WO2020026918A1 - Method for producing poly(arylene sulfide), poly(arylene sulfide) prepolymer, and production method therefor - Google Patents

Method for producing poly(arylene sulfide), poly(arylene sulfide) prepolymer, and production method therefor Download PDF

Info

Publication number
WO2020026918A1
WO2020026918A1 PCT/JP2019/029036 JP2019029036W WO2020026918A1 WO 2020026918 A1 WO2020026918 A1 WO 2020026918A1 JP 2019029036 W JP2019029036 W JP 2019029036W WO 2020026918 A1 WO2020026918 A1 WO 2020026918A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepolymer
weight
polyarylene sulfide
pas
less
Prior art date
Application number
PCT/JP2019/029036
Other languages
French (fr)
Japanese (ja)
Inventor
高尾英伸
堀内俊輔
熊谷尚人
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2019544933A priority Critical patent/JP6733826B2/en
Publication of WO2020026918A1 publication Critical patent/WO2020026918A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0259Preparatory processes metal hydrogensulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • C08G75/0281Recovery or purification

Definitions

  • the present invention relates to a method for efficiently producing polyarylene sulfide having excellent mechanical strength and moldability.
  • PAS Polyarylene sulfide
  • PPS polyphenylene sulfide
  • Patent Document 1 As a typical method for producing PAS, a method is known in which an alkali metal sulfide and a dihalo aromatic compound are solution-polymerized in an organic amide solvent such as N-methyl-2-pyrrolidone (Patent Document 1).
  • Patent Document 1 N-methyl-2-pyrrolidone
  • Patent Document 2 Such a PAS is generally called a linear type, and is superior in mechanical strength such as toughness as compared with a crosslinked type.
  • the pre-polymerization reaction is performed by adjusting the coexisting water content of the reaction system to be low, and then water is added to the reaction system.
  • a method has been developed in which the coexisting water content is increased and the reaction temperature is raised to continue the solution polymerization until the molecular weight is sufficiently increased (Patent Document 3).
  • Patent Document 3 a polymer-rich phase and a polymer-dense phase are separated into a liquid-liquid phase by the presence of sufficient moisture, and a polymerization reaction proceeds in the polymer-rich phase to obtain a high-molecular-weight, linear-type PAS. be able to.
  • a PAS prepolymer containing at least 50% by weight or more of a cyclic PAS and having a weight average molecular weight of less than 10,000 is melt-polymerized.
  • Patent Document 5 Japanese Patent Publication No. 45-3368 Japanese Patent Publication No. 52-12240 JP-B-63-33775 JP 2000-246733 A International Publication No. 2007/034800
  • Non-Patent Document 1 Polymer, vol. 37, no. 14, 1996
  • PAS described in Patent Document 1 is generally called a crosslinked type, and has a high degree of crosslinking of a polymer having a low degree of polymerization, and thus has insufficient mechanical strength such as toughness.
  • Patent Document 4 As described above, the method of Patent Document 4 is excellent in the technology related to devolatilization, but has not yet reached a satisfactory level.
  • Non-Patent Document 1 describes that the molecular weight is increased by increasing the heating temperature, but it still does not reach a molecular weight suitable for practical use. It has been pointed out that only PAS having poor mechanical strength can be obtained because it cannot be avoided.
  • an object of the present invention is to provide an efficient method for producing polyarylene sulfide having a high molecular weight, excellent mechanical strength, a small amount of gas generated during melt processing, and a high crystallization temperature. It is in.
  • a method for producing a polyarylene sulfide according to the present invention has the following configuration. That is, A method for producing a polyarylene sulfide, which comprises polymerizing a polyarylene sulfide prepolymer satisfying the following (I) to (III) at a temperature not lower than the melting point of the polyarylene sulfide prepolymer in the absence of a solvent. (I) Weight average molecular weight of 3,000 or more and less than 20,000 (II) Cyclic polyarylene sulfide content of 5% by weight or more and less than 50% by weight (III) Generated when heated at 340 ° C. for 60 minutes.
  • the amount of chloride ions collected in the ion-exchanged water is 50 ppm or more and 5,000 ppm or less based on the weight of the polyarylene sulfide prepolymer.
  • the heat polymerization is performed at a temperature of 300 ° C. or higher.
  • the heat polymerization is performed in a non-oxidizing gas atmosphere or under reduced pressure.
  • the weight average molecular weight of the polyarylene sulfide obtained by heat polymerization is preferably 20,000 or more.
  • the weight loss rate of the polyarylene sulfide obtained by heat polymerization when heated represented by the following formula (1) is 0.18% or less.
  • ⁇ Wr (W1 ⁇ W2) / W1 ⁇ 100 (1)
  • ⁇ Wr is a weight reduction rate (%), and is 100% when thermogravimetric analysis is performed at a heating rate of 20 ° C./min from 50 ° C. to an arbitrary temperature of 330 ° C. or more in a nitrogen atmosphere at normal pressure. The value is obtained from the sample weight (W1) at the time when the temperature reaches ° C and the sample weight (W2) at the time when the temperature reaches 330 ° C.
  • the polyarylene sulfide obtained by heat polymerization preferably has a polydispersity, obtained by dividing the weight average molecular weight by the number average molecular weight, of more than 2.5 and not more than 5.0.
  • the temperature-reducing crystallization temperature of the polyarylene sulfide obtained by the heat polymerization is 220 ° C. or more.
  • the polyarylene sulfide prepolymer of the present invention has the following constitution. That is, A polyarylene sulfide prepolymer satisfying the following (I) to (III). (I) Weight average molecular weight of 3,000 or more and less than 20,000 (II) Cyclic polyarylene sulfide content of 5% by weight or more and less than 50% by weight (III) Generated when heated at 340 ° C. for 60 minutes. When the volatile component is passed through the ion-exchanged water, the amount of chloride ions collected in the ion-exchanged water is 50 ppm or more and 5,000 ppm or less based on the weight of the polyarylene sulfide prepolymer.
  • the polyarylene sulfide prepolymer of the present invention preferably has a weight average molecular weight of 15,000 or less.
  • the polyarylene sulfide prepolymer of the present invention preferably has a cyclic polyarylene sulfide content of less than 30% by weight.
  • the polyarylene sulfide prepolymer of the present invention has a polyarylene sulfide prepolymer having an amount of chloride ions trapped in the ion-exchange water when a volatile component generated when heated at 340 ° C. for 60 minutes is passed through the ion-exchange water. It is preferably at least 70 ppm based on the weight of the prepolymer.
  • the method for producing a polyarylene sulfide prepolymer of the present invention has the following constitution. That is, A raw material mixture containing at least a sulfidizing agent, a dihalogenated aromatic compound, and an organic polar solvent, wherein the dihalogenated aromatic compound in the raw material mixture is 0.8 mol or more and 1.2 mol or less per mol of the sulfidizing agent. A raw material mixture in which the amount of the organic polar solvent in the raw material mixture is 0.5 liter to 5 liter per 1 mol of the sulfidizing agent is converted to a sulfidizing agent having a conversion of 90% or more and a dihalogenated aromatic compound having a conversion of 90% or more.
  • a method for producing a polyarylene sulfide prepolymer in which a polyarylene sulfide prepolymer is recovered as a solid from a reaction mixture reacted by heating until the reaction reaches 90% or more and the conversion of a sulfidizing agent or less.
  • the polyarylene sulfide prepolymer The method of manufacturing polyarylene sulfide prepolymer of contacting is.
  • the amount of the organic polar solvent in the raw material mixture is preferably 1.25 liter or more per mole of the sulfidizing agent.
  • the method for producing a polyarylene sulfide prepolymer of the present invention comprises a step of solid-liquid separation of the reaction mixture at a temperature at which the polyarylene sulfide prepolymer in the reaction mixture dissolves, and a solution component containing at least the polyarylene sulfide prepolymer and an organic polar solvent. And it is preferable to recover the polyarylene sulfide prepolymer as a solid from the solution component.
  • PAS Polyarylene sulfide
  • the PAS in the present invention is a homopolymer or copolymer having a repeating unit of the formula-(Ar-S)-as a main constituent unit, preferably containing at least 80 mol% of the repeating unit.
  • Ar represents an aromatic group and includes units represented by the following formulas (A) to (K), among which the formula (A) is particularly preferred.
  • R1 and R2 are substituents selected from hydrogen, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an arylene group having 6 to 24 carbon atoms, and a halogen group; May be the same or different.
  • this repeating unit can contain a small amount of a branching unit or a crosslinking unit represented by the following formulas (L) to (N).
  • the copolymerization amount of these branching units or crosslinking units is preferably in the range of 0 to 1 mol% based on 1 mol of-(Ar-S)-unit.
  • it may be any of a random copolymer, a block copolymer and a mixture thereof containing the above repeating unit.
  • Typical examples thereof include polyphenylene sulfide (hereinafter, also sometimes referred to as “PPS”), polyphenylene sulfide sulfone, polyphenylene sulfide ketone, a random copolymer thereof, a block copolymer and a mixture thereof.
  • Particularly preferred PASs include polyphenylene sulfides containing at least 80 mol%, particularly at least 90 mol%, of a p-phenylene sulfide unit represented by the following formula as a main structural unit of the polymer.
  • the cyclic PAS in the present invention is a cyclic compound having a repeating unit of the formula — (Ar—S) — as a main constituent unit, and preferably has the following general formula (O) containing the repeating unit in an amount of 80 mol% or more.
  • Ar includes units represented by the above formulas (A) to (K), etc.
  • formula (A) is particularly preferable. Further, it may be any of a random copolymer, a block copolymer and a mixture thereof containing a repeating unit of the above formulas (A) to (K).
  • a PAS prepolymer containing a cyclic PAS is heated to a temperature higher than the melting point of the PAS prepolymer to convert it into a high polymer (high polymerization).
  • the melting point of cyclic PAS tends to decrease.
  • cyclic polyphenylene sulfide cyclic polyphenylene sulfide sulfone, cyclic polyphenylene sulfide ketone, cyclic random copolymers thereof, cyclic block copolymers, and mixtures thereof.
  • cyclic PAS a cyclic polyphenylene sulfide containing a p-phenylene sulfide unit represented by the following formula as a main structural unit in an amount of 80 mol% or more, particularly 90 mol% or more (hereinafter, also referred to as “cyclic PPS”) ).
  • the cyclic PAS may be either a single compound having a single repetition number or a mixture of cyclic PASs having different repetition numbers, but a mixture of cyclic PASs having different repetition numbers has a single repetition rate.
  • the melting point tends to be lower than that of a single compound having a number. Therefore, from the viewpoint that the degree of polymerization of the PAS prepolymer can be increased at a lower temperature, it is preferable that the cyclic PAS be a mixture having a different number of repetitions.
  • the linear PAS in the present invention is a linear homopolymer or copolymer having a repeating unit of the formula-(Ar-S)-as a main constituent unit, preferably containing at least 80 mol% of the repeating unit.
  • Ar includes units represented by the above formulas (A) to (K), etc.
  • formula (A) is particularly preferable. Further, it may be any of a random copolymer, a block copolymer, and a mixture thereof containing a repeating unit represented by the above formulas (A) to (K).
  • Typical examples thereof include linear polyphenylene sulfide, linear polyphenylene sulfide sulfone, linear polyphenylene sulfide ketone, random copolymers, block copolymers thereof, and mixtures thereof.
  • linear PAS a linear polyphenylene sulfide containing 80 mol% or more, particularly 90 mol% or more of a p-phenylene sulfide unit represented by the following formula as a main structural unit of the polymer is exemplified.
  • the PAS prepolymer of the present invention is a mixture consisting of a cyclic PAS and a linear PAS.
  • the lower limit of the content of the cyclic PAS in the PAS prepolymer of the present invention is 5% by weight, preferably 7% by weight or more.
  • an undesired side reaction such as a crosslinking reaction proceeds when the PAS prepolymer is heated, and the crystallization temperature of the obtained polymer decreases.
  • the cause is not clear, it is speculated that the reason is that the composition of impurities generated when preparing the PAS prepolymer changes.
  • the upper limit is less than 50% by weight, preferably less than 40% by weight, more preferably less than 30% by weight, and still more preferably less than 20% by weight.
  • the content of the cyclic PAS is 50% by weight or more, the cyclic PAS content of the polymer obtained by heating the PAS prepolymer increases, and the melting point and the crystallization temperature decrease.
  • a sophisticated purification operation is required, so that a reduction in production and an increase in process cost are inevitable.
  • the content of the cyclic PAS in the PAS prepolymer is a weight fraction (% by weight) of the cyclic PAS contained in the PAS prepolymer, and can be measured by high performance liquid chromatography.
  • the content of the cyclic PAS is measured by the following method. That is, 10 mg of dried PAS prepolymer was added to 5 g of 1-chloronaphthalene, heated and dissolved at 250 ° C., and the solution was cooled to room temperature to obtain a slurry-like solution, and a membrane filter having a pore size of 0.45 ⁇ m was passed through the membrane filter. The resulting filtrate is subjected to high performance liquid chromatography measurement to measure the content of cyclic PAS.
  • Assignment of each component divided by high performance liquid chromatography is performed based on mass spectrum analysis of the component divided by the component, molecular weight information of each component divided by preparative chromatography by MALDI-TOF-MS and GPC, and the number of repeating units is 4 To 15 cyclic PASs were assigned. For the cyclic PAS having 4 to 15 repeating units to which it was assigned, quantification was performed using a calibration curve with a standard.
  • the lower limit of the weight average molecular weight (hereinafter, the weight average molecular weight is sometimes referred to as “Mw”) of the PAS prepolymer of the present invention is 3,000, preferably 4,000 or more, more preferably 5,000 or more.
  • Mw weight average molecular weight
  • the upper limit of Mw is less than 20,000, preferably 15,000 or less, more preferably 12,000 or less.
  • the upper limit of the polydispersity index of the PAS prepolymer of the present invention obtained by dividing the weight average molecular weight by the number average molecular weight (hereinafter, the number average molecular weight is sometimes referred to as “Mn”) is preferably 5.0 or less, and is preferably 4.0. The following is more preferable, and 3.0 or less is still more preferable.
  • Mn number average molecular weight
  • the polydispersity index is in the above range, the content of the low-molecular-weight oligomer in the PAS prepolymer is small, and the yield in recovering the PAS prepolymer tends to be improved. Physical properties tend to improve.
  • the lower limit of the polydispersity index is usually 2.0.
  • the molecular weight in the present invention is a molecular weight in terms of polystyrene determined by using size exclusion chromatography equipped with a differential refractive index detector.
  • the PAS prepolymer of the present invention satisfies a specific range in the amount of chloride ions collected during heating.
  • the amount of chloride ion trapped during heating means that when a volatile component generated when the PAS prepolymer is heated at 340 ° C. for 60 minutes is passed through the ion-exchange water, it is trapped in the ion-exchange water. It refers to the amount of chloride ions and is a value that correlates with the content of polymerizable functional groups contained in the PAS prepolymer.
  • the lower limit of the amount of trapped chloride ions is 50 ppm, preferably 70 ppm or more, more preferably 100 ppm or more, further preferably 300 ppm or more, particularly preferably 500 ppm or more, and most preferably 1,000 ppm or more.
  • the chloride ion trapping amount is less than 50 ppm, the degree of polymerization of the polymer obtained by heating the PAS prepolymer decreases, or the temperature-dependent crystallization temperature decreases.
  • the upper limit of the collection amount of chloride ions is 5,000 ppm, preferably 3,000 ppm or less, more preferably 2,000 ppm or less. When the amount of collected chloride ions exceeds 5,000 ppm, undesired side reactions such as a cross-linking reaction proceed, and the mechanical properties of the obtained polymer deteriorate.
  • the upper limit of the melt viscosity of the PAS prepolymer used in the present invention is preferably 5.0 Pa ⁇ s or less, more preferably 3.0 Pa ⁇ s or less, and even more preferably 1.0 Pa ⁇ s or less (temperature; 320 ° C., shear rate; 1,000 / s).
  • the melt viscosity is within the above range, it can be applied to applications requiring high fluidity, such as producing a composite material structure by increasing the degree of polymerization after melt impregnation of a fibrous substance with a PAS prepolymer. Become.
  • the lower limit of the melt viscosity is usually 0.01 Pa ⁇ s.
  • the PAS prepolymer of the present invention has a low ash content.
  • the ash percentage is a weight residual rate when the PAS is burned at 550 ° C. for 5 hours, and is a value correlated with the amount of metal contained in the PAS.
  • the ash content of the PAS prepolymer is preferably 1.0% by weight or less, more preferably 0.5% by weight or less, further preferably 0.2% by weight or less, particularly preferably 0.1% by weight or less, and 0.05% by weight. % Is most preferred.
  • the polymer obtained by heating the PAS prepolymer also tends to have a reduced ash content and improved electrical insulation.
  • the method for producing a PAS prepolymer of the present invention comprises a raw material mixture containing at least a sulfidizing agent, a dihalogenated aromatic compound, and an organic polar solvent, wherein the dihalogenated aromatic compound in the raw material mixture is 0% per mole of the sulfidizing agent. From 0.8 to 1.2 mol, and the amount of the organic polar solvent in the raw material mixture is from 0.5 to 5 liters per mol of the sulfidizing agent.
  • PAS prepolymer in which polyarylene sulfide prepolymer is recovered as a solid from a reaction mixture heated and reacted until the conversion of the dihalogenated aromatic compound becomes 90% or more and the conversion of the sulfidizing agent or less. Recovering the polyarylene sulfide prepolymer as a solid. Wherein the contacting Ficoll de prepolymer and acid.
  • the raw material mixture refers to a raw material mixture containing at least a sulfidizing agent, a dihalogenated aromatic compound, and an organic polar solvent, but may contain other components as long as the reaction is not substantially inhibited.
  • Other components include, for example, water, inorganic salts, organic salts, metals, PAS, and the like.
  • the amount of the dihalogenated aromatic compound in the raw material mixture is preferably 0.9 mol or more and 1.1 mol or less per 1 mol of the sulfidizing agent.
  • the lower limit of the amount of the organic polar solvent in the raw material mixture is preferably 0.8 liter or more, more preferably 1.0 liter or more, and even more preferably 1.25 liter or more per mol of the sulfidizing agent in the raw material mixture.
  • the upper limit is preferably 3 liters or less, more preferably 2.5 liters or less, per mol of the sulfidizing agent.
  • the temperature at which the raw material mixture is heated cannot be uniquely indicated because it varies depending on the type and amount of the sulfidizing agent, the dihalogenated aromatic compound, and the organic polar solvent constituting the raw material mixture, but the lower limit is 100 ° C. or higher. 150 ° C. or higher is preferable, and 200 ° C. or higher is more preferable.
  • the upper limit is, for example, 290 ° C. or lower, preferably 280 ° C. or lower, more preferably 270 ° C. or lower.
  • the temperature at the time of heating is in the above range, there is a tendency that the generation rate of the PAS prepolymer is increased while suppressing the progress of the side reaction.
  • a method of controlling the temperature any of a method of controlling the temperature at a constant temperature, a method of gradually increasing the temperature, and a method of continuously changing the temperature may be employed.
  • the temperature range is a temperature exceeding the reflux temperature of the raw material mixture at normal pressure
  • the time for heating the raw material mixture cannot be uniquely indicated because it varies depending on the constitution of the raw material mixture and the heating temperature, but the lower limit is, for example, 0.05 hours or more, preferably 0.1 hour or more, 0.5 hours or more is more preferable, and 1 hour or more is further preferable.
  • the upper limit can be exemplified by 20 hours, preferably 10 hours or less, more preferably 6 hours or less, and still more preferably 3 hours or less.
  • the heating time is in the above range, the PAS prepolymer production reaction tends to proceed sufficiently while suppressing the progress of side reactions.
  • the conversion of the sulfidizing agent during the reaction is 90% or more, preferably 95% or more, more preferably 96% or more, and even more preferably 97% or more. On the other hand, there is no upper limit, and 100% is most preferable.
  • the conversion of the sulfidizing agent is less than 90%, the amount of unreacted raw materials in the reaction mixture obtained after the reaction increases, and the amount of impurities mixed in the recovered PAS prepolymer increases.
  • the conversion of the sulfidizing agent was calculated from the following equation.
  • the lower limit of the conversion of the dihalogenated aromatic compound during the reaction is 90% or more.
  • the conversion of the dihalogenated aromatic compound is less than 90%, the amount of unreacted raw materials in the reaction mixture obtained after the reaction increases, and the amount of impurities mixed in the recovered PAS prepolymer increases.
  • the upper limit is not more than the conversion of the sulfidizing agent, and is preferably [[conversion of the sulfidizing agent (%)]-1 (%)]% or less, and [[the conversion of the sulfidizing agent (%) )]-2 (%)]% or less is more preferable.
  • the conversion of the dihalogenated aromatic compound exceeds the conversion of the sulfidizing agent, the polymerizability of the recovered PAS prepolymer is significantly reduced.
  • the residual amount of the dihalogenated aromatic compound in the reaction mixture is estimated by gas chromatography, and the proportion of the charged sulfidizing agent or the charged dihalogenated aromatic compound is calculated based on the ratio to the amount of the charged dihalogenated aromatic compound. Is calculated.
  • the calculation formula is as follows.
  • the conversion of the dihalogenated aromatic compound (%) [the amount of the charged dihalogenated aromatic compound (mol)] -Remaining amount of dihalogenated aromatic compound (mol)] / Amount of charged sulfidizing agent (mol) ⁇ 100
  • the conversion of the dihalogenated aromatic compound (%) [the amount of the charged dihalogenated aromatic compound (mol)] -Remaining amount of dihalogenated aromatic compound (mol)] / Amount of charged dihalogenated aromatic compound (mol) ⁇ 100
  • the amount of the charged sulfidizing agent refers to the amount of the sulfidizing agent present in the system at the start of the reaction, and a part of the sulfidizing
  • the amount of the charged dihalogenated aromatic compound refers to the amount of the dihalogenated aromatic compound present in the system at the start of the reaction, and a part of the dihalogenated aromatic compound is obtained by a dehydration operation before the start of the reaction. Is removed from the system, the amount of the dihalogenated aromatic compound existing in the system at the start of the reaction is estimated in consideration of the number of moles scattered.
  • the reaction can be further continued by adding a dihalogenated aromatic compound.
  • a dihalogenated aromatic compound By performing such an operation, the problem that the frequency of collision between molecules decreases at the end of the reaction and the reaction is delayed can be reduced, and the conversion of the sulfidizing agent can be easily increased to a more preferable range.
  • the addition of the dihalogenated aromatic compound may be performed at an optional stage, but the stage of conversion of the sulfidizing agent is preferably 50% or more, more preferably 70% or more, and 90% or more. More preferred. By adding at this stage, a PAS prepolymer can be obtained more efficiently.
  • the amount of water in the raw material mixture is not particularly limited, alkali metal sulfides, which are general-purpose sulfidizing agents, are easily available as hydrates or aqueous mixtures.
  • the raw material mixture often contains moisture.
  • the amount of water in the raw material mixture is often 0.05 mol or more and 6.0 mol or less per mol of the sulfidizing agent in the raw material mixture, but is preferably 4.5 mol or less, and more preferably 3.0 mol or less. More preferably, it is less than mol.
  • the water content refers to the sulfidizing agent, the dihalogenated aromatic compound, the organic polar solvent charged in the reaction system, and, in the case where other components are charged, including those components as well.
  • water is removed from the reaction system out of the reaction system by an additional operation such as dehydration operation, or the amount of water obtained by subtracting the amount of water removed from the total amount of water, And does not consider water generated in the reaction process.
  • the sulfide agent may be any one capable of introducing a sulfide bond into a dihalogenated aromatic compound, and examples thereof include alkali metal sulfides, alkali metal hydrosulfides, and hydrogen sulfide.
  • the alkali metal sulfide refers to lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and a mixture of two or more thereof. These alkali metal sulfides can be used as hydrates or aqueous mixtures or in anhydrous form.
  • the aqueous mixture refers to an aqueous solution, a mixture of an aqueous solution and a solid component, or a mixture of water and a solid component.
  • Alkali metal hydrosulfide refers to lithium bisulfide, sodium bisulfide, potassium bisulfide, lithium bisulfide, rubidium bisulfide, cesium bisulfide, and a mixture of two or more thereof.
  • the alkali metal hydrosulfide may be prepared in the reaction system from the alkali metal hydrosulfide and the alkali metal hydroxide, or may be prepared by contacting the alkali metal hydrosulfide and the alkali metal hydroxide in advance. May be.
  • These alkali metal hydrosulfides and alkali metal hydroxides can be used as hydrates or aqueous mixtures or in anhydrous form.
  • an alkali metal sulfide prepared in a reaction system from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide may be used, or an alkali metal such as lithium hydroxide or sodium hydroxide may be used in advance. It may be prepared by contacting a metal hydroxide with hydrogen sulfide. Hydrogen sulfide may be used in any of gaseous, liquid and aqueous solutions.
  • the amount of the sulfidizing agent in the present invention means a remaining amount obtained by subtracting the loss from the actual charged amount when a part of the sulfidizing agent is lost due to a dehydration operation or the like.
  • Alkali metal hydroxides or alkaline earth metal hydroxides can be used in combination with the sulfide agent.
  • Alkali metal hydroxide refers to sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, and alkaline earth metal hydroxide refers to calcium hydroxide, strontium hydroxide, hydroxide Refers to barium and radium hydroxide. These may be used alone or as a mixture of two or more, and may be in any shape such as a solid state or an aqueous state.
  • an alkali metal hydrosulfide is used as the sulfidizing agent, it is preferable to use an alkali metal hydroxide or an alkaline earth metal hydroxide at the same time.
  • the lower limit of the addition amount of the alkali metal hydroxide or the alkaline earth metal hydroxide is the alkali metal hydrosulfide used as the amount of hydroxide ions contained in the alkali metal hydroxide and the alkaline earth metal hydroxide. 0.95 mol or more, preferably 1.00 mol or more, more preferably 1.05 mol or more, even more preferably 1.10 mol or more per 1 mol of the sulfur component.
  • the upper limit of the amount added is, as the amount of hydroxide ions contained in the alkali metal hydroxide and the alkaline earth metal hydroxide, 2.50 mol or less per mol of the sulfur component of the alkali metal hydrosulfide used.
  • it is preferably 2.00 mol or less, more preferably 1.80 mol or less, further preferably 1.5 mol or less, and particularly preferably 1.25 mol or less.
  • the addition amount of the alkali metal hydroxide or the alkaline earth metal hydroxide is in the above range, a PAS prepolymer having higher purity tends to be obtained.
  • an alkali metal hydroxide or an alkaline earth metal hydroxide when using hydrogen sulfide as the sulfidizing agent, it is preferable to use an alkali metal hydroxide or an alkaline earth metal hydroxide at the same time.
  • the lower limit of the addition amount of the alkali metal hydroxide or the alkaline earth metal hydroxide is defined as the amount of hydroxide ions contained in the alkali metal hydroxide and the alkaline earth metal hydroxide, per mole of hydrogen sulfide used. 1.90 mol or more can be exemplified, 2.00 mol or more is preferable, 2.10 mol or more is more preferable, and 2.20 mol or more is further preferable.
  • the upper limit of the amount of addition is, for example, 5.00 mol or less per 1 mol of hydrogen sulfide used as the amount of hydroxide ions contained in the alkali metal hydroxide and the alkaline earth metal hydroxide. Mol or less, preferably 3.60 mol or less, more preferably 3.00 mol or less, and particularly preferably 2.50 mol or less.
  • the addition amount of the alkali metal hydroxide or the alkaline earth metal hydroxide is in the above range, a PAS prepolymer having higher purity tends to be obtained.
  • dihalogenated aromatic compound examples include p-dichlorobenzene (hereinafter sometimes referred to as “p-DCB”), o-dichlorobenzene, m-dichlorobenzene, p-dibromobenzene, o-dibromobenzene, m-dibromobenzene Dihalogenated benzenes such as 1,1-bromo-4-chlorobenzene, 1-bromo-3-chlorobenzene, and 1-methoxy-2,5-dichlorobenzene, 1-methyl-2,5-dichlorobenzene, 1,4-dimethyl Examples thereof include dihalogenated aromatic compounds containing a substituent other than halogen, such as -2,5-dichlorobenzene, 1,3-dimethyl-2,5-dichlorobenzene, and 3,5-dichlorobenzoic acid.
  • p-DCB p-dichlorobenzene
  • dihalogenated aromatic compound mainly composed of p-dihalogenated benzene represented by p-dichlorobenzene is preferable.
  • the proportion of p-dichlorobenzene in the dihalogenated aromatic compound is preferably at least 80 mol%, more preferably at least 90 mol%.
  • Organic polar solvent examples include N-alkylpyrrolidones such as N-methyl-2-pyrrolidone (hereinafter sometimes referred to as “NMP”), N-ethyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, and N-alkylpyrrolidone.
  • NMP N-alkylpyrrolidone
  • Organic amide solvents such as caprolactams such as methyl- ⁇ -caprolactam, 1,3-dimethyl-2-imidazolidinone, N, N-dimethylacetamide, N, N-dimethylformamide, and hexamethylphosphoric triamide. No. Among them, N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone are widely used.
  • ⁇ PAS prepolymer recovery method> As a method for recovering the PAS prepolymer as a solid from the reaction mixture, (1) after removing a part or most of the organic polar solvent by distillation, the organic polar solvent is mixed with the organic polar solvent, and the by-product salt is dissolved. A method in which the PAS prepolymer is recovered as a solid by contacting the PAS prepolymer with a solvent in which the PAS prepolymer does not dissolve or hardly dissolves under heating, or (2) at a temperature at which the PAS prepolymer dissolves in the reaction mixture.
  • the solid component and the soluble component present in the solution are separated by solid-liquid separation, the solution component containing the PAS prepolymer and the organic polar solvent is recovered, and after part or most of the organic polar solvent is removed from the solution component by distillation, It is miscible with organic polar solvents and dissolves by-product salts, but does not dissolve PAS prepolymer or is difficult to dissolve.
  • a method is recovered as a solid (hereinafter a method for recovering PAS prepolymer by contact with a solvent as a solid, "solvent process"). Since the PAS prepolymer precipitates as a solid by the solvent treatment, it is possible to recover the PAS prepolymer using a known solid-liquid separation method such as separation by filtration, centrifugation, decantation and the like.
  • the temperature at which the solid-liquid separation is performed before the solvent treatment is not particularly limited as long as it is a temperature at which the PAS prepolymer is dissolved, but may be 200 ° C. or higher, preferably 230 ° C. or higher.
  • the solvent used in the solvent treatment cannot be uniquely indicated because it differs depending on the type of the organic polar solvent and by-product salt used, but water and alcohols represented by methanol, ethanol, propanol, isopropanol, butanol, and hexanol And ketones such as acetone, and acetates such as ethyl acetate and butyl acetate.
  • the solvent treatment is performed by mixing the solvent and the reaction mixture, and in this case, stirring or heating may be performed.
  • the lower limit of the temperature at the time of performing the solvent treatment may be, for example, 20 ° C. or higher, preferably 50 ° C. or higher, and more preferably 80 ° C. or higher.
  • the upper limit 220 ° C. can be exemplified, and 200 ° C. or lower is preferable.
  • an acid treatment is performed when the PAS prepolymer is recovered as a solid from the reaction mixture.
  • the acid treatment refers to bringing the PAS prepolymer into contact with an acid, and before performing the solvent treatment, adding an acid to one or both of the reaction mixture and the solvent, and mixing them.
  • a method, a method of simultaneously mixing a reaction mixture and a solvent and an acid in the solvent treatment, a method of adding an acid after mixing the reaction mixture and a solvent in the solvent treatment, and recovering a PAS prepolymer as a solid A method of contacting with an acid later can be exemplified.
  • the amount of chloride ions collected by the PAS prepolymer tends to be less than 50 ppm, and in addition, the ash content tends to increase.
  • the conditions for ensuring that the chloride ion trapping amount satisfies the above range are not clear at this time, but the PAS prepolymer must have a protic terminal, and the PAS prepolymer is subjected to acid treatment. It is presumed that the thiolate terminal of the linear PAS contained in the above is protonated.
  • Examples of the acid used for the acid treatment include formic acid, acetic acid, propionic acid, butyric acid, chloroacetic acid, dichloroacetic acid, acrylic acid, crotonic acid, benzoic acid, salicylic acid, oxalic acid, malonic acid, succinic acid, phthalic acid, and fumaric acid.
  • Organic acid compounds, inorganic acid compounds such as sulfuric acid, phosphoric acid, hydrochloric acid, carbonic acid, and silicic acid are cited, and salts of strong acids and weak bases that release hydrogen ions by reaction with water, such as ammonium chloride, are regarded as acids. May be used. These acids may be used alone or as a mixture of two or more.
  • the preferred amount of the acid to be used cannot be uniquely indicated because it varies depending on the terminal structure and molecular weight of the PAS prepolymer, and also on the type of the solvent and the acid used. 0.1% by weight or more based on the weight can be exemplified, and 1% by weight or more is preferable. On the other hand, the upper limit can be exemplified by 10,000% by weight based on the weight of the PAS prepolymer, and is more preferably 1,000% by weight or less.
  • the solvent or the acid can be removed by drying or washing.
  • PAS prepolymer obtained by the above operation may contain an impurity component depending on the characteristics of the solvent and the acid used.
  • an impurity component depending on the characteristics of the solvent and the acid used.
  • the temperature at which the PAS prepolymer is brought into contact with the second solvent is not particular limitation, but it is preferable that the temperature of the second solvent used is a reflux condition under normal pressure, in which case the removal of impurities tends to be easy. It is in.
  • a method of bringing the PAS prepolymer into contact with the second solvent a method of stirring and mixing the solid PAS prepolymer and the second solvent, and a method of simultaneously showering the second solvent on the solid PAS prepolymer on various filters
  • a method in which impurities are dissolved in a second solvent a method in which a solid PAS prepolymer is subjected to Soxhlet extraction using a second solvent, or a method in which a PAS prepolymer slurry containing a solvent is brought into contact with a second solvent to form a second solvent.
  • a method of precipitating a PAS prepolymer in the presence of a solvent can be exemplified.
  • the precipitated PAS prepolymer can be recovered by a known solid-liquid separation method such as separation by filtration, centrifugation, decantation and the like.
  • the PAS prepolymer recovered as a solid by the above operations contains the solvent used for the heating reaction or the solvent treatment, it is desirable to remove all or most of the solvent by drying treatment.
  • the drying treatment of the PAS prepolymer not only a known dryer but also a PAS prepolymer heating polymerization apparatus may be used.
  • a PAS prepolymer is converted into a PAS having a high degree of polymerization by heating.
  • the heating of the PAS prepolymer is performed under the condition that the solvent is not substantially present.
  • the condition that substantially no solvent is present means that the amount of the solvent in the PAS prepolymer is 10% by weight or less, preferably 3% by weight or less, more preferably 1% by weight or less, and contains no solvent. Most preferably no.
  • the amount of the solvent in the PAS prepolymer exceeds 10% by weight, the mechanical properties of the obtained PAS are reduced due to inhibition of conversion to a high polymerization degree and undesired side reactions such as decomposition and crosslinking.
  • the amount of gas generated during melt processing increases due to the solvent remaining in the obtained PAS.
  • the temperature at which the PAS prepolymer is heated is a temperature equal to or higher than the melting point of the PAS prepolymer. If the heating temperature is lower than the melting point of the PAS prepolymer, the rate of increasing the degree of polymerization is significantly reduced.
  • the melting point of the PAS prepolymer cannot be uniquely indicated because it differs depending on the composition and molecular weight of the PAS prepolymer, but the melting point can be determined by analyzing the PAS prepolymer with a differential scanning calorimeter. . Since the melting point of a polyphenylene sulfide prepolymer containing 90 mol% or more of a p-phenylene sulfide unit as a main constituent unit is usually 300 ° C. or less, the heating temperature is preferably 300 ° C. or more.
  • the heating temperature is too high, the mechanical properties of the obtained PAS may be reduced due to undesired side reactions such as decomposition and crosslinking. Therefore, it is desirable to avoid the temperature at which the side reaction occurs remarkably, and 400 ° C or lower can be exemplified as a preferable range, 380 ° C or lower is more preferable, and 360 ° C or lower is further preferable.
  • the atmosphere for heating the PAS prepolymer is preferably performed in a non-oxidizing gas atmosphere or under reduced pressure. Under these conditions, undesirable side reactions such as decomposition and crosslinking during heating tend to be suppressed.
  • the time for heating the PAS prepolymer cannot be uniquely indicated because it varies depending on the composition and molecular weight of the PAS prepolymer to be used, the heating temperature and the atmosphere, but the conversion to a high degree of polymerization sufficiently proceeds,
  • a lower limit is 0.05 hours
  • an upper limit is 100 hours.
  • the heating of the PAS prepolymer is not limited to a usual polymerization apparatus, but is not particularly limited as long as the apparatus has a heating mechanism such as a mold for manufacturing a molded product, an extruder, and a melt kneader.
  • the method can be performed, and a known method such as a batch method or a continuous method can be adopted.
  • the PAS prepolymer can be heated in the presence of a fibrous substance.
  • the fibrous substance refers to a thin thread-like substance, and examples thereof include glass fiber, carbon fiber, graphite fiber, aramid fiber, silicon carbide fiber, alumina fiber, and boron fiber.
  • the PAS prepolymer can be heated in the presence of a filler.
  • the filler include non-fibrous glass, non-fibrous carbon, and an inorganic filler.
  • PAS obtained by the present invention it is possible to produce a PAS having a high molecular weight, excellent mechanical strength, a small amount of gas generated during melt processing, and a high crystallization temperature.
  • the weight-average molecular weight of the PAS obtained according to the present invention varies depending on the properties of the PAS prepolymer used and the heating conditions, but the lower limit is 20,000 or more in a preferred embodiment, more preferably 25,000 or more, and even more preferably 30 or more. 2,000 or more, particularly preferably 40,000 or more. In this range, the mechanical strength of PAS tends to be high. On the other hand, the upper limit is 200,000 or less, more preferably 100,000 or less in the preferred embodiment. Within this range, the PAS tends to exhibit sufficient fluidity during molding.
  • the polydispersity index of the PAS obtained according to the present invention varies depending on the properties of the PAS prepolymer used and the heating conditions, but the upper limit is 5.0 or less in a preferred embodiment, more preferably 4.5 or less, and still more preferably. If it is 4.0 or less, and falls within this range, the amount of gas generated when forming the PAS tends to be small. On the other hand, the lower limit is usually more than 2.5.
  • the melt viscosity of the PAS obtained according to the present invention varies depending on the properties of the PAS prepolymer used and the heating conditions, but in a preferred embodiment from 1.0 Pa ⁇ s to 2,000 Pa ⁇ s (temperature; 320 ° C., shear rate) ; 1,000 / s), and in this range, there is a tendency that the PAS exhibits good fluidity when molded.
  • the weight loss rate of the PAS obtained by the present invention upon heating represented by the following formula (1) varies depending on the properties of the PAS prepolymer used and the heating conditions, and the upper limit is 0.18% in a preferred embodiment. Below, more preferably 0.15% or less, still more preferably 0.12% or less, and in this range, the amount of gas generated when forming the PAS tends to be small. On the other hand, the lower limit is usually 0.03% or more.
  • ⁇ Wr (W1 ⁇ W2) / W1 ⁇ 100 (1)
  • ⁇ Wr is a weight reduction rate (%), and is 100% when thermogravimetric analysis is performed at a heating rate of 20 ° C./min from 50 ° C. to an arbitrary temperature of 330 ° C. or more in a nitrogen atmosphere at normal pressure. The value is obtained from the sample weight (W1) at the time when the temperature reaches ° C and the sample weight (W2) at the time when the temperature reaches 330 ° C.
  • the above-mentioned ⁇ Wr can be measured by general thermogravimetric analysis, and the atmosphere in this analysis is a nitrogen atmosphere at normal pressure.
  • the normal pressure is a pressure in the vicinity of a standard state of the atmosphere, and indicates an atmospheric pressure condition of about 101 kPa in absolute pressure.
  • thermogravimetric analysis is performed.
  • This temperature range is a temperature range that is frequently used when melt processing PAS represented by PPS, and is also a temperature range that is frequently used when the obtained molded product is actually used. Since the rate of weight loss in such a temperature range is related to the amount of volatile components attached to a die or a mold during melt processing or the amount of gas generated from a molded product, PAS having a small ⁇ Wr is not suitable for actual use. It can be said that this is a high-quality PAS in which the amount of generated gas is reduced.
  • the melting point (Tm) of the PAS obtained according to the present invention varies depending on the properties of the PAS prepolymer used and the heating conditions, but the lower limit is 275 ° C. or higher in the preferred embodiment, more preferably 277 ° C. or higher, and further preferably 279 ° C. As described above, in this range, the heat resistance of a molded product obtained by molding the PAS tends to be improved. On the other hand, the upper limit is usually 285 ° C or lower.
  • the cooling crystallization temperature (Tmc) of the PAS obtained by the present invention varies depending on the properties of the PAS prepolymer used and the heating conditions, but the lower limit is 220 ° C. or higher in a preferred embodiment, more preferably 225 ° C. or higher, and still more preferably. Is 230 ° C. or more, and in this range, the time from the molten state to the solidified state when molding the PAS is shortened, and the productivity of molded articles tends to be improved.
  • the upper limit is usually 245 ° C or lower.
  • the ash content of the PAS obtained by the present invention varies depending on the properties of the PAS prepolymer used and the heating conditions, but is preferably 1.0% by weight or less, more preferably 0.5% by weight or less, further preferably 0% by weight in a preferred embodiment. 0.2% by weight or less, particularly preferably 0.1% by weight or less, and most preferably 0.05% by weight or less. In this range, the electrical insulation of the PAS tends to be improved.
  • PAS obtained by the present invention can be suitably used not only for injection molding, injection compression molding, and blow molding but also for extrusion molding of fibers, films, sheets and the like.
  • the PAS obtained according to the present invention may be used alone or, if necessary, inorganic fillers such as glass fiber, carbon fiber, titanium oxide, and calcium carbonate, antioxidants, heat stabilizers, and ultraviolet absorbers. Agents, coloring agents, etc. can also be added, polyamide, polysulfone, polyphenylene ether, polycarbonate, polyethersulfone, polyethylene terephthalate, polybutylene terephthalate, polyethylene, polypropylene, polytetrafluoroethylene, epoxy group, carboxyl group, carboxylate Resins such as olefin copolymers, polyolefin elastomers, polyetherester elastomers, polyetheramide elastomers, polyamideimides, polyacetals and polyimides having It can also be.
  • inorganic fillers such as glass fiber, carbon fiber, titanium oxide, and calcium carbonate, antioxidants, heat stabilizers, and ultraviolet absorbers.
  • Agents, coloring agents, etc. can also be added,
  • the amount of sulfide ions in the sample was calculated by a method of subtracting the sulfate ion quantitative value.
  • the calculated amount of the sulfide ion was defined as the amount of the unreacted sulfidizing agent, and the conversion of the sulfidizing agent was calculated from the ratio with the charged amount of the sulfidizing agent. The calculation formula is as follows.
  • UV 270nm
  • Assignment of each peak divided into components by the above high performance liquid chromatography measurement is performed based on mass spectrum analysis of the divided components and molecular weight information of each component divided by preparative chromatography by MALDI-TOF-MS and GPC. From 4 to 15 cyclic PASs were assigned. For the cyclic PAS having 4 to 15 repeating units to which it was assigned, quantification was performed using a calibration curve with a standard.
  • the amount of chloride ions collected when the PAS prepolymer was heated was determined by the following method.
  • A 1 g of the PAS prepolymer was weighed and placed in an aluminum container and placed in a laterally placed 2.4 cm ⁇ ⁇ 30 cm test tube.
  • B A silicon stopper provided with a stainless steel needle for supplying nitrogen into the test tube and a “Teflon” (registered trademark) tube for discharging volatile components together with nitrogen from the test tube into the mouth of the test tube. Attached.
  • melting point and the cooling crystallization temperature of PAS prepolymer and PAS were measured using a differential scanning calorimeter under the following conditions.
  • the melting point (Tm) refers to the endothermic peak temperature at the time of (f) temperature rise
  • the cooling crystallization temperature (Tmc) refers to the exothermic peak temperature at the time of temperature decrease in (d).
  • a distillation column was attached to the upper part of the autoclave via a valve, and the mixture was gradually heated to 210 ° C. over about 1 hour while stirring at 240 rpm with nitrogen at normal pressure to remove liquid, thereby obtaining 25.8 g of a distillate.
  • the distillate was analyzed by gas chromatography to find that the composition of the distillate was 25.3 g of water and 0.5 g of NMP. At this stage, no water was present in the reaction system, and 122.6 g of NMP remained. I knew I was doing it.
  • the amount of hydrogen sulfide scattered from the reaction system during the dehydration step was 0.00276 mol.
  • the obtained reaction mixture was analyzed by ion chromatography, and the conversion of the sulfidizing agent was calculated to be 98%.
  • the conversion of p-DCB was calculated to be 97%.
  • a part of the obtained solid in the wet state was fractionated, washed sufficiently with warm water, and then dried to obtain a dry solid. As a result of an infrared spectroscopic analysis of this dried solid, it was found that this was PPS.
  • Example 1 An example in which a PPS prepolymer and an acid are brought into contact with each other to recover the PPS prepolymer as a solid using the filtrate containing the PPS component obtained in Reference Example 1, and the obtained PPS prepolymer is polymerized by heating is shown.
  • Heat polymerization of PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
  • the obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C.
  • Mw was 25,400
  • Mn was 8,200
  • polydispersity index was 3.10.
  • the cyclic PPS content was measured and found to be 3.1% by weight.
  • ⁇ Wr was 0.091%.
  • Tm and Tmc Tm was 282 ° C. and Tmc was 219 ° C.
  • the ash content it was 0.10% by weight.
  • a distillation column was attached to the upper part of the autoclave via a valve, and the mixture was gradually heated to 210 ° C. over about 1 hour while stirring at 240 rpm through nitrogen at normal pressure to remove liquid, thereby obtaining 51.5 g of a distillate.
  • Analysis of this distillate by gas chromatography revealed that the composition of the distillate was 50.5 g of water and 1.0 g of NMP. At this stage, no water was present in the reaction system, and 245.2 g of NMP remained. I knew I was doing it.
  • the amount of hydrogen sulfide scattered from the reaction system during the dehydration step was 0.00552 mol.
  • the obtained reaction mixture was analyzed by ion chromatography, and the conversion of the sulfidizing agent was calculated to be 98%.
  • the conversion of p-DCB was calculated to be 96%.
  • a part of the obtained solid in the wet state was fractionated, washed sufficiently with warm water, and then dried to obtain a dry solid. As a result of an infrared spectroscopic analysis of this dried solid, it was found that this was PPS.
  • Example 2 An example is shown in which the PPS prepolymer and the acid are brought into contact with each other to collect the PPS prepolymer as a solid, and the obtained PPS prepolymer is heated and polymerized using the reaction mixture obtained in Reference Example 2.
  • Heat polymerization of PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
  • the obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C.
  • Mw was 44,700
  • Mn was 13,100
  • polydispersity index was 3.40.
  • cyclic PPS content it was 0.8% by weight.
  • ⁇ Wr was 0.086%.
  • Tm and Tmc Tm was 280 ° C. and Tmc was 220 ° C.
  • ash content it was 0.39% by weight.
  • Table 1 shows the results of Examples 1 and 2 and Comparative Examples 1 and 2. From the comparison between Example 1 and Comparative Example 1 and Example 2 and Comparative Example 2, when the PPS prepolymer is brought into contact with an acid when the PPS prepolymer is recovered as a solid, the amount of chloride ion trapped during heating of the PPS prepolymer is 50 ppm. As described above, it is apparent that the Tmc of PPS obtained by heat polymerization is as high as 220 ° C. or higher.
  • a distillation column was attached to the upper part of the autoclave via a valve, and the mixture was gradually heated to 240 ° C. over about 3 hours while stirring at 240 rpm through nitrogen at normal pressure to remove liquid, thereby obtaining 107 g of a distillate.
  • the distillate was analyzed by gas chromatography, the composition of the distillate was 105.6 g of water and 1.4 g of NMP. At this stage, no water was present in the reaction system, and 163 g of NMP remained. I knew it was there.
  • the amount of hydrogen sulfide scattered from the reaction system during the dehydration step was 0.00260 mol.
  • the temperature inside the reaction vessel was raised from 120 ° C. to 275 ° C. over about 2 hours, and the reaction was further carried out at 275 ° C. for 40 minutes. After the completion of the reaction, the content was cooled to around room temperature and the contents were recovered from the reaction vessel.
  • the obtained reaction mixture was analyzed by ion chromatography, and the conversion of the sulfidizing agent was calculated to be 92%.
  • the conversion of p-DCB was calculated to be 91%.
  • Heat polymerization of PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
  • Table 1 also shows the results of Examples 1 and 2 and Comparative Example 3. From the comparison between Examples 1 and 2 and Comparative Example 3, when the reaction mixture obtained by heating the raw material mixture in which the amount of the organic polar solvent is 1.25 liter or more per mol of the sulfidizing agent is used, the PPS prepolymer It is clear that the cyclic PPS content is 5% by weight or more, and the Tmc of PPS obtained by heat polymerization is as high as 220 ° C. or more.
  • Example 3 A raw material mixture having the same composition as in Reference Example 1 was heated under milder conditions than in Reference Example 1, and a sulfidizing agent and a reaction mixture in which the conversion of a dihalogenated aromatic compound (p-DCB) was lower than in Reference Example 1
  • the PPS prepolymer was recovered as a solid by contacting the PPS prepolymer with an acid using the filtrate containing the PPS component obtained by performing solid-liquid separation at 250 ° C., and then heating and polymerizing the obtained PPS prepolymer.
  • An example is shown below.
  • Heating reaction of raw material mixture The heating reaction conditions were as follows: the inside of the reaction vessel was heated from 110 ° C. to 235 ° C. over 30 minutes, then kept at 235 ° C. for 4 hours, and further heated up to 247.5 ° C. over 30 minutes, and then 247 ° C. A reaction mixture was obtained in the same manner as in Reference Example 1, except that the temperature was changed to 0.5 ° C. for 8 hours. The obtained reaction mixture was analyzed by ion chromatography, and the conversion of the sulfidizing agent was calculated to be 98%. The conversion of p-DCB was calculated to be 96%.
  • Heat polymerization of PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
  • the obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C.
  • Mw was 38,900
  • Mn was 11,100
  • polydispersity index was 3.50.
  • cyclic PPS content it was 1.1% by weight.
  • ⁇ Wr was 0.090%.
  • Tm and Tmc Tm was 282 ° C. and Tmc was 223 ° C.
  • ash content it was 0.05% by weight.
  • Example 4 A raw material mixture having the same composition as in Reference Example 1 and Example 3 was heated under milder conditions than in Reference Example 1 and Example 3, and the conversion of the sulfidizing agent and the dihalogenated aromatic compound (p-DCB) was reduced.
  • p-DCB dihalogenated aromatic compound
  • a reaction mixture was obtained in the same manner as in Reference Example 1 except that the heating reaction conditions were changed from 110 ° C. to 250 ° C. over 30 minutes after heating the inside of the reaction vessel and keeping at 250 ° C. for 2 hours.
  • the obtained reaction mixture was analyzed by ion chromatography, and the conversion of the sulfidizing agent was calculated to be 96%.
  • the conversion of p-DCB was calculated to be 94%.
  • the obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C.
  • Mw was 52,400
  • Mn was 14,200
  • polydispersity index was 3.70.
  • cyclic PPS content it was 0.8% by weight.
  • ⁇ Wr was 0.120%.
  • Tm and Tmc Tm was 282 ° C and Tmc was 240 ° C.
  • ash content it was 0.19% by weight.
  • a distillation column was attached to the upper part of the autoclave via a valve, and the mixture was gradually heated to 210 ° C. over about 1 hour while stirring at 240 rpm through nitrogen at normal pressure to remove liquid, thereby obtaining 129 g of a distillate.
  • the distillate was analyzed by gas chromatography, the composition of the distillate was 126 g of water and 3 g of NMP. At this stage, no water was present in the reaction system, and 613 g of NMP remained.
  • the amount of hydrogen sulfide scattered from the reaction system during the dehydration step was 0.0138 mol.
  • Heat polymerization of PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
  • the obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C.
  • Mw was 16,700
  • Mn was 5,500
  • polydispersity index was 3.02.
  • cyclic PPS content it was 5.4% by weight.
  • ⁇ Wr was 0.105%.
  • Tm and Tmc Tm was 282 ° C. and Tmc was 229 ° C.
  • ash content it was 0.17% by weight.
  • a distillation column was attached to the upper part of the autoclave via a valve, and the mixture was gradually heated to 210 ° C. over about 1 hour while stirring at 240 rpm through nitrogen at normal pressure to perform dewatering, thereby obtaining 130 g of a distillate.
  • the distillate was analyzed by gas chromatography, the composition of the distillate was 126 g of water and 4 g of NMP. At this stage, no water was present in the reaction system, and 612 g of NMP remained.
  • the amount of hydrogen sulfide scattered from the reaction system during the dehydration step was 0.0136 mol.
  • Heat polymerization of PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
  • the obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C.
  • Mw was 19,700
  • Mn was 8,000
  • polydispersity index was 2.46.
  • the cyclic PPS content was measured and found to be 4.5% by weight.
  • ⁇ Wr was 0.125%.
  • Tm and Tmc Tm was 282 ° C. and Tmc was 245 ° C.
  • the ash content it was 0.14% by weight.
  • Table 1 also shows the results of Examples 1, 3 and 4 and Comparative Examples 4 and 5. From the comparison between Examples 1, 3, and 4 and Comparative Examples 4 and 5, when a reaction mixture reacted so that the conversion of the dihalogenated aromatic compound is equal to or less than the conversion of the sulfidizing agent, the PPS prepolymer was used. It is clear that the amount of chloride ion trapped during heating is 50 ppm or more, and the Mw of PPS obtained by heat polymerization is as high as 20,000 or more. In addition, from the relationship between Examples 1, 3, and 4, it can be seen that the greater the amount of chloride ions collected during heating of the PPS prepolymer, the greater the Mw of PPS obtained by heat polymerization.
  • Non-Patent Document 6 The method of Non-Patent Document 1, specifically, by reacting a raw material mixture under a dilute condition in which the amount of an organic polar solvent is 10 liters per 1 mol of a sulfidizing agent, a PPS prepolymer having a high content of cyclic PPS is produced.
  • the method for obtaining an example is shown below in which the PPS prepolymer and the acid are brought into contact with each other and recovered, and the obtained PPS prepolymer is polymerized by heating.
  • the obtained polymer was partially insoluble in 1-chloronaphthalene at 210 ° C.
  • Mw was 5,800
  • Mn was 2,300
  • the polydispersity index was 2.52. Met.
  • cyclic PPS content it was 0.9% by weight.
  • Non-Patent Document 1 According to the method described in Non-Patent Document 1, it was revealed that an insoluble portion was generated during heat polymerization, and that the molecular weight of the soluble component was low. Although the cause is not clear at this time, it is speculated that the side reaction such as cross-linking derived from the active terminal proceeds during the heat polymerization because the amount of trapped chloride ions during heating of the PPS prepolymer is as large as 6,120 ppm. ing.
  • a reaction mixture was prepared in the same manner as in Comparative Example 4, and 2000 g of the reaction mixture was collected and charged in a glass container equipped with a stirrer. The reaction mixture was subjected to nitrogen bubbling while stirring, and then heated to 100 ° C. with a heater. Next, after the inside of a pressure filter (a polytetrafluoroethylene (PTFE) membrane filter having an average pore diameter of 10 ⁇ m was set) was purged with nitrogen, the temperature of the tank was adjusted to 100 ° C. with a band heater. The reaction mixture heated to 100 ° C. was charged into a tank of a pressure filter, sealed and replaced with nitrogen, and then pressurized to 0.1 MPa with nitrogen.
  • PTFE polytetrafluoroethylene
  • the liquid taking valve was opened in this pressurized state, and the filtrate was collected from the lower part of the tank.
  • the filtrate was analyzed by HPLC measurement, it was found that cyclic PPS was contained at a concentration of 0.55% by weight.
  • the filtrate was concentrated by an evaporator to adjust the cyclic PPS concentration to 5% by weight.
  • 100 g of the above concentrated filtrate was weighed and heated to 80 ° C. while stirring under a nitrogen atmosphere. Next, 25 g of a 0.5% acetic acid aqueous solution was slowly added to the solution over 25 minutes using a tube pump, whereby a white solid was deposited.
  • This white solid was collected by suction filtration using a glass filter, and the obtained cake was dispersed in 80 g of water, stirred at 80 ° C. for 15 minutes, and then suction-filtered again with a glass filter. Was repeated three times in total.
  • the obtained solid was dried with a vacuum dryer at 70 ° C. for 10 hours to obtain a PPS prepolymer as a dry solid.
  • Mw was 1,100
  • Mn was 800
  • polydispersity index was 1.38
  • cyclic PPS content it was 88.0% by weight.
  • collection amount of chloride ions during heating it was 30 ppm.
  • the Tm was measured and found to be 242 ° C.
  • ash content it was 0.11% by weight.
  • Heat polymerization of PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
  • the obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C.
  • Mw was 46,200
  • Mn was 19,800
  • polydispersity index was 2.33.
  • cyclic PPS content it was 18.2% by weight.
  • ⁇ Wr was 0.089%.
  • Tm and Tmc Tm was 268 ° C. and Tmc was 196 ° C.
  • ash content it was 0.11% by weight.
  • Patent Literature 5 it is known that high-quality PPS can be obtained if the polymerization is sufficiently advanced. However, under the polymerization conditions side by side with Example 1, the cyclic PPS is sufficiently consumed. However, it was confirmed that Tm and Tmc of the polymer were reduced. Further, in this method, since linear PPS which occupies most of the PPS component is removed by the purification operation, a reduction in production amount and an increase in process cost are inevitable.
  • a distillation column was attached to the upper part of the autoclave via a valve, and the mixture was gradually heated to 240 ° C. over about 1 hour while stirring at 240 rpm through nitrogen at normal pressure to remove liquid, thereby obtaining 106 g of a distillate.
  • the distillate was analyzed by gas chromatography to find that the composition of the distillate was 105.6 g of water and 0.4 g of NMP. At this stage, no water was present in the reaction system, and 164 g of NMP remained. I knew it was there.
  • the amount of hydrogen sulfide scattered from the reaction system during the dehydration step was 0.00260 mol.
  • the temperature inside the reaction vessel was raised from 120 ° C. to 270 ° C. over about 2 hours, and the reaction was further performed at 275 ° C. for 70 minutes. After the completion of the reaction, the content was cooled to around room temperature and the contents were recovered from the reaction vessel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

A method for poly(arylene sulfide) production which comprises heating and polymerizing a poly(arylene sulfide) prepolymer satisfying the following (I) to (III), in the absence of a solvent at a temperature not lower than the melting point of the poly(arylene sulfide) prepolymer. (I) To have a weight-average molecular weight of 3,000 or higher but less than 20,000. (II) To have a cyclic-poly(arylene sulfide) content of 5 wt% or higher but less than 50 wt%. (III) Upon heating at 340°C for 60 min, to release volatile components, which, when bubbled into ion-exchange water, give chloride ions collected with the ion-exchange water in an amount of 50-5,000 weight ppm of the poly(arylene sulfide) prepolymer. The method is an efficient method for producing a poly(arylene sulfide) which has a high molecular weight, excellent mechanical strength, and a high crystallization temperature and which is reduced in gas evolution during melt processing.

Description

ポリアリーレンスルフィドの製造方法、ポリアリーレンスルフィドプレポリマーおよびその製造方法Method for producing polyarylene sulfide, polyarylene sulfide prepolymer and method for producing the same
 本発明は機械強度、成形加工性に優れたポリアリーレンスルフィドを効率的に製造する方法に関する。 The present invention relates to a method for efficiently producing polyarylene sulfide having excellent mechanical strength and moldability.
 ポリフェニレンスルフィド(以下、「PPS」ということもある)に代表されるポリアリーレンスルフィド(以下、「PAS」ということもある)は、耐熱性、耐薬品性、難燃性、機械的強度、電気特性、寸法安定性などに優れたエンジニアリングプラスチックである。PASは押出成形、射出成形、圧縮成形等の一般的溶融加工法により、各種成形品、フィルム、シート、繊維等に成形可能であるため、電気・電子機器、自動車機器等の広範な分野において汎用されている。 Polyarylene sulfide (hereinafter sometimes referred to as “PAS”) represented by polyphenylene sulfide (hereinafter sometimes referred to as “PPS”) has heat resistance, chemical resistance, flame retardancy, mechanical strength, and electrical properties. It is an engineering plastic with excellent dimensional stability. PAS can be molded into various molded products, films, sheets, fibers, etc. by general melt processing methods such as extrusion molding, injection molding, and compression molding. Have been.
 PASの代表的な製造方法として、N-メチル-2-ピロリドン等の有機アミド溶媒中で、アルカリ金属硫化物とジハロ芳香族化合物とを溶液重合させる方法が知られている(特許文献1)。PAS開発初期は、高重合度のポリマーを得ることができなかったため、低重合度のポリマーを酸素の存在下で加熱し、部分架橋させることで高分子量化を行っていた。 As a typical method for producing PAS, a method is known in which an alkali metal sulfide and a dihalo aromatic compound are solution-polymerized in an organic amide solvent such as N-methyl-2-pyrrolidone (Patent Document 1). In the early stage of PAS development, it was not possible to obtain a polymer having a high degree of polymerization, so that a polymer having a low degree of polymerization was heated in the presence of oxygen to partially increase the molecular weight by partially crosslinking.
 その後、有機アミド溶媒中でアルカリ金属硫化物とジハロ芳香族化合物とを溶液重合させる際に、酢酸リチウムなどのアルカリ金属カルボン酸塩を重合助剤として用いることにより、溶液重合のみで高分子量のPASを得る方法が開発された(特許文献2)。このようなPASは、一般に直鎖タイプと呼ばれ、架橋タイプと比較して靭性などの機械的強度に優れる。 Then, when the alkali metal sulfide and the dihalo aromatic compound are solution-polymerized in an organic amide solvent, an alkali metal carboxylate such as lithium acetate is used as a polymerization aid, so that a high molecular weight PAS can be obtained only by solution polymerization. (Patent Document 2). Such a PAS is generally called a linear type, and is superior in mechanical strength such as toughness as compared with a crosslinked type.
 また、有機アミド溶媒中でアルカリ金属硫化物とジハロ芳香族化合物とを溶液重合させる際に、反応系の共存水分量を低く調整して前段重合反応を行い、次いで、反応系に水を添加して共存水分量を上げるとともに、反応温度を上げて、分子量が十分に増加するまで溶液重合を継続する方法が開発された(特許文献3)。後段重合工程では、十分な水分の存在により、ポリマー濃厚相とポリマー希薄相とに液-液相分離し、ポリマー濃厚相で重合反応が進行することで、高分子量かつ直鎖タイプのPASを得ることができる。 In addition, when performing solution polymerization of an alkali metal sulfide and a dihalo aromatic compound in an organic amide solvent, the pre-polymerization reaction is performed by adjusting the coexisting water content of the reaction system to be low, and then water is added to the reaction system. A method has been developed in which the coexisting water content is increased and the reaction temperature is raised to continue the solution polymerization until the molecular weight is sufficiently increased (Patent Document 3). In the second-stage polymerization step, a polymer-rich phase and a polymer-dense phase are separated into a liquid-liquid phase by the presence of sufficient moisture, and a polymerization reaction proceeds in the polymer-rich phase to obtain a high-molecular-weight, linear-type PAS. be able to.
 溶液重合PASの、溶融加工時のガス発生量を低減する方法としては、PASの熱処理について従来から多くの技術が開発されている。例えば、ベント口を有する押出機を用いてPASの溶融押出をする際にベント口を窒素でパージしつつ、ベント口を減圧に保ちながら溶融押出を行うことで、揮発成分を除去(脱揮)する方法が開発されている(特許文献4)。この方法では、熱処理をPASの融点以上の減圧条件下で行うため、脱揮に関連する技術のなかでは効果に優れる。 As a method of reducing the amount of gas generated during melt processing of solution polymerization PAS, many techniques for heat treatment of PAS have been developed. For example, when performing melt extrusion of PAS using an extruder having a vent port, the vent port is purged with nitrogen and melt extrusion is performed while the vent port is kept under reduced pressure to remove volatile components (devolatilization). A method has been developed (Patent Document 4). In this method, the heat treatment is performed under a reduced pressure condition that is equal to or higher than the melting point of PAS, so that it is excellent in the technology related to devolatilization.
 溶融加工時のガス発生量が大幅に低減されたPASの製造方法として、環式PASを少なくとも50重量%以上含み、かつ重量平均分子量が10,000未満であるPASプレポリマーを溶融重合することで、高分子量かつ直鎖タイプのPASを得る方法が開発されている(特許文献5)。
特公昭45-3368号公報 特公昭52-12240号公報 特公昭63-33775号公報 特開2000-246733号公報 国際公開第2007/034800号
As a method for producing a PAS in which the amount of gas generated during melt processing is greatly reduced, a PAS prepolymer containing at least 50% by weight or more of a cyclic PAS and having a weight average molecular weight of less than 10,000 is melt-polymerized. A method for obtaining a high-molecular-weight, linear-type PAS has been developed (Patent Document 5).
Japanese Patent Publication No. 45-3368 Japanese Patent Publication No. 52-12240 JP-B-63-33775 JP 2000-246733 A International Publication No. 2007/034800
 また、プレポリマーとして環式PASと線状PASの混合物を加熱するPASの重合方法も知られており、加熱温度の高温化により分子量が増加することが記載されている(非特許文献1)。
Polymer,vol.37,no.14,1996年
Also known is a PAS polymerization method in which a mixture of cyclic PAS and linear PAS is heated as a prepolymer, and it is described that the molecular weight increases as the heating temperature increases (Non-Patent Document 1).
Polymer, vol. 37, no. 14, 1996
 特許文献1に記載されたPASは、一般に架橋タイプと呼ばれ、低重合度のポリマーを高度に架橋しているため、靭性などの機械的強度が不十分であった。 PA The PAS described in Patent Document 1 is generally called a crosslinked type, and has a high degree of crosslinking of a polymer having a low degree of polymerization, and thus has insufficient mechanical strength such as toughness.
 特許文献2や特許文献3の溶液重合法による直鎖タイプPASの製造は高温、高圧で重合を行う必要があるため、連続プロセス化は困難であり、また、重合助剤の除去が必要となるなど、多大なプロセスコストを必要とするという課題がある。加えて、得られるPASは低分子量オリゴマーや溶媒に由来する不純物の含有量が多いため、溶融加工時のガス発生量が多いという課題がある。 The production of a linear type PAS by the solution polymerization method of Patent Document 2 or Patent Document 3 requires high-temperature, high-pressure polymerization, so that it is difficult to form a continuous process, and it is necessary to remove a polymerization aid. For example, there is a problem that a large process cost is required. In addition, since the obtained PAS has a large content of impurities derived from low molecular weight oligomers and solvents, there is a problem that a large amount of gas is generated during melt processing.
 特許文献4の方法では、前記のとおり、脱揮に関連する技術のなかでは効果に優れるものの、依然として満足できる水準には到達していない。 (4) As described above, the method of Patent Document 4 is excellent in the technology related to devolatilization, but has not yet reached a satisfactory level.
 特許文献5の方法では、一般に環状体は多量の線状体との混合物として得られるため、高純度の環状体を得るためには高度な精製操作が必要であるという課題がある。 (4) In the method of Patent Document 5, since a cyclic body is generally obtained as a mixture with a large amount of a linear body, there is a problem that an advanced purification operation is required to obtain a high-purity cyclic body.
 非特許文献1では前記のとおり、加熱温度の高温化により分子量が増加することが記載されているものの、それでもなお実用に適した分子量には到達せず、また、この場合は架橋構造の生成が回避できないため、機械的強度の劣るPASしか得られないことが指摘されている。 As described above, Non-Patent Document 1 describes that the molecular weight is increased by increasing the heating temperature, but it still does not reach a molecular weight suitable for practical use. It has been pointed out that only PAS having poor mechanical strength can be obtained because it cannot be avoided.
 したがって、本発明が解決しようとする課題は、高分子量で機械的強度に優れ、溶融加工時のガス発生量が少なく、かつ、結晶化温度の高いポリアリーレンスルフィドの効率的な製造方法を提供することにある。 Therefore, an object of the present invention is to provide an efficient method for producing polyarylene sulfide having a high molecular weight, excellent mechanical strength, a small amount of gas generated during melt processing, and a high crystallization temperature. It is in.
 上記課題を解決するため、本発明のポリアリーレンスルフィドの製造方法は次の構成を有する。すなわち、
 下記(I)~(III)を満たすポリアリーレンスルフィドプレポリマーを、溶媒の非存在下、ポリアリーレンスルフィドプレポリマーの融点以上の温度で加熱重合するポリアリーレンスルフィドの製造方法、である。
(I)重量平均分子量が3,000以上、20,000未満
(II)環式ポリアリーレンスルフィド含有量が5重量%以上、50重量%未満
(III)340℃で60分加熱した際に発生した揮発成分をイオン交換水に通気したときに、イオン交換水に捕集される塩化物イオン量が、ポリアリーレンスルフィドプレポリマーの重量基準で50ppm以上、5,000ppm以下。
In order to solve the above problems, a method for producing a polyarylene sulfide according to the present invention has the following configuration. That is,
A method for producing a polyarylene sulfide, which comprises polymerizing a polyarylene sulfide prepolymer satisfying the following (I) to (III) at a temperature not lower than the melting point of the polyarylene sulfide prepolymer in the absence of a solvent.
(I) Weight average molecular weight of 3,000 or more and less than 20,000 (II) Cyclic polyarylene sulfide content of 5% by weight or more and less than 50% by weight (III) Generated when heated at 340 ° C. for 60 minutes. When the volatile component is passed through the ion-exchanged water, the amount of chloride ions collected in the ion-exchanged water is 50 ppm or more and 5,000 ppm or less based on the weight of the polyarylene sulfide prepolymer.
 本発明のポリアリーレンスルフィドの製造方法は、加熱重合を300℃以上の温度で行うことが好ましい。 は In the method for producing a polyarylene sulfide of the present invention, it is preferable that the heat polymerization is performed at a temperature of 300 ° C. or higher.
 本発明のポリアリーレンスルフィドの製造方法は、加熱重合を非酸化性ガス雰囲気下もしくは減圧下で行うことが好ましい。 は In the method for producing polyarylene sulfide of the present invention, it is preferable that the heat polymerization is performed in a non-oxidizing gas atmosphere or under reduced pressure.
 本発明のポリアリーレンスルフィドの製造方法は、加熱重合により得られるポリアリーレンスルフィドの重量平均分子量が20,000以上であることが好ましい。 は In the method for producing a polyarylene sulfide of the present invention, the weight average molecular weight of the polyarylene sulfide obtained by heat polymerization is preferably 20,000 or more.
 本発明のポリアリーレンスルフィドの製造方法は、加熱重合により得られるポリアリーレンスルフィドの、下記式(1)で表される加熱時の重量減少率が0.18%以下であることが好ましい。 In the method for producing a polyarylene sulfide of the present invention, it is preferable that the weight loss rate of the polyarylene sulfide obtained by heat polymerization when heated represented by the following formula (1) is 0.18% or less.
 △Wr=(W1-W2)/W1×100 ・・・(1)
 ここで△Wrは重量減少率(%)であり、常圧の窒素雰囲気下で50℃から330℃以上の任意の温度まで昇温速度20℃/分で熱重量分析を行った際の、100℃到達時点の試料重量(W1)と330℃到達時の試料重量(W2)から求められる値である。
ΔWr = (W1−W2) / W1 × 100 (1)
Here, △ Wr is a weight reduction rate (%), and is 100% when thermogravimetric analysis is performed at a heating rate of 20 ° C./min from 50 ° C. to an arbitrary temperature of 330 ° C. or more in a nitrogen atmosphere at normal pressure. The value is obtained from the sample weight (W1) at the time when the temperature reaches ° C and the sample weight (W2) at the time when the temperature reaches 330 ° C.
 本発明のポリアリーレンスルフィドの製造方法は、加熱重合により得られるポリアリーレンスルフィドの、重量平均分子量を数平均分子量で除した多分散度が2.5超、5.0以下であることが好ましい。 In the method for producing a polyarylene sulfide of the present invention, the polyarylene sulfide obtained by heat polymerization preferably has a polydispersity, obtained by dividing the weight average molecular weight by the number average molecular weight, of more than 2.5 and not more than 5.0.
 本発明のポリアリーレンスルフィドの製造方法は、加熱重合により得られるポリアリーレンスルフィドの降温結晶化温度が220℃以上であることが好ましい。 は In the method for producing a polyarylene sulfide of the present invention, it is preferable that the temperature-reducing crystallization temperature of the polyarylene sulfide obtained by the heat polymerization is 220 ° C. or more.
 本発明のポリアリーレンスルフィドプレポリマーは、次の構成を有する。すなわち、
 下記(I)~(III)を満たすポリアリーレンスルフィドプレポリマー、である。
(I)重量平均分子量が3,000以上、20,000未満
(II)環式ポリアリーレンスルフィド含有量が5重量%以上、50重量%未満
(III)340℃で60分加熱した際に発生した揮発成分をイオン交換水に通気したときに、イオン交換水に捕集される塩化物イオン量が、ポリアリーレンスルフィドプレポリマーの重量基準で50ppm以上、5,000ppm以下。
The polyarylene sulfide prepolymer of the present invention has the following constitution. That is,
A polyarylene sulfide prepolymer satisfying the following (I) to (III).
(I) Weight average molecular weight of 3,000 or more and less than 20,000 (II) Cyclic polyarylene sulfide content of 5% by weight or more and less than 50% by weight (III) Generated when heated at 340 ° C. for 60 minutes. When the volatile component is passed through the ion-exchanged water, the amount of chloride ions collected in the ion-exchanged water is 50 ppm or more and 5,000 ppm or less based on the weight of the polyarylene sulfide prepolymer.
 本発明のポリアリーレンスルフィドプレポリマーは、重量平均分子量が15,000以下であることが好ましい。 ポ リ The polyarylene sulfide prepolymer of the present invention preferably has a weight average molecular weight of 15,000 or less.
 本発明のポリアリーレンスルフィドプレポリマーは、環式ポリアリーレンスルフィド含有量が30重量%未満であることが好ましい。 ポ リ The polyarylene sulfide prepolymer of the present invention preferably has a cyclic polyarylene sulfide content of less than 30% by weight.
 本発明のポリアリーレンスルフィドプレポリマーは、340℃で60分加熱した際に発生した揮発成分をイオン交換水に通気したときに、イオン交換水に捕集される塩化物イオン量が、ポリアリーレンスルフィドプレポリマーの重量基準で70ppm以上であることが好ましい。 The polyarylene sulfide prepolymer of the present invention has a polyarylene sulfide prepolymer having an amount of chloride ions trapped in the ion-exchange water when a volatile component generated when heated at 340 ° C. for 60 minutes is passed through the ion-exchange water. It is preferably at least 70 ppm based on the weight of the prepolymer.
 本発明のポリアリーレンスルフィドプレポリマーの製造方法は、次の構成を有する。すなわち、
 少なくともスルフィド化剤、ジハロゲン化芳香族化合物、有機極性溶媒を含む原料混合物であって、原料混合物中のジハロゲン化芳香族化合物がスルフィド化剤1モル当たり0.8モル以上1.2モル以下であり、原料混合物中の有機極性溶媒量がスルフィド化剤1モル当たり0.5リットル以上5リットル以下である原料混合物を、スルフィド化剤の転化率が90%以上、ジハロゲン化芳香族化合物の転化率が90%以上かつスルフィド化剤の転化率以下となるまで加熱して反応させた反応混合物から、ポリアリーレンスルフィドプレポリマーを固体として回収するポリアリーレンスルフィドプレポリマーの製造方法であって、ポリアリーレンスルフィドプレポリマーを固体として回収する際に、ポリアリーレンスルフィドプレポリマーと酸を接触させるポリアリーレンスルフィドプレポリマーの製造方法、である。
The method for producing a polyarylene sulfide prepolymer of the present invention has the following constitution. That is,
A raw material mixture containing at least a sulfidizing agent, a dihalogenated aromatic compound, and an organic polar solvent, wherein the dihalogenated aromatic compound in the raw material mixture is 0.8 mol or more and 1.2 mol or less per mol of the sulfidizing agent. A raw material mixture in which the amount of the organic polar solvent in the raw material mixture is 0.5 liter to 5 liter per 1 mol of the sulfidizing agent is converted to a sulfidizing agent having a conversion of 90% or more and a dihalogenated aromatic compound having a conversion of 90% or more. A method for producing a polyarylene sulfide prepolymer in which a polyarylene sulfide prepolymer is recovered as a solid from a reaction mixture reacted by heating until the reaction reaches 90% or more and the conversion of a sulfidizing agent or less. When recovering the polymer as a solid, the polyarylene sulfide prepolymer The method of manufacturing polyarylene sulfide prepolymer of contacting is.
 本発明のポリアリーレンスルフィドプレポリマーの製造方法は、原料混合物中の有機極性溶媒量がスルフィド化剤1モル当たり1.25リットル以上であることが好ましい。 は In the method for producing a polyarylene sulfide prepolymer of the present invention, the amount of the organic polar solvent in the raw material mixture is preferably 1.25 liter or more per mole of the sulfidizing agent.
 本発明のポリアリーレンスルフィドプレポリマーの製造方法は、反応混合物中のポリアリーレンスルフィドプレポリマーが溶解する温度において、反応混合物を固液分離し、少なくともポリアリーレンスルフィドプレポリマーおよび有機極性溶媒を含む溶液成分を得、この溶液成分からポリアリーレンスルフィドプレポリマーを固体として回収することが好ましい。 The method for producing a polyarylene sulfide prepolymer of the present invention comprises a step of solid-liquid separation of the reaction mixture at a temperature at which the polyarylene sulfide prepolymer in the reaction mixture dissolves, and a solution component containing at least the polyarylene sulfide prepolymer and an organic polar solvent. And it is preferable to recover the polyarylene sulfide prepolymer as a solid from the solution component.
 高分子量で機械的強度に優れ、溶融加工時のガス発生量が少なく、かつ、結晶化温度の高いポリアリーレンスルフィドの効率的な製造方法を提供することができる。 (4) An efficient method for producing polyarylene sulfide having a high molecular weight, excellent mechanical strength, a small amount of gas generated during melt processing, and a high crystallization temperature can be provided.
 以下に、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described.
 <ポリアリーレンスルフィド(PAS)>
 本発明におけるPASとは、式-(Ar-S)-の繰り返し単位を主要構成単位とする、好ましくは当該繰り返し単位を80モル%以上含有するホモポリマーまたはコポリマーである。ここで、Arは芳香族基をあらわし、下記の式(A)~式(K)などであらわされる単位などがあるが、なかでも式(A)が特に好ましい。
<Polyarylene sulfide (PAS)>
The PAS in the present invention is a homopolymer or copolymer having a repeating unit of the formula-(Ar-S)-as a main constituent unit, preferably containing at least 80 mol% of the repeating unit. Here, Ar represents an aromatic group and includes units represented by the following formulas (A) to (K), among which the formula (A) is particularly preferred.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(R1,R2は水素、炭素原子数1~12のアルキル基、炭素原子数1~12のアルコキシ基、炭素数6~24のアリーレン基、ハロゲン基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい。)
 この繰り返し単位を主要構成単位とする限り、下記の式(L)~式(N)などで表される少量の分岐単位または架橋単位を含むことができる。これら分岐単位または架橋単位の共重合量は、-(Ar-S)-の単位1モルに対して0~1モル%の範囲であることが好ましい。
(R1 and R2 are substituents selected from hydrogen, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an arylene group having 6 to 24 carbon atoms, and a halogen group; May be the same or different.)
As long as this repeating unit is the main constituent unit, it can contain a small amount of a branching unit or a crosslinking unit represented by the following formulas (L) to (N). The copolymerization amount of these branching units or crosslinking units is preferably in the range of 0 to 1 mol% based on 1 mol of-(Ar-S)-unit.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 また、上記繰り返し単位を含むランダム共重合体、ブロック共重合体およびそれらの混合物のいずれかであってもよい。 Further, it may be any of a random copolymer, a block copolymer and a mixture thereof containing the above repeating unit.
 これらの代表的なものとして、ポリフェニレンスルフィド(以下、「PPS」ということもある)、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトン、これらのランダム共重合体、ブロック共重合体およびそれらの混合物などが挙げられる。特に好ましいPASとしては、ポリマーの主要構成単位として下記式に示すp-フェニレンスルフィド単位を80モル%以上、特に90モル%以上含有するポリフェニレンスルフィドが挙げられる。 Typical examples thereof include polyphenylene sulfide (hereinafter, also sometimes referred to as “PPS”), polyphenylene sulfide sulfone, polyphenylene sulfide ketone, a random copolymer thereof, a block copolymer and a mixture thereof. Particularly preferred PASs include polyphenylene sulfides containing at least 80 mol%, particularly at least 90 mol%, of a p-phenylene sulfide unit represented by the following formula as a main structural unit of the polymer.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 <環式PAS>
 本発明における環式PASとは、式-(Ar-S)-の繰り返し単位を主要構成単位とする環式化合物であり、好ましくは当該繰り返し単位を80モル%以上含有する下記一般式(O)のごとき化合物である。
<Cyclic PAS>
The cyclic PAS in the present invention is a cyclic compound having a repeating unit of the formula — (Ar—S) — as a main constituent unit, and preferably has the following general formula (O) containing the repeating unit in an amount of 80 mol% or more. Compounds such as
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ここで、Arは前記の式(A)~式(K)などであらわされる単位などがあるが、なかでも式(A)が特に好ましい。また、前記の式(A)~式(K)などの繰り返し単位を含むランダム共重合体、ブロック共重合体およびそれらの混合物のいずれかであってもよい。 Here, Ar includes units represented by the above formulas (A) to (K), etc. Among them, formula (A) is particularly preferable. Further, it may be any of a random copolymer, a block copolymer and a mixture thereof containing a repeating unit of the above formulas (A) to (K).
 上記の式(O)中の繰り返し数mは4以上、15以下である。本発明では環式PASを含有するPASプレポリマーを、PASプレポリマーの融点以上の温度で加熱することで高重合度体への転化(高重合度化)を行うが、繰り返し数mが小さいと環式PASの融点が低くなる傾向にある。 繰 り 返 し The number of repetitions m in the above formula (O) is 4 or more and 15 or less. In the present invention, a PAS prepolymer containing a cyclic PAS is heated to a temperature higher than the melting point of the PAS prepolymer to convert it into a high polymer (high polymerization). The melting point of cyclic PAS tends to decrease.
 これらの代表的なものとして、環式ポリフェニレンスルフィド、環式ポリフェニレンスルフィドスルホン、環式ポリフェニレンスルフィドケトン、これらの環式ランダム共重合体、環式ブロック共重合体およびそれらの混合物などが挙げられる。特に好ましい環式PASとしては、主要構成単位として下記式に示すp-フェニレンスルフィド単位を80モル%以上、特に90モル%以上含有する環式ポリフェニレンスルフィド(以下、「環式PPS」ということもある)が挙げられる。 Representative examples thereof include cyclic polyphenylene sulfide, cyclic polyphenylene sulfide sulfone, cyclic polyphenylene sulfide ketone, cyclic random copolymers thereof, cyclic block copolymers, and mixtures thereof. As a particularly preferred cyclic PAS, a cyclic polyphenylene sulfide containing a p-phenylene sulfide unit represented by the following formula as a main structural unit in an amount of 80 mol% or more, particularly 90 mol% or more (hereinafter, also referred to as “cyclic PPS”) ).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 また、環式PASは、単一の繰り返し数を有する単独化合物、異なる繰り返し数を有する環式PASの混合物のいずれでもよいが、異なる繰り返し数を有する環式PASの混合物の方が単一の繰り返し数を有する単独化合物よりも融点が低い傾向にある。そのため、PASプレポリマーの高重合度化をより低い温度で行うことができるという観点で、環式PASが異なる繰り返し数を有する混合物であることが好ましい。 The cyclic PAS may be either a single compound having a single repetition number or a mixture of cyclic PASs having different repetition numbers, but a mixture of cyclic PASs having different repetition numbers has a single repetition rate. The melting point tends to be lower than that of a single compound having a number. Therefore, from the viewpoint that the degree of polymerization of the PAS prepolymer can be increased at a lower temperature, it is preferable that the cyclic PAS be a mixture having a different number of repetitions.
 <線状PAS>
 本発明における線状PASとは、式-(Ar-S)-の繰り返し単位を主要構成単位とする、好ましくは当該繰り返し単位を80モル%以上含有する、直鎖状のホモポリマーまたはコポリマーである。ここで、Arは前記の式(A)~式(K)などであらわされる単位などがあるが、なかでも式(A)が特に好ましい。また、前記の式(A)~式(K)などの繰り返し単位を含むランダム共重合体、ブロック共重合体及びそれらの混合物のいずれかであってもよい。
<Linear PAS>
The linear PAS in the present invention is a linear homopolymer or copolymer having a repeating unit of the formula-(Ar-S)-as a main constituent unit, preferably containing at least 80 mol% of the repeating unit. . Here, Ar includes units represented by the above formulas (A) to (K), etc. Among them, formula (A) is particularly preferable. Further, it may be any of a random copolymer, a block copolymer, and a mixture thereof containing a repeating unit represented by the above formulas (A) to (K).
 これらの代表的なものとして、線状ポリフェニレンスルフィド、線状ポリフェニレンスルフィドスルホン、線状ポリフェニレンスルフィドケトン、これらのランダム共重合体、ブロック共重合体及びそれらの混合物などが挙げられる。特に好ましい線状PASとしては、ポリマーの主要構成単位として下記式に示すp-フェニレンスルフィド単位を80モル%以上、特に90モル%以上含有する線状ポリフェニレンスルフィドが挙げられる。 Typical examples thereof include linear polyphenylene sulfide, linear polyphenylene sulfide sulfone, linear polyphenylene sulfide ketone, random copolymers, block copolymers thereof, and mixtures thereof. As particularly preferred linear PAS, a linear polyphenylene sulfide containing 80 mol% or more, particularly 90 mol% or more of a p-phenylene sulfide unit represented by the following formula as a main structural unit of the polymer is exemplified.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 <PASプレポリマー>
 本発明のPASプレポリマーは環式PASと線状PASからなる混合物である。本発明のPASプレポリマーにおける環式PASの含有量の下限は5重量%であり、7重量%以上が好ましい。環式PASの含有量が5重量%未満である場合、PASプレポリマーを加熱した際に、架橋反応などの好ましくない副反応が進行し、得られる重合物の結晶化温度が低下する。その原因は定かではないが、PASプレポリマーを調製する際に生成する不純物の組成が変化するためであると推測している。
<PAS prepolymer>
The PAS prepolymer of the present invention is a mixture consisting of a cyclic PAS and a linear PAS. The lower limit of the content of the cyclic PAS in the PAS prepolymer of the present invention is 5% by weight, preferably 7% by weight or more. When the content of the cyclic PAS is less than 5% by weight, an undesired side reaction such as a crosslinking reaction proceeds when the PAS prepolymer is heated, and the crystallization temperature of the obtained polymer decreases. Although the cause is not clear, it is speculated that the reason is that the composition of impurities generated when preparing the PAS prepolymer changes.
 一方、上限は50重量%未満であり、40重量%未満が好ましく、30重量%未満がより好ましく、20重量%未満がさらに好ましい。環式PASの含有量が50重量%以上である場合、PASプレポリマーを加熱して得られる重合物の環式PAS含有量が増加し、融点および結晶化温度が低下する。加えて、環式PASの含有量が多いPASプレポリマーを調製しようとする場合、高度な精製操作が必要となるため、生産量の低下、プロセスコストの増加が避けられない。 Meanwhile, the upper limit is less than 50% by weight, preferably less than 40% by weight, more preferably less than 30% by weight, and still more preferably less than 20% by weight. When the content of the cyclic PAS is 50% by weight or more, the cyclic PAS content of the polymer obtained by heating the PAS prepolymer increases, and the melting point and the crystallization temperature decrease. In addition, when attempting to prepare a PAS prepolymer having a large content of cyclic PAS, a sophisticated purification operation is required, so that a reduction in production and an increase in process cost are inevitable.
 ここで、PASプレポリマーにおける環式PASの含有量とは、PASプレポリマーに含まれる環式PASの重量分率(重量%)のことであり、高速液体クロマトグラフィーにより測定することができる。本発明では以下の方法により環式PASの含有量を測定する。すなわち、1-クロロナフタレン5gに乾燥したPASプレポリマー10mgを加えて250℃に加温、溶解し、溶液を室温まで冷却することでスラリー状の溶液を得て、孔径0.45μmのメンブレンフィルターを用いて濾過し、得られた濾液を試料として高速液体クロマトグラフィー測定を行うことで、環式PASの含有量を測定する。高速液体クロマトグラフィー測定により成分分割した各ピークの帰属は、成分分割した成分のマススペクトル分析、分取クロマトにより分割した各成分のMALDI-TOF-MSおよびGPCによる分子量情報により行い、繰り返し単位数4から15までの環式PASを帰属した。帰属した繰り返し単位数4から15までの環式PASについて、標品による検量線を用いて定量を行った。 Here, the content of the cyclic PAS in the PAS prepolymer is a weight fraction (% by weight) of the cyclic PAS contained in the PAS prepolymer, and can be measured by high performance liquid chromatography. In the present invention, the content of the cyclic PAS is measured by the following method. That is, 10 mg of dried PAS prepolymer was added to 5 g of 1-chloronaphthalene, heated and dissolved at 250 ° C., and the solution was cooled to room temperature to obtain a slurry-like solution, and a membrane filter having a pore size of 0.45 μm was passed through the membrane filter. The resulting filtrate is subjected to high performance liquid chromatography measurement to measure the content of cyclic PAS. Assignment of each component divided by high performance liquid chromatography is performed based on mass spectrum analysis of the component divided by the component, molecular weight information of each component divided by preparative chromatography by MALDI-TOF-MS and GPC, and the number of repeating units is 4 To 15 cyclic PASs were assigned. For the cyclic PAS having 4 to 15 repeating units to which it was assigned, quantification was performed using a calibration curve with a standard.
 本発明のPASプレポリマーの重量平均分子量(以下、重量平均分子量を「Mw」ということもある)の下限は3,000であり、4,000以上が好ましく、5,000以上がより好ましい。Mwが3,000未満である場合、PASプレポリマー中の低分子量オリゴマーの含有量が多く、重合性の低下や、架橋反応の進行により、得られる重合物の機械的物性が低下する。加えて、PASプレポリマーを回収する際の収率が低下する。一方、Mwの上限は20,000未満であり、15,000以下が好ましく、12,000以下がより好ましい。Mwが20,000以上のPASプレポリマーを調製しようとする場合、反応系中に多量の水や重合助剤を共存させる必要があり、PASプレポリマーや溶媒の精製に多大なプロセスコストが必要となる。 (4) The lower limit of the weight average molecular weight (hereinafter, the weight average molecular weight is sometimes referred to as “Mw”) of the PAS prepolymer of the present invention is 3,000, preferably 4,000 or more, more preferably 5,000 or more. When Mw is less than 3,000, the content of the low-molecular-weight oligomer in the PAS prepolymer is large, and the mechanical properties of the obtained polymer decrease due to a decrease in the polymerizability or the progress of the crosslinking reaction. In addition, the yield in recovering the PAS prepolymer decreases. On the other hand, the upper limit of Mw is less than 20,000, preferably 15,000 or less, more preferably 12,000 or less. When preparing a PAS prepolymer having Mw of 20,000 or more, it is necessary to coexist a large amount of water and a polymerization aid in the reaction system, and a large process cost is required for purification of the PAS prepolymer and the solvent. Become.
 本発明のPASプレポリマーの、重量平均分子量を数平均分子量(以下、数平均分子量を「Mn」ということもある)で除した多分散度指数の上限は5.0以下が好ましく、4.0以下がより好ましく、3.0以下がさらに好ましい。多分散度指数が前記範囲にある場合、PASプレポリマー中の低分子量オリゴマーの含有量が少なく、PASプレポリマーを回収する際の収率が向上する傾向にあるほか、得られる重合物の機械的物性が向上する傾向にある。一方、多分散度指数の下限は通常2.0である。 The upper limit of the polydispersity index of the PAS prepolymer of the present invention obtained by dividing the weight average molecular weight by the number average molecular weight (hereinafter, the number average molecular weight is sometimes referred to as “Mn”) is preferably 5.0 or less, and is preferably 4.0. The following is more preferable, and 3.0 or less is still more preferable. When the polydispersity index is in the above range, the content of the low-molecular-weight oligomer in the PAS prepolymer is small, and the yield in recovering the PAS prepolymer tends to be improved. Physical properties tend to improve. On the other hand, the lower limit of the polydispersity index is usually 2.0.
 なお、本発明における分子量は、示差屈折率検出器を具備したサイズ排除クロマトグラフィーを使用して求めたポリスチレン換算の分子量である。 The molecular weight in the present invention is a molecular weight in terms of polystyrene determined by using size exclusion chromatography equipped with a differential refractive index detector.
 本発明のPASプレポリマーは、加熱時の塩化物イオン捕集量が特定の範囲を満たす。ここで、加熱時の塩化物イオン捕集量とは、PASプレポリマーを340℃で60分加熱した際に発生した揮発成分をイオン交換水に通気したときに、イオン交換水に捕集される塩化物イオン量を指し、PASプレポリマーに含まれる重合性官能基の含有量と相関する値である。 PA The PAS prepolymer of the present invention satisfies a specific range in the amount of chloride ions collected during heating. Here, the amount of chloride ion trapped during heating means that when a volatile component generated when the PAS prepolymer is heated at 340 ° C. for 60 minutes is passed through the ion-exchange water, it is trapped in the ion-exchange water. It refers to the amount of chloride ions and is a value that correlates with the content of polymerizable functional groups contained in the PAS prepolymer.
 上記塩化物イオン捕集量の下限は50ppmであり、70ppm以上が好ましく、100ppm以上がより好ましく、300ppm以上がさらに好ましく、500ppm以上が特に好ましく、1,000ppm以上が最も好ましい。塩化物イオン捕集量が50ppm未満である場合、PASプレポリマーを加熱して得られる重合物の重合度が低下する、もしくは、降温結晶化温度が低下する。一方で、塩化物イオン捕集量の上限は5,000ppmであり、3,000ppm以下が好ましく、2,000ppm以下がより好ましい。塩化物イオン捕集量が5,000ppmを超える場合、架橋反応などの好ましくない副反応が進行し、得られる重合物の機械的物性が低下する。 下限 The lower limit of the amount of trapped chloride ions is 50 ppm, preferably 70 ppm or more, more preferably 100 ppm or more, further preferably 300 ppm or more, particularly preferably 500 ppm or more, and most preferably 1,000 ppm or more. When the chloride ion trapping amount is less than 50 ppm, the degree of polymerization of the polymer obtained by heating the PAS prepolymer decreases, or the temperature-dependent crystallization temperature decreases. On the other hand, the upper limit of the collection amount of chloride ions is 5,000 ppm, preferably 3,000 ppm or less, more preferably 2,000 ppm or less. When the amount of collected chloride ions exceeds 5,000 ppm, undesired side reactions such as a cross-linking reaction proceed, and the mechanical properties of the obtained polymer deteriorate.
 本発明で用いるPASプレポリマーの溶融粘度の上限は5.0Pa・s以下が好ましく、3.0Pa・s以下がより好ましく、1.0Pa・s以下がさらに好ましい(温度;320℃,剪断速度;1,000/s)。溶融粘度が前記範囲にある場合、繊維状物質にPASプレポリマーを溶融含浸させたあと高重合度化し、複合材料構造体を作製するといった、高い流動性が要求される用途への適用が可能となる。一方、溶融粘度の下限は通常0.01Pa・sである。 The upper limit of the melt viscosity of the PAS prepolymer used in the present invention is preferably 5.0 Pa · s or less, more preferably 3.0 Pa · s or less, and even more preferably 1.0 Pa · s or less (temperature; 320 ° C., shear rate; 1,000 / s). When the melt viscosity is within the above range, it can be applied to applications requiring high fluidity, such as producing a composite material structure by increasing the degree of polymerization after melt impregnation of a fibrous substance with a PAS prepolymer. Become. On the other hand, the lower limit of the melt viscosity is usually 0.01 Pa · s.
 本発明のPASプレポリマーは灰分率が小さいものであることも好ましい。ここで、灰分率とは、PASを550℃で5時間燃焼させた際の重量残存率であり、PASに含まれる金属量と相関する値である。 PA It is also preferable that the PAS prepolymer of the present invention has a low ash content. Here, the ash percentage is a weight residual rate when the PAS is burned at 550 ° C. for 5 hours, and is a value correlated with the amount of metal contained in the PAS.
 PASプレポリマーの灰分率は1.0重量%以下が好ましく、0.5重量%以下がより好ましく、0.2重量%以下がさらに好ましく、0.1重量%以下が特に好ましく、0.05重量%以下が最も好ましい。PASプレポリマーの灰分率が前記範囲にある場合、PASプレポリマーを加熱して得られる重合物についても、灰分率が低減され、電気絶縁性が向上する傾向にある。 The ash content of the PAS prepolymer is preferably 1.0% by weight or less, more preferably 0.5% by weight or less, further preferably 0.2% by weight or less, particularly preferably 0.1% by weight or less, and 0.05% by weight. % Is most preferred. When the ash content of the PAS prepolymer is in the above range, the polymer obtained by heating the PAS prepolymer also tends to have a reduced ash content and improved electrical insulation.
 <PASプレポリマーの製造方法>
 本発明のPASプレポリマーの製造方法は、少なくともスルフィド化剤、ジハロゲン化芳香族化合物、有機極性溶媒を含む原料混合物であって、原料混合物中のジハロゲン化芳香族化合物がスルフィド化剤1モル当たり0.8モル以上1.2モル以下であり、原料混合物中の有機極性溶媒量がスルフィド化剤1モル当たり0.5リットル以上5リットル以下である原料混合物を、スルフィド化剤の転化率が90%以上、ジハロゲン化芳香族化合物の転化率が90%以上かつスルフィド化剤の転化率以下となるまで加熱して反応させた反応混合物から、ポリアリーレンスルフィドプレポリマーを固体として回収するPASプレポリマーの製造方法であって、ポリアリーレンスルフィドプレポリマーを固体として回収する際に、ポリアリーレンスルフィドプレポリマーと酸を接触させることを特徴とする。
<Production method of PAS prepolymer>
The method for producing a PAS prepolymer of the present invention comprises a raw material mixture containing at least a sulfidizing agent, a dihalogenated aromatic compound, and an organic polar solvent, wherein the dihalogenated aromatic compound in the raw material mixture is 0% per mole of the sulfidizing agent. From 0.8 to 1.2 mol, and the amount of the organic polar solvent in the raw material mixture is from 0.5 to 5 liters per mol of the sulfidizing agent. Production of PAS prepolymer in which polyarylene sulfide prepolymer is recovered as a solid from a reaction mixture heated and reacted until the conversion of the dihalogenated aromatic compound becomes 90% or more and the conversion of the sulfidizing agent or less. Recovering the polyarylene sulfide prepolymer as a solid. Wherein the contacting Ficoll de prepolymer and acid.
 ここで、原料混合物とは、少なくともスルフィド化剤、ジハロゲン化芳香族化合物、有機極性溶媒を含む原料混合物を指すが、反応を本質的に阻害しない限り、その他の成分を含んでいても良い。その他の成分としては、例えば、水、無機塩、有機塩、金属、PASなどが挙げられる。 Here, the raw material mixture refers to a raw material mixture containing at least a sulfidizing agent, a dihalogenated aromatic compound, and an organic polar solvent, but may contain other components as long as the reaction is not substantially inhibited. Other components include, for example, water, inorganic salts, organic salts, metals, PAS, and the like.
 原料混合物中のジハロゲン化芳香族化合物の量はスルフィド化剤1モル当たり0.9モル以上、1.1モル以下であることが好ましい。 量 The amount of the dihalogenated aromatic compound in the raw material mixture is preferably 0.9 mol or more and 1.1 mol or less per 1 mol of the sulfidizing agent.
 原料混合物中の有機極性溶媒量の下限は、原料混合物中のスルフィド化剤1モル当たり0.8リットル以上が好ましく、1.0リットル以上がより好ましく、1.25リットル以上がさらに好ましい。一方、上限はスルフィド化剤1モル当たり3リットル以下が好ましく、2.5リットル以下がより好ましい。原料混合物中の有機極性溶媒量が前記範囲にある場合、副反応の進行を抑えつつ反応が短時間で完結する傾向にある。 下限 The lower limit of the amount of the organic polar solvent in the raw material mixture is preferably 0.8 liter or more, more preferably 1.0 liter or more, and even more preferably 1.25 liter or more per mol of the sulfidizing agent in the raw material mixture. On the other hand, the upper limit is preferably 3 liters or less, more preferably 2.5 liters or less, per mol of the sulfidizing agent. When the amount of the organic polar solvent in the raw material mixture is within the above range, the reaction tends to be completed in a short time while suppressing the progress of side reactions.
 原料混合物を加熱する際の温度は、原料混合物を構成するスルフィド化剤、ジハロゲン化芳香族化合物、有機極性溶媒の種類、量によって異なるため一意的に示すことはできないが、下限としては100℃以上が例示でき、150℃以上が好ましく、200℃以上がより好ましい。また、上限としては290℃以下が例示でき、280℃以下が好ましく、270℃以下がより好ましい。加熱する際の温度を前記範囲とする場合、副反応の進行を抑えつつ、PASプレポリマーの生成速度を高められる傾向にある。また、温度の制御方法としては、一定温度で行う方法、段階的に温度を上げていく方法、あるいは連続的に温度を変化させていく方法のいずれを採用してもかまわない。 The temperature at which the raw material mixture is heated cannot be uniquely indicated because it varies depending on the type and amount of the sulfidizing agent, the dihalogenated aromatic compound, and the organic polar solvent constituting the raw material mixture, but the lower limit is 100 ° C. or higher. 150 ° C. or higher is preferable, and 200 ° C. or higher is more preferable. The upper limit is, for example, 290 ° C. or lower, preferably 280 ° C. or lower, more preferably 270 ° C. or lower. When the temperature at the time of heating is in the above range, there is a tendency that the generation rate of the PAS prepolymer is increased while suppressing the progress of the side reaction. As a method of controlling the temperature, any of a method of controlling the temperature at a constant temperature, a method of gradually increasing the temperature, and a method of continuously changing the temperature may be employed.
 前記温度範囲が、原料混合物の常圧における還流温度を超える温度であった場合は、加熱操作を、常圧を超える圧力下で行うことで目的の反応温度まで高めることも好ましい。このように原料混合物の常圧における還流温度を超える温度で反応を行うことで、反応が速く、均一に進行しやすく、PASプレポリマーをより効率よく得られる傾向にある。 When the temperature range is a temperature exceeding the reflux temperature of the raw material mixture at normal pressure, it is also preferable to perform the heating operation at a pressure exceeding normal pressure to increase the reaction temperature to a target reaction temperature. By conducting the reaction at a temperature exceeding the reflux temperature of the raw material mixture at normal pressure, the reaction tends to proceed quickly and uniformly, and the PAS prepolymer tends to be obtained more efficiently.
 原料混合物を加熱する際の時間は、原料混合物の構成および加熱温度によって異なるため一意的に示すことはできないが、下限としては0.05時間以上が例示でき、0.1時間以上が好ましく、0.5時間以上がより好ましく、1時間以上がさらに好ましい。加熱する際の時間を前記範囲とする場合、未反応の原料成分を十分に減少できる傾向にある。また、上限としては20時間を例示でき、10時間以下が好ましく、6時間以下がより好ましく、3時間以下がさらに好ましい。加熱する際の時間を前記範囲とする場合、副反応の進行を抑えつつ、PASプレポリマーの生成反応が十分に進行する傾向にある。 The time for heating the raw material mixture cannot be uniquely indicated because it varies depending on the constitution of the raw material mixture and the heating temperature, but the lower limit is, for example, 0.05 hours or more, preferably 0.1 hour or more, 0.5 hours or more is more preferable, and 1 hour or more is further preferable. When the heating time is in the above range, unreacted raw material components tend to be sufficiently reduced. The upper limit can be exemplified by 20 hours, preferably 10 hours or less, more preferably 6 hours or less, and still more preferably 3 hours or less. When the heating time is in the above range, the PAS prepolymer production reaction tends to proceed sufficiently while suppressing the progress of side reactions.
 反応時のスルフィド化剤の転化率は90%以上とするものであり、95%以上が好ましく、96%以上がより好ましく、97%以上がさらに好ましい。一方、上限に制限はなく、100%がもっとも好ましい。スルフィド化剤の転化率が90%に満たない場合、反応後に得られる反応混合物中の未反応原料が増加し、回収するPASプレポリマーに混入する不純物量が増加する。なお、本発明では、スルフィド化剤の転化率を下記の式から算出した。 転 The conversion of the sulfidizing agent during the reaction is 90% or more, preferably 95% or more, more preferably 96% or more, and even more preferably 97% or more. On the other hand, there is no upper limit, and 100% is most preferable. When the conversion of the sulfidizing agent is less than 90%, the amount of unreacted raw materials in the reaction mixture obtained after the reaction increases, and the amount of impurities mixed in the recovered PAS prepolymer increases. In the present invention, the conversion of the sulfidizing agent was calculated from the following equation.
 スルフィド化剤の転化率(%)=[〔スルフィド化剤仕込み量(モル)-スルフィド化剤残存量(モル)〕/〔スルフィド化剤仕込み量(モル)〕]×100%。 転 Conversion rate of sulfidizing agent (%) = [[Sulfidizing agent charged amount (mol) -Sulfidizing agent remaining amount (mol)] / [Sulfidizing agent charged amount (mol)]] × 100%.
 なお、本発明では反応混合物に過酸化水素水を添加して、硫化物イオンを酸化した後にイオンクロマトグラフィー分析により硫酸イオンとして定量し、過酸化水素水を添加しない無処理の反応混合物を分析した際の硫酸イオン定量値を差し引く方法で、反応混合物中の硫化物イオン量、すなわちスルフィド化剤残存量を算出した。 In the present invention, hydrogen peroxide solution was added to the reaction mixture, sulfide ions were oxidized, and then quantified as sulfate ions by ion chromatography analysis, and an untreated reaction mixture to which no hydrogen peroxide solution was added was analyzed. The amount of sulfide ions in the reaction mixture, that is, the remaining amount of the sulfidizing agent, was calculated by a method of subtracting the quantitative value of sulfate ions at that time.
 反応時のジハロゲン化芳香族化合物の転化率の下限は90%以上とする。ジハロゲン化芳香族化合物の転化率が90%に満たない場合、反応後に得られる反応混合物中の未反応原料が増加し、回収するPASプレポリマーに混入する不純物量が増加する。一方、上限はスルフィド化剤の転化率以下とするものであり、[〔スルフィド化剤の転化率(%)〕-1(%)]%以下が好ましく、[〔スルフィド化剤の転化率(%)〕-2(%)]%以下がより好ましい。ジハロゲン化芳香族化合物の転化率がスルフィド化剤の転化率を超える場合、回収するPASプレポリマーの重合性が著しく低下する。なお、本発明では、ガスクロマトグラフィーによって反応混合物中のジハロゲン化芳香族化合物の残存量を見積もり、仕込んだスルフィド化剤、または仕込んだジハロゲン化芳香族化合物の量との割合からジハロゲン化芳香族化合物の転化率を算出する。計算式は以下の通りである。
(a)仕込んだジハロゲン化芳香族化合物がスルフィド化剤に対しモル比で等量以上である場合
 ジハロゲン化芳香族化合物の転化率(%)=[仕込んだジハロゲン化芳香族化合物の量(モル)-ジハロゲン化芳香族化合物の残存量(モル)]/仕込んだスルフィド化剤の量(モル)×100
(b)仕込んだジハロゲン化芳香族化合物がスルフィド化剤に対しモル比で等量未満である場合
 ジハロゲン化芳香族化合物の転化率(%)=[仕込んだジハロゲン化芳香族化合物の量(モル)-ジハロゲン化芳香族化合物の残存量(モル)]/仕込んだジハロゲン化芳香族化合物の量(モル)×100
 ここで、仕込んだスルフィド化剤の量とは、反応の開始時点で系内に存在したスルフィド化剤の量を指し、反応の開始前に脱水操作によって一部のスルフィド化剤が硫化水素として系外に除去された場合は、飛散した硫化水素のモル数を考慮した上で、反応の開始時点で系内に存在したスルフィド化剤の量を見積もる。
The lower limit of the conversion of the dihalogenated aromatic compound during the reaction is 90% or more. When the conversion of the dihalogenated aromatic compound is less than 90%, the amount of unreacted raw materials in the reaction mixture obtained after the reaction increases, and the amount of impurities mixed in the recovered PAS prepolymer increases. On the other hand, the upper limit is not more than the conversion of the sulfidizing agent, and is preferably [[conversion of the sulfidizing agent (%)]-1 (%)]% or less, and [[the conversion of the sulfidizing agent (%) )]-2 (%)]% or less is more preferable. When the conversion of the dihalogenated aromatic compound exceeds the conversion of the sulfidizing agent, the polymerizability of the recovered PAS prepolymer is significantly reduced. In the present invention, the residual amount of the dihalogenated aromatic compound in the reaction mixture is estimated by gas chromatography, and the proportion of the charged sulfidizing agent or the charged dihalogenated aromatic compound is calculated based on the ratio to the amount of the charged dihalogenated aromatic compound. Is calculated. The calculation formula is as follows.
(A) In the case where the charged dihalogenated aromatic compound is at least equal to the molar amount of the sulfidizing agent, the conversion of the dihalogenated aromatic compound (%) = [the amount of the charged dihalogenated aromatic compound (mol)] -Remaining amount of dihalogenated aromatic compound (mol)] / Amount of charged sulfidizing agent (mol) × 100
(B) In the case where the charged dihalogenated aromatic compound is less than the molar equivalent relative to the sulfidizing agent, the conversion of the dihalogenated aromatic compound (%) = [the amount of the charged dihalogenated aromatic compound (mol)] -Remaining amount of dihalogenated aromatic compound (mol)] / Amount of charged dihalogenated aromatic compound (mol) × 100
Here, the amount of the charged sulfidizing agent refers to the amount of the sulfidizing agent present in the system at the start of the reaction, and a part of the sulfidizing agent is converted into hydrogen sulfide by a dehydration operation before the start of the reaction. If removed outside, the amount of sulfidizing agent present in the system at the start of the reaction is estimated, taking into account the number of moles of hydrogen sulfide that has been scattered.
 また、仕込んだジハロゲン化芳香族化合物の量とは、反応の開始時点で系内に存在したジハロゲン化芳香族化合物の量を指し、反応の開始前に脱水操作によって一部のジハロゲン化芳香族化合物が系外に除去された場合は、飛散したモル数を考慮した上で、反応の開始時点で系内に存在したジハロゲン化芳香族化合物の量を見積もる。 The amount of the charged dihalogenated aromatic compound refers to the amount of the dihalogenated aromatic compound present in the system at the start of the reaction, and a part of the dihalogenated aromatic compound is obtained by a dehydration operation before the start of the reaction. Is removed from the system, the amount of the dihalogenated aromatic compound existing in the system at the start of the reaction is estimated in consideration of the number of moles scattered.
 原料混合物の加熱反応に際し、ある程度スルフィド化剤が消費された随意の段階で、ジハロゲン化芳香族化合物を追加してさらに反応を継続することも可能である。このような操作を行うことで、反応終盤で分子同士の衝突頻度が低下して反応が遅延する問題を軽減でき、スルフィド化剤の転化率をより好ましい範囲へ高めやすくなる。このジハロゲン化芳香族化合物の追加は、随意の段階で行ってかまわないが、スルフィド化剤の転化率が50%以上の段階が好ましく、70%以上の段階がより好ましく、90%以上の段階がさらに好ましい。このような段階で追加する事で、より効率よくPASプレポリマーを得ることが可能となる。 加熱 At the optional stage where the sulfidizing agent is consumed to some extent during the heating reaction of the raw material mixture, the reaction can be further continued by adding a dihalogenated aromatic compound. By performing such an operation, the problem that the frequency of collision between molecules decreases at the end of the reaction and the reaction is delayed can be reduced, and the conversion of the sulfidizing agent can be easily increased to a more preferable range. The addition of the dihalogenated aromatic compound may be performed at an optional stage, but the stage of conversion of the sulfidizing agent is preferably 50% or more, more preferably 70% or more, and 90% or more. More preferred. By adding at this stage, a PAS prepolymer can be obtained more efficiently.
 原料混合物中の水分量には特に制限はないが、汎用のスルフィド化剤であるアルカリ金属硫化物は、水和物または水性混合物としての入手が容易であるため、このような形態のアルカリ金属硫化物を用いた場合、原料混合物中に水分が含まれる場合が多い。その際、原料混合物中の水分量は、原料混合物中のスルフィド化剤1モル当たり0.05モル以上、6.0モル以下である場合が多いが、4.5モル以下が好ましく、3.0モル以下がより好ましい。水分量が前記の好ましい範囲にある場合は、反応混合物や反応に用いた反応器への着色物の付着が抑制でき、このことはPASプレポリマーの品質が向上するのみならず、反応器の洗浄作業が軽減される傾向にある。 Although the amount of water in the raw material mixture is not particularly limited, alkali metal sulfides, which are general-purpose sulfidizing agents, are easily available as hydrates or aqueous mixtures. When a material is used, the raw material mixture often contains moisture. At this time, the amount of water in the raw material mixture is often 0.05 mol or more and 6.0 mol or less per mol of the sulfidizing agent in the raw material mixture, but is preferably 4.5 mol or less, and more preferably 3.0 mol or less. More preferably, it is less than mol. When the amount of water is in the above-mentioned preferred range, adhesion of the coloring matter to the reaction mixture or the reactor used for the reaction can be suppressed, which not only improves the quality of the PAS prepolymer but also cleans the reactor. Work tends to be reduced.
 なお、本発明における水分量とは、反応系に仕込んだスルフィド化剤、ジハロゲン化芳香族化合物、有機極性溶媒、さらにはその他成分を仕込む場合にはその成分も含め、各成分に含まれて導入された水分量の総和を意味し、あるいは脱水操作など付加的な操作により反応系から水が反応系外に除去される場合には前記水分量の総和から除去された水分量を差し引いた水分量を意味するものであり、反応過程で生成する水は考慮しない。 In the present invention, the water content refers to the sulfidizing agent, the dihalogenated aromatic compound, the organic polar solvent charged in the reaction system, and, in the case where other components are charged, including those components as well. In the case where water is removed from the reaction system out of the reaction system by an additional operation such as dehydration operation, or the amount of water obtained by subtracting the amount of water removed from the total amount of water, And does not consider water generated in the reaction process.
 <スルフィド化剤>
 スルフィド化剤としては、ジハロゲン化芳香族化合物にスルフィド結合を導入できるものであればよく、アルカリ金属硫化物、アルカリ金属水硫化物、および硫化水素が例示できる。
<Sulfidizing agent>
The sulfide agent may be any one capable of introducing a sulfide bond into a dihalogenated aromatic compound, and examples thereof include alkali metal sulfides, alkali metal hydrosulfides, and hydrogen sulfide.
 アルカリ金属硫化物とは、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムおよびこれら2種以上の混合物を指す。これらのアルカリ金属硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。なお、水性混合物とは水溶液、もしくは水溶液と固体成分の混合物、もしくは水と固体成分の混合物のことを指す。 The alkali metal sulfide refers to lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and a mixture of two or more thereof. These alkali metal sulfides can be used as hydrates or aqueous mixtures or in anhydrous form. The aqueous mixture refers to an aqueous solution, a mixture of an aqueous solution and a solid component, or a mixture of water and a solid component.
 アルカリ金属水硫化物とは、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化リチウム、水硫化ルビジウム、水硫化セシウムおよびこれら2種以上の混合物を指す。アルカリ金属水硫化物は、アルカリ金属水硫化物とアルカリ金属水酸化物から、反応系中で調製してもよいし、また、あらかじめアルカリ金属水硫化物とアルカリ金属水酸化物を接触させて調製してもよい。これらのアルカリ金属水硫化物およびアルカリ金属水酸化物は水和物または水性混合物として、あるいは無水物の形で用いることができる。 Alkali metal hydrosulfide refers to lithium bisulfide, sodium bisulfide, potassium bisulfide, lithium bisulfide, rubidium bisulfide, cesium bisulfide, and a mixture of two or more thereof. The alkali metal hydrosulfide may be prepared in the reaction system from the alkali metal hydrosulfide and the alkali metal hydroxide, or may be prepared by contacting the alkali metal hydrosulfide and the alkali metal hydroxide in advance. May be. These alkali metal hydrosulfides and alkali metal hydroxides can be used as hydrates or aqueous mixtures or in anhydrous form.
 さらに、水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素から反応系中で調製されるアルカリ金属硫化物も用いてもよく、また、あらかじめ水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素を接触させて調製してもよい。硫化水素は気体状、液体状、水溶液状のいずれの形態で用いてもよい。 Further, an alkali metal sulfide prepared in a reaction system from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide may be used, or an alkali metal such as lithium hydroxide or sodium hydroxide may be used in advance. It may be prepared by contacting a metal hydroxide with hydrogen sulfide. Hydrogen sulfide may be used in any of gaseous, liquid and aqueous solutions.
 なお、本発明におけるスルフィド化剤の量は、脱水操作などによりスルフィド化剤の一部損失が生じる場合には、実際の仕込み量から当該損失分を差し引いた残存量を意味する。 The amount of the sulfidizing agent in the present invention means a remaining amount obtained by subtracting the loss from the actual charged amount when a part of the sulfidizing agent is lost due to a dehydration operation or the like.
 スルフィド化剤とともに、アルカリ金属水酸化物もしくはアルカリ土類金属水酸化物を併用することも可能である。アルカリ金属水酸化物とは、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウムを指し、アルカリ土類金属水酸化物とは、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、水酸化ラジウムを指す。なお、これらは単独で用いても良く、2種以上の混合物として用いてもよく、また、固体状態、水溶液の状態など、どのような形状のものも用いてもよい。 ア ル カ リ Alkali metal hydroxides or alkaline earth metal hydroxides can be used in combination with the sulfide agent. Alkali metal hydroxide refers to sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, and alkaline earth metal hydroxide refers to calcium hydroxide, strontium hydroxide, hydroxide Refers to barium and radium hydroxide. These may be used alone or as a mixture of two or more, and may be in any shape such as a solid state or an aqueous state.
 スルフィド化剤としてアルカリ金属水硫化物を用いる場合には、アルカリ金属水酸化物もしくはアルカリ土類金属水酸化物を同時に使用することが好ましい。アルカリ金属水酸化物もしくはアルカリ土類金属水酸化物の添加量の下限は、アルカリ金属水酸化物およびアルカリ土類金属水酸化物中に含まれる水酸化物イオン量として、用いるアルカリ金属水硫化物のイオウ成分1モル当たり0.95モル以上が例示でき、1.00モル以上が好ましく、1.05モル以上がより好ましく、1.10モル以上がさらに好ましい。一方、添加量の上限は、アルカリ金属水酸化物およびアルカリ土類金属水酸化物中に含まれる水酸化物イオン量として、用いるアルカリ金属水硫化物のイオウ成分1モル当たり2.50モル以下が例示でき、2.00モル以下が好ましく、1.80モル以下がより好ましく、1.5モル以下がさらに好ましく、1.25モル以下が特に好ましい。アルカリ金属水酸化物もしくはアルカリ土類金属水酸化物の添加量を前記範囲とする場合、より純度の高いPASプレポリマーが得られる傾向にある。 場合 When an alkali metal hydrosulfide is used as the sulfidizing agent, it is preferable to use an alkali metal hydroxide or an alkaline earth metal hydroxide at the same time. The lower limit of the addition amount of the alkali metal hydroxide or the alkaline earth metal hydroxide is the alkali metal hydrosulfide used as the amount of hydroxide ions contained in the alkali metal hydroxide and the alkaline earth metal hydroxide. 0.95 mol or more, preferably 1.00 mol or more, more preferably 1.05 mol or more, even more preferably 1.10 mol or more per 1 mol of the sulfur component. On the other hand, the upper limit of the amount added is, as the amount of hydroxide ions contained in the alkali metal hydroxide and the alkaline earth metal hydroxide, 2.50 mol or less per mol of the sulfur component of the alkali metal hydrosulfide used. For example, it is preferably 2.00 mol or less, more preferably 1.80 mol or less, further preferably 1.5 mol or less, and particularly preferably 1.25 mol or less. When the addition amount of the alkali metal hydroxide or the alkaline earth metal hydroxide is in the above range, a PAS prepolymer having higher purity tends to be obtained.
 また、スルフィド化剤として硫化水素を用いる場合も、アルカリ金属水酸化物もしくはアルカリ土類金属水酸化物を同時に使用することが好ましい。アルカリ金属水酸化物もしくはアルカリ土類金属水酸化物の添加量の下限は、アルカリ金属水酸化物およびアルカリ土類金属水酸化物中に含まれる水酸化物イオン量として、用いる硫化水素1モル当たり1.90モル以上が例示でき、2.00モル以上が好ましく、2.10モル以上がより好ましく、2.20モル以上がさらに好ましい。一方、添加量の上限は、アルカリ金属水酸化物およびアルカリ土類金属水酸化物中に含まれる水酸化物イオン量として、用いる硫化水素1モル当たり5.00モル以下が例示でき、4.00モル以下が好ましく、3.60モル以下がより好ましく、3.00モル以下がさらに好ましく、2.50モル以下が特に好ましい。アルカリ金属水酸化物もしくはアルカリ土類金属水酸化物の添加量を前記範囲とする場合、より純度の高いPASプレポリマーが得られる傾向にある。 Also, when using hydrogen sulfide as the sulfidizing agent, it is preferable to use an alkali metal hydroxide or an alkaline earth metal hydroxide at the same time. The lower limit of the addition amount of the alkali metal hydroxide or the alkaline earth metal hydroxide is defined as the amount of hydroxide ions contained in the alkali metal hydroxide and the alkaline earth metal hydroxide, per mole of hydrogen sulfide used. 1.90 mol or more can be exemplified, 2.00 mol or more is preferable, 2.10 mol or more is more preferable, and 2.20 mol or more is further preferable. On the other hand, the upper limit of the amount of addition is, for example, 5.00 mol or less per 1 mol of hydrogen sulfide used as the amount of hydroxide ions contained in the alkali metal hydroxide and the alkaline earth metal hydroxide. Mol or less, preferably 3.60 mol or less, more preferably 3.00 mol or less, and particularly preferably 2.50 mol or less. When the addition amount of the alkali metal hydroxide or the alkaline earth metal hydroxide is in the above range, a PAS prepolymer having higher purity tends to be obtained.
 <ジハロゲン化芳香族化合物>
 ジハロゲン化芳香族化合物としては、p-ジクロロベンゼン(以下、「p-DCB」ということもある)、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジブロモベンゼン、o-ジブロモベンゼン、m-ジブロモベンゼン、1-ブロモ-4-クロロベンゼン、1-ブロモ-3-クロロベンゼンなどのジハロゲン化ベンゼン、および1-メトキシ-2,5-ジクロロベンゼン、1-メチル-2,5-ジクロロベンゼン、1,4-ジメチル-2,5-ジクロロベンゼン、1,3-ジメチル-2,5-ジクロロベンゼン、3,5-ジクロロ安息香酸などのハロゲン以外の置換基をも含むジハロゲン化芳香族化合物などを挙げることができる。異なる2種以上のジハロゲン化芳香族化合物を組み合わせて用いることも可能であるが、なかでも、p-ジクロロベンゼンに代表されるp-ジハロゲン化ベンゼンを主成分にするジハロゲン化芳香族化合物が好ましい。ジハロゲン化芳香族化合物におけるp-ジクロロベンゼンの割合は80モル%以上が好ましく、90モル%以上がより好ましい。
<Dihalogenated aromatic compound>
Examples of the dihalogenated aromatic compound include p-dichlorobenzene (hereinafter sometimes referred to as “p-DCB”), o-dichlorobenzene, m-dichlorobenzene, p-dibromobenzene, o-dibromobenzene, m-dibromobenzene Dihalogenated benzenes such as 1,1-bromo-4-chlorobenzene, 1-bromo-3-chlorobenzene, and 1-methoxy-2,5-dichlorobenzene, 1-methyl-2,5-dichlorobenzene, 1,4-dimethyl Examples thereof include dihalogenated aromatic compounds containing a substituent other than halogen, such as -2,5-dichlorobenzene, 1,3-dimethyl-2,5-dichlorobenzene, and 3,5-dichlorobenzoic acid. It is possible to use a combination of two or more different dihalogenated aromatic compounds, but among them, a dihalogenated aromatic compound mainly composed of p-dihalogenated benzene represented by p-dichlorobenzene is preferable. The proportion of p-dichlorobenzene in the dihalogenated aromatic compound is preferably at least 80 mol%, more preferably at least 90 mol%.
 <有機極性溶媒>
 有機極性溶媒としては、N-メチル-2-ピロリドン(以下、「NMP」ということもある)、N-エチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドンなどのN-アルキルピロリドン類、N-メチル-ε-カプロラクタムなどのカプロラクタム類、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルリン酸トリアミドなどに代表される有機アミド溶媒が挙げられる。なかでも、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノンが汎用される。
<Organic polar solvent>
Examples of the organic polar solvent include N-alkylpyrrolidones such as N-methyl-2-pyrrolidone (hereinafter sometimes referred to as “NMP”), N-ethyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, and N-alkylpyrrolidone. Organic amide solvents such as caprolactams such as methyl-ε-caprolactam, 1,3-dimethyl-2-imidazolidinone, N, N-dimethylacetamide, N, N-dimethylformamide, and hexamethylphosphoric triamide. No. Among them, N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone are widely used.
 <PASプレポリマーの回収方法>
 反応混合物からPASプレポリマーを固体として回収する方法としては、(1)有機極性溶媒の一部もしくは大部分を蒸留により除去した後に、有機極性溶媒と混和し、かつ、副生塩は溶解するが、PASプレポリマーは溶解しない、もしくは溶解しにくい溶媒と加熱下で接触させて、PASプレポリマーを固体として回収する方法や、(2)反応混合物においてPASプレポリマーが溶解する温度で、反応混合物中に存在する固形成分と可溶成分を固液分離により分離、PASプレポリマーおよび有機極性溶媒を含む溶液成分を回収し、この溶液成分から有機極性溶媒の一部もしくは大部分を蒸留により除去した後に、有機極性溶媒と混和し、かつ、副生塩は溶解するが、PASプレポリマーは溶解しない、もしくは溶解しにくい溶媒と加熱下で接触させて、PASプレポリマーを固体として回収する方法が例示できる(溶媒との接触によりPASプレポリマーを固体として回収する方法を以下、「溶媒処理」という)。溶媒処理によりPASプレポリマーは固体として析出するので、ろ過による分離、遠心分離、デカンテーションなどの公知の固液分離法を用いてPASプレポリマーを回収することが可能である。
<PAS prepolymer recovery method>
As a method for recovering the PAS prepolymer as a solid from the reaction mixture, (1) after removing a part or most of the organic polar solvent by distillation, the organic polar solvent is mixed with the organic polar solvent, and the by-product salt is dissolved. A method in which the PAS prepolymer is recovered as a solid by contacting the PAS prepolymer with a solvent in which the PAS prepolymer does not dissolve or hardly dissolves under heating, or (2) at a temperature at which the PAS prepolymer dissolves in the reaction mixture. The solid component and the soluble component present in the solution are separated by solid-liquid separation, the solution component containing the PAS prepolymer and the organic polar solvent is recovered, and after part or most of the organic polar solvent is removed from the solution component by distillation, It is miscible with organic polar solvents and dissolves by-product salts, but does not dissolve PAS prepolymer or is difficult to dissolve. By contacting under the PAS prepolymer can be exemplified a method is recovered as a solid (hereinafter a method for recovering PAS prepolymer by contact with a solvent as a solid, "solvent process"). Since the PAS prepolymer precipitates as a solid by the solvent treatment, it is possible to recover the PAS prepolymer using a known solid-liquid separation method such as separation by filtration, centrifugation, decantation and the like.
 溶媒処理を行うことで、固体として回収したPASプレポリマーの、有機極性溶媒含有量、灰分率を低減することが可能であるが、特に、前記(2)の方法では溶媒処理を行う前に副生塩の大部分が固形成分として除去されるため、灰分率の低減効果に優れる。なお、溶媒処理を行う前に固液分離を行う温度は、PASプレポリマーが溶解するに足る温度であれば特に制限はないが、200℃以上が例示でき、230℃以上が好ましい。 By performing the solvent treatment, it is possible to reduce the content of the organic polar solvent and the ash content of the PAS prepolymer recovered as a solid, but in particular, in the method (2), before the solvent treatment, Since most of the raw salt is removed as a solid component, the effect of reducing the ash content is excellent. The temperature at which the solid-liquid separation is performed before the solvent treatment is not particularly limited as long as it is a temperature at which the PAS prepolymer is dissolved, but may be 200 ° C. or higher, preferably 230 ° C. or higher.
 溶媒処理で用いる溶媒は、用いた有機極性溶媒や副生塩の種類により異なるため一意的に示すことはできないが、水や、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ヘキサノールに代表されるアルコール類、アセトンに代表されるケトン類、酢酸エチル、酢酸ブチルなどに代表される酢酸エステル類が例示できる。 The solvent used in the solvent treatment cannot be uniquely indicated because it differs depending on the type of the organic polar solvent and by-product salt used, but water and alcohols represented by methanol, ethanol, propanol, isopropanol, butanol, and hexanol And ketones such as acetone, and acetates such as ethyl acetate and butyl acetate.
 溶媒処理は溶媒と反応混合物を混合することにより行うが、この際、撹拌または加熱してもよい。溶媒処理を行う際の温度の下限としては20℃以上を例示でき、50℃以上が好ましく、80℃以上がさらに好ましい。一方、上限としては220℃が例示でき、200℃以下が好ましい。溶媒処理を行う際の温度をこのような範囲とする場合、副生塩の除去が容易となり、また、比較的低圧の状態で処理を行うことができる傾向にある。 The solvent treatment is performed by mixing the solvent and the reaction mixture, and in this case, stirring or heating may be performed. The lower limit of the temperature at the time of performing the solvent treatment may be, for example, 20 ° C. or higher, preferably 50 ° C. or higher, and more preferably 80 ° C. or higher. On the other hand, as the upper limit, 220 ° C. can be exemplified, and 200 ° C. or lower is preferable. When the temperature at the time of performing the solvent treatment is in such a range, removal of by-product salts becomes easy, and the treatment tends to be performed at a relatively low pressure.
 本発明のPASプレポリマーの製造方法においては、反応混合物からPASプレポリマーを固体として回収する際に酸処理を行う。ここで、酸処理とは、PASプレポリマーと酸を接触させることを指し、前記溶媒処理を行う前に、反応混合物と溶媒のいずれか、または両方に酸を添加しておき、それらを混合する方法や、前記溶媒処理において反応混合物と溶媒、酸を同時に混合する方法、さらには、前記溶媒処理において反応混合物と溶媒を混合させた後に酸を添加する方法や、PASプレポリマーを固体として回収した後に酸と接触させる方法が例示できる。 に お い て In the method for producing a PAS prepolymer of the present invention, an acid treatment is performed when the PAS prepolymer is recovered as a solid from the reaction mixture. Here, the acid treatment refers to bringing the PAS prepolymer into contact with an acid, and before performing the solvent treatment, adding an acid to one or both of the reaction mixture and the solvent, and mixing them. A method, a method of simultaneously mixing a reaction mixture and a solvent and an acid in the solvent treatment, a method of adding an acid after mixing the reaction mixture and a solvent in the solvent treatment, and recovering a PAS prepolymer as a solid A method of contacting with an acid later can be exemplified.
 酸処理を行わない場合、PASプレポリマーの塩化物イオン捕集量が50ppm未満となる傾向が強く、加えて、灰分率が増加する傾向にある。塩化物イオン捕集量が前記の範囲を確実に満たすための条件は現時点で明らかでないが、PASプレポリマーがプロトン性の末端を有している必要があり、酸処理を行うことでPASプレポリマーに含まれる線状PASのチオラート末端がプロトン化されるためと推測している。 When the acid treatment is not performed, the amount of chloride ions collected by the PAS prepolymer tends to be less than 50 ppm, and in addition, the ash content tends to increase. The conditions for ensuring that the chloride ion trapping amount satisfies the above range are not clear at this time, but the PAS prepolymer must have a protic terminal, and the PAS prepolymer is subjected to acid treatment. It is presumed that the thiolate terminal of the linear PAS contained in the above is protonated.
 酸処理に用いる酸としては、ギ酸、酢酸、プロピオン酸、酪酸、クロロ酢酸、ジクロロ酢酸、アクリル酸、クロトン酸、安息香酸、サリチル酸、シュウ酸、マロン酸、コハク酸、フタル酸、フマル酸などの有機酸性化合物、硫酸、リン酸、塩酸、炭酸、珪酸などの無機酸性化合物が挙げられ、さらに塩化アンモニウムなど、水との反応により水素イオンを放出する強酸と弱塩基の塩などを酸とみなして使用してもよい。また、これらの酸は1種類または2種類以上の混合物として使用してもよい。 Examples of the acid used for the acid treatment include formic acid, acetic acid, propionic acid, butyric acid, chloroacetic acid, dichloroacetic acid, acrylic acid, crotonic acid, benzoic acid, salicylic acid, oxalic acid, malonic acid, succinic acid, phthalic acid, and fumaric acid. Organic acid compounds, inorganic acid compounds such as sulfuric acid, phosphoric acid, hydrochloric acid, carbonic acid, and silicic acid are cited, and salts of strong acids and weak bases that release hydrogen ions by reaction with water, such as ammonium chloride, are regarded as acids. May be used. These acids may be used alone or as a mixture of two or more.
 ここで、使用する酸の好ましい使用量は、PASプレポリマーの末端構造や分子量、さらには用いる溶媒や酸の種類によっても異なるため一意的に示すことはできないが、下限としては、PASプレポリマーの重量を基準に0.1重量%以上が例示でき、1重量%以上が好ましい。一方、上限としては、PASプレポリマーの重量を基準に10,000重量%が例示でき、1,000重量%以下がより好ましい。 Here, the preferred amount of the acid to be used cannot be uniquely indicated because it varies depending on the terminal structure and molecular weight of the PAS prepolymer, and also on the type of the solvent and the acid used. 0.1% by weight or more based on the weight can be exemplified, and 1% by weight or more is preferable. On the other hand, the upper limit can be exemplified by 10,000% by weight based on the weight of the PAS prepolymer, and is more preferably 1,000% by weight or less.
 なお、酸処理によって得られたPASプレポリマーが処理に用いた溶媒や酸を含有する場合には乾燥や洗浄により、溶媒や酸を除去することも可能である。 When the PAS prepolymer obtained by the acid treatment contains the solvent or the acid used in the treatment, the solvent or the acid can be removed by drying or washing.
 前記までの操作によって得られたPASプレポリマーは、用いた溶媒や酸の特性によっては不純物成分を含む場合もある。このような少量の不純物を含むPASプレポリマーを、不純物成分は溶解するが、PASプレポリマーは溶解しない、もしくは溶解しにくい第二の溶媒と接触させることで、不純物成分を選択的に除去してもよい。 PA The PAS prepolymer obtained by the above operation may contain an impurity component depending on the characteristics of the solvent and the acid used. By contacting the PAS prepolymer containing such a small amount of impurities with a second solvent in which the impurity components dissolve but the PAS prepolymer does not dissolve or hardly dissolves, the impurity components are selectively removed. Is also good.
 第二の溶媒としては、PASプレポリマーの分解や架橋など好ましくない副反応を実質的に引き起こさないものが望ましく、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、ポリエチレングリコールなどのアルコール・フェノール系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロペンタンなどの炭化水素系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、メチルブチルケトン、アセトフェノン等のケトン系溶媒、酢酸メチル、酢酸エチル、酢酸ペンチル、酢酸オクチル、酪酸メチル、酪酸エチル、酪酸ペンチル、サリチル酸メチル、蟻酸エチルなどのカルボン酸エステル系溶媒、および水が例示でき、これらの溶媒は1種類または2種類以上の混合物として使用してもよい。 As the second solvent, those that do not substantially cause undesirable side reactions such as decomposition and crosslinking of the PAS prepolymer are desirable, and methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, phenol, cresol, Alcohol / phenol solvents such as polyethylene glycol, hydrocarbon solvents such as pentane, hexane, heptane, octane, cyclohexane and cyclopentane; ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, methyl butyl ketone, acetophenone Carboxylic acid ester solvents such as methyl acetate, ethyl acetate, pentyl acetate, octyl acetate, methyl butyrate, ethyl butyrate, pentyl butyrate, methyl salicylate, and ethyl formate; And water. Examples of these solvents may be used as one type or a mixture of two or more.
 PASプレポリマーを第二の溶媒と接触させる温度に特に制限はないが、使用する第二の溶媒の常圧下での環流条件温度にすることが好ましく、この場合、不純物の除去が容易となる傾向にある。  There is no particular limitation on the temperature at which the PAS prepolymer is brought into contact with the second solvent, but it is preferable that the temperature of the second solvent used is a reflux condition under normal pressure, in which case the removal of impurities tends to be easy. It is in.
 PASプレポリマーを第二の溶媒と接触させる方法としては固体状PASプレポリマーと第二の溶媒を撹拌して混合する方法、各種フィルター上の固体状PASプレポリマーに第二の溶媒をシャワーすると同時に不純物を第二の溶媒に溶解させる方法、固体状PASプレポリマーを第二の溶媒を用いてソックスレー抽出する方法や、溶媒を含むPASプレポリマースラリーを第二の溶媒と接触させて、第二の溶媒の存在下でPASプレポリマーを析出させる方法などが例示できる。 As a method of bringing the PAS prepolymer into contact with the second solvent, a method of stirring and mixing the solid PAS prepolymer and the second solvent, and a method of simultaneously showering the second solvent on the solid PAS prepolymer on various filters A method in which impurities are dissolved in a second solvent, a method in which a solid PAS prepolymer is subjected to Soxhlet extraction using a second solvent, or a method in which a PAS prepolymer slurry containing a solvent is brought into contact with a second solvent to form a second solvent. A method of precipitating a PAS prepolymer in the presence of a solvent can be exemplified.
 本操作により、析出したPASプレポリマーはろ過による分離、遠心分離、デカンテーションなどの公知の固液分離法を用いてPASプレポリマーを回収することが可能である。 By this operation, the precipitated PAS prepolymer can be recovered by a known solid-liquid separation method such as separation by filtration, centrifugation, decantation and the like.
 前記までの操作によって固体として回収されたPASプレポリマーが、加熱反応や溶媒処理に用いた溶媒を含有する場合は、乾燥処理によって溶媒の全部もしくは大部分を除去することが望ましい。PASプレポリマーの乾燥処理には、公知の乾燥器を用いるのはもちろんのこと、PASプレポリマーの加熱重合装置を用いてもよい。 場合 When the PAS prepolymer recovered as a solid by the above operations contains the solvent used for the heating reaction or the solvent treatment, it is desirable to remove all or most of the solvent by drying treatment. In the drying treatment of the PAS prepolymer, not only a known dryer but also a PAS prepolymer heating polymerization apparatus may be used.
 <PASプレポリマーの加熱による高重合度体への転化>
 本発明のPASの製造方法では、PASプレポリマーを加熱することにより高重合度のPASに転化する。
<Conversion of PAS prepolymer to high degree of polymerization by heating>
In the method for producing a PAS of the present invention, a PAS prepolymer is converted into a PAS having a high degree of polymerization by heating.
 PASプレポリマーの加熱は実質的に溶媒が存在しない条件で行う。ここで実質的に溶媒が存在しない条件とは、PASプレポリマー中の溶媒量が10重量%以下であることを指し、3重量%以下が好ましく、1重量%以下がより好ましく、溶媒を全く含まないことが最も好ましい。PASプレポリマー中の溶媒量が10重量%を超える場合、高重合度体への転化の阻害や、分解や架橋などの好ましくない副反応により、得られるPASの機械的物性が低下する。加えて、得られたPASに溶媒が残存することにより溶融加工時のガス発生量が増加する。 The heating of the PAS prepolymer is performed under the condition that the solvent is not substantially present. Here, the condition that substantially no solvent is present means that the amount of the solvent in the PAS prepolymer is 10% by weight or less, preferably 3% by weight or less, more preferably 1% by weight or less, and contains no solvent. Most preferably no. When the amount of the solvent in the PAS prepolymer exceeds 10% by weight, the mechanical properties of the obtained PAS are reduced due to inhibition of conversion to a high polymerization degree and undesired side reactions such as decomposition and crosslinking. In addition, the amount of gas generated during melt processing increases due to the solvent remaining in the obtained PAS.
 PASプレポリマーを加熱する温度は、PASプレポリマーの融点以上の温度である。加熱温度がPASプレポリマーの融点未満であった場合、高重合度化の速度が著しく低下する。なお、PASプレポリマーの融点は、PASプレポリマーの組成や分子量により異なるため、一意的に示すことはできないが、PASプレポリマーを示差走査型熱量計で分析することで融点を把握することができる。主要構成単位としてp-フェニレンスルフィド単位を90モル%以上含有するポリフェニレンスルフィドプレポリマーの融点は、通常300℃以下であることから、加熱温度は300℃以上が好ましい。 The temperature at which the PAS prepolymer is heated is a temperature equal to or higher than the melting point of the PAS prepolymer. If the heating temperature is lower than the melting point of the PAS prepolymer, the rate of increasing the degree of polymerization is significantly reduced. The melting point of the PAS prepolymer cannot be uniquely indicated because it differs depending on the composition and molecular weight of the PAS prepolymer, but the melting point can be determined by analyzing the PAS prepolymer with a differential scanning calorimeter. . Since the melting point of a polyphenylene sulfide prepolymer containing 90 mol% or more of a p-phenylene sulfide unit as a main constituent unit is usually 300 ° C. or less, the heating temperature is preferably 300 ° C. or more.
 一方、加熱温度が高すぎる場合、分解や架橋などの好ましくない副反応によって、得られるPASの機械的物性が低下する可能性がある。そのため、前記副反応が顕著に生じる温度は避けることが望ましく、400℃以下を好ましい範囲として例示でき、380℃以下がより好ましく、360℃以下がさらに好ましい。 On the other hand, if the heating temperature is too high, the mechanical properties of the obtained PAS may be reduced due to undesired side reactions such as decomposition and crosslinking. Therefore, it is desirable to avoid the temperature at which the side reaction occurs remarkably, and 400 ° C or lower can be exemplified as a preferable range, 380 ° C or lower is more preferable, and 360 ° C or lower is further preferable.
 PASプレポリマーを加熱する際の雰囲気は、非酸化性ガス雰囲気下もしくは減圧下で行うことが好ましい。これらの条件では加熱時の分解や架橋などの好ましくない副反応が抑制される傾向にある。 (4) The atmosphere for heating the PAS prepolymer is preferably performed in a non-oxidizing gas atmosphere or under reduced pressure. Under these conditions, undesirable side reactions such as decomposition and crosslinking during heating tend to be suppressed.
 PASプレポリマーを加熱する時間は、使用するPASプレポリマーの組成や分子量などの特性、加熱温度や雰囲気によって異なるため一意的に示すことはできないが、高重合度への転化が十分に進行し、かつ、分解や架橋などの好ましくない副反応が起こらないような範囲として、下限は0.05時間、上限は100時間を好ましい範囲として例示できる。 The time for heating the PAS prepolymer cannot be uniquely indicated because it varies depending on the composition and molecular weight of the PAS prepolymer to be used, the heating temperature and the atmosphere, but the conversion to a high degree of polymerization sufficiently proceeds, In addition, as a range in which undesired side reactions such as decomposition and cross-linking do not occur, a lower limit is 0.05 hours, and an upper limit is 100 hours.
 PASプレポリマーの加熱は、通常の重合装置を用いて行うことはもちろんのこと、成形品を製造する型内や、押出機、溶融混練機など、加熱機構を具備した装置であれば特に制限無く行うことが可能であり、バッチ方式、連続方式など公知の方法を採用することができる。 The heating of the PAS prepolymer is not limited to a usual polymerization apparatus, but is not particularly limited as long as the apparatus has a heating mechanism such as a mold for manufacturing a molded product, an extruder, and a melt kneader. The method can be performed, and a known method such as a batch method or a continuous method can be adopted.
 また、PASプレポリマーの加熱は、繊維状物質の共存下で行うことも可能である。ここで繊維状物質とは細い糸状の物質を指し、ガラス繊維、炭素繊維、黒鉛繊維、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維などを例示できる。繊維状物質存在下でPASプレポリマーの高重合度体への転化を行うことで、PASと繊維状物質からなる複合材料構造体を容易に作成する事ができる。このような構造体は、繊維状物質によって補強されるため、PAS単独の場合に比べて、機械的物性に優れる傾向にある。 加熱 The PAS prepolymer can be heated in the presence of a fibrous substance. Here, the fibrous substance refers to a thin thread-like substance, and examples thereof include glass fiber, carbon fiber, graphite fiber, aramid fiber, silicon carbide fiber, alumina fiber, and boron fiber. By performing the conversion of the PAS prepolymer to a high degree of polymerization in the presence of the fibrous substance, a composite material structure composed of the PAS and the fibrous substance can be easily formed. Since such a structure is reinforced by a fibrous substance, it tends to have excellent mechanical properties as compared with the case of using PAS alone.
 さらに、PASプレポリマーの加熱は、充填剤の共存下で行うことも可能である。充填剤としては、非繊維状ガラス、非繊維状炭素や、無機充填剤などを例示できる。 Furthermore, the PAS prepolymer can be heated in the presence of a filler. Examples of the filler include non-fibrous glass, non-fibrous carbon, and an inorganic filler.
 <本発明により得られるPAS>
 本発明によれば、高分子量で機械的強度に優れ、かつ、溶融加工時のガス発生量が少なく、かつ、結晶化温度の高いPASを製造することができる。
<PAS obtained by the present invention>
According to the present invention, it is possible to produce a PAS having a high molecular weight, excellent mechanical strength, a small amount of gas generated during melt processing, and a high crystallization temperature.
 本発明により得られるPASの重量平均分子量は、使用するPASプレポリマーの特性や加熱条件により異なるが、その下限は好ましい実施形態において20,000以上、より好ましくは25,000以上、さらに好ましくは30,000以上、特に好ましくは40,000以上となり、この範囲では、PASの機械的強度が高い傾向にある。一方、上限は好ましい実施形態において200,000以下、より好ましくは100,000以下となり、この範囲では、PASを成形加工する際に十分な流動性を示す傾向にある。 The weight-average molecular weight of the PAS obtained according to the present invention varies depending on the properties of the PAS prepolymer used and the heating conditions, but the lower limit is 20,000 or more in a preferred embodiment, more preferably 25,000 or more, and even more preferably 30 or more. 2,000 or more, particularly preferably 40,000 or more. In this range, the mechanical strength of PAS tends to be high. On the other hand, the upper limit is 200,000 or less, more preferably 100,000 or less in the preferred embodiment. Within this range, the PAS tends to exhibit sufficient fluidity during molding.
 本発明により得られるPASの多分散度指数は、使用するPASプレポリマーの特性や加熱条件により異なるが、その上限は好ましい実施形態において5.0以下、より好ましくは4.5以下、さらに好ましくは4.0以下となり、この範囲となる場合、PASを成形加工する際のガス発生量が少ない傾向にある。一方、下限は通常2.5超である。 The polydispersity index of the PAS obtained according to the present invention varies depending on the properties of the PAS prepolymer used and the heating conditions, but the upper limit is 5.0 or less in a preferred embodiment, more preferably 4.5 or less, and still more preferably. If it is 4.0 or less, and falls within this range, the amount of gas generated when forming the PAS tends to be small. On the other hand, the lower limit is usually more than 2.5.
 本発明により得られるPASの溶融粘度は、使用するPASプレポリマーの特性や加熱条件により異なるが、好ましい実施形態において1.0Pa・s以上、2,000Pa・s以下(温度;320℃,剪断速度;1,000/s)となり、この範囲ではPASを成形加工する際に良好な流動性を示す傾向にある。 The melt viscosity of the PAS obtained according to the present invention varies depending on the properties of the PAS prepolymer used and the heating conditions, but in a preferred embodiment from 1.0 Pa · s to 2,000 Pa · s (temperature; 320 ° C., shear rate) ; 1,000 / s), and in this range, there is a tendency that the PAS exhibits good fluidity when molded.
 本発明により得られるPASの、下記式(1)で表される加熱時の重量減少率は、使用するPASプレポリマーの特性や加熱条件により異なるが、その上限は好ましい実施形態において0.18%以下、より好ましくは0.15%以下、さらに好ましくは0.12%以下となり、この範囲では、PASを成形加工する際のガス発生量が少ない傾向にある。一方、下限は通常0.03%以上である。 The weight loss rate of the PAS obtained by the present invention upon heating represented by the following formula (1) varies depending on the properties of the PAS prepolymer used and the heating conditions, and the upper limit is 0.18% in a preferred embodiment. Below, more preferably 0.15% or less, still more preferably 0.12% or less, and in this range, the amount of gas generated when forming the PAS tends to be small. On the other hand, the lower limit is usually 0.03% or more.
 △Wr=(W1-W2)/W1×100 ・・・(1)
 ここで△Wrは重量減少率(%)であり、常圧の窒素雰囲気下で50℃から330℃以上の任意の温度まで昇温速度20℃/分で熱重量分析を行った際の、100℃到達時点の試料重量(W1)と330℃到達時の試料重量(W2)から求められる値である。
ΔWr = (W1−W2) / W1 × 100 (1)
Here, △ Wr is a weight reduction rate (%), and is 100% when thermogravimetric analysis is performed at a heating rate of 20 ° C./min from 50 ° C. to an arbitrary temperature of 330 ° C. or more in a nitrogen atmosphere at normal pressure. The value is obtained from the sample weight (W1) at the time when the temperature reaches ° C and the sample weight (W2) at the time when the temperature reaches 330 ° C.
 上記△Wrは一般的な熱重量分析によって測定することが可能であるが、この分析における雰囲気は常圧の窒素雰囲気である。常圧とは大気の標準状態近傍における圧力のことであり、絶対圧で101kPa近傍の大気圧条件のことを指す。 The above-mentioned △ Wr can be measured by general thermogravimetric analysis, and the atmosphere in this analysis is a nitrogen atmosphere at normal pressure. The normal pressure is a pressure in the vicinity of a standard state of the atmosphere, and indicates an atmospheric pressure condition of about 101 kPa in absolute pressure.
 △Wrの測定では、50℃で1分保持した後に、50℃から330℃以上の任意の温度まで20℃/分の速度で昇温して熱重量分析を行う。この温度範囲はPPSに代表されるPASを溶融加工する際に頻用される温度領域であり、また、得られた成形品を実使用する際に頻用される温度領域でもある。このような温度領域における重量減少率は、溶融加工時の口金や金型などへの揮発成分の付着量や成形品から発生するガス量に関連するため、△Wrの小さいPASは、実使用時のガス発生量が低減された、品質の高いPASであるといえる。 In the measurement of △ Wr, after holding at 50 ° C. for 1 minute, the temperature is raised from 50 ° C. to an arbitrary temperature of 330 ° C. or more at a rate of 20 ° C./min, and thermogravimetric analysis is performed. This temperature range is a temperature range that is frequently used when melt processing PAS represented by PPS, and is also a temperature range that is frequently used when the obtained molded product is actually used. Since the rate of weight loss in such a temperature range is related to the amount of volatile components attached to a die or a mold during melt processing or the amount of gas generated from a molded product, PAS having a small ΔWr is not suitable for actual use. It can be said that this is a high-quality PAS in which the amount of generated gas is reduced.
 本発明により得られるPASの融点(Tm)は、使用するPASプレポリマーの特性や加熱条件により異なるが、その下限は好ましい実施形態において275℃以上、より好ましくは277℃以上、さらに好ましくは279℃以上となり、この範囲では、PASを成形加工し得られた成形品の耐熱性が向上する傾向にある。一方、上限は通常285℃以下である。 The melting point (Tm) of the PAS obtained according to the present invention varies depending on the properties of the PAS prepolymer used and the heating conditions, but the lower limit is 275 ° C. or higher in the preferred embodiment, more preferably 277 ° C. or higher, and further preferably 279 ° C. As described above, in this range, the heat resistance of a molded product obtained by molding the PAS tends to be improved. On the other hand, the upper limit is usually 285 ° C or lower.
 本発明により得られるPASの降温結晶化温度(Tmc)は、使用するPASプレポリマーの特性や加熱条件により異なるが、その下限は好ましい実施形態において220℃以上、より好ましくは225℃以上、さらに好ましくは230℃以上となり、この範囲では、PASを成形加工する際の溶融状態から固化状態となるまでの時間が短縮され、成形品の生産性が向上する傾向にある。一方、上限は通常245℃以下である。 The cooling crystallization temperature (Tmc) of the PAS obtained by the present invention varies depending on the properties of the PAS prepolymer used and the heating conditions, but the lower limit is 220 ° C. or higher in a preferred embodiment, more preferably 225 ° C. or higher, and still more preferably. Is 230 ° C. or more, and in this range, the time from the molten state to the solidified state when molding the PAS is shortened, and the productivity of molded articles tends to be improved. On the other hand, the upper limit is usually 245 ° C or lower.
 本発明により得られるPASの灰分率は、使用するPASプレポリマーの特性や加熱条件により異なるが、好ましい実施形態において1.0重量%以下、より好ましくは0.5重量%以下、さらに好ましくは0.2重量%以下、特に好ましくは0.1重量%以下、最も好ましくは0.05重量%以下となり、この範囲では、PASの電気絶縁性が向上する傾向にある。 The ash content of the PAS obtained by the present invention varies depending on the properties of the PAS prepolymer used and the heating conditions, but is preferably 1.0% by weight or less, more preferably 0.5% by weight or less, further preferably 0% by weight in a preferred embodiment. 0.2% by weight or less, particularly preferably 0.1% by weight or less, and most preferably 0.05% by weight or less. In this range, the electrical insulation of the PAS tends to be improved.
 本発明により得られるPASは射出成形、射出圧縮成形、ブロー成形用途のみならず、繊維、フィルム、シートなどの押出成形用途にも好適に用いることができる。 PA The PAS obtained by the present invention can be suitably used not only for injection molding, injection compression molding, and blow molding but also for extrusion molding of fibers, films, sheets and the like.
 また、本発明により得られるPASは、単独で用いてもよいし、必要に応じて、ガラス繊維、炭素繊維、酸化チタン、炭酸カルシウムなどの無機充填剤、酸化防止剤、熱安定剤、紫外線吸収剤、着色剤などを添加することもでき、ポリアミド、ポリスルホン、ポリフェニレンエーテル、ポリカーボネート、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、エポキシ基、カルボキシル基、カルボン酸エステル基、酸無水物基を有するオレフィン系コポリマー、ポリオレフィン系エラストマー、ポリエーテルエステルエラストマー、ポリエーテルアミドエラストマー、ポリアミドイミド、ポリアセタール、ポリイミドなどの樹脂を配合することもできる。 The PAS obtained according to the present invention may be used alone or, if necessary, inorganic fillers such as glass fiber, carbon fiber, titanium oxide, and calcium carbonate, antioxidants, heat stabilizers, and ultraviolet absorbers. Agents, coloring agents, etc. can also be added, polyamide, polysulfone, polyphenylene ether, polycarbonate, polyethersulfone, polyethylene terephthalate, polybutylene terephthalate, polyethylene, polypropylene, polytetrafluoroethylene, epoxy group, carboxyl group, carboxylate Resins such as olefin copolymers, polyolefin elastomers, polyetherester elastomers, polyetheramide elastomers, polyamideimides, polyacetals and polyimides having It can also be.
 以下に実施例を挙げて本発明をさらに具体的に説明する。これらの例は例示的なものであって限定的なものではない。 The present invention will be described more specifically with reference to the following examples. These examples are illustrative and not restrictive.
 <スルフィド化剤の分析>
 反応混合物中のスルフィド化剤の定量はイオンクロマトグラフィーを用いて以下の条件にて実施した。
装置:(株)島津製作所製 HIC-20A super
カラム:(株)島津製作所製 Shim-pack IC-SA2(250mm×4.6mmID)
検出器:電気伝導度検出器(サプレッサ)
溶離液:4.0mM炭酸水素ナトリウム/1.0mM炭酸ナトリウム水溶液
流速:1.0ml/分
注入量:50マイクロリットル
カラム温度:30℃
 試料中に過酸化水素水を添加して試料中に含まれる硫化物イオンの酸化を行った後に上記分析により硫酸イオンとして定量し、過酸化水素水を添加しない無処理の試料を分析した際の硫酸イオン定量値を差し引く方法で、試料中の硫化物イオン量を算出した。ここで算出した硫化物イオン量を未反応のスルフィド化剤量とし、仕込んだスルフィド化剤量との割合から、スルフィド化剤の転化率を算出した。計算式は以下の通りである。
<Analysis of sulfidizing agent>
The quantification of the sulfidizing agent in the reaction mixture was performed using ion chromatography under the following conditions.
Apparatus: HIC-20A super manufactured by Shimadzu Corporation
Column: Shim-pack IC-SA2 manufactured by Shimadzu Corporation (250 mm x 4.6 mm ID)
Detector: Electric conductivity detector (suppressor)
Eluent: 4.0 mM sodium bicarbonate / 1.0 mM sodium carbonate aqueous solution Flow rate: 1.0 ml / min Injection volume: 50 microliter Column temperature: 30 ° C.
After oxidizing the sulfide ions contained in the sample by adding aqueous hydrogen peroxide to the sample, quantifying it as sulfate ion by the above analysis, and analyzing the untreated sample without adding the aqueous hydrogen peroxide The amount of sulfide ions in the sample was calculated by a method of subtracting the sulfate ion quantitative value. The calculated amount of the sulfide ion was defined as the amount of the unreacted sulfidizing agent, and the conversion of the sulfidizing agent was calculated from the ratio with the charged amount of the sulfidizing agent. The calculation formula is as follows.
 スルフィド化剤の転化率(%)=[〔スルフィド化剤仕込み量(モル)-スルフィド化剤残存量(モル)〕/〔スルフィド化剤仕込み量(モル)〕]×100%。 転 Conversion rate of sulfidizing agent (%) = [[Sulfidizing agent charged amount (mol) -Sulfidizing agent remaining amount (mol)] / [Sulfidizing agent charged amount (mol)]] × 100%.
 <ジハロゲン化芳香族化合物、NMPの分析>
 反応混合物中のジハロゲン化芳香族化合物およびNMPの定量は、ガスクロマトグラフィー(GC)を用いて以下の条件にて実施した。
装置:(株)島津製作所製 GC-2010
カラム:アジレント・テクノロジー(株)製 DB-5 0.32mm×30m(0.25μm)
キャリアーガス:ヘリウム
検出器:水素炎イオン化検出器(FID)
 <分子量の測定>
 PASプレポリマーおよびPASの分子量はサイズ排除クロマトグラフィー(SEC)の一種であるゲルパーミエーションクロマトグラフィー(GPC)により算出した。
<Analysis of dihalogenated aromatic compounds and NMP>
The quantitative determination of the dihalogenated aromatic compound and NMP in the reaction mixture was carried out using gas chromatography (GC) under the following conditions.
Apparatus: GC-2010 manufactured by Shimadzu Corporation
Column: DB-5 0.32 mm × 30 m (0.25 μm) manufactured by Agilent Technologies, Inc.
Carrier gas: Helium detector: Flame ionization detector (FID)
<Measurement of molecular weight>
The molecular weights of the PAS prepolymer and PAS were calculated by gel permeation chromatography (GPC), which is a type of size exclusion chromatography (SEC).
 1-クロロナフタレン5gにPASプレポリマーもしくはPAS5mgを加えて250℃に加温、溶解し、孔径0.1μmのメンブレンフィルターで濾過後、濾液を室温まで冷却することでスラリー状の溶液を得た。得られた溶液を試料として下記の条件で分析し、ポリスチレン換算で数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
装置:(株)センシュー科学製 SSC-7110
カラム名:昭和電工(株)製 Shodex UT806M×2
溶離液:1-クロロナフタレン
検出器:示差屈折率検出器
カラム温度:210℃
プレ恒温槽温度:250℃
ポンプ恒温槽温度:50℃
検出器温度:210℃
流量:1.0mL/min
試料注入量:300μL。
5 g of 1-chloronaphthalene was added with 5 mg of PAS prepolymer or PAS, heated and dissolved at 250 ° C., filtered through a membrane filter having a pore size of 0.1 μm, and the filtrate was cooled to room temperature to obtain a slurry solution. The obtained solution was analyzed as a sample under the following conditions, and the number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated in terms of polystyrene.
Equipment: SSC-7110 manufactured by Senshu Kagaku
Column name: Showex UT806M x 2 manufactured by Showa Denko KK
Eluent: 1-chloronaphthalene Detector: Differential refractive index detector Column temperature: 210 ° C
Pre-bath temperature: 250 ° C
Pump bath temperature: 50 ° C
Detector temperature: 210 ° C
Flow rate: 1.0 mL / min
Sample injection volume: 300 μL.
 <環式PAS含有量の測定>
 PASプレポリマーおよびPASの、環式PAS含有量は高速液体クロマトグラフィーにより測定した。
<Measurement of cyclic PAS content>
The cyclic PAS content of the PAS prepolymer and PAS was measured by high performance liquid chromatography.
 1-クロロナフタレン5gにPASプレポリマーもしくはPAS10mgを加えて250℃に加温、溶解し、溶液を室温まで冷却することでスラリー状の溶液を得た。孔径0.45μmのメンブレンフィルターを用いて濾過し、得られた濾液を試料として下記の条件で分析し、環式PAS含有量を測定した。
装置:(株)島津製作所製 LC-10A vpシリーズ
カラム:関東化学(株)製 Mightysil RP-18 GP150-4.6(5μm)
検出器:フォトダイオードアレイ検出器(UV=270nm)
 上記高速液体クロマトグラフィー測定により成分分割した各ピークの帰属は、成分分割した成分のマススペクトル分析、分取クロマトにより分割した各成分のMALDI-TOF-MS及びGPCによる分子量情報により行い、繰り返し単位数4から15までの環式PASを帰属した。帰属した繰り返し単位数4から15までの環式PASについて、標品による検量線を用いて定量を行った。
10 mg of PAS prepolymer or PAS was added to 5 g of 1-chloronaphthalene, heated and dissolved at 250 ° C., and the solution was cooled to room temperature to obtain a slurry solution. Filtration was performed using a membrane filter having a pore size of 0.45 μm, and the obtained filtrate was analyzed as a sample under the following conditions to measure the cyclic PAS content.
Apparatus: LC-10A vp series column manufactured by Shimadzu Corporation Column: Mightysil RP-18 GP150-4.6 (5 μm) manufactured by Kanto Chemical Co., Ltd.
Detector: Photodiode array detector (UV = 270nm)
Assignment of each peak divided into components by the above high performance liquid chromatography measurement is performed based on mass spectrum analysis of the divided components and molecular weight information of each component divided by preparative chromatography by MALDI-TOF-MS and GPC. From 4 to 15 cyclic PASs were assigned. For the cyclic PAS having 4 to 15 repeating units to which it was assigned, quantification was performed using a calibration curve with a standard.
 <加熱時の塩化物イオン捕集量の測定>
 PASプレポリマーを加熱した際の塩化物イオン捕集量は下記の方法により定量した。
(a)PASプレポリマー1gをアルミニウム製容器にはかりとり、横置きにした2.4cmφ×30cmの試験管内に設置した。
(b)試験管内に窒素を供給するためのステンレス製ニードル、および試験管内から揮発成分を窒素とともに排出するための“テフロン”(登録商標)製チューブを具備したシリコン栓を、試験管の口に取り付けた。
(c)吸収液としてイオン交換水20gを20mL三角フラスコにはかりとり、“テフロン”(登録商標)製チューブの先端が三角フラスコの底部に接するように固定した。
(d)ステンレス製ニードルから窒素を50mL/分の速度で供給することで、窒素が試験管内、“テフロン”(登録商標)製チューブを経由して三角フラスコ内の吸収液に通気(バブリング)される状態とした。
(e)340℃に温調した横置き電気管状炉に試験管を挿入し60分間加熱した。
(f)吸収液の一部をイオンクロマトグラフィーで分析し、吸収液に捕集された塩化物イオン量を定量した。
<Measurement of amount of chloride ion collected during heating>
The amount of chloride ions collected when the PAS prepolymer was heated was determined by the following method.
(A) 1 g of the PAS prepolymer was weighed and placed in an aluminum container and placed in a laterally placed 2.4 cmφ × 30 cm test tube.
(B) A silicon stopper provided with a stainless steel needle for supplying nitrogen into the test tube and a “Teflon” (registered trademark) tube for discharging volatile components together with nitrogen from the test tube into the mouth of the test tube. Attached.
(C) 20 g of ion-exchanged water was weighed into a 20 mL Erlenmeyer flask as an absorbing solution, and fixed such that the tip of a tube made of “Teflon” (registered trademark) was in contact with the bottom of the Erlenmeyer flask.
(D) By supplying nitrogen at a rate of 50 mL / min from a stainless steel needle, nitrogen is bubbled (bubbled) into the absorption liquid in the Erlenmeyer flask through the tube made of “Teflon” (registered trademark) in the test tube. State.
(E) The test tube was inserted into a horizontal electric tubular furnace controlled at 340 ° C. and heated for 60 minutes.
(F) A part of the absorbing solution was analyzed by ion chromatography, and the amount of chloride ions collected in the absorbing solution was quantified.
 <加熱時重量減少率の測定>
 PASの加熱時重量減少率は熱重量分析機を用いて下記の条件で測定した。
装置:パーキンエルマー社製 TGA7
測定雰囲気:窒素気流下
試料仕込み重量:約10mg
測定条件:
(a)50℃で1分保持
(b)50℃から350℃まで20℃/分の速度で昇温
 重量減少率△Wrは(b)の昇温において、100℃時の試料重量を基準として、330℃到達時の試料重量から前記式(1)を用いて算出した。
<Measurement of weight loss rate during heating>
The weight loss rate during heating of PAS was measured using a thermogravimetric analyzer under the following conditions.
Apparatus: PerkinElmer TGA7
Measurement atmosphere: Sample preparation weight under a nitrogen stream: Approx. 10 mg
Measurement condition:
(A) Hold at 50 ° C. for 1 minute (b) Heat up from 50 ° C. to 350 ° C. at a rate of 20 ° C./min The weight loss rate ΔWr is based on the sample weight at 100 ° C. at the temperature rise in (b). From the sample weight at the time when the temperature reached 330 ° C., using the formula (1).
 <融点および降温結晶化温度の測定>
 PASプレポリマーおよびPASの融点および降温結晶化温度は示差走査型熱量計を用いて下記の条件で測定した。本件明細書中での融点(Tm)とは(f)の昇温における吸熱ピーク温度を、降温結晶化温度(Tmc)とは(d)の降温における発熱ピーク温度を指す。
装置:TAインスツルメンツ社製 Q20
測定雰囲気:窒素気流下
試料仕込み重量:約10mg
測定条件:
(a)50℃で1分保持
(b)50℃から340℃まで20℃/分の速度で昇温
(c)340℃で1分保持
(d)340℃から100℃まで20℃/分の速度で降温
(e)100℃で1分保持
(f)100℃から340℃まで20℃/分の速度で昇温
 <灰分率の測定>
 PASを5gるつぼに仕込み、電気マッフル炉を用いて空気下、550℃で5時間燃焼後、残渣の重量を測定し、仕込んだPASの重量に対する割合(百分率)を算出した。
<Measurement of melting point and cooling crystallization temperature>
The melting point and the cooling crystallization temperature of PAS prepolymer and PAS were measured using a differential scanning calorimeter under the following conditions. In the present specification, the melting point (Tm) refers to the endothermic peak temperature at the time of (f) temperature rise, and the cooling crystallization temperature (Tmc) refers to the exothermic peak temperature at the time of temperature decrease in (d).
Equipment: TA Instruments Q20
Measurement atmosphere: Sample preparation weight under a nitrogen stream: Approx. 10 mg
Measurement condition:
(A) Hold at 50 ° C. for 1 minute (b) Heat at a rate of 20 ° C./min from 50 ° C. to 340 ° C. (c) Hold at 340 ° C. for 1 minute (d) 20 ° C./min from 340 ° C. to 100 ° C. (E) Hold at 100 ° C for 1 minute (f) Heat from 100 ° C to 340 ° C at a rate of 20 ° C / min <Measurement of ash content>
5 g of PAS was charged into a crucible, and after burning at 550 ° C. for 5 hours under air using an electric muffle furnace, the weight of the residue was measured, and the ratio (percentage) to the weight of the charged PAS was calculated.
 [参考例1]
 有機極性溶媒量がスルフィド化剤1モル当たり2.5リットルである原料混合物を、スルフィド化剤の転化率が90%以上、ジハロゲン化芳香族化合物(p-DCB)の転化率が90%以上かつスルフィド化剤の転化率以下となるまで加熱して得られた反応混合液を、250℃において固液分離し、PAS成分を含む濾液を調製した例を次に示す。
[Reference Example 1]
A raw material mixture in which the amount of the organic polar solvent is 2.5 liters per mole of the sulfidizing agent is converted to a sulfidizing agent having a conversion of 90% or more, a dihalogenated aromatic compound (p-DCB) having a conversion of 90% or more, and The following shows an example in which a reaction mixture obtained by heating until the conversion ratio of the sulfidizing agent becomes equal to or less than the conversion is solid-liquid separated at 250 ° C. to prepare a filtrate containing a PAS component.
 〔原料混合物の調製〕
 攪拌機を具備したステンレス製のオートクレーブに蒸留用の装置とアルカリトラップを接続しておき、48重量%の水硫化ナトリウム水溶液28.0g(水硫化ナトリウムとして0.240モル)、48重量%の水酸化ナトリウム水溶液20.5g(水酸化ナトリウムとして0.246モル)、NMP123.1g(0.120リットル)を仕込み、反応容器内を十分に窒素置換した。
(Preparation of raw material mixture)
A distillation apparatus and an alkali trap were connected to a stainless steel autoclave equipped with a stirrer, and 28.0 g of a 48% by weight aqueous sodium hydrosulfide solution (0.240 mol as sodium hydrosulfide), and 48% by weight of a hydroxylated aqueous solution were used. 20.5 g (0.246 mol as sodium hydroxide) of an aqueous sodium solution and 123.1 g (0.120 liter) of NMP were charged, and the inside of the reaction vessel was sufficiently purged with nitrogen.
 オートクレーブ上部にバルブを介して蒸留塔を取り付け、常圧で窒素を通じて240rpmで撹拌しながら210℃まで約1時間かけて徐々に加熱して脱液を行い、留出液25.8gを得た。この留出液をガスクロマトグラフィーで分析したところ留出液の組成は水25.3g、NMPが0.5gであり、この段階では反応系内に水は存在せず、NMPは122.6g残存していることがわかった。なお、脱水工程を通して反応系から飛散した硫化水素は0.00276モルであった。 (4) A distillation column was attached to the upper part of the autoclave via a valve, and the mixture was gradually heated to 210 ° C. over about 1 hour while stirring at 240 rpm with nitrogen at normal pressure to remove liquid, thereby obtaining 25.8 g of a distillate. The distillate was analyzed by gas chromatography to find that the composition of the distillate was 25.3 g of water and 0.5 g of NMP. At this stage, no water was present in the reaction system, and 122.6 g of NMP remained. I knew I was doing it. The amount of hydrogen sulfide scattered from the reaction system during the dehydration step was 0.00276 mol.
 オートクレーブを180℃以下まで冷却した後、ジハロゲン化芳香族化合物(p-DCB)35.6g(0.242モル)、NMP485.4g(0.473リットル)を仕込み、再度反応容器内を十分に窒素置換し、密封した。この仕込みにより内温は110℃まで低下した。 After the autoclave was cooled to 180 ° C. or lower, 35.6 g (0.242 mol) of dihalogenated aromatic compound (p-DCB) and 485.4 g (0.473 liter) of NMP were charged, and the inside of the reaction vessel was sufficiently filled with nitrogen again. Replaced and sealed. Due to this charging, the internal temperature was lowered to 110 ° C.
 〔原料混合物の加熱反応〕
 110℃から235℃まで30分かけて反応容器内を昇温後、235℃で4時間保持した。さらに、250℃まで30分かけて反応容器内を昇温後、250℃で8時間保持して反応させたあと、室温付近まで急冷して反応容器から内容物を回収した。
(Heating reaction of raw material mixture)
After the temperature inside the reaction vessel was raised from 110 ° C. to 235 ° C. over 30 minutes, the temperature was held at 235 ° C. for 4 hours. Further, after the temperature inside the reaction vessel was raised to 250 ° C. over 30 minutes, the reaction was held at 250 ° C. for 8 hours to cause a reaction, and the content was recovered from the reaction vessel by rapidly cooling it to around room temperature.
 得られた反応混合物についてイオンクロマトグラフィーによる分析を行い、スルフィド化剤の転化率を算出したところ98%と算出された。また、p-DCBの転化率を算出したところ97%と算出された。また、得られた湿潤状態の固形分の一部を分取して、温水を用いた洗浄を十分に行った後に乾燥し乾燥固体を得た。この乾燥固体について赤外分光分析を行った結果、これはPPSであることがわかった。 The obtained reaction mixture was analyzed by ion chromatography, and the conversion of the sulfidizing agent was calculated to be 98%. The conversion of p-DCB was calculated to be 97%. In addition, a part of the obtained solid in the wet state was fractionated, washed sufficiently with warm water, and then dried to obtain a dry solid. As a result of an infrared spectroscopic analysis of this dried solid, it was found that this was PPS.
 〔PASプレポリマーが溶解する温度における反応混合物の固液分離〕
 この反応混合物を、底栓弁および底部にガラス製フィルター(平均目開き10μ)を具備したステンレス製耐圧容器に仕込み、常圧下で攪拌しながら180℃に加熱した後、容器を窒素下に密閉した。ついで250℃まで加熱し1時間保持した。容器の底栓弁出口に冷却管を取り付け、底栓弁を開放して濾過を行った。途中濾過速度が低下した段階で容器内に0.3MPaで窒素を導入しながら濾液を回収した。この操作で得られた濾液は室温下では不溶部を含むスラリー状となった。
[Solid-liquid separation of the reaction mixture at a temperature at which the PAS prepolymer is dissolved]
The reaction mixture was charged into a stainless steel pressure-resistant container equipped with a bottom stopper valve and a glass filter (average opening: 10 μm) at the bottom, heated to 180 ° C. while stirring under normal pressure, and then the container was sealed under nitrogen. . Then, it was heated to 250 ° C. and kept for 1 hour. A cooling tube was attached to the outlet of the bottom plug valve of the container, and the bottom plug valve was opened to perform filtration. The filtrate was recovered while introducing nitrogen at 0.3 MPa into the vessel at the stage when the filtration rate was lowered during the process. The filtrate obtained by this operation became a slurry containing an insoluble portion at room temperature.
 [実施例1]
 参考例1で得られたPPS成分を含む濾液を用い、PPSプレポリマーと酸を接触させてPPSプレポリマーを固体として回収し、得られたPPSプレポリマーを加熱重合した例を示す。
[Example 1]
An example in which a PPS prepolymer and an acid are brought into contact with each other to recover the PPS prepolymer as a solid using the filtrate containing the PPS component obtained in Reference Example 1, and the obtained PPS prepolymer is polymerized by heating is shown.
 〔PPSプレポリマーの回収〕
 参考例1で得られた濾液(室温下ではスラリー状態)をビーカーに300g量り取り、酢酸1.1gと水100gを加え、撹拌しながら水浴で80℃に加温した。次いで、30分撹拌した後のポリマー分散液を、ガラスフィルターを用いて吸引ろ過し、ケークを回収した。得られたケークを再度ビーカーに戻し、水200gでリスラリーし、80℃で30分撹拌後にろ過した。この水洗操作を計3回繰り返した。水洗後、得られたケークを100℃の真空乾燥器で8時間乾燥し、固形分としてPPSプレポリマーを回収した。
[Recovery of PPS prepolymer]
300 g of the filtrate (slurry at room temperature) obtained in Reference Example 1 was weighed into a beaker, 1.1 g of acetic acid and 100 g of water were added, and the mixture was heated to 80 ° C. in a water bath with stirring. Next, the polymer dispersion after stirring for 30 minutes was subjected to suction filtration using a glass filter, and the cake was recovered. The obtained cake was returned to the beaker again, reslurried with 200 g of water, filtered at 80 ° C. for 30 minutes and filtered. This washing operation was repeated three times in total. After washing with water, the obtained cake was dried in a vacuum dryer at 100 ° C. for 8 hours to recover a PPS prepolymer as a solid content.
 得られたPPSプレポリマーの分子量を測定した結果、Mwが8,500、Mnが2,800、多分散度指数は3.04であった。また、環式PPS含有量を測定した結果、17.4重量%であった。さらに、加熱時の塩化物イオン捕集量を測定した結果、50ppmであった。また、Tmを測定した結果、279℃であった。灰分率を測定した結果、0.07重量%であった。 As a result of measuring the molecular weight of the obtained PPS prepolymer, Mw was 8,500, Mn was 2,800, and polydispersity index was 3.04. Moreover, as a result of measuring the cyclic PPS content, it was 17.4% by weight. Furthermore, as a result of measuring the chloride ion trapping amount at the time of heating, it was 50 ppm. Moreover, it was 279 degreeC as a result of measuring Tm. As a result of measuring the ash content, it was 0.07% by weight.
 〔PPSプレポリマーの加熱重合〕
 得られたPPSプレポリマー4gを2.4cmφ×30cmの試験管にはかりとり、撹拌翼、減圧アダプター、バキュームスターラ、窒素導入管を具備したシリコン栓を取り付けた。系内を減圧した後、窒素雰囲気下とする操作を3回繰り返したあと、減圧下とした。340℃に温度調整した電気管状炉に試験管を挿入し、50rpmの速度で撹拌しながら、4時間加熱した。試験管を電気管状炉から取り出し、室温まで放冷して重合物を得た。
[Heat polymerization of PPS prepolymer]
4 g of the obtained PPS prepolymer was weighed into a test tube of 2.4 cmφ × 30 cm, and a silicon stopper equipped with a stirring blade, a vacuum adapter, a vacuum stirrer, and a nitrogen inlet tube was attached. The operation of reducing the pressure in the system and then changing the atmosphere to a nitrogen atmosphere was repeated three times, and then the pressure was reduced. The test tube was inserted into an electric tubular furnace adjusted to 340 ° C., and heated for 4 hours while stirring at a speed of 50 rpm. The test tube was taken out of the electric tube furnace and allowed to cool to room temperature to obtain a polymer.
 得られた重合物は1-クロロナフタレンに210℃で全溶であり、分子量を測定した結果、Mwが25,100、Mnが8,200、多分散度指数は3.06であった。また、環式PPS含有量を測定した結果、3.0重量%であった。また、加熱時重量減少率を測定した結果、△Wrは0.088%であった。さらに、TmおよびTmcを測定した結果、Tmは282℃、Tmcは230℃であった。灰分率を測定した結果、0.07重量%であった。 (4) The obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C. As a result of measuring the molecular weight, Mw was 25,100, Mn was 8,200, and the polydispersity index was 3.06. In addition, as a result of measuring the cyclic PPS content, it was 3.0% by weight. Also, as a result of measuring the weight loss rate upon heating, ΔWr was 0.088%. Furthermore, as a result of measuring Tm and Tmc, Tm was 282 ° C and Tmc was 230 ° C. As a result of measuring the ash content, it was 0.07% by weight.
 [比較例1]
 参考例1で得られたPPS成分を含む濾液を用い、PPSプレポリマーと酸を接触させずPPSプレポリマーを固体として回収し、得られたPPSプレポリマーを加熱重合した例を示す。
[Comparative Example 1]
An example of using the filtrate containing the PPS component obtained in Reference Example 1, collecting the PPS prepolymer as a solid without contacting the PPS prepolymer with an acid, and polymerizing the obtained PPS prepolymer by heating is shown.
 〔PPSプレポリマーの回収〕
 酢酸を添加しないこと以外は、実施例1と同様の操作でPPSプレポリマーを回収した。得られたPPSプレポリマーの分子量を測定した結果、Mwが8,500、Mnが2,800、多分散度指数は3.03であった。また、環式PPS含有量を測定した結果、17.4重量%であった。さらに、加熱時の塩化物イオン捕集量を測定した結果、10ppmであった。また、Tmを測定した結果、279℃であった。灰分率を測定した結果、0.10重量%であった。
[Recovery of PPS prepolymer]
A PPS prepolymer was recovered in the same manner as in Example 1 except that acetic acid was not added. As a result of measuring the molecular weight of the obtained PPS prepolymer, Mw was 8,500, Mn was 2,800, and polydispersity index was 3.03. Moreover, as a result of measuring the cyclic PPS content, it was 17.4% by weight. Furthermore, as a result of measuring the amount of collected chloride ions during heating, it was found to be 10 ppm. Moreover, it was 279 degreeC as a result of measuring Tm. As a result of measuring the ash content, it was 0.10% by weight.
 〔PPSプレポリマーの加熱重合〕
 得られたPPSプレポリマーを用いた以外は実施例1と同様の操作でPPSプレポリマーの加熱重合を行った。
[Heat polymerization of PPS prepolymer]
Heat polymerization of the PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
 得られた重合物は1-クロロナフタレンに210℃で全溶であり、分子量を測定した結果、Mwが25,400、Mnが8,200、多分散度指数は3.10であった。また、環式PPS含有量を測定した結果、3.1重量%であった。また、加熱時重量減少率を測定した結果、△Wrは0.091%であった。さらに、TmおよびTmcを測定した結果、Tmは282℃、Tmcは219℃であった。灰分率を測定した結果、0.10重量%であった。 The obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C. As a result of measuring the molecular weight, Mw was 25,400, Mn was 8,200, and polydispersity index was 3.10. Further, the cyclic PPS content was measured and found to be 3.1% by weight. Also, as a result of measuring the weight loss rate upon heating, ΔWr was 0.091%. Furthermore, as a result of measuring Tm and Tmc, Tm was 282 ° C. and Tmc was 219 ° C. As a result of measuring the ash content, it was 0.10% by weight.
 [参考例2]
 有機極性溶媒量がスルフィド化剤1モル当たり1.25リットルである原料混合物を、スルフィド化剤の転化率が90%以上、ジハロゲン化芳香族化合物(p-DCB)の転化率が90%以上かつスルフィド化剤の転化率以下となるまで加熱して反応混合物を調製した例を次に示す。
[Reference Example 2]
A raw material mixture in which the amount of an organic polar solvent is 1.25 liters per mole of the sulfidizing agent is converted to a sulfidizing agent having a conversion of 90% or more, a dihalogenated aromatic compound (p-DCB) having a conversion of 90% or more, and An example in which a reaction mixture was prepared by heating until the conversion ratio of the sulfidizing agent became equal to or less than that shown below is shown below.
 〔原料混合物の調製〕
 攪拌機を具備したステンレス製のオートクレーブに蒸留用の装置とアルカリトラップを接続しておき、48重量%の水硫化ナトリウム水溶液56.1g(水硫化ナトリウムとして0.480モル)、48重量%の水酸化ナトリウム水溶液41.1g(水酸化ナトリウムとして0.493モル)、NMP246.2g(0.240リットル)を仕込み、反応容器内を十分に窒素置換した。
(Preparation of raw material mixture)
A distillation apparatus and an alkali trap were connected to a stainless steel autoclave equipped with a stirrer, and 56.1 g of a 48% by weight aqueous solution of sodium hydrosulfide (0.480 mol as sodium hydrosulfide) and 48% by weight of hydroxylated water were used. 41.1 g (0.493 mol as sodium hydroxide) of an aqueous sodium solution and 246.2 g (0.240 liter) of NMP were charged, and the inside of the reaction vessel was sufficiently purged with nitrogen.
 オートクレーブ上部にバルブを介して蒸留塔を取り付け、常圧で窒素を通じて240rpmで撹拌しながら210℃まで約1時間かけて徐々に加熱して脱液を行い、留出液51.5gを得た。この留出液をガスクロマトグラフィーで分析したところ留出液の組成は水50.5g、NMPが1.0gであり、この段階では反応系内に水は存在せず、NMPは245.2g残存していることがわかった。なお、脱水工程を通して反応系から飛散した硫化水素は0.00552モルであった。 (4) A distillation column was attached to the upper part of the autoclave via a valve, and the mixture was gradually heated to 210 ° C. over about 1 hour while stirring at 240 rpm through nitrogen at normal pressure to remove liquid, thereby obtaining 51.5 g of a distillate. Analysis of this distillate by gas chromatography revealed that the composition of the distillate was 50.5 g of water and 1.0 g of NMP. At this stage, no water was present in the reaction system, and 245.2 g of NMP remained. I knew I was doing it. The amount of hydrogen sulfide scattered from the reaction system during the dehydration step was 0.00552 mol.
 次いで、オートクレーブを180℃以下まで冷却した後、ジハロゲン化芳香族化合物(p-DCB)69.7g(0.474モル)、NMP362.3g(0.353リットル)を仕込み、再度反応容器内を十分に窒素置換し、密封した。この仕込みにより内温は130℃まで低下した。 Next, after cooling the autoclave to 180 ° C. or lower, 69.7 g (0.474 mol) of dihalogenated aromatic compound (p-DCB) and 362.3 g (0.353 liter) of NMP were charged, and the inside of the reaction vessel was sufficiently again charged. Was replaced with nitrogen and sealed. Due to this charging, the internal temperature was lowered to 130 ° C.
 〔原料混合物の加熱反応〕
 130℃から250℃まで30分かけて反応容器内を昇温し、さらに250℃で2時間保持して反応させた。この間に、オートクレーブ上部に小型のステンレス製耐圧ポットを接続し、ポット内にp-DCB6.97g(0.0474モル)、NMP20.0g(0.0195リットル)を仕込んでおいた。その後、反応終了と同時にポットの内容物を系内に圧入添加し、さらに250℃で1時間保持して追反応させた。追反応終了後、室温付近まで急冷して反応容器から内容物を回収した。
(Heating reaction of raw material mixture)
The temperature inside the reaction vessel was raised from 130 ° C. to 250 ° C. over 30 minutes, and the reaction was further performed at 250 ° C. for 2 hours. During this time, a small stainless steel pressure-resistant pot was connected to the upper part of the autoclave, and 6.97 g (0.0474 mol) of p-DCB and 20.0 g (0.0195 liter) of NMP were charged in the pot. Thereafter, at the same time as the completion of the reaction, the contents of the pot were press-fitted into the system, and further maintained at 250 ° C. for 1 hour to carry out an additional reaction. After completion of the additional reaction, the contents were rapidly cooled to around room temperature and the contents were recovered from the reaction vessel.
 得られた反応混合物についてイオンクロマトグラフィーによる分析を行い、スルフィド化剤の転化率を算出したところ98%と算出された。また、p-DCBの転化率を算出したところ96%と算出された。また、得られた湿潤状態の固形分の一部を分取して、温水を用いた洗浄を十分に行った後に乾燥し乾燥固体を得た。この乾燥固体について赤外分光分析を行った結果、これはPPSであることがわかった。 The obtained reaction mixture was analyzed by ion chromatography, and the conversion of the sulfidizing agent was calculated to be 98%. The conversion of p-DCB was calculated to be 96%. In addition, a part of the obtained solid in the wet state was fractionated, washed sufficiently with warm water, and then dried to obtain a dry solid. As a result of an infrared spectroscopic analysis of this dried solid, it was found that this was PPS.
 [実施例2]
 参考例2で得られた反応混合物を用い、PPSプレポリマーと酸を接触させてPPSプレポリマーを固体として回収し、得られたPPSプレポリマーを加熱重合した例を示す。
[Example 2]
An example is shown in which the PPS prepolymer and the acid are brought into contact with each other to collect the PPS prepolymer as a solid, and the obtained PPS prepolymer is heated and polymerized using the reaction mixture obtained in Reference Example 2.
 〔PPSプレポリマーの回収〕
 参考例2で得られた反応混合物を用いた以外は、実施例1と同様の操作でPPSプレポリマーを回収した。
[Recovery of PPS prepolymer]
A PPS prepolymer was recovered by the same operation as in Example 1 except that the reaction mixture obtained in Reference Example 2 was used.
 得られたPPSプレポリマーの分子量を測定した結果、Mwが10,300、Mnが3,800、多分散度指数は2.73であった。また、環式PPS含有量を測定した結果、7.8重量%であった。さらに、加熱時の塩化物イオン捕集量を測定した結果、1,140ppmであった。また、Tmを測定した結果、280℃であった。灰分率を測定した結果、0.38重量%であった。 As a result of measuring the molecular weight of the obtained PPS prepolymer, Mw was 10,300, Mn was 3,800, and polydispersity index was 2.73. Moreover, as a result of measuring the cyclic PPS content, it was 7.8% by weight. Furthermore, as a result of measuring the chloride ion collection amount at the time of heating, it was 1140 ppm. Moreover, it was 280 degreeC as a result of measuring Tm. As a result of measuring the ash content, it was 0.38% by weight.
 〔PPSプレポリマーの加熱重合〕
 得られたPPSプレポリマーを用いた以外は実施例1と同様の操作でPPSプレポリマーの加熱重合を行った。
[Heat polymerization of PPS prepolymer]
Heat polymerization of the PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
 得られた重合物は1-クロロナフタレンに210℃で全溶であり、分子量を測定した結果、Mwが44,700、Mnが13,100、多分散度指数は3.40であった。また、環式PPS含有量を測定した結果、0.8重量%であった。さらに、加熱時重量減少率を測定した結果、△Wrは0.086%であった。また、TmおよびTmcを測定した結果、Tmは280℃、Tmcは220℃であった。灰分率を測定した結果、0.39重量%であった。 The obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C. As a result of measuring the molecular weight, Mw was 44,700, Mn was 13,100, and polydispersity index was 3.40. Further, as a result of measuring the cyclic PPS content, it was 0.8% by weight. Furthermore, as a result of measuring the weight loss rate upon heating, ΔWr was 0.086%. Moreover, as a result of measuring Tm and Tmc, Tm was 280 ° C. and Tmc was 220 ° C. As a result of measuring the ash content, it was 0.39% by weight.
 [比較例2]
 参考例2で得られた反応混合物を用い、PPSプレポリマーと酸を接触させずPPSプレポリマーを固体として回収し、得られたPPSプレポリマーを加熱重合した例を示す。
[Comparative Example 2]
An example of using the reaction mixture obtained in Reference Example 2, collecting the PPS prepolymer as a solid without contacting the PPS prepolymer with an acid, and heating and polymerizing the obtained PPS prepolymer is shown.
 〔PPSプレポリマーの回収〕
 反応混合物に酢酸を添加しないこと以外は、実施例1と同様の操作でPPSプレポリマーを回収した。得られたPPSプレポリマーの分子量を測定した結果、Mwが10,400、Mnが3,800、多分散度指数は2.74であった。また、環式PPS含有量を測定した結果、8.2重量%であった。さらに、加熱時の塩化物イオン捕集量を測定した結果、10ppmであった。また、Tmを測定した結果、279℃であった。灰分率を測定した結果、0.50重量%であった。
[Recovery of PPS prepolymer]
A PPS prepolymer was recovered by the same operation as in Example 1 except that acetic acid was not added to the reaction mixture. As a result of measuring the molecular weight of the obtained PPS prepolymer, Mw was 10,400, Mn was 3,800, and polydispersity index was 2.74. Moreover, as a result of measuring the cyclic PPS content, it was 8.2% by weight. Furthermore, as a result of measuring the amount of collected chloride ions during heating, it was found to be 10 ppm. Moreover, it was 279 degreeC as a result of measuring Tm. As a result of measuring the ash content, it was 0.50% by weight.
 〔PPSプレポリマーの加熱重合〕
 得られたPPSプレポリマーを用いた以外は実施例1と同様にPPSプレポリマーの加熱重合を行った。
[Heat polymerization of PPS prepolymer]
The PPS prepolymer was heated and polymerized in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
 得られた重合物は1-クロロナフタレンに210℃で全溶であり、分子量を測定した結果、Mwが41,800、Mnが11,700、多分散度指数は3.57であった。また、環式PPS含有量を測定した結果、0.8重量%であった。また、加熱時重量減少率を測定した結果、△Wrは0.091%であった。さらに、TmおよびTmcを測定した結果、Tmは279℃、Tmcは204℃であった。灰分率を測定した結果、0.52重量%であった。 (4) The obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C. As a result of measuring the molecular weight, Mw was 41,800, Mn was 11,700, and the polydispersity index was 3.57. Further, as a result of measuring the cyclic PPS content, it was 0.8% by weight. Also, as a result of measuring the weight loss rate upon heating, ΔWr was 0.091%. Furthermore, as a result of measuring Tm and Tmc, Tm was 279 ° C and Tmc was 204 ° C. As a result of measuring the ash content, it was 0.52% by weight.
 表1に実施例1および2ならびに比較例1および2の結果を示す。実施例1と比較例1、実施例2と比較例2の対比より、PPSプレポリマーを固体として回収する際に酸と接触させた場合、PPSプレポリマーの加熱時塩化物イオン捕集量が50ppm以上となり、加熱重合により得られるPPSのTmcが220℃以上と高いことが明らかである。 Table 1 shows the results of Examples 1 and 2 and Comparative Examples 1 and 2. From the comparison between Example 1 and Comparative Example 1 and Example 2 and Comparative Example 2, when the PPS prepolymer is brought into contact with an acid when the PPS prepolymer is recovered as a solid, the amount of chloride ion trapped during heating of the PPS prepolymer is 50 ppm. As described above, it is apparent that the Tmc of PPS obtained by heat polymerization is as high as 220 ° C. or higher.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 [比較例3]
 スルフィド化剤1モル当たりの有機極性溶媒量が本願発明の範囲よりも少ない例、すなわち、有機極性溶媒量がスルフィド化剤1モル当たり0.3リットルである原料混合物を、スルフィド化剤の転化率が90%以上、ジハロゲン化芳香族化合物(p-DCB)の転化率が90%以上かつスルフィド化剤の転化率以下となるまで加熱して得られた反応混合物を用い、PPSプレポリマーと酸を接触させてPPSプレポリマーを固体として回収し、得られたPPSプレポリマーを加熱重合した例を次に示す。
[Comparative Example 3]
An example in which the amount of the organic polar solvent per mole of the sulfidizing agent is smaller than the range of the present invention, that is, the raw material mixture in which the amount of the organic polar solvent is 0.3 liter per mole of the sulfidizing agent, Is heated to 90% or more and the conversion of the dihalogenated aromatic compound (p-DCB) is 90% or more and the conversion of the sulfidizing agent is not more than the PPS prepolymer and the acid. The following is an example in which the PPS prepolymer is recovered as a solid by contact, and the obtained PPS prepolymer is polymerized by heating.
 〔原料混合物の調製〕
 攪拌機を具備したステンレス製のオートクレーブに蒸留用の装置とアルカリトラップを接続しておき、48重量%の水硫化ナトリウム水溶液117g(水硫化ナトリウムとして1.00モル)、48重量%の水酸化ナトリウム水溶液86.2g(水酸化ナトリウムとして1.04モル)、NMP164g(0.159リットル)を仕込み、反応容器内を十分に窒素置換した。
(Preparation of raw material mixture)
A distillation apparatus and an alkali trap were connected to a stainless steel autoclave equipped with a stirrer, and 117 g of a 48% by weight aqueous sodium hydrosulfide solution (1.00 mol as sodium hydrogen sulfide) and a 48% by weight aqueous sodium hydroxide solution were used. 86.2 g (1.04 mol as sodium hydroxide) and 164 g (0.159 liter) of NMP were charged, and the inside of the reaction vessel was sufficiently purged with nitrogen.
 オートクレーブ上部にバルブを介して蒸留塔を取り付け、常圧で窒素を通じて240rpmで撹拌しながら240℃まで約3時間かけて徐々に加熱して脱液を行い、留出液107gを得た。この留出液をガスクロマトグラフィーで分析したところ留出液の組成は水105.6g、NMPが1.4gであり、この段階では反応系内に水は存在せず、NMPは163g残存していることがわかった。なお、脱水工程を通して反応系から飛散した硫化水素は0.00260モルであった。 (4) A distillation column was attached to the upper part of the autoclave via a valve, and the mixture was gradually heated to 240 ° C. over about 3 hours while stirring at 240 rpm through nitrogen at normal pressure to remove liquid, thereby obtaining 107 g of a distillate. When the distillate was analyzed by gas chromatography, the composition of the distillate was 105.6 g of water and 1.4 g of NMP. At this stage, no water was present in the reaction system, and 163 g of NMP remained. I knew it was there. The amount of hydrogen sulfide scattered from the reaction system during the dehydration step was 0.00260 mol.
 オートクレーブを180℃以下まで冷却した後、ジハロゲン化芳香族化合物(p-DCB)150g(1.02モル)、NMP130g(0.127リットル)を仕込み、再度反応容器内を十分に窒素置換し、密封した。この仕込みにより内温は120℃まで低下した。 After cooling the autoclave to 180 ° C. or lower, 150 g (1.02 mol) of dihalogenated aromatic compound (p-DCB) and 130 g (0.127 liter) of NMP were charged, and the inside of the reaction vessel was sufficiently purged with nitrogen again and sealed. did. Due to this charging, the internal temperature was lowered to 120 ° C.
 〔原料混合物の加熱反応〕
 120℃から275℃まで約2時間かけて反応容器内を昇温し、さらに275℃で40分間保持して反応させた。反応終了後、室温付近まで冷却して反応容器から内容物を回収した。
(Heating reaction of raw material mixture)
The temperature inside the reaction vessel was raised from 120 ° C. to 275 ° C. over about 2 hours, and the reaction was further carried out at 275 ° C. for 40 minutes. After the completion of the reaction, the content was cooled to around room temperature and the contents were recovered from the reaction vessel.
 得られた反応混合物についてイオンクロマトグラフィーによる分析を行い、スルフィド化剤の転化率を算出したところ92%と算出された。また、p-DCBの転化率を算出したところ91%と算出された。 The obtained reaction mixture was analyzed by ion chromatography, and the conversion of the sulfidizing agent was calculated to be 92%. The conversion of p-DCB was calculated to be 91%.
 〔PPSプレポリマーの回収〕
 得られた湿潤状態の固形分の一部を分取して、0.5%酢酸水溶液に分散させて70℃で30分攪拌したのち濾過を行い、得られたケークをイオン交換水で十分に洗浄後、乾燥し乾燥固体を得た。この乾燥固体について赤外分光分析を行った結果、これはPPSであることがわかった。
[Recovery of PPS prepolymer]
A part of the obtained solid in the wet state was fractionated, dispersed in a 0.5% acetic acid aqueous solution, stirred at 70 ° C. for 30 minutes, filtered, and the obtained cake was sufficiently washed with ion-exchanged water. After washing, it was dried to obtain a dry solid. As a result of an infrared spectroscopic analysis of this dried solid, it was found that this was PPS.
 得られたPPSプレポリマーの分子量を測定した結果、Mwが15,400、Mnが5,800、多分散度指数は2.67であった。また、環式PPS含有量を測定した結果、2.4重量%であった。さらに、加熱時の塩化物イオン捕集量を測定した結果、60ppmであった。また、Tmを測定した結果、281℃であった。灰分率を測定した結果、0.10重量%であった。 As a result of measuring the molecular weight of the obtained PPS prepolymer, Mw was 15,400, Mn was 5,800, and polydispersity index was 2.67. Further, the cyclic PPS content was measured and found to be 2.4% by weight. Furthermore, as a result of measuring the chloride ion trapping amount at the time of heating, it was 60 ppm. Moreover, as a result of measuring Tm, it was 281 ° C. As a result of measuring the ash content, it was 0.10% by weight.
 〔PPSプレポリマーの加熱重合〕
 得られたPPSプレポリマーを用いた以外は実施例1と同様の操作でPPSプレポリマーの加熱重合を行った。
[Heat polymerization of PPS prepolymer]
Heat polymerization of the PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
 得られた重合物は1-クロロナフタレンに210℃で全溶であり、分子量を測定した結果、Mwが47,900、Mnが13,400、多分散度指数は3.57であった。また、環式PPS含有量を測定した結果、0.8重量%であった。さらに、加熱時重量減少率を測定した結果、△Wrは0.108%であった。また、TmおよびTmcを測定した結果、Tmは279℃、Tmcは192℃であった。灰分率を測定した結果、0.11重量%であった。  (4) The obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C. As a result of measuring the molecular weight, Mw was 47,900, Mn was 13,400, and the polydispersity index was 3.57. Further, as a result of measuring the cyclic PPS content, it was 0.8% by weight. Furthermore, as a result of measuring the weight loss rate upon heating, ΔWr was 0.108%. Moreover, as a result of measuring Tm and Tmc, Tm was 279 ° C. and Tmc was 192 ° C. As a result of measuring the ash content, it was 0.11% by weight.
 表1に実施例1および2ならびに比較例3の結果を併せて示す。実施例1,2と比較例3の対比より、有機極性溶媒量がスルフィド化剤1モル当たり1.25リットル以上の原料混合物を加熱して得られた反応混合物を用いた場合、PPSプレポリマーの環式PPS含有量が5重量%以上となり、加熱重合により得られるPPSのTmcが220℃以上と高いことが明らかである。 Table 1 also shows the results of Examples 1 and 2 and Comparative Example 3. From the comparison between Examples 1 and 2 and Comparative Example 3, when the reaction mixture obtained by heating the raw material mixture in which the amount of the organic polar solvent is 1.25 liter or more per mol of the sulfidizing agent is used, the PPS prepolymer It is clear that the cyclic PPS content is 5% by weight or more, and the Tmc of PPS obtained by heat polymerization is as high as 220 ° C. or more.
 [実施例3]
 参考例1と同じ組成の原料混合物を、参考例1よりも温和な条件で加熱し、スルフィド化剤および、ジハロゲン化芳香族化合物(p-DCB)の転化率が参考例1よりも低い反応混合物を調製、250℃における固液分離を行って得られたPPS成分を含む濾液を用い、PPSプレポリマーと酸を接触させてPPSプレポリマーを固体として回収し、得られたPPSプレポリマーを加熱重合した例を次に示す。
[Example 3]
A raw material mixture having the same composition as in Reference Example 1 was heated under milder conditions than in Reference Example 1, and a sulfidizing agent and a reaction mixture in which the conversion of a dihalogenated aromatic compound (p-DCB) was lower than in Reference Example 1 The PPS prepolymer was recovered as a solid by contacting the PPS prepolymer with an acid using the filtrate containing the PPS component obtained by performing solid-liquid separation at 250 ° C., and then heating and polymerizing the obtained PPS prepolymer. An example is shown below.
 〔原料混合物の加熱反応〕
 加熱反応条件を、110℃から235℃まで30分かけて反応容器内を昇温後、235℃で4時間保持、さらに、247.5℃まで30分かけて反応容器内を昇温後、247.5℃で8時間保持と変更した以外は、参考例1と同様にして反応混合物を得た。得られた反応混合物についてイオンクロマトグラフィーによる分析を行い、スルフィド化剤の転化率を算出したところ98%と算出された。また、p-DCBの転化率を算出したところ96%と算出された。
(Heating reaction of raw material mixture)
The heating reaction conditions were as follows: the inside of the reaction vessel was heated from 110 ° C. to 235 ° C. over 30 minutes, then kept at 235 ° C. for 4 hours, and further heated up to 247.5 ° C. over 30 minutes, and then 247 ° C. A reaction mixture was obtained in the same manner as in Reference Example 1, except that the temperature was changed to 0.5 ° C. for 8 hours. The obtained reaction mixture was analyzed by ion chromatography, and the conversion of the sulfidizing agent was calculated to be 98%. The conversion of p-DCB was calculated to be 96%.
 さらに、参考例1と同様の方法でPPSプレポリマーが溶解する温度での固液分離を行い、濾液を得た。 Furthermore, solid-liquid separation was performed at a temperature at which the PPS prepolymer was dissolved in the same manner as in Reference Example 1 to obtain a filtrate.
 〔PPSプレポリマーの回収〕
 得られた濾液を用い、実施例1と同様の操作でPPSプレポリマーを回収した。得られたPPSプレポリマーの分子量を測定した結果、Mwが8,500、Mnが2,800、多分散度指数は3.06であった。また、環式PPS含有量を測定した結果、17.4重量%であった。さらに、加熱時の塩化物イオン捕集量を測定した結果、80ppmであった。また、Tmを測定した結果、279℃であった。灰分率を測定した結果、0.05重量%であった。
[Recovery of PPS prepolymer]
Using the obtained filtrate, a PPS prepolymer was recovered in the same manner as in Example 1. As a result of measuring the molecular weight of the obtained PPS prepolymer, Mw was 8,500, Mn was 2,800, and polydispersity index was 3.06. Moreover, as a result of measuring the cyclic PPS content, it was 17.4% by weight. Furthermore, as a result of measuring the collection amount of chloride ions during heating, it was 80 ppm. Moreover, it was 279 degreeC as a result of measuring Tm. As a result of measuring the ash content, it was 0.05% by weight.
 〔PPSプレポリマーの加熱重合〕
 得られたPPSプレポリマーを用いた以外は実施例1と同様の操作でPPSプレポリマーの加熱重合を行った。
[Heat polymerization of PPS prepolymer]
Heat polymerization of the PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
 得られた重合物は1-クロロナフタレンに210℃で全溶であり、分子量を測定した結果、Mwが38,900、Mnが11,100、多分散度指数は3.50であった。また、環式PPS含有量を測定した結果、1.1重量%であった。また、加熱時重量減少率を測定した結果、△Wrは0.090%であった。さらに、TmおよびTmcを測定した結果、Tmは282℃、Tmcは223℃であった。灰分率を測定した結果、0.05重量%であった。 The obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C. As a result of measuring the molecular weight, Mw was 38,900, Mn was 11,100, and polydispersity index was 3.50. Moreover, as a result of measuring the cyclic PPS content, it was 1.1% by weight. Further, as a result of measuring the weight loss rate upon heating, ΔWr was 0.090%. Furthermore, as a result of measuring Tm and Tmc, Tm was 282 ° C. and Tmc was 223 ° C. As a result of measuring the ash content, it was 0.05% by weight.
 [実施例4]
 参考例1、実施例3と同じ組成の原料混合物を、参考例1、実施例3よりも温和な条件で加熱し、スルフィド化剤および、ジハロゲン化芳香族化合物(p-DCB)の転化率が参考例1、実施例3よりも低い反応混合物を調製、PPSプレポリマーと酸を接触させてPPSプレポリマーを固体として回収し、得られたPPSプレポリマーを加熱重合した例を次に示す。
[Example 4]
A raw material mixture having the same composition as in Reference Example 1 and Example 3 was heated under milder conditions than in Reference Example 1 and Example 3, and the conversion of the sulfidizing agent and the dihalogenated aromatic compound (p-DCB) was reduced. An example in which a lower reaction mixture than in Reference Example 1 and Example 3 was prepared, the PPS prepolymer was contacted with an acid to recover the PPS prepolymer as a solid, and the obtained PPS prepolymer was polymerized by heating is shown below.
 〔原料混合物の加熱反応〕
 加熱反応条件を、110℃から250℃まで30分かけて反応容器内を昇温後、250℃で2時間保持と変更した以外は、参考例1と同様にして反応混合物を得た。得られた反応混合物についてイオンクロマトグラフィーによる分析を行い、スルフィド化剤の転化率を算出したところ96%と算出された。また、p-DCBの転化率を算出したところ94%と算出された。
(Heating reaction of raw material mixture)
A reaction mixture was obtained in the same manner as in Reference Example 1 except that the heating reaction conditions were changed from 110 ° C. to 250 ° C. over 30 minutes after heating the inside of the reaction vessel and keeping at 250 ° C. for 2 hours. The obtained reaction mixture was analyzed by ion chromatography, and the conversion of the sulfidizing agent was calculated to be 96%. The conversion of p-DCB was calculated to be 94%.
 〔PPSプレポリマーの回収〕
 得られた反応混合物を用い、実施例1と同様の操作でPPSプレポリマーを回収した。得られたPPSプレポリマーの分子量を測定した結果、Mwが9,500、Mnが2,500、多分散度指数は3.74であった。また、環式PPS含有量を測定した結果、17.7重量%であった。さらに、加熱時の塩化物イオン捕集量を測定した結果、1,380ppmであった。また、Tmを測定した結果、277℃であった。灰分率を測定した結果、0.19重量%であった。
[Recovery of PPS prepolymer]
Using the obtained reaction mixture, a PPS prepolymer was recovered in the same manner as in Example 1. As a result of measuring the molecular weight of the obtained PPS prepolymer, Mw was 9,500, Mn was 2,500, and the polydispersity index was 3.74. Moreover, as a result of measuring the cyclic PPS content, it was 17.7% by weight. Furthermore, as a result of measuring the collection amount of chloride ions during heating, it was 1,380 ppm. Moreover, it was 277 degreeC as a result of measuring Tm. As a result of measuring the ash content, it was 0.19% by weight.
 〔PPSプレポリマーの加熱重合〕
 得られたPPSプレポリマーを用い、加熱時間を2時間とした以外は実施例1と同様の操作でPPSプレポリマーの加熱重合を行った。
[Heat polymerization of PPS prepolymer]
Using the obtained PPS prepolymer, the heat polymerization of the PPS prepolymer was performed in the same manner as in Example 1 except that the heating time was changed to 2 hours.
 得られた重合物は1-クロロナフタレンに210℃で全溶であり、分子量を測定した結果、Mwが52,400、Mnが14,200、多分散度指数は3.70であった。また、環式PPS含有量を測定した結果、0.8重量%であった。また、加熱時重量減少率を測定した結果、△Wrは0.120%であった。さらに、TmおよびTmcを測定した結果、Tmは282℃、Tmcは240℃であった。灰分率を測定した結果、0.19重量%であった。 The obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C. As a result of measuring the molecular weight, Mw was 52,400, Mn was 14,200, and polydispersity index was 3.70. Further, as a result of measuring the cyclic PPS content, it was 0.8% by weight. As a result of measuring the weight loss rate during heating, ΔWr was 0.120%. Furthermore, as a result of measuring Tm and Tmc, Tm was 282 ° C and Tmc was 240 ° C. As a result of measuring the ash content, it was 0.19% by weight.
 [比較例4]
 ジハロゲン化芳香族化合物(p-DCB)の転化率が本願発明の範囲よりも高い例、すなわち、有機極性溶媒量がスルフィド化剤1モル当たり2.5リットルである原料混合物を、スルフィド化剤の転化率が90%以上、ジハロゲン化芳香族化合物(p-DCB)の転化率がスルフィド化剤の転化率以上となるまで加熱して得られた反応混合物を用い、PPSプレポリマーと酸を接触させてPPSプレポリマーを固体として回収し、得られたPPSプレポリマーを加熱重合した例を次に示す。
[Comparative Example 4]
An example in which the conversion of the dihalogenated aromatic compound (p-DCB) is higher than the range of the present invention, that is, the raw material mixture in which the amount of the organic polar solvent is 2.5 liters per mole of the sulfided agent, Using a reaction mixture obtained by heating until the conversion is 90% or more and the conversion of the dihalogenated aromatic compound (p-DCB) is not less than the conversion of the sulfidizing agent, the PPS prepolymer is brought into contact with an acid. An example in which the PPS prepolymer is recovered as a solid by heating and the obtained PPS prepolymer is polymerized by heating is shown below.
 〔原料混合物の調製〕
 攪拌機を具備したステンレス製のオートクレーブに蒸留用の装置とアルカリトラップを接続しておき、48重量%の水硫化ナトリウム水溶液140g(水硫化ナトリウムとして1.20モル)、48重量%の水酸化ナトリウム水溶液103g(水酸化ナトリウムとして1.23モル)、NMP616g(0.600リットル)を仕込み、反応容器内を十分に窒素置換した。
(Preparation of raw material mixture)
A distillation apparatus and an alkali trap were connected to a stainless steel autoclave equipped with a stirrer, 140 g of a 48% by weight aqueous sodium hydrosulfide solution (1.20 mol as sodium hydrosulfide), and a 48% by weight aqueous sodium hydroxide solution were used. 103 g (1.23 mol as sodium hydroxide) and 616 g (0.600 liter) of NMP were charged, and the inside of the reaction vessel was sufficiently purged with nitrogen.
 オートクレーブ上部にバルブを介して蒸留塔を取り付け、常圧で窒素を通じて240rpmで撹拌しながら210℃まで約1時間かけて徐々に加熱して脱液を行い、留出液129gを得た。この留出液をガスクロマトグラフィーで分析したところ留出液の組成は水126g、NMPが3gであり、この段階では反応系内に水は存在せず、NMPは613g残存していることがわかった。なお、脱水工程を通して反応系から飛散した硫化水素は0.0138モルであった。 蒸 留 A distillation column was attached to the upper part of the autoclave via a valve, and the mixture was gradually heated to 210 ° C. over about 1 hour while stirring at 240 rpm through nitrogen at normal pressure to remove liquid, thereby obtaining 129 g of a distillate. When the distillate was analyzed by gas chromatography, the composition of the distillate was 126 g of water and 3 g of NMP. At this stage, no water was present in the reaction system, and 613 g of NMP remained. Was. The amount of hydrogen sulfide scattered from the reaction system during the dehydration step was 0.0138 mol.
 オートクレーブを180℃以下まで冷却した後、ジハロゲン化芳香族化合物(p-DCB)174g(1.19モル)、NMP2427g(2.366リットル)を仕込み、再度反応容器内を十分に窒素置換し、密封した。この仕込みにより内温は120℃まで低下した。 After cooling the autoclave to 180 ° C. or lower, 174 g (1.19 mol) of dihalogenated aromatic compound (p-DCB) and 2,427 g (2.366 L) of NMP were charged, and the inside of the reaction vessel was sufficiently purged with nitrogen again and sealed. did. Due to this charging, the internal temperature was lowered to 120 ° C.
 〔原料混合物の加熱反応〕
 120℃から250℃まで30分かけて反応容器内を昇温し、さらに250℃で2時間保持して反応させた。この間に、オートクレーブ上部に小型のステンレス製耐圧ポットを接続し、ポット内にp-DCB17.4g(0.119モル)、NMP100g(0.0975リットル)を仕込んでおいた、その後、反応終了と同時にポットの内容物を系内に圧入添加し、さらに250℃で1時間保持して追反応させた。追反応終了後、室温付近まで急冷して反応容器から内容物を回収した。
(Heating reaction of raw material mixture)
The temperature inside the reaction vessel was raised from 120 ° C. to 250 ° C. over 30 minutes, and the reaction was further maintained at 250 ° C. for 2 hours. During this time, a small stainless steel pressure-resistant pot was connected to the upper part of the autoclave, and p-DCB 17.4 g (0.119 mol) and NMP 100 g (0.0975 liter) were charged in the pot. The contents of the pot were press-fitted into the system, and further kept at 250 ° C. for 1 hour to carry out additional reaction. After completion of the additional reaction, the contents were rapidly cooled to around room temperature and the contents were recovered from the reaction vessel.
 得られた反応混合物についてイオンクロマトグラフィーによる分析を行い、スルフィド化剤の転化率を算出したところ97%と算出された。また、p-DCBの転化率を算出したところ99%と算出された。また、得られた湿潤状態の固形分の一部を分取して、温水を用いた洗浄を十分に行った後に乾燥し乾燥固体を得た。この乾燥固体について赤外分光分析を行った結果、これはPPSであることがわかった。 (4) The obtained reaction mixture was analyzed by ion chromatography, and the conversion of the sulfidizing agent was calculated to be 97%. The conversion of p-DCB was calculated to be 99%. In addition, a part of the obtained solid in the wet state was fractionated, washed sufficiently with warm water, and then dried to obtain a dry solid. As a result of an infrared spectroscopic analysis of this dried solid, it was found that this was PPS.
 〔PPSプレポリマーの回収〕
 得られた反応混合物を用い、実施例1と同様の操作でPPSプレポリマーを回収した。得られたPPSプレポリマーの分子量を測定した結果、Mwが8,000、Mnが2,600、多分散度指数は3.14であった。また、環式PPS含有量を測定した結果、18.0重量%であった。さらに、加熱時の塩化物イオン捕集量を測定した結果、40ppmであった。また、Tmを測定した結果、269℃であった。灰分率を測定した結果、0.17重量%であった。
[Recovery of PPS prepolymer]
Using the obtained reaction mixture, a PPS prepolymer was recovered in the same manner as in Example 1. As a result of measuring the molecular weight of the obtained PPS prepolymer, Mw was 8,000, Mn was 2,600, and polydispersity index was 3.14. Moreover, as a result of measuring the cyclic PPS content, it was 18.0% by weight. Furthermore, as a result of measuring the chloride ion collection amount at the time of heating, it was 40 ppm. Further, Tm was measured and found to be 269 ° C. As a result of measuring the ash content, it was 0.17% by weight.
 〔PPSプレポリマーの加熱重合〕
 得られたPPSプレポリマーを用いた以外は実施例1と同様の操作でPPSプレポリマーの加熱重合を行った。
[Heat polymerization of PPS prepolymer]
Heat polymerization of the PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
 得られた重合物は1-クロロナフタレンに210℃で全溶であり、分子量を測定した結果、Mwが16,700、Mnが5,500、多分散度指数は3.02であった。また、環式PPS含有量を測定した結果、5.4重量%であった。また、加熱時重量減少率を測定した結果、△Wrは0.105%であった。さらに、TmおよびTmcを測定した結果、Tmは282℃、Tmcは229℃であった。灰分率を測定した結果、0.17重量%であった。 The obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C. As a result of measuring the molecular weight, Mw was 16,700, Mn was 5,500, and polydispersity index was 3.02. In addition, as a result of measuring the cyclic PPS content, it was 5.4% by weight. As a result of measuring the weight loss rate during heating, ΔWr was 0.105%. Furthermore, as a result of measuring Tm and Tmc, Tm was 282 ° C. and Tmc was 229 ° C. As a result of measuring the ash content, it was 0.17% by weight.
 [比較例5]
 ジハロゲン化芳香族化合物(p-DCB)の転化率が本願発明の範囲よりも高い例、すなわち、有機極性溶媒量がスルフィド化剤1モル当たり2.5リットルである原料混合物を、スルフィド化剤の転化率が90%以上、ジハロゲン化芳香族化合物(p-DCB)の転化率がスルフィド化剤の転化率以上となるまで加熱して得られた反応混合物を用い、PPSプレポリマーと酸を接触させてPPSプレポリマーを固体として回収し、得られたPPSプレポリマーを加熱重合した例を次に示す。
[Comparative Example 5]
An example in which the conversion of the dihalogenated aromatic compound (p-DCB) is higher than the range of the present invention, that is, the raw material mixture in which the amount of the organic polar solvent is 2.5 liters per mole of the sulfided agent, Using the reaction mixture obtained by heating until the conversion is 90% or more and the conversion of the dihalogenated aromatic compound (p-DCB) is not less than the conversion of the sulfidizing agent, the PPS prepolymer is brought into contact with an acid. An example in which the PPS prepolymer is recovered as a solid by heating and the obtained PPS prepolymer is polymerized by heating is shown below.
 〔原料混合物の調製〕
 攪拌機を具備したステンレス製のオートクレーブに蒸留用の装置とアルカリトラップを接続しておき、48重量%の水硫化ナトリウム水溶液140g(水硫化ナトリウムとして1.20モル)、48重量%の水酸化ナトリウム水溶液103g(水酸化ナトリウムとして1.23モル)、NMP616g(0.600リットル)を仕込み、反応容器内を十分に窒素置換した。
(Preparation of raw material mixture)
A distillation apparatus and an alkali trap were connected to a stainless steel autoclave equipped with a stirrer, 140 g of a 48% by weight aqueous sodium hydrosulfide solution (1.20 mol as sodium hydrosulfide), and a 48% by weight aqueous sodium hydroxide solution were used. 103 g (1.23 mol as sodium hydroxide) and 616 g (0.600 liter) of NMP were charged, and the inside of the reaction vessel was sufficiently purged with nitrogen.
 オートクレーブ上部にバルブを介して蒸留塔を取り付け、常圧で窒素を通じて240rpmで撹拌しながら210℃まで約1時間かけて徐々に加熱して脱液を行い、留出液130gを得た。この留出液をガスクロマトグラフィーで分析したところ留出液の組成は水126g、NMPが4gであり、この段階では反応系内に水は存在せず、NMPは612g残存していることがわかった。なお、脱水工程を通して反応系から飛散した硫化水素は0.0136モルであった。 蒸 留 A distillation column was attached to the upper part of the autoclave via a valve, and the mixture was gradually heated to 210 ° C. over about 1 hour while stirring at 240 rpm through nitrogen at normal pressure to perform dewatering, thereby obtaining 130 g of a distillate. When the distillate was analyzed by gas chromatography, the composition of the distillate was 126 g of water and 4 g of NMP. At this stage, no water was present in the reaction system, and 612 g of NMP remained. Was. The amount of hydrogen sulfide scattered from the reaction system during the dehydration step was 0.0136 mol.
 オートクレーブを180℃以下まで冷却した後、ジハロゲン化芳香族化合物(p-DCB)174g(1.19モル)、NMP2428g(2.366リットル)を仕込み、再度反応容器内を十分に窒素置換し、密封した。この仕込みにより内温は120℃まで低下した。 After cooling the autoclave to 180 ° C. or lower, 174 g (1.19 mol) of dihalogenated aromatic compound (p-DCB) and 2,428 g (2.366 L) of NMP were charged, and the inside of the reaction vessel was sufficiently purged with nitrogen again and sealed. did. Due to this charging, the internal temperature was lowered to 120 ° C.
 〔原料混合物の加熱反応〕
 120℃から250℃まで30分かけて反応容器内を昇温し、さらに250℃で2時間保持して反応させた。この間に、オートクレーブ上部に小型のステンレス製耐圧ポットを接続し、ポット内にp-DCB11.7g(0.079モル)、NMP100g(0.0975リットル)を仕込んでおき、その後、反応終了と同時にポットの内容物を系内に圧入添加し、さらに250℃で1時間保持して追反応させた。追反応終了後、室温付近まで急冷して反応容器から内容物を回収した。
(Heating reaction of raw material mixture)
The temperature inside the reaction vessel was raised from 120 ° C. to 250 ° C. over 30 minutes, and the reaction was further maintained at 250 ° C. for 2 hours. During this time, a small stainless steel pressure-resistant pot was connected to the top of the autoclave, and 11.7 g (0.079 mol) of p-DCB and 100 g (0.0975 liters) of NMP were charged into the pot. Was press-fitted into the system, and further kept at 250 ° C. for 1 hour to cause additional reaction. After completion of the additional reaction, the contents were rapidly cooled to around room temperature and the contents were recovered from the reaction vessel.
 得られた反応混合物についてイオンクロマトグラフィーによる分析を行い、スルフィド化剤の転化率を算出したところ97%と算出された。また、p-DCBの転化率を算出したところ98%と算出された。また、得られた湿潤状態の固形分の一部を分取して、温水を用いた洗浄を十分に行った後に乾燥し乾燥固体を得た。この乾燥固体について赤外分光分析を行った結果、これはPPSであることがわかった。 (4) The obtained reaction mixture was analyzed by ion chromatography, and the conversion of the sulfidizing agent was calculated to be 97%. The conversion of p-DCB was calculated to be 98%. In addition, a part of the obtained solid in the wet state was fractionated, washed sufficiently with warm water, and then dried to obtain a dry solid. As a result of an infrared spectroscopic analysis of this dried solid, it was found that this was PPS.
 〔PPSプレポリマーの回収〕
 得られた反応混合物を用い、実施例11と同様の操作でPPSプレポリマーを回収した。得られたPPSプレポリマーの分子量を測定した結果、Mwが8,600、Mnが2,600、多分散度指数は3.33であった。また、環式PPS含有量を測定した結果、17.6重量%であった。さらに、加熱時の塩化物イオン捕集量を測定した結果、40ppmであった。また、Tmを測定した結果、272℃であった。灰分率を測定した結果、0.14重量%であった。
[Recovery of PPS prepolymer]
Using the obtained reaction mixture, a PPS prepolymer was recovered in the same manner as in Example 11. As a result of measuring the molecular weight of the obtained PPS prepolymer, Mw was 8,600, Mn was 2,600, and the polydispersity index was 3.33. Moreover, as a result of measuring the cyclic PPS content, it was 17.6% by weight. Furthermore, as a result of measuring the chloride ion collection amount at the time of heating, it was 40 ppm. The Tm was measured and found to be 272 ° C. As a result of measuring the ash content, it was 0.14% by weight.
 〔PPSプレポリマーの加熱重合〕
 得られたPPSプレポリマーを用いた以外は実施例1と同様の操作でPPSプレポリマーの加熱重合を行った。
[Heat polymerization of PPS prepolymer]
Heat polymerization of the PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
 得られた重合物は1-クロロナフタレンに210℃で全溶であり、分子量を測定した結果、Mwが19,700、Mnが8,000、多分散度指数は2.46であった。また、環式PPS含有量を測定した結果、4.5重量%であった。また、加熱時重量減少率を測定した結果、△Wrは0.125%であった。さらに、TmおよびTmcを測定した結果、Tmは282℃、Tmcは245℃であった。灰分率を測定した結果、0.14重量%であった。  The obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C. As a result of measurement of the molecular weight, Mw was 19,700, Mn was 8,000, and polydispersity index was 2.46. Further, the cyclic PPS content was measured and found to be 4.5% by weight. Further, as a result of measuring the weight loss rate upon heating, ΔWr was 0.125%. Furthermore, as a result of measuring Tm and Tmc, Tm was 282 ° C. and Tmc was 245 ° C. As a result of measuring the ash content, it was 0.14% by weight.
 表1に実施例1,3および4ならびに比較例4および5の結果を併せて示す。実施例1,3,4と比較例4,5の対比より、ジハロゲン化芳香族化合物の転化率がスルフィド化剤の転化率以下となるように反応させた反応混合物を用いた場合、PPSプレポリマーの加熱時塩化物イオン捕集量が50ppm以上となり、加熱重合により得られるPPSのMwが20,000以上と高いことが明らかである。加えて、実施例1,3,4の関係性より、PPSプレポリマーの加熱時塩化物イオン捕集量が多いほど、加熱重合により得られるPPSのMwが大きい傾向にあることが分かる。 Table 1 also shows the results of Examples 1, 3 and 4 and Comparative Examples 4 and 5. From the comparison between Examples 1, 3, and 4 and Comparative Examples 4 and 5, when a reaction mixture reacted so that the conversion of the dihalogenated aromatic compound is equal to or less than the conversion of the sulfidizing agent, the PPS prepolymer was used. It is clear that the amount of chloride ion trapped during heating is 50 ppm or more, and the Mw of PPS obtained by heat polymerization is as high as 20,000 or more. In addition, from the relationship between Examples 1, 3, and 4, it can be seen that the greater the amount of chloride ions collected during heating of the PPS prepolymer, the greater the Mw of PPS obtained by heat polymerization.
 [比較例6]
 非特許文献1の方法、具体的には、有機極性溶媒量がスルフィド化剤1モル当たり10リットルの希薄条件で原料混合物を反応させることで、環式PPSの生成含有量の多いPPSプレポリマーを得る方法において、PPSプレポリマーと酸を接触させて回収し、得られたPPSプレポリマーを加熱重合した例を次に示す。
[Comparative Example 6]
The method of Non-Patent Document 1, specifically, by reacting a raw material mixture under a dilute condition in which the amount of an organic polar solvent is 10 liters per 1 mol of a sulfidizing agent, a PPS prepolymer having a high content of cyclic PPS is produced. In the method for obtaining, an example is shown below in which the PPS prepolymer and the acid are brought into contact with each other and recovered, and the obtained PPS prepolymer is polymerized by heating.
 〔原料混合物の調製〕
 攪拌機を具備したステンレス製のオートクレーブに硫化ナトリウム9水和物60g(0.25モル)、96%水酸化ナトリウム0.52g(0.0125モル)、NMP2.56kg(25.9モル)、ジハロゲン化芳香族化合物(p-DCB)37.7g(0.255モル)を仕込み、反応容器を窒素ガス下に密封した。
(Preparation of raw material mixture)
In a stainless steel autoclave equipped with a stirrer, 60 g (0.25 mol) of sodium sulfide nonahydrate, 0.52 g (0.0125 mol) of 96% sodium hydroxide, 2.56 kg of NMP (25.9 mol), dihalogenation 37.7 g (0.255 mol) of an aromatic compound (p-DCB) was charged, and the reaction vessel was sealed under nitrogen gas.
 〔原料混合物の加熱反応〕
 240rpmで撹拌しながら、室温から200℃まで約2時間かけて昇温後、1℃/分の速度で220℃まで昇温し、この温度で10時間保持して反応させた。その後、室温付近まで急冷して反応容器から内容物を回収した。得られた内容物についてイオンクロマトグラフィーによる分析を行い、スルフィド化剤の転化率を算出したところ76%と算出された。また、p-DCBの転化率を算出したところ74%と算出された。
(Heating reaction of raw material mixture)
While stirring at 240 rpm, the temperature was raised from room temperature to 200 ° C. over about 2 hours, then raised to 220 ° C. at a rate of 1 ° C./min, and kept at this temperature for 10 hours for reaction. Thereafter, the content was rapidly cooled to around room temperature, and the contents were recovered from the reaction vessel. The obtained content was analyzed by ion chromatography, and the conversion of the sulfidizing agent was calculated to be 76%. The conversion of p-DCB was calculated to be 74%.
 〔PPSプレポリマーの回収〕
 内容物を2kg分取し、8kgのイオン交換水で希釈、70℃で30分攪拌したのち、ガラスフィルターを用いて吸引濾過し、ケークを回収した。得られたケークをイオン交換水2kgに分散させて70℃で30分攪拌したのち同様に濾過を行った。ついでケークを0.5%酢酸水溶液2kgに分散させて70℃で30分攪拌したのち同様に濾過を行った。得られたケークを再度イオン交換水2kgに分散させて70℃で30分攪拌したのち同様に濾過を行った。得られた含水ケークを真空乾燥機70℃で一晩乾燥し、乾燥ケークを得た。
[Recovery of PPS prepolymer]
2 kg of the content was taken out, diluted with 8 kg of ion-exchanged water, stirred at 70 ° C. for 30 minutes, and suction-filtered using a glass filter to collect a cake. The obtained cake was dispersed in 2 kg of ion-exchanged water, stirred at 70 ° C. for 30 minutes, and then filtered in the same manner. Next, the cake was dispersed in 2 kg of a 0.5% acetic acid aqueous solution, stirred at 70 ° C. for 30 minutes, and filtered in the same manner. The obtained cake was dispersed again in 2 kg of ion-exchanged water, stirred at 70 ° C. for 30 minutes, and then filtered in the same manner. The obtained wet cake was dried overnight at 70 ° C. in a vacuum drier to obtain a dry cake.
 得られた乾燥ケークを10g分取して、テトラヒドロフラン300gで3時間ソックスレー抽出し、得られた抽出液からテトラヒドロフランを留去した。得られた固体にアセトン300gを加えて攪拌後、ガラスフィルターで吸引濾過し白色ケークを得た。これを70℃で3時間真空乾燥して白色粉末を得た。この白色粉末について赤外分光分析を行った結果、これはPPSであることがわかった。 10 10 g of the obtained dried cake was collected and subjected to Soxhlet extraction with 300 g of tetrahydrofuran for 3 hours, and tetrahydrofuran was distilled off from the obtained extract. After 300 g of acetone was added to the obtained solid and stirred, the mixture was suction-filtered with a glass filter to obtain a white cake. This was vacuum-dried at 70 ° C. for 3 hours to obtain a white powder. As a result of an infrared spectroscopic analysis of this white powder, it was found that this was PPS.
 得られたPPSプレポリマーの分子量を測定した結果、Mwが1,500、Mnが800、多分散度指数は1.88であった。また、環式PPS含有量を測定した結果、40重量%であった。さらに、加熱時の塩化物イオン捕集量を測定した結果、6,120ppmであった。また、Tmを測定した結果、223℃であった。灰分率を測定した結果、0.10重量%であった。 As a result of measuring the molecular weight of the obtained PPS prepolymer, Mw was 1,500, Mn was 800, and polydispersity index was 1.88. The cyclic PPS content measured was 40% by weight. Furthermore, as a result of measuring the amount of collected chloride ions during heating, it was 6,120 ppm. Moreover, it was 223 degreeC as a result of measuring Tm. As a result of measuring the ash content, it was 0.10% by weight.
 〔PPSプレポリマーの加熱重合〕
 得られたPPSプレポリマーを用い、加熱時間を2時間とした以外は実施例1と同様の操作でPPSプレポリマーの加熱重合を行った。
[Heat polymerization of PPS prepolymer]
Using the obtained PPS prepolymer, the heat polymerization of the PPS prepolymer was performed in the same manner as in Example 1 except that the heating time was changed to 2 hours.
 得られた重合物は1-クロロナフタレンに210℃で一部不溶であり、可溶成分の分子量を測定した結果、Mwが5,800、Mnが2,300、多分散度指数は2.52であった。また、環式PPS含有量を測定した結果、0.9重量%であった。 The obtained polymer was partially insoluble in 1-chloronaphthalene at 210 ° C. As a result of measuring the molecular weight of the soluble component, Mw was 5,800, Mn was 2,300, and the polydispersity index was 2.52. Met. Further, as a result of measuring the cyclic PPS content, it was 0.9% by weight.
 非特許文献1に記載の方法では、加熱重合時に不溶部が生成し、また、可溶成分の分子量が低いことが明らかとなった。現時点で原因は定かではないが、PPSプレポリマーの加熱時塩化物イオン捕集量が6,120ppmと多いことから、加熱重合時に活性末端に由来する架橋等の副反応が進行するためと推測している。 (4) According to the method described in Non-Patent Document 1, it was revealed that an insoluble portion was generated during heat polymerization, and that the molecular weight of the soluble component was low. Although the cause is not clear at this time, it is speculated that the side reaction such as cross-linking derived from the active terminal proceeds during the heat polymerization because the amount of trapped chloride ions during heating of the PPS prepolymer is as large as 6,120 ppm. ing.
 [比較例7]
 特許文献5の方法、具体的には、有機極性溶媒量がスルフィド化剤1モル当たり1.25リットル以上の条件で原料混合物を反応させて得られた反応混合物から環式PPSを単離精製し、PPS含有量が50重量%以上のPPSプレポリマーを回収する方法において、PPSプレポリマーと酸を接触させて回収し、得られたPPSプレポリマーを加熱重合した例を示す。
[Comparative Example 7]
The method disclosed in Patent Document 5, specifically, cyclic PPS is isolated and purified from a reaction mixture obtained by reacting a raw material mixture under the condition that the amount of an organic polar solvent is 1.25 liter or more per mol of a sulfidizing agent. In the method of recovering a PPS prepolymer having a PPS content of 50% by weight or more, an example is shown in which the PPS prepolymer is brought into contact with an acid to be recovered, and the obtained PPS prepolymer is heated and polymerized.
 〔PPSプレポリマーの回収〕
 比較例4と同様の方法で反応混合物を調製し、この反応混合物を2000g分取し、撹拌機付きのガラス製容器に仕込んだ。この反応混合物を撹拌しながら窒素バブリングを行った後、ヒーターで100℃に加熱した。次いで、加圧濾過器(平均細孔直径10μmのポリテトラフルオロエチレン(PTFE)製メンブレンフィルターをセット)の内部を窒素置換した後、タンク部分をバンドヒーターにて100℃に調温した。100℃に加熱した反応混合物を加圧濾過器のタンクに仕込み、密閉して窒素置換後、窒素で0.1MPaに加圧した。この加圧状態のまま液取りバルブを開放し、タンク下部から濾液を回収した。得られた濾液をHPLC測定により分析したところ、環式PPSが0.55重量%の濃度で含まれることがわかった。この濾液についてエバポレーターによる濃縮を実施して環式PPS濃度を5重量%に調整した。上記の濃縮した濾液を100g量り取り、窒素雰囲気下で撹拌しながら80℃に加熱した。次いで、チューブポンプを用いて0.5%酢酸水溶液25gを25分かけてゆっくりと液中に加えたところ、白色の固形分が析出した。この白色の固形分を、ガラスフィルターを用いて吸引濾過して回収し、次いで、得られたケークを80gの水に分散させ80℃で15分撹拌した後、再びガラスフィルターで吸引濾過する水洗操作を計3回繰り返した。得られた固形分を70℃の真空乾燥機で10時間乾燥し乾燥固体としてPPSプレポリマーを得た。
[Recovery of PPS prepolymer]
A reaction mixture was prepared in the same manner as in Comparative Example 4, and 2000 g of the reaction mixture was collected and charged in a glass container equipped with a stirrer. The reaction mixture was subjected to nitrogen bubbling while stirring, and then heated to 100 ° C. with a heater. Next, after the inside of a pressure filter (a polytetrafluoroethylene (PTFE) membrane filter having an average pore diameter of 10 μm was set) was purged with nitrogen, the temperature of the tank was adjusted to 100 ° C. with a band heater. The reaction mixture heated to 100 ° C. was charged into a tank of a pressure filter, sealed and replaced with nitrogen, and then pressurized to 0.1 MPa with nitrogen. The liquid taking valve was opened in this pressurized state, and the filtrate was collected from the lower part of the tank. When the obtained filtrate was analyzed by HPLC measurement, it was found that cyclic PPS was contained at a concentration of 0.55% by weight. The filtrate was concentrated by an evaporator to adjust the cyclic PPS concentration to 5% by weight. 100 g of the above concentrated filtrate was weighed and heated to 80 ° C. while stirring under a nitrogen atmosphere. Next, 25 g of a 0.5% acetic acid aqueous solution was slowly added to the solution over 25 minutes using a tube pump, whereby a white solid was deposited. This white solid was collected by suction filtration using a glass filter, and the obtained cake was dispersed in 80 g of water, stirred at 80 ° C. for 15 minutes, and then suction-filtered again with a glass filter. Was repeated three times in total. The obtained solid was dried with a vacuum dryer at 70 ° C. for 10 hours to obtain a PPS prepolymer as a dry solid.
 得られたPPSプレポリマーの分子量を測定した結果、Mwが1,100、Mnが800、多分散度指数は1.38であった。また、環式PPS含有量を測定した結果、88.0重量%であった。さらに、加熱時の塩化物イオン捕集量を測定した結果、30ppmであった。また、Tmを測定した結果、242℃であった。灰分率を測定した結果、0.11重量%であった。 As a result of measuring the molecular weight of the obtained PPS prepolymer, Mw was 1,100, Mn was 800, and polydispersity index was 1.38. Moreover, as a result of measuring the cyclic PPS content, it was 88.0% by weight. Furthermore, as a result of measuring the collection amount of chloride ions during heating, it was 30 ppm. The Tm was measured and found to be 242 ° C. As a result of measuring the ash content, it was 0.11% by weight.
 〔PPSプレポリマーの加熱重合〕
 得られたPPSプレポリマーを用いた以外は実施例1と同様の操作でPPSプレポリマーの加熱重合を行った。
[Heat polymerization of PPS prepolymer]
Heat polymerization of the PPS prepolymer was performed in the same manner as in Example 1 except that the obtained PPS prepolymer was used.
 得られた重合物は1-クロロナフタレンに210℃で全溶であり、分子量を測定した結果、Mwが46,200、Mnが19,800、多分散度指数は2.33であった。また、環式PPS含有量を測定した結果、18.2重量%であった。さらに、加熱時重量減少率を測定した結果、△Wrは0.089%であった。また、TmおよびTmcを測定した結果、Tmは268℃、Tmcは196℃であった。灰分率を測定した結果、0.11重量%であった。 The obtained polymer was completely dissolved in 1-chloronaphthalene at 210 ° C. As a result of measuring the molecular weight, Mw was 46,200, Mn was 19,800, and polydispersity index was 2.33. Moreover, as a result of measuring the cyclic PPS content, it was 18.2% by weight. Further, as a result of measuring the weight loss rate upon heating, ΔWr was 0.089%. Moreover, as a result of measuring Tm and Tmc, Tm was 268 ° C. and Tmc was 196 ° C. As a result of measuring the ash content, it was 0.11% by weight.
 特許文献5に記載の方法では、重合を十分に進行させれば高品質なPPSが得られることが知られているが、実施例1と横並びの重合条件においては、環式PPSを十分に消費できず、重合物のTmおよびTmcが低下することが確認された。また、この方法では精製操作によりPPS成分の大部分を占める線状PPSを除去するため、生産量の低下、およびプロセスコストの増加が避けられない。 In the method described in Patent Literature 5, it is known that high-quality PPS can be obtained if the polymerization is sufficiently advanced. However, under the polymerization conditions side by side with Example 1, the cyclic PPS is sufficiently consumed. However, it was confirmed that Tm and Tmc of the polymer were reduced. Further, in this method, since linear PPS which occupies most of the PPS component is removed by the purification operation, a reduction in production amount and an increase in process cost are inevitable.
 [比較例8]
 汎用の溶液重合PPSの製造例を示す。
[Comparative Example 8]
The production example of general-purpose solution polymerization PPS is shown.
 〔原料混合物の調製〕
 攪拌機を具備したステンレス製のオートクレーブに蒸留用の装置とアルカリトラップを接続しておき、48重量%の水硫化ナトリウム水溶液117g(水硫化ナトリウムとして1.00モル)、48重量%の水酸化ナトリウム水溶液86.2g(水酸化ナトリウムとして1.04モル)、酢酸ナトリウム7.36g(0.0900モル)、NMP164g(0.159リットル)を仕込み、反応容器内を十分に窒素置換した。
(Preparation of raw material mixture)
A distillation apparatus and an alkali trap were connected to a stainless steel autoclave equipped with a stirrer, and 117 g of a 48% by weight aqueous sodium hydrosulfide solution (1.00 mol as sodium hydrogen sulfide) and a 48% by weight aqueous sodium hydroxide solution were used. 86.2 g (1.04 mol as sodium hydroxide), 7.36 g (0.0900 mol) of sodium acetate, and 164 g (0.159 liter) of NMP were charged, and the inside of the reaction vessel was sufficiently purged with nitrogen.
 オートクレーブ上部にバルブを介して蒸留塔を取り付け、常圧で窒素を通じて240rpmで撹拌しながら240℃まで約1時間かけて徐々に加熱して脱液を行い、留出液106gを得た。この留出液をガスクロマトグラフィーで分析したところ留出液の組成は水105.6g、NMPが0.4gであり、この段階では反応系内に水は存在せず、NMPは164g残存していることがわかった。なお、脱水工程を通して反応系から飛散した硫化水素は0.00260モルであった。 蒸 留 A distillation column was attached to the upper part of the autoclave via a valve, and the mixture was gradually heated to 240 ° C. over about 1 hour while stirring at 240 rpm through nitrogen at normal pressure to remove liquid, thereby obtaining 106 g of a distillate. The distillate was analyzed by gas chromatography to find that the composition of the distillate was 105.6 g of water and 0.4 g of NMP. At this stage, no water was present in the reaction system, and 164 g of NMP remained. I knew it was there. The amount of hydrogen sulfide scattered from the reaction system during the dehydration step was 0.00260 mol.
 次いで、オートクレーブを180℃以下まで冷却した後、ジハロゲン化芳香族化合物(p-DCB)150g(1.02モル)、NMP130g(0.127ットル)を仕込み、再度反応容器内を十分に窒素置換し、密封した。この仕込みにより内温は120℃まで低下した。 Next, after cooling the autoclave to 180 ° C. or lower, 150 g (1.02 mol) of a dihalogenated aromatic compound (p-DCB) and 130 g (0.127 torr) of NMP were charged, and the inside of the reaction vessel was sufficiently purged with nitrogen again. And sealed. Due to this charging, the internal temperature was lowered to 120 ° C.
 〔原料混合物の加熱反応〕
 120℃から270℃まで約2時間かけて反応容器内を昇温し、さらに275℃で70分間保持して反応させた。反応終了後、室温付近まで冷却して反応容器から内容物を回収した。
(Heating reaction of raw material mixture)
The temperature inside the reaction vessel was raised from 120 ° C. to 270 ° C. over about 2 hours, and the reaction was further performed at 275 ° C. for 70 minutes. After the completion of the reaction, the content was cooled to around room temperature and the contents were recovered from the reaction vessel.
 〔PPSの回収〕
 得られた湿潤状態の固形分の一部を分取して、温水を用いた洗浄を十分に行った後に乾燥し乾燥固体を得た。この乾燥固体について赤外分光分析を行った結果、これはPPSであることがわかった。
[Recovery of PPS]
A part of the obtained wet solid was collected, washed sufficiently with warm water, and dried to obtain a dry solid. As a result of an infrared spectroscopic analysis of this dried solid, it was found that this was PPS.
 得られたPPSの分子量を測定した結果、Mwが45,500、Mnが13,700、多分散度指数は3.32であった。また、環式PPS含有量を測定した結果、0.3重量%であった。さらに、加熱時重量減少率を測定した結果、△Wrは0.500%であった。また、TmおよびTmcを測定した結果、Tmは280℃、Tmcは222℃であった。 As a result of measuring the molecular weight of the obtained PPS, Mw was 45,500, Mn was 13,700, and polydispersity index was 3.32. Further, as a result of measuring the cyclic PPS content, it was 0.3% by weight. Furthermore, as a result of measuring the weight loss rate upon heating, ΔWr was 0.500%. Moreover, as a result of measuring Tm and Tmc, Tm was 280 ° C. and Tmc was 222 ° C.
 汎用の溶液重合PPSは、重合度および結晶化特性には優れるものの、△Wrが大きいことが確認された。また、この製造方法ではバッチプロセスを避けられず、多大なプロセスコストを必要とする。 While general-purpose solution-polymerized PPS was excellent in degree of polymerization and crystallization characteristics, it was confirmed that △ Wr was large. In addition, this manufacturing method cannot avoid a batch process, and requires a great deal of process cost.

Claims (14)

  1.  下記(I)~(III)を満たすポリアリーレンスルフィドプレポリマーを、溶媒の非存在下、ポリアリーレンスルフィドプレポリマーの融点以上の温度で加熱重合するポリアリーレンスルフィドの製造方法。
    (I)重量平均分子量が3,000以上、20,000未満
    (II)環式ポリアリーレンスルフィド含有量が5重量%以上、50重量%未満
    (III)340℃で60分加熱した際に発生した揮発成分をイオン交換水に通気したときに、イオン交換水に捕集される塩化物イオン量が、ポリアリーレンスルフィドプレポリマーの重量基準で50ppm以上、5,000ppm以下
    A method for producing a polyarylene sulfide, which comprises heating and polymerizing a polyarylene sulfide prepolymer satisfying the following (I) to (III) at a temperature not lower than the melting point of the polyarylene sulfide prepolymer in the absence of a solvent.
    (I) Weight average molecular weight of 3,000 or more and less than 20,000 (II) Cyclic polyarylene sulfide content of 5% by weight or more and less than 50% by weight (III) Generated when heated at 340 ° C. for 60 minutes. When the volatile component is passed through the ion-exchanged water, the amount of chloride ions collected in the ion-exchanged water is 50 ppm or more and 5,000 ppm or less based on the weight of the polyarylene sulfide prepolymer.
  2.  加熱重合を300℃以上の温度で行う請求項1に記載のポリアリーレンスルフィドの製造方法。 The method for producing polyarylene sulfide according to claim 1, wherein the heat polymerization is performed at a temperature of 300 ° C or higher.
  3.  加熱重合を非酸化性ガス雰囲気下もしくは減圧下で行う請求項1または2に記載のポリアリーレンスルフィドの製造方法。 3. The method for producing a polyarylene sulfide according to claim 1, wherein the heat polymerization is performed in a non-oxidizing gas atmosphere or under reduced pressure.
  4.  加熱重合により得られるポリアリーレンスルフィドの重量平均分子量が20,000以上である請求項1~3のいずれか一項に記載のポリアリーレンスルフィドの製造方法。 The process for producing a polyarylene sulfide according to any one of claims 1 to 3, wherein the weight average molecular weight of the polyarylene sulfide obtained by the heat polymerization is 20,000 or more.
  5.  加熱重合により得られるポリアリーレンスルフィドの、下記式(1)で表される加熱時の重量減少率が0.18%以下である請求項1~4のいずれか一項に記載のポリアリーレンスルフィドの製造方法。
    △Wr=(W1-W2)/W1×100・・・(1)
    ここで△Wrは重量減少率(%)であり、常圧の窒素雰囲気下で50℃から330℃以上の任意の温度まで昇温速度20℃/分で熱重量分析を行った際の、100℃到達時点の試料重量(W1)と330℃到達時の試料重量(W2)から求められる値である。
    The polyarylene sulfide according to any one of claims 1 to 4, wherein the polyarylene sulfide obtained by heat polymerization has a weight loss rate upon heating represented by the following formula (1) of 0.18% or less. Production method.
    ΔWr = (W1-W2) / W1 × 100 (1)
    Here, △ Wr is a weight reduction rate (%), and is 100% when thermogravimetric analysis is performed at a heating rate of 20 ° C./min from 50 ° C. to an arbitrary temperature of 330 ° C. or more in a nitrogen atmosphere at normal pressure. The value is obtained from the sample weight (W1) at the time when the temperature reaches ° C and the sample weight (W2) at the time when the temperature reaches 330 ° C.
  6.  加熱重合により得られるポリアリーレンスルフィドの、重量平均分子量を数平均分子量で除した多分散度が2.5超、5.0以下である請求項1~5のいずれか一項に記載のポリアリーレンスルフィドの製造方法。 The polyarylene according to any one of claims 1 to 5, wherein the polyarylene sulfide obtained by the heat polymerization has a polydispersity of more than 2.5 and not more than 5.0, obtained by dividing the weight average molecular weight by the number average molecular weight. Method for producing sulfide.
  7.  加熱重合により得られるポリアリーレンスルフィドの降温結晶化温度が220℃以上である請求項1~6のいずれか一項に記載のポリアリーレンスルフィドの製造方法。 (7) The method for producing a polyarylene sulfide according to any one of (1) to (6), wherein the temperature-reducing crystallization temperature of the polyarylene sulfide obtained by the heat polymerization is 220 ° C. or more.
  8.  下記(I)~(III)を満たすポリアリーレンスルフィドプレポリマー。
    (I)重量平均分子量が3,000以上、20,000未満
    (II)環式ポリアリーレンスルフィド含有量が5重量%以上、50重量%未満
    (III)340℃で60分加熱した際に発生した揮発成分をイオン交換水に通気したときに、イオン交換水に捕集される塩化物イオン量が、ポリアリーレンスルフィドプレポリマーの重量基準で50ppm以上、5,000ppm以下
    A polyarylene sulfide prepolymer satisfying the following (I) to (III).
    (I) Weight average molecular weight of 3,000 or more and less than 20,000 (II) Cyclic polyarylene sulfide content of 5% by weight or more and less than 50% by weight (III) Generated when heated at 340 ° C. for 60 minutes. When the volatile component is passed through the ion-exchanged water, the amount of chloride ions collected in the ion-exchanged water is 50 ppm or more and 5,000 ppm or less based on the weight of the polyarylene sulfide prepolymer.
  9.  重量平均分子量が15,000以下である請求項8に記載のポリアリーレンスルフィドプレポリマー。 The polyarylene sulfide prepolymer according to claim 8, wherein the weight average molecular weight is 15,000 or less.
  10.  環式ポリアリーレンスルフィド含有量が30重量%未満である請求項8または9に記載のポリアリーレンスルフィドプレポリマー。 The polyarylene sulfide prepolymer according to claim 8 or 9, wherein the content of the cyclic polyarylene sulfide is less than 30% by weight.
  11.  340℃で60分加熱した際に発生した揮発成分をイオン交換水に通気したときに、イオン交換水に捕集される塩化物イオン量が、ポリアリーレンスルフィドプレポリマーの重量基準で70ppm以上である請求項8~10のいずれか一項に記載のポリアリーレンスルフィドプレポリマー。 When the volatile components generated when heated at 340 ° C. for 60 minutes are passed through the ion-exchanged water, the amount of chloride ions collected in the ion-exchanged water is 70 ppm or more based on the weight of the polyarylene sulfide prepolymer. The polyarylene sulfide prepolymer according to any one of claims 8 to 10.
  12.  少なくともスルフィド化剤、ジハロゲン化芳香族化合物、有機極性溶媒を含む原料混合物であって、原料混合物中のジハロゲン化芳香族化合物がスルフィド化剤1モル当たり0.8モル以上1.2モル以下であり、原料混合物中の有機極性溶媒量がスルフィド化剤1モル当たり0.5リットル以上5リットル以下である原料混合物を、スルフィド化剤の転化率が90%以上、ジハロゲン化芳香族化合物の転化率が90%以上かつスルフィド化剤の転化率以下となるまで加熱して反応させた反応混合物から、ポリアリーレンスルフィドプレポリマーを固体として回収するポリアリーレンスルフィドプレポリマーの製造方法であって、ポリアリーレンスルフィドプレポリマーを固体として回収する際に、ポリアリーレンスルフィドプレポリマーと酸を接触させるポリアリーレンスルフィドプレポリマーの製造方法。 A raw material mixture containing at least a sulfidizing agent, a dihalogenated aromatic compound, and an organic polar solvent, wherein the dihalogenated aromatic compound in the raw material mixture is 0.8 mol or more and 1.2 mol or less per mol of the sulfidizing agent. A raw material mixture in which the amount of the organic polar solvent in the raw material mixture is 0.5 liter to 5 liter per 1 mol of the sulfidizing agent is converted to a sulfidizing agent having a conversion of 90% or more and a dihalogenated aromatic compound having a conversion of 90% or more. A method for producing a polyarylene sulfide prepolymer in which a polyarylene sulfide prepolymer is recovered as a solid from a reaction mixture heated and reacted until the reaction reaches 90% or more and the conversion of a sulfidizing agent or less. When recovering the polymer as a solid, the polyarylene sulfide prepolymer Method for producing a polyarylene sulfide prepolymer of contacting the acid.
  13.  原料混合物中の有機極性溶媒量がスルフィド化剤1モル当たり1.25リットル以上である請求項12に記載のポリアリーレンスルフィドプレポリマーの製造方法。 The method for producing a polyarylene sulfide prepolymer according to claim 12, wherein the amount of the organic polar solvent in the raw material mixture is 1.25 liter or more per mol of the sulfidizing agent.
  14.  反応混合物中のポリアリーレンスルフィドプレポリマーが溶解する温度において、反応混合物を固液分離し、少なくともポリアリーレンスルフィドプレポリマーおよび有機極性溶媒を含む溶液成分を得、この溶液成分からポリアリーレンスルフィドプレポリマーを固体として回収する請求項12または13に記載のポリアリーレンスルフィドプレポリマーの製造方法。 At a temperature at which the polyarylene sulfide prepolymer in the reaction mixture dissolves, the reaction mixture is subjected to solid-liquid separation to obtain a solution component containing at least the polyarylene sulfide prepolymer and an organic polar solvent, and the polyarylene sulfide prepolymer is converted from the solution component. 14. The method for producing a polyarylene sulfide prepolymer according to claim 12, which is recovered as a solid.
PCT/JP2019/029036 2018-07-31 2019-07-24 Method for producing poly(arylene sulfide), poly(arylene sulfide) prepolymer, and production method therefor WO2020026918A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019544933A JP6733826B2 (en) 2018-07-31 2019-07-24 Method for producing polyarylene sulfide

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2018143655 2018-07-31
JP2018143656 2018-07-31
JP2018-143655 2018-07-31
JP2018-143656 2018-07-31
JP2018202750 2018-10-29
JP2018-202750 2018-10-29
JP2018-244339 2018-12-27
JP2018244339 2018-12-27
JP2019012698 2019-01-29
JP2019-012698 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020026918A1 true WO2020026918A1 (en) 2020-02-06

Family

ID=69231709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029036 WO2020026918A1 (en) 2018-07-31 2019-07-24 Method for producing poly(arylene sulfide), poly(arylene sulfide) prepolymer, and production method therefor

Country Status (2)

Country Link
JP (1) JP6733826B2 (en)
WO (1) WO2020026918A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130101A4 (en) * 2020-03-31 2024-05-15 Toray Industries, Inc. Poly(arylene sulfide) and production method therefor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283412A (en) * 1995-04-13 1996-10-29 Hoechst Ag Method of preparing aromatic sulfur polymer
JP2007009128A (en) * 2005-07-04 2007-01-18 Toray Ind Inc Method for producing slurry containing alkali metal sulfide and method for producing polyarylene sulfide by using the same
JP2009030012A (en) * 2007-02-28 2009-02-12 Toray Ind Inc Method for producing cyclic polyarylene sulfide
JP2013010908A (en) * 2011-06-30 2013-01-17 Toray Ind Inc Polyarylene sulfide, and method for producing the same
WO2013147141A1 (en) * 2012-03-30 2013-10-03 株式会社クレハ Granular polyarylene sulfide and process for manufacturing same
JP2016108488A (en) * 2014-12-09 2016-06-20 株式会社クレハ Fine particulate high branched type polyarylene sulfide and manufacturing method therefor, and high molecule modifier containing the polyarylene sulfide
WO2016136253A1 (en) * 2015-02-25 2016-09-01 東レ株式会社 Polyphenylene sulfide resin composition, molded article formed from same, and method for manufacturing semiconductor package
JP2018009148A (en) * 2016-06-29 2018-01-18 東レ株式会社 Method for producing polyarylene sulfide resin composition
JP2018076492A (en) * 2016-10-31 2018-05-17 東レ株式会社 Polyarylne sulfide prepolymer and method for producing the same
JP2018199748A (en) * 2017-05-25 2018-12-20 東レ株式会社 Production method for cyclic polyarylene sulfide

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283412A (en) * 1995-04-13 1996-10-29 Hoechst Ag Method of preparing aromatic sulfur polymer
JP2007009128A (en) * 2005-07-04 2007-01-18 Toray Ind Inc Method for producing slurry containing alkali metal sulfide and method for producing polyarylene sulfide by using the same
JP2009030012A (en) * 2007-02-28 2009-02-12 Toray Ind Inc Method for producing cyclic polyarylene sulfide
JP2013010908A (en) * 2011-06-30 2013-01-17 Toray Ind Inc Polyarylene sulfide, and method for producing the same
WO2013147141A1 (en) * 2012-03-30 2013-10-03 株式会社クレハ Granular polyarylene sulfide and process for manufacturing same
JP2016108488A (en) * 2014-12-09 2016-06-20 株式会社クレハ Fine particulate high branched type polyarylene sulfide and manufacturing method therefor, and high molecule modifier containing the polyarylene sulfide
WO2016136253A1 (en) * 2015-02-25 2016-09-01 東レ株式会社 Polyphenylene sulfide resin composition, molded article formed from same, and method for manufacturing semiconductor package
JP2018009148A (en) * 2016-06-29 2018-01-18 東レ株式会社 Method for producing polyarylene sulfide resin composition
JP2018076492A (en) * 2016-10-31 2018-05-17 東レ株式会社 Polyarylne sulfide prepolymer and method for producing the same
JP2018199748A (en) * 2017-05-25 2018-12-20 東レ株式会社 Production method for cyclic polyarylene sulfide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130101A4 (en) * 2020-03-31 2024-05-15 Toray Industries, Inc. Poly(arylene sulfide) and production method therefor

Also Published As

Publication number Publication date
JP6733826B2 (en) 2020-08-05
JPWO2020026918A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
KR101470723B1 (en) Process for production of polyarylene sulfides, and polyarylene sulfides
JP5516756B2 (en) Method for producing cyclic polyarylene sulfide
JP4994997B2 (en) Process for producing polyarylene sulfide
JP7006841B1 (en) Polyarylene sulfide and its manufacturing method
JP6297763B2 (en) Process for producing polyarylene sulfide
JP2012188625A (en) Method for producing cyclic polyarylene sulfide
JP2018076492A (en) Polyarylne sulfide prepolymer and method for producing the same
JP6733826B2 (en) Method for producing polyarylene sulfide
JP5600896B2 (en) Cyclic polyarylene sulfide and method for recovering polyarylene sulfide
JP2008201885A (en) Polyphenylenesulfide film
JP6221326B2 (en) Method for producing cyclic polyarylene sulfide
JP2018199748A (en) Production method for cyclic polyarylene sulfide
JP2018024851A (en) Polyarylenesulfide and its manufacturing method
JP7214998B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP2017105981A (en) Manufacturing method of polyarylene sulfide
JP7214997B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP2017031404A (en) Method for producing polyarylene sulfide
JP2012072222A (en) Cyclic polyphenylene sulfide mixture, and method for producing the same
JP6337971B2 (en) Polyphenylene sulfide resin composition and method for producing the same
JP6241088B2 (en) Method for producing cyclic polyarylene sulfide
JP2018193497A (en) Method for producing polyarylene sulfide
JP2013032512A (en) Method for producing cyclic polyarylene sulfide
JP2018119143A (en) Method for producing polyarylene sulfide
JP2022152191A (en) Polyarylene sulfide copolymer and method for producing the same
JP2015127398A (en) Polyarylene sulfide and manufacturing method therefor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019544933

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843190

Country of ref document: EP

Kind code of ref document: A1