WO2020027014A1 - Polymer and use of same - Google Patents

Polymer and use of same Download PDF

Info

Publication number
WO2020027014A1
WO2020027014A1 PCT/JP2019/029571 JP2019029571W WO2020027014A1 WO 2020027014 A1 WO2020027014 A1 WO 2020027014A1 JP 2019029571 W JP2019029571 W JP 2019029571W WO 2020027014 A1 WO2020027014 A1 WO 2020027014A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbon atoms
fluorine atom
atom
Prior art date
Application number
PCT/JP2019/029571
Other languages
French (fr)
Japanese (ja)
Inventor
博史 太田
倉田 陽介
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2020533514A priority Critical patent/JP7322884B2/en
Priority to CN201980050008.XA priority patent/CN112513140B/en
Priority to KR1020217005350A priority patent/KR20210037688A/en
Publication of WO2020027014A1 publication Critical patent/WO2020027014A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants

Definitions

  • the present invention relates to a polymer and its use.
  • Low molecular weight compounds and high molecular weight compounds having a charge transporting property are used in various electronic devices such as organic electroluminescence (EL) devices and organic solar cells.
  • EL organic electroluminescence
  • a polymer having a triarylamine as a repeating unit such as triphenylamine which contributes to a high charge transport property
  • a triarylamine polymer has many related reports because of its high charge transport property.
  • organic EL devices that are put into practical use in the field of displays and the like include organic functional layers such as a hole injection layer and a hole transport layer. These organic functional layers reduce the driving voltage of the device and improve the lifetime. It plays an important role to realize high performance such as.
  • the method for forming the organic functional layer of the organic EL element can be roughly classified into a dry process represented by a vapor deposition method and a wet process represented by a spin coating method. It is necessary to form an organic functional layer. Under these circumstances, development of an organic EL element in which an organic functional layer is formed by a wet process has been advanced (for example, Patent Documents 4 to 6).
  • the present invention has been made in view of the above circumstances, a polymer having good solubility in an organic solvent and a method for producing the same, and a charge transporting composition containing a charge transporting substance comprising the polymer, It is an object to provide a charge transporting thin film obtained from the charge transporting composition and an organic EL device having the charge transporting thin film.
  • the present inventors have conducted intensive studies in order to achieve the above object, and as a result, a polymer containing a predetermined triphenylamine structure and a —NH— structure in a repeating unit has good solubility in an organic solvent. The inventors have found that the present invention has been completed.
  • L 01 represents —S—, —O—, —CO—, —CH 2 —, — (CH 2 ) 2 —, —C (CH 3 ) 2 —, —CF 2 —, — (CF 2 ) 2— , —C (CF 3 ) 2 — or a fluorene-9,9-diyl group
  • L 02 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, a fluorine atom Represents an alkynyl group having 2 to 20 carbon atoms which may be substituted by or an aryl group having 6 to 20 carbon atoms which may be substituted by R, L 03 and L 04 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom
  • R represents an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, or a carbon atom which may be substituted by a fluorine atom.
  • Ar represents a group represented by any of formulas (S1) to (S6), a 011 to a 183 are each independently an integer indicating the number of substituents to be substituted on the aromatic ring; a 071 , a 081 , a 091 , a 101 and a 111 are from 0 to 3, a 051, a 061, a 072 , a 082, a 092, a 102, a 112, a 113, a 114, a 121, a 131, a 141, a 151, a 161, a 171, a 181, a 182 And a 183 is from 0 to 4, a 011 , a 052 , a 062 , a 122 , a 123 and a 132 are from 0 to 5, a 021 , a 133 , a 142 , a 143 , a 152 ,
  • a charge-transporting composition comprising a charge-transporting substance comprising the polymer according to any one of 1 to 3, and an organic solvent; 5.
  • the charge-transporting composition further comprising a charge-receiving substance or a charge-receiving substance precursor, 6.
  • X independently represents a chlorine atom, a bromine atom, an iodine atom or a pseudohalogen group, and Ph and G have the same meanings as described above.
  • the polymer of the present invention contains an —NH— structure together with a predetermined triphenylamine structure in its repeating unit, the polymer has both excellent charge transporting properties and excellent solubility in an organic solvent.
  • a charge-transporting composition that provides a charge-transporting thin film capable of achieving excellent properties when applied to an electronic device such as an organic EL device by being dissolved alone or together with a dopant substance or a dopant substance precursor in an organic solvent. Can be easily prepared.
  • the charge transporting thin film of the present invention as a hole injection layer of an organic EL device, an organic EL device having excellent characteristics can be obtained.
  • the polymer of the present invention contains a repeating unit represented by the formula (P1).
  • Ph represents a 1,4-phenylene group
  • G represents a monovalent group represented by any of formulas (A01) to (A18).
  • L 01 represents —S—, —O—, —CO—, —CH 2 —, — (CH 2 ) 2 —, —C (CH 3 ) 2 —, —CF 2 —, — (CF 2 ) 2 — , -C (CF 3 ) 2 -or fluorene-9,9-diyl group.
  • L 02 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, a fluorine atom Represents an alkynyl group having 2 to 20 carbon atoms which may be substituted by an aryl group or an aryl group having 6 to 20 carbon atoms which may be substituted by R.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group.
  • the alkenyl group having 2 to 20 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include an ethenyl group, an n-1-propenyl group, an n-2-propenyl group, and a 1-methylethenyl group. , N-1-butenyl group, n-2-butenyl group, n-3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1 -Propenyl group, 1-methyl-2-propenyl group, n-1-pentenyl group, n-1-decenyl group and the like.
  • the alkynyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include an ethynyl group, an n-1-propynyl group, an n-2-propynyl group, and an n-1- Butynyl group, n-2-butynyl group, n-3-butynyl group, 1-methyl-2-propynyl group, n-1-pentynyl group, n-2-pentynyl group, n-3-pentynyl group, n-4 -Pentynyl group, 1-methyl-n-butynyl group, 2-methyl-n-butynyl group, 3-methyl-n-butynyl group, 1,1-dimethyl-n-propynyl group, n-1-hexynyl group, n -1-decynyl group and the like.
  • aryl group having 6 to 20 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, and 2-phenanthryl.
  • L 03 and L 04 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, or an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom Represents an alkynyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, or an aryl group having 6 to 20 carbon atoms which may be substituted by R.
  • Z 01 to Z 18 each independently represent a substituent substituted on an aromatic ring, and each independently represents an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, or a carbon atom which may be substituted by a fluorine atom.
  • R represents an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, or a carbon atom which may be substituted by a fluorine atom. Represents 2 to 20 alkynyl groups.
  • L 03 and L 04 an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms and an alkynyl group having 2 to 20 carbon atoms in Z 01 to Z 18 and R, and 6 carbon atoms in L 03 and L 04
  • Specific examples of the 20 to 20 aryl groups are the same as those described above.
  • Preferred examples of the group represented by the formula (A01) include, but are not limited to, the following. (In the formula, Z 01 has the same meaning as described above.)
  • Z 01 represents an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom.
  • An alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, and an alkynyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom are preferable.
  • an alkyl group having 1 to 20 carbon atoms is more preferable, an alkyl group having 1 to 10 carbon atoms which may be substituted by a fluorine atom is more preferable, and an alkyl group having 1 to 8 carbon atoms which may be substituted by a fluorine atom is preferable. More preferred.
  • the substituent Z 01 in the formulas (A01-1) to (A01-3) is an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom
  • the alkyl group is bonded to an aromatic ring.
  • the bond to be formed is preferably on a secondary or tertiary carbon atom of the alkyl group, more preferably on a secondary carbon atom.
  • Z 01 represents an isopropyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentan-2-yl group, an n- Pentan-3-yl group, n-hexane-2-yl group, n-hexane-3-yl group, n-heptane-2-yl group, n-heptane-3-yl group, n-heptan-4-yl Groups, n-octan-2-yl group, n-octan-3-yl group, n-octan-4-yl group, and the like, but are not limited thereto.
  • the number of carbon atoms of the alkyl group, alkenyl group and alkynyl group in the formula (P1) is preferably 15 or less, more preferably 10 or less, and still more preferably 8 or less, from the viewpoint of solubility in an organic solvent. More preferably, it is 5 or less, and the carbon number of the aryl group is preferably 15 or less, more preferably 10 or less.
  • Ar represents a group represented by any of formulas (S1) to (S6).
  • a 011 to a 183 are integers each independently indicating the number of substituents to be substituted on the aromatic ring.
  • a 071 , a 081 , a 091 , a 101 and a 111 are 0 to 3.
  • a 183 is 0-4 .
  • a 011 , a 052 , a 062 , a 122 , a 123 and a 132 are 0 to 5.
  • a 021 , a 133 , a 142 , a 143 , a 152 , a 153 , a 162 and a 163 are from 0 to 7.
  • a 031 and a 041 are 0 to 9;
  • a 011 is preferably 0 to 3, more preferably 1 or 2.
  • a 021 to a 183 are preferably 0 or 1, and more preferably 0.
  • the polymer of the present invention does not necessarily need to have all the repeating units having the same structure, and may contain repeating units having different structures included in the formula (P1). Further, each unit may be bonded randomly or as a block polymer.
  • the content of the repeating unit represented by the formula (P1) in the polymer of the present invention is preferably 50 mol in all the repeating units contained in the polymer, from the viewpoint of obtaining a polymer having excellent charge transportability and solubility. %, More preferably at least 70 mol%, even more preferably at least 90 mol%, further preferably at least 95 mol%, and most preferably 100 mol%.
  • the weight average molecular weight of the polymer of the present invention is usually 1,000 to 100,000, but from the viewpoint of solubility in an organic solvent, is preferably 20,000 or less, more preferably 10,000 or less, From the viewpoint of charge transportability, it is preferably at least 3,000, more preferably at least 5,000.
  • the weight average molecular weight in the present invention is an average molecular weight obtained by gel permeation chromatography (hereinafter, referred to as GPC) analysis in terms of standard polystyrene.
  • the polymer of the present invention can be produced by reacting a triphenylamine derivative represented by the formula (A1) with a triphenylamine derivative represented by the formula (H1).
  • X independently represents a chlorine atom, a bromine atom, an iodine atom or a pseudohalogen group
  • Ph and G have the same meanings as described above.
  • pseudohalogen group examples include (fluoro) alkylsulfonyloxy groups such as methanesulfonyloxy group, trifluoromethanesulfonyloxy group and nonafluorobutanesulfonyloxy group; aromatic sulfonyloxy groups such as benzenesulfonyloxy group and toluenesulfonyloxy group. Is mentioned.
  • the charging ratio of the triphenylamine derivative represented by the formula (A1) and the triphenylamine derivative represented by the formula (H1) is the same as that of the triphenylamine derivative represented by the formula (H1).
  • the triphenylamine derivative represented by the formula can be used in an amount of 1 equivalent or more, but about 1 to 1.5 equivalents is preferable.
  • Examples of the catalyst used in the above reaction include copper catalysts such as copper chloride, copper bromide, and copper iodide; Pd (PPh 3 ) 4 (tetrakis (triphenylphosphine) palladium), Pd (PPh 3 ) 2 Cl 2 (bis (triphenylphosphine) dichloropalladium), Pd (dba) 2 (bis (dibenzylideneacetone) palladium), Pd 2 (dba) 3 (tris (dibenzylideneacetone) dipalladium), Pd (Pt And palladium catalysts such as —Bu 3 ) 2 (bis (tri (t-butylphosphine)) palladium) and Pd (OAc) 2 (palladium acetate).
  • copper catalysts such as copper chloride, copper bromide, and copper iodide
  • Pd (PPh 3 ) 4 tetrakis (triphenylphosphine) palladium
  • These catalysts may be used alone or in combination of two or more. Further, these catalysts may be used together with a known suitable ligand.
  • ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-t-butylphosphine.
  • the amount of the catalyst used can be about 0.01 to 0.2 mol, preferably about 0.1 mol, per 1 mol of the triphenylamine derivative represented by the formula (H1).
  • the amount of the ligand used can be 0.1 to 5 equivalents to the metal complex (catalyst) to be used, but is preferably 1 to 2 equivalents.
  • each of the above reactions is carried out in a solvent.
  • a solvent its type is not particularly limited as long as it does not adversely affect the reaction.
  • Specific examples include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), aromatics Aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenz
  • the reaction temperature may be appropriately set in the range from the melting point to the boiling point of the solvent to be used, but is preferably about 0 to 200 ° C, more preferably 20 to 150 ° C.
  • a post-treatment is carried out according to a conventional method to obtain a desired polymer.
  • triphenylamine derivative represented by the formula (A1) used in the production of the polymer of the present invention a commercially available product may be used, or it may be produced by the following method according to the scheme shown below. According to a known method, the following predetermined aniline derivative is reacted with, for example, 4-fluoronitrobenzene to obtain a corresponding dinitro compound. Then, the nitro group of the obtained dinitro compound is converted into an amino group by a hydrogenation reaction using, for example, Pd / C.
  • the triphenylamine derivative represented by the formula (H1) used in the production of the polymer of the present invention may be a commercially available product, and the corresponding triphenylamine derivative is halogenated or pseudo-halogenated according to the scheme shown below. You may. Halogenation or pseudohalogenation can be performed using a halogenating reagent or a pseudohalogenating reagent according to a standard method.
  • K is an integer indicating a repeating unit and is determined according to the molecular weight of the polymer.
  • the polymer of the present invention exhibits good solubility in an organic solvent, and a charge transporting composition can be produced by dissolving the polymer of the present invention in an organic solvent as a charge transporting substance.
  • an organic solvent a highly soluble organic solvent that can satisfactorily dissolve the polymer of the present invention can be used.
  • low polar and highly soluble organic solvents such as chlorinated solvents such as chloroform and chlorobenzene, and aromatic hydrocarbon solvents such as toluene, xylene, tetralin, cyclohexylbenzene and 3-phenoxytoluene;
  • Amide solvents such as dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutylamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, ketone solvents such as isophorone and cyclohexanone, acetic acid
  • Highly polar organic solvents such as ester solvents such as ethyl and methyl benzoate, polyhydric alcohol solvents such as ethylene glycol and diethylene glycol, ether solvents such as tetrahydrofuran, dioxan
  • the organic solvent has a viscosity of 10 to 200 mPa ⁇ s, particularly 35 to 150 mPa ⁇ s at 25 ° C., and a high viscosity organic solvent having a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure (atmospheric pressure). At least one solvent may be contained. By adding such a solvent, the viscosity of the charge transporting composition can be easily adjusted, and a composition can be prepared according to a coating method to be used, which gives a highly flat thin film with good reproducibility.
  • high-viscosity organic solvent examples include cyclohexanol, ethylene glycol, ethylene glycol diglycidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3-butanediol, Examples include, but are not limited to, 2,3-butanediol, 1,4-butanediol, propylene glycol, hexylene glycol, and the like.
  • the high-viscosity organic solvent may also serve as the high-solubility organic solvent, which depends on the structure of the polymer as the charge transporting substance.
  • a high-viscosity organic solvent When a high-viscosity organic solvent is added, its addition ratio is preferably within a range in which no solid precipitates. As long as no solid precipitates, 5 to 90% by mass of the total solvent used in the charge transporting composition is used. preferable.
  • other solvents are used in an amount of 1 to 90% by mass based on the total solvent used in the charge transporting composition. Preferably, they can be mixed at a ratio of 1 to 50% by mass.
  • Examples of such a solvent include propylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, and propylene glycol monomethyl ether.
  • Examples include, but are not limited to, ether acetate, diethylene glycol monoethyl ether, diacetone alcohol, ⁇ -butyrolactone, ethyl lactate, n-hexyl acetate, and the like. These solvents can be used alone or in combination of two or more.
  • the solvent used for the same purpose may also have the function of a highly soluble organic solvent.
  • the charge transporting composition of the present invention may contain a dopant substance (charge accepting substance) or a dopant substance precursor (charge accepting substance precursor) for the purpose of improving the charge transporting property of the obtained charge transporting thin film. Good.
  • the dopant substance is not particularly limited as long as it is soluble in at least one solvent used for the charge transporting composition.
  • the organic charge receiving substance include arylsulfonic acid, anion and a counter cation thereof.
  • One preferred example of the charge transporting composition of the present invention contains a dopant substance precursor comprising a sulfonic acid ester compound represented by the formula (1).
  • R 1 and R 2 independently represent a hydrogen atom or a linear or branched monovalent aliphatic hydrocarbon group
  • R 3 represents a linear or branched monovalent aliphatic hydrocarbon. Represents a group.
  • the total number of carbon atoms of R 1 , R 2 and R 3 is 6 or more.
  • the upper limit of the total number of carbon atoms of R 1 , R 2 and R 3 is not particularly limited, but is preferably 20 or less, more preferably 10 or less.
  • the linear or branched monovalent aliphatic hydrocarbon group is not particularly limited, but may be a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, C1-C18 alkyl groups such as n-hexyl group, n-octyl group, 2-ethylhexyl group and decyl group; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2 And alkenyl groups having 2 to 18 carbon atoms such as -propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group and hexenyl group.
  • R 1 is preferably a hydrogen atom
  • R 2 and R 3 are preferably alkyl groups having 1 to 6 carbon atoms. In this case, R 2 and R 3 may be the same or different.
  • a 1 represents -O- or -S-, preferably -O-.
  • a 2 represents an (n + 1) -valent aromatic hydrocarbon group.
  • a 3 represents a substituted or unsubstituted m-valent hydrocarbon group containing one or more aromatic rings.
  • the (n + 1) -valent aromatic hydrocarbon group represented by A 2 is a group obtained by removing (n + 1) hydrogen atoms from the aromatic ring of the aromatic hydrocarbon compound.
  • the aromatic hydrocarbon compound include benzene, toluene, xylene, naphthalene, anthracene, and phenanthrene.
  • a 2 is preferably a group derived from naphthalene or anthracene, and more preferably a group derived from naphthalene.
  • a substituted or unsubstituted m-valent hydrocarbon group containing one or more aromatic rings represented by A 3 is an atom bonded to a carbon skeleton from a substituted or unsubstituted hydrocarbon compound containing one or more aromatic rings. Or a group obtained by removing m atomic groups.
  • the hydrocarbon compound include benzene, toluene, xylene, ethylbenzene, biphenyl, naphthalene, anthracene, and phenanthrene, and some or all of the hydrogen atoms of these groups further have a hydroxy group, an amino group, a silanol group, and a thiol group.
  • a 3 is a divalent or trivalent derivative derived from 1,3,5-triazine.
  • a divalent group, a divalent or trivalent group derived from substituted or unsubstituted naphthalene, a divalent to tetravalent group derived from perfluorobiphenyl, and the like are preferable, and a divalent perfluorobiphenyl group is more preferable. preferable.
  • M represents an integer satisfying 2 ⁇ m ⁇ 4, preferably 2.
  • n represents an integer satisfying 1 ⁇ n ⁇ 4, preferably 2.
  • the sulfonic acid ester compound represented by the formula (1) can also be synthesized by the method described in WO 2017/217457.
  • the charge transporting composition of the present invention contains a dopant substance or a dopant substance precursor, the content thereof cannot be unconditionally defined because it is appropriately determined according to the kind or the desired charge transporting property.
  • the total of the dopant substance and the dopant substance precursor is in the range of 0.01 to 10 with respect to the polymer 1 of the present invention.
  • the charge transporting substance, the dopant substance, and the dopant substance precursor are preferably completely dissolved in the solvent or are in a state of being uniformly dispersed. It is.
  • the charge transporting composition of the present invention can also contain water as a solvent, but when the charge transporting thin film obtained from the composition is used as a hole injection layer of an organic EL device, a highly durable device can be reproducibly prepared.
  • the content of water is preferably 10% by mass or less, more preferably 5% by mass or less of the whole solvent, and it is optimal to use only an organic solvent as the solvent.
  • “only organic solvent” means that only the organic solvent is used as the solvent, and denies the existence of “water” contained in a trace amount in the organic solvent or solid content used. It does not do.
  • the solid content means components other than the solvent contained in the charge transporting composition.
  • the charge transporting composition is dissolved in an organic solvent, and then filtered using a submicrometer-order filter or the like. It is desirable to do.
  • the solid concentration in the charge transporting composition of the present invention is usually about 0.1 to 20% by mass, preferably 0.5 to 20% by mass, from the viewpoint of securing a sufficient film thickness while suppressing the deposition of the charge transporting substance. 1515% by mass.
  • the viscosity of the charge transporting composition of the present invention is usually 1 to 50 mPa ⁇ s at 25 ° C., and the surface tension is usually 20 to 50 mN / m at 25 ° C.
  • the viscosity and surface tension of the charge transporting composition of the present invention are determined by changing the type of the organic solvent used, their ratio, the solid content, and the like, in consideration of various factors such as a coating method to be used and a desired film thickness. Can be adjusted.
  • the charge transporting composition of the present invention can be produced by dissolving the polymer of the present invention in an organic solvent.
  • the polymer of the present invention may be dissolved in an organic solvent in advance, and another organic solvent may be sequentially added thereto.
  • a mixed solvent of all the solvents to be used may be prepared in advance, and the polymer of the present invention may be dissolved therein.
  • the charge transporting composition of the present invention contains components other than the polymer of the present invention and a solvent. If necessary, the composition may be heated to promote the dissolution of the polymer or the like, while taking care not to decompose or alter the components contained in the composition.
  • the charge transporting thin film of the present invention can be formed on a substrate by applying the charge transporting composition of the present invention on a substrate and baking it.
  • Examples of the method for applying the charge transporting composition include, but are not limited to, a dip method, a spin coating method, a transfer printing method, a roll coating method, a brush coating, an ink jet method, a spray method, and a slit coating method. It is preferable to adjust the viscosity and surface tension of the charge transporting composition according to the coating method.
  • the firing conditions are not particularly limited. For example, heating and firing are performed using a hot plate. Usually, the firing temperature is in the range of 100 to 260 ° C., and the firing time is in the range of 1 minute to 1 hour.
  • the firing atmosphere is also not particularly limited, but is preferably under air. Further, if necessary, multi-stage firing may be performed at two or more different temperatures.
  • the thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 300 nm when used as a functional layer of an organic EL device.
  • a method of changing the film thickness there are a method of changing a solid concentration in the charge transporting composition, a method of changing a liquid amount at the time of coating, and the like.
  • the organic EL device of the present invention has a pair of electrodes, and has the above-described charge transporting thin film of the present invention between these electrodes.
  • Representative configurations of the organic EL device include the following (a) to (f), but are not limited thereto.
  • an electron block layer or the like may be provided between the light emitting layer and the anode, and a hole (hole) block layer or the like may be provided between the light emitting layer and the cathode as necessary.
  • the hole injection layer, the hole transport layer, or the hole injection / transport layer may also have a function as an electron blocking layer or the like, and the electron injection layer, the electron transport layer, or the electron injection / transport layer may be a hole (hole).
  • anode / hole injection layer / hole transport layer / emission layer / electron transport layer / electron injection layer / cathode (b) anode / hole injection layer / hole transport layer / emission layer / electron injection transport layer / Cathode (c) anode / hole injection / transport layer / emission layer / electron transport layer / electron injection layer / cathode (d) anode / hole injection / transport layer / emission layer / electron injection / transport layer / cathode (e) anode / positive Hole injection layer / hole transport layer / emission layer / cathode (f) anode / hole injection / transport layer / emission layer / cathode
  • Hole injection layer “hole transport layer” and “hole injection transport layer” are layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer. It has a function, when only one layer of a hole transporting material is provided between the light emitting layer and the anode, it is a “hole injection transport layer”, and between the light emitting layer and the anode, When two or more layers of the hole transporting material are provided, a layer close to the anode is a “hole injection layer”, and the other layers are a “hole transport layer”.
  • the hole injection (transport) layer a thin film that is excellent in not only the property of accepting holes from the anode but also the property of injecting holes into the hole transport (emission) layer is used.
  • Electrode injection layer is layers formed between the light emitting layer and the cathode, and have a function of transporting electrons from the cathode to the light emitting layer.
  • an electron injecting and transporting layer When only one layer of an electron transporting material is provided between the light emitting layer and the cathode, it is an “electron injecting and transporting layer”, and the layer of the electron transporting material is provided between the light emitting layer and the cathode.
  • the “electron injection layer” is an organic layer having a light-emitting function, and includes a host material and a dopant material when a doping system is employed.
  • the host material mainly has a function of promoting recombination of electrons and holes and confining excitons in the light-emitting layer, and the dopant material efficiently emits excitons obtained by the recombination.
  • a host material has a function of mainly confining excitons generated by a dopant in a light-emitting layer.
  • the charge transporting thin film of the present invention can be suitably used as an organic functional film provided between an anode and a light emitting layer in an organic EL device. And more preferably as a hole injection layer.
  • One example of a method for producing an OLED element having a hole injection layer formed of a thin film obtained from the charge transporting composition of the present invention is as follows.
  • the electrode is preferably subjected to cleaning with alcohol, pure water, or the like, or surface treatment such as UV ozone treatment or oxygen-plasma treatment in advance within a range that does not adversely affect the electrode.
  • the hole injection layer composed of the charge transporting thin film of the present invention is formed on the anode substrate by the above method. This is introduced into a vacuum evaporation apparatus, and a hole transport layer, a light emitting layer, an electron transport layer, an electron transport layer / hole block layer, and a cathode metal are sequentially deposited.
  • a hole transporting layer forming composition including a hole transporting polymer and a light emitting layer forming composition including a light emitting polymer are included. These layers are formed using a wet process. Note that, if necessary, an electron block layer may be provided between the light emitting layer and the hole transport layer.
  • anode material examples include a transparent electrode typified by indium tin oxide (ITO) and indium zinc oxide (IZO), and a metal anode composed of a metal typified by aluminum, an alloy thereof, and the like. It is preferable that the material has been subjected to a chemical treatment. A polythiophene derivative or a polyaniline derivative having a high charge transporting property can also be used.
  • the other metal constituting the metal anode includes, but is not limited to, gold, silver, copper, indium and alloys thereof.
  • Materials for forming the hole transport layer include (triphenylamine) dimer derivatives, [(triphenylamine) dimer] spiro dimer, N, N′-bis (naphthalen-1-yl) -N, N′-bis (Phenyl) -benzidine ( ⁇ -NPD), 4,4 ′, 4 ′′ -tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), 4,4 ′, 4 ′′ -tris [1 -Naphthyl (phenyl) amino] triphenylamine (1-TNATA) and the like, and 5,5 ′′ -bis- ⁇ 4- [bis (4-methylphenyl) amino] phenyl ⁇ -2,2 ′: Oligothiophenes such as 5 ′, 2 ′′ -terthiophene (BMA-3T) are exemplified.
  • Materials for forming the light emitting layer include metal complexes such as 8-hydroxyquinoline aluminum complexes, metal complexes of 10-hydroxybenzo [h] quinoline, bisstyrylbenzene derivatives, bisstyrylarylene derivatives, (2-hydroxyphenyl) benzo.
  • Low molecular light emitting materials such as thiazole metal complexes and silole derivatives; poly (p-phenylenevinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene], poly (3-alkyl Examples thereof include a system in which a light-emitting material and an electron transfer material are mixed with a high molecular compound such as thiophene) and polyvinyl carbazole, but are not limited thereto.
  • the light emitting layer may be co-deposited with a light emitting dopant.
  • a metal complex such as tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ) may be used.
  • naphthacene derivatives such as rubrene, quinacridone derivatives, condensed polycyclic aromatic rings such as perylene, and the like, but are not limited thereto.
  • Materials for forming the electron transport layer / hole block layer include, but are not limited to, oxydiazole derivatives, triazole derivatives, phenanthroline derivatives, phenylquinoxaline derivatives, benzimidazole derivatives, and pyrimidine derivatives.
  • Materials for forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (MgO), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). But not limited thereto.
  • Cathode materials include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.
  • Materials for forming the electron block layer include, but are not limited to, tris (phenylpyrazole) iridium and the like.
  • the luminescent polymer examples include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH- Polyphenylene vinylene derivatives such as PPV); polythiophene derivatives such as poly (3-alkylthiophene) (PAT); and polyvinyl carbazole (PVCz).
  • polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH- Polyphenylene vinylene derivatives such as PPV)
  • polythiophene derivatives such as poly (3-alkylthiophene) (PAT); and polyvinyl carbazole (PVCz).
  • the used apparatus is as follows. (1) Substrate cleaning: Choshu Sangyo Co., Ltd. substrate cleaning system (reduced pressure plasma method) (2) Application of composition: Spin coater MS-A100 manufactured by Mikasa Corporation (3) Fabrication of element: Multifunctional vapor deposition system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd.
  • Multi-channel IVL measuring device manufactured by ECH Corporation (5) Life measurement of EL element (measurement of half-life): Organic EL luminance life evaluation system PEL manufactured by ECH Corporation -105S (6) Measurement of weight average molecular weight (Mw) and number average molecular weight (Mn): manufactured by Shimadzu Corporation (column: SHOdex GPC KF-803L + GPC KF-804L, column temperature: 40 ° C., detector: UV detector (254 nm) ) And RI detector, eluent: 0.5% Et 3 N / THF, column flow rate: 1.0 mL / min.) (7) 1 H-NMR: Ascend500 manufactured by Bruker (8) LC / MS: ZQ2000 manufactured by Waters
  • the cooled reaction solution was mixed with water (34 mL), liquid separation was performed using the obtained mixture and toluene (17 mL ⁇ 2), and the organic layer was recovered and sulfuric acid was collected. Dried with sodium. Next, the dried organic layer was concentrated, and the obtained concentrate was diluted with tetrahydrofuran (17 mL), and the obtained diluted substance was dropped into methanol (340 mL) and stirred for 1 hour. Thereafter, the precipitated powder was collected by suction filtration, the obtained residue was dissolved in tetrahydrofuran (17 mL), and this solution was added dropwise to methanol (340 mL), stirred for 1 hour, and the precipitated powder was collected by suction filtration.
  • the polymer A was obtained by drying under reduced pressure (2.20 g).
  • Compound 3 was prepared according to the method described in J. Am. Mater. Chem. , 2011, 21, 11800.
  • Example 3 Fabrication of single-layer device and evaluation of characteristics
  • the charge transporting composition obtained in Example 2 was applied to an ITO substrate using a spin coater, dried at 120 ° C. for 1 minute in the atmosphere, and then baked at 230 ° C. for 15 minutes to form a film on the ITO substrate. A uniform thin film of 40 nm was formed.
  • As the ITO substrate a 25 mm ⁇ 25 mm ⁇ 0.7 t glass substrate having a patterned indium tin oxide (ITO) film with a thickness of 50 nm formed on the surface was used. Before use, an O 2 plasma cleaning device (150 W) was used. , 30 seconds) to remove impurities on the surface.
  • ITO indium tin oxide
  • an aluminum film was formed thereon with a thickness of 80 nm at a rate of 0.2 nm / sec using a vapor deposition apparatus (degree of vacuum: 1.0 ⁇ 10 ⁇ 5 Pa) to obtain a single-layer element.
  • a vapor deposition apparatus degree of vacuum: 1.0 ⁇ 10 ⁇ 5 Pa
  • the characteristics of the single-layer element were evaluated after being sealed with a sealing substrate. Sealing was performed in the following procedure. In a nitrogen atmosphere having an oxygen concentration of 2 ppm or less and a dew point of -76 ° C. or less, the element is placed between sealing substrates, and the sealing substrates are bonded with an adhesive (Moresco Moisture Cut WB90US (P), manufactured by MORESCO Corporation).
  • a water catching agent (HD-071010W-40, manufactured by Dynic Corp.) was housed in the sealing substrate together with the device.
  • the bonded sealing substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
  • the thin film obtained from the charge transporting composition of the present invention exhibited excellent charge transporting properties.
  • Example 4 Production of organic EL element and evaluation of characteristics [Example 4] A thin film was formed on an ITO substrate using the charge transporting composition obtained in Example 2 in the same manner as in Example 3 except that the film thickness was changed to 50 nm. Then, a 30 nm film of ⁇ -NPD was formed on the formed thin film at a rate of 0.2 nm / sec using an evaporation apparatus (degree of vacuum: 1.0 ⁇ 10 ⁇ 5 Pa). An electron block material HTEB-01 manufactured by the company was formed into a film having a thickness of 10 nm.
  • a light-emitting layer host material NS60 and a light-emitting layer dopant material Ir (PPy) 3 manufactured by Nippon Steel & Sumikin Chemical Co. were co-evaporated thereon.
  • the deposition rate was controlled so that the concentration of Ir (PPy) 3 became 6%, and the layers were stacked to a thickness of 40 nm.
  • a thin film of Alq 3 , lithium fluoride and aluminum was sequentially laminated to obtain an organic EL device.
  • the deposition rate was 0.2 nm / sec for Alq 3 and aluminum, and 0.02 nm / sec for lithium fluoride, and the film thickness was 20 nm, 0.5 nm and 80 nm, respectively.
  • the element was sealed in the same manner as in Example 3, and the characteristic was evaluated.
  • the organic EL device provided with the charge transporting thin film obtained from the charge transporting composition of the present invention was suitably driven and had excellent durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

According to the present invention, a polymer which contains, for example, a repeating unit represented by formula AA has both excellent charge transport properties and excellent solubility in organic solvents; and excellent characteristics are able to be achieved in cases where this polymer is dissolved in an organic solvent by itself or together with a dopant substance, and then applied to electronic elements including an organic EL element.

Description

重合体及びその利用Polymer and its use
 本発明は、重合体及びその利用に関する。 The present invention relates to a polymer and its use.
 電荷輸送性を有する低分子化合物や高分子化合物は、有機エレクトロルミネッセンス(EL)素子や有機太陽電池など、様々な電子素子で用いられている。
 中でも、高電荷輸送性に寄与するトリフェニルアミンのようなトリアリールアミンを繰り返し単位に持つポリマー(以下、トリアリールアミンポリマーという。)は、その高電荷輸送性のため、関連する報告例が多数ある(例えば特許文献1~3)。
Low molecular weight compounds and high molecular weight compounds having a charge transporting property are used in various electronic devices such as organic electroluminescence (EL) devices and organic solar cells.
Among them, a polymer having a triarylamine as a repeating unit such as triphenylamine which contributes to a high charge transport property (hereinafter referred to as a triarylamine polymer) has many related reports because of its high charge transport property. (Eg, Patent Documents 1 to 3).
 一方、ディスプレイなどの分野で実用化されている有機EL素子は、正孔注入層、正孔輸送層等の有機機能層を含み、この有機機能層は、素子の駆動電圧の低減や寿命の向上等といった高性能化を実現するために重要な役割を担う。
 有機EL素子の有機機能層の形成方法は、蒸着法に代表されるドライプロセスと、スピンコート法に代表されるウェットプロセスに大別できるが、昨今のディスプレイの大面積化に伴い、より大面積の有機機能層を形成する必要が生じている。この事情の下、有機機能層をウェットプロセスで形成する有機EL素子の開発が進められてきている(例えば特許文献4~6)。
On the other hand, organic EL devices that are put into practical use in the field of displays and the like include organic functional layers such as a hole injection layer and a hole transport layer. These organic functional layers reduce the driving voltage of the device and improve the lifetime. It plays an important role to realize high performance such as.
The method for forming the organic functional layer of the organic EL element can be roughly classified into a dry process represented by a vapor deposition method and a wet process represented by a spin coating method. It is necessary to form an organic functional layer. Under these circumstances, development of an organic EL element in which an organic functional layer is formed by a wet process has been advanced (for example, Patent Documents 4 to 6).
 このような背景から、正孔注入層、正孔輸送層等の有機機能層を形成するためのウェットプロセス用材料の開発が精力的に進められてきているが、より高性能の有機ELディスプレイを実現するために、より高機能の新規材料は常に求められている。
 そして、高機能に寄与し得る高電荷輸送性を期待できるトリアリールアミンポリマーを用いた新しいウェットプロセス用材料は、有望な候補材料の一つであるものの、トリフェニルアミンのみを繰り返し単位に持つポリマーは、溶媒の種類によっては溶解性が低いことから、当該ポリマーを用いた組成物の調製に用い得る溶媒の選択肢の幅が狭いという問題があった。
Against this background, the development of wet process materials for forming organic functional layers such as a hole injection layer and a hole transport layer has been energetically advanced. In order to realize this, new materials with higher functions are always required.
A new wet process material using a triarylamine polymer that can be expected to have high charge transport properties that can contribute to high functionality is a promising candidate material, but a polymer that has only triphenylamine as a repeating unit However, since the solubility is low depending on the type of the solvent, there is a problem that the range of choices of the solvent that can be used for preparing the composition using the polymer is narrow.
特開2011-105790号公報JP 2011-105790 A 特開2012-102286号公報JP 2012-102286 A 特開2014-001399号公報JP 2014-001399 A 国際公開第2015/050253号International Publication No. 2015/050253 国際公開第2017/047644号WO 2017/047644 国際公開第2018/110535号International Publication No. WO2018 / 110535
 本発明は、上記事情に鑑みてなされたものであって、有機溶媒への溶解性が良好な重合体及びその製造方法、並びに当該重合体からなる電荷輸送性物質を含む電荷輸送性組成物、当該電荷輸送性組成物から得られる電荷輸送性薄膜及び当該電荷輸送性薄膜を有する有機EL素子を提供することを目的とする。 The present invention has been made in view of the above circumstances, a polymer having good solubility in an organic solvent and a method for producing the same, and a charge transporting composition containing a charge transporting substance comprising the polymer, It is an object to provide a charge transporting thin film obtained from the charge transporting composition and an organic EL device having the charge transporting thin film.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、所定のトリフェニルアミン構造とともに、-NH-構造を繰り返し単位に含む重合体が、有機溶媒への溶解性が良好であることを見出し、本発明を完成させた。 The present inventors have conducted intensive studies in order to achieve the above object, and as a result, a polymer containing a predetermined triphenylamine structure and a —NH— structure in a repeating unit has good solubility in an organic solvent. The inventors have found that the present invention has been completed.
 すなわち、本発明は、
1. 式(P1)で表される繰り返し単位を含む重合体、
Figure JPOXMLDOC01-appb-C000010
〔式中、Phは、1,4-フェニレン基を表し、Gは、式(A01)~(A18)のいずれかで表される1価の基を表す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
(式中、L01は、-S-、-O-、-CO-、-CH2-、-(CH22-、-C(CH32-、-CF2-、-(CF22-、-C(CF32-又はフルオレン-9,9-ジイル基を表し、
 L02は、互いに独立して、水素原子、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、フッ素原子で置換されていてもよい炭素数2~20のアルケニル基、フッ素原子で置換されていてもよい炭素数2~20のアルキニル基又はRで置換されていてもよい炭素数6~20のアリール基を表し、
 L03及びL04は、互いに独立して、水素原子、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、フッ素原子で置換されていてもよい炭素数2~20のアルケニル基、フッ素原子で置換されていてもよい炭素数2~20のアルキニル基又はRで置換されていてもよい炭素数6~20のアリール基を表し、
 Z01~Z18は、芳香環に置換する置換基を表し、互いに独立して、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、フッ素原子で置換されていてもよい炭素数2~20のアルケニル基又は炭素数2~20のアルキニル基を表し、
 Rは、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、フッ素原子で置換されていてもよい炭素数2~20のアルケニル基又はフッ素原子で置換されていてもよい炭素数2~20のアルキニル基を表し、
 Arは、式(S1)~(S6)のいずれかで表される基を表し、
Figure JPOXMLDOC01-appb-C000015
 a011~a183は、互いに独立に、芳香環に置換する置換基の数を示す整数であり、
 a071、a081、a091、a101及びa111は、0~3であり、
 a051、a061、a072、a082、a092、a102、a112、a113、a114、a121、a131、a141、a151、a161、a171、a181、a182及びa183は、0~4であり、
 a011、a052、a062、a122、a123及びa132は、0~5であり、
 a021、a133、a142、a143、a152、a153、a162及びa163は、0~7であり、
 a031及びa041は、0~9である。)〕
2. 前記Gが、式(A01-1)~(A01-3)のいずれかで表される基である1の重合体、
Figure JPOXMLDOC01-appb-C000016
(式中、Z01は、前記と同じ意味を示す。)
3. 式(E1)で表される繰り返し単位を含む重合体、
Figure JPOXMLDOC01-appb-C000017
4. 1~3のいずれかの重合体からなる電荷輸送性物質と、有機溶媒とを含む電荷輸送性組成物、
5. 更に電荷受容性物質又は電荷受容性物質前駆体を含む4の電荷輸送性組成物、
6. 4又は5の電荷輸送性組成物から得られる電荷輸送性薄膜、
7. 6の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子、
8. 式(A1)で表されるトリフェニルアミン誘導体と、式(H1)で表されるトリフェニルアミン誘導体とを反応させることを特徴とする1の重合体の製造方法
Figure JPOXMLDOC01-appb-C000018
(式中、Xは、互いに独立して、塩素原子、臭素原子、ヨウ素原子又は擬ハロゲン基を表し、Ph及びGは、前記と同じ意味を示す。)
を提供する。
That is, the present invention
1. A polymer containing a repeating unit represented by the formula (P1),
Figure JPOXMLDOC01-appb-C000010
[In the formula, Ph represents a 1,4-phenylene group, and G represents a monovalent group represented by any of formulas (A01) to (A18).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
(Wherein L 01 represents —S—, —O—, —CO—, —CH 2 —, — (CH 2 ) 2 —, —C (CH 3 ) 2 —, —CF 2 —, — (CF 2 ) 2— , —C (CF 3 ) 2 — or a fluorene-9,9-diyl group,
L 02 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, a fluorine atom Represents an alkynyl group having 2 to 20 carbon atoms which may be substituted by or an aryl group having 6 to 20 carbon atoms which may be substituted by R,
L 03 and L 04 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, or an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom Represents an alkynyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom or an aryl group having 6 to 20 carbon atoms which may be substituted by R;
Z 01 to Z 18 each independently represent a substituent substituted on an aromatic ring, and each independently represents an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, or a carbon atom which may be substituted by a fluorine atom. Represents an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms;
R represents an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, or a carbon atom which may be substituted by a fluorine atom. Represents 2 to 20 alkynyl groups,
Ar represents a group represented by any of formulas (S1) to (S6),
Figure JPOXMLDOC01-appb-C000015
a 011 to a 183 are each independently an integer indicating the number of substituents to be substituted on the aromatic ring;
a 071 , a 081 , a 091 , a 101 and a 111 are from 0 to 3,
a 051, a 061, a 072 , a 082, a 092, a 102, a 112, a 113, a 114, a 121, a 131, a 141, a 151, a 161, a 171, a 181, a 182 And a 183 is from 0 to 4,
a 011 , a 052 , a 062 , a 122 , a 123 and a 132 are from 0 to 5,
a 021 , a 133 , a 142 , a 143 , a 152 , a 153 , a 162 and a 163 are from 0 to 7,
a 031 and a 041 are 0 to 9; )]
2. A polymer according to 1, wherein G is a group represented by any of formulas (A01-1) to (A01-3),
Figure JPOXMLDOC01-appb-C000016
(In the formula, Z 01 has the same meaning as described above.)
3. A polymer containing a repeating unit represented by the formula (E1),
Figure JPOXMLDOC01-appb-C000017
4. A charge-transporting composition comprising a charge-transporting substance comprising the polymer according to any one of 1 to 3, and an organic solvent;
5. 4. The charge-transporting composition further comprising a charge-receiving substance or a charge-receiving substance precursor,
6. A charge transporting thin film obtained from the charge transporting composition of 4 or 5,
7. 6, an organic electroluminescence device having a charge transporting thin film,
8. A process for producing a polymer according to 1, wherein the triphenylamine derivative represented by the formula (A1) is reacted with the triphenylamine derivative represented by the formula (H1).
Figure JPOXMLDOC01-appb-C000018
(In the formula, X independently represents a chlorine atom, a bromine atom, an iodine atom or a pseudohalogen group, and Ph and G have the same meanings as described above.)
I will provide a.
 本発明の重合体は、その繰り返し単位に所定のトリフェニルアミン構造とともに、-NH-構造を含むことから、優れた電荷輸送性と有機溶媒への優れた溶解性とを兼ね備え、当該重合体を単独で又はドーパント物質やドーパント物質前駆体とともに有機溶媒に溶解させることで、有機EL素子をはじめとした電子素子に適用した場合に優れた特性を実現できる電荷輸送性薄膜を与える電荷輸送性組成物を容易に調製できる。
 特に、本発明の電荷輸送性薄膜を、有機EL素子の正孔注入層として用いることで、優れた特性の有機EL素子を得ることができる。
Since the polymer of the present invention contains an —NH— structure together with a predetermined triphenylamine structure in its repeating unit, the polymer has both excellent charge transporting properties and excellent solubility in an organic solvent. A charge-transporting composition that provides a charge-transporting thin film capable of achieving excellent properties when applied to an electronic device such as an organic EL device by being dissolved alone or together with a dopant substance or a dopant substance precursor in an organic solvent. Can be easily prepared.
In particular, by using the charge transporting thin film of the present invention as a hole injection layer of an organic EL device, an organic EL device having excellent characteristics can be obtained.
 以下、本発明についてさらに詳しく説明する。
 本発明の重合体は、式(P1)で表される繰り返し単位を含む。
Hereinafter, the present invention will be described in more detail.
The polymer of the present invention contains a repeating unit represented by the formula (P1).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 Phは、1,4-フェニレン基を表し、Gは、式(A01)~(A18)のいずれかで表される1価の基を表す。 Ph represents a 1,4-phenylene group, and G represents a monovalent group represented by any of formulas (A01) to (A18).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 L01は、-S-、-O-、-CO-、-CH2-、-(CH22-、-C(CH32-、-CF2-、-(CF22-、-C(CF32-又はフルオレン-9,9-ジイル基を表す。 L 01 represents —S—, —O—, —CO—, —CH 2 —, — (CH 2 ) 2 —, —C (CH 3 ) 2 —, —CF 2 —, — (CF 2 ) 2 — , -C (CF 3 ) 2 -or fluorene-9,9-diyl group.
 L02は、互いに独立して、水素原子、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、フッ素原子で置換されていてもよい炭素数2~20のアルケニル基、フッ素原子で置換されていてもよい炭素数2~20のアルキニル基又はRで置換されていてもよい炭素数6~20のアリール基を表す。 L 02 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, a fluorine atom Represents an alkynyl group having 2 to 20 carbon atoms which may be substituted by an aryl group or an aryl group having 6 to 20 carbon atoms which may be substituted by R.
 炭素数1~20のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ペンタン-2-イル基、n-ペンタン-3-イル基、n-ヘキシル基、n-ヘキサン-2-イル基、n-ヘキサン-3-イル基、n-ヘプチル基、n-ヘプタン-2-イル基、n-ヘプタン-3-イル基、n-ヘプタン-4-イル基、n-オクチル基、n-オクタン-2-イル基、n-オクタン-3-イル基、n-オクタン-4-イル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖状又は分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基等の炭素数3~20の環状アルキル基が挙げられる。 The alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group. , S-butyl group, t-butyl group, n-pentyl group, n-pentan-2-yl group, n-pentan-3-yl group, n-hexyl group, n-hexane-2-yl group, n- Hexane-3-yl group, n-heptyl group, n-heptane-2-yl group, n-heptane-3-yl group, n-heptane-4-yl group, n-octyl group, n-octane-2- A linear or branched alkyl group having 1 to 20 carbon atoms, such as an yl group, an n-octan-3-yl group, an n-octan-4-yl group, an n-nonyl group, an n-decyl group; a cyclopropyl group , Cyclobutyl group, cyclopentyl group, cyclohexyl group, Kurohepuchiru group, cyclooctyl group, cyclononyl group, cyclic alkyl group having 3 to 20 carbon atoms such as cyclodecyl.
 炭素数2~20のアルケニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エテニル基、n-1-プロペニル基、n-2-プロペニル基、1-メチルエテニル基、n-1-ブテニル基、n-2-ブテニル基、n-3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、n-1-ペンテニル基、n-1-デセニル基等が挙げられる。 The alkenyl group having 2 to 20 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include an ethenyl group, an n-1-propenyl group, an n-2-propenyl group, and a 1-methylethenyl group. , N-1-butenyl group, n-2-butenyl group, n-3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1 -Propenyl group, 1-methyl-2-propenyl group, n-1-pentenyl group, n-1-decenyl group and the like.
 炭素数2~20のアルキニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基、1-メチル-2-プロピニル基、n-1-ペンチニル基、n-2-ペンチニル基、n-3-ペンチニル基、n-4-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1,1-ジメチル-n-プロピニル基、n-1-ヘキシニル基、n-1-デシニル基等が挙げられる。 The alkynyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include an ethynyl group, an n-1-propynyl group, an n-2-propynyl group, and an n-1- Butynyl group, n-2-butynyl group, n-3-butynyl group, 1-methyl-2-propynyl group, n-1-pentynyl group, n-2-pentynyl group, n-3-pentynyl group, n-4 -Pentynyl group, 1-methyl-n-butynyl group, 2-methyl-n-butynyl group, 3-methyl-n-butynyl group, 1,1-dimethyl-n-propynyl group, n-1-hexynyl group, n -1-decynyl group and the like.
 炭素数6~20のアリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。 Specific examples of the aryl group having 6 to 20 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, and 2-phenanthryl. Group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
 L03及びL04は、互いに独立して、水素原子、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、フッ素原子で置換されていてもよい炭素数2~20のアルケニル基、フッ素原子で置換されていてもよい炭素数2~20のアルキニル基又はRで置換されていてもよい炭素数6~20のアリール基を表す。 L 03 and L 04 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, or an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom Represents an alkynyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, or an aryl group having 6 to 20 carbon atoms which may be substituted by R.
 Z01~Z18は、芳香環に置換する置換基を表し、互いに独立して、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、フッ素原子で置換されていてもよい炭素数2~20のアルケニル基又はフッ素原子で置換されていてもよい炭素数2~20のアルキニル基を表す。 Z 01 to Z 18 each independently represent a substituent substituted on an aromatic ring, and each independently represents an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, or a carbon atom which may be substituted by a fluorine atom. Represents an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms which may be substituted with a fluorine atom.
 Rは、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、フッ素原子で置換されていてもよい炭素数2~20のアルケニル基又はフッ素原子で置換されていてもよい炭素数2~20のアルキニル基を表す。 R represents an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, or a carbon atom which may be substituted by a fluorine atom. Represents 2 to 20 alkynyl groups.
 L03及びL04、Z01~Z18及びRにおける炭素数1~20のアルキル基、炭素数2~20のアルケニル基及び炭素数2~20のアルキニル基並びにL03及びL04における炭素数6~20のアリール基の具体例は、前記と同じものが挙げられる。 L 03 and L 04 , an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms and an alkynyl group having 2 to 20 carbon atoms in Z 01 to Z 18 and R, and 6 carbon atoms in L 03 and L 04 Specific examples of the 20 to 20 aryl groups are the same as those described above.
 式(A01)で表される基の好ましい例としては、以下が挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000024
(式中、Z01は、前記と同じ意味を示す。)
Preferred examples of the group represented by the formula (A01) include, but are not limited to, the following.
Figure JPOXMLDOC01-appb-C000024
(In the formula, Z 01 has the same meaning as described above.)
 式(A01-1)~(A01-3)において、得られる重合体の溶解性と電荷輸送性の観点から、Z01は、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、フッ素原子で置換されていてもよい炭素数2~20のアルケニル基、フッ素原子で置換されていてもよい炭素数2~20のアルキニル基が好ましく、フッ素原子で置換されていてもよい炭素数1~20のアルキル基がより好ましく、フッ素原子で置換されていてもよい炭素数1~10のアルキル基がより一層好ましく、フッ素原子で置換されていてもよい炭素数1~8のアルキル基がさらに好ましい。
 また、式(A01-1)~(A01-3)における置換基Z01が、フッ素原子で置換されていてもよい炭素数1~20のアルキル基である場合、当該アルキル基が芳香環に結合する結合手は、当該アルキル基の2級又は3級炭素原子上にあることが好ましく、2級炭素原子上にあることがより好ましい。
 具体的には、式(A01-1)~(A01-3)において、Z01は、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンタン-2-イル基、n-ペンタン-3-イル基、n-ヘキサン-2-イル基、n-ヘキサン-3-イル基、n-ヘプタン-2-イル基、n-ヘプタン-3-イル基、n-ヘプタン-4-イル基、n-オクタン-2-イル基、n-オクタン-3-イル基、n-オクタン-4-イル基等が好ましいが、これらに限定されない。
In the formulas (A01-1) to (A01-3), from the viewpoint of solubility and charge transportability of the obtained polymer, Z 01 represents an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom. An alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, and an alkynyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom are preferable. An alkyl group having 1 to 20 carbon atoms is more preferable, an alkyl group having 1 to 10 carbon atoms which may be substituted by a fluorine atom is more preferable, and an alkyl group having 1 to 8 carbon atoms which may be substituted by a fluorine atom is preferable. More preferred.
When the substituent Z 01 in the formulas (A01-1) to (A01-3) is an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, the alkyl group is bonded to an aromatic ring. The bond to be formed is preferably on a secondary or tertiary carbon atom of the alkyl group, more preferably on a secondary carbon atom.
Specifically, in the formulas (A01-1) to (A01-3), Z 01 represents an isopropyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentan-2-yl group, an n- Pentan-3-yl group, n-hexane-2-yl group, n-hexane-3-yl group, n-heptane-2-yl group, n-heptane-3-yl group, n-heptan-4-yl Groups, n-octan-2-yl group, n-octan-3-yl group, n-octan-4-yl group, and the like, but are not limited thereto.
 本発明において、式(P1)におけるアルキル基、アルケニル基およびアルキニル基の炭素数は、有機溶媒への溶解性の観点から、好ましくは15以下、より好ましくは10以下、より一層好ましくは8以下、更に好ましくは5以下であり、アリール基の炭素数は、好ましくは15以下、より好ましくは10以下である。 In the present invention, the number of carbon atoms of the alkyl group, alkenyl group and alkynyl group in the formula (P1) is preferably 15 or less, more preferably 10 or less, and still more preferably 8 or less, from the viewpoint of solubility in an organic solvent. More preferably, it is 5 or less, and the carbon number of the aryl group is preferably 15 or less, more preferably 10 or less.
 Arは、式(S1)~(S6)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000025
Ar represents a group represented by any of formulas (S1) to (S6).
Figure JPOXMLDOC01-appb-C000025
 a011~a183は、互いに独立に、芳香環に置換する置換基の数を示す整数である。
 a071、a081、a091、a101及びa111は、0~3である。
 a051、a061、a072、a082、a092、a102、a112、a113、a114、a121、a131、a141、a151、a161、a171、a181、a182及びa183は、0~4である。
 a011、a052、a062、a122、a123及びa132は、0~5である。
 a021、a133、a142、a143、a152、a153、a162及びa163は、0~7である。
 a031及びa041は、0~9である。
a 011 to a 183 are integers each independently indicating the number of substituents to be substituted on the aromatic ring.
a 071 , a 081 , a 091 , a 101 and a 111 are 0 to 3.
a 051, a 061, a 072 , a 082, a 092, a 102, a 112, a 113, a 114, a 121, a 131, a 141, a 151, a 161, a 171, a 181, a 182 And a 183 is 0-4 .
a 011 , a 052 , a 062 , a 122 , a 123 and a 132 are 0 to 5.
a 021 , a 133 , a 142 , a 143 , a 152 , a 153 , a 162 and a 163 are from 0 to 7.
a 031 and a 041 are 0 to 9;
 原料化合物の入手性や合成容易性、得られる重合体の溶解性、得られる電荷輸送性薄膜の電荷輸送性等のバランスを考慮すると、a011は、0~3が好ましく、1又は2がより好ましく、a021~a183は、0又は1が好ましく、0がより好ましい。 In consideration of the balance between the availability of the raw material compounds, the ease of synthesis, the solubility of the obtained polymer, and the charge transportability of the obtained charge transporting thin film, a 011 is preferably 0 to 3, more preferably 1 or 2. Preferably, a 021 to a 183 are preferably 0 or 1, and more preferably 0.
 本発明の重合体は、必ずしも全ての繰り返し単位が同一の構造を有している必要はなく、式(P1)に包含される異なる構造の繰り返し単位を含むものであってもよい。また、各単位はランダムに結合していても、ブロック重合体として結合していてもよい。 重合 The polymer of the present invention does not necessarily need to have all the repeating units having the same structure, and may contain repeating units having different structures included in the formula (P1). Further, each unit may be bonded randomly or as a block polymer.
 本発明の重合体における式(P1)で表される繰り返し単位の含有量は、電荷輸送性と溶解性に優れる重合体を得る観点から、重合体に含まれる全繰り返し単位中、好ましくは50モル%以上、より好ましくは70モル%以上、より一層好ましくは90モル%以上、さらに好ましくは95モル%以上であり、100モル%が最適である。 The content of the repeating unit represented by the formula (P1) in the polymer of the present invention is preferably 50 mol in all the repeating units contained in the polymer, from the viewpoint of obtaining a polymer having excellent charge transportability and solubility. %, More preferably at least 70 mol%, even more preferably at least 90 mol%, further preferably at least 95 mol%, and most preferably 100 mol%.
 本発明の重合体の重量平均分子量は、通常1,000~100,000であるが、有機溶媒への溶解性の観点から、好ましくは20,000以下、より好ましくは10,000以下であり、電荷輸送性の観点から、好ましくは3,000以上、より好ましくは5,000以上である。なお、本発明における重量平均分子量は、ゲル浸透クロマトグラフィー(以下、GPCという)分析による標準ポリスチレン換算で得られる平均分子量である。 The weight average molecular weight of the polymer of the present invention is usually 1,000 to 100,000, but from the viewpoint of solubility in an organic solvent, is preferably 20,000 or less, more preferably 10,000 or less, From the viewpoint of charge transportability, it is preferably at least 3,000, more preferably at least 5,000. The weight average molecular weight in the present invention is an average molecular weight obtained by gel permeation chromatography (hereinafter, referred to as GPC) analysis in terms of standard polystyrene.
 本発明の重合体は、式(A1)で表されるトリフェニルアミン誘導体と、式(H1)で表されるトリフェニルアミン誘導体とを反応させることで製造できる。 重合 The polymer of the present invention can be produced by reacting a triphenylamine derivative represented by the formula (A1) with a triphenylamine derivative represented by the formula (H1).
Figure JPOXMLDOC01-appb-C000026
(式中、Xは、互いに独立して、塩素原子、臭素原子、ヨウ素原子又は擬ハロゲン基を表し、Ph及びGは、前記と同じ意味を示す。)
Figure JPOXMLDOC01-appb-C000026
(In the formula, X independently represents a chlorine atom, a bromine atom, an iodine atom or a pseudohalogen group, and Ph and G have the same meanings as described above.)
 擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等の(フルオロ)アルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基などが挙げられる。 Examples of the pseudohalogen group include (fluoro) alkylsulfonyloxy groups such as methanesulfonyloxy group, trifluoromethanesulfonyloxy group and nonafluorobutanesulfonyloxy group; aromatic sulfonyloxy groups such as benzenesulfonyloxy group and toluenesulfonyloxy group. Is mentioned.
 式(A1)で表されるトリフェニルアミン誘導体と式(H1)で表されるトリフェニルアミン誘導体との仕込み比は、式(H1)で表されるトリフェニルアミン誘導体に対し、式(A1)で表されるトリフェニルアミン誘導体を1当量以上とすることができるが、1~1.5当量程度が好適である。 The charging ratio of the triphenylamine derivative represented by the formula (A1) and the triphenylamine derivative represented by the formula (H1) is the same as that of the triphenylamine derivative represented by the formula (H1). The triphenylamine derivative represented by the formula can be used in an amount of 1 equivalent or more, but about 1 to 1.5 equivalents is preferable.
 上記反応に用いられる触媒としては、例えば、塩化銅、臭化銅、ヨウ化銅等の銅触媒;Pd(PPh34(テトラキス(トリフェニルフォスフィン)パラジウム)、Pd(PPh32Cl2(ビス(トリフェニルフォスフィン)ジクロロパラジウム)、Pd(dba)2(ビス(ジベンジリデンアセトン)パラジウム)、Pd2(dba)3(トリス(ジベンジリデンアセトン)ジパラジウム)、Pd(P-t-Bu32(ビス(トリ(t-ブチルフォスフィン))パラジウム)、Pd(OAc)2(酢酸パラジウム)等のパラジウム触媒などが挙げられる。これらの触媒は、単独で用いてもよく、2種以上組み合わせて用いてもよい。また、これらの触媒は、公知の適切な配位子とともに使用してもよい。
 このような配位子としては、トリフェニルフォスフィン、トリ-o-トリルフォスフィン、ジフェニルメチルフォスフィン、フェニルジメチルフォスフィン、トリメチルフォスフィン、トリエチルフォスフィン、トリブチルフォスフィン、トリ-t-ブチルフォスフィン、ジ-t-ブチル(フェニル)フォスフィン、ジ-t-ブチル(4-ジメチルアミノフェニル)フォスフィン、1,2-ビス(ジフェニルフォスフィノ)エタン、1,3-ビス(ジフェニルフォスフィノ)プロパン、1,4-ビス(ジフェニルフォスフィノ)ブタン、1,1’-ビス(ジフェニルフォスフィノ)フェロセン等の3級フォスフィン、トリメチルフォスファイト、トリエチルフォスファイト、トリフェニルフォスファイト等の3級フォスファイトなどが挙げられる。
Examples of the catalyst used in the above reaction include copper catalysts such as copper chloride, copper bromide, and copper iodide; Pd (PPh 3 ) 4 (tetrakis (triphenylphosphine) palladium), Pd (PPh 3 ) 2 Cl 2 (bis (triphenylphosphine) dichloropalladium), Pd (dba) 2 (bis (dibenzylideneacetone) palladium), Pd 2 (dba) 3 (tris (dibenzylideneacetone) dipalladium), Pd (Pt And palladium catalysts such as —Bu 3 ) 2 (bis (tri (t-butylphosphine)) palladium) and Pd (OAc) 2 (palladium acetate). These catalysts may be used alone or in combination of two or more. Further, these catalysts may be used together with a known suitable ligand.
Such ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-t-butylphosphine. Fin, di-t-butyl (phenyl) phosphine, di-t-butyl (4-dimethylaminophenyl) phosphine, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, Tertiary phosphines such as 1,4-bis (diphenylphosphino) butane and 1,1′-bis (diphenylphosphino) ferrocene, and tertiary phosphites such as trimethylphosphite, triethylphosphite and triphenylphosphite. Listed You.
 触媒の使用量は、式(H1)で表されるトリフェニルアミン誘導体1molに対して、0.01~0.2mol程度とすることができるが、0.1mol程度が好適である。
 また、配位子を用いる場合、その使用量は、使用する金属錯体(触媒)に対し0.1~5当量とすることができるが、1~2当量が好適である。
The amount of the catalyst used can be about 0.01 to 0.2 mol, preferably about 0.1 mol, per 1 mol of the triphenylamine derivative represented by the formula (H1).
When a ligand is used, the amount of the ligand used can be 0.1 to 5 equivalents to the metal complex (catalyst) to be used, but is preferably 1 to 2 equivalents.
 原料化合物が全て固体である場合あるいは目的とする重合体を効率よく得る観点から、上記各反応は溶媒中で行う。溶媒を使用する場合、その種類は、反応に悪影響を及ぼさないものであれば特に制限はない。具体例としては、脂肪族炭化水素類(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、ハロゲン化脂肪族炭化水素類(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素類(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、ハロゲン化芳香族炭化水素類(クロロベンゼン、ブロモベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、ラクタム及びラクトン類(N-メチルピロリドン、γ-ブチロラクトン等)、尿素類(N,N-ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド類(ジメチルスルホキシド、スルホラン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)などが挙げられ、これらの溶媒は単独で用いても、2種以上混合して用いてもよい。 場合 When the starting compounds are all solid or from the viewpoint of efficiently obtaining the desired polymer, each of the above reactions is carried out in a solvent. When a solvent is used, its type is not particularly limited as long as it does not adversely affect the reaction. Specific examples include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), aromatics Aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, etc.), ethers (diethyl ether, diisopropyl ether, t-butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.), ketones (acetone, methyl ethyl ketone, Methyl isobutyl ketone, di- -Butyl ketone, cyclohexanone, etc.), amides (N, N-dimethylformamide, N, N-dimethylacetamide, etc.), lactams and lactones (N-methylpyrrolidone, γ-butyrolactone, etc.), ureas (N, N-dimethyl) Imidazolidinone, tetramethylurea, etc.), sulfoxides (dimethylsulfoxide, sulfolane, etc.), nitriles (acetonitrile, propionitrile, butyronitrile, etc.) and the like. These solvents may be used alone or in combination of two or more. You may mix and use.
 反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよいが、特に、0~200℃程度が好ましく、20~150℃がより好ましい。
 反応終了後は、常法にしたがって後処理をし、目的とする重合体を得ることができる。
The reaction temperature may be appropriately set in the range from the melting point to the boiling point of the solvent to be used, but is preferably about 0 to 200 ° C, more preferably 20 to 150 ° C.
After completion of the reaction, a post-treatment is carried out according to a conventional method to obtain a desired polymer.
 本発明の重合体の製造で用いる式(A1)で表されるトリフェニルアミン誘導体は、市販品を用いてもよく、下記の示すスキームに従い、次の方法で製造することもできる。
 公知の方法により、下記の所定のアニリン誘導体を、例えば4-フルオロニトロベンゼンと反応させて対応するジニトロ化合物を得る。そして、得られたジニトロ化合物のニトロ基を、例えばPd/Cを用いた水素添加反応によって、アミノ基へと変換する。
As the triphenylamine derivative represented by the formula (A1) used in the production of the polymer of the present invention, a commercially available product may be used, or it may be produced by the following method according to the scheme shown below.
According to a known method, the following predetermined aniline derivative is reacted with, for example, 4-fluoronitrobenzene to obtain a corresponding dinitro compound. Then, the nitro group of the obtained dinitro compound is converted into an amino group by a hydrogenation reaction using, for example, Pd / C.
Figure JPOXMLDOC01-appb-C000027
(式中、Ph及びGは、前記と同じ意味を示す。)
Figure JPOXMLDOC01-appb-C000027
(In the formula, Ph and G have the same meanings as described above.)
 本発明の重合体の製造で用いる式(H1)で表されるトリフェニルアミン誘導体は、市販品を用いてもよく、下記の示すスキームに従い、対応するトリフェニルアミン誘導体をハロゲン化又は擬ハロゲン化してもよい。ハロゲン化又は擬ハロゲン化は、定法に従い、ハロゲン化試薬又は擬ハロゲン化試薬を用いておこなうことができる。 The triphenylamine derivative represented by the formula (H1) used in the production of the polymer of the present invention may be a commercially available product, and the corresponding triphenylamine derivative is halogenated or pseudo-halogenated according to the scheme shown below. You may. Halogenation or pseudohalogenation can be performed using a halogenating reagent or a pseudohalogenating reagent according to a standard method.
Figure JPOXMLDOC01-appb-C000028
(式中、Ph、G及びXは、前記と同じ意味を示す。)
Figure JPOXMLDOC01-appb-C000028
(In the formula, Ph, G and X have the same meaning as described above.)
 本発明の重合体の好ましい一例を以下に挙げるが、本発明はこれに限定されない。 好 ま し い Preferred examples of the polymer of the present invention are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000029
(kは、繰り返し単位を示す整数であり、重合体の分子量に応じて定まる。)
Figure JPOXMLDOC01-appb-C000029
(K is an integer indicating a repeating unit and is determined according to the molecular weight of the polymer.)
 本発明の重合体は、有機溶媒への良好な溶解性を示し、本発明の重合体を電荷輸送性物質として有機溶媒に溶解させることで、電荷輸送性組成物を製造できる。 (4) The polymer of the present invention exhibits good solubility in an organic solvent, and a charge transporting composition can be produced by dissolving the polymer of the present invention in an organic solvent as a charge transporting substance.
 このような有機溶媒としては、本発明の重合体を良好に溶解し得る高溶解性有機溶媒を用いることができる。
 その具体例としては、クロロホルム、クロロベンゼン等の塩素系溶媒、トルエン、キシレン、テトラリン、シクロヘキシルベンゼン、3-フェノキシトルエン等の芳香族炭化水素系溶媒等の低極性高溶解性有機溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒、イソホロン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、安息香酸メチル等のエステル系溶媒、エチレングリコール、ジエチレングリコール等の多価アルコール系溶媒、テトラヒドロフラン、ジオキサン、アニソール等のエーテル系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒等の極性高溶解性有機溶媒が挙げられる。
 これらの有機溶媒は、1種単独で又は2種以上混合して用いることができ、その使用量は、電荷輸送性組成物に使用する全溶媒中5~100質量%とすることができる。
As such an organic solvent, a highly soluble organic solvent that can satisfactorily dissolve the polymer of the present invention can be used.
Specific examples thereof include low polar and highly soluble organic solvents such as chlorinated solvents such as chloroform and chlorobenzene, and aromatic hydrocarbon solvents such as toluene, xylene, tetralin, cyclohexylbenzene and 3-phenoxytoluene; Amide solvents such as dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutylamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, ketone solvents such as isophorone and cyclohexanone, acetic acid Highly polar organic solvents such as ester solvents such as ethyl and methyl benzoate, polyhydric alcohol solvents such as ethylene glycol and diethylene glycol, ether solvents such as tetrahydrofuran, dioxane and anisole, and sulfoxide solvents such as dimethyl sulfoxide. No.
These organic solvents can be used singly or as a mixture of two or more kinds, and the use amount thereof can be 5 to 100% by mass in the total solvent used for the charge transporting composition.
 また、前記有機溶媒は、25℃で10~200mPa・s、特に35~150mPa・sの粘度を有し、常圧(大気圧)で沸点50~300℃、特に150~250℃の高粘度有機溶媒を少なくとも1種含んでもよい。このような溶媒を加えることで、電荷輸送性組成物の粘度の調整が容易になり、平坦性の高い薄膜を再現性よく与える、用いる塗布方法に応じた組成物の調製が可能となる。 The organic solvent has a viscosity of 10 to 200 mPa · s, particularly 35 to 150 mPa · s at 25 ° C., and a high viscosity organic solvent having a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure (atmospheric pressure). At least one solvent may be contained. By adding such a solvent, the viscosity of the charge transporting composition can be easily adjusted, and a composition can be prepared according to a coating method to be used, which gives a highly flat thin film with good reproducibility.
 高粘度有機溶媒としては、例えば、シクロヘキサノール、エチレングリコール、エチレングリコールジグリシジルエーテル、1,3-オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール、へキシレングリコール等が挙げられるが、これらに限定されない。高粘度有機溶媒は高溶解性有機溶媒を兼ねてもよく、それは電荷輸送性物質である重合体の構造に応じて定まる。 Examples of the high-viscosity organic solvent include cyclohexanol, ethylene glycol, ethylene glycol diglycidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3-butanediol, Examples include, but are not limited to, 2,3-butanediol, 1,4-butanediol, propylene glycol, hexylene glycol, and the like. The high-viscosity organic solvent may also serve as the high-solubility organic solvent, which depends on the structure of the polymer as the charge transporting substance.
 高粘度有機溶媒を添加する場合、その添加割合は、固体が析出しない範囲内であることが好ましく、固体が析出しない限りにおいて、電荷輸送性組成物に使用する全溶媒中5~90質量%が好ましい。 When a high-viscosity organic solvent is added, its addition ratio is preferably within a range in which no solid precipitates. As long as no solid precipitates, 5 to 90% by mass of the total solvent used in the charge transporting composition is used. preferable.
 更に、基板に対する濡れ性の向上、溶媒の表面張力の調整、極性の調整、沸点の調整等の目的で、その他の溶媒を、電荷輸送性組成物に使用する全溶媒中1~90質量%、好ましくは1~50質量%の割合で混合することもできる。 Further, for the purpose of improving the wettability to the substrate, adjusting the surface tension of the solvent, adjusting the polarity, adjusting the boiling point, and the like, other solvents are used in an amount of 1 to 90% by mass based on the total solvent used in the charge transporting composition. Preferably, they can be mixed at a ratio of 1 to 50% by mass.
 このような溶媒としては、例えば、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジアセトンアルコール、γ-ブチロラクトン、エチルラクテート、n-ヘキシルアセテート等が挙げられるが、これらに限定されない。これらの溶媒は、1種単独で又は2種以上混合して用いることができる。なお、同目的で使用される溶媒は、高溶解性有機溶媒の機能を兼ねることがある。 Examples of such a solvent include propylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, and propylene glycol monomethyl ether. Examples include, but are not limited to, ether acetate, diethylene glycol monoethyl ether, diacetone alcohol, γ-butyrolactone, ethyl lactate, n-hexyl acetate, and the like. These solvents can be used alone or in combination of two or more. The solvent used for the same purpose may also have the function of a highly soluble organic solvent.
 本発明の電荷輸送性組成物は、得られる電荷輸送性薄膜の電荷輸送性向上等の目的で、ドーパント物質(電荷受容性物質)やドーパント物質前駆体(電荷受容性物質前駆体)を含んでもよい。 The charge transporting composition of the present invention may contain a dopant substance (charge accepting substance) or a dopant substance precursor (charge accepting substance precursor) for the purpose of improving the charge transporting property of the obtained charge transporting thin film. Good.
 ドーパント物質としては、電荷輸送性組成物に使用する少なくとも一種の溶媒に溶解するものであれば特に限定されず、有機系の電荷受容性物質としては、アリールスルホン酸、アニオンとその対カチオンとからなるイオン化合物、テトラシアノキノジメタン誘導体やベンゾキノン誘導体等の有機系のドーパント物質;アリールスルホン酸エステル等の有機系のドーパント物質前駆体;リンタングステン酸、リンモリブデン酸等の無機系のドーパント物質のいずれも用いることができる。 The dopant substance is not particularly limited as long as it is soluble in at least one solvent used for the charge transporting composition.Examples of the organic charge receiving substance include arylsulfonic acid, anion and a counter cation thereof. Ionic compounds, organic dopant substances such as tetracyanoquinodimethane derivatives and benzoquinone derivatives; organic dopant substance precursors such as arylsulfonic acid esters; and inorganic dopant substances such as phosphotungstic acid and phosphomolybdic acid. Either can be used.
 本発明における好ましい一例の電荷輸送性組成物は、式(1)で表されるスルホン酸エステル化合物からなるドーパント物質前駆体を含む。 好 ま し い One preferred example of the charge transporting composition of the present invention contains a dopant substance precursor comprising a sulfonic acid ester compound represented by the formula (1).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 R1及びR2は、互いに独立して、水素原子、又は直鎖状若しくは分岐状の1価脂肪族炭化水素基を表し、R3は、直鎖状若しくは分岐状の1価脂肪族炭化水素基を表す。ただし、R1、R2及びR3の炭素数の合計は6以上である。R1、R2及びR3の炭素数の合計の上限は、特に限定されないが、20以下が好ましく、10以下がより好ましい。 R 1 and R 2 independently represent a hydrogen atom or a linear or branched monovalent aliphatic hydrocarbon group, and R 3 represents a linear or branched monovalent aliphatic hydrocarbon. Represents a group. However, the total number of carbon atoms of R 1 , R 2 and R 3 is 6 or more. The upper limit of the total number of carbon atoms of R 1 , R 2 and R 3 is not particularly limited, but is preferably 20 or less, more preferably 10 or less.
 前記直鎖状若しくは分岐状の1価脂肪族炭化水素基としては、特に限定されないが、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、デシル基等の炭素数1~18のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ヘキセニル基等の炭素数2~18のアルケニル基等が挙げられる。 The linear or branched monovalent aliphatic hydrocarbon group is not particularly limited, but may be a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, C1-C18 alkyl groups such as n-hexyl group, n-octyl group, 2-ethylhexyl group and decyl group; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2 And alkenyl groups having 2 to 18 carbon atoms such as -propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group and hexenyl group.
 R1としては、水素原子が好ましく、R2及びR3としては、炭素数1~6のアルキル基が好ましい。この場合、R2及びR3は、同一であっても異なっていてもよい。 R 1 is preferably a hydrogen atom, and R 2 and R 3 are preferably alkyl groups having 1 to 6 carbon atoms. In this case, R 2 and R 3 may be the same or different.
 A1は、-O-又は-S-を表すが、-O-が好ましい。A2は、(n+1)価の芳香族炭化水素基を表す。A3は、1つ以上の芳香環を含む置換又は非置換のm価の炭化水素基を表す。 A 1 represents -O- or -S-, preferably -O-. A 2 represents an (n + 1) -valent aromatic hydrocarbon group. A 3 represents a substituted or unsubstituted m-valent hydrocarbon group containing one or more aromatic rings.
 A2で表される(n+1)価の芳香族炭化水素基は、芳香族炭化水素化合物の芳香環上から(n+1)個の水素原子を取り除いて得られる基である。前記芳香族炭化水素化合物としては、ベンゼン、トルエン、キシレン、ナフタレン、アントラセン、フェナントレン等が挙げられる。これらのうち、A2としては、ナフタレン又はアントラセンから誘導される基であることが好ましく、ナフタレンから誘導される基であることがより好ましい。 The (n + 1) -valent aromatic hydrocarbon group represented by A 2 is a group obtained by removing (n + 1) hydrogen atoms from the aromatic ring of the aromatic hydrocarbon compound. Examples of the aromatic hydrocarbon compound include benzene, toluene, xylene, naphthalene, anthracene, and phenanthrene. Among them, A 2 is preferably a group derived from naphthalene or anthracene, and more preferably a group derived from naphthalene.
 A3で表される1つ以上の芳香環を含む置換又は非置換のm価の炭化水素基は、1つ以上の芳香環を含む置換又は非置換の炭化水素化合物から炭素骨格に結合する原子又は原子団をm個取り除いて得られる基である。前記炭化水素化合物としては、ベンゼン、トルエン、キシレン、エチルベンゼン、ビフェニル、ナフタレン、アントラセン、フェナントレン等や、これらの基の水素原子の一部又は全部が、更にヒドロキシ基、アミノ基、シラノール基、チオール基、カルボキシル基、スルホン酸エステル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、1価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、スルホン基、ハロゲン原子等で置換されたものが挙げられる。 A substituted or unsubstituted m-valent hydrocarbon group containing one or more aromatic rings represented by A 3 is an atom bonded to a carbon skeleton from a substituted or unsubstituted hydrocarbon compound containing one or more aromatic rings. Or a group obtained by removing m atomic groups. Examples of the hydrocarbon compound include benzene, toluene, xylene, ethylbenzene, biphenyl, naphthalene, anthracene, and phenanthrene, and some or all of the hydrogen atoms of these groups further have a hydroxy group, an amino group, a silanol group, and a thiol group. , Carboxyl group, sulfonic acid ester group, phosphoric acid group, phosphoric acid ester group, ester group, thioester group, amide group, nitro group, monovalent hydrocarbon group, organooxy group, organoamino group, organosilyl group, organothio group , An acyl group, a sulfone group, and a halogen atom.
 式(1)で表されるスルホン酸エステル化合物の耐久性向上及び電荷輸送性向上を図ることを考慮すると、A3としては、1,3,5-トリアジンから誘導される2価又は3価の基、置換又は非置換のベンゼンから誘導される2価又は3価の基、置換又は非置換のトルエンから誘導される2価又は3価の基、置換又は非置換のp-キシレンから誘導される2価の基、置換又は非置換のナフタレンから誘導される2価又は3価の基、パーフルオロビフェニルから誘導される2~4価の基等が好ましく、2価のパーフルオロビフェニル基がより一層好ましい。 In view of improving the durability and charge transportability of the sulfonic acid ester compound represented by the formula (1), A 3 is a divalent or trivalent derivative derived from 1,3,5-triazine. Group, divalent or trivalent group derived from substituted or unsubstituted benzene, divalent or trivalent group derived from substituted or unsubstituted toluene, derived from substituted or unsubstituted p-xylene A divalent group, a divalent or trivalent group derived from substituted or unsubstituted naphthalene, a divalent to tetravalent group derived from perfluorobiphenyl, and the like are preferable, and a divalent perfluorobiphenyl group is more preferable. preferable.
 mは、2≦m≦4を満たす整数を表すが、2が好ましい。nは、1≦n≦4を満たす整数を表すが、2が好ましい。 M represents an integer satisfying 2 ≦ m ≦ 4, preferably 2. n represents an integer satisfying 1 ≦ n ≦ 4, preferably 2.
 式(1)で表されるスルホン酸エステル化合物は、国際公開第2017/217457号に記載の方法でも合成することができる。 ス ル ホ ン The sulfonic acid ester compound represented by the formula (1) can also be synthesized by the method described in WO 2017/217457.
 本発明の電荷輸送性組成物がドーパント物質やドーパント物質前駆体を含む場合、その含有量は、それらの種類や所望の電荷輸送性等に応じて適宜決定されるために一概に規定できないが、質量比で、本発明の重合体1に対して、ドーパント物質とドーパント物質前駆体の合計で0.01~10の範囲内である。 When the charge transporting composition of the present invention contains a dopant substance or a dopant substance precursor, the content thereof cannot be unconditionally defined because it is appropriately determined according to the kind or the desired charge transporting property. By mass ratio, the total of the dopant substance and the dopant substance precursor is in the range of 0.01 to 10 with respect to the polymer 1 of the present invention.
 本発明で好適なドーパント物質又はドーパント物質前駆体の具体例を以下に挙げるが、これらに限定されない。 具体 Specific examples of the dopant substance or the dopant substance precursor suitable for the present invention are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 なお、電荷輸送性物質並びにドーパント物質及びドーパント物質前駆体は、前記溶媒に完全に溶解しているか、均一に分散している状態となっていることが好ましく、完全に溶解していることが最適である。 Note that the charge transporting substance, the dopant substance, and the dopant substance precursor are preferably completely dissolved in the solvent or are in a state of being uniformly dispersed. It is.
 本発明の電荷輸送性組成物は、溶媒として水も含み得るが、組成物から得られる電荷輸送性薄膜を有機EL素子の正孔注入層として用いた場合に高耐久性の素子を再現性よく得る観点から、水の含有量は、溶媒全体の10質量%以下が好ましく、5質量%以下がより好ましく、溶媒として有機溶媒のみを用いることが最適である。
 なお、この場合における「有機溶媒のみ」とは、溶媒として用いるものが有機溶媒だけであることを意味し、使用する有機溶媒や固形分等に微量に含まれる「水」の存在までをも否定するものではない。
 なお、本発明において、固形分とは、電荷輸送性組成物に含まれる溶媒以外の成分を意味する。
The charge transporting composition of the present invention can also contain water as a solvent, but when the charge transporting thin film obtained from the composition is used as a hole injection layer of an organic EL device, a highly durable device can be reproducibly prepared. From the viewpoint of obtaining, the content of water is preferably 10% by mass or less, more preferably 5% by mass or less of the whole solvent, and it is optimal to use only an organic solvent as the solvent.
In this case, “only organic solvent” means that only the organic solvent is used as the solvent, and denies the existence of “water” contained in a trace amount in the organic solvent or solid content used. It does not do.
In the present invention, the solid content means components other than the solvent contained in the charge transporting composition.
 本発明においては、電荷輸送性組成物は、より平坦性の高い薄膜を再現性よく得る観点から、電荷輸送性物質を有機溶媒に溶解させた後、サブマイクロメートルオーダーのフィルター等を用いてろ過することが望ましい。 In the present invention, from the viewpoint of obtaining a thinner film with higher flatness with good reproducibility, the charge transporting composition is dissolved in an organic solvent, and then filtered using a submicrometer-order filter or the like. It is desirable to do.
 本発明の電荷輸送性組成物中の固形分濃度は、電荷輸送性物質の析出を抑制しつつ十分な膜厚を確保する観点から、通常0.1~20質量%程度、好ましくは0.5~15質量%である。 The solid concentration in the charge transporting composition of the present invention is usually about 0.1 to 20% by mass, preferably 0.5 to 20% by mass, from the viewpoint of securing a sufficient film thickness while suppressing the deposition of the charge transporting substance. 1515% by mass.
 本発明の電荷輸送性組成物の粘度は、通常、25℃で1~50mPa・sであり、表面張力は、通常、25℃で20~50mN/mである。
 本発明の電荷輸送性組成物の粘度と表面張力は、用いる塗布方法、所望の膜厚等の各種要素を考慮して、用いる有機溶媒の種類やそれらの比率、固形分濃度等を変更することで調整可能である。
The viscosity of the charge transporting composition of the present invention is usually 1 to 50 mPa · s at 25 ° C., and the surface tension is usually 20 to 50 mN / m at 25 ° C.
The viscosity and surface tension of the charge transporting composition of the present invention are determined by changing the type of the organic solvent used, their ratio, the solid content, and the like, in consideration of various factors such as a coating method to be used and a desired film thickness. Can be adjusted.
 本発明の電荷輸送性組成物は、本発明の重合体を有機溶媒に溶解させることで製造できる。予め有機溶媒に本発明の重合体を溶解させ、そこにその他の有機溶媒を順次加えてもよく、用いる全溶媒の混合溶媒を予め作り、そこへ本発明の重合体を溶解させてもよい。本発明の電荷輸送性組成物が、本発明の重合体と溶媒以外の成分を含む場合も同様の手順に従う。
 また、必要があれば、組成物に含まれる成分が分解や変質しないように注意し、加熱して重合体等の溶解を促進してもよい。
The charge transporting composition of the present invention can be produced by dissolving the polymer of the present invention in an organic solvent. The polymer of the present invention may be dissolved in an organic solvent in advance, and another organic solvent may be sequentially added thereto. A mixed solvent of all the solvents to be used may be prepared in advance, and the polymer of the present invention may be dissolved therein. The same procedure is followed when the charge transporting composition of the present invention contains components other than the polymer of the present invention and a solvent.
If necessary, the composition may be heated to promote the dissolution of the polymer or the like, while taking care not to decompose or alter the components contained in the composition.
 本発明の電荷輸送性組成物を基材上に塗布して焼成することで、基材上に本発明の電荷輸送性薄膜を形成することができる。 塗布 The charge transporting thin film of the present invention can be formed on a substrate by applying the charge transporting composition of the present invention on a substrate and baking it.
 電荷輸送性組成物の塗布方法としては、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられるが、これらに限定されない。塗布方法に応じて、電荷輸送性組成物の粘度及び表面張力を調節することが好ましい。 塗布 Examples of the method for applying the charge transporting composition include, but are not limited to, a dip method, a spin coating method, a transfer printing method, a roll coating method, a brush coating, an ink jet method, a spray method, and a slit coating method. It is preferable to adjust the viscosity and surface tension of the charge transporting composition according to the coating method.
 また、焼成条件も特に限定されるものではないが、例えばホットプレートを用いて加熱焼成する。通常、焼成温度は100~260℃の範囲内で、焼成時間は1分間~1時間の範囲内である。焼成雰囲気も特に限定されないが、好ましくは空気下である。
 更に、必要に応じて、異なる2以上の温度で多段階の焼成をしてもよい。
In addition, the firing conditions are not particularly limited. For example, heating and firing are performed using a hot plate. Usually, the firing temperature is in the range of 100 to 260 ° C., and the firing time is in the range of 1 minute to 1 hour. The firing atmosphere is also not particularly limited, but is preferably under air.
Further, if necessary, multi-stage firing may be performed at two or more different temperatures.
 電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子の機能層として用いる場合、5~300nmが好ましい。膜厚を変化させる方法としては、電荷輸送性組成物中の固形分濃度を変化させたり、塗布時の液量を変化させたりする等の方法がある。 The thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 300 nm when used as a functional layer of an organic EL device. As a method of changing the film thickness, there are a method of changing a solid concentration in the charge transporting composition, a method of changing a liquid amount at the time of coating, and the like.
 本発明の有機EL素子は、一対の電極を有し、これら電極の間に、上述の本発明の電荷輸送性薄膜を有するものである。
 有機EL素子の代表的な構成としては、以下(a)~(f)が挙げられるが、これらに限定されるわけではない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層あるいは電子注入輸送層がホール(正孔)ブロック層等としての機能を兼ね備えていてもよい。更に、必要に応じて各層の間に任意の機能層を設けることも可能である。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
The organic EL device of the present invention has a pair of electrodes, and has the above-described charge transporting thin film of the present invention between these electrodes.
Representative configurations of the organic EL device include the following (a) to (f), but are not limited thereto. In the following configuration, an electron block layer or the like may be provided between the light emitting layer and the anode, and a hole (hole) block layer or the like may be provided between the light emitting layer and the cathode as necessary. Further, the hole injection layer, the hole transport layer, or the hole injection / transport layer may also have a function as an electron blocking layer or the like, and the electron injection layer, the electron transport layer, or the electron injection / transport layer may be a hole (hole). It may have a function as a block layer or the like. Further, an optional functional layer can be provided between the layers as needed.
(A) anode / hole injection layer / hole transport layer / emission layer / electron transport layer / electron injection layer / cathode (b) anode / hole injection layer / hole transport layer / emission layer / electron injection transport layer / Cathode (c) anode / hole injection / transport layer / emission layer / electron transport layer / electron injection layer / cathode (d) anode / hole injection / transport layer / emission layer / electron injection / transport layer / cathode (e) anode / positive Hole injection layer / hole transport layer / emission layer / cathode (f) anode / hole injection / transport layer / emission layer / cathode
 「正孔注入層」、「正孔輸送層」及び「正孔注入輸送層」とは、発光層と陽極との間に形成される層であって、正孔を陽極から発光層へ輸送する機能を有するものであり、発光層と陽極の間に、正孔輸送性材料の層が1層のみ設けられる場合、それが「正孔注入輸送層」であり、発光層と陽極の間に、正孔輸送性材料の層が2層以上設けられる場合、陽極に近い層が「正孔注入層」であり、それ以外の層が「正孔輸送層」である。特に、正孔注入(輸送)層は、陽極からの正孔受容性だけでなく、正孔輸送(発光)層への正孔注入性にも優れる薄膜が用いられる。
 「電子注入層」、「電子輸送層」及び「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものであり、発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。
 「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
“Hole injection layer”, “hole transport layer” and “hole injection transport layer” are layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer. It has a function, when only one layer of a hole transporting material is provided between the light emitting layer and the anode, it is a “hole injection transport layer”, and between the light emitting layer and the anode, When two or more layers of the hole transporting material are provided, a layer close to the anode is a “hole injection layer”, and the other layers are a “hole transport layer”. In particular, as the hole injection (transport) layer, a thin film that is excellent in not only the property of accepting holes from the anode but also the property of injecting holes into the hole transport (emission) layer is used.
"Electron injection layer", "electron transport layer" and "electron injection transport layer" are layers formed between the light emitting layer and the cathode, and have a function of transporting electrons from the cathode to the light emitting layer. When only one layer of an electron transporting material is provided between the light emitting layer and the cathode, it is an “electron injecting and transporting layer”, and the layer of the electron transporting material is provided between the light emitting layer and the cathode. Is provided, two or more layers are the “electron injection layer” near the cathode and the other layers are the “electron transport layer”.
The “light-emitting layer” is an organic layer having a light-emitting function, and includes a host material and a dopant material when a doping system is employed. At this time, the host material mainly has a function of promoting recombination of electrons and holes and confining excitons in the light-emitting layer, and the dopant material efficiently emits excitons obtained by the recombination. Has functions. In the case of a phosphorescent element, a host material has a function of mainly confining excitons generated by a dopant in a light-emitting layer.
 本発明の電荷輸送性薄膜は、有機EL素子における陽極と発光層との間に設けられる有機機能膜として好適に用いることができるが、正孔注入層、正孔輸送層、正孔注入輸送層としてより好適に用いることができ、正孔注入層としてより一層好適に用いることができる。 The charge transporting thin film of the present invention can be suitably used as an organic functional film provided between an anode and a light emitting layer in an organic EL device. And more preferably as a hole injection layer.
 本発明の電荷輸送性組成物を用いて有機EL素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されるものではない。 {Circle around (1)} The following are examples of the materials used and the method for producing an organic EL device using the charge transporting composition of the present invention, but are not limited thereto.
 本発明の電荷輸送性組成物から得られる薄膜からなる正孔注入層を有するOLED素子の作製方法の一例は、以下のとおりである。なお、電極は、電極に悪影響を与えない範囲で、アルコール、純水等による洗浄や、UVオゾン処理、酸素-プラズマ処理等による表面処理を予め行うことが好ましい。
 陽極基板上に、上記の方法により、本発明の電荷輸送性薄膜からなる正孔注入層を形成する。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層、電子輸送層/ホールブロック層、陰極金属を順次蒸着する。あるいは、当該方法において蒸着で正孔輸送層と発光層を形成する代わりに、正孔輸送性高分子を含む正孔輸送層形成用組成物と発光性高分子を含む発光層形成用組成物を用いてウェットプロセスによってこれらの層を形成する。なお、必要に応じて、発光層と正孔輸送層との間に電子ブロック層を設けてよい。
One example of a method for producing an OLED element having a hole injection layer formed of a thin film obtained from the charge transporting composition of the present invention is as follows. Note that the electrode is preferably subjected to cleaning with alcohol, pure water, or the like, or surface treatment such as UV ozone treatment or oxygen-plasma treatment in advance within a range that does not adversely affect the electrode.
The hole injection layer composed of the charge transporting thin film of the present invention is formed on the anode substrate by the above method. This is introduced into a vacuum evaporation apparatus, and a hole transport layer, a light emitting layer, an electron transport layer, an electron transport layer / hole block layer, and a cathode metal are sequentially deposited. Alternatively, instead of forming the hole transporting layer and the light emitting layer by vapor deposition in the method, a hole transporting layer forming composition including a hole transporting polymer and a light emitting layer forming composition including a light emitting polymer are included. These layers are formed using a wet process. Note that, if necessary, an electron block layer may be provided between the light emitting layer and the hole transport layer.
 陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
 なお、金属陽極を構成するその他の金属としては、金、銀、銅、インジウムやこれらの合金等が挙げられるが、これらに限定されるわけではない。
Examples of the anode material include a transparent electrode typified by indium tin oxide (ITO) and indium zinc oxide (IZO), and a metal anode composed of a metal typified by aluminum, an alloy thereof, and the like. It is preferable that the material has been subjected to a chemical treatment. A polythiophene derivative or a polyaniline derivative having a high charge transporting property can also be used.
The other metal constituting the metal anode includes, but is not limited to, gold, silver, copper, indium and alloys thereof.
 正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体、[(トリフェニルアミン)ダイマー]スピロダイマー、N,N’-ビス(ナフタレン-1-イル)-N,N’-ビス(フェニル)-ベンジジン(α-NPD)、4,4’,4”-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のトリアリールアミン類、5,5”-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2’:5’,2”-ターチオフェン(BMA-3T)等のオリゴチオフェン類などが挙げられる。 Materials for forming the hole transport layer include (triphenylamine) dimer derivatives, [(triphenylamine) dimer] spiro dimer, N, N′-bis (naphthalen-1-yl) -N, N′-bis (Phenyl) -benzidine (α-NPD), 4,4 ′, 4 ″ -tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), 4,4 ′, 4 ″ -tris [1 -Naphthyl (phenyl) amino] triphenylamine (1-TNATA) and the like, and 5,5 ″ -bis- {4- [bis (4-methylphenyl) amino] phenyl} -2,2 ′: Oligothiophenes such as 5 ′, 2 ″ -terthiophene (BMA-3T) are exemplified.
 発光層を形成する材料としては、8-ヒドロキシキノリンのアルミニウム錯体等の金属錯体、10-ヒドロキシベンゾ[h]キノリンの金属錯体、ビススチリルベンゼン誘導体、ビススチリルアリーレン誘導体、(2-ヒドロキシフェニル)ベンゾチアゾールの金属錯体、シロール誘導体等の低分子発光材料;ポリ(p-フェニレンビニレン)、ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]、ポリ(3-アルキルチオフェン)、ポリビニルカルバゾール等の高分子化合物に発光材料と電子移動材料を混合した系等が挙げられるが、これらに限定されない。
 また、蒸着で発光層を形成する場合、発光性ドーパントと共蒸着してもよく、発光性ドーパントとしては、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)等の金属錯体や、ルブレン等のナフタセン誘導体、キナクリドン誘導体、ペリレン等の縮合多環芳香族環等が挙げられるが、これらに限定されない。
Materials for forming the light emitting layer include metal complexes such as 8-hydroxyquinoline aluminum complexes, metal complexes of 10-hydroxybenzo [h] quinoline, bisstyrylbenzene derivatives, bisstyrylarylene derivatives, (2-hydroxyphenyl) benzo. Low molecular light emitting materials such as thiazole metal complexes and silole derivatives; poly (p-phenylenevinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene], poly (3-alkyl Examples thereof include a system in which a light-emitting material and an electron transfer material are mixed with a high molecular compound such as thiophene) and polyvinyl carbazole, but are not limited thereto.
When the light emitting layer is formed by vapor deposition, the light emitting layer may be co-deposited with a light emitting dopant. As the light emitting dopant, a metal complex such as tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ) may be used. And naphthacene derivatives such as rubrene, quinacridone derivatives, condensed polycyclic aromatic rings such as perylene, and the like, but are not limited thereto.
 電子輸送層/ホールブロック層を形成する材料としては、オキシジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、フェニルキノキサリン誘導体、ベンズイミダゾール誘導体、ピリミジン誘導体等が挙げられるが、これらに限定されない。 材料 Materials for forming the electron transport layer / hole block layer include, but are not limited to, oxydiazole derivatives, triazole derivatives, phenanthroline derivatives, phenylquinoxaline derivatives, benzimidazole derivatives, and pyrimidine derivatives.
 電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)等の金属酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)の金属フッ化物が挙げられるが、これらに限定されない。
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金等が挙げられるが、これらに限定されない。
 電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられるが、これに限定されない。
Materials for forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (MgO), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). But not limited thereto.
Cathode materials include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.
Materials for forming the electron block layer include, but are not limited to, tris (phenylpyrazole) iridium and the like.
 正孔輸送性高分子としては、ポリ[(9,9-ジヘキシルフルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,1’-ビフェニレン-4,4-ジアミン)]、ポリ[(9,9-ビス{1’-ペンテン-5’-イル}フルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン]-エンドキャップド ウィズ ポリシルシスキノキサン、ポリ[(9,9-ジジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-(p-ブチルフェニル))ジフェニルアミン)]等が挙げられる。 As the hole transporting polymer, poly [(9,9-dihexylfluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1,4-diaminophenylene] )], Poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (N, N′-bis {p-butylphenyl} -1,1′-biphenylene-4,4-diamine )], Poly [(9,9-bis {1′-penten-5′-yl} fluorenyl-2,7-diyl) -co- (N, N′-bis {p-butylphenyl} -1,4 -Diaminophenylene)], poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -benzidine] -end-capped {with} polysilsisquinoxane, poly [(9,9- Didiooctylfluorenyl-2,7-diyl -co- (4,4 '- (N- (p- butylphenyl)) diphenylamine)], and the like.
 発光性高分子としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2’-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。 Examples of the luminescent polymer include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH- Polyphenylene vinylene derivatives such as PPV); polythiophene derivatives such as poly (3-alkylthiophene) (PAT); and polyvinyl carbazole (PVCz).
 以下、本発明を実施例によりさらに具体的に説明するが、本発明は、これに限定されるものではない。なお、使用した装置は以下のとおりである。
(1)基板洗浄:長州産業(株)製 基板洗浄装置(減圧プラズマ方式)
(2)組成物の塗布:ミカサ(株)製 スピンコーターMS-A100
(3)素子の作製:長州産業(株)製 多機能蒸着装置システムC-E2L1G1-N
(4)電流密度等の測定:(株)イーエッチシー製 多チャンネルIVL測定装置
(5)EL素子の寿命測定(半減期の測定):(株)イーエッチシー製 有機EL輝度寿命評価システムPEL-105S
(6)重量平均分子量(Mw)及び数平均分子量(Mn)測定:(株)島津製作所製(カラム:SHODEX GPC KF-803L+GPC KF-804L、カラム温度:40℃、検出器:UV検出器(254nm)及びRI検出器、溶離液:0.5%Et3N/THF、カラム流速:1.0mL/min.)
(7)1H-NMR:Bruker社製 Ascend500
(8)LC/MS:ウォーターズ社製 ZQ2000
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto. In addition, the used apparatus is as follows.
(1) Substrate cleaning: Choshu Sangyo Co., Ltd. substrate cleaning system (reduced pressure plasma method)
(2) Application of composition: Spin coater MS-A100 manufactured by Mikasa Corporation
(3) Fabrication of element: Multifunctional vapor deposition system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd.
(4) Measurement of current density, etc .: Multi-channel IVL measuring device manufactured by ECH Corporation (5) Life measurement of EL element (measurement of half-life): Organic EL luminance life evaluation system PEL manufactured by ECH Corporation -105S
(6) Measurement of weight average molecular weight (Mw) and number average molecular weight (Mn): manufactured by Shimadzu Corporation (column: SHOdex GPC KF-803L + GPC KF-804L, column temperature: 40 ° C., detector: UV detector (254 nm) ) And RI detector, eluent: 0.5% Et 3 N / THF, column flow rate: 1.0 mL / min.)
(7) 1 H-NMR: Ascend500 manufactured by Bruker
(8) LC / MS: ZQ2000 manufactured by Waters
[1]原料化合物の合成
[合成例1]
Figure JPOXMLDOC01-appb-C000034
[1] Synthesis of raw material compounds [Synthesis Example 1]
Figure JPOXMLDOC01-appb-C000034
 三口フラスコ内に4-s-ブチルアニリン(4.48g,30mmol)と4-フルオロニトロベンゼン(8.51g,60.3mmol)を入れ、更にそこへジメチルスルホキシド(45mL)とフッ化セシウム(9.16g,60.3mmol)を加え、110℃で48時間加熱還流した。
 反応液を室温まで冷却した後、冷却した反応液をエタノール(750mL)に滴下し、析出した固体をろ取し、得られたろ物を水(100mL)で洗浄し乾燥することで、化合物1を得た(8.60g,73%)。
1H-NMR(500MHz、CDCl3):δ 0.87(t,J= 7.5Hz,3H), 1.27(d,J= 7.0Hz,3H), 1.62(quin,J= 7.5Hz,2H), 2.65(sext,J= 7.0Hz,1H), 7.08(d,J= 8.5Hz,2H), 7.14(d,J= 9.0Hz,4H), 7.23(d,J= 8.5Hz,2H), 8.14(d,J= 9.0Hz,4H).
4-S-butylaniline (4.48 g, 30 mmol) and 4-fluoronitrobenzene (8.51 g, 60.3 mmol) were placed in a three-necked flask, and dimethyl sulfoxide (45 mL) and cesium fluoride (9.16 g) were further added thereto. , 60.3 mmol) and heated under reflux at 110 ° C. for 48 hours.
After the reaction solution was cooled to room temperature, the cooled reaction solution was added dropwise to ethanol (750 mL), the precipitated solid was collected by filtration, and the obtained residue was washed with water (100 mL) and dried to obtain Compound 1. (8.60 g, 73%).
1 H-NMR (500 MHz, CDCl 3): δ 0.87 (t, J = 7.5 Hz, 3H), 1.27 (d, J = 7.0 Hz, 3H), 1.62 (quin, J = 7) 0.5Hz, 2H), 2.65 (sext, J = 7.0Hz, 1H), 7.08 (d, J = 8.5Hz, 2H), 7.14 (d, J = 9.0Hz, 4H) , 7.23 (d, J = 8.5 Hz, 2H), 8.14 (d, J = 9.0 Hz, 4H).
[合成例2]
Figure JPOXMLDOC01-appb-C000035
[Synthesis Example 2]
Figure JPOXMLDOC01-appb-C000035
 三口フラスコ内に化合物1(4.3g,11mmol)のエタノール懸濁液(65mL)を入れ、そこへパラジウム炭素(0.21g)とヒドラジン一水和物(6.5mL)を加え、5時間加熱還流した。
 反応液を室温まで冷却した後、冷却した反応液をセライトろ過し、ろ物をエタノール(30mL)で洗浄し、このエタノールを含めたろ液を回収した。
 回収したろ液に水(400mL)を加えて0℃で30分間撹拌し、析出した固体をろ取し、乾燥することで、化合物2を得た(3.00g,82%)。
1H-NMR(500MHz、CDCl3):δ 0.83(t,J= 7.5Hz,3H), 1.19(d,J= 6.5Hz,3H), 1.54(quin,J= 7.5Hz,2H), 2.49(sext,J= 7.0Hz,1H), 3.52(brs, 4H), 6.60(d,J= 8.5Hz,4H), 6.83(d,J= 8.5Hz,2H), 6.91-6.95(m, 6H). 
LC/MS(ESI+)m/z;332[M+1]+
An ethanol suspension (65 mL) of compound 1 (4.3 g, 11 mmol) was placed in a three-necked flask, palladium carbon (0.21 g) and hydrazine monohydrate (6.5 mL) were added thereto, and the mixture was heated for 5 hours. Refluxed.
After cooling the reaction solution to room temperature, the cooled reaction solution was filtered through celite, the residue was washed with ethanol (30 mL), and the filtrate containing ethanol was collected.
Water (400 mL) was added to the collected filtrate, and the mixture was stirred at 0 ° C. for 30 minutes. The precipitated solid was collected by filtration and dried to obtain Compound 2 (3.00 g, 82%).
1 H-NMR (500 MHz, CDCl 3 ): δ 0.83 (t, J = 7.5 Hz, 3H), 1.19 (d, J = 6.5 Hz, 3H), 1.54 (quin, J = 7.5 Hz, 2H), 2.49 (sext, J = 7.0 Hz, 1H), 3.52 (brs, 4H), 6.60 (d, J = 8.5 Hz, 4H), 6.83 ( d, J = 8.5 Hz, 2H), 6.91-6.95 (m, 6H).
LC / MS (ESI + ) m / z; 332 [M + 1] +
[2]重合体(ポリマー)の合成
[実施例1]
Figure JPOXMLDOC01-appb-C000036
[2] Synthesis of polymer [Example 1]
Figure JPOXMLDOC01-appb-C000036
 三口フラスコ内に化合物2(1.50g,4.5mmol)、化合物3(1.72g,3.75mmol)、Pd(PPh34(0.43g,0.38mmol)及びt-BuONa(0.86g,9mmol)を入れ、そこへキシレン(34mL)を加え、4時間加熱還流した後、4-s-ブチルアニリン(0.20g,1.35mmol)を加え、さらに3時間加熱還流した。
 反応液を室温まで冷却した後、冷却した反応液を水(34mL)と混合し、得られた混合物とトルエン(17mL×2)とを用いて分液処理を行い、有機層を回収して硫酸ナトリウムで乾燥した。
 次いで、乾燥した有機層を濃縮し、得られた濃縮物にテトラヒドロフラン(17mL)を加えて希釈し、得られた希釈物をメタノール(340mL)に滴下して1時間撹拌した。
 その後、析出した粉末を吸引ろ過で回収し、得られたろ物をテトラヒドロフラン(17mL)に溶解させ、この溶液をメタノール(340mL)に滴下して1時間撹拌し、析出した粉末を吸引ろ過で回収し減圧乾燥することで、ポリマーAを得た(2.20g)。
 なお、化合物3は、J.Mater.Chem.,2011,21,11800に記載の方法に従い合成した。
Mw=3,871 Mn(GPC)=7,455 Mw/Mn=1.93
In a three-necked flask, compound 2 (1.50 g, 4.5 mmol), compound 3 (1.72 g, 3.75 mmol), Pd (PPh 3 ) 4 (0.43 g, 0.38 mmol) and t-BuONa (0. 86 g, 9 mmol), xylene (34 mL) was added thereto, and the mixture was heated under reflux for 4 hours. Then, 4-s-butylaniline (0.20 g, 1.35 mmol) was added, and the mixture was further heated under reflux for 3 hours.
After cooling the reaction solution to room temperature, the cooled reaction solution was mixed with water (34 mL), liquid separation was performed using the obtained mixture and toluene (17 mL × 2), and the organic layer was recovered and sulfuric acid was collected. Dried with sodium.
Next, the dried organic layer was concentrated, and the obtained concentrate was diluted with tetrahydrofuran (17 mL), and the obtained diluted substance was dropped into methanol (340 mL) and stirred for 1 hour.
Thereafter, the precipitated powder was collected by suction filtration, the obtained residue was dissolved in tetrahydrofuran (17 mL), and this solution was added dropwise to methanol (340 mL), stirred for 1 hour, and the precipitated powder was collected by suction filtration. The polymer A was obtained by drying under reduced pressure (2.20 g).
Compound 3 was prepared according to the method described in J. Am. Mater. Chem. , 2011, 21, 11800.
Mw = 3,871 Mn (GPC) = 7,455 Mw / Mn = 1.93
[比較例1]
Figure JPOXMLDOC01-appb-C000037
[Comparative Example 1]
Figure JPOXMLDOC01-appb-C000037
 フラスコ内に4-s-ブチルアニリン(1.51g,10.1mmol)、1,4-ジブロモベンゼン(2.36g,10mmol)、Pd(dba)4(0.43g,0.38mmol)、[(t-Bu)3Ph]BF4(0.58g,2mmol)及びt-BuONa(2.88g,30mmol)を入れ、そこへトルエン(47mL)を加え、3時間加熱還流した後、ジフェニルアミン(0.34g,2mmol)を加え、さらに2時間加熱還流した。
 反応液を室温まで冷却した後、冷却した反応液を水(50mL)と混合し、得られた混合物とクロロホルム(50mL×2)とを用いて分液処理を行い、有機層を回収して硫酸ナトリウムで乾燥した。
 次いで、乾燥した有機層を濃縮し、得られた濃縮物にクロロホルム(50mL)を加えて希釈し、得られた希釈物をメタノール(470mL)に滴下して1時間撹拌した。
 その後、析出した粉末を吸引ろ過で回収し、得られたろ物をクロロホルム(50mL)に溶解させ、この溶液をメタノール(470mL)に低下して1時間撹拌し、析出した粉末を吸引ろ過で回収し減圧乾燥することで、ポリマーXを得た(1.88g)。
Mw=2,043 Mn=3,608 Mw/Mn=1.77
In a flask, 4-s-butylaniline (1.51 g, 10.1 mmol), 1,4-dibromobenzene (2.36 g, 10 mmol), Pd (dba) 4 (0.43 g, 0.38 mmol), [( [t-Bu) 3 Ph] BF 4 (0.58 g, 2 mmol) and t-BuONa (2.88 g, 30 mmol) were added, toluene (47 mL) was added thereto, and the mixture was heated under reflux for 3 hours, and then diphenylamine (0. 34 g, 2 mmol), and the mixture was further heated under reflux for 2 hours.
After cooling the reaction solution to room temperature, the cooled reaction solution is mixed with water (50 mL), liquid separation is performed using the obtained mixture and chloroform (50 mL × 2), and the organic layer is recovered and sulfuric acid is collected. Dried with sodium.
Next, the dried organic layer was concentrated, and the obtained concentrate was diluted with chloroform (50 mL), and the obtained diluted substance was dropped into methanol (470 mL) and stirred for 1 hour.
Thereafter, the precipitated powder was collected by suction filtration, the obtained residue was dissolved in chloroform (50 mL), the solution was reduced to methanol (470 mL), stirred for 1 hour, and the precipitated powder was collected by suction filtration. The polymer X was obtained by drying under reduced pressure (1.88 g).
Mw = 2,043 Mn = 3,608 Mw / Mn = 1.77
[3]電荷輸送性組成物の調製
[実施例2]
 ポリマーA0.167gと、下記のアリールスルホン酸エステル化合物0.333gとを、トリエチレングリコールブチルメチルエーテル4.75g、安息香酸ブチル2.85gおよびフタル酸ジメチル1.90gの混合溶媒に溶解させ、電荷輸送性組成物を得た。なお、下記のアリールスルホン酸エステル化合物は、国際公開第2017/217457号に記載の方法に従って合成した。
[3] Preparation of charge transporting composition [Example 2]
0.167 g of polymer A and 0.333 g of the following arylsulfonic acid ester compound were dissolved in a mixed solvent of 4.75 g of triethylene glycol butyl methyl ether, 2.85 g of butyl benzoate, and 1.90 g of dimethyl phthalate, and the electric charge was obtained. A transportable composition was obtained. In addition, the following arylsulfonic acid ester compounds were synthesized according to the method described in WO2017 / 217457.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
[比較例2]
 ポリマーAの代わりにポリマーXを用いた以外は、実施例2と同様の方法で、組成物の調製を試みたが、固体が溶け残り、電荷輸送性薄膜を作製するのに十分に均一な組成物を得ることができなかった。
[Comparative Example 2]
An attempt was made to prepare a composition in the same manner as in Example 2 except that polymer X was used instead of polymer A. However, the solid remained undissolved, and the composition was sufficiently uniform to produce a charge transporting thin film. I couldn't get anything.
[4]単層素子の作製と特性評価
[実施例3]
 実施例2で得られた電荷輸送性組成物を、スピンコーターを用いてITO基板に塗布した後、大気下、120℃で1分間乾燥し、次いで230℃で15分間焼成し、ITO基板上に40nmの均一な薄膜を形成した。ITO基板としては、パターニングされた厚さ50nmのインジウム錫酸化物(ITO)膜が表面に形成された、25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。
 次いで、その上に、蒸着装置(真空度1.0×10-5Pa)を用いて、アルミニウムを0.2nm/秒の条件で80nm成膜し、単層素子を得た。なお、空気中の酸素、水等の影響による特性劣化を防止するため、単層素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-76℃以下の窒素雰囲気中で、素子を封止基板の間に収め、封止基板を接着剤((株)MORESCO製、モレスコモイスチャーカット WB90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製,HD-071010W-40)を素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着剤を硬化させた。
[4] Fabrication of single-layer device and evaluation of characteristics [Example 3]
The charge transporting composition obtained in Example 2 was applied to an ITO substrate using a spin coater, dried at 120 ° C. for 1 minute in the atmosphere, and then baked at 230 ° C. for 15 minutes to form a film on the ITO substrate. A uniform thin film of 40 nm was formed. As the ITO substrate, a 25 mm × 25 mm × 0.7 t glass substrate having a patterned indium tin oxide (ITO) film with a thickness of 50 nm formed on the surface was used. Before use, an O 2 plasma cleaning device (150 W) was used. , 30 seconds) to remove impurities on the surface.
Next, an aluminum film was formed thereon with a thickness of 80 nm at a rate of 0.2 nm / sec using a vapor deposition apparatus (degree of vacuum: 1.0 × 10 −5 Pa) to obtain a single-layer element. In order to prevent deterioration of characteristics due to the influence of oxygen, water and the like in the air, the characteristics of the single-layer element were evaluated after being sealed with a sealing substrate. Sealing was performed in the following procedure. In a nitrogen atmosphere having an oxygen concentration of 2 ppm or less and a dew point of -76 ° C. or less, the element is placed between sealing substrates, and the sealing substrates are bonded with an adhesive (Moresco Moisture Cut WB90US (P), manufactured by MORESCO Corporation). I combined. At this time, a water catching agent (HD-071010W-40, manufactured by Dynic Corp.) was housed in the sealing substrate together with the device. The bonded sealing substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
 得られた素子に5Vの電圧を印加した際の電流密度を測定した。結果を表1に示す。 (4) The current density when a voltage of 5 V was applied to the obtained device was measured. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 表1に示されるように、本発明の電荷輸送性組成物から得られた薄膜は、優れた電荷輸送性を示した。 薄膜 As shown in Table 1, the thin film obtained from the charge transporting composition of the present invention exhibited excellent charge transporting properties.
[5]有機EL素子の作製と特性評価
[実施例4]
 膜厚を50nmとした以外は、実施例3と同様の方法で、実施例2で得られた電荷輸送性組成物を用いてITO基板上に薄膜を形成した。
 次いで、この形成した薄膜の上に、蒸着装置(真空度1.0×10-5Pa)を用いて、α-NPDを0.2nm/秒にて30nm成膜し、その上に、関東化学社製の電子ブロック材料HTEB-01を10nm成膜した。更にその上に、新日鉄住金化学社製の発光層ホスト材料NS60と発光層ドーパント材料Ir(PPy)3を共蒸着した。共蒸着は、Ir(PPy)3の濃度が6%になるように蒸着レートをコントロールし、40nm積層させた。最後に、Alq3、フッ化リチウム及びアルミニウムの薄膜を順次積層して、有機EL素子を得た。この際、蒸着レートは、Alq3及びアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ20nm、0.5nm及び80nmとした。
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、実施例3と同様の方法で素子を封止した後、その特性を評価した。
[5] Production of organic EL element and evaluation of characteristics [Example 4]
A thin film was formed on an ITO substrate using the charge transporting composition obtained in Example 2 in the same manner as in Example 3 except that the film thickness was changed to 50 nm.
Then, a 30 nm film of α-NPD was formed on the formed thin film at a rate of 0.2 nm / sec using an evaporation apparatus (degree of vacuum: 1.0 × 10 −5 Pa). An electron block material HTEB-01 manufactured by the company was formed into a film having a thickness of 10 nm. Furthermore, a light-emitting layer host material NS60 and a light-emitting layer dopant material Ir (PPy) 3 manufactured by Nippon Steel & Sumikin Chemical Co. were co-evaporated thereon. In the co-evaporation, the deposition rate was controlled so that the concentration of Ir (PPy) 3 became 6%, and the layers were stacked to a thickness of 40 nm. Finally, a thin film of Alq 3 , lithium fluoride and aluminum was sequentially laminated to obtain an organic EL device. At this time, the deposition rate was 0.2 nm / sec for Alq 3 and aluminum, and 0.02 nm / sec for lithium fluoride, and the film thickness was 20 nm, 0.5 nm and 80 nm, respectively.
In addition, in order to prevent the characteristic deterioration due to the influence of oxygen, water and the like in the air, the element was sealed in the same manner as in Example 3, and the characteristic was evaluated.
 得られた素子を輝度10,000cd/m2で駆動した場合における駆動電圧、電流密度、発光効率及び外部量子収率並びに輝度の半減期を測定した。結果を表2に示す。 When the obtained device was driven at a luminance of 10,000 cd / m 2 , a driving voltage, a current density, a luminous efficiency, an external quantum yield, and a half-life of the luminance were measured. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 表2に示されるように、本発明の電荷輸送性組成物から得られた電荷輸送性薄膜を備える有機EL素子は、好適に駆動し、耐久性にも優れていた。 As shown in Table 2, the organic EL device provided with the charge transporting thin film obtained from the charge transporting composition of the present invention was suitably driven and had excellent durability.

Claims (8)

  1.  式(P1)で表される繰り返し単位を含む重合体。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Phは、1,4-フェニレン基を表し、Gは、式(A01)~(A18)のいずれかで表される1価の基を表す。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (式中、L01は、-S-、-O-、-CO-、-CH2-、-(CH22-、-C(CH32-、-CF2-、-(CF22-、-C(CF32-又はフルオレン-9,9-ジイル基を表し、
     L02は、互いに独立して、水素原子、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、フッ素原子で置換されていてもよい炭素数2~20のアルケニル基、フッ素原子で置換されていてもよい炭素数2~20のアルキニル基又はRで置換されていてもよい炭素数6~20のアリール基を表し、
     L03及びL04は、互いに独立して、水素原子、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、フッ素原子で置換されていてもよい炭素数2~20のアルケニル基、フッ素原子で置換されていてもよい炭素数2~20のアルキニル基又はRで置換されていてもよい炭素数6~20のアリール基を表し、
     Z01~Z18は、芳香環に置換する置換基を表し、互いに独立して、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、フッ素原子で置換されていてもよい炭素数2~20のアルケニル基又は炭素数2~20のアルキニル基を表し、
     Rは、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、フッ素原子で置換されていてもよい炭素数2~20のアルケニル基又はフッ素原子で置換されていてもよい炭素数2~20のアルキニル基を表し、
     Arは、式(S1)~(S6)のいずれかで表される基を表し、
    Figure JPOXMLDOC01-appb-C000006
     a011~a183は、互いに独立に、芳香環に置換する置換基の数を示す整数であり、
     a071、a081、a091、a101及びa111は、0~3であり、
     a051、a061、a072、a082、a092、a102、a112、a113、a114、a121、a131、a141、a151、a161、a171、a181、a182及びa183は、0~4であり、
     a011、a052、a062、a122、a123及びa132は、0~5であり、
     a021、a133、a142、a143、a152、a153、a162及びa163は、0~7であり、
     a031及びa041は、0~9である。)〕
    A polymer containing a repeating unit represented by the formula (P1).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, Ph represents a 1,4-phenylene group, and G represents a monovalent group represented by any of formulas (A01) to (A18).
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (Wherein L 01 represents —S—, —O—, —CO—, —CH 2 —, — (CH 2 ) 2 —, —C (CH 3 ) 2 —, —CF 2 —, — (CF 2 ) 2— , —C (CF 3 ) 2 — or a fluorene-9,9-diyl group,
    L 02 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, a fluorine atom Represents an alkynyl group having 2 to 20 carbon atoms which may be substituted by or an aryl group having 6 to 20 carbon atoms which may be substituted by R,
    L 03 and L 04 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, or an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom Represents an alkynyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom or an aryl group having 6 to 20 carbon atoms which may be substituted by R;
    Z 01 to Z 18 each independently represent a substituent substituted on an aromatic ring, and each independently represents an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, or a carbon atom which may be substituted by a fluorine atom. Represents an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms;
    R represents an alkyl group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, an alkenyl group having 2 to 20 carbon atoms which may be substituted by a fluorine atom, or a carbon atom which may be substituted by a fluorine atom. Represents 2 to 20 alkynyl groups,
    Ar represents a group represented by any of formulas (S1) to (S6),
    Figure JPOXMLDOC01-appb-C000006
    a 011 to a 183 are each independently an integer indicating the number of substituents to be substituted on the aromatic ring;
    a 071 , a 081 , a 091 , a 101 and a 111 are from 0 to 3,
    a 051, a 061, a 072 , a 082, a 092, a 102, a 112, a 113, a 114, a 121, a 131, a 141, a 151, a 161, a 171, a 181, a 182 And a 183 is from 0 to 4,
    a 011 , a 052 , a 062 , a 122 , a 123 and a 132 are from 0 to 5,
    a 021 , a 133 , a 142 , a 143 , a 152 , a 153 , a 162 and a 163 are from 0 to 7,
    a 031 and a 041 are 0 to 9; )]
  2.  前記Gが、式(A01-1)~(A01-3)のいずれかで表される基である請求項1記載の重合体。
    Figure JPOXMLDOC01-appb-C000007
    (式中、Z01は、前記と同じ意味を示す。)
    2. The polymer according to claim 1, wherein G is a group represented by any one of formulas (A01-1) to (A01-3).
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, Z 01 has the same meaning as described above.)
  3.  式(E1)で表される繰り返し単位を含む重合体。
    Figure JPOXMLDOC01-appb-C000008
    A polymer containing a repeating unit represented by the formula (E1).
    Figure JPOXMLDOC01-appb-C000008
  4.  請求項1~3のいずれか1項記載の重合体からなる電荷輸送性物質と、有機溶媒とを含む電荷輸送性組成物。 (4) A charge transporting composition comprising the charge transporting substance comprising the polymer according to any one of (1) to (3) and an organic solvent.
  5.  更に電荷受容性物質又は電荷受容性物質前駆体を含む請求項4記載の電荷輸送性組成物。 The charge-transporting composition according to claim 4, further comprising a charge-accepting substance or a charge-accepting substance precursor.
  6.  請求項4又は5記載の電荷輸送性組成物から得られる電荷輸送性薄膜。 A charge transporting thin film obtained from the charge transporting composition according to claim 4 or 5.
  7.  請求項6記載の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子。 An organic electroluminescent device having the charge transporting thin film according to claim 6.
  8.  式(A1)で表されるトリフェニルアミン誘導体と、式(H1)で表されるトリフェニルアミン誘導体とを反応させることを特徴とする請求項1記載の重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000009
    (式中、Xは、互いに独立して、塩素原子、臭素原子、ヨウ素原子又は擬ハロゲン基を表し、Ph及びGは、前記と同じ意味を示す。)
    The method for producing a polymer according to claim 1, wherein the triphenylamine derivative represented by the formula (A1) is reacted with the triphenylamine derivative represented by the formula (H1).
    Figure JPOXMLDOC01-appb-C000009
    (In the formula, X independently represents a chlorine atom, a bromine atom, an iodine atom or a pseudohalogen group, and Ph and G have the same meanings as described above.)
PCT/JP2019/029571 2018-08-01 2019-07-29 Polymer and use of same WO2020027014A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020533514A JP7322884B2 (en) 2018-08-01 2019-07-29 Polymer and its use
CN201980050008.XA CN112513140B (en) 2018-08-01 2019-07-29 Polymer and use thereof
KR1020217005350A KR20210037688A (en) 2018-08-01 2019-07-29 Polymer and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018145213 2018-08-01
JP2018-145213 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020027014A1 true WO2020027014A1 (en) 2020-02-06

Family

ID=69232461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029571 WO2020027014A1 (en) 2018-08-01 2019-07-29 Polymer and use of same

Country Status (5)

Country Link
JP (1) JP7322884B2 (en)
KR (1) KR20210037688A (en)
CN (1) CN112513140B (en)
TW (1) TWI828732B (en)
WO (1) WO2020027014A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123845A (en) * 2008-11-21 2010-06-03 Konica Minolta Medical & Graphic Inc Organic piezoelectric substance, organic piezoelectric material, ultrasonic vibrator, and ultrasonic probe
JP2010225950A (en) * 2009-03-25 2010-10-07 Toyo Ink Mfg Co Ltd Organic electroluminescence element using polymer
JP2012126813A (en) * 2010-12-15 2012-07-05 Tosoh Corp New arylamine dendrimer-like compound, and method for producing the same and application of the same
WO2014148415A1 (en) * 2013-03-18 2014-09-25 日産化学工業株式会社 Charge-transporting varnish
WO2014203882A1 (en) * 2013-06-21 2014-12-24 日産化学工業株式会社 Aniline derivative, charge-transporting varnish and organic electroluminescent device
WO2015141585A1 (en) * 2014-03-17 2015-09-24 日産化学工業株式会社 Oligoaniline derivative, charge-transporting varnish, and organic electroluminescent element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343832B2 (en) 2008-12-04 2013-11-13 三菱化学株式会社 Arylamine polymer, organic electroluminescent element material, composition for organic electroluminescent element, organic electroluminescent element, organic EL display and organic EL lighting
JP5343818B2 (en) 2009-11-12 2013-11-13 三菱化学株式会社 Arylamine polymer, organic electroluminescent element material, composition for organic electroluminescent element, organic electroluminescent element, organic EL display device, and organic EL lighting
JP5720191B2 (en) 2010-11-12 2015-05-20 三菱化学株式会社 Arylamine polymer, charge transport material, composition for organic electroluminescence device, organic electroluminescence device, organic EL display device and organic EL illumination
CN105009318B (en) * 2013-02-28 2017-04-12 日产化学工业株式会社 Charge-transporting varnish
WO2015050253A1 (en) 2013-10-04 2015-04-09 日産化学工業株式会社 Aniline derivatives and uses thereof
JP6597597B2 (en) * 2014-03-14 2019-10-30 日産化学株式会社 Aniline derivatives and uses thereof
WO2017047644A1 (en) 2015-09-18 2017-03-23 住友化学株式会社 Polymer compound and light-emitting element using same
TWI826362B (en) 2016-12-12 2023-12-21 日商三菱化學股份有限公司 Composition for forming organic electroluminescent element, organic electroluminescent element, and method for producing organic film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123845A (en) * 2008-11-21 2010-06-03 Konica Minolta Medical & Graphic Inc Organic piezoelectric substance, organic piezoelectric material, ultrasonic vibrator, and ultrasonic probe
JP2010225950A (en) * 2009-03-25 2010-10-07 Toyo Ink Mfg Co Ltd Organic electroluminescence element using polymer
JP2012126813A (en) * 2010-12-15 2012-07-05 Tosoh Corp New arylamine dendrimer-like compound, and method for producing the same and application of the same
WO2014148415A1 (en) * 2013-03-18 2014-09-25 日産化学工業株式会社 Charge-transporting varnish
WO2014203882A1 (en) * 2013-06-21 2014-12-24 日産化学工業株式会社 Aniline derivative, charge-transporting varnish and organic electroluminescent device
WO2015141585A1 (en) * 2014-03-17 2015-09-24 日産化学工業株式会社 Oligoaniline derivative, charge-transporting varnish, and organic electroluminescent element

Also Published As

Publication number Publication date
JP7322884B2 (en) 2023-08-08
TW202017970A (en) 2020-05-16
KR20210037688A (en) 2021-04-06
CN112513140B (en) 2023-07-11
CN112513140A (en) 2021-03-16
TWI828732B (en) 2024-01-11
JPWO2020027014A1 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
JP6004083B2 (en) Charge transport varnish
EP2963699A1 (en) Charge-transporting varnish
JP2019135774A (en) Charge-transporting varnish for hole injection layer formation
JP6760455B2 (en) Aniline derivative and its manufacturing method
TWI620732B (en) Electrode transport varnish for metal anode and composite
JPWO2017164158A1 (en) Arylamine derivatives and their use
KR20160132440A (en) Aniline derivative and use thereof
JP2023126469A (en) Charge transporting varnish
JP7491302B2 (en) Arylamine compounds and their uses
JP7298611B2 (en) Composition for forming charge-transporting thin film
WO2020241730A1 (en) Arylamine compound and use thereof
JP7414001B2 (en) Charge transporting composition
JP7322884B2 (en) Polymer and its use
JP7420073B2 (en) Aniline derivative
WO2020203594A1 (en) Fluorene derivative and use thereof
KR20160133495A (en) Aniline derivative and use thereof
TWI839495B (en) Arylamine compounds and their use
JP7505407B2 (en) Aniline Derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217005350

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19845456

Country of ref document: EP

Kind code of ref document: A1