JP7505407B2 - Aniline Derivatives - Google Patents

Aniline Derivatives Download PDF

Info

Publication number
JP7505407B2
JP7505407B2 JP2020534742A JP2020534742A JP7505407B2 JP 7505407 B2 JP7505407 B2 JP 7505407B2 JP 2020534742 A JP2020534742 A JP 2020534742A JP 2020534742 A JP2020534742 A JP 2020534742A JP 7505407 B2 JP7505407 B2 JP 7505407B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
substituted
layer
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020534742A
Other languages
Japanese (ja)
Other versions
JPWO2020027264A1 (en
Inventor
直樹 中家
太一 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2020027264A1 publication Critical patent/JPWO2020027264A1/en
Application granted granted Critical
Publication of JP7505407B2 publication Critical patent/JP7505407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、アニリン誘導体に関する。 The present invention relates to an aniline derivative.

有機エレクトロルミネッセンス(以下、有機ELともいう。)素子には、発光層や電荷注入層として、有機化合物からなる電荷輸送性薄膜が用いられる。特に、正孔注入層は、陽極と、正孔輸送層あるいは発光層との電荷の授受を担い、有機EL素子の低電圧駆動及び高輝度を達成するために重要な機能を果たす。In organic electroluminescence (hereinafter referred to as organic EL) elements, charge transporting thin films made of organic compounds are used as the light emitting layer and charge injection layer. In particular, the hole injection layer is responsible for the exchange of charges between the anode and the hole transport layer or light emitting layer, and plays an important role in achieving low voltage operation and high brightness of the organic EL element.

正孔注入層の形成方法は、蒸着法に代表されるドライプロセスと、スピンコート法に代表されるウェットプロセスとに大別され、これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。 Methods for forming hole injection layers are roughly divided into dry processes, such as vapor deposition, and wet processes, such as spin coating. Comparing these processes, wet processes can efficiently produce thin films with high flatness over large areas. Therefore, as organic EL displays are currently being made larger, there is a demand for hole injection layers that can be formed by wet processes.

このような状況の下、本発明者らは、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れた特性を実現できる電荷輸送性を与える材料や、そのような材料に用い得る化合物を開発してきているが(例えば、特許文献1~3)、有機ELディスプレイの開発が精力的に進められている現在、新しいウェットプロセス用材料に対する要望は引き続き存在する。加えて、より安価な材料への要望も強い。Under these circumstances, the present inventors have developed materials that are applicable to various wet processes and that provide charge transport properties that enable excellent characteristics to be realized when applied to the hole injection layer of an organic EL element, as well as compounds that can be used in such materials (e.g., Patent Documents 1 to 3). However, with the current vigorous development of organic EL displays, there continues to be a demand for new wet process materials. In addition, there is also a strong demand for cheaper materials.

国際公開第2008/129947号International Publication No. 2008/129947 国際公開第2015/050253号International Publication No. 2015/050253 国際公開第2017/217457号International Publication No. 2017/217457

本発明は、前記事情に鑑みてなされたものであり、単純な原料化合物から簡便に合成可能で、電荷輸送性に優れる薄膜を与え、この薄膜を正孔注入層等に適用した場合に優れた特性を有する有機EL素子を実現できるアニリン誘導体を提供することを目的とする。The present invention has been made in consideration of the above circumstances, and aims to provide an aniline derivative that can be easily synthesized from simple raw material compounds, gives a thin film with excellent charge transport properties, and when this thin film is applied to a hole injection layer or the like, can realize an organic EL element with excellent characteristics.

本発明者らは、前記目的を達成するために鋭意検討を重ねた結果、分子内にN,N,N',N'-テトラ(カルバゾール-2-イル)-パラフェニレンジアミン構造を有する所定のアニリン誘導体が、安価で単純な1,4-フェニレンジアミンと、ハロゲン化又は擬ハロゲン化カルバゾール誘導体とから簡便に合成できるだけでなく、電荷輸送性に優れる薄膜を与え、この薄膜を正孔注入層等に適用した場合に優れた特性を有する有機EL素子を実現できることを見出し、本発明を完成させた。As a result of extensive research into achieving the above-mentioned object, the inventors have discovered that a specific aniline derivative having an N,N,N',N'-tetra(carbazol-2-yl)-paraphenylenediamine structure in the molecule can not only be easily synthesized from inexpensive and simple 1,4-phenylenediamine and a halogenated or pseudohalogenated carbazole derivative, but also gives a thin film with excellent charge transport properties, and when this thin film is applied to a hole injection layer or the like, an organic EL element with excellent characteristics can be realized, thus completing the present invention.

したがって、本発明は、下記アニリン誘導体を提供する。
1.下記式(1)で表されるアニリン誘導体。

Figure 0007505407000001
[式中、各Arは、互いに独立に、下記式(Ar1)~(Ar9)のいずれかで表される基である。
Figure 0007505407000002
(式中、R1~R21は、互いに独立に、水素原子、Z1で置換されていてもよい炭素数1~20のアルキル基、Z1で置換されていてもよい炭素数2~20のアルケニル基、Z1で置換されていてもよい炭素数2~20のアルキニル基、Z2で置換されていてもよい炭素数6~20のアリール基又はZ2で置換されていてもよい炭素数2~20のヘテロアリール基であり、
1は、ハロゲン原子、ニトロ基、シアノ基、Z3で置換されていてもよい炭素数6~20のアリール基又はZ3で置換されていてもよい炭素数2~20のヘテロアリール基であり、
2は、ハロゲン原子、ニトロ基、シアノ基、Z3で置換されていてもよい炭素数1~20のアルキル基、Z3で置換されていてもよい炭素数2~20のアルケニル基又はZ3で置換されていてもよい炭素数2~20のアルキニル基であり、
3は、ハロゲン原子、ニトロ基又はシアノ基である。)]
2.Arが、全て同じ基である1のアニリン誘導体。
3.Arが、式(Ar1)~(Ar5)のいずれかで表される基である2のアニリン誘導体。
4.Arが、式(Ar1)で表される基である3のアニリン誘導体。
5.触媒の存在下、パラフェニレンジアミンと下記式(N1)で表されるカルバゾール誘導体とを反応させる、1のアニリン誘導体の製造方法。
Figure 0007505407000003
(式中、Arは、前記と同じであり、Xは、ハロゲン原子又は擬ハロゲン基である。) Accordingly, the present invention provides the following aniline derivatives:
1. An aniline derivative represented by the following formula (1):
Figure 0007505407000001
In the formula, each Ar is independently a group represented by any one of the following formulae (Ar1) to (Ar9):
Figure 0007505407000002
(In the formula, R 1 to R 21 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 , an alkenyl group having 2 to 20 carbon atoms which may be substituted with Z 1 , an alkynyl group having 2 to 20 carbon atoms which may be substituted with Z 1 , an aryl group having 6 to 20 carbon atoms which may be substituted with Z 2 , or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 2 ;
Z1 is a halogen atom, a nitro group, a cyano group, an aryl group having 6 to 20 carbon atoms which may be substituted with Z3 , or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z3 ;
Z2 is a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z3 , an alkenyl group having 2 to 20 carbon atoms which may be substituted with Z3 , or an alkynyl group having 2 to 20 carbon atoms which may be substituted with Z3 ;
Z3 is a halogen atom, a nitro group, or a cyano group.
2. Aniline derivatives of 1 in which all Ar's are the same group.
3. The aniline derivative according to 2, wherein Ar is a group represented by any one of formulas (Ar1) to (Ar5).
4. The aniline derivative of 3, wherein Ar is a group represented by formula (Ar1).
5. A method for producing the aniline derivative according to 1, comprising reacting paraphenylenediamine with a carbazole derivative represented by the following formula (N1) in the presence of a catalyst:
Figure 0007505407000003
(In the formula, Ar is the same as defined above, and X is a halogen atom or a pseudohalogen group.)

本発明のアニリン誘導体は有機溶媒に溶けやすく、これを単独で又はドーパントとともに有機溶媒へ溶解させて容易に電荷輸送性組成物を調製することができる。また、本発明のアニリン誘導体は、高電荷輸送性の薄膜を与え、この薄膜は、有機EL素子をはじめとした電子素子に好適に適用し得る。The aniline derivative of the present invention is easily soluble in an organic solvent, and can be dissolved in an organic solvent alone or together with a dopant to easily prepare a charge transport composition. In addition, the aniline derivative of the present invention provides a thin film with high charge transport properties, and this thin film can be suitably applied to electronic devices such as organic EL devices.

本発明のアニリン誘導体は、下記式(1)で表される。

Figure 0007505407000004
The aniline derivative of the present invention is represented by the following formula (1).
Figure 0007505407000004

式(1)中、各Arは、互いに独立に、下記式(Ar1)~(Ar9)のいずれかで表される基である。

Figure 0007505407000005
In formula (1), each Ar is independently a group represented by any one of the following formulae (Ar1) to (Ar9).
Figure 0007505407000005

式(Ar1)~(Ar9)中、R1~R21は、互いに独立に、水素原子、Z1で置換されていてもよい炭素数1~20のアルキル基、Z1で置換されていてもよい炭素数2~20のアルケニル基、Z1で置換されていてもよい炭素数2~20のアルキニル基、Z2で置換されていてもよい炭素数6~20のアリール基又はZ2で置換されていてもよい炭素数2~20のヘテロアリール基である。Z1は、ハロゲン原子、ニトロ基、シアノ基、Z3で置換されていてもよい炭素数6~20のアリール基又はZ3で置換されていてもよい炭素数2~20のヘテロアリール基である。Z2は、ハロゲン原子、ニトロ基、シアノ基、Z3で置換されていてもよい炭素数1~20のアルキル基、Z3で置換されていてもよい炭素数2~20のアルケニル基又はZ3で置換されていてもよい炭素数2~20のアルキニル基である。Z3は、ハロゲン原子、ニトロ基又はシアノ基である。 In formulae (Ar1) to (Ar9), R 1 to R 21 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 , an alkenyl group having 2 to 20 carbon atoms which may be substituted with Z 1 , an alkynyl group having 2 to 20 carbon atoms which may be substituted with Z 1 , an aryl group having 6 to 20 carbon atoms which may be substituted with Z 2 , or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 2. Z 1 is a halogen atom, a nitro group, a cyano group, an aryl group having 6 to 20 carbon atoms which may be substituted with Z 3 , or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 3. Z 2 is a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 3 , an alkenyl group having 2 to 20 carbon atoms which may be substituted with Z 3, or an alkynyl group having 2 to 20 carbon atoms which may be substituted with Z 3 . Z3 is a halogen atom, a nitro group or a cyano group.

前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられるが、フッ素原子が好ましい。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., with a fluorine atom being preferred.

前記炭素数1~20のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖状又は分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基等の炭素数3~20の環状アルキル基が挙げられる。The alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic. Specific examples include linear or branched alkyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, and n-decyl; and cyclic alkyl groups having 3 to 20 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, and cyclodecyl.

前記炭素数2~20のアルケニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エテニル基、n-1-プロペニル基、n-2-プロペニル基、1-メチルエテニル基、n-1-ブテニル基、n-2-ブテニル基、n-3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、n-1-ペンテニル基、n-1-デセニル基等が挙げられる。The alkenyl group having 2 to 20 carbon atoms may be linear, branched, or cyclic, and specific examples include ethenyl, n-1-propenyl, n-2-propenyl, 1-methylethenyl, n-1-butenyl, n-2-butenyl, n-3-butenyl, 2-methyl-1-propenyl, 2-methyl-2-propenyl, 1-ethylethenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, n-1-pentenyl, and n-1-decenyl.

前記炭素数2~20のアルキニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基、1-メチル-2-プロピニル基、n-1-ペンチニル基、n-2-ペンチニル基、n-3-ペンチニル基、n-4-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1,1-ジメチル-n-プロピニル基、n-1-ヘキシニル基、n-1-デシニル基等が挙げられる。The alkynyl group having 2 to 20 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include an ethynyl group, an n-1-propynyl group, an n-2-propynyl group, an n-1-butynyl group, an n-2-butynyl group, an n-3-butynyl group, a 1-methyl-2-propynyl group, an n-1-pentynyl group, an n-2-pentynyl group, an n-3-pentynyl group, an n-4-pentynyl group, a 1-methyl-n-butynyl group, a 2-methyl-n-butynyl group, a 3-methyl-n-butynyl group, a 1,1-dimethyl-n-propynyl group, an n-1-hexynyl group, and an n-1-decynyl group.

前記炭素数6~20のアリール基の具体例としては、フェニル基、トリル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。 Specific examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, a tolyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, and a 9-phenanthryl group.

前記炭素数2~20のヘテロアリール基の具体例としては、2-チエニル基、3-チエニル基、2-フラニル基、3-フラニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基等の含酸素ヘテロアリール基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基等の含硫黄ヘテロアリール基、2-イミダゾリル基、4-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-ピラジル基、3-ピラジル基、5-ピラジル基、6-ピラジル基、2-ピリミジル基、4-ピリミジル基、5-ピリミジル基、6-ピリミジル基、3-ピリダジル基、4-ピリダジル基、5-ピリダジル基、6-ピリダジル基、1,2,3-トリアジン-4-イル基、1,2,3-トリアジン-5-イル基、1,2,4-トリアジン-3-イル基、1,2,4-トリアジン-5-イル基、1,2,4-トリアジン-6-イル基、1,3,5-トリアジン-2-イル基、1,2,4,5-テトラジン-3-イル基、1,2,3,4-テトラジン-5-イル基、2-キノリニル基、3-キノリニル基、4-キノリニル基、5-キノリニル基、6-キノリニル基、7-キノリニル基、8-キノリニル基、1-イソキノリニル基、3-イソキノリニル基、4-イソキノリニル基、5-イソキノリニル基、6-イソキノリニル基、7-イソキノリニル基、8-イソキノリニル基、2-キノキサニル基、5-キノキサニル基、6-キノキサニル基、2-キナゾリニル基、4-キナゾリニル基、5-キナゾリニル基、6-キナゾリニル基、7-キナゾリニル基、8-キナゾリニル基、3-シンノリニル基、4-シンノリニル基、5-シンノリニル基、6-シンノリニル基、7-シンノリニル基、8-シンノリニル基等の含窒素ヘテロアリール基等が挙げられる。 Specific examples of the heteroaryl group having 2 to 20 carbon atoms include oxygen-containing heteroaryl groups such as 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 3-isoxazolyl group, 4-isoxazolyl group, and 5-isoxazolyl group, and sulfur-containing heteroaryl groups such as 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, and 5-isothiazolyl group. a aryl group, a 2-imidazolyl group, a 4-imidazolyl group, a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, a 2-pyrazyl group, a 3-pyrazyl group, a 5-pyrazyl group, a 6-pyrazyl group, a 2-pyrimidyl group, a 4-pyrimidyl group, a 5-pyrimidyl group, a 6-pyrimidyl group, a 3-pyridazyl group, a 4-pyridazyl group, a 5-pyridazyl group, a 6-pyridazyl group, a 1,2,3-triazin-4-yl group, a 1,2,3-triazin-5-yl group, a 1,2,4-triazin-3-yl group, -yl group, 1,2,4-triazin-5-yl group, 1,2,4-triazin-6-yl group, 1,3,5-triazin-2-yl group, 1,2,4,5-tetrazin-3-yl group, 1,2,3,4-tetrazin-5-yl group, 2-quinolinyl group, 3-quinolinyl group, 4-quinolinyl group, 5-quinolinyl group, 6-quinolinyl group, 7-quinolinyl group, 8-quinolinyl group, 1-isoquinolinyl group, 3-isoquinolinyl group, 4-isoquinolinyl group, 5-isoquinolinyl and nitrogen-containing heteroaryl groups such as a 6-isoquinolinyl group, a 7-isoquinolinyl group, an 8-isoquinolinyl group, a 2-quinoxanyl group, a 5-quinoxanyl group, a 6-quinoxanyl group, a 2-quinazolinyl group, a 4-quinazolinyl group, a 5-quinazolinyl group, a 6-quinazolinyl group, a 7-quinazolinyl group, an 8-quinazolinyl group, a 3-cinnolinyl group, a 4-cinnolinyl group, a 5-cinnolinyl group, a 6-cinnolinyl group, a 7-cinnolinyl group, and an 8-cinnolinyl group.

中でも、R1~R21としては、Z2で置換されていてもよい炭素数6~20のアリール基、Z2で置換されていてもよい炭素数2~20のヘテロアリール基が好ましく、Z2で置換されていてもよい炭素数6~20のアリール基がより好ましく、Z2で置換されていてもよいフェニル基、Z2で置換されていてもよい1-ナフチル基、Z2で置換されていてもよい2-ナフチル基がより一層好ましい。また、Z2としては、ハロゲン原子、Z3で置換されていてもよい炭素数1~20のアルキル基、Z3で置換されていてもよい炭素数2~20のアルケニル基が好ましい。Z3としては、ハロゲン原子が好ましく、フッ素原子がより好ましい。 Among them, R 1 to R 21 are preferably an aryl group having 6 to 20 carbon atoms which may be substituted with Z 2 , or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 2 , more preferably an aryl group having 6 to 20 carbon atoms which may be substituted with Z 2 , and even more preferably a phenyl group which may be substituted with Z 2 , a 1-naphthyl group which may be substituted with Z 2 , or a 2-naphthyl group which may be substituted with Z 2. Z 2 is preferably a halogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 3 , or an alkenyl group having 2 to 20 carbon atoms which may be substituted with Z 3. Z 3 is preferably a halogen atom, and more preferably a fluorine atom.

本発明においては、アニリン誘導体の合成の容易性の観点から、Arは、全て同じ基であることが好ましい。また、電荷輸送性組成物を調製する際に均一性の高い組成物を再現性よく得る観点から、式(Ar1)~(Ar5)のいずれかで表される基がより好ましく、式(Ar1)で表される基が最適である。In the present invention, from the viewpoint of ease of synthesis of the aniline derivative, it is preferable that all of the Ar's are the same group. Furthermore, from the viewpoint of reproducibly obtaining a highly uniform composition when preparing a charge transport composition, a group represented by any one of formulas (Ar1) to (Ar5) is more preferable, and a group represented by formula (Ar1) is optimal.

以下、本発明のアニリン誘導体の好適な具体例を挙げるが、これに限定されない。

Figure 0007505407000006
(式中、Phは、フェニル基である。) Preferred specific examples of the aniline derivative of the present invention are listed below, but the invention is not limited thereto.
Figure 0007505407000006
(In the formula, Ph is a phenyl group.)

本発明のアニリン誘導体は、触媒の存在下、パラフェニレンジアミン(1,4-フェニレンジアミン)と、下記式(N1)で表されるハロゲン化又は擬ハロゲン化カルバゾール誘導体とを反応させることで製造することができる。

Figure 0007505407000007
(式中、Arは、前記と同じであり、Xは、ハロゲン原子又は擬ハロゲン基である。) The aniline derivative of the present invention can be produced by reacting paraphenylenediamine (1,4-phenylenediamine) with a halogenated or pseudohalogenated carbazole derivative represented by the following formula (N1) in the presence of a catalyst.
Figure 0007505407000007
(In the formula, Ar is the same as defined above, and X is a halogen atom or a pseudohalogen group.)

前記ハロゲン原子としては、前記と同様のものが挙げられるが、塩素原子、臭素原子、ヨウ素原子が好ましい。前記擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等の(フルオロ)アルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基等が挙げられる。The halogen atom may be the same as those described above, but a chlorine atom, a bromine atom, or an iodine atom is preferred. The pseudohalogen group may be a (fluoro)alkylsulfonyloxy group such as a methanesulfonyloxy group, a trifluoromethanesulfonyloxy group, or a nonafluorobutanesulfonyloxy group; or an aromatic sulfonyloxy group such as a benzenesulfonyloxy group or a toluenesulfonyloxy group.

1,4-フェニレンジアミンとハロゲン化又は擬ハロゲン化カルバゾール誘導体との仕込み比は、1,4-フェニレンジアミンの全NH基の物質量に対し、ハロゲン化又は擬ハロゲン化カルバゾール誘導体を当量以上とすることができるが、1~1.2当量程度が好適である。The charging ratio of 1,4-phenylenediamine to the halogenated or pseudo-halogenated carbazole derivative can be an equivalent or more of the halogenated or pseudo-halogenated carbazole derivative relative to the total amount of NH groups in 1,4-phenylenediamine, but a ratio of about 1 to 1.2 equivalents is preferable.

前記反応に用いられる触媒としては、例えば、塩化銅、臭化銅、ヨウ化銅等の銅触媒;テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh3)4)、ビス(トリフェニルホスフィン)ジクロロパラジウム(Pd(PPh3)2Cl2)、ビス(ジベンジリデンアセトン)パラジウム(Pd(dba)2)、トリス(ジベンジリデンアセトン)ジパラジウム(Pd2(dba)3)、ビス[トリ(t-ブチルホスフィン)]パラジウム(Pd(P-t-Bu3)2)、酢酸パラジウム(Pd(OAc)2)等のパラジウム触媒等が挙げられる。これらの触媒は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the catalyst used in the reaction include copper catalysts such as copper chloride, copper bromide, and copper iodide; and palladium catalysts such as tetrakis(triphenylphosphine)palladium (Pd(PPh 3 ) 4 ), bis(triphenylphosphine)dichloropalladium (Pd(PPh 3 ) 2 Cl 2 ), bis(dibenzylideneacetone)palladium (Pd(dba) 2 ), tris(dibenzylideneacetone)dipalladium (Pd 2 (dba) 3 ), bis[tri(t-butylphosphine)]palladium (Pd(Pt-Bu 3 ) 2 ), and palladium acetate (Pd(OAc) 2 ). These catalysts may be used alone or in combination of two or more.

また、これらの触媒は、公知の適切な配位子とともに使用してもよい。このような配位子としては、トリフェニルホスフィン、トリ-o-トリルホスフィン、ジフェニルメチルホスフィン、フェニルジメチルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリ-t-ブチルホスフィン、ジ-t-ブチル(フェニル)ホスフィン、ジ-t-ブチル(4-ジメチルアミノフェニル)ホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)」プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1'-ビス(ジフェニルホスフィノ)フェロセン等の3級ホスフィン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト等の3級ホスファイト等が挙げられる。These catalysts may also be used together with known suitable ligands. Examples of such ligands include tertiary phosphines such as triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-t-butylphosphine, di-t-butyl(phenyl)phosphine, di-t-butyl(4-dimethylaminophenyl)phosphine, 1,2-bis(diphenylphosphino)ethane, 1,3-bis(diphenylphosphino)propane, 1,4-bis(diphenylphosphino)butane, and 1,1'-bis(diphenylphosphino)ferrocene; and tertiary phosphites such as trimethylphosphite, triethylphosphite, and triphenylphosphite.

触媒の使用量は、ハロゲン化又は擬ハロゲン化カルバゾール誘導体1molに対し、0.01~0.2mol程度とすることができるが、0.15mol程度が好適である。また、配位子を用いる場合、その使用量は、使用する触媒に対し、0.1~5当量とすることができるが、1~2当量が好適である。The amount of catalyst used may be about 0.01 to 0.2 mol per 1 mol of halogenated or pseudohalogenated carbazole derivative, with about 0.15 mol being preferred. When a ligand is used, the amount may be 0.1 to 5 equivalents per mol of catalyst, with 1 to 2 equivalents being preferred.

原料化合物が全て固体である場合あるいは目的とするアニリン誘導体を効率よく得る観点から、前記各反応は溶媒中で行う。溶媒を使用する場合、その種類は、反応に悪影響を及ぼさないものであれば特に制限はない。具体例としては、脂肪族炭化水素類(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、ハロゲン化脂肪族炭化水素類(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素類(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、ハロゲン化芳香族炭化水素類(クロロベンゼン、ブロモベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、ラクタム及びラクトン類(N-メチルピロリドン、γ-ブチロラクトン等)、尿素類(N,N-ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド類(ジメチルスルホキシド、スルホラン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)等が挙げられるが、これらに限定されない。これらの溶媒は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。When all the raw material compounds are solid or from the viewpoint of efficiently obtaining the desired aniline derivative, each of the above reactions is carried out in a solvent. When using a solvent, there are no particular limitations on the type of solvent as long as it does not adversely affect the reaction. Specific examples include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, etc.), ethers (diethyl ether, diisopropyl ether, t-butyl methyl ether, tetrahydrofuran, dioxane, etc.), and the like. Examples of the solvent include, but are not limited to, hexane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butyl ketone, cyclohexanone, etc.), amides (N,N-dimethylformamide, N,N-dimethylacetamide, etc.), lactams and lactones (N-methylpyrrolidone, γ-butyrolactone, etc.), ureas (N,N-dimethylimidazolidinone, tetramethylurea, etc.), sulfoxides (dimethyl sulfoxide, sulfolane, etc.), and nitriles (acetonitrile, propionitrile, butyronitrile, etc.). These solvents may be used alone or in combination of two or more.

反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよいが、通常0~200℃程度の範囲であり、好ましくは20~150℃の範囲である。反応終了後は、常法にしたがって後処理をし、目的とするアニリン誘導体を得ることができる。The reaction temperature may be set appropriately within the range from the melting point to the boiling point of the solvent used, but is usually in the range of about 0 to 200°C, and preferably in the range of 20 to 150°C. After the reaction is completed, post-treatment is carried out according to conventional methods to obtain the desired aniline derivative.

本発明のアニリン誘導体は、電荷輸送性物質として好適であり、また、有機溶媒への優れた溶解性を示す。それ故、本発明のアニリン誘導体を有機溶媒に溶解させることで、電荷輸送性組成物を容易に調製できる。The aniline derivative of the present invention is suitable as a charge transporting material and exhibits excellent solubility in organic solvents. Therefore, a charge transporting composition can be easily prepared by dissolving the aniline derivative of the present invention in an organic solvent.

このような有機溶媒としては、本発明のアニリン誘導体を良好に溶解し得る高溶解性溶媒を用いることができる。高溶解性溶媒の具体例としては、例えば、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジエチレングリコールモノメチルエーテル等の有機溶媒が挙げられるが、これらに限定されない。これらの溶媒は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。その使用量は、組成物に使用する溶媒全体に対し、5~100質量%とすることができる。As such an organic solvent, a highly soluble solvent capable of dissolving the aniline derivative of the present invention can be used. Specific examples of highly soluble solvents include, but are not limited to, organic solvents such as cyclohexanone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylisobutyramide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, and diethylene glycol monomethyl ether. These solvents may be used alone or in combination of two or more. The amount of the solvent used may be 5 to 100% by mass based on the total amount of the solvent used in the composition.

また、組成物に、25℃で10~200mPa・s、特に35~150mPa・sの粘度を有し、常圧(大気圧)で沸点50~300℃、特に150~250℃の高粘度有機溶媒を少なくとも1種類含有させることで、組成物の粘度の調整が容易になり、その結果、平坦性の高い薄膜を再現性よく与える、用いる塗布方法に応じた組成物の調製が可能となる。高粘度有機溶媒としては、例えば、シクロヘキサノール、エチレングリコール、エチレングリコールジグリシジルエーテル、1,3-オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール、へキシレングリコール等が挙げられるが、これらに限定されない。これらの溶媒は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。組成物に用いられる溶媒全体に対する高粘度有機溶媒の添加割合は、固体が析出しない範囲内であることが好ましく、固体が析出しない限りにおいて、添加割合は、5~80質量%が好ましい。In addition, by including at least one high-viscosity organic solvent having a viscosity of 10 to 200 mPa·s at 25°C, particularly 35 to 150 mPa·s, and a boiling point of 50 to 300°C, particularly 150 to 250°C, at normal pressure (atmospheric pressure), the viscosity of the composition can be easily adjusted, and as a result, a composition that gives a thin film with high flatness and good reproducibility and that is suitable for the coating method used can be prepared. Examples of high-viscosity organic solvents include, but are not limited to, cyclohexanol, ethylene glycol, ethylene glycol diglycidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, propylene glycol, and hexylene glycol. These solvents may be used alone or in combination of two or more. The proportion of the high-viscosity organic solvent added to the total solvent used in the composition is preferably within a range in which a solid does not precipitate, and as long as a solid does not precipitate, the proportion is preferably 5 to 80 mass %.

更に、基板に対する濡れ性の向上、溶媒の表面張力の調整、極性の調整、沸点の調整等の目的で、その他の溶媒を、組成物に使用する溶媒全体に対し、1~90質量%、好ましくは1~50質量%の割合で混合することもできる。このような溶媒としては、例えば、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジアセトンアルコール、γ-ブチロラクトン、エチルラクテート、n-ヘキシルアセテート等が挙げられるが、これらに限定されない。これらの溶媒は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Furthermore, for the purpose of improving the wettability of the substrate, adjusting the surface tension of the solvent, adjusting the polarity, adjusting the boiling point, etc., other solvents can be mixed in a ratio of 1 to 90% by mass, preferably 1 to 50% by mass, based on the total solvent used in the composition. Examples of such solvents include, but are not limited to, propylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether, diacetone alcohol, γ-butyrolactone, ethyl lactate, n-hexyl acetate, etc. These solvents may be used alone or in combination of two or more.

また、本発明のアニリン誘導体が、例えば、その分子内のカルバゾール部位の9位の窒素原子上にアリール基を有する場合のように、分子内の少なくとも1つの窒素原子上に置換基を有する場合、好ましくは全ての窒素原子上に置換基を有している場合、低極性溶媒のみを用いた組成物の調製が容易になる。そのような低極性溶媒の具体例としては、クロロホルム、クロロベンゼン等の塩素系溶媒;トルエン、キシレン、テトラリン、シクロヘキシルベンゼン、デシルベンゼン等の芳香族炭化水素系溶媒;1-オクタノール、1-ノナノール、1-デカノール等の脂肪族アルコール系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メトキシトルエン、3-フェノキシトルエン、ジベンジルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル等のエーテル系溶媒;安息香酸メチル、安息香酸エチル、安息香酸ブチル、フタル酸ジメチル、マレイン酸ジエチル、安息香酸イソアミル、フタル酸ビス(2-エチルヘキシル)、マレイン酸ジブチル、シュウ酸ジブチル、酢酸ヘキシル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のエステル系溶媒等が挙げられるが、これらに限定されない。これらの溶媒は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。In addition, when the aniline derivative of the present invention has a substituent on at least one nitrogen atom in the molecule, such as an aryl group on the nitrogen atom at position 9 of the carbazole moiety in the molecule, and preferably has substituents on all nitrogen atoms, it becomes easier to prepare a composition using only a low-polarity solvent. Specific examples of such low polarity solvents include, but are not limited to, chlorine-based solvents such as chloroform and chlorobenzene; aromatic hydrocarbon-based solvents such as toluene, xylene, tetralin, cyclohexylbenzene, and decylbenzene; aliphatic alcohol-based solvents such as 1-octanol, 1-nonanol, and 1-decanol; ether-based solvents such as tetrahydrofuran, dioxane, anisole, 4-methoxytoluene, 3-phenoxytoluene, dibenzyl ether, diethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, and triethylene glycol butyl methyl ether; and ester-based solvents such as methyl benzoate, ethyl benzoate, butyl benzoate, dimethyl phthalate, diethyl maleate, isoamyl benzoate, bis(2-ethylhexyl) phthalate, dibutyl maleate, dibutyl oxalate, hexyl acetate, diethylene glycol monoethyl ether acetate, and diethylene glycol monobutyl ether acetate. These solvents may be used alone or in combination of two or more.

本発明の電荷輸送性組成物は、溶媒として水も含み得るが、組成物から得られる電荷輸送性薄膜を有機EL素子の正孔注入層として用いた場合に高耐久性の素子を再現性よく得る観点から、水の含有量は、溶媒全体の10質量%以下が好ましく、5質量%以下がより好ましく、溶媒として有機溶媒のみを用いることが最適である。なお、この場合における「有機溶媒のみ」とは、溶媒として用いるものが有機溶媒だけであることを意味し、使用する有機溶媒や固形分等に微量に含まれる「水」の存在までをも否定するものではない。また、本発明において、固形分とは、電荷輸送性組成物に含まれる溶媒以外の成分を意味する。The charge transport composition of the present invention may contain water as a solvent, but from the viewpoint of reproducibly obtaining a highly durable element when the charge transport thin film obtained from the composition is used as a hole injection layer of an organic EL element, the water content is preferably 10% by mass or less of the total solvent, more preferably 5% by mass or less, and it is optimal to use only an organic solvent as the solvent. In this case, "only organic solvent" means that only an organic solvent is used as the solvent, and does not deny the presence of "water" contained in a small amount in the organic solvent or solid content used. In addition, in the present invention, the solid content means components other than the solvent contained in the charge transport composition.

本発明の電荷輸送性組成物は、本発明のアニリン誘導体からなる電荷輸送性物質とともに、その他の電荷輸送性物質を含んでいてもよい。The charge transport composition of the present invention may contain other charge transport substances in addition to the charge transport substance consisting of the aniline derivative of the present invention.

前記電荷輸送性組成物は、本発明のアニリン誘導体からなる電荷輸送性物質と、有機溶媒とを含むものであるが、得られる薄膜の用途に応じ、その電荷輸送能の向上等を目的としてドーパント(電荷受容性物質)を含んでいてもよい。The charge transport composition contains a charge transport substance consisting of the aniline derivative of the present invention and an organic solvent, but depending on the application of the resulting thin film, it may also contain a dopant (charge accepting substance) for the purpose of improving its charge transport ability, etc.

ドーパントとしては、組成物に使用する少なくとも1種の溶媒に溶解するものであれば特に限定されず、無機系のドーパント、有機系のドーパントのいずれも使用できる。また、無機系及び有機系のドーパントは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。There are no particular limitations on the dopant, so long as it dissolves in at least one solvent used in the composition, and both inorganic and organic dopants can be used. In addition, inorganic and organic dopants may be used alone or in combination of two or more.

組成物中のドーパントの量は、所望の電荷輸送性の程度やドーパントの種類に応じて異なるため一概に規定できないが、通常、式(1)で表されるアニリン誘導体1に対し、質量比で、0.0001~100の範囲である。The amount of dopant in the composition cannot be generally specified because it varies depending on the desired degree of charge transportability and the type of dopant, but is usually in the range of 0.0001 to 100 parts by mass per 1 part of the aniline derivative represented by formula (1).

本発明において、好ましいドーパントの一例としては、イオン化合物が挙げられる。その具体例としては、下記式(2a)で表されるアニオン、下記式(2b)で表されるアニオン、水酸化物イオン、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン、硝酸イオン、亜硝酸イオン、硫酸イオン、亜硫酸イオン、過塩素酸イオン、過臭素酸イオン、過ヨウ素酸イオン、塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、リン酸イオン、亜リン酸イオン、次亜リン酸イオン、ホウ酸イオン、イソシアン酸イオン、水硫化物イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサクロロアンチモン酸イオン;酢酸イオン、トリフルオロ酢酸イオン、安息香酸イオン等のカルボン酸イオン;メタンスルホン酸、トリフルオロメタンスルホン酸イオン等のスルホン酸イオン;メトキシドイオン、t-ブトキシドイオン等のアルコキシドイオン等と、その対カチオンとからなる塩が挙げられる。

Figure 0007505407000008
In the present invention, an example of a preferred dopant is an ionic compound. Specific examples thereof include an anion represented by the following formula (2a), an anion represented by the following formula (2b), hydroxide ion, fluoride ion, chloride ion, bromide ion, iodide ion, cyanide ion, nitrate ion, nitrite ion, sulfate ion, sulfite ion, perchlorate ion, perbromate ion, periodate ion, chlorate ion, chlorite ion, hypochlorite ion, phosphate ion, phosphite ion, hypophosphite ion, borate ion, isocyanate ion, hydrosulfide ion, tetrafluoroborate ion, hexafluorophosphate ion, hexachloroantimonate ion; carboxylate ions such as acetate ion, trifluoroacetate ion, and benzoate ion; sulfonate ions such as methanesulfonic acid and trifluoromethanesulfonate ion; alkoxide ions such as methoxide ion and t-butoxide ion, and salts thereof composed of counter cations.
Figure 0007505407000008

式(2a)中、E1は、長周期型周期表の第13族又は第15族に属する元素である。このうち、ホウ素、ガリウム、リン、アンチモンが好ましく、ホウ素がより好ましい。 In formula (2a), E 1 is an element belonging to Group 13 or 15 of the long form periodic table. Among these, boron, gallium, phosphorus, and antimony are preferred, and boron is more preferred.

式(2a)中、Ar1~Ar4は、互いに独立に、置換基を有してもよい芳香族炭化水素基又は置換基を有してもよい芳香族複素環基である。前記芳香族炭化水素基及び芳香族複素環基としては、5又は6員環の単環又は2~4縮合環由来の1価の基が挙げられる。中でも、化合物の安定性、耐熱性の点から、ベンゼン、ナフタレン、ピリジン、ピラジン、ピリダジン、ピリミジン、トリアジン、キノリン、イソキノリン等に由来する1価の基が好ましい。 In formula (2a), Ar 1 to Ar 4 are each independently an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent. Examples of the aromatic hydrocarbon group and aromatic heterocyclic group include monovalent groups derived from a 5- or 6-membered single ring or 2- to 4-condensed rings. Among these, from the viewpoints of the stability and heat resistance of the compound, monovalent groups derived from benzene, naphthalene, pyridine, pyrazine, pyridazine, pyrimidine, triazine, quinoline, isoquinoline, etc. are preferred.

更に、Ar1~Ar4のうち少なくとも1つの基が、フッ素原子又は塩素原子を置換基として1つ又は2つ以上有することがより好ましい。特に、Ar1~Ar4の水素原子がすべてフッ素原子で置換されたパーフルオロアリール基又はパーフルオロヘテロアリール基であることがより一層好ましく、Ar1~Ar4の水素原子がすべてフッ素原子で置換されたパーフルオロアリール基であることが最も好ましい。パーフルオロアリール基の具体例としては、ペンタフルオロフェニル基、ヘプタフルオロ-2-ナフチル基、テトラフルオロ-4-ピリジル基等が挙げられる。 Furthermore, it is more preferable that at least one of the groups Ar 1 to Ar 4 has one or more fluorine or chlorine atoms as a substituent. In particular, it is even more preferable that Ar 1 to Ar 4 are perfluoroaryl groups or perfluoroheteroaryl groups in which all of the hydrogen atoms are substituted with fluorine atoms, and it is most preferable that Ar 1 to Ar 4 are perfluoroaryl groups in which all of the hydrogen atoms are substituted with fluorine atoms. Specific examples of perfluoroaryl groups include pentafluorophenyl groups, heptafluoro-2-naphthyl groups, and tetrafluoro-4-pyridyl groups.

式(2b)中、E2は、長周期型周期表の第15族に属する元素である。このうち、リン原子、ヒ素原子、アンチモン原子が好ましく、化合物の安定性、合成及び精製のし易さ、毒性の点から、リン原子が好ましい。Xaは、フッ素原子、塩素原子、臭素原子等のハロゲン原子であるが、化合物の安定性、合成及び精製のしやすさの点からフッ素原子、塩素原子であることが好ましく、フッ素原子であることが最も好ましい。 In formula (2b), E2 is an element belonging to Group 15 of the long periodic table. Among these, phosphorus atom, arsenic atom, and antimony atom are preferred, and phosphorus atom is preferred from the viewpoint of compound stability, ease of synthesis and purification, and toxicity. Xa is a halogen atom such as fluorine atom, chlorine atom, and bromine atom, and is preferably fluorine atom or chlorine atom from the viewpoint of compound stability, ease of synthesis and purification, and is most preferably fluorine atom.

前記対カチオンとしては、金属イオン及びオニウムイオンが好ましい。前記金属イオンとしては、1価の金属イオンが好ましく、Li+、Na+、K+及びAg+等が挙げられるが、特に、Ag+が好ましい。前記オニウムイオンとしては、ヨードニウムイオン、スルホニウムイオン、アンモニウムイオン、ホスホニウムイオン等が挙げられる。 The counter cation is preferably a metal ion or an onium ion. The metal ion is preferably a monovalent metal ion, such as Li + , Na + , K + , or Ag + , with Ag + being particularly preferred. The onium ion is preferably an iodonium ion, a sulfonium ion, an ammonium ion, or a phosphonium ion.

前記オニウムイオンとしては、下記式(2c)で表されるヨードニウムイオンが好ましい。

Figure 0007505407000009
The onium ion is preferably an iodonium ion represented by the following formula (2c).
Figure 0007505407000009

式(2c)中、R101及びR102は、互いに独立に、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基であり、これらの基の水素原子の一部又は全部が、ハロゲン原子、シアノ基、ニトロ基、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基で置換されていてもよい。 In formula (2c), R 101 and R 102 are each independently an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms, and some or all of the hydrogen atoms of these groups may be substituted with a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms.

前記オニウムイオンとしては、下記式(2d)で表されるイオンを用いることもできる。

Figure 0007505407000010
As the onium ion, an ion represented by the following formula (2d) can also be used.
Figure 0007505407000010

式(2d)中、E3は、周期表第3周期以降(第3~第6周期)の元素であって、長周期型周期表の第16族に属する元素である。本発明では、これらの中でも、電子受容性及び入手容易性の観点から、周期表の第5周期以前(第3~第5周期)の元素が好ましい。すなわち、E3としては、硫黄原子、セレン原子又はテルル原子が好ましく、硫黄原子がより好ましい。 In formula (2d), E 3 is an element in the third period or later (third to sixth periods) of the periodic table, and an element belonging to group 16 of the long-form periodic table. Among these, in the present invention, from the viewpoints of electron-accepting ability and easy availability, an element in the fifth period or earlier (third to fifth periods) of the periodic table is preferred. That is, E 3 is preferably a sulfur atom, a selenium atom, or a tellurium atom, and more preferably a sulfur atom.

式(2d)中、R103は、E3と炭素原子で結合する有機基であり、R104及びR105は、互いに独立に、任意の置換基である。R103~R105のうち隣接する2以上の基が互いに結合して環を形成していてもよい。 In formula (2d), R 103 is an organic group bonded to E 3 via a carbon atom, and R 104 and R 105 are each independently any substituent. Two or more adjacent groups among R 103 to R 105 may be bonded to each other to form a ring.

103は、E3との結合部分に炭素原子を有する有機基であれば、本発明の趣旨に反しない限り、特に限定されない。R103の分子量は、通常1,000以下、好ましくは500以下の範囲である。R103の好ましい例としては、正電荷を非局在化させる点から、アルキル基、アルケニル基、アルキニル基、芳香族炭化水素基及び芳香族複素環基が挙げられる。中でも、正電荷を非局在化させるとともに熱的に安定であることから、芳香族炭化水素又は芳香族複素環基が好ましい。 R 103 is not particularly limited as long as it is an organic group having a carbon atom at the bonding portion with E 3 , as long as it does not go against the spirit of the present invention. The molecular weight of R 103 is usually 1,000 or less, preferably 500 or less. Preferred examples of R 103 include alkyl groups, alkenyl groups, alkynyl groups, aromatic hydrocarbon groups, and aromatic heterocyclic groups, from the viewpoint of delocalizing the positive charge. Among them, aromatic hydrocarbons or aromatic heterocyclic groups are preferred, since they delocalize the positive charge and are thermally stable.

前記芳香族炭化水素基としては、5又は6員環の単環又は2~5縮合環由来の1価の基であり、正電荷を当該基上により非局在化させられる基が挙げられる。その具体例としては、ベンゼン、ナフタレン、アントラセン、フェナントレン、ペリレン、テトラセン、ピレン、ベンズピレン、クリセン、トリフェニレン、アセナフテン、フルオレン等に由来する1価の基が挙げられる。より具体的には、フェニル基、トリル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。これらのうち、フェニル基及びトリル基が好ましく、トリル基がより好ましい。The aromatic hydrocarbon group is a monovalent group derived from a 5- or 6-membered monocyclic ring or 2- to 5-condensed rings, and can delocalize a positive charge on the group. Specific examples include monovalent groups derived from benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, pyrene, benzpyrene, chrysene, triphenylene, acenaphthene, fluorene, and the like. More specific examples include a phenyl group, a tolyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, and a 9-phenanthryl group. Of these, a phenyl group and a tolyl group are preferred, and a tolyl group is more preferred.

前記芳香族複素環基としては、5又は6員環の単環又は2~4縮合環由来の1価の基であり、正電荷を当該基上に非局在化させられる基が挙げられる。その具体例としては、フラン、ベンゾフラン、チオフェン、ベンゾチオフェン、ピロール、ピラゾール、トリアゾール、イミダゾール、オキサジアゾール、インドール、カルバゾール、ピロロイミダゾール、ピロロピラゾール、ピロロピロール、チエノピロール、チエノチオフェン、フロピロール、フロフラン、チエノフラン、ベンゾイソオキサゾール、ベンゾイソチアゾール、ベンゾイミダゾール、ピリジン、ピラジン、ピリダジン、ピリミジン、トリアジン、キノリン、イソキノリン、シノリン、キノキサリン、フェナントリジン、ベンゾイミダゾール、ピリミジン、キナゾリン、キナゾリノン、アズレン等に由来する1価の基が挙げられる。The aromatic heterocyclic group is a monovalent group derived from a 5- or 6-membered single ring or 2- to 4-condensed rings, and can delocalize a positive charge on the group. Specific examples include monovalent groups derived from furan, benzofuran, thiophene, benzothiophene, pyrrole, pyrazole, triazole, imidazole, oxadiazole, indole, carbazole, pyrroloimidazole, pyrrolopyrazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrole, furofuran, thienofuran, benzoisoxazole, benzoisothiazole, benzimidazole, pyridine, pyrazine, pyridazine, pyrimidine, triazine, quinoline, isoquinoline, cinnoline, quinoxaline, phenanthridine, benzimidazole, pyrimidine, quinazoline, quinazolinone, azulene, etc.

前記アルキル基としては、直鎖状、分岐状、環状のいずれでもよく、その炭素数が通常1以上であり、通常12以下、好ましくは6以下のものが挙げられる。その具体例としては、メチル基、エチル基、n-プロピル基、2-プロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロヘキシル基等が挙げられる。The alkyl group may be linear, branched, or cyclic, and typically has 1 or more carbon atoms and typically has 12 or less, preferably 6 or less. Specific examples include methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, t-butyl, and cyclohexyl groups.

前記アルケニル基としては、炭素数が通常2以上であり、通常12以下、好ましくは6以下のものが挙げられる。その具体例としては、ビニル基、アリル基、1-ブテニル基等が挙げられる。The alkenyl group generally has 2 or more carbon atoms and generally has 12 or less carbon atoms, preferably 6 or less carbon atoms. Specific examples include a vinyl group, an allyl group, and a 1-butenyl group.

前記アルキニル基としては、炭素数が通常2以上であり、通常12以下、好ましくは6以下のものが挙げられる。具体例としては、エチニル基、プロパルギル基等が挙げられる。The alkynyl group generally has 2 or more carbon atoms and generally has 12 or less carbon atoms, preferably 6 or less carbon atoms. Specific examples include an ethynyl group and a propargyl group.

104及びR105は、本発明の趣旨に反しない限り特に限定されない。R104及びR105の分子量は、通常1,000以下、好ましくは500以下の範囲である。R104及びR105の例としては、アルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基、オルガノアミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニルオキシ基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アリールスルホニル基、アルキルスルホニルオキシ基、アリールスルホニルオキシ基、シアノ基、ヒドロキシ基、チオール基、オルガノシリル基等が挙げられる。中でも、R103と同様に電子受容性が大きい点から、E3との結合部分に炭素原子を有する有機基が好ましく、例えば、アルキル基、アルケニル基、アルキニル基、芳香族炭化水素基及び芳香族複素環基が好ましい。特に、電子受容性が大きいとともに熱的に安定であることから、芳香族炭化水素基又は芳香族複素環基が好ましい。 R 104 and R 105 are not particularly limited as long as they are not contrary to the gist of the present invention. The molecular weight of R 104 and R 105 is usually in the range of 1,000 or less, preferably 500 or less. Examples of R 104 and R 105 include an alkyl group, an alkenyl group, an alkynyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an organoamino group, an alkoxy group, an aryloxy group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylcarbonyloxy group, an alkylthio group, an arylthio group, an alkylsulfonyl group, an arylsulfonyl group, an alkylsulfonyloxy group, an arylsulfonyloxy group, a cyano group, a hydroxy group, a thiol group, and an organosilyl group. Among them, an organic group having a carbon atom at the bond portion with E 3 is preferred from the viewpoint of high electron accepting property like R 103 , and for example, an alkyl group, an alkenyl group, an alkynyl group, an aromatic hydrocarbon group, and an aromatic heterocyclic group are preferred. In particular, aromatic hydrocarbon groups and aromatic heterocyclic groups are preferred because they have high electron-accepting properties and are thermally stable.

前記アルキル基、アルケニル基、アルキニル基、芳香族炭化水素基及び芳香族複素環基としては、R103の説明において述べたものと同様のものが挙げられる。 Examples of the alkyl group, alkenyl group, alkynyl group, aromatic hydrocarbon group and aromatic heterocyclic group include the same groups as those described in the description of R 103 .

前記オルガノアミノ基としては、アルキル基、アリール基、ヘテロアリール基、アラルキル基、アシル基等の有機基で置換されたアミノ基が挙げられる。前記アルキル基で置換されたアミノ基としては、炭素数が通常1以上であり、通常12以下、好ましくは6以下のアルキル基を1つ以上有するアミノ基が挙げられる。その具体例としては、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等が挙げられる。 The organoamino group includes an amino group substituted with an organic group such as an alkyl group, an aryl group, a heteroaryl group, an aralkyl group, or an acyl group. The amino group substituted with an alkyl group includes an amino group having one or more alkyl groups, usually having one or more carbon atoms and usually having 12 or less, preferably 6 or less. Specific examples thereof include a methylamino group, a dimethylamino group, and a diethylamino group.

前記アリール基又はヘテロアリール基で置換されたアミノ基としては、炭素数が通常3以上、好ましくは4以上であり、通常25以下、好ましくは15以下の芳香族炭化水素基又は芳香族複素環基を1つ以上有するアミノ基が挙げられる。その具体例としては、フェニルアミノ基、ジフェニルアミノ基、トリルアミノ基、ピリジルアミノ基、チエニルアミノ基等が挙げられる。The amino group substituted with the aryl group or heteroaryl group includes an amino group having one or more aromatic hydrocarbon groups or aromatic heterocyclic groups, each of which usually has 3 or more carbon atoms, preferably 4 or more carbon atoms, and usually has 25 or less carbon atoms, preferably 15 or less carbon atoms. Specific examples of such groups include a phenylamino group, a diphenylamino group, a tolylamino group, a pyridylamino group, and a thienylamino group.

前記アラルキル基で置換されたアミノ基としては、炭素数が通常7以上、通常25以下、好ましくは15以下のアラルキル基を1つ以上有するアミノ基が挙げられる。その具体例としては、ベンジルアミノ基、ジベンジルアミノ基等が挙げられる。The amino group substituted with the aralkyl group includes an amino group having one or more aralkyl groups having a carbon number of usually 7 or more and usually 25 or less, preferably 15 or less. Specific examples thereof include a benzylamino group and a dibenzylamino group.

前記アシル基で置換されたアミノ基としては、炭素数が通常2以上であり、通常25以下、好ましくは15以下のアシル基を1つ以上有するアシルアミノ基が挙げられる。その具体例としては、アセチルアミノ基、ベンゾイルアミノ基等が挙げられる。The amino group substituted with the acyl group includes an acylamino group having one or more acyl groups, which usually has 2 or more carbon atoms and usually has 25 or less, preferably 15 or less. Specific examples thereof include an acetylamino group and a benzoylamino group.

前記アルコキシ基としては、炭素数が通常1以上であり、通常12以下、好ましくは6以下のアルコキシ基が挙げられる。その具体例としては、メトキシ基、エトキシ基、ブトキシ基等が挙げられる。The alkoxy group generally has 1 or more carbon atoms and generally has 12 or less carbon atoms, preferably 6 or less carbon atoms. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, and a butoxy group.

前記アリールオキシ基としては、炭素数が通常3以上であり、好ましくは4以上であり、通常25以下、好ましくは15以下の芳香族炭化水素基又は芳香族複素環基を有するアリールオキシ基が挙げられる。その具体例としては、フェニルオキシ基、ナフチルオキシ基、ピリジルオキシ基、チエニルオキシ基等が挙げられる。The aryloxy group includes an aryloxy group having an aromatic hydrocarbon group or an aromatic heterocyclic group having a carbon number of usually 3 or more, preferably 4 or more, and usually 25 or less, preferably 15 or less. Specific examples thereof include a phenyloxy group, a naphthyloxy group, a pyridyloxy group, and a thienyloxy group.

前記アシル基としては、炭素数が通常1以上であり、通常25以下、好ましくは15以下のアシル基が挙げられる。具体例としては、ホルミル基、アセチル基及びベンゾイル基等が挙げられる。The acyl group generally has 1 or more carbon atoms and generally has 25 or less carbon atoms, preferably 15 or less carbon atoms. Specific examples include a formyl group, an acetyl group, and a benzoyl group.

前記アルコキシカルボニル基としては、炭素数が通常2以上であり、通常10以下、好ましくは7以下のアルコキシカルボニル基が挙げられる。その具体例としては、メトキシカルボニル基及びエトキシカルボニル基等が挙げられる。The alkoxycarbonyl group has a carbon number of typically 2 or more and typically 10 or less, preferably 7 or less. Specific examples include a methoxycarbonyl group and an ethoxycarbonyl group.

前記アリールオキシカルボニル基としては、炭素数が通常3以上、好ましくは4以上であり、通常25以下、好ましくは15以下の芳香族炭化水素基又は芳香族複素環基を有するものが挙げられる。その具体例としては、フェノキシカルボニル基、ピリジルオキシカルボニル基等が挙げられる。The aryloxycarbonyl group includes an aromatic hydrocarbon group or an aromatic heterocyclic group having a carbon number of usually 3 or more, preferably 4 or more, and usually 25 or less, preferably 15 or less. Specific examples thereof include a phenoxycarbonyl group and a pyridyloxycarbonyl group.

前記アルキルカルボニルオキシ基としては、炭素数が通常2以上、また、通常10以下、好ましくは7以下のアルキルカルボニルオキシ基が挙げられる。その具体例としては、アセトキシ基、トリフルオロアセトキシ基等が挙げられる。The alkylcarbonyloxy group has a carbon number of typically 2 or more and typically 10 or less, preferably 7 or less. Specific examples thereof include an acetoxy group and a trifluoroacetoxy group.

前記アルキルチオ基としては、炭素数が通常1以上、また、通常12以下、好ましくは6以下のアルキルチオ基が挙げられる。その具体例としては、メチルチオ基、エチルチオ基等が挙げられる。The alkylthio group has a carbon number of typically 1 or more and typically 12 or less, preferably 6 or less. Specific examples include a methylthio group and an ethylthio group.

前記アリールチオ基としては、炭素数が通常3以上、好ましくは4以上であり、通常25以下、好ましくは14以下のアリールチオ基が挙げられる。その具体例としては、フェニルチオ基、ナフチルチオ基、ピリジルチオ基等が挙げられる。The arylthio group has a carbon number of typically 3 or more, preferably 4 or more, and typically 25 or less, preferably 14 or less. Specific examples include a phenylthio group, a naphthylthio group, and a pyridylthio group.

前記アルキルスルホニル基及びアリールスルホニル基の具体例としては、メシル基、トシル基等が挙げられる。 Specific examples of the alkylsulfonyl group and arylsulfonyl group include a mesyl group and a tosyl group.

前記アルキルスルホニルオキシ基及びアリールスルホニルオキシ基の具体例としては、メシルオキシ基、トシルオキシ基等が挙げられる。 Specific examples of the alkylsulfonyloxy group and arylsulfonyloxy group include a mesyloxy group and a tosyloxy group.

前記オルガノシリル基の具体例としては、トリメチルシリル基、トリフェニルシリル基等が挙げられる。 Specific examples of the organosilyl group include a trimethylsilyl group and a triphenylsilyl group.

以上、R103、R104及びR105として例示した基は、本発明の趣旨に反しない限りにおいて、更に他の置換基によって置換されていてもよい。置換基の種類は特に限定されないが、例えば、R103、R104及びR105としてそれぞれ例示した基のほか、ハロゲン原子、シアノ基、チオシアノ基、ニトロ基等が挙げられる。中でも、イオン化合物(電子受容性イオン化合物)の耐熱性及び電子受容性の妨げにならない観点から、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、芳香族炭化水素基又は芳香族複素環基が好ましい。 The groups exemplified as R 103 , R 104 and R 105 above may be further substituted with other substituents as long as it does not go against the spirit of the present invention. The type of the substituent is not particularly limited, and examples thereof include halogen atoms, cyano groups, thiocyano groups, nitro groups, etc., in addition to the groups exemplified as R 103 , R 104 and R 105. Among them, from the viewpoint of not interfering with the heat resistance and electron accepting property of the ionic compound (electron accepting ionic compound), an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an aromatic hydrocarbon group or an aromatic heterocyclic group is preferred.

前述したものの中でも、下記式(2-1)~(2-4)で表されるイオン化合物(特許第5381931号参照)を好適に用いることができる。

Figure 0007505407000011
Among the above, the ionic compounds represented by the following formulas (2-1) to (2-4) (see Japanese Patent No. 5381931) can be preferably used.
Figure 0007505407000011

Figure 0007505407000012
Figure 0007505407000012

更に、式(3a)で表される1価又は2価のアニオンと式(4a)~(4e)のいずれかで表される対カチオンとからなるオニウムボレート塩(ただし、電気的中性な塩である)も好適に用いることができる。

Figure 0007505407000013
Furthermore, onium borate salts (which are electrically neutral salts) consisting of a monovalent or divalent anion represented by formula (3a) and a counter cation represented by any one of formulas (4a) to (4e) can also be suitably used.
Figure 0007505407000013

Figure 0007505407000014
Figure 0007505407000014

式(3a)中、Ar11~Ar16は、互いに独立に、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基である。Lは、アルキレン基、-NH-、酸素原子、硫黄原子又は-CN+-である。 In formula (3a), Ar 11 to Ar 16 are each independently an aryl group which may have a substituent or a heteroaryl group which may have a substituent, and L is an alkylene group, -NH-, an oxygen atom, a sulfur atom or -CN + -.

前記アリール基としては、炭素数6~20のアリール基等が挙げられる。その具体例としては、R1~R21の説明において例示したものと同じものが挙げられるが、フェニル基、トリル基、ナフチル基が好ましい。前記ヘテロアリール基としては、炭素数2~20のヘテロアリール基等が挙げられる。その具体例としては、R1~R21の説明において例示したものと同じものが挙げられる。 The aryl group includes aryl groups having 6 to 20 carbon atoms. Specific examples thereof are the same as those exemplified in the description of R 1 to R 21 , with phenyl, tolyl, and naphthyl being preferred. The heteroaryl group includes heteroaryl groups having 2 to 20 carbon atoms. Specific examples thereof are the same as those exemplified in the description of R 1 to R 21 .

前記置換基としては、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基及び炭素数2~20のアルキニル基等が挙げられる。 Examples of the substituents include halogen atoms, nitro groups, cyano groups, alkyl groups having 1 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, and alkynyl groups having 2 to 20 carbon atoms.

前記アルキル基の具体例としては、R1~R21の説明において例示したものと同じものが挙げられるが、炭素数1~18のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましい。前記ハロゲン原子、アルケニル基及びアルキニル基の具体例としては、R1~R21の説明において例示したものと同じものが挙げられる。 Specific examples of the alkyl group include the same as those exemplified in the description of R 1 to R 21 , with alkyl groups having 1 to 18 carbon atoms being preferred, and alkyl groups having 1 to 8 carbon atoms being more preferred. Specific examples of the halogen atoms, alkenyl groups and alkynyl groups include the same as those exemplified in the description of R 1 to R 21 .

前記アリール基及びヘテロアリール基としては、置換基として1又は2以上の電子吸引性基を有するものが好ましい。前述した置換基のうち電子吸引性基としては、ハロゲン原子、ニトロ基、シアノ基等が挙げられ、ハロゲン原子が好ましく、フッ素原子が特に好ましい。The aryl group and heteroaryl group preferably have one or more electron-withdrawing groups as a substituent. Among the aforementioned substituents, examples of the electron-withdrawing groups include halogen atoms, nitro groups, and cyano groups, with halogen atoms being preferred and fluorine atoms being particularly preferred.

式(3a)中、Lは、アルキレン基、-NH-、酸素原子、硫黄原子又は-CN+-であるが、-CN+-が好ましい。 In formula (3a), L is an alkylene group, --NH--, an oxygen atom, a sulfur atom or --CN.sup. + --, with --CN.sup. + -- being preferred.

前記アルキレン基は、直鎖状、分岐状、環状のいずれでもよく、炭素数1~20、好ましくは炭素数1~10のアルキレン基が挙げられる。その具体例としては、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。The alkylene group may be linear, branched, or cyclic, and includes alkylene groups having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. Specific examples include methylene, methylmethylene, dimethylmethylene, ethylene, trimethylene, propylene, tetramethylene, pentamethylene, and hexamethylene groups.

本発明で好適に用いることのできる式(3a)で表されるアニオンとしては、式(3b)で表されるものが挙げられるが、これに限定されない。

Figure 0007505407000015
An anion represented by formula (3a) that can be suitably used in the present invention includes, but is not limited to, an anion represented by formula (3b).
Figure 0007505407000015

本発明において、前記オニウムボレート塩は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、必要に応じて公知のその他のオニウムボレート塩を併用してもよい。なお、前記オニウムボレート塩は、例えば、特開2005-314682号公報等に記載された公知の方法を参考に合成することができる。In the present invention, the onium borate salt may be used alone or in combination of two or more. If necessary, other known onium borate salts may be used in combination. The onium borate salt may be synthesized by referring to known methods described in, for example, JP-A-2005-314682.

前記オニウムボレート塩は、電荷輸送性組成物への溶解を容易にするため、組成物の調製に際し、予め有機溶媒に溶かしておいてもよい。このような有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2-ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート類;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソアミルケトン、2-ヘプタノン等のケトン類;エチレングリコール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、プロピレングリコール、プロピレングリコールモノアセテート、ジプロピレングリコール、ジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル又はモノフェニルエーテル等の多価アルコール及びその誘導体類;ジオキサン等の環式エーテル類;ギ酸エチル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸エチル、エトキシ酢酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート等のエステル類;トルエン、キシレン、3-フェノキシトルエン、4-メトキシトルエン、安息香酸メチル、シクロヘキシルベンゼン、テトラリン、イソホロン等の芳香族炭化水素類等が挙げられる。これらの溶媒は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。その使用量は、前記オニウムボレート塩100質量部に対し、15~1,000質量部が好ましく、30~500質量部がより好ましい。The onium borate salt may be dissolved in an organic solvent in advance when preparing the charge transport composition in order to facilitate dissolution in the composition. Examples of such organic solvents include carbonates such as propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate, and diethyl carbonate; ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone, and 2-heptanone; polyhydric alcohols and derivatives thereof such as ethylene glycol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol monoacetate, propylene glycol, propylene glycol monoacetate, dipropylene glycol, and monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether, and monophenyl ether of dipropylene glycol monoacetate; dioxanes, diisopropyl ether ... Examples of the solvent include cyclic ethers such as ethyl formate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, methyl acetoacetate, ethyl acetoacetate, ethyl pyruvate, ethyl ethoxyacetate, methyl methoxypropionate, ethyl ethoxypropionate, methyl 2-hydroxypropionate, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, and 3-methyl-3-methoxybutyl acetate; and aromatic hydrocarbons such as toluene, xylene, 3-phenoxytoluene, 4-methoxytoluene, methyl benzoate, cyclohexylbenzene, tetralin, and isophorone. These solvents may be used alone or in combination of two or more. The amount of the solvent used is preferably 15 to 1,000 parts by mass, and more preferably 30 to 500 parts by mass, based on 100 parts by mass of the onium borate salt.

前記電荷輸送性組成物がドーパントとして前記オニウムボレート塩を含む場合、その含有量は、質量比で、電荷輸送性物質(本発明のアニリン誘導体):オニウムボレート塩が1:0.01~20程度となる量が好ましく、1:0.01~10程度となる量がより好ましく、1:0.01~2程度となる量がより一層好ましく、1:0.1~2程度となる量が更に好ましい。When the charge transport composition contains the onium borate salt as a dopant, the content is preferably such that the mass ratio of charge transport substance (aniline derivative of the present invention) to onium borate salt is approximately 1:0.01 to 20, more preferably approximately 1:0.01 to 10, even more preferably approximately 1:0.01 to 2, and even more preferably approximately 1:0.1 to 2.

前記電荷輸送性組成物中、前記電荷輸送性物質及びドーパントは、前記溶媒に完全に溶解しているか、均一に分散している状態となっていることが好ましく、完全に溶解していることが最適である。In the charge transport composition, it is preferable that the charge transport material and the dopant are completely dissolved or uniformly dispersed in the solvent, and it is optimal that they are completely dissolved.

前記電荷輸送性組成物は、得られる薄膜を有機EL素子の正孔注入層として用いる場合における正孔輸送層への注入性の向上、素子の寿命特性等の改善を目的として、有機シラン化合物やノニオン系含フッ素界面活性剤を含んでいてもよく、その含有量は、電荷輸送性物質及びドーパントの合計100質量部に対し、通常、1~30質量部程度である。The charge transport composition may contain an organic silane compound or a nonionic fluorine-containing surfactant for the purpose of improving the injection into the hole transport layer when the resulting thin film is used as a hole injection layer of an organic EL element, and improving the life characteristics of the element, etc., and the content thereof is usually about 1 to 30 parts by mass per 100 parts by mass of the total of the charge transport substance and dopant.

前記電荷輸送性組成物中の固形分濃度は、電荷輸送性物質の析出を抑制しつつ十分な膜厚を確保する観点から、通常0.1~20質量%程度、好ましくは0.5~15質量%である。The solids concentration in the charge transport composition is typically about 0.1 to 20% by mass, preferably 0.5 to 15% by mass, from the viewpoint of suppressing precipitation of the charge transport material while ensuring a sufficient film thickness.

前記電荷輸送性組成物の粘度は、通常、25℃で1~50mPa・sであり、表面張力は、通常、25℃で20~50mN/mである。前記電荷輸送性組成物の粘度と表面張力は、用いる塗布方法、所望の膜厚等の各種要素を考慮して、用いる有機溶媒の種類やそれらの比率、固形分濃度等を変更することで調整可能である。The viscosity of the charge transport composition is typically 1 to 50 mPa·s at 25° C., and the surface tension is typically 20 to 50 mN/m at 25° C. The viscosity and surface tension of the charge transport composition can be adjusted by changing the types of organic solvents used, their ratios, solids concentration, etc., taking into consideration various factors such as the coating method used and the desired film thickness.

前記電荷輸送性組成物は、本発明のアニリン誘導体を有機溶媒に溶解させることで製造できる。あらかじめ有機溶媒に本発明のアニリン誘導体を溶解させ、そこにその他の有機溶媒を順次加えてもよく、用いる全溶媒の混合溶媒をあらかじめ調製し、そこへ本発明のアニリン誘導体を溶解させてもよい。また、必要があれば、組成物に含まれる成分が分解したり変質したりしないように注意し、加熱して本発明のアニリン誘導体等の溶解を促進してもよい。前記電荷輸送性組成物が、本発明のアニリン誘導体と溶媒以外の成分を含む場合も同様の方法に従う。更に、前記電荷輸送性組成物は、より平坦性の高い薄膜を再現性よく得る観点から、電荷輸送性物質を有機溶媒に溶解させた後、サブマイクロメートルオーダーのフィルター等を用いてろ過してもよい。The charge transport composition can be produced by dissolving the aniline derivative of the present invention in an organic solvent. The aniline derivative of the present invention may be dissolved in an organic solvent in advance, and other organic solvents may be added thereto in sequence, or a mixed solvent of all the solvents to be used may be prepared in advance, and the aniline derivative of the present invention may be dissolved therein. If necessary, the composition may be heated to promote dissolution of the aniline derivative of the present invention, while taking care not to decompose or deteriorate the components contained in the composition. The same method is also followed when the charge transport composition contains components other than the aniline derivative of the present invention and the solvent. Furthermore, the charge transport composition may be filtered using a submicrometer-order filter after dissolving the charge transport material in an organic solvent, from the viewpoint of reproducibly obtaining a thin film with a higher flatness.

以上説明した電荷輸送性組成物を基材上に塗布して焼成することで、基材上に電荷輸送性薄膜を形成することができる。 By applying the charge transport composition described above onto a substrate and baking it, a charge transport thin film can be formed on the substrate.

組成物の塗布方法としては、特に限定されず、ディップ法、スピンコート法、転写印刷法、ロールコート法、インクジェット法、スプレー法、スリットコート法等が挙げられる。塗布方法に応じて、組成物の粘度及び表面張力を調節することが好ましい。The method for applying the composition is not particularly limited, and examples thereof include a dip method, a spin coating method, a transfer printing method, a roll coating method, an inkjet method, a spray method, a slit coating method, etc. It is preferable to adjust the viscosity and surface tension of the composition depending on the application method.

焼成雰囲気も特に限定されず、大気雰囲気(空気下)だけでなく、窒素等の不活性ガス下や真空中でも均一な成膜面及び電荷輸送性を有する薄膜を得ることができるが、通常、大気雰囲気で焼成する。The firing atmosphere is not particularly limited, and thin films with uniform film surface and charge transport properties can be obtained not only in an atmospheric atmosphere (air) but also in an inert gas such as nitrogen or in a vacuum, but firing is usually performed in an atmospheric atmosphere.

また、焼成条件も特に限定されないが、例えば、ホットプレートを用いて加熱焼成する。通常、所望の電荷輸送性等も考慮して、焼成温度は100~260℃の範囲内で、焼成時間は1分間~1時間の範囲内で適宜決定する。更に、必要に応じて、異なる2以上の温度で多段階の焼成をしてもよい。 The baking conditions are not particularly limited, but for example, the material is heated and baked using a hot plate. Usually, the baking temperature is set within the range of 100 to 260°C, and the baking time is set within the range of 1 minute to 1 hour, taking into consideration the desired charge transport properties, etc. Furthermore, multi-stage baking at two or more different temperatures may be performed as necessary.

電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子の機能層として用いる場合、5~300nmが好ましい。膜厚を変化させる方法としては、例えば、電荷輸送性組成物中の固形分濃度を変化させたり、塗布時の液量を変化させたりする方法がある。There are no particular limitations on the thickness of the charge-transporting thin film, but when used as a functional layer in an organic EL element, a thickness of 5 to 300 nm is preferred. Methods for changing the film thickness include, for example, changing the solids concentration in the charge-transporting composition or changing the amount of liquid during application.

前記電荷輸送性薄膜は、有機EL素子の機能層として好適に使用し得る。前記電荷輸送性薄膜を有機EL素子に適用する場合、前記有機EL素子は、一対の電極を有し、これら電極の間に、前記電荷輸送性薄膜を有するものである。The charge transporting thin film can be suitably used as a functional layer of an organic EL element. When the charge transporting thin film is applied to an organic EL element, the organic EL element has a pair of electrodes and has the charge transporting thin film between the electrodes.

有機EL素子の代表的な構成としては、以下の(a)~(f)が挙げられるが、これらに限定されない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層又は正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層あるいは電子注入輸送層がホール(正孔)ブロック層等としての機能を兼ね備えていてもよい。更に、必要に応じて各層の間に任意の機能層を設けることも可能である。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
Representative configurations of the organic EL element include, but are not limited to, the following (a) to (f). In the following configurations, an electron blocking layer or the like can be provided between the light-emitting layer and the anode, and a hole (positive hole) blocking layer or the like can be provided between the light-emitting layer and the cathode, if necessary. In addition, the hole injection layer, the hole transport layer, or the hole injection transport layer may also function as an electron blocking layer, etc., and the electron injection layer, the electron transport layer, or the electron injection transport layer may also function as a hole (positive hole) blocking layer, etc. Furthermore, an arbitrary functional layer can be provided between each layer, if necessary.
(a) anode/hole injection layer/hole transport layer/light emitting layer/electron transport layer/electron injection layer/cathode (b) anode/hole injection layer/hole transport layer/light emitting layer/electron injection transport layer/cathode (c) anode/hole injection transport layer/light emitting layer/electron transport layer/electron injection layer/cathode (d) anode/hole injection transport layer/light emitting layer/electron injection transport layer/cathode (e) anode/hole injection layer/hole transport layer/light emitting layer/cathode (f) anode/hole injection transport layer/light emitting layer/cathode

「正孔注入層」、「正孔輸送層」及び「正孔注入輸送層」とは、発光層と陽極との間に形成される層であって、正孔を陽極から発光層へ輸送する機能を有するものである。発光層と陽極の間に、正孔輸送性材料の層が1層のみ設けられる場合、それが「正孔注入輸送層」であり、発光層と陽極の間に、正孔輸送性材料の層が2層以上設けられる場合、陽極に近い層が「正孔注入層」であり、それ以外の層が「正孔輸送層」である。特に、正孔注入(輸送)層は、陽極からの正孔受容性だけでなく、正孔輸送(発光)層への正孔注入性にも優れる薄膜が用いられる。 The terms "hole injection layer", "hole transport layer" and "hole injection transport layer" refer to layers formed between the light-emitting layer and the anode, which have the function of transporting holes from the anode to the light-emitting layer. When only one layer of a hole-transporting material is provided between the light-emitting layer and the anode, it is the "hole injection transport layer", and when two or more layers of a hole-transporting material are provided between the light-emitting layer and the anode, the layer closest to the anode is the "hole injection layer" and the other layers are "hole transport layers". In particular, the hole injection (transport) layer is a thin film that is excellent not only in terms of hole acceptance from the anode, but also in terms of hole injection into the hole transport (light-emitting) layer.

「電子注入層」、「電子輸送層」及び「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものである。発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。 An "electron injection layer," "electron transport layer," and "electron injection transport layer" are layers formed between the light-emitting layer and the cathode and have the function of transporting electrons from the cathode to the light-emitting layer. When only one layer of an electron-transporting material is provided between the light-emitting layer and the cathode, it is the "electron injection transport layer," and when two or more layers of an electron-transporting material are provided between the light-emitting layer and the cathode, the layer closest to the cathode is the "electron injection layer," and the other layers are "electron transport layers."

「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。 An "emissive layer" is an organic layer that has the ability to emit light, and contains a host material and a dopant material when a doping system is used. In this case, the host material primarily functions to promote the recombination of electrons and holes and confine excitons within the emissive layer, while the dopant material primarily functions to efficiently emit light from the excitons obtained by recombination. In the case of phosphorescent elements, the host material primarily functions to confine excitons generated by the dopant within the emissive layer.

前記電荷輸送性薄膜は、有機EL素子において、陽極と発光層の間に設けられる機能層として好適であり、正孔注入層、正孔輸送層、正孔注入輸送層としてより好適であり、正孔注入層としてより一層好適である。The charge transport thin film is suitable as a functional layer provided between an anode and an emitting layer in an organic EL element, and is more suitable as a hole injection layer, a hole transport layer, or a hole injection transport layer, and is even more suitable as a hole injection layer.

前記電荷輸送性組成物を用いて有機EL素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されない。When preparing an organic EL element using the charge transport composition, the materials and preparation methods used include, but are not limited to, those listed below.

前記電荷輸送性組成物から得られる薄膜をからなる正孔輸送層を有するOLED素子の作製方法の一例は、以下のとおりである。なお、電極は、電極に悪影響を与えない範囲で、アルコール、純水等による洗浄や、UVオゾン処理、酸素-プラズマ処理等による表面処理を予め行うことが好ましい。An example of a method for producing an OLED element having a hole transport layer made of a thin film obtained from the charge transport composition is as follows. Note that it is preferable to previously perform a surface treatment on the electrodes, such as cleaning with alcohol, pure water, etc., or UV ozone treatment, oxygen plasma treatment, etc., to the extent that it does not adversely affect the electrodes.

陽極基板上に、前記の方法により、前記電荷輸送性薄膜からなる正孔注入層を形成する。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層、電子輸送層/ホールブロック層、陰極金属を順次蒸着する。あるいは、当該方法において蒸着で正孔輸送層と発光層とを形成するかわりに、正孔輸送性高分子を含む正孔輸送層形成用組成物と発光性高分子を含む発光層形成用組成物を用いてウェットプロセスによってこれらの層を形成する。なお、必要に応じて、発光層と正孔輸送層との間に電子ブロック層を設けてよい。A hole injection layer made of the charge transport thin film is formed on an anode substrate by the above-mentioned method. This is introduced into a vacuum deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer, an electron transport layer/hole blocking layer, and a cathode metal are sequentially deposited. Alternatively, instead of forming the hole transport layer and the light emitting layer by deposition in this method, these layers are formed by a wet process using a hole transport layer forming composition containing a hole transport polymer and a light emitting layer forming composition containing a light emitting polymer. If necessary, an electron blocking layer may be provided between the light emitting layer and the hole transport layer.

陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。なお、金属陽極を構成するその他の金属としては、金、銀、銅、インジウムやこれらの合金等が挙げられるが、これらに限定されない。 Anode materials include transparent electrodes such as indium tin oxide (ITO) and indium zinc oxide (IZO), metal anodes made of metals such as aluminum or alloys thereof, and preferably those that have been subjected to planarization treatment. Polythiophene derivatives and polyaniline derivatives with high charge transport properties can also be used. Other metals that make up the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.

発光層を形成する材料としては、トリス(8-キノリノラート)アルミニウム(III)(Alq3)、ビス(8-キノリノラート)亜鉛(II)等の8-ヒドロキシキノリンのアルミニウム錯体、亜鉛錯体等の金属錯体、10-ヒドロキシベンゾ[h]キノリンの金属錯体、ビススチリルベンゼン誘導体、ビススチリルアリーレン誘導体、(2-ヒドロキシフェニル)ベンゾチアゾールの金属錯体、シロール誘導体等の低分子発光材料;ポリ(p-フェニレンビニレン)、ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]、ポリ(3-アルキルチオフェン)、ポリビニルカルバゾール等の高分子化合物に発光材料と電子移動材料を混合した系等が挙げられるが、これらに限定されない。また、蒸着で発光層を形成する場合、発光性ドーパントと共蒸着してもよく、発光性ドーパントとしては、トリス(2-フェニルピリジン)イリジウム(III)(Ir(PPy)3)等の金属錯体や、ルブレン等のナフタセン誘導体、キナクリドン誘導体、ペリレン等の縮合多環芳香族環等が挙げられるが、これらに限定されない。 Examples of materials for forming the light-emitting layer include, but are not limited to, low molecular weight light-emitting materials such as metal complexes of 8-hydroxyquinoline, such as tris(8-quinolinolato)aluminum(III) ( Alq3 ) and bis(8-quinolinolato)zinc(II), aluminum complexes, zinc complexes, and the like, metal complexes of 10-hydroxybenzo[h]quinoline, bisstyrylbenzene derivatives, bisstyrylarylene derivatives, metal complexes of (2-hydroxyphenyl)benzothiazole, and silole derivatives; and systems in which a light-emitting material and an electron transfer material are mixed into a polymer compound, such as poly(p-phenylenevinylene), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], poly(3-alkylthiophene), or polyvinylcarbazole. In addition, when forming a light-emitting layer by vapor deposition, it may be co-deposited with a light-emitting dopant. Examples of the light-emitting dopant include, but are not limited to, metal complexes such as tris(2-phenylpyridine)iridium(III) (Ir(PPy) 3 ), naphthacene derivatives such as rubrene, quinacridone derivatives, and condensed polycyclic aromatic rings such as perylene.

電子輸送層/ホールブロック層を形成する材料としては、オキシジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、フェニルキノキサリン誘導体、ベンズイミダゾール誘導体、ピリミジン誘導体等が挙げられるが、これらに限定されない。Materials for forming the electron transport layer/hole blocking layer include, but are not limited to, oxydiazole derivatives, triazole derivatives, phenanthroline derivatives, phenylquinoxaline derivatives, benzimidazole derivatives, pyrimidine derivatives, etc.

電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)等の金属酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)の金属フッ化物が挙げられるが、これらに限定されない。 Materials for forming the electron injection layer include, but are not limited to, metal oxides such as lithium oxide ( Li2O ), magnesium oxide ( MgO ), and alumina ( Al2O3 ), and metal fluorides such as lithium fluoride (LiF) and sodium fluoride (NaF).

陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金等が挙げられるが、これらに限定されない。Cathode materials include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, etc.

電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられるが、これに限定されない。 Materials for forming the electron blocking layer include, but are not limited to, tris(phenylpyrazole)iridium.

正孔輸送性高分子としては、ポリ[(9,9-ジヘキシルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,1'-ビフェニレン-4,4-ジアミン)]、ポリ[(9,9-ビス{1'-ペンテン-5'-イル}フルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[N,N'-ビス(4-ブチルフェニル)-N,N'-ビス(フェニル)-ベンジジン]-エンドキャップド ウィズポリシルセスキオキサン、ポリ[(9,9-ジジオクチルフルオレニル-2,7-ジイル)-co-(4,4'-(N-(p-ブチルフェニル))ジフェニルアミン)]等が挙げられる。 Examples of hole transport polymers include poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-(N,N'-bis{p-butylphenyl}-1,4-diaminophenylene)], poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N'-bis{p-butylphenyl}-1,1'-biphenylene-4,4-diamine)], poly[(9,9-bis{1'-penten-5'-yl}fluorenyl-2,7-diyl)-co-(N,N'-bis{p-butylphenyl}-1,4-diaminophenylene)], and poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine]-end-capped With polysilsesquioxane, poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(p-butylphenyl))diphenylamine)], and the like.

発光性高分子としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2'-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。Examples of luminescent polymers include polyfluorene derivatives such as poly(9,9-dialkylfluorene) (PDAF), polyphenylenevinylene derivatives such as poly(2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylenevinylene) (MEH-PPV), polythiophene derivatives such as poly(3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).

陽極と陰極及びこれらの間に形成される層を構成する材料は、ボトムエミッション構造、トップエミッション構造のいずれを備える素子を製造するかで異なるため、その点を考慮して、適宜材料選択する。The materials constituting the anode, cathode, and layers formed between them differ depending on whether an element having a bottom emission structure or a top emission structure is being manufactured, so the materials are selected appropriately, taking this into consideration.

通常、ボトムエミッション構造の素子では、基板側に透明陽極が用いられ、基板側から光が取り出されるのに対し、トップエミッション構造の素子では、金属からなる反射陽極が用いられ、基板と反対方向にある透明電極(陰極)側から光が取り出されることから、陽極材料について言えば、ボトムエミッション構造の素子を製造する際はITO等の透明陽極を、トップエミッション構造の素子を製造する際はAl/Nd等の反射陽極を、それぞれ用いる。Typically, in elements with a bottom emission structure, a transparent anode is used on the substrate side and light is extracted from the substrate side, whereas in elements with a top emission structure, a reflective anode made of metal is used and light is extracted from the transparent electrode (cathode) side opposite the substrate. Therefore, in terms of anode materials, when manufacturing elements with a bottom emission structure, a transparent anode such as ITO is used, and when manufacturing elements with a top emission structure, a reflective anode such as Al/Nd is used.

本発明の有機EL素子は、特性悪化を防ぐため、定法に従い、必要に応じて捕水剤等とともに封止してもよい。 In order to prevent deterioration of the characteristics of the organic EL element of the present invention, it may be sealed, if necessary, with a moisture scavenger, etc., in accordance with standard procedures.

本発明のアニリン誘導体は、昇華性を有し、これを用いて容易に蒸着膜を形成できる。従って、用途によっては、前記電荷輸送性組成物から得られる電荷輸送性薄膜ではなく、本発明のアニリン誘導体を用いた蒸着法により得られる電荷輸送性薄膜を用いてもよい。The aniline derivative of the present invention has sublimation properties and can be used to easily form a vapor deposition film. Therefore, depending on the application, a charge transporting thin film obtained by a vapor deposition method using the aniline derivative of the present invention may be used instead of a charge transporting thin film obtained from the charge transporting composition.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されない。なお、使用した装置は以下のとおりである。
(1)LDI-MS:Bruker社製AutoFlex
(2)1H-NMR:日本電子(株)製JNM-ECP300 FT NMR SYSTEM
(3)基板洗浄:長州産業(株)製基板洗浄装置(減圧プラズマ方式)
(4)組成物の塗布:ミカサ(株)製スピンコーターMS-A100
(5)膜厚測定:(株)小坂研究所製微細形状測定機サーフコーダET-4000
(6)素子の作製:長州産業(株)製多機能蒸着装置システムC-E2L1G1-N
(7)素子の電流密度等の測定:(株)イーエッチシー製多チャンネルIVL測定装置
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples. The apparatus used is as follows.
(1) LDI-MS: Bruker AutoFlex
(2) 1H -NMR: JNM-ECP300 FT NMR SYSTEM manufactured by JEOL Ltd.
(3) Substrate cleaning: Substrate cleaning equipment manufactured by Choshu Sangyo Co., Ltd. (low pressure plasma method)
(4) Coating of composition: Spin coater MS-A100 manufactured by Mikasa Co., Ltd.
(5) Film thickness measurement: Kosaka Laboratory Co., Ltd. micro shape measuring instrument Surfcorder ET-4000
(6) Fabrication of element: Multi-function deposition system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd.
(7) Measurement of current density of element: Multi-channel IVL measurement device manufactured by EHC Corporation

[1]化合物の製造
[実施例1]

Figure 0007505407000016
[1] Preparation of compound [Example 1]
Figure 0007505407000016

フラスコに、1,4-フェニレンジアミン0.502g、2-ブロモ-9-フェニル-9H-カルバゾール6.26g、ビス(ジベンジリデンアセトン)パラジウム0.106g及びナトリウムt-ブトキシド2.24gを入れ、フラスコ内を窒素置換した。そこへ、トルエン10mL及び別途あらかじめ準備したフェニルジ-t-ブチルホスフィンのトルエン溶液1.3mL(濃度:62.5g/L)を加え、90℃で3時間攪拌した。反応混合液を室温まで冷却した後、冷却した反応混合液とともに、トルエンと飽和食塩水とを分液漏斗に入れて、分液処理を行い、有機層を回収した。回収した有機層に活性炭を加えて室温で0.5時間攪拌した後、シリカゲルろ過を行い、得られたろ液を濃縮した。
得られた濃縮液を、メタノールと酢酸エチルの混合溶媒に滴下し、暫くの間、攪拌した。得られたスラリー溶液をろ過し、得られたろ物を乾燥して、目的とするアニリン誘導体Aを2.96g(収率:59%)得た。得られた目的物は、1H-NMRで同定した。
1H-NMR(500MHz, DMSO-d6) δ[ppm]: 8.09-8.15(m, 8H), 7.54-7.57(m, 8H), 7.43-7.47(m, 12H), 7.33-7.37(m, 4H), 7.24-7.30(m, 8H), 7.05(m, 8H), 6.92-6.94(m, 4H).
In a flask, 0.502 g of 1,4-phenylenediamine, 6.26 g of 2-bromo-9-phenyl-9H-carbazole, 0.106 g of bis(dibenzylideneacetone)palladium, and 2.24 g of sodium t-butoxide were placed, and the atmosphere in the flask was replaced with nitrogen. 10 mL of toluene and 1.3 mL of a toluene solution of phenyldi-t-butylphosphine (concentration: 62.5 g/L) that had been prepared separately were added, and the mixture was stirred at 90°C for 3 hours. After the reaction mixture was cooled to room temperature, toluene and saturated saline were placed in a separatory funnel together with the cooled reaction mixture, and the organic layer was collected. Activated carbon was added to the collected organic layer, and the mixture was stirred at room temperature for 0.5 hours, followed by silica gel filtration, and the obtained filtrate was concentrated.
The obtained concentrated solution was added dropwise to a mixed solvent of methanol and ethyl acetate and stirred for a while. The obtained slurry solution was filtered, and the obtained filter cake was dried to obtain 2.96 g (yield: 59%) of the desired aniline derivative A. The obtained target product was identified by 1 H-NMR.
1H -NMR(500MHz, DMSO-d6) δ[ppm]: 8.09-8.15(m, 8H), 7.54-7.57(m, 8H), 7.43-7.47(m, 12H), 7.33-7.37(m, 4H), 7.24-7.30(m, 8H), 7.05(m, 8H), 6.92-6.94(m, 4H).

[合成例1]オニウムボレート塩の製造
(1)中間体の合成

Figure 0007505407000017
[Synthesis Example 1] Preparation of onium borate salt (1) Synthesis of intermediate
Figure 0007505407000017

フラスコに、ジエチルエーテル6,068mL、トリス(ペンタフルオロフェニル)ボラン151.7g及びシアン化カリウム9.4gを入れ、34~36℃で3時間攪拌した。その後、反応混合物を常圧で濃縮し、褐色液体267.2gを得た。得られた褐色液体を、減圧下、55℃で濃縮した。得られた固体を、減圧下、35℃で16時間乾燥し、式(Q-1)で表される中間体157.7gを得た。得られた目的物は、LDI-MSで同定した。
LDI-MS m/Z found: 1050.12 ([M]- calcd: 1049.97).
A flask was charged with 6,068 mL of diethyl ether, 151.7 g of tris(pentafluorophenyl)borane, and 9.4 g of potassium cyanide, and the mixture was stirred at 34 to 36° C. for 3 hours. The reaction mixture was then concentrated at normal pressure to obtain 267.2 g of a brown liquid. The obtained brown liquid was concentrated under reduced pressure at 55° C. The obtained solid was dried under reduced pressure at 35° C. for 16 hours to obtain 157.7 g of an intermediate represented by formula (Q-1). The obtained target product was identified by LDI-MS.
LDI-MS m/Z found: 1050.12 ([M] - calcd: 1049.97).

(2)オニウムボレート塩Pの合成

Figure 0007505407000018
(2) Synthesis of onium borate salt P
Figure 0007505407000018

フラスコに、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムトリフルオロメタンスルホネート11.043g、式(Q-1)で表される中間体22.000g、イオン交換水110mL及びジエチルエーテル110mLを入れ、25℃で16時間攪拌した。その後、反応混合物を分液漏斗に入れ、有機層を残して水層を除き、残った有機層をイオン交換水で洗浄(100mL×5回)した後、回収した。回収した有機層から、減圧下、40~45℃で有機溶媒を留去し、得られた残渣を減圧下で20時間乾燥し、オニウムボレート塩P24gを得た。得られた目的物は、1H-NMR及びLDI-MSで同定した。
1H-NMR (300MHz, DMSO-D6): δ 7.40-7.80 (19H, m)
LDI-MS m/Z found: 371.04 ([M]+ calcd: 371.09).
LDI-MS m/Z found:1050.11 ([M]- calcd: 1049.97).
Into a flask, 11.043 g of diphenyl[4-(phenylthio)phenyl]sulfonium trifluoromethanesulfonate, 22.000 g of the intermediate represented by formula (Q-1), 110 mL of ion-exchanged water, and 110 mL of diethyl ether were placed and stirred at 25° C. for 16 hours. Thereafter, the reaction mixture was placed in a separatory funnel, and the aqueous layer was removed while leaving the organic layer. The remaining organic layer was washed with ion-exchanged water (100 mL x 5 times) and then recovered. The organic solvent was distilled off from the recovered organic layer under reduced pressure at 40 to 45° C., and the resulting residue was dried under reduced pressure for 20 hours to obtain 24 g of onium borate salt P. The obtained target product was identified by 1 H-NMR and LDI-MS.
1H -NMR (300MHz, DMSO-D6): δ 7.40-7.80 (19H, m)
LDI-MS m/Z found: 371.04 ([M] + calcd: 371.09).
LDI-MS m/Z found: 1050.11 ([M] - calcd: 1049.97).

[2]電荷輸送性組成物の調製
[参考例1]
アニリン誘導体A113mg及びオニウムボレート塩P150mgの混合物に、キシレン5.0gを加えて室温で攪拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターでろ過し、電荷輸送性組成物を得た。
[2] Preparation of charge transport composition [Reference Example 1]
To a mixture of 113 mg of aniline derivative A and 150 mg of onium borate salt P, 5.0 g of xylene was added and the mixture was stirred at room temperature to dissolve. The resulting solution was filtered through a syringe filter having a pore size of 0.2 μm to obtain a charge transporting composition.

[3]有機EL素子の作製及び特性評価
[参考例2]
参考例1で得られた電荷輸送性組成物を、スピンコーターを用いてITO基板に塗布した後、大気雰囲気下、120℃で1分間乾燥した。次に、乾燥させたITO基板をグローブボックス内に挿入し、大気雰囲気下、150℃で10分間焼成し、ITO基板上に50nmの薄膜を形成した。ITO基板としては、インジウム錫酸化物(ITO)が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。
次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いてα-NPD(N,N'-ジ(1-ナフチル)-N,N'-ジフェニルベンジジン)を0.2nm/秒にて120nm成膜した。次に、関東化学(株)製の電子ブロック材料HTEB-01を10nm成膜した。次いで、新日鉄住金化学(株)製の発光層ホスト材料NS60及び発光層ドーパント材料Ir(PPy)3を共蒸着した。共蒸着は、Ir(PPy)3の濃度が6%になるように蒸着レートをコントロールし、40nm積層させた。次いで、Alq3、フッ化リチウム及びアルミニウムの薄膜を順次積層して有機EL素子を得た。この際、蒸着レートは、Alq3及びアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ20nm、0.5nm及び80nmとした。
なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-76℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着剤((株)MORESCO製モレスコモイスチャーカットWb90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製HD-071010W-40)を有機EL素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着剤を硬化させた。
[3] Preparation of organic EL element and evaluation of its characteristics [Reference Example 2]
The charge transport composition obtained in Reference Example 1 was applied to an ITO substrate using a spin coater, and then dried at 120°C for 1 minute in an air atmosphere. The dried ITO substrate was then inserted into a glove box and baked at 150°C for 10 minutes in an air atmosphere to form a 50 nm thin film on the ITO substrate. As the ITO substrate, a 25 mm x 25 mm x 0.7 t glass substrate with indium tin oxide (ITO) patterned on the surface to a thickness of 150 nm was used, and impurities on the surface were removed using an O2 plasma cleaning device (150 W, 30 seconds) before use.
Next, a 120 nm film of α-NPD (N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine) was formed at 0.2 nm/sec on the ITO substrate on which the thin film was formed using a deposition apparatus (vacuum degree 1.0×10 -5 Pa). Next, a 10 nm film of an electron blocking material HTEB-01 manufactured by Kanto Chemical Co., Ltd. was formed. Next, an emitting layer host material NS60 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. and an emitting layer dopant material Ir(PPy) 3 were co-deposited. The deposition rate of the co-deposition was controlled so that the concentration of Ir(PPy) 3 was 6%, and a 40 nm film was laminated. Next, thin films of Alq 3 , lithium fluoride, and aluminum were sequentially laminated to obtain an organic EL device. In this case, the deposition rates were 0.2 nm/sec for Alq3 and aluminum, and 0.02 nm/sec for lithium fluoride, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
In order to prevent deterioration of characteristics due to the influence of oxygen, water, etc. in the air, the organic EL element was sealed with a sealing substrate, and then its characteristics were evaluated. Sealing was performed according to the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -76°C or less, the organic EL element was placed between the sealing substrates, and the sealing substrates were bonded together with an adhesive (Moresco Moisture Cut Wb90US(P) manufactured by MORESCO Corporation). At this time, a moisture scavenger (HD-071010W-40 manufactured by DYNIC Co., Ltd.) was placed in the sealing substrate together with the organic EL element. The bonded sealing substrates were irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ/cm 2 ), and then annealed at 80°C for 1 hour to harden the adhesive.

得られた素子を5,000cd/m2で発光させた場合の駆動電圧、電流密度、電流効率、発光効率及び外部発光量子収率(EQE)を測定した。結果を表1に示す。 The resulting device was driven at 5,000 cd/ m2 and the driving voltage, current density, current efficiency, luminous efficiency and external luminescence quantum yield (EQE) were measured. The results are shown in Table 1.

Figure 0007505407000019
Figure 0007505407000019

表1に示したように、本発明のアニリン誘導体を用いた有機EL素子は、好適に駆動することがわかった。As shown in Table 1, it was found that organic EL elements using the aniline derivatives of the present invention operated satisfactorily.

Claims (5)

下記式(1)で表されるアニリン誘導体。
Figure 0007505407000020
[式中、各Arは、下記式(Ar1)で表される基である。
Figure 0007505407000021
(式中、R 1 は、Z 1で置換されていてもよい炭素数1~20のアルキル基、Z1で置換されていてもよい炭素数2~20のアルケニル基、Z1で置換されていてもよい炭素数2~20のアルキニル基、Z2で置換されていてもよい炭素数6~20のアリール基又はZ2で置換されていてもよい炭素数2~20のヘテロアリール基であり、
1は、ハロゲン原子、ニトロ基、シアノ基、Z3で置換されていてもよい炭素数6~20のアリール基又はZ3で置換されていてもよい炭素数2~20のヘテロアリール基であり、
2は、ハロゲン原子、ニトロ基、シアノ基、Z3で置換されていてもよい炭素数1~20のアルキル基、Z3で置換されていてもよい炭素数2~20のアルケニル基又はZ3で置換されていてもよい炭素数2~20のアルキニル基であり、
3は、ハロゲン原子、ニトロ基又はシアノ基である。)]
An aniline derivative represented by the following formula (1):
Figure 0007505407000020
[In the formula, each Ar is a group represented by the following formula (Ar1 ) :
Figure 0007505407000021
(In the formula, R 1 is an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 , an alkenyl group having 2 to 20 carbon atoms which may be substituted with Z 1 , an alkynyl group having 2 to 20 carbon atoms which may be substituted with Z 1 , an aryl group having 6 to 20 carbon atoms which may be substituted with Z 2 , or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 2 ;
Z1 is a halogen atom, a nitro group, a cyano group, an aryl group having 6 to 20 carbon atoms which may be substituted with Z3 , or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z3 ;
Z2 is a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z3 , an alkenyl group having 2 to 20 carbon atoms which may be substituted with Z3 , or an alkynyl group having 2 to 20 carbon atoms which may be substituted with Z3 ;
Z3 is a halogen atom, a nitro group, or a cyano group.
R 11 が、ZBut, Z 22 で置換されていてもよい炭素数6~20のアリール基又はZan aryl group having 6 to 20 carbon atoms which may be substituted with 22 で置換されていてもよい炭素数2~20のヘテロアリール基である請求項1記載のアニリン誘導体。2. The aniline derivative according to claim 1, wherein the heteroaryl group has 2 to 20 carbon atoms and may be substituted with R 11 が、ZBut, Z 22 で置換されていてもよい炭素数6~20のアリール基である請求項2記載のアニリン誘導体。3. The aniline derivative according to claim 2, wherein the aryl group has 6 to 20 carbon atoms and may be substituted with R 11 が、ZBut, Z 22 で置換されていてもよいフェニル基、Za phenyl group optionally substituted with 22 で置換されていてもよい1-ナフチル基又はZ1-naphthyl group optionally substituted by Z 22 で置換されていてもよい2-ナフチル基である請求項3記載のアニリン誘導体。4. The aniline derivative according to claim 3, wherein the 2-naphthyl group is optionally substituted with 触媒の存在下、パラフェニレンジアミンと下記式(N1)で表されるカルバゾール誘導体とを反応させる、請求項1記載のアニリン誘導体の製造方法。
Figure 0007505407000022
(式中、Arは、前記と同じであり、Xは、ハロゲン原子又は擬ハロゲン基である。)
2. The method for producing an aniline derivative according to claim 1, which comprises reacting paraphenylenediamine with a carbazole derivative represented by the following formula (N1) in the presence of a catalyst:
Figure 0007505407000022
(In the formula, Ar is the same as defined above, and X is a halogen atom or a pseudohalogen group.)
JP2020534742A 2018-08-03 2019-08-01 Aniline Derivatives Active JP7505407B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018147124 2018-08-03
JP2018147124 2018-08-03
PCT/JP2019/030225 WO2020027264A1 (en) 2018-08-03 2019-08-01 Aniline derivative

Publications (2)

Publication Number Publication Date
JPWO2020027264A1 JPWO2020027264A1 (en) 2021-08-19
JP7505407B2 true JP7505407B2 (en) 2024-06-25

Family

ID=69231197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020534742A Active JP7505407B2 (en) 2018-08-03 2019-08-01 Aniline Derivatives

Country Status (5)

Country Link
JP (1) JP7505407B2 (en)
KR (1) KR20210039404A (en)
CN (1) CN112513013A (en)
TW (1) TW202035368A (en)
WO (1) WO2020027264A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088836A (en) 2009-10-20 2011-05-06 Tosoh Corp Carbazole compound, and use therefor
WO2015137395A1 (en) 2014-03-14 2015-09-17 日産化学工業株式会社 Aniline derivative and use thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2143708B1 (en) 2007-04-12 2016-04-06 Nissan Chemical Industries, Ltd. Oligoaniline compound
TWI527796B (en) * 2009-10-20 2016-04-01 東曹股份有限公司 Carbazole compound and use thereof
KR101181267B1 (en) * 2010-04-06 2012-09-10 덕산하이메탈(주) Chemical Comprising Naphthylcarbazole Derivatives and Organic Electronic Element using the same, Terminal thereof
TWI635078B (en) * 2013-10-04 2018-09-11 日產化學工業股份有限公司 Aniline derivatives and their utilization
KR102392403B1 (en) 2016-06-16 2022-04-29 닛산 가가쿠 가부시키가이샤 Sulfonic acid ester compounds and their use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088836A (en) 2009-10-20 2011-05-06 Tosoh Corp Carbazole compound, and use therefor
WO2015137395A1 (en) 2014-03-14 2015-09-17 日産化学工業株式会社 Aniline derivative and use thereof

Also Published As

Publication number Publication date
JPWO2020027264A1 (en) 2021-08-19
TW202035368A (en) 2020-10-01
WO2020027264A1 (en) 2020-02-06
CN112513013A (en) 2021-03-16
KR20210039404A (en) 2021-04-09

Similar Documents

Publication Publication Date Title
JP7359259B2 (en) Charge transport varnish
TWI620732B (en) Electrode transport varnish for metal anode and composite
JP2024041937A (en) Charge transport thin film
JP2023126469A (en) Charge transporting varnish
JP7505407B2 (en) Aniline Derivatives
JP7414001B2 (en) Charge transporting composition
JP7420073B2 (en) Aniline derivative
CN111836816B (en) Aniline derivatives and use thereof
JP7163907B2 (en) charge transport varnish
WO2020196154A1 (en) Arylamine compound and use thereof
TWI828732B (en) Polymers and their uses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240527