WO2020027557A1 - 발전기의 스테이터와 인너로터 제조방법 - Google Patents

발전기의 스테이터와 인너로터 제조방법 Download PDF

Info

Publication number
WO2020027557A1
WO2020027557A1 PCT/KR2019/009502 KR2019009502W WO2020027557A1 WO 2020027557 A1 WO2020027557 A1 WO 2020027557A1 KR 2019009502 W KR2019009502 W KR 2019009502W WO 2020027557 A1 WO2020027557 A1 WO 2020027557A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
inner rotor
core
shaft
hole
Prior art date
Application number
PCT/KR2019/009502
Other languages
English (en)
French (fr)
Inventor
선상규
Original Assignee
선상규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 선상규 filed Critical 선상규
Publication of WO2020027557A1 publication Critical patent/WO2020027557A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a stator and an inner rotor of a generator, and more particularly, to configure a stator, an inner rotor and an outer rotor to drive in an electric vehicle.
  • the present invention relates to a stator and an inner rotor of a generator, and a method of manufacturing the same.
  • the magnitude of the electromotive force generated by a generator is proportional to the strength of the magnetic field, the length of the conductor, and the relative speed of the magnetic field and the conductor.
  • the electromotive force can be increased by increasing the strength of the magnetic field or forming a long conductor, or by increasing the relative speed of the magnetic field and the conductor.
  • the relative speed of the magnetic field and the conductor is increased to increase the electromotive force.
  • the rotor torque is high by using the magnetic stator and the magnetic rotor, low torque such as electric vehicles, tidal power, wind power, and road power generation is required.
  • the desired electromotive force could not be obtained.
  • a generator capable of obtaining desired electromotive force using two rotors has been developed.
  • An example of the "generator" of No. 10-1454805 is shown in FIG.
  • FIG. 6 is a structure in which electromotive force is obtained at low rotational speed by rotating the rotor 120 having a magnet and the inner casing 150 which is a magnetic body in the same direction, and the rotor 120 having a magnet as an advantage.
  • magnetic coils are induced between cores of the stator 130 formed of a complex soft material or a nonmagnetic material between the simultaneous rotating bodies called the inner casing 150, which is a magnetic body, and generates electromotive force to the stator 130.
  • it eliminates the attraction to attach to each other, suppresses cogging and eddy currents, and greatly reduces heat generation and rotational resistance, thereby increasing power generation efficiency.
  • the present invention is to supplement such a conventional technology ("generator" of No. 10-1454805), the object of which is the cogging torque (Cogging Torque) caused by the change of the pore flux density by the stator slot of the generator and the distortion of the current By minimizing), the present invention provides a generator stator and an inner rotor for an electric vehicle that are simple to design and manufacture to improve the rotational power of the generator and to significantly reduce vibration and noise.
  • the present invention relates to a method for manufacturing a stator and an inner rotor of a generator, wherein the stator core is formed in a circular tray shape with a thin side of the core side; Forming a through hole for inserting the shaft at the center of the stator core side portion; The stator core side through hole is formed with a key groove to be coupled to the shaft; The stator core inner edge is molded into a circular coil winding support;
  • Through-hole molding allows the core outer rim to form a plurality of coil winding pieces and tips depending on the number of slots;
  • the inner rotor core has two types of laminated forms, one of which simultaneously forms a ring support and a ring (+) shape inward to support the ring; The other is to form a core having only a ring shape and then all joined by rivets for lamination.
  • a strong magnetic field passes through the stator by simultaneously rotating the inner rotor and the outer rotor at the center with the stator having a core formed of a composite soft material or a nonmagnetic material at the center, but the inner inner Eliminates cogging phenomena and eddy currents between inner rotor, stator and outer rotor due to strong magnetic field between rotor and outer outer rotor, and reduces rotational resistance than conventional generators. Since it can increase the desired electromotive force, there is an advantage to save the power energy because the external rotational power is not required large.
  • FIG. 1 is a cross-sectional view showing an assembly of a generator of the present invention.
  • FIG. 2 is a plan view and a side view of a stator of the present invention
  • FIG. 3 is a plan view and a side view of the inner rotor of the present invention.
  • 5 is a plan view of the shaft of the present invention.
  • FIG. 6 is a plan view of a generator according to the related art
  • FIGS. 1 to 6 is a cross-sectional view showing an assembly of an electric generator according to an embodiment of the present invention
  • FIG. 2 is a plan view and a side view of a stator according to an embodiment of the present invention.
  • the stator core 101 has a tray shape, and a stator side portion 102 is formed at one side thereof, and a through hole 103 for inserting the shaft 500 is formed at the center of the stator side portion 102, and the through hole 103 is formed.
  • the through-hole key groove 104 is formed, and the outer surface of the stator core 101 is formed of the coil winding piece support 107, and the plurality of slot through holes 106 are formed according to the number of slots 105.
  • the coil winding piece 108 and the tip 109 are formed.
  • the coil winding piece 108 and the tip 109 constitute the slot 105 one by one, and are disconnected between the slot 105 and the slot 105 so that the coil 110 enters.
  • the wound coil 110 is supported by the stator side portion 102 and drawn out through the wire drawing sleeve 400.
  • one side of the wire drawing sleeve 400 has an edge, and a sleeve through hole 402 for inserting the shaft 500 is formed, and the sleeve through hole 402 is connected to the shaft 500.
  • a sleeve key groove 403 is formed to be coupled, and a wire outlet 401 is hollow-formed in the direction of the shaft 500 between the inner circumferential surface and the outer circumferential surface, and the outer circumferential surface is a bearing for supporting an outer rotor 300 on both sides.
  • 305a and 305b are combined.
  • FIG 3 is a plan view and a side view of the inner rotor according to an embodiment of the present invention.
  • Inner rotor (200) is a stacked form of two types, inner rotor core a (Inner Rotor Core a: 201a) is a hollow form of the core ring (Core Ling: 202) only through-hole a ( 206a) and the inner rotor core b (Inner Rotor Core b: 201b) is in the shape of the core ring (Core Ling: 202) and the core ring support (203) in the form of a cross (+) is left to support it.
  • the ring support through hole 204 and the through hole b 206b are formed.
  • the inner rotor core a 201b is attached to both sides of the inner rotor core b 201b, and then the rivet 208 is attached thereto. Lay together.
  • the inner rotor core a 201 a and the inner rotor core b 201 b have a width in proportion to the stator core 101, and an air gap with the stator core 101 is very narrow.
  • FIG. 4 is a plan view of the inner rotor core coupling according to an embodiment of the present invention.
  • the inner rotor core coupling member 250 is composed of a female coupling member 251 and a male coupling member 252.
  • the female coupling member 251 and the male coupling member 252 are hollow through-holes 256, respectively,
  • a bearing 253 is deeply inserted into one inner surface of the through hole 256 of the male coupling member 252 so that the shaft 500 is slipped, and a male thread 255 is formed on the other outer peripheral surface thereof.
  • the inner circumferential surface of the female coupling member 252 is formed with a female thread line 254.
  • the inner rotor core coupling member 250 including the female coupling member 251 and the male coupling member 252 has left and right sides of the coring support through hole 204 with the core ring support 203 interposed therebetween. Join to engage in.
  • the outer rotor 300 is formed into a hollow circular housing 301, the inner peripheral surface of the circular housing 301 is provided with a plurality of magnets 302, each side of the circular housing 301 A side support member L 303a and a side support member R 303b are coupled to each other by the side support member coupling screw 304, and the side support member L 303a and the side support member R 303b are bearing a ( 305a and a bearing b 305b are coupled to slip on the shaft 500.
  • FIG. 5 is a shaft plan view according to an embodiment of the present invention.
  • the shaft 500 is fixed to the stator core 101 by molding the through-hole key groove 104 and the sleeve key groove 403 of the wire drawing sleeve 400.
  • stator the inner rotor
  • manufacturing method of the generator of the present invention have been described with reference to a preferred embodiment of the present invention, but modifications, changes, and modifications can be made without departing from the spirit of the present invention. Various modifications will be possible. Therefore, the protection scope of the present invention should be construed to include all changes, modifications or adjustments.
  • stator 101 stator core
  • stator side portion 103 center through hole
  • 201a inner rotor core a
  • 201b inner rotor core b
  • stator engagement keyway 502 sleeve engagement keyway

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

본 발명은 발전기의 상기 스테이터(stator)와 상기 인너로터(Inner Rotor)에 관한 것으로, 상기 스테이터의 상기 슬롯(slot)에 의한 공극자속밀도의 대응 및 전류의 왜곡에 기인하는 코깅토크(Cogging Torque)를 최소화시킴으로써 회전력을 향상시키고, 진동과 소음을 현저하게 저감시킬 수 있도록 한 것이다. 본 발명은 발전기의 상기 스테이터 코어의 상기 코일권취편 외측단에 상기 팁(tip)이 형성되도록 하고, 상기 인너로터가 링 구조 및 링 구조에다 +자형태의 지지대로 형성되는 특징을 갖고 상기 아우터로터와 등속으로 회전한다.

Description

발전기의 스테이터와 인너로터 제조방법
본 발명은 발전기의 스테이터(stator)와 인너로터(Inner Rotor)에 관한 것으로, 더욱 상세하게는 스테이터(stator)와 인너로터(Inner Rotor) 및 아웃터로터(outer rotor)를 구성하여 전기차용에서 구동할 수 있는 발전기의 스테이터(stator)와 인너로터(Inner Rotor) 및 그 제조방법에 관한 것이다.
일반적으로 발전기에서 생성되는 기전력의 크기는 자기장의 세기와 도체의 길이 및 자기장과 도체의 상대속도에 비례한다.
따라서 자기장의 세기를 높이거나 도체를 길게 형성하거나 또는 자기장과 도체의 상대속도를 크게 함으로써 기전력을 높일 수 있다.
통상적으로 자기장과 도체의 상대속도를 크게 하여 기전력을 높이고 있는데, 종래의 발전기는 자성체인 스테이터와 자성체인 로터를 이용함으로써 회전토크가 높아서 전기차, 조력, 풍력 및 도로발전과 같이 낮은 토크를 요구하는 경우 원하는 기전력을 얻을 수 없었다.
이에 2개의 로터를 사용하여 원하는 기전력을 얻을 수 있는 발전기가 개발되었으며, 그 일례인 제10-1454805호의 「발전기」가 도6에 도시되어 있다.
도6의 「발전기」는 자석을 갖는 회전자(120)와 자성체인 내부케이싱(150)을 서로 동일한 방향으로 회전시킴으로써 저속회전력에서 기전력을 얻는 구조이고, 장점으로는 자석을 갖는 회전자(120)와 자성체인 내부케이싱(150)이라는 동시 회전체 사이에 복합연성물질 또는 비자성체로 성형된 고정자(130)의 코어에 권선코일을 사용하여 상호간 자기장이 유도되도록 하고, 고정자(130)에게 기전력을 발생시키면서도 서로 붙으려고 붙으려는 힘(attraction)을 제거하고, 코깅현상과 와전류를 억제하며, 발열 억제효과와 회전저항을 크게 줄여 발전효율성을 증가시킬 수 있는 효과가 있다.
본 발명은 이와 같은 종래의 기술(제10-1454805호의 「발전기」)을 보완하기 위한 것으로, 그 목적은 발전기의 스테이터 슬롯에 의한 공극자속밀도의 변화 및 전류의 왜곡에 기인하는 코깅토크(Cogging Torque)를 최소화시킴으로써 발전기의 회전력을 향상시키고, 진동과 소음을 현저하게 저감시킬 수 있도록 설계 및 제조가 간단한 전기차용 발전기 스테이터와 인너로터를 제공하는데 있다.
본 발명은 발전기의 스테이터(stator)와 인너로터(Inner Rotor)의 제조방법에 관한 것으로, 스테이터 코어는 원형 쟁반형태로써 일측에 두께가 얇은 코어측면부 성형; 스테이터 코어측면부 중심에는 샤프트를 삽입하기 위한 관통구의 성형; 스테이터 코어측면부 관통구는 샤프트과 결합되도록 키홈 성형; 스테이터 코어 내측 테두리는 원형 코일권취편 지지부로 성형;
관통공 성형으로 코어 외측 테두리는 슬롯의 숫자에 따라서 다수의 코일권취편과 팁(Tip) 성형;
또한, 인너로터 코어는 2가지의 유형이 적층 된 형태로써, 하나는 링(Ling)을 지지하기 위해 안쪽에 +(Cross)형태의 링 지지부와 링까지 동시 성형; 다른 하나는 링 형태만 갖는 코어를 성형한 후 적층하기 위해 모두 리벳으로 결합한다.
본 발명의 실시예에 의하면, 복합연성물질 또는 비자성체로 성형된 코어를 갖는 스테이터를 가운데 두고 내측에 인너로터와 외측에 아우터로터를 구성하여 동시에 회전함으로써 강한 자기장이 스테이터를 통과하지만, 내측의 인너로터와 외측의 아우터로터 사이에 강한 자기장으로 인해서 붙어서 정지하려는 힘(attraction)을 제거함으로써 인너로터와 스테이터 및 아우터로터 간의 코깅현상과 와전류를 해소하고, 종래의 발전기보다 회전저항력을 줄여주고, 회전속도를 높일 수 있어서 원하는 기전력을 얻을 수 있으며, 외부의 회전동력이 크게 필요하지 않아 동력에너지를 절약하는 장점이 있다.
도 1은 본발명의 발전기의 아셈블리(assembly)를 나타내는 단면도
도 2는 본발명의 스테이터의 평면도 및 측면도
도 3은 본발명의 인너로터의 평면도 및 측면도
도 4은 본발명의 인너로터 코어 결합 평면도
도 5는 본발명의 샤프트 평면도
도 6은 종래 발명에 따른 발전기의 평면도
이하, 본 발명의 바람직한 실시예들을 첨부된 도 1 내지 도 6을 참고하여 더욱 상세히 설명한다. 도 1은 본 발명의 실시예에 따른 발전기의 아셈블리(assembly)를 나타내는 단면도이고, 도 2는 본 발명의 실시예에 따른 스테이터의 평면도 및 측면도이다.
스테이터 코어(101)는 쟁반형태로써 일측에 스테이터 측면부(102)가 성형되고, 상기 스테이터 측면부(102) 중심부에는 샤프트(500)을 삽입하기 위한 관통구(103)가 성형되며, 상기 관통구(103)에는 관통구 키홈(104)이 성형되며, 상기 스테이터 코어(101) 외측면은 코일권취편 지지부(107)로 형성되고, 슬롯(105)의 숫자에 따라서 다수의 슬롯 관통공(106)을 성형하여 코일권취편(108)과 팁(Tip:109)을 성형한다.
상기 코일권취편(108)과 상기 팁(Tip:109)은 1쌍씩 상기 슬롯(105)을 구성하며 상기 슬롯(105)과 상기 슬롯(105) 사이는 코일(110)이 들어가도록 단절되어 있다.
권선된 상기 코일(110)은 상기 스테이터 측면부(102)에 지지되어 배선인출 슬리브(400)을 통과하여 밖으로 인출 된다.
따라서 상기 배선인출 슬리브(400)는 일측이 테두리를 가지며, 중심부는 상기 샤프트(500)을 삽입하기 위한 슬리브 관통구(402)가 형성되고, 상기 슬리브 관통구(402)는 상기 샤프트(500)와 결합되기 위해 슬리브 키홈(403)을 성형하며, 내주면과 외주면 사이는 배선 인출구(401)가 상기 샤프트(500) 방향으로 중공 성형되며, 외주면은 아우터로터(outer rotor:300)를 양쪽에서 지지하는 베어링(305a, 305b) 들이 결합된다.
도 3은 본 발명의 실시예에 따른 인너로터의 평면도 및 측면도이다.
인너로터(Inner Rotor:200)는 2가지의 유형이 적층 된 형태로써, 인너로터 코어a(Inner Rotor Core a : 201a)는 중공형태로써 코어 링(Core Ling:202) 형태만 갖도록 관통공a(206a) 성형하고, 인너로터 코어b(Inner Rotor Core b : 201b)는 상기 코어 링(Core Ling:202) 모양에다가 이를 지지하기 위해 안쪽에 +(Cross)형태의 코어 링 지지부(203)를 남겨놓고 코어 링 지지부 관통구(204)와 관통공b(206b)를 성형한다.
상기 인너로터 코어a(201a)와 상기 인너로터 코어b(201b)를 결합하기 위해서는 상기 인너로터 코어b(201b)를 가운데 두고 상기 인너로터 코어a(201a)를 양쪽에 붙인 후 리벳(208)으로 적층하여 결합한다.
상기 인너로터 코어a(201a)와 상기 인너로터 코어b(201b)는 상기 스테이터 코어(101)와 비례하여 폭을 정하며, 상기 스테이터 코어(101)와의 공극(air gap)은 매우 좁게 구성한다.
도 4는 본 발명의 실시예에 따른 인너로터 코어 결합 평면도이다.
인너로터 코어 결합부재(250)는 암컷 결합부재(251)와 수컷 결합부재(252)로 구성된다.
상기 암컷 결합부재(251)와 상기 수컷 결합부재(252)는 각각 중공의 관통구(256)가 성형되고,
상기 수컷 결합부재(252)의 상기 관통구(256) 일측 내면에는 깊숙하게 베어링(253)이 삽입되어 상기 샤프트(500)가 슬립(Slip)되도록 결합되고, 타측 외주면에는 숫나사선(255)이 성형되고, 상기 암컷 결합부재(252)의 내주면은 암나사선(254)이 성형된다.
따라서 상기 암컷 결합부재(251)와 상기 수컷 결합부재(252)로 구성된 상기 인너로터 코어 결합부재(250)는 상기 코어 링 지지부(203)를 사이에 두고 상기 코어링 지지부 관통구(204)의 좌우측에서 맞물리도록 결합시킨다.
또한, 상기 아웃터로터(300)는 중공형의 원형 하우징(301)으로 성형하고, 상기 원형 하우징(301)의 내주면에는 다수의 마그네트(302)를 구비하며, 상기 원형 하우징(301)의 측면에는 각각 측면 지지부재L(303a)과 측면 지지부재R(303b)을 구비하여 측면 지지부재결합나사(304)로 결합하며, 상기 측면 지지부재L(303a)과 상기 측면 지지부재R(303b)는 베어링a(305a)과 베어링b(305b)를 이용하여 상기 샤프트(500)에 슬립(slip)되도록 결합된다.
도 5는 본 발명의 실시예에 따른 샤프트 평면도이다.
상기 샤프트(500)는 상기 스테이터 코어(101)에는 상기 관통구 키홈(104) 및 상기 배선인출 슬리브(400)의 상기 슬리브 키홈(403)을 성형하여 이 들을 고정시키게 된다.
이상, 본 발명의 바람직한 실시 예를 참조로 본 발명의 발전기의 스테이터(stator)와 인너로터(Inner Rotor) 및 그 제조방법에 대하여 설명하였지만, 본 발명의 사상을 벗어나지 않는 범위 내에서 수정, 변경 및 다양한 변형실시예가 가능할 것이다. 그러므로, 본 발명의 보호 범위는 변화나 변경 예 또는 조절 예를 모두 포함하는 것으로 해석되어야 할 것이다.
(부호의 설명)
1: 발전기의 아셈블리(assembly)
100 : 스테이터 101 : 스테이터 코어
102 : 스테이터 측면부 103 : 중심부 관통구
104 : 관통구 키홈 105 : 슬롯
106 : 슬롯관통공 107 : 코일권취편 지지부
108 : 코일권취편 109 : 팁(Tip) 110 : 코일
200 : 인너로터
201a : 인너로터 코어a 201b : 인너로터 코어b
202 : 코어 링(Core Ling) 203 : 코어 링 지지부
204 : 코어 링 지지부 관통구
206a : 인너코어b 관통공 206b : 인너코어b 관통공
208 : 리벳 209 : 리벳구멍
250 : 인너 로터 코어 결합부재
251 : 암컷 결합부재 252 : 수컷 결합부재
253 : 베어링 254 : 암나사선 255 : 숫나사선
256 : 관통구
300 : 아우터로터
301 : 원형 하우징 302 : 마그네트
303a : 측면 지지부재L 303b : 측면 지지부재R
304 : 측면 지지부재결합나사
305a : 베어링a 305b : 베어링b
400 : 배선인출 슬리브 401 : 배선인출구
402 : 슬리브 관통구 403 : 슬리브 키홈
500 : 샤프트
501 : 스테이터 결합 키홈 502 : 슬리브 결합 키홈
503 : 측면 지지부재L 키홈

Claims (6)

  1. 고정축으로 구성되는 샤프트(500);
    상기 샤프트(500)의 중간지점의 외주면에 슬립하도록 결합되는 인너로터(200);
    상기 샤프트(500)의 결합된 상기 인너로터(200)의 옆에 고정되도록 결합되는 스테이터(100);
    상기 스테이터(100)의 코일(110)을 도출시키기 위해 상기 샤프트(500)에 고정되게 결합되는 배선인출 슬리브(400);
    상기 배선인출 슬리브(400)의 일측 외주면과 베어링(305b)을 이용해서 결합되는 측면 지지부재R(303b);
    상기 샤프트(500)의 일측 외주면과 베어링(305a)을 이용해서 결합되는 측면 지지부재L(303a); 및
    상기 측면 지지부재R(305b) 및 측면 지지부재L(305a)의 가장자리가 측면 지지부재결합나사(304)로 결합되는 아우터로터(outer rotor:300)를 갖도록 형성된 것을 특징으로 하는 발전기의 스테이터와 인너로터 및 그 제조방법.
  2. 제1항에 있어서,
    스테이터 코어(101)는 쟁반형태로써 일측에 스테이터 측면부(102)가 성형되고; 상기 스테이터 측면부(102) 중심부에는 상기 샤프트(500)을 삽입하기 위한 관통구(103)가 성형되며; 상기 관통구(103)에는 관통구 키홈(104)이 성형되며; 상기 스테이터 코어(101) 외측면은 코일권취편 지지부(107)로 형성되고; 슬롯(105)의 숫자에 따라서 다수의 슬롯관통공(106)을 성형하여 일정한 간격을 두고 방사상으로 돌출되는 다수의 코일권취편(108) 및 원주방향으로 형성된 구조를 갖는 다수의 팁(Tip:109)을 성형하는 것과;
    상기 코일권취편(108)과 상기 팁(Tip:109)은 1쌍씩 상기 슬롯(105)을 구성하며 상기 슬롯(105)과 상기 슬롯(105) 사이는 상기 코일(110)이 들어가도록 단절되며; 권선된 상기 코일(110)은 상기 스테이터 측면부(102)에 지지되어 상기 배선인출 슬리브(400)을 통과하여 밖으로 인출되는 것과;
    상기 배선인출 슬리브(400)는 일측이 테두리를 가지며; 중심부는 상기 샤프트(500)을 삽입하기 위한 슬리브 관통구(402)가 형성되고; 상기 슬리브 관통구(402)는 상기 샤프트(500)와 결합되기 위해 슬리브 키홈(403)을 성형하며; 내주면과 외주면 사이는 배선 인출구(401)가 상기 샤프트(500) 방향으로 중공 성형되며; 외주면은 상기 아우터로터(300)를 양쪽에서 상기 베어링(305a, 305b) 들이 슬립되도록 결합하는 것을 특징으로 하는 발전기의 스테이터와 인너로터 및 그 제조방법.
  3. 제1항에 있어서,
    상기 인너로터(Inner Rotor:200)는 2가지의 유형이 적층 된 형태로써, 인너로터 코어a(201a)는 중공형태로써 코어 링(Core Ling:202) 형태만 갖도록 관통공a(206a)을 성형하고; 인너로터 코어b(201b)는 상기 코어 링(Core Ling:202) 모양에다가 이를 지지하기 위해 안쪽에 +(Cross)형태의 코어 링 지지부(203)를 남겨놓고 코어 링 지지부 관통구(204)와 관통공b(206b)를 성형하며;
    상기 인너로터 코어a(201a)와 상기 인너로터 코어b(201b)를 결합하기 위해서는 상기 인너로터 코어b(201b)를 가운데 두고 상기 인너로터 코어a(201a)를 양쪽에 붙인 후 리벳(208)으로 적층하여 결합하며;
    상기 인너로터 코어a(201a)와 상기 인너로터 코어b(201b)는 상기 스테이터 코어(101)와 비례하여 소정의 폭을 정하며, 상기 스테이터 코어(101)와의 공극(air gap)은 매우 좁게 구성하는 것을 특징으로 하는 발전기의 스테이터와 인너로터 및 그 제조방법.
  4. 제1항에 있어서,
    인너로터 코어 결합부재(250)는 암컷 결합부재(251)와 수컷 결합부재(252)로 구성되며; 상기 암컷 결합부재(251)와 상기 수컷 결합부재(252)는 각각 중공의 관통구(256)가 성형되고;
    상기 수컷 결합부재(252)의 상기 관통구(256) 일측 내면에는 깊숙하게 베어링(253)이 삽입되어 상기 샤프트(500)가 슬립(Slip)되도록 결합되고; 타측 외주면에는 숫나사선(255)이 성형되고, 상기 암컷 결합부재(252)의 내주면은 암나사선(254)이 성형되고;
    상기 암컷 결합부재(251)와 상기 수컷 결합부재(252)로 구성된 상기 인너로터코어 결합부재(250)는 상기 코어 링 지지부(203)를 사이에 두고 상기 코어링 지지부 관통구(204)의 좌우측에서 맞물리도록 결합시키는 것을 특징으로 하는 발전기의 스테이터와 인너로터 및 그 제조방법.
  5. 제1항에 있어서,
    상기 아웃터로터(300)는 중공형의 원형 하우징(301)으로 성형하고; 상기 원형 하우징(301)의 내주면에는 다수의 마그네트(302)를 구비하며; 상기 원형 하우징(301)의 측면에는 각각 상기 측면 지지부재L(303a)과 상기 측면 지지부재R(303b)을 구비하여 상기 측면 지지부재결합나사(304)로 결합하며; 상기 측면 지지부재L(303a)과 상기 측면 지지부재R(303b)는 상기 베어링a(305a)과 상기 베어링b(305b)를 이용하여 샤프트(500)에 슬립(slip)되도록 결합되는 것을 특징으로 하는 발전기의 스테이터와 인너로터 및 그 제조방법.
  6. 제1항에 있어서,
    상기 샤프트(500)는 상기 스테이터 코어(101)의 상기 관통구 키홈(104) 및 상기 배선인출 슬리브(400)의 상기 슬리브 키홈(403)을 성형하여 이 들을 고정시키게 되는 것을 특징으로 하는 발전기의 스테이터와 인너로터 및 그 제조방법.
PCT/KR2019/009502 2018-07-30 2019-07-30 발전기의 스테이터와 인너로터 제조방법 WO2020027557A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0088568 2018-07-30
KR1020180088568A KR20200013404A (ko) 2018-07-30 2018-07-30 발전기의 스테이터(stator)와 인너로터(Inner Rotor) 제조방법

Publications (1)

Publication Number Publication Date
WO2020027557A1 true WO2020027557A1 (ko) 2020-02-06

Family

ID=69232553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009502 WO2020027557A1 (ko) 2018-07-30 2019-07-30 발전기의 스테이터와 인너로터 제조방법

Country Status (2)

Country Link
KR (1) KR20200013404A (ko)
WO (1) WO2020027557A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102570898B1 (ko) * 2021-01-04 2023-08-28 선상규 2개의 로터를 결합한 발전기 장치
KR102517179B1 (ko) * 2021-01-15 2023-04-03 선상규 스테이터, 인너로터, 아우터로터를 구성하여 이모빌리티에서 구동할 수 있는 발전장치
KR102517171B1 (ko) * 2021-01-18 2023-04-03 선상규 스테이터와 인너로터와 아우터로터를 구성하여 이모빌리티에서 구동할 수 있는 발전장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090052224A (ko) * 2007-11-20 2009-05-25 박계정 발전기로 사용이 가능한 다단 회전자를 구비한 유도모터
JP2014050184A (ja) * 2012-08-30 2014-03-17 Ihi Corp 回転機
US20150194866A1 (en) * 2014-01-09 2015-07-09 Louis J. Finkle Hybrid Electric Motor with Self Aligning Permanent Magnet and Squirrel Cage Rotors
KR20160121341A (ko) * 2015-04-11 2016-10-19 선상규 개선된 형태의 발전기
KR20180071159A (ko) * 2016-12-19 2018-06-27 선상규 회전축 또는 고정축을 사용할 수 있는 2개의 회전자를 이용하는 발전기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090052224A (ko) * 2007-11-20 2009-05-25 박계정 발전기로 사용이 가능한 다단 회전자를 구비한 유도모터
JP2014050184A (ja) * 2012-08-30 2014-03-17 Ihi Corp 回転機
US20150194866A1 (en) * 2014-01-09 2015-07-09 Louis J. Finkle Hybrid Electric Motor with Self Aligning Permanent Magnet and Squirrel Cage Rotors
KR20160121341A (ko) * 2015-04-11 2016-10-19 선상규 개선된 형태의 발전기
KR20180071159A (ko) * 2016-12-19 2018-06-27 선상규 회전축 또는 고정축을 사용할 수 있는 2개의 회전자를 이용하는 발전기

Also Published As

Publication number Publication date
KR20200013404A (ko) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2020027557A1 (ko) 발전기의 스테이터와 인너로터 제조방법
WO2020032600A1 (ko) 회전축 이용을 위한 발전기의 스테이터와 인너로터 제조방법
WO2016148541A1 (ko) 회전자코어를 포함하는 모터의 회전자 및 그 제조 방법
WO2014046348A1 (ko) 발전기
EP1193845A4 (en) HYBRID SYNCHRONOUS MOTOR WITH RING WINDING
CN108683313A (zh) 一种高功率密度高效率的轴向磁通永磁电机
CN111075839A (zh) 新结构径向两自由度六极交流/直流混合磁轴承
WO2020138583A1 (ko) 자기부상 회전체를 포함하는 축방향 모터
CN114389422A (zh) 一种凸极式混合励磁电机
WO2012119301A1 (zh) 一种铁氧体三相永磁电机
CN110798037A (zh) 一种永磁同步电机
CN212518575U (zh) 一种磁路串联式永磁电机的转子安装结构
CN111043156B (zh) 新结构交叉齿四极混合磁轴承
WO2023063740A1 (ko) 역기전력 감소 효율이 향상된 발전장치
WO2014061908A1 (ko) 이중 공극형 발전기
CN202840876U (zh) 永磁叠层电机
CN112953060A (zh) 一种径向-轴向复合磁通的外转子永磁同步电机
CN111541320A (zh) 一种同极电机
CN111181339A (zh) 一种定子模块化双转子双凸永磁电机
CN113036962B (zh) 一种低成本轻量化的交替极永磁电机
CN210297372U (zh) 一种新型电机转子结构
JPH05122877A (ja) 永久磁石式同期電動機の回転子
CN211574038U (zh) 径向无耦合四极混合磁轴承
CN113612328A (zh) 一种用于旋转电机的类Halbach磁极阵列结构体
CN208623519U (zh) 一种高功率密度高效率的轴向磁通永磁电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19845169

Country of ref document: EP

Kind code of ref document: A1