WO2012119301A1 - 一种铁氧体三相永磁电机 - Google Patents

一种铁氧体三相永磁电机 Download PDF

Info

Publication number
WO2012119301A1
WO2012119301A1 PCT/CN2011/071572 CN2011071572W WO2012119301A1 WO 2012119301 A1 WO2012119301 A1 WO 2012119301A1 CN 2011071572 W CN2011071572 W CN 2011071572W WO 2012119301 A1 WO2012119301 A1 WO 2012119301A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
phase
permanent magnet
motor
core
Prior art date
Application number
PCT/CN2011/071572
Other languages
English (en)
French (fr)
Inventor
杜坤梅
曹立明
Original Assignee
浙江博望科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江博望科技发展有限公司 filed Critical 浙江博望科技发展有限公司
Priority to CN201180053116.6A priority Critical patent/CN103222156B/zh
Priority to PCT/CN2011/071572 priority patent/WO2012119301A1/zh
Publication of WO2012119301A1 publication Critical patent/WO2012119301A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This invention relates to permanent magnet machines and, more particularly, to a ferrite three-phase permanent magnet machine suitable for use in refrigerators, air conditioners, and high speed drive applications.
  • the stator core of a permanent magnet motor generally uses a silicon steel sheet
  • the rotor generally uses a rare earth permanent magnet, such as a neodymium iron boron permanent magnet.
  • Silicon steel sheets and rare earth permanent magnet materials are becoming scarcer and increasingly expensive. In order to change this situation, people have made a lot of efforts.
  • One of the improvements is to use a motor without a stator core, which will inevitably increase the amount of permanent magnets.
  • Another improvement is to use hard ferrite magnet steel, which can avoid the use of rare earth permanent magnet materials, but it will inevitably lead to the magnetic load of the motor becoming lower, and can only be remedied by correspondingly increasing the electric load. Therefore, it is necessary to increase the amount of copper used. The loss of copper is increased, and more importantly, the force index of the motor will be greatly reduced.
  • the present invention solves the problems of large copper consumption and high cost of the conventional permanent magnet motor.
  • the arrangement of twelve teeth around the three-phase winding of A, B and C is A ⁇ /A ⁇ /C ⁇ C ⁇ B ⁇ /B ⁇ /A ⁇ A ⁇ C ⁇ /C ⁇ /B ⁇ B, where “/A” represents a concentrated winding of an inverting connection of phase A, /B, /C analogy;
  • the physical air gap between the stator core and the rotor core may be 0.2 to 3.0 mm; the width of the notch between the adjacent two teeth is 0.1 to 3.0 mm.
  • the volume resistivity of the soft ferrite is 100 ⁇ to 50 K ⁇ , and is selected from a manganese core soft ferrite, a nickel core soft ferrite, a microcrystalline silicon soft ferrite, or an SMC soft magnetic composite.
  • a manganese core soft ferrite a nickel core soft ferrite, a microcrystalline silicon soft ferrite, or an SMC soft magnetic composite.
  • One of the materials is selected from a manganese core soft ferrite, a nickel core soft ferrite, a microcrystalline silicon soft ferrite, or an SMC soft magnetic composite.
  • the stator core is formed by splicing twelve independent teeth, wherein the remaining surfaces except the splicing surface are covered by an insulating layer having a thickness of 0.02-0.5. Mm.
  • the stator core is a unitary structure that is prefabricated. Wherein the stator core may be divided into a plurality of sections in the axial direction, including a front section forming a front groove at a front portion of the tooth, a rear section forming a rear groove at a rear portion of the tooth, and being located at the front section At least one intermediate segment between the rear segments.
  • each permanent magnet on the rotor core is arranged in phase; each of the permanent magnets is a radially magnetized tile-shaped hard ferrite magnet, or a parallel charge.
  • Magnetic tile-shaped hard ferrite magnet steel is
  • the outer circumference of the rotor core may be covered with a carbon fiber, glass fiber or aluminum protective cover having a thickness of 0.15 to 2 mm.
  • the three-phase permanent magnet motor of the present invention has a series of advantages such as minimizing winding end, minimizing air gap, minimizing material, minimizing positioning torque, and minimizing iron loss and copper loss, etc. High operating speeds, higher power/volume ratios and torque/volume ratios minimize costs.
  • This three-phase permanent magnet motor can replace the existing induction motor, permanent magnet motor, or replace the air conditioner and refrigerator compressor drive motor, becoming the mainstream drive motor for high performance, energy saving air conditioner and refrigerator compressor in the future.
  • FIG. 1 is a schematic view showing the structure of a motor assembly in a preferred embodiment of the present invention
  • FIG. 2 is a schematic view showing the structure of a stator and a rotor of a motor in a preferred embodiment of the present invention
  • Figure 3 is a front elevational view of the single tooth shown in Figure 2;
  • Figure 4 is a left side view of the single tooth shown in Figure 3;
  • Figure 5 is a schematic view showing the structure of a tile-shaped hard ferrite magnetron rotor in a preferred embodiment of the present invention
  • Figure 6 is a schematic view showing the structure of a rotor composed of a radially magnetized hard ferrite magnet block in a preferred embodiment of the present invention
  • Fig. 7 is a schematic view showing the stator core divided into three sections in the axial direction in a preferred embodiment of the present invention.
  • the main components of the ferrite three-phase permanent magnet motor include a rotor 1, a stator 2, a rotating shaft 30, etc., and a physical air gap 5 between the rotor 1 and the stator 2 is 0.1 to 2 mm.
  • the relationship between the width M11 of the outer circular end 50 of each of the teeth 40, the width M21 of the inner circular end 60, and the width M31 of the tooth core 70 is M11>M21>M31; and each tooth
  • the axial length M12 of the outer end 50, the axial length M22 of the inner circular end 60, and the axial length M32 of the tooth center 70 are M12>M32, M22>M32; thus, both in the axial direction and the radial direction of the tooth.
  • each phase of the motor has four concentrated windings connected in series, which are respectively wound on four teeth; as shown in Fig. 2, the arrangement of twelve teeth around the three-phase winding of A, B and C is: A ⁇ /A ⁇ /C ⁇ C ⁇ B ⁇ /B ⁇ /A ⁇ A ⁇ C ⁇ /C ⁇ /B ⁇ B, where “/A” represents the concentrated winding of an inverting connection of phase A, /B / / C type. Due to the front and rear grooves and the left and right groove structures on each tooth, the outer edge of the concentrated winding is limited to the inside of the stator core. Compared with the conventional motor, this motor saves a large number of winding wires, using copper and iron. Significantly reduced, resulting in a higher power/volume ratio, higher torque/volume ratio, and the cost is minimized.
  • the total length of the winding of each phase of the conventional motor is 4N (D + 2 reheatD / 12); therefore, the winding wire in this embodiment is shortened by 1.207 times.
  • the rotor uses hard ferrite, avoiding the use of rare earth permanent magnet materials, although the magnetic load of the motor is reduced by 2 times, it is necessary to increase the electric load by 2 times to remedy the motor performance, but the total length of the winding is shortened by 1.207 times, the motor The copper loss will be reduced by 1.458 times; and because the stator of the motor uses soft ferrite, the iron loss of the motor will be reduced by 3 to 10 times.
  • the integrated loss of this motor and the traditional concentrated winding three-phase permanent magnet motor Quite, even smaller; and because the magnetic load of the motor is reduced by 2 times, the positioning torque and torque fluctuation of the motor is 20 ⁇ 30% smaller than that of the traditional concentrated winding motor, and the noise is smaller than that of the traditional concentrated winding motor; Small, it is more advantageous to reduce the internal resistance of the motor.
  • stator core is made of soft ferrite and operates at frequencies up to 10 kHz, it allows the motor to rotate at tens of thousands of revolutions per minute, which makes sense for high speed applications.
  • the motor can be driven with a three-phase square wave or sinusoidal current.
  • the remaining surfaces except the splicing surface are covered by the insulating layer, and the thickness of the insulating layer may be 0.02-0.5 mm.
  • the width of the notch 3 is 0.1 to 3.0 mm.
  • the volume resistance of the soft ferrite can be 100 ⁇ to 50 K ⁇ , so the core loss of the soft ferrite stator is 3 to 10 times or more smaller than that of the silicon steel sheet stator core.
  • the soft ferrite here may be made of one of a manganese core soft ferrite, a nickel core soft ferrite, a microcrystalline silicon soft ferrite, or an SMC soft magnetic composite material, and the saturation magnetic density thereof is inevitably not Will be lower than the residual magnetic flux of the permanent ferrite, they are naturally matched.
  • a single independent tooth can be formed by a certain process in a sintering process, a bonding process, an injection process, or a mixing process, and the windings in series can be wound for every four teeth. And then spliced into a unitary stator core assembly.
  • stator core can also be fabricated in a prefabricated manner (in this case, there are no separate teeth), and then the three-phase windings are directly wound on the integral stator core by a shuttle or by hand.
  • the N and S magnetic poles of the respective permanent magnets on the rotor core are arranged, and the permanent magnets here are radially magnetized tile-shaped hard ferrite magnets or parallel magnetized.
  • Tile-shaped hard ferrite magnet steel It can be seen from the figure that the outer circumference of the ferrite magnet has an angle of not more than 15° and a length not larger than the 1/4 of the outer arc of the ferrite magnet, as shown in Fig. 5.
  • the motor's rotor has the same direct-axis reluctance and cross-axis reluctance, and belongs to a hidden pole motor. The running noise of this motor is smaller than that of a salient pole motor.
  • the permanent magnet is a radially magnetized hard ferrite magnet block having a pole pitch of ⁇ D/10 and an axial physical dimension L of 30 to 200 mm, wherein D is outside the rotor.
  • the diameter of the outer chord is ⁇ D/10
  • the inner diameter of the magnetic block is -D/n
  • n 1.5 to 3
  • the inner diameter is ⁇ D/10.
  • the in-line permanent magnet is used, the direct magnetoresistance of the rotor is larger than the cross-axis reluctance, and the salient pole effect is obtained. When the motor is running, the salient pole moment can be obtained, and the output is larger than that of the hidden pole motor.
  • a protective sleeve having a thickness of 0.15-2 mm is sleeved on the outer circumference of the rotor, and the protective sleeve can be made of carbon fiber, glass filament or aluminum, and can be prevented from rotating on the rotor when the motor rotates at a high speed.
  • the permanent magnet centrifugal force is too large to fall off.
  • the stator core is divided into three sections in the axial direction, including a front section (left side section in FIG. 7) forming a front groove at a front portion of the tooth, behind the teeth.
  • the rear portion of the rear groove (the right side segment in Fig. 7) and the intermediate portion between the front and rear portions (the middle portion in Fig. 7).
  • the number of intermediate segments may be one or more; when the lengths of the current segment and the rear segment are fixed, the axis of the entire stator core can be adjusted by increasing the number of intermediate segments or adjusting the length of the intermediate segment. To the length.
  • This axially segmented structure can be applied to the case where a plurality of teeth shown in FIG.
  • FIG. 2 are spliced into a stator core, that is, each tooth is divided into a plurality of segments, and FIG. 7 shows the left of a single tooth corresponding to FIG.
  • the view structure, the main view structure is shown in Figure 3; of course, this axial segmented structure can also be applied to the overall prefabricated stator core, in this case, the overall prefabrication of multiple segments.
  • the ferrite three-phase permanent magnet motor in the above embodiment is usually used as an electric motor and is driven by a three-phase square wave or sine wave current; it is suitable for refrigerators, air conditioners, and high-speed driving applications; when it is driven by a rotating machine, it can also become Three-phase permanent magnet generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

一种铁氧体三相永磁电机 技术领域
本发明涉及永磁电机,更具体地说,涉及一种铁氧体三相永磁电机,该电机适用于冰箱、空调和高速驱动应用。
背景技术
永磁电机的定子铁芯一般采用硅钢片,转子一般采用稀土永磁体,例如钕铁硼永磁体。硅钢片和稀土永磁体材料正越来越稀缺,价格越来越贵。为了改变这种状况,人们做了很多努力。
其中一种改进方案是采用无定子铁芯的电机,这类设计必然会增加永磁体的用量。
另一种改进方案是采用硬磁铁氧体磁钢,可以避免使用稀土永磁体材料,但必然导致电机的磁负荷变低,只能相应地提高电负荷来补救,于是必需增加用铜量,电机的铜损耗增加,更重要的是电机的力能指标会会因此大幅下降。
发明内容
针对现有永磁电机的上述缺陷,本发明要解决传统永磁电机铜耗大、成本高等问题。
本发明的技术方案是,提供一种铁氧体三相永磁电机,所述电机的转子铁芯上装有多对永磁体,定子铁芯上装有三相绕组,其中,所述定子铁芯由软磁铁氧体制成,其齿槽数Z=12;其中每一个齿的外圆端宽度M11、内圆端宽度M21、齿心宽度M31的关系是M11>M21>M31;且每一个齿的外圆端轴向长度M12、内圆端轴向长度M22、齿心轴向长度M32的关系是M12>M32、M22>M32;从而在齿的前后、左右均形成用于嵌装绕组的凹槽;所述电机的每一相有四个串联的集中绕组,分别绕在四个齿上,绕有A、B、C三相绕线的十二个齿的排列方式是A→/A→/C→C→B→/B→/A→A→C→/C→/B→B,其中的“/A”表示A相的一个反相连接的集中绕组,/B、/C类推;所述转子铁芯中的永磁体由硬磁铁氧体制成,其磁极数2P=10。
本发明中,所述定子铁芯与转子铁芯之间的物理气隙可为0.2~3.0mm;相邻两个齿之间的槽口的宽度为0.1~3.0mm。
本发明的定子铁芯中,软磁铁氧体的体积电阻为100Ω~50KΩ,并选自锰芯软磁铁氧体、镍芯软磁铁氧体、微晶硅软磁铁氧体、或SMC软磁复合材料中的一种。
本发明的一个优选方案中,所述定子铁芯由独立的十二个齿拼接而成,其中除了拼接表面之外的其余表面均被绝缘层包覆,所述绝缘层的厚度为0.02~0.5mm。本发明的另一个优选方案中,所述定子铁芯为预制成整体的一体式结构。其中,所述定子铁芯可沿轴向分成多段,包括在所述齿的前部形成前凹槽的前段、在所述齿的后部形成后凹槽的后段、以及位于所述前段与后段之间的至少一个中间段。
本发明的一个优选方案中,所述转子铁芯上各个永磁体的N、S磁极相间排列;每个所述永磁体是径向充磁的瓦形硬磁铁氧体磁钢、或者是平行充磁的瓦形硬磁铁氧体磁钢。
本发明的另一个优选方案中,所述永磁体是径向充磁的硬磁铁氧体磁块,并嵌装于所述转子铁芯的表面;每个所述磁块的极距为πD/10,轴向物理尺寸L是30~200mm,其中D是转子外径,外弦长为πD/10,磁块内径为-D/n,其中n=1.5~3,内径长为πD/10。
本发明中,所述转子铁芯的外圆上可套有一个厚度为0.15~2mm的碳纤维、玻璃丝或铝质保护套。
由于采取了上述技术方案,本发明的三相永磁电机具有绕组端部最小化、气隙最小化、材料最小化、定位力矩最小化以及铁损和铜损最小化等一系列优点,具有更高工作转速、更高的功率/体积比和力矩/体积比,成本达到了最低化。这种三相永磁电机可以替代现有的感应电动机、永磁电动机,或者替代空调与冰箱压缩机驱动电机,成为未来高性能、节能空调与冰箱压缩机的主流驱动电机。
附图说明
图1是本发明一个优选实施例中电机总装结构示意图;
图2是本发明一个优选实施例中电机的定子、转子结构示意图;
图3是图2中所示的单个齿的主视图;
图4是图3中所示单个齿的左视图;
图5是本发明一个优选实施例中瓦形硬磁铁氧体磁钢转子的结构示意图;
图6是本发明一个优选实施例中径向充磁的硬磁铁氧体磁块构成的转子结构示意图;
图7是本发明一个优选实施例中将定子铁芯沿轴向分成三段的示意图。
具体实施方式
如图1所示为本发明的一个优选实施例,该铁氧体三相永磁电机的主要部件包括转子1、定子2、转轴30等,转子1与定子2之间的物理气隙5为0.1~2mm。
如图2所示,本实施例中,定子铁芯采用软磁铁氧体,整个定子铁芯由十二个独立的软磁铁氧体制成的齿40拼成,所以定子的齿槽数Z=12。
如图3和图4所示,其中每一个齿40的外圆端50的宽度M11、内圆端60的宽度M21、齿心70的宽度M31的关系是M11>M21>M31;且每一个齿的外圆端50的轴向长度M12、内圆端60的轴向长度M22、齿心70的轴向长度M32的关系是M12>M32、M22>M32;从而在齿的轴向和径向均形成用于放置绕组的前后凹槽、左右凹槽;这种结构的好处是绕组都装于凹槽中,理想的状态是绕组不会突出于图3中的左右端面,即绕组的厚度被限定于齿的左右凹槽中;同时绕组也不会突出于图4中左右端面,即绕组的长度被限定于齿的前后凹槽中。
其中,电机的每一相有四个串联的集中绕组,分别绕在四个齿上;如图2所示,绕有A、B、C三相绕线的十二个齿的排列方式是:A→/A→/C→C→B→/B→/A→A→C→/C→/B→B,其中的“/A”表示A相的一个反相连接的集中绕组,/B、/C类推。由于每个齿上的前后凹槽、左右凹槽结构,集中绕组外边缘都被限定于定子铁芯内部,与传统电机相比,这种电机节省了大量的绕组导线,用铜和用铁量大幅减小,从而具有更高的功率/体积比、更高的力矩/体积比,成本达到了最低化。
对于转子轴向长度与直径比为1/2的10极电机,电机轴向长度L=D/2,电机每极匝数N,则电机每相绕组的总长度为4N(D+лD/12),而传统电机每相绕组的总长度4N(D+2лD/12);因此,本实施例中绕组导线减短了1.207倍。其中,转子采用硬磁铁氧体,避免使用稀土永磁体材料,虽然会导致电机的磁负荷下降2倍,需要提高2倍电负荷来补救电机性能,但由于绕组的总长度减短1.207倍,电机的铜损耗会相应减小1.458倍;又由于电机的定子采用软磁铁氧体,电机的铁损耗会减小3~10倍,因此,这种电机的综合损耗与传统集中绕组三相永磁电机相当,甚至更小;又由于电机磁负荷下降2倍,所以电机的定位力矩和力矩波动比传统集中绕组电机小20~30%左右,噪音也比传统集中绕组电机小;电机的用铜量减小,对减小电机内阻更为有利。
由于定子铁芯采用了软磁铁氧体,工作频率高达10KHz,可允许电机以每分钟数万转转速旋转,对于高速应用很有意义。该电机可以采用三相方波或正弦波电流驱动。
具体实施时,定子铁芯的十二个齿中,除了拼接表面之外的其余表面均被绝缘层包覆,绝缘层厚度可为0.02~0.5mm,拼接成之后,相邻两个齿之间的槽口3的宽度为0.1~3.0mm。其中,软磁铁氧体的体积电阻可为100Ω~50KΩ,因此软磁铁氧体定子的铁芯损耗比硅钢片定子铁芯小3~10倍甚至更多。这里的软磁铁氧体可以是锰芯软磁铁氧体、镍芯软磁铁氧体、微晶硅软磁铁氧体、或SMC软磁复合材料中的某一种制成,其饱和磁密必然不会低于永磁铁氧体的剩磁磁密,它们是天然匹配的。
对于图2所示的定子铁芯,可采用烧结工艺、粘结工艺、注射工艺、混合工艺中的某种工艺制成一个个的独立齿,此时可针对每四个齿绕制串联的绕组,然后再拼接成整体的定子铁芯组件。
当然,也可采用整体预制的方式来制作定子铁芯(此时没有独立的各个齿),然后在整体定子铁芯上直接用飞梭或手工绕制三相绕组。
如图5所示的实施例中,转子铁芯上各个永磁体的N、S磁极相间排列,这里的永磁体是径向充磁的瓦形硬磁铁氧体磁钢、或者是平行充磁的瓦形硬磁铁氧体磁钢。从图中可以看出,铁氧体磁钢的外圆两侧有角度不大于15°、长度不大于铁氧体磁钢的外圆弧长1/4的削角,如图5。该电机转子的直轴磁阻与交轴磁阻相同,属于隐极电机,该电机的运行噪声比凸极电机小。
如图6所示的实施例中,永磁体是径向充磁的硬磁铁氧体磁块,该永磁体的极距πD/10,轴向物理尺寸L是30~200mm,其中D是转子外径,外弦长为πD/10,磁块内径为-D/n,n=1.5~3,内径长为πD/10。图6中所示是由n=2的径向充磁的硬磁铁氧体磁块构成的转子。其中采用内嵌式永磁体,转子的直轴磁阻比交轴磁阻大,具有凸极效应,该电机运行时可获得凸极力矩,出力比隐极电机更大。
如图2所示,本实施例中,在转子的外圆上套有一个厚度为0.15~2mm的保护套,该保护套可由碳纤维、玻璃丝或铝制成,在电机高速旋转时可防止转子上的永磁体离心力过大而脱落。
如图7所示,本发明的另一实施例,定子铁芯沿轴向分成三段,包括在齿的前部形成前凹槽的前段(图7中的左侧段)、在齿的后部形成后凹槽的后段(图7中的右侧段)、以及位于前段与后段之间的中间段(图7中的中间段)。具体实施时,中间段的数量可以是一个或多个;当前段和后段的长度固定不变时,通过增加中间段的数量,或者调节中间段的长度,即可调节整个定子铁芯的轴向长度。这种轴向分段的结构可适用于图2所示的多个齿拼接成定子铁芯的情形,即每个齿分成多段,图7中示出的是与图4对应的单个齿的左视图结构,其主视图结构如图3所示;当然,这种轴向分段的结构也可适用于整体预制的定子铁芯,此时是分别整体预制多段。
上述实施例中的铁氧体三相永磁电机,通常用作电动机,并采用三相方波或正弦波电流驱动;适用于冰箱、空调和高速驱动应用;当它由旋转机械带动,也可成为三相永磁发电机。

Claims (10)

  1. 一种铁氧体三相永磁电机,所述电机的转子铁芯(1)上装有多对永磁体(4),定子铁芯(2)上装有三相绕组,其特征在于,所述定子铁芯由软磁铁氧体制成,其齿槽数Z=12;其中每一个齿的外圆端宽度M11、内圆端宽度M21、齿心宽度M31的关系是M11>M21>M31;且每一个齿的外圆端轴向长度M12、内圆端轴向长度M22、齿心轴向长度M32的关系是M12>M32、M22>M32;从而在齿的前后、左右均形成用于嵌装绕组的凹槽;所述电机的每一相有四个串联的集中绕组,分别绕在四个齿上,绕有A、B、C三相绕线的十二个齿的排列方式是A→/A→/C→C→B→/B→/A→A→C→/C→/B→B,其中的“/A”表示A相的一个反相连接的集中绕组,/B、/C类推;所述转子铁芯中的永磁体由硬磁铁氧体制成,其磁极数2P=10。
  2. 根据权利要求1所述的铁氧体三相永磁电机,其特征在于,所述定子铁芯与转子铁芯之间的物理气隙为0.2~3.0mm;相邻两个齿之间的槽口(3)的宽度为0.1~3.0mm。
  3. 根据权利要求1所述的铁氧体三相永磁电机,其特征在于,所述软磁铁氧体的体积电阻为100Ω~50KΩ,并选自锰芯软磁铁氧体、镍芯软磁铁氧体、微晶硅软磁铁氧体、或SMC软磁复合材料中的一种。
  4. 根据权利要求1所述的铁氧体三相永磁电机,其特征在于,所述定子铁芯由独立的十二个齿拼接而成,其中除了拼接表面之外的其余表面均被绝缘层包覆,所述绝缘层的厚度为0.02~0.5mm。
  5. 根据权利要求1所述的铁氧体三相永磁电机,其特征在于,所述定子铁芯为预制成整体的一体式结构,其表面均被绝缘层包覆,所述绝缘层的厚度为0.02~0.5mm。
  6. 根据权利要求1-5中任一项所述铁氧体三相永磁电机,其特征在于,所述转子铁芯上各个永磁体的N、S磁极相间排列;每个所述永磁体是径向充磁的瓦形硬磁铁氧体磁钢、或者是平行充磁的瓦形硬磁铁氧体磁钢。
  7. 根据权利要求6所述的铁氧体三相永磁电机,其特征在于,所述铁氧体磁钢的外圆两侧设有角度不大于15°、长度不大于铁氧体磁钢的外圆弧长1/4的削角。
  8. 根据权利要求1-5中任一项所述的铁氧体三相永磁电机,其特征在于,所述永磁体是径向充磁的硬磁铁氧体磁块,并嵌装于所述转子铁芯的表面;每个所述磁块的极距为πD/10,轴向物理尺寸L是30~200mm,其中D是转子外径,外弦长为πD/10,磁块内径为-D/n,其中n=1.5~3,内径长为πD/10。
  9. 根据权利要求1-5中任一项所述的铁氧体三相永磁电机,其特征在于,所述转子铁芯的外圆上套有一个厚度为0.15~2mm的碳纤维、玻璃丝或铝质保护套。
  10. 根据权利要求1-5中任一项所述的铁氧体三相永磁电机,其特征在于,所述定子铁芯沿轴向分成多段,包括在所述齿的前部形成前凹槽的前段、在所述齿的后部形成后凹槽的后段、以及位于所述前段与后段之间的至少一个中间段。
PCT/CN2011/071572 2011-03-07 2011-03-07 一种铁氧体三相永磁电机 WO2012119301A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180053116.6A CN103222156B (zh) 2011-03-07 2011-03-07 一种铁氧体三相永磁电机
PCT/CN2011/071572 WO2012119301A1 (zh) 2011-03-07 2011-03-07 一种铁氧体三相永磁电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/071572 WO2012119301A1 (zh) 2011-03-07 2011-03-07 一种铁氧体三相永磁电机

Publications (1)

Publication Number Publication Date
WO2012119301A1 true WO2012119301A1 (zh) 2012-09-13

Family

ID=46797409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071572 WO2012119301A1 (zh) 2011-03-07 2011-03-07 一种铁氧体三相永磁电机

Country Status (2)

Country Link
CN (1) CN103222156B (zh)
WO (1) WO2012119301A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602807A (zh) * 2016-11-02 2017-04-26 上海翡叶动力科技有限公司 一种永磁电机转子自动充磁检测***
CN107154692A (zh) * 2017-06-16 2017-09-12 浙江迪贝电气股份有限公司 一种永磁铁氧体转子
CN107846089A (zh) * 2017-12-12 2018-03-27 盛瑞传动股份有限公司 一种变速箱用电机
CN112564334A (zh) * 2020-12-18 2021-03-26 哈尔滨理工大学 一种新型高速永磁同步电机定转子结构
CN112953156A (zh) * 2021-04-16 2021-06-11 河北工业大学 一种采用混合材料定子磁芯的圆筒形永磁直线电机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134867B (zh) * 2016-02-29 2024-06-14 中石化石油工程技术服务有限公司 井下电动钻具驱动用超长铁心少线圈永磁同步电动机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2560153Y (zh) * 2002-08-09 2003-07-09 张金铎 永磁同步高速电机
CN2602538Y (zh) * 2003-03-14 2004-02-04 上海大学 一种聚磁式各相磁路解耦永磁电机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692646A (en) * 1984-08-01 1987-09-08 Matsushita Electric Industrial Co., Ltd. Rotating electric motor with reduced cogging torque
US7012350B2 (en) * 2001-01-04 2006-03-14 Emerson Electric Co. Segmented stator switched reluctance machine
CN101051767A (zh) * 2006-04-04 2007-10-10 山东大学 基于软磁铁氧体的磁通可调的高速永磁电机
CN101371425B (zh) * 2007-10-29 2011-05-04 深圳航天科技创新研究院 方波三相无刷永磁直流电动机
CN201616714U (zh) * 2009-12-21 2010-10-27 无锡东元电机有限公司 可削弱永磁电机齿槽转矩的永磁体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2560153Y (zh) * 2002-08-09 2003-07-09 张金铎 永磁同步高速电机
CN2602538Y (zh) * 2003-03-14 2004-02-04 上海大学 一种聚磁式各相磁路解耦永磁电机

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602807A (zh) * 2016-11-02 2017-04-26 上海翡叶动力科技有限公司 一种永磁电机转子自动充磁检测***
CN106602807B (zh) * 2016-11-02 2023-09-12 上海翡叶动力科技有限公司 一种永磁电机转子自动充磁检测***
CN107154692A (zh) * 2017-06-16 2017-09-12 浙江迪贝电气股份有限公司 一种永磁铁氧体转子
CN107846089A (zh) * 2017-12-12 2018-03-27 盛瑞传动股份有限公司 一种变速箱用电机
CN112564334A (zh) * 2020-12-18 2021-03-26 哈尔滨理工大学 一种新型高速永磁同步电机定转子结构
CN112953156A (zh) * 2021-04-16 2021-06-11 河北工业大学 一种采用混合材料定子磁芯的圆筒形永磁直线电机
CN112953156B (zh) * 2021-04-16 2024-05-07 河北工业大学 一种采用混合材料定子磁芯的圆筒形永磁直线电机

Also Published As

Publication number Publication date
CN103222156B (zh) 2015-11-25
CN103222156A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
EP2190103B1 (en) Axial gap type coreless rotating machine
WO2012119301A1 (zh) 一种铁氧体三相永磁电机
CN110061603B (zh) 一种转子磁路解耦型高速混合励磁同步电机
US8975799B2 (en) Broad-pole type square-wave three-phase brushless permanent magnet direct current motor and assembling method thereof
CN110601481B (zh) 一种双转子永磁同步磁阻电机及配置方法
CN106787562A (zh) 交替极混合励磁直驱游标电机
WO2012119302A1 (zh) 铁氧体三相永磁电机
CN103222165A (zh) 三相永磁伺服电动机
CN201975870U (zh) 铁氧体三相永磁电机
CN114726180A (zh) 一种宽窄定子极轴向磁通开关磁阻电机及其控制方法
CN202068244U (zh) 铁氧体三段式三相永磁电机
CN112688522B (zh) 一种高功率密度轴向磁场永磁电机结构
CN101572467B (zh) 高效率高速永磁同步电机
CN109672288A (zh) 一种表面-内置式永磁电机转子
CN210350986U (zh) 一种双转子永磁同步磁阻电机
CN108631530B (zh) 一种模块化混合励磁开关磁阻电机
CN201975871U (zh) 一种铁氧体三段式三相永磁电机
WO2012119318A1 (zh) 铁氧体三段式三相永磁电机
WO2012119317A1 (zh) 铁氧体三段式三相永磁电机
CN112968539A (zh) 一种48槽三相集中绕组式永磁电机
CN201975962U (zh) 一种铁氧体三相永磁电机
CN206302312U (zh) 一种无齿槽磁阻内转子电动机
CN206283395U (zh) 一种无齿槽磁阻外转子电动机
WO2019062130A1 (zh) 电机转子、永磁电机和压缩机
WO2012119307A1 (zh) 一种三相永磁伺服电动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860142

Country of ref document: EP

Kind code of ref document: A1