器。在本发明实施例中,所述振动传感器为光纤传感器。
所述振动传感器采集的是机体的原始振动信号,所述原始振动信号包括了机体呼吸信号、心脏搏动信号、环境微振动信号、机体体动引起的干扰信号及电路自身的噪音信号等。因此,通过所述振动传感器获取呼吸信号波形包括对所述原始振动信号进行滤波以捕获呼吸波形信号。所述滤波采用IIR滤波器、FIR滤波器、小波滤波器、零相位双向滤波器、均值滤波器、平滑滤波器等滤波方法中的一种或多种组合滤波。如图2A、2B分别为胸部数据和腹部数据信号,其中实线表示机体的原始振动信号,虚线表示从所述所述原始振动信号中通过滤波等预处理后捕获的呼吸信号波形。
所述参考呼吸信号波形通过振动传感器采集的原始振动信号获得,或者通过外部手段获得。所述外部手段包括呼气末二氧化碳、监测鼻气流进气出气、监测心电或者脉搏波反推呼吸等。
在本发明实施例中,所述参考呼吸信号波形通过振动传感器的原始振动信号获得,具体是通过从所述胸部或者腹部对应的原始振动信号中择取较佳的原始振动信号,然后从该较佳的原始振动信号中获取获取心冲击图(Ballistocardiogram,BCG)信号,最后通过BCG信号中心率的变异性反推得到与呼气和吸气对应的参考呼吸信号波形。由于从机体不同位置采集的BCG信号除信号强度差异外,波形起伏基本相同。因此,基于心肺耦合原理,通过BCG信号推导的呼吸信号不会因传感器采集机体的位置不同而变化。具体地,本案通过BCG信号中特征事件中相邻的“J”峰之间时间差反推呼吸信号波形。参附图3A-3B所示,择取BCG信号的心拍检测特征峰“J”峰,其为较为狭长的尖峰,且在该尖峰结束后会有一个较为剧烈的下降沿,逐渐降至该心拍的波形最低点。诚然该“J”峰与经典BCG信号的“J”峰存在差异,但均表征射血引发的振动作用被振动传感器敏感到的加速度、压力、位移某一物理量的最大值,因此仍然以“J”峰进行描述。以滤波后的BCG信号的“J”峰进行心拍划分。检测出各个“J”峰之后,计算出各“J”峰与之前“J”峰的间期即“J-J”间期。各间期时间已在图中标识,第1个“J”峰处的“J-J”间期为与之前的“J”峰时间间期,未在图中绘制出之前波形。将各“J”峰所在时刻作为横坐标,“J-J”间期作为纵坐标,绘制随时间变化的心拍宽度变化。同样地,受心肺耦合作用的影响,“J”峰随着呼(吸)气过程也呈现“高低起伏”的轮廓。基于该时序波形,可以提供诸如线性插值、三次样条拟合、多项式拟合等方式提取呼吸波形。图3B所示为基于三次样条拟合提取得到的呼吸波形。与附图2中的原始数据的呼吸轮廓相比,所提取的呼吸波形的频率基本一致,可以计算基本参数呼吸频率,且根据心肺耦合影响,可以判断波形往低处走为吸气过程,波形往高处走为呼气过程。
本发明实施例中采用BCG信号相同事件事件间隔随时间变化推导所述参考呼吸信号波形,可以理解地,在其他实施方式中,可通过BCG信号中单心动周期中不同特征事件的时间间隔随时间变化推导所述参考呼吸信号波形。
如图4所示,所述振动传感器10放置于平躺机体背后的接触面。可以理解地,所述振动传感器10可以进一步放置于一定倾斜角仰卧机体背后的接触面、轮椅或者其他可倚靠机体背后接触面。在本发明实施例中,所述振动传感器10包括对应机体胸部的至少一第一传感器11和和对应机体腹部的至少一第二传感器12。
S102:如图5-7所示,判断胸部呼吸信号波形、腹部呼吸信号波形以及参考呼吸信号波形在同一时间段内同步性:在一时间段内,当所述胸部呼吸信号波形与所述参考呼吸信号波形的起伏一致,且当所述腹部呼吸信号波形与所述参考呼吸信号波形的起伏相反时,判断机体在该段时间内进行胸式呼吸;在一时间段内,当所述腹部呼吸信号波形与所述参考呼吸信号波形起伏相同,且所述胸部呼吸信号波形与所述参考呼吸信号波形相反时,判断机体在该时间段诶进行腹式呼吸;在一时间段内,当所述胸部呼吸信号波形、腹部呼吸信号波形以及所述参考呼吸信号波形均一致时,判断机体进行胸腹联合呼吸。
具体地,判断胸部呼吸信号波形、腹部呼吸信号波形以及参考呼吸信号波形在同一时间段内同步性:在一时间段内,当所述胸部呼吸信号波形的波峰/谷与所述参考呼吸信号波形的的波峰/谷对应,且当所述腹部呼吸信号波形的波峰/谷与所述参考呼吸信号波形的波谷/峰对应时,判断机体在该段时间内进行胸式呼吸;在一时间段内,当所述腹部呼吸信号波形的波峰/谷与所述参考呼吸信号波形的波峰/谷对应,且所述胸部呼吸信号波形的波峰/谷与所述参考呼吸信号波形的波谷/峰对应时,判断机体在该时间段诶进行腹式呼吸;在一时间段内,当所述胸部呼吸信号波形的波峰/谷、腹部呼吸信号波形的波峰/谷以及所述参考呼吸信号波形的波峰/谷均对应时,判断机体进行胸腹联合呼吸。
附图5A-5D依次表示同一时间段中采集的机体的胸部数据信号、腹部数据信号、BCG信号、以及参考呼吸信号波形。其中,图5A-5B表示胸部数据信号和腹部数据信号中实线代表原始振动信号,虚线代表对原始振动信号进行滤波等预处理后的呼吸信号波形。附图5C为采集的同时间段内的机体的BCG信号,其中该BCG信号可通过图5A或图5B的原始振动信号获得,也可通过振动传感器同步采集机体其他部位原始振动信号获得,或为通过其他传感器同步采集的机体BCG信号。附图5D中所述参考呼吸信号波形是基于附图5C中的BCG信号的心率变异性得到。通过分析附图5A-5D可知,在一时间段中,所述胸部呼吸信号波形的波峰/谷与所述参考呼吸信号波形的波峰/谷一致,且所述腹部呼吸信号波形的波峰/谷与所述参考呼吸信号波形的波谷/峰对应,由此判断机体采用了胸式呼吸。
图6A-6D依次表示同一时间段中采集的机体的胸部数据信号、腹部数据信号、BCG信号、以及参考呼吸信号波形。其中,胸部数据信号和腹部数据信号中实线代表原始振动信号,虚线代表对原始振动信号进行滤波等预处理后的呼吸信号波形。其中该BCG信号可通过图6A或图6B的原始振动信号获得,也可通过振动传感器同步采集机体其他部位原始振动信号获得,或为通过其他传感器同步采集的机体BCG信号。图6D所述参考呼吸信号波形是基于图6C所述BCG信号的心率变异性反推得到。通过分析图6A-6D可知,在一时间段中,所述腹部呼吸信号的波形的波峰/谷与所述参考呼吸信号波形的波峰/谷对应,且所述胸部波形的波峰/谷与所述参考呼吸信号波形的波谷/峰对应,因此判断机体在该时间段内采用了腹式呼吸。
附图7A-7D依次表示同一时间段中采集的机体的胸部数据信号、腹部数据信号、BCG信号、以及参考呼吸信号波形。其中,胸部数据信号和腹部数据信号中实线代表原始振动信号,虚线代表对原始振动信号进行滤波等预处理后的呼吸信号波形。其中该BCG信号可通过图7A或图7B的原始振动信号获得,也可通过振动传感器同步采集机体其他部位原始振动信号获得,或为通过其他传感器同步采集的机体BCG信号。图7D所述参考呼吸信号波形是基于图7C所述BCG信号的心率变异性反推得到。通过分析附图7A-7D可知,在一时间段中,所述胸部呼吸信号波形、腹部呼吸信号波形以及所述参考呼吸信号波形的波峰/谷均对应,因此机体在该时间段中采用胸腹联合呼吸。
在本发明实施例中,均以胸式呼吸、腹式呼吸、胸腹式联合呼吸三种呼吸方式进行说明。然而对于本领域技术人员来说,当仅需要检测机体为胸式呼吸和非胸式呼吸时、或者腹式呼吸和非腹式呼吸以及胸腹联合呼吸和非胸腹联合呼吸,可依据具体情况只需在机体部署对应的传感器即可,然后通过上述方法判断机体呼吸方式。例如,仅依赖于腹部信号时,在一时间段中,当腹部呼吸信号波形峰/谷与参考呼吸信号的波谷/峰对应,则判断机体在该段时间内采用胸式呼吸;腹部呼吸信号波形峰/谷与参考呼吸信号峰/谷对应,则判断机采用了非胸式呼吸。
在本发明实施例中,通过振动传感器识别机体在一定时间段内的呼吸方式,从而可以分析睡眠期间各个时间段的呼吸方式,从而提供有益信息给机体以改善呼吸方式建议,本发明中呼吸方式检测方法可以作为评测腹式呼吸或胸腹式联合呼吸训练成果反馈或延时统计反馈的工具,帮助胸式呼吸的人群逐步改善呼吸方式。
进一步地,请参附图8所示,本发明还提供一种呼吸方式检测装置200,所述呼吸方式检测装置200包括获取模块210及判断模块220。
所述获取模块210被配置为可获取机体在一时间段中的腹部呼吸信号波形、胸部呼吸信号波形及参考呼吸信号波形。
所述判断模块220,被配置为用于判断所述腹部呼吸信号波形与所述参考呼吸信号波形在所述时间段中的同步性,当所述腹部呼吸信号波形与所述参考呼吸信号波形起伏性相反时,则判断机体采用胸式呼吸。
所述判断模块220,还可被配置为用于判断所述腹部呼吸信号波形、胸部呼吸信号波形及所述参考呼吸信号波形的同步性。当所述腹部呼吸信号波形与所述参考呼吸信号波形起伏性相同,且所述胸部呼吸信号与所述参考呼吸信号波形起伏性相反时,则判断机体采用腹式呼吸。当所述胸部呼吸信号波形、所述腹部呼吸信号波形以及所述参考呼吸信号波形的起伏性均相同时候,判断机体采用胸腹联合呼吸。
本发明所述呼吸方式检测装置与本发明所述呼吸信号检测方法属于同一发明构思,其具体实现过程可详见整个说明书全文,此处不再赘述。
进一步地,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例中所述呼吸方式检测方法中的步骤。
进一步地,如附图9所示,本发明还提供一种呼吸方式检测处理设备300,其包括一个或多个处理器310、存储器320以及一个或多个计算机程序。所述处理器310与所述存储器320通过总线连接,所述一个或多个计算机程序被存储在所述存储器320中且被配置为由一个或多个处理器310执行,所述处理器310执行所述计算机程序时实现本发明实施例中所述呼吸方式检测方法中的步骤。
进一步地,参附图10所示,本发明还提供一种呼吸方式检测***400,其包括:
生成模块410,被配置为用于生成腹部呼吸信号波形、胸部呼吸信号波形和参考呼吸信号波形;以及
与所述生成模块410连接的如本发明所述呼吸方式检测处理设备300。
在本发明实施例中,所述生成模块410包括分别用于生成腹部呼吸信号波形、胸部呼吸信号波形及参考呼吸信号波形的多个振动传感器。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)、磁盘或光盘等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种呼吸方式的检测方法,包括如下步骤:
    通过至少一振动传感器获取机体在一时间段中的腹部呼吸信号波形,以及获取在该时间段内能表征机体呼气和吸气过程的参考呼吸信号波形;
    判断腹部呼吸信号波形和参考呼吸信号波形在该时间段内的波形起伏同步性,当所述腹部呼吸信号波形与所述参考呼吸信号波形在该时间段内起伏相反时,则机体采用胸式呼吸。
  2. 如权利要求1所述检测方法,其特征在于:所述振动传感器包括加速度传感器、压力传感器、位移传感器或者以加速度、压力、位移为基础将物理量等效性转换的传感器。
  3. 如权利要求2所述检测方法,其特征在于:所述振动传感器放置于平躺仰卧的人体背后的接触面、在预定倾斜角范围仰卧的人体背后的接触面、或可倚靠物体的倚卧人体背后的接触面。
  4. 如权利要求1所述检测方法,其特征在于:所述通过至少一振动传感器获取机体在一时间段中的腹部呼吸信号波形包括:通过所述振动传感器获取机体腹部对应的原始振动信号,并对所述原始振动信号进行滤波以获取所述腹部呼吸信号波形。
  5. 如权利要求1所述检测方法,其特征在于:所述获取在该时间段内能表征机体呼气和吸气过程的参考呼吸信号波形包括:通过所述振动传感器获取机体原始振动信号,并对所述原始振动信号进行包括滤波和缩放以获取BCG信号,然后通过BCG信号波形中特征事件时间间隔随时间变化,采用线性插值、三次样条拟合或多项式拟合方式获取所述参考呼吸信号波形。
  6. 如权利要求1所述检测方法,其特征在于:所述获取在该时间段内能表征机体呼气和吸气过程的参考呼吸信号波形包括:通过监测呼气末二氧化碳、监测鼻气流进气出气、监测心电或者脉搏波方式中的一种或多种来获取所述参考呼吸信号波形。
  7. 如权利要求5所述检测方法,其特征在于:对原始振动信号进行滤波时,根据对滤波后信号特征的需求采用IIR滤波器、FIR滤波器、小波滤波器、零相位双向滤波器、多项式拟合平滑滤波器中的一种或多种组合,对原始振动信号进行滤波去噪。
  8. 如权利要求1所述检测方法,其特征在于:判断腹部呼吸信号波形和参考呼吸信号波形在该时间段内的波形起伏同步性,当所述腹部呼吸信号波形与所述参考呼吸信号波形在该时间段内起伏相反时,则机体采用胸式呼吸具体包括:
    判断腹部呼吸信号波形与所述参考呼吸信号波形的波峰/谷在该时间段中的同步性,当所述腹部呼吸信号波形的波峰/谷与所述参考呼吸信号波形的波谷/波峰对应时,则机体采用胸式呼吸。
  9. 一种呼吸方式检测方法,包括如下步骤:
    通过振动传感器获取机体在一段时间中的腹部呼吸信号波形和胸部呼吸信号波形,以及获取该时间段内能表征机体呼气和吸气过程的参考呼吸信号波形;
    判断所述腹部呼吸信号波形、胸部呼吸信号波形以及所述参考呼吸信号波形在该时间段内波形起伏的同步性,当所述胸部呼吸信号波形与所述参考呼吸信号波形的起伏性相同,所述腹部呼吸信号波形与所述参考呼吸信号波形起伏性相反时,则机体采用胸式呼吸。
  10. 如权利要求9所述检测方法,其特征在于:当所述胸部呼吸信号波形与所述参考呼吸信号波形起伏性相反,所述腹部呼吸信号波形与所述参考呼吸信号波形起伏性相同时,则机体采用腹式呼吸;当所述胸部呼吸信号波形、腹部呼吸信号波形以及所述的起伏性均相同时,则机体采用胸腹联合呼吸。
  11. 如权利要求9所述检测方法,其特征在于:当所述胸部呼吸信号波形与所述参考呼吸信号波形的起伏性相同,所述腹部呼吸信号波形与所述参考呼吸信号波形起伏性相反时,则机体采用胸式呼吸,具体包括:
    当所述胸部呼吸信号波形的波峰/波谷与所述参考呼吸信号波形的波峰/谷对应,所述腹部呼吸信号波形的波峰/谷与所述参考呼吸信号波形的波谷/峰对应时,则机体采用胸式呼吸。
  12. 如权利要求10所述检测方法,其特征在于:当所述胸部呼吸信号波形与所述参考呼吸信号波形起伏性相反,所述腹部呼吸信号波形与所述参考呼吸信号波形起伏性相同时,则机体采用腹式呼吸;当所述胸部呼吸信号波形、腹部呼吸信号波形以及所述参考呼吸信号波形的起伏性均相同时,则机体采用胸腹联合呼吸,具体包括:
    当所述胸部呼吸信号波形的波峰/谷与所述参考呼吸信号波形波谷/峰对应,所述腹部呼吸信号波形的波峰/谷与所述参考呼吸信号波形的波峰/谷对应时,则机体采用腹式呼吸;当所述胸部呼吸信号波形的波峰/谷、腹部呼吸信号波形的波峰/谷以及所述参考呼吸信号波形的波峰/谷均对应时,则机体采用胸腹联合呼吸。
  13. 如权利要求10所述检测方法,其特征在于:所述振动传感器包括至少一第一振动传感器以及至少一第二振动传感器,所述第一振动传感器对应检测机体胸部呼吸信号波形,所述第二振动传感器对应检测所述机体腹部呼吸信号波形。
  14. 一种呼吸方式检测装置,其特征在于,所述检测装置包括:
    获取模块,用于获取机体在一时间段中的腹部呼吸信号波形、参考呼吸信号波形;以及
    判断模块,用于判断所述腹部呼吸信号波形与所述参考呼吸信号波形的起伏的同步性,当所述腹部呼吸信号波形与所述参考呼吸信号波形起伏性相反时,则判断机体采用胸式呼吸。
  15. 如权利要求参14所述呼吸方式检测装置,其特征在于,所述获取模块进一步获取机体在该时间段中的胸部呼吸信号波形,所述判断模块进一步判断所述胸部呼吸信号波形与所述参考呼吸信号波形的同步性,当所述腹部呼吸信号波形与所述参考呼吸信号波形起伏性相同,且所述胸部呼吸信号与所述参考呼吸信号波形起伏性相反时,则判断机体采用腹式呼吸。
  16. 如权利要求参15所述呼吸方式检测装置,其特征在于,所述判断模块进一步判断:当所述胸部呼吸信号波形、所述腹部呼吸信号波形以及所述参考呼吸信号波形的起伏性均相同时候,判断机体采用胸腹联合呼吸。
  17. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于:所述计算机程序被处理器执行时实现如权利要求1至13任意一项所述呼吸方式检测方法的步骤。
  18. 一种呼吸方式检测处理设备,包括:
    一个或多个处理器;
    存储器;以及
    存储在所述存储器中的一个或者多个计算机程序,所述计算机程序被配置为由所述处理器执行,其特征在于:所述处理器执行所述计算机程序时实现如权利要求1至13中任意一项所述呼吸方式检测方法的步骤。
  19. 一种呼吸方式检测***,其特征在于,所述检测***包括:
    生成模块,被配置为用于生成腹部呼吸信号或胸部呼吸信号波形、以及生成参考呼吸信号波形;和
    与所述生成模块连接的,如权利要求18所述呼吸方式检测处理设备。
PCT/CN2018/099561 2018-08-09 2018-08-09 呼吸方式检测方法、装置、处理设备和*** WO2020029161A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/099561 WO2020029161A1 (zh) 2018-08-09 2018-08-09 呼吸方式检测方法、装置、处理设备和***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/099561 WO2020029161A1 (zh) 2018-08-09 2018-08-09 呼吸方式检测方法、装置、处理设备和***

Publications (1)

Publication Number Publication Date
WO2020029161A1 true WO2020029161A1 (zh) 2020-02-13

Family

ID=69413665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099561 WO2020029161A1 (zh) 2018-08-09 2018-08-09 呼吸方式检测方法、装置、处理设备和***

Country Status (1)

Country Link
WO (1) WO2020029161A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090030335A1 (en) * 2007-07-28 2009-01-29 Somnomedics Gmbh Method and apparatus for respiratory monitoring
JP2009028298A (ja) * 2007-07-27 2009-02-12 Tokyo Metropolitan Univ 腹式呼吸の評価方法および装置
CN104473646A (zh) * 2014-12-04 2015-04-01 钟新华 呼吸运动方式监护仪
CN105072994A (zh) * 2013-02-20 2015-11-18 Pmd设备解决方案有限公司 用于呼吸监测的方法和设备
CN108245160A (zh) * 2018-01-18 2018-07-06 上海肌颜齿科科技有限公司 一种智能口鼻呼吸监测装置及其检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028298A (ja) * 2007-07-27 2009-02-12 Tokyo Metropolitan Univ 腹式呼吸の評価方法および装置
US20090030335A1 (en) * 2007-07-28 2009-01-29 Somnomedics Gmbh Method and apparatus for respiratory monitoring
CN105072994A (zh) * 2013-02-20 2015-11-18 Pmd设备解决方案有限公司 用于呼吸监测的方法和设备
CN104473646A (zh) * 2014-12-04 2015-04-01 钟新华 呼吸运动方式监护仪
CN108245160A (zh) * 2018-01-18 2018-07-06 上海肌颜齿科科技有限公司 一种智能口鼻呼吸监测装置及其检测方法

Similar Documents

Publication Publication Date Title
CN106999143B (zh) 声学监测***、监测方法和监测计算机程序
US20110021928A1 (en) Methods and system of determining cardio-respiratory parameters
US11918373B2 (en) Systems and methods for screening, diagnosis and monitoring sleep-disordered breathing
Paalasmaa et al. Adaptive heartbeat modeling for beat-to-beat heart rate measurement in ballistocardiograms
CA2809764C (en) Systems and methods for respiratory event detection
US20060047213A1 (en) Acoustic cardiac assessment
AU2018253518A1 (en) Methods for detection of respiratory effort and sleep apnea monitoring devices
US11986314B2 (en) Apparatus and methods for screening, diagnosis and monitoring of respiratory disorders
CN107072594B (zh) 用于评估呼吸窘迫的方法和装置
JP6605767B2 (ja) 睡眠時無呼吸症の検出装置
WO2020019358A1 (zh) 一种生理参数测量***及配备该测量***的智能座椅
WO2008126082A1 (en) Method and system for assessing lung condition
WO2007147069A2 (en) Method for measuring central venous pressure or respiratory effort
CN113473910A (zh) 睡眠监测***和方法
WO2020024312A1 (zh) 一种呼吸信号的提取方法、装置、处理设备和***
CN109009128B (zh) 呼吸方式检测方法、装置、处理设备和***
WO2020024311A1 (zh) 呼吸信号的提取方法、装置、处理设备和***
US11291406B2 (en) System for determining a set of at least one cardio-respiratory descriptor of an individual during sleep
KR101755791B1 (ko) 공진호흡주파수 및 위상 검출을 통한 최적의 호흡패턴 결정 방법, 시스템 및 컴퓨터 프로그램
WO2020029161A1 (zh) 呼吸方式检测方法、装置、处理设备和***
EP3612087A1 (en) Methods and system for detecting inhalations and extracting measures of neural respiratory drive from an emg signal
CN108175406A (zh) 一种治疗中枢性睡眠呼吸暂停症的方法及装置
TWM610717U (zh) 睡眠呼吸障礙篩檢設備
CN117615808A (zh) 用于医疗通气设备的心源性干扰识别方法和医疗通气设备
CN112957029A (zh) 一种基于短时能量的肺音吸呼比和呼吸频率计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 16.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18929008

Country of ref document: EP

Kind code of ref document: A1