WO2020026840A1 - ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法 - Google Patents

ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法 Download PDF

Info

Publication number
WO2020026840A1
WO2020026840A1 PCT/JP2019/028340 JP2019028340W WO2020026840A1 WO 2020026840 A1 WO2020026840 A1 WO 2020026840A1 JP 2019028340 W JP2019028340 W JP 2019028340W WO 2020026840 A1 WO2020026840 A1 WO 2020026840A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
compound
resin composition
group
polyimide precursor
Prior art date
Application number
PCT/JP2019/028340
Other languages
English (en)
French (fr)
Inventor
竜也 平田
航平 村上
孝亘 藤岡
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201980041387.6A priority Critical patent/CN112334833A/zh
Priority to KR1020237021238A priority patent/KR102652516B1/ko
Priority to JP2020533421A priority patent/JP7210588B2/ja
Priority to KR1020207025894A priority patent/KR102596594B1/ko
Priority to US17/260,811 priority patent/US20210294213A1/en
Publication of WO2020026840A1 publication Critical patent/WO2020026840A1/ja
Priority to JP2022184276A priority patent/JP2023025070A/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/04Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms
    • C07C275/06Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C275/10Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton being further substituted by singly-bound oxygen atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/28Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C275/32Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms
    • C07C275/34Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms having nitrogen atoms of urea groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C275/36Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms having nitrogen atoms of urea groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with at least one of the oxygen atoms further bound to a carbon atom of a six-membered aromatic ring, e.g. N-aryloxyphenylureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F20/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • C08F220/346Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links and further oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0387Polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a negative photosensitive resin composition and a method for producing a polyimide and a cured relief pattern using the same.
  • polyimide resin, polybenzoxazole resin, phenol resin, etc. which have excellent heat resistance, electrical properties and mechanical properties, are used for insulating materials for electronic components and passivation films, surface protective films, interlayer insulating films, etc. for semiconductor devices. Used.
  • those provided in the form of a photosensitive resin composition easily form a heat-resistant relief pattern film by thermal imidization treatment by application, exposure, development, and curing of the composition. be able to.
  • Such a photosensitive resin composition has a feature that the process can be significantly shortened as compared with a conventional non-photosensitive material.
  • a semiconductor device (hereinafter, also referred to as an “element”) is mounted on a printed circuit board by various methods according to purposes.
  • a conventional device is generally manufactured by a wire bonding method for connecting from an external terminal (pad) of the device to a lead frame with a thin wire.
  • the difference in the wiring length of each terminal in mounting has influenced the operation of the element. For this reason, it is necessary to accurately control the length of the mounting wiring when mounting an element for high-end use, and it has become difficult to satisfy the requirement by wire bonding.
  • flip-chip mounting has been proposed in which a redistribution layer is formed on the surface of a semiconductor chip, bumps (electrodes) are formed thereon, and then the chip is turned over and mounted directly on a printed circuit board (for example, see Patent Reference 1).
  • the flip chip mounting since the wiring distance can be accurately controlled, the flip chip mounting is adopted for a high-end device for handling a high-speed signal or for a mobile phone or the like because of a small mounting size, and the demand is rapidly increasing.
  • a metal wiring layer forming step is performed after the pattern of the resin layer is formed.
  • the metal wiring layer is usually made by plasma etching the surface of the resin layer to roughen the surface, then forming a metal layer to be a seed layer for plating by sputtering at a thickness of 1 ⁇ m or less, and using the metal layer as an electrode for electrolytic plating. Is formed.
  • titanium (Ti) is used as a metal for the seed layer
  • copper (Cu) is used as a metal for the rewiring layer formed by electrolytic plating.
  • a reliability test for example, storage in air at a high temperature of 125 ° C. or more for 100 hours or more; a high-temperature storage test; High-temperature operation test for confirming operation under storage over a long period of time; a temperature cycle in which a low-temperature state of about ⁇ 65 ° C. to ⁇ 40 ° C. and a high-temperature state of about 125 ° C. to 150 ° C. cycle in air.
  • Test High-temperature, high-humidity storage test; storage at a temperature of 85 ° C.
  • the metal rewiring layer is required to have chemical resistance, and the demand for miniaturization is increasing. For this reason, in particular, a photosensitive resin composition used for forming a redistribution layer of a semiconductor is required to suppress generation of voids and exhibit high chemical resistance and high resolution.
  • the present invention has been devised in view of such a conventional situation, and has high chemical resistance and resolution, and comes into contact with a resin layer of a Cu layer after a high temperature storage test.
  • An object is to provide a negative photosensitive resin composition (hereinafter, also simply referred to as “photosensitive resin composition” in the present specification) that can suppress generation of voids at an interface. It is another object to provide a method for forming a cured relief pattern using the negative photosensitive resin composition of the present invention.
  • fan-out type semiconductor packages have attracted attention.
  • a chip sealing body larger than the chip size of the semiconductor chip is formed by covering the semiconductor chip with a sealing material. Further, a rewiring layer extending to the region of the semiconductor chip and the sealing material is formed. The rewiring layer is formed with a small thickness. Further, since the rewiring layer can be formed up to the region of the sealing material, the number of external connection terminals can be increased.
  • the fan-out type semiconductor package requires a further lowering of the curing temperature, and as a result, the adhesiveness with a sealing material such as a mold resin is reduced, so that further improvement is required.
  • the present inventors have found that the above problems can be solved by combining a polyimide precursor with a specific structure, a (meth) acrylate having a specific structure, and a photopolymerization initiator, and have completed the present invention. Reached. Examples of embodiments of the present invention are listed below. [1] (A) a polyimide precursor represented by the following general formula (1); (B) a compound containing at least one selected from a urethane bond and a urea bond; and (C) a negative photosensitive resin composition containing a photopolymerization initiator.
  • X 1 is a tetravalent organic group
  • Y 1 is a divalent organic group
  • n 1 is an integer of 2 to 150
  • R 1 and R 2 are each independently hydrogen An atom or a monovalent organic group
  • at least one of R 1 and R 2 is a monovalent organic group represented by the following general formula (2).
  • L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms
  • m 1 is an integer of 2 to 10.
  • the negative photosensitive resin composition according to item 1 or 2 wherein the compound (B) further contains at least one functional group selected from a (meth) acryl group, a hydroxyl group, an alkoxy group, and an amino group.
  • the compound (B) is a compound having a (meth) acryl group and a urea bond, and has a (meth) acryl equivalent of 150 to 400 g / mol. Photosensitive resin composition.
  • R 3 is a hydrogen atom or a methyl group
  • A is one group selected from the group consisting of —O—, —NH—, and —NL 4 —
  • L 4 has 1 to 12 carbon atoms.
  • Z 1 is an m 2 valent organic group having 2 to 24 carbon atoms
  • Z 2 is a divalent organic group having 2 to 8 carbon atoms
  • m 2 is 1 to 2 It is an integer of 3.
  • Item 8 The negative according to any one of items 1 to 7, wherein the compound (B) further comprises a (meth) acryl group and at least one functional group selected from a hydroxyl group, an alkoxy group and an amino group.
  • -Type photosensitive resin composition is a (meth) acryl group and at least one functional group selected from a hydroxyl group, an alkoxy group and an amino group.
  • (E) The negative photosensitive resin composition according to any one of items 1 to 13, further comprising a silane coupling agent.
  • X1 in the polyimide precursor (A) includes at least one selected from the group consisting of the following general formulas (20a), (20b) and (20c).
  • R6 is each independently a monovalent group selected from the group consisting of a hydrogen atom, a fluorine atom, a C 1 -C 10 hydrocarbon group, and a C 1 -C 10 fluorine-containing hydrocarbon group.
  • Y1 in the polyimide precursor (A) includes at least one selected from the group consisting of the following general formulas (21a), (21b) and (21c).
  • Negative-type photosensitive resin composition R6 is each independently a monovalent group selected from the group consisting of a hydrogen atom, a fluorine atom, a C 1 -C 10 hydrocarbon group, and a C 1 -C 10 fluorine-containing hydrocarbon group.
  • n is an integer selected from 0-4.
  • the above (A) polyimide precursor has the following general formula (8): In the formula, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group. ⁇ 17.
  • the above (A) polyimide precursor has the following general formula (9): In the formula, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group. ⁇ Item 18.
  • the negative photosensitive resin composition according to any one of Items 1 to 17, comprising a polyimide precursor having a structural unit represented by: [19]
  • the above (A) polyimide precursor has the following general formula (8): In the formula, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group, and R 1 and R in the general formula (9) 2 and n 1 may be the same or different.
  • the negative photosensitive resin composition according to any one of items 1 to 18, which is a blend with a precursor.
  • Photosensitive resin composition [21] 100 parts by mass of the polyimide precursor (A), 0.1 to 30 parts by mass of the compound (B) based on 100 parts by mass of the polyimide precursor (A), 21.
  • a method for producing a polyimide comprising a step of converting the negative photosensitive resin composition according to any one of items 1 to 21 into polyimide. [23] (1) applying the negative photosensitive resin composition according to any one of items 1 to 21 on a substrate to form a photosensitive resin layer on the substrate; (2) exposing the photosensitive resin layer to light; (3) developing the photosensitive resin layer after the exposure to form a relief pattern; (4) a step of heat-treating the relief pattern to form a cured relief pattern.
  • a compound represented by the following formula (5) [24] A compound represented by the following formula (5). [25] A compound represented by the following formula (6). [26] A compound represented by the following formula (7). [27] A compound represented by the following formula (11). [28] A compound represented by the following formula (12). [29] A compound represented by the following formula (13). [30] A compound represented by the following formula (14).
  • the negative photosensitive resin composition which suppresses generation
  • the present embodiment a mode for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail. Note that the present invention is not limited to the following embodiment, and can be implemented with various modifications within the scope of the gist. Throughout this specification, structures represented by the same symbol in the general formula may be the same or different from each other when a plurality of structures are present in a molecule.
  • the negative photosensitive resin composition according to the present embodiment includes (A) a polyimide precursor; (B) a compound containing at least one selected from a urethane bond and a urea bond; and (C) a photopolymerization initiator. including.
  • the negative photosensitive resin composition has 100 parts by mass of the (A) polyimide precursor and 0.1 to 30 parts by mass based on 100 parts by mass of the (A) polyimide precursor. (B) and 0.1 to 20 parts by mass of (C) a photopolymerization initiator based on 100 parts by mass of the polyimide precursor (A).
  • the (A) polyimide precursor in the present embodiment is a resin component contained in the negative photosensitive resin composition, and is converted into polyimide by performing a heat cyclization treatment.
  • the polyimide precursor is a polyamide having a structure represented by the following general formula (1). Wherein X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer of 2 to 150, and R 1 and R 2 are each independently hydrogen It is an atom or a monovalent organic group. ⁇
  • At least one of R 1 and R 2 is a monovalent organic group represented by the following general formula (2).
  • L 1 , L 2 and L 3 are each independently a hydrogen atom or an organic group having 1 to 3 carbon atoms, and m 1 is an integer of 2 to 10. ⁇
  • N 1 in the general formula (1) is not limited as long as it is an integer of 2 to 150, but is preferably an integer of 3 to 100 from the viewpoint of the photosensitive characteristics and mechanical characteristics of the negative photosensitive resin composition. Is more preferable.
  • the tetravalent organic group represented by X 1 is preferably an organic group having 6 to 40 carbon atoms, from the viewpoint of achieving both heat resistance and photosensitive characteristics.
  • the —COOR 1 group, the —COOR 2 group, and the —CONH— group are an aromatic group or an alicyclic aliphatic group which are ortho to each other.
  • R6 is a monovalent group selected from the group consisting of a hydrogen atom, a fluorine atom, a C 1 -C 10 hydrocarbon group, and a C 1 -C 10 fluorine-containing hydrocarbon group; , 0 to 2, m is an integer selected from 0 to 3, and n is an integer selected from 0 to 4.
  • the structure of X 1 may be one kind or a combination of two or more kinds.
  • the X 1 group having the structure represented by the above formula (20) is particularly preferred in that it has both heat resistance and photosensitive characteristics.
  • the structures represented by the following formulas (20a), (20b) and (20c) are particularly suitable for chemical resistance, resolution, and high-temperature storage. It is particularly preferable from the viewpoint of suppressing voids after the test.
  • R 6 is each independently a monovalent group selected from the group consisting of a hydrogen atom, a fluorine atom, a C 1 -C 10 hydrocarbon group, and a C 1 -C 10 fluorine-containing hydrocarbon group.
  • R 6 in the general formulas (20a) to (20c) may be the same as or different from R 6 in the general formulas (21a) to (21c) described later.
  • the divalent organic group represented by Y 1 is preferably an aromatic group having 6 to 40 carbon atoms from the viewpoint of achieving both heat resistance and photosensitive characteristics.
  • Examples include a structure represented by the following formula (21), but the structure is not limited thereto.
  • R 6 is a monovalent group selected from the group consisting of a hydrogen atom, a fluorine atom, a C 1 -C 10 hydrocarbon group, and a C 1 -C 10 fluorine-containing hydrocarbon group; Is an integer selected from 0 to 4.
  • the structure of Y 1 may be one type or a combination of two or more types.
  • the Y 1 group having the structure represented by the above formula (21) is particularly preferable in terms of achieving both heat resistance and photosensitive characteristics.
  • the structures represented by the above formula (21) among the structures represented by the above formula (21), the structures represented by the following formulas (21a), (21b) and (21c) are particularly suitable for chemical resistance, resolution and high-temperature storage. It is particularly preferable from the viewpoint of suppressing voids after the test.
  • R6 is each independently a monovalent group selected from the group consisting of a hydrogen atom, a fluorine atom, a C 1 -C 10 hydrocarbon group, and a C 1 -C 10 fluorine-containing hydrocarbon group.
  • n is an integer selected from 0-4.
  • ⁇ R 6 in the general formula (21a) ⁇ (21c), respectively, may be the same as R 6 in the above general formula (20a) ⁇ (20c), or may be different.
  • L 1 in the general formula (2) is preferably a hydrogen atom or a methyl group, and L 2 and L 3 are preferably hydrogen atoms from the viewpoint of photosensitive characteristics. Further, m 1 is an integer of 2 or more and 10 or less, preferably 2 or more and 4 or less from the viewpoint of photosensitive characteristics.
  • the polyimide precursor has the following general formula (8): ⁇ wherein R 1 , R 2 and n 1 are as defined above. ⁇ A polyimide precursor having a structural unit represented by In the general formula (8), at least one of R 1 and R 2 is more preferably a monovalent organic group represented by the general formula (2). (A) When the polyimide precursor contains the polyimide precursor having the structural unit represented by the general formula (8), the resolution effect is particularly enhanced.
  • the (A) polyimide precursor has the following general formula (9): ⁇ wherein R 1 , R 2 and n 1 are as defined above. ⁇ A polyimide precursor having a structural unit represented by
  • R 1 and R 2 are more preferably a monovalent organic group represented by the general formula (2).
  • the polyimide precursor contains a polyimide precursor having a structural unit represented by the general formula (9) in addition to a polyimide precursor having a structural unit represented by the general formula (8), The resolution effect is further enhanced.
  • the polyimide precursor is a mixture of a polyimide precursor having a structural unit represented by the general formula (8) and a polyimide precursor having a structural unit represented by the general formula (9), or
  • the copolymer of the structural unit represented by the general formula (8) and the structural unit represented by the general formula (9) has a high chemical resistance, a high resolution and a low void after a high-temperature storage test. It is particularly preferable from the viewpoint of.
  • R 1 , R 2 , and n 1 in one formula may be the same as R 1 , R 2 , and n 1 in the other formula, respectively. Or may be different.
  • A Preparation method
  • A a polyimide precursor of the polyimide precursor, first alcohol having a tetracarboxylic acid dianhydride containing tetravalent organic group X 1 described above, a photopolymerizable unsaturated double bond And optionally reacting with an alcohol having no unsaturated double bond to prepare a partially esterified tetracarboxylic acid (hereinafter also referred to as an acid / ester compound). and diamines containing valent organic group Y 1 can be obtained by engagement amide polycondensation.
  • (A) is preferably used to prepare a polyimide precursor, as the tetracarboxylic acid dianhydride containing tetravalent organic group X 1, tetracarboxylic represented by the above general formula (20)
  • Acid dianhydride for example, pyromellitic anhydride, diphenyl ether-3,3 ', 4,4'-tetracarboxylic dianhydride, benzophenone-3,3', 4,4'-tetracarboxylic dianhydride , 4,4'-oxydiphthalic dianhydride (ODPA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), diphenylsulfone-3,3', 4,4'- Tetracarboxylic dianhydride, diphenylmethane-3,3 ', 4,4'-tetracarboxylic dianhydride, 2,2-bis (3,
  • pyromellitic anhydride diphenyl ether-3,3 ', 4,4'-tetracarboxylic dianhydride, benzophenone-3,3', 4,4'-tetracarboxylic dianhydride, 4,4 ' -Oxydiphthalic dianhydride (ODPA) and 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), but are not limited thereto. These may be used alone, or two or more of them may be used in combination.
  • (A) alcohols having a photopolymerizable unsaturated double bond suitably used for preparing the polyimide precursor include, for example, 2-hydroxyethyl methacrylate (HEMA), Acryloyloxyethyl alcohol, 1-acryloyloxy-3-propyl alcohol, 2-acrylamidoethyl alcohol, methylol vinyl ketone, 2-hydroxyethyl vinyl ketone, 2-hydroxy-3-methoxypropyl acrylate, 2-hydroxy-3-butoxypropyl Acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2-hydroxy-3-butoxypropyl acrylate, 2-hydroxy-3-t-butoxypropyl acrylate, 2-hydroxy-3-cyclohexyloxypropyl Acrylate, 2-methacryloyloxyethyl alcohol, 1-methacryloyloxy-3-propyl alcohol, 2-methacrylamidoethyl alcohol, methylol vinyl ketone, 2-hydroxy-3-methoxypropyl acryl
  • Examples of the above-mentioned alcohols having a photopolymerizable unsaturated double bond include methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, 1-pentanol, 2-pentanol and 3-pentanol.
  • Neopentyl alcohol 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 3-octanol, 1-nonanol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol monomethyl Alcohols having no unsaturated double bond, such as ether, tetraethylene glycol monoethyl ether, and benzyl alcohol, may be used as a mixture.
  • the non-photosensitive polyimide precursor prepared only with the alcohol having no unsaturated double bond may be used by mixing with the photosensitive polyimide precursor.
  • the non-photosensitive polyimide precursor is preferably 200 parts by mass or less based on 100 parts by mass of the photosensitive polyimide precursor.
  • the above acid / ester (typically a solution in a solvent described below) is added to a suitable dehydrating condensing agent such as dicyclohexylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline under ice-cooling.
  • a suitable dehydrating condensing agent such as dicyclohexylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline under ice-cooling.
  • 1,1-carbonyldioxy-di-1,2,3-benzotriazole, N, N′-disuccinimidyl carbonate and the like are added and mixed to convert the acid / ester into a polyanhydride.
  • those diamines containing preferably a divalent organic group Y 1 used in this embodiment were separately dissolved or dispersed in a solvent is dropped on, by engaged amide polycondensation, to obtain a polyimide precursor of interest Can be.
  • the desired polyimide precursor is obtained by subjecting the acid / ester derivative to acid chloride with an acid moiety using thionyl chloride or the like, and then reacting with a diamine compound in the presence of a base such as pyridine. be able to.
  • the water-absorbing by-product of the dehydration condensing agent coexisting in the reaction solution is filtered off as necessary, and then a poor solvent such as water, an aliphatic lower alcohol, or a mixed solution thereof.
  • a poor solvent such as water, an aliphatic lower alcohol, or a mixed solution thereof.
  • the polymer component is added to the obtained polymer component to precipitate the polymer component, and the polymer is purified and vacuum-dried by repeating re-dissolution, re-precipitation, and the like. Let go.
  • the solution of the polymer may be passed through a column packed by swelling an anion and / or cation exchange resin with a suitable organic solvent to remove ionic impurities.
  • the molecular weight of the polyimide precursor (A) is preferably from 8,000 to 150,000, more preferably from 9,000 to 50,000, as measured by weight average molecular weight in terms of polystyrene by gel permeation chromatography. Is more preferable. When the weight average molecular weight is 8,000 or more, mechanical properties are good, and when it is 150,000 or less, dispersibility in a developing solution is good, and the resolution performance of a relief pattern is good. Tetrahydrofuran and N-methyl-2-pyrrolidone are recommended as developing solvents for gel permeation chromatography. The weight average molecular weight is determined from a calibration curve prepared using standard monodisperse polystyrene. It is recommended that standard monodisperse polystyrene be selected from Showa Denko Co., Ltd. ⁇ organic solvent-based standard sample ⁇ STANDARD SM-105.
  • the compound (B) used in the present embodiment contains at least one selected from a urethane bond and a urea bond in a molecular structure (hereinafter, in this embodiment, , "Urethane / urea compound”).
  • Other structures of the compound used in the present embodiment are not limited as long as the compound has a urethane bond and / or a urea bond in the molecular structure. Among them, it is preferable to have a urea bond from the viewpoint of suppressing Cu surface voids and chemical resistance.
  • the compound (B) preferably further has at least one functional group selected from the group consisting of a (meth) acryl group, a hydroxyl group, an alkoxy group, and an amino group.
  • the compound (B) according to this embodiment has good chemical resistance and resolution, but the present inventors consider as follows. That is, in one embodiment, since the negative photosensitive resin composition is cured by heating at a low temperature of 180 ° C. or lower, the conversion of the polyimide precursor to polyimide tends to be insufficient. On the other hand, the negative photosensitive resin composition of the present embodiment contains the urethane / urea compound (B), and a part of the compound (B) is thermally decomposed to generate an amine or the like. Believe that the conversion of the polyimide precursor to polyimide is promoted.
  • the compound (B) when the compound (B) further has a (meth) acryl group, particularly when the negative photosensitive resin composition is used, the compound (B) is exposed to light so that the compound (B) is in contact with a side chain portion of the polyimide precursor.
  • the conversion efficiency can be dramatically increased.
  • the (meth) acryl equivalent of the compound (B) is preferably from 150 to 400 g / mol.
  • the (meth) acrylic equivalent of the compound (B) is 150 g / mol or more, the chemical resistance of the negative photosensitive resin composition tends to be good. Tends to be good.
  • the lower limit of the (meth) acrylic equivalent of the compound (B) is more preferably at least 200 g / mol, at least 210 g / mol, at least 220 g / mol, at least 230 g / mol, even more preferably at least 240 g / mol, at least 250 g / mol.
  • the lower limit is more preferably 350 g / mol or less, 330 g / mol or less, and even more preferably 300 g / mol or less.
  • the (meth) acrylic equivalent of the compound (B) is even more preferably from 210 to 400 g / mol, and particularly preferably from 220 to 400 g / mol.
  • the urethane / urea compound (B) used in the present embodiment is preferably a (meth) acrylic group-containing urethane / urea compound having a structure represented by the following general formula (3).
  • R 3 is a hydrogen atom or a methyl group
  • A is one group selected from the group consisting of —O—, —NH—, and —NL 4 —
  • L 4 has 1 to 12 carbon atoms.
  • Z 1 is an m 2 valent organic group having 2 to 24 carbon atoms
  • Z 2 is a divalent organic group having 2 to 8 carbon atoms
  • m 2 is 1 to 2 It is an integer of 3.
  • R 3 is not limited as long as it is a hydrogen atom or a methyl group, but is preferably a methyl group from the viewpoint of developability.
  • Z 1 is not limited as long as m 2 divalent organic group having 2 to 20 carbon atoms.
  • Z 1 can also include a hetero atom such as an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom.
  • the carbon number of Z 1 is preferably 3 or more, more preferably 4 or more, preferably 18 or less, and more preferably 16 or less.
  • Z 2 is not limited as long as it is a divalent organic group having 2 to 8 carbon atoms.
  • Z 2 can also include a hetero atom such as an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom.
  • the carbon number of Z 2 is preferably 6 or less, more preferably 4 or less.
  • A is one group selected from the group consisting of —O—, —NH—, and —NL 4 —. From the viewpoint of chemical resistance, A is -NH- or -NL 4 - are preferred.
  • the method for producing the (meth) acrylic group-containing urea / urethane compound of the general formula (3) is not particularly limited. For example, by reacting an isocyanate compound represented by the following general formula with an amine and / or a hydroxyl group-containing compound. Obtainable.
  • the compounds (B) described above from the viewpoints of chemical resistance, void suppression and developability, they are selected from the group consisting of the following formulas (4) to (7) and (11) to (14). At least one compound is particularly preferred.
  • the compounds represented by the following formulas (4) to (7) and (11) to (14) are also one embodiment of the present invention.
  • the urethane / urea compound (B) of the present embodiment preferably further has at least one kind of functional group selected from the group consisting of a hydroxyl group, an alkoxy group, and an amino group.
  • the urethane / urea compound of the present embodiment contains at least one selected from the group consisting of a hydroxyl group, an alkoxy group, and an amino group, so that, for example, a mold resin used in a fan-out type semiconductor package according to one embodiment Tend to have good adhesion.
  • the present inventors think as follows. That is, in one embodiment, the negative photosensitive resin composition is cured by heating at a low temperature of 180 ° C. or lower.
  • the epoxy resin contained in the mold resin used for the fan-out type semiconductor package has an epoxy structure without partially opening the ring, and the epoxy structure has a urethane / urea compound (B ) Tend to interact with the hydroxyl group, alkoxy group, amino group and the like contained in the above.
  • the urethane / urea structure contained in the compound (B) interacts with the polyimide resin to exhibit high adhesion to the mold resin.
  • these functional groups a hydroxyl group and an alkoxy group are preferable, and a hydroxyl group is particularly preferable.
  • the compound (B) may have a (meth) acryl group and a hydroxyl group in the molecular structure in addition to the urethane / urea structure. preferable.
  • the alkoxy group is more preferably an alkoxy group having 1 to 10 carbon atoms such as a methoxy group, an ethoxy group and a propoxy group.
  • alkoxy group having 1 to 10 carbon atoms such as a methoxy group, an ethoxy group and a propoxy group.
  • the compounding amount of the compound (B) is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of the polyimide precursor (A).
  • the compounding amount of the above (B) is 0.1 part by mass or more from the viewpoint of photosensitivity or patterning property, and 30 parts by mass or less from the viewpoint of physical properties of the photosensitive resin layer after curing of the negative photosensitive resin composition. It is.
  • the photopolymerization initiator is preferably a photoradical polymerization initiator.
  • the photo-radical polymerization initiator include benzophenone derivatives such as benzophenone, methyl o-benzoylbenzoate, 4-benzoyl-4′-methyldiphenylketone, dibenzylketone, and fluorenone; 2,2′-diethoxyacetophenone; Acetophenone derivatives such as hydroxy-2-methylpropiophenone and 1-hydroxycyclohexylphenyl ketone; thioxanthone derivatives such as thioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone and diethylthioxanthone, benzyl, benzyldimethylketal, and benzyl- ⁇ Benzyl derivatives such as -methoxyethyl acetal; benzoin derivatives such as benzoin and benzoin
  • the amount of the photopolymerization initiator (C) is preferably from 0.1 to 20 parts by mass, more preferably from 1 to 8 parts by mass, based on 100 parts by mass of the polyimide precursor (A). It is.
  • the compounding amount is 0.1 part by mass or more from the viewpoint of photosensitivity or patterning property, and is 20 parts by mass or less from the viewpoint of the physical properties of the photosensitive resin layer after curing of the negative photosensitive resin composition.
  • the negative photosensitive resin composition of the present embodiment can further include a rust preventive agent.
  • the rust preventive is not limited as long as the metal can be rust-proofed, and examples thereof include a nitrogen-containing heterocyclic compound.
  • examples of the nitrogen-containing heterocyclic compound include an azole compound and a purine derivative.
  • azole compound 1H-triazole, 5-methyl-1H-triazole, 5-ethyl-1H-triazole, 4,5-dimethyl-1H-triazole, 5-phenyl-1H-triazole, 4-t-butyl-5 -Phenyl-1H-triazole, 5-hydroxyphenyl-1H-triazole, phenyltriazole, p-ethoxyphenyltriazole, 5-phenyl-1- (2-dimethylaminoethyl) triazole, 5-benzyl-1H-triazole, hydroxyphenyl Triazole, 1,5-dimethyltriazole, 4,5-diethyl-1H-triazole, 1H-benzotriazole, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5- Bis ( ⁇ , ⁇ -dimethyl Benzyl) phenyl] -benzotriazole, 2- (3,5-di-t-butyl-2-
  • azole compound particularly preferred are tolyltriazole, 5-methyl-1H-benzotriazole and 4-methyl-1H-benzotriazole. These azole compounds may be used alone or in a combination of two or more.
  • Purine derivatives include purine, adenine, guanine, hypoxanthine, xanthine, theobromine, caffeine, uric acid, isoguanine, 2,6-diaminopurine, 9-methyladenine, 2-hydroxyadenine, 2-methyladenine, 1-methyl Adenine, N-methyladenine, N, N-dimethyladenine, 2-fluoroadenine, 9- (2-hydroxyethyl) adenine, guanine oxime, N- (2-hydroxyethyl) adenine, 8-aminoadenine, 6-amino -8-phenyl-9H-purine, 1-ethyladenine, 6-ethylaminopurine, 1-benzyladenine, N-methylguanine, 7- (2-hydroxyethyl) guanine, N- (3-chlorophenyl) guanine, N -(3-ethylphenyl) guanine, 2-aza
  • the compounding amount is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the polyimide precursor (A). From the viewpoint of characteristics, 0.1 to 5 parts by mass is more preferable.
  • the compounding amount of the azole compound with respect to 100 parts by mass of the (A) polyimide precursor is 0.05 parts by mass or more, when the negative photosensitive resin composition of the present embodiment is formed on copper or a copper alloy, Discoloration of the copper or copper alloy surface is suppressed, and when the amount of the azole compound is 5 parts by mass or less, the photosensitivity is excellent.
  • the negative photosensitive resin composition of the present embodiment contains (D) a rust preventive, the formation of voids in the Cu layer is particularly suppressed.
  • the rust inhibitor present on the Cu surface interacts with the (meth) acrylic group, hydroxyl group, alkoxy group, or amino group contained in the preferred embodiment of the urethane / urea compound. It is considered that a dense layer is formed near the Cu interface.
  • the negative photosensitive resin composition of the present embodiment can further include a silane coupling agent.
  • silane coupling agents include ⁇ -aminopropyldimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, -Methacryloxypropyldimethoxymethylsilane, 3-methacryloxypropyltrimethoxysilane, dimethoxymethyl-3-piperidinopropylsilane, diethoxy-3-glycidoxypropylmethylsilane, N- (3-diethoxymethylsilylpropyl) Succinimide, N- [3- (triethoxysilyl) propyl] phthalamic acid, benzophenone-3,3'-bis (N- [3-triethoxysilyl) prop
  • silane coupling agent 3-mercaptopropyltrimethoxysilane (trade name: KBM803, manufactured by Shin-Etsu Chemical Co., Ltd .; trade name: Silaace S810, manufactured by Chisso Corporation), 3-mercaptopropyltriethoxysilane ( AZMAX Co., Ltd .: trade name SIM6475.0), 3-mercaptopropylmethyldimethoxysilane (Shin-Etsu Chemical Co., Ltd .: tradename LS1375, AZMAX Co., Ltd .: trade name SIM6474.0), mercaptomethyltrimethoxysilane (AZMAX) Co., Ltd .: trade name SIM6473.5C), mercaptomethylmethyldimethoxysilane (Azmax Co., Ltd .: tradename SIM6473.0), 3-mercaptopropyldiethoxymethoxysilane, 3-methyl Captopropylethoxydimethoxysilane, 3-
  • silane coupling agent among the above silane coupling agents, from the viewpoint of storage stability, phenylsilanetriol, trimethoxyphenylsilane, trimethoxy (p-tolyl) silane, diphenylsilanediol, dimethoxydiphenylsilane, diethoxy Diphenylsilane, dimethoxydi-p-tolylsilane, triphenylsilanol, and a silane coupling agent having a structure represented by the following formula are preferable.
  • the compounding amount is preferably 0.1 to 20 parts by mass based on 100 parts by mass of the polyimide precursor (A).
  • the negative photosensitive resin composition of this embodiment contains (E) a silane coupling agent, the formation of voids in the Cu layer is particularly suppressed.
  • the interaction between the silane coupling agent unevenly distributed on the Cu surface and the (meth) acryl group, hydroxyl group, alkoxy group, or amino group contained in the preferred embodiment of the urethane / urea compound is performed. It is considered that a dense layer is formed near the Cu interface.
  • the negative photosensitive resin composition of the present embodiment may further contain components other than the above components (A) to (E).
  • Components other than components (A) to (E) include, but are not limited to, solvents, hindered phenol compounds, organic titanium compounds, sensitizers, photopolymerizable unsaturated monomers, thermal polymerization inhibitors, and the like.
  • solvents examples include amides, sulfoxides, ureas, ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons, and alcohols. More specifically, for example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, tetramethylurea, acetone, methylethylketone, methyl Isobutyl ketone, cyclopentanone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate, ethyl lactate, methyl lactate, butyl lactate, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, benzyl alcohol, phenyl Glycol
  • N-methyl-2-pyrrolidone, dimethylsulfoxide, tetramethylurea, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene are preferred from the viewpoints of the solubility of the resin, the stability of the resin composition, and the adhesion to the substrate.
  • Glycol monomethyl ether acetate, propylene glycol monomethyl ether, diethylene glycol dimethyl ether, benzyl alcohol, phenyl glycol, and tetrahydrofurfuryl alcohol are preferred.
  • the amount of the solvent to be used is preferably 100 to 1000 parts by mass, more preferably 120 to 700 parts by mass, per 100 parts by mass of the polyimide precursor (A). And more preferably in the range of 125 to 500 parts by mass.
  • the negative photosensitive resin composition may optionally contain a hindered phenol compound.
  • Hindered phenol compounds include 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-hydroquinone, octadecyl-3- (3,5-di-t-butyl-4 -Hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 4,4′-methylenebis (2,6-di-t-butylphenol), 4, 4'-thio-bis (3-methyl-6-t-butylphenol), 4,4'-butylidene-bis (3-methyl-6-t-butylphenol), triethylene glycol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol
  • 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H ) -Trione and the like are particularly preferred.
  • the compounding amount of the hindered phenol compound is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polyimide precursor (A), and is 0.5 to 10 parts by mass from the viewpoint of photosensitivity characteristics. Is more preferred.
  • the amount of the hindered phenol compound is 0.1 parts by mass or more based on 100 parts by mass of the polyimide precursor (A), for example, when the photosensitive resin composition of the present invention is formed on copper or a copper alloy, Discoloration and corrosion of copper or a copper alloy are prevented, and when the amount is 20 parts by mass or less, the photosensitivity is excellent.
  • the negative photosensitive resin composition of the present embodiment may contain an organic titanium compound.
  • an organic titanium compound By containing the organic titanium compound, a photosensitive resin layer having excellent chemical resistance can be formed even when cured at a low temperature.
  • Usable organic titanium compounds include those in which an organic chemical substance is bonded to a titanium atom through a covalent bond or an ionic bond. Specific examples of the organic titanium compound are shown in the following I) to VII): I) Titanium chelate compound: Among them, a titanium chelate having two or more alkoxy groups is more preferable, since storage stability of the negative photosensitive resin composition and a good pattern can be obtained.
  • titanium bis (triethanolamine) diisopropoxide titanium di (n-butoxide) bis (2,4-pentanedionate, titanium diisopropoxide bis (2,4-pentanedionate) , Titanium diisopropoxide bis (tetramethylheptane dionate), titanium diisopropoxide bis (ethyl acetoacetate) and the like.
  • Tetraalkoxytitanium compound For example, titanium tetra (n-butoxide), titanium tetraethoxide, titanium tetra (2-ethylhexoxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide , Titanium tetramethoxypropoxide, titanium tetramethylphenoxide, titanium tetra (n-noniloxide), titanium tetra (n-propoxide), titanium tetrastearyloxide, titanium tetrakis [bis ⁇ 2,2- (allyloxymethyl) Butoxide, etc.].
  • Titanocene compounds for example, pentamethylcyclopentadienyltitanium trimethoxide, bis ( ⁇ 5-2,4-cyclopentadien-1-yl) bis (2,6-difluorophenyl) titanium, bis ( ⁇ 5-2, 4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl) titanium and the like.
  • Monoalkoxy titanium compound For example, titanium tris (dioctyl phosphate) isopropoxide, titanium tris (dodecylbenzenesulfonate) isopropoxide and the like.
  • Titanium oxide compound For example, titanium oxide bis (pentanedionate), titanium oxide bis (tetramethylheptanedionate), phthalocyanine titanium oxide and the like.
  • the organic titanium compound is preferably at least one compound selected from the group consisting of the above-mentioned I) a titanium chelate compound, II) a tetraalkoxytitanium compound, and III) a titanocene compound, whereby better chemical resistance is exhibited. It is preferable from the viewpoint of.
  • titanium diisopropoxide bis (ethylacetoacetate), titanium tetra (n-butoxide), and bis ( ⁇ 5-2,4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H -Pyrrol-1-yl) phenyl) titanium is preferred.
  • the amount of the organic titanium compound to be added is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 2 parts by mass, based on 100 parts by mass of the polyimide precursor (A).
  • the compounding amount of the organic titanium compound is 0.05 parts by mass or more, good heat resistance and chemical resistance are exhibited, and when it is 10 parts by mass or less, storage stability is excellent.
  • the negative photosensitive resin composition of the present embodiment may optionally contain a sensitizer in order to improve photosensitivity.
  • the sensitizer include Michler's ketone, 4,4'-bis (diethylamino) benzophenone, 2,5-bis (4'-diethylaminobenzal) cyclopentane, and 2,6-bis (4'-diethylaminobenzal) Cyclohexanone, 2,6-bis (4'-diethylaminobenzal) -4-methylcyclohexanone, 4,4'-bis (dimethylamino) chalcone, 4,4'-bis (diethylamino) chalcone, p-dimethylaminocinnamyl Denindanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylbiphenylene) -benzothiazole, 2- (p-dimethylaminophenylvinylene) benzothi
  • the compounding amount is preferably 0.1 to 25 parts by mass with respect to 100 parts by mass of the polyimide precursor (A).
  • the negative photosensitive resin composition may optionally contain a monomer having a photopolymerizable unsaturated bond (photopolymerizable unsaturated monomer) in order to improve the resolution of the relief pattern.
  • a monomer having a photopolymerizable unsaturated bond photopolymerizable unsaturated monomer
  • a (meth) acrylic compound which undergoes a radical polymerization reaction with a photopolymerization initiator is preferable, and is not particularly limited to ethylene glycol or polyethylene such as diethylene glycol dimethacrylate and tetraethylene glycol dimethacrylate.
  • Glycol mono- or diacrylates and methacrylates propylene glycol or polypropylene glycol mono- or diacrylates and methacrylates, glycerol mono-, di- or triacrylates and methacrylates, cyclohexane diacrylate and dimethacrylate, 1,4-butanediol diacrylate and Dimethacrylate, 1,6-hexanediol diacrylate and dimethacrylate, neopentyl glycol diacrylate And dimethacrylate, mono or diacrylate and methacrylate of bisphenol A, benzene trimethacrylate, isobornyl acrylate and methacrylate, acrylamide and its derivatives, methacrylamide and its derivatives, trimethylolpropane triacrylate and methacrylate, glycerol di or Examples include triacrylate and methacrylate, pentaerythritol di, tri, or tetraacrylate and methacrylate, and compounds such
  • the amount thereof is preferably 1 to 50 parts by mass based on 100 parts by mass of the polyimide precursor (A).
  • Thermal polymerization inhibitor The negative photosensitive resin composition of the present embodiment is, in particular, in order to improve the stability of the viscosity and photosensitivity of the negative photosensitive resin composition during storage in the state of a solution containing a solvent, A thermal polymerization inhibitor may optionally be included.
  • thermal polymerization inhibitor examples include hydroquinone, N-nitrosodiphenylamine, p-tert-butylcatechol, phenothiazine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, glycol ether diaminetetraacetic acid, 2,6 -Di-tert-butyl-p-methylphenol, 5-nitroso-8-hydroxyquinoline, 1-nitroso-2-naphthol, 2-nitroso-1-naphthol, 2-nitroso-5- (N-ethyl-N- Sulfopropylamino) phenol, N-nitroso-N-phenylhydroxylamine ammonium salt, N-nitroso-N (1-naphthyl) hydroxylamine ammonium salt and the like are used.
  • the method for producing the cured relief pattern of the present embodiment includes: (1) a step of applying the above-mentioned negative photosensitive resin composition of the present embodiment on a substrate to form a photosensitive resin layer on the substrate; (2) exposing the photosensitive resin layer to light; (3) developing the photosensitive resin layer after exposure to form a relief pattern; (4) a step of heat-treating the relief pattern to form a cured relief pattern.
  • Photosensitive resin layer forming step the negative photosensitive resin composition of the present embodiment is applied on a substrate, and then dried as necessary to form a photosensitive resin layer.
  • a coating method a method conventionally used for coating a photosensitive resin composition, for example, a method of coating with a spin coater, a bar coater, a blade coater, a curtain coater, a screen printing machine, and the like, and a spray coating with a spray coater And the like.
  • the coating film containing the photosensitive resin composition can be dried.
  • a drying method a method such as air drying, heat drying using an oven or a hot plate, and vacuum drying is used. Specifically, when air drying or heat drying is performed, drying can be performed at 20 ° C. to 140 ° C. for 1 minute to 1 hour. Thus, a photosensitive resin layer can be formed on the substrate.
  • Exposure Step the photosensitive resin layer formed above is exposed with an ultraviolet light source or the like.
  • an exposure apparatus such as a contact aligner, a mirror projection, and a stepper can be used. Exposure can be via a patterned photomask or reticle or directly.
  • a post-exposure bake (PEB) and / or a pre-development bake may be applied as necessary, for any purpose, such as improvement of photosensitivity, at any combination of temperature and time.
  • the range of the baking conditions is preferably such that the temperature is 40 ° C. to 120 ° C. and the time is 10 seconds to 240 seconds. Not limited to range.
  • the unexposed portion of the exposed photosensitive resin layer is developed and removed from the substrate, thereby leaving a relief pattern on the substrate.
  • a developing method for developing the photosensitive resin layer after exposure any of the conventionally known methods for developing a photoresist, for example, a rotary spray method, a paddle method, a dipping method involving ultrasonic treatment, and the like can be used. Method can be selected and used.
  • a post-development bake may be performed as necessary, using any combination of temperature and time for the purpose of adjusting the shape of the relief pattern.
  • a good solvent for the negative photosensitive resin composition or a combination of the good solvent and the poor solvent is preferable.
  • good solvents include N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N, N-dimethylacetamide, cyclopentanone, cyclohexanone, ⁇ -butyrolactone, and ⁇ -acetyl- ⁇ -butyrolactone.
  • Preferred examples of the poor solvent include toluene, xylene, methanol, ethanol, isopropyl alcohol, ethyl lactate, propylene glycol methyl ether acetate, and water.
  • each solvent may be used in combination of two or more kinds, for example, several kinds.
  • Step of forming cured relief pattern the relief pattern obtained by the above-described development is heated to disperse the photosensitive components, and (A) the polyimide precursor is imidized to obtain a cured relief made of polyimide. Convert to a pattern.
  • a method of heat curing various methods can be selected, for example, a method using a hot plate, a method using an oven, and a method using a temperature rising oven capable of setting a temperature program. The heating can be performed, for example, at 170 ° C. to 400 ° C. for 30 minutes to 5 hours. Air may be used as the atmosphere gas at the time of heat curing, and an inert gas such as nitrogen or argon may be used.
  • ⁇ Polyimide> The structure of the polyimide contained in the cured relief pattern formed from the polyimide precursor composition is represented by the following general formula (10). ⁇ In the general formula (10), X 1 and Y 1 in formula (1) is the same as X 1 and Y 1 in, m is a positive integer. ⁇
  • Preferred X 1 and Y 1 in the general formula (1) are also preferable in the polyimide of the general formula (10) for the same reason.
  • the number m of repeating units in the general formula (10) is not particularly limited, but may be an integer of 2 to 150.
  • a method for producing a polyimide including a step of converting the negative photosensitive resin composition described above into a polyimide is also one embodiment of the present invention.
  • a semiconductor device having a cured relief pattern obtained by the above-described method for producing a cured relief pattern is also provided. Therefore, it is possible to provide a semiconductor device having a substrate that is a semiconductor element and a cured polyimide relief pattern formed on the substrate by the above-described method for producing a cured relief pattern.
  • the present invention is also applicable to a method of manufacturing a semiconductor device using a semiconductor element as a base material and including the above-described method of manufacturing a cured relief pattern as a part of the process.
  • the semiconductor device of the present invention is a semiconductor device having a cured relief pattern formed by the above-described method for producing a cured relief pattern, a surface protective film, an interlayer insulating film, an insulating film for rewiring, a protective film for a flip chip device, or a bump structure. And can be manufactured by combining with a known method for manufacturing a semiconductor device.
  • a display device including a display element and a cured film provided on the display element, wherein the cured film has the above-described cured relief pattern.
  • the cured relief pattern may be laminated in direct contact with the display element, or may be laminated with another layer interposed therebetween.
  • a surface protective film, an insulating film, and a flattening film of a TFT liquid crystal display element and a color filter element a projection for an MVA liquid crystal display device, and a partition for an organic EL element cathode can be given. .
  • the negative photosensitive resin composition of the present invention is applicable to semiconductor devices as described above, as well as applications such as interlayer insulation of multilayer circuits, cover coats of flexible copper-clad boards, solder resist films, and liquid crystal alignment films. Is also useful.
  • Weight average molecular weight The weight average molecular weight (Mw) of each resin was measured using gel permeation chromatography (standard polystyrene conversion) under the following conditions.
  • Standard monodispersed polystyrene Shodex STANDARD SM-105 manufactured by Showa Denko KK
  • Mobile phase 0.1 mol / L LiBr / N-methyl-2-pyrrolidone (NMP)
  • the coating film was irradiated with energy of 500 mJ / cm 2 by Prisma GHI (Ultratech) using a mask with a test pattern.
  • the coating film is spray-developed with a coater developer (D-Spin60A type, manufactured by Sokudo) using cyclopentanone as a developing solution, and rinsed with propylene glycol methyl ether acetate to form a relief pattern on Cu.
  • the wafer having the relief pattern formed on Cu is subjected to a heat treatment at a curing temperature shown in Table 1 for 2 hours in a nitrogen atmosphere by using a temperature-rising programmed curing furnace (Model VF-2000, manufactured by Koyo Lindberg).
  • a cured relief pattern made of a resin having a thickness of about 4 to 5 ⁇ m was obtained on Cu.
  • the evaluation criteria were “excellent” when no cracks or the like occurred and the rate of change in film thickness was 10% or less based on the film thickness before chemical immersion. % Or more and 20% or less were rated as “OK”, and those with cracks or with a change in film thickness of more than 20% were rated as "Fail”.
  • Adhesion test with sealing material R4000 series manufactured by Nagase Chemtex was prepared as an epoxy-based sealing material.
  • An encapsulant was spin-coated on an aluminum sputtered silicon wafer to a thickness of about 150 microns, and thermally cured at 130 ° C. to cure the epoxy-based encapsulant.
  • the photosensitive resin composition prepared in each of Examples and Comparative Examples was applied on the epoxy-based cured film so that the final film thickness became 10 ⁇ m.
  • the entire surface of the applied photosensitive resin composition was exposed using an aligner (PLA-501F, manufactured by Canon Inc.) with a ghi line having an exposure amount of 600 mJ / cm 2 . Thereafter, the composition was thermally cured at 180 ° C. for 2 hours to form a first-layer cured film having a thickness of 10 ⁇ m.
  • the obtained reaction solution was added to 3 L of ethyl alcohol to produce a precipitate composed of a crude polymer.
  • the resulting crude polymer was separated by filtration and dissolved in 1.5 L of tetrahydrofuran to obtain a crude polymer solution.
  • the obtained crude polymer solution was dropped into 28 L of water to precipitate the polymer, and the obtained precipitate was separated by filtration and vacuum dried to obtain a powdery polymer (Polymer A-1).
  • the molecular weight of the polymer (A-1) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 20,000.
  • Production Example 2 (A) Synthesis of polymer A-2 as a polyimide precursor The reaction was carried out in the same manner as in Production Example 1 described above, except that 147.1 g of '-biphenyltetracarboxylic dianhydride (BPDA) was used, to obtain a polymer (A-2). The molecular weight of the polymer (A-2) was measured by gel permeation chromatography (standard polystyrene conversion), and the weight average molecular weight (Mw) was 22,000.
  • BPDA '-biphenyltetracarboxylic dianhydride
  • Production Example 3 (A) Synthesis of Polymer A-3 as Polyimide Precursor In place of 93.0 g of 4,4′-oxydianiline (ODA) in Production Example 1, 2,2′-dimethylbiphenyl-4, The reaction was carried out in the same manner as in Production Example 1 described above, except that 98.6 g of 4′-diamine (m-TB) was used, to obtain a polymer (A-3).
  • the molecular weight of the polymer (A-3) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 21,000.
  • Production Example 4 (A) Synthesis of polymer A-4 as polyimide precursor Except that p-phenylenediamine (50.3 g) was used instead of 4,4′-oxydianiline (ODA) in Production Example 1 was reacted in the same manner as in the above-mentioned Production Example 1 to obtain a polymer (A-3).
  • the molecular weight of the polymer (A-3) was measured by gel permeation chromatography (in terms of standard polystyrene), and the weight average molecular weight (Mw) was 18,000.
  • Example 1 Method for Producing MOI-D (Compound B-1) 55.1 g (0.25 mol) of diethylene glycol bis (3-aminopropyl) ether was charged into a 500 mL separable flask, and 150 mL of tetrahydrofuran was added, followed by stirring at room temperature. Next, a solution prepared by adding 150 mL of tetrahydrofuran to 77.6 g (0.50 mol) of 2-methacryloyloxyethyl isocyanate (manufactured by Showa Denko KK, product name: Karenz MOI) was added to the flask under ice cooling for 30 minutes. The mixture was added dropwise and stirred at room temperature for 5 hours. Thereafter, tetrahydrofuran was distilled off using a rotary evaporator to obtain a compound B-1. The methacryl equivalent of compound B-1 was 265 g / mol.
  • Example 2 Method for producing MOI-AP (Compound B-2)
  • Example 1 was repeated except that 55.1 g of diethylene glycol bis (3-aminopropyl) ether was replaced with 51.1 g (0.25 mol) of 1,4-butanediol bis (3-aminopropyl ether).
  • Compound B-2 was obtained in the same manner as above.
  • the methacryl equivalent of compound B-2 was 257 g / mol.
  • Example 3 Method for Producing MOI-ODA Compound B-3 was obtained in the same manner as in Example 1, except that 55.1 g (0.25 mol) of ODA was replaced with 55.1 g of diethylene glycol bis (3-aminopropyl) ether. Was. The methacryl equivalent of compound B-3 was 255 g / mol.
  • Example 4 Method for producing MOI-DEtA (Compound B-4)
  • 55.1 g of diethylene glycol bis (3-aminopropyl) ether was replaced with 26.3 g (0.25 mol) of diethanolamine, and 2-methacryloyloxyethyl isocyanate (product name: Karenz MOI) 77, manufactured by Showa Denko KK
  • Compound B-4 was obtained in the same manner as in Example 1, except that 3.6 g was replaced with 38.8 g (0.25 mol).
  • the methacryl equivalent of compound B-4 was 260 g / mol.
  • Example 5 Method for Producing MOI-EG-MOI (Compound B-5)
  • 77.6 g of 2-methacryloyloxyethyl isocyanate manufactured by Showa Denko KK, product name: Karenz MOI
  • 99.6 g (0.50 mol) of 2- (2-isocyanatoethyloxy) ethyl methacrylate was replaced with 99.6 g (0.50 mol) of 2- (2-isocyanatoethyloxy) ethyl methacrylate.
  • Compound B-5 was obtained in the same manner as in Example 1 except for the above.
  • the methacryl equivalent of compound B-5 was 309 g / mol.
  • Example 6 Method for Producing MOI-DEA (Compound B-6) 55.1 g (0.25 mol) of N-phenyldiethanolamine was placed in a 500 mL three-neck eggplant-shaped flask, and 100 mL of propylene glycol monomethyl ether acetate was added, followed by stirring at room temperature. Further, 150 mL of propylene glycol monomethyl ether acetate was added to 77.6 g (0.50 mol) of 2-methacryloyloxyethyl isocyanate (product of Showa Denko KK, product name: Karenz MOI). Then, the temperature of the flask was raised to 120 ° C. in an oil bath, stirred at 120 ° C.
  • 2-methacryloyloxyethyl isocyanate product of Showa Denko KK, product name: Karenz MOI
  • Example 8 Method for Producing MOI-DOA (Compound B-8)
  • 25.1 g (0.25 mol) of di-n-octylamine was replaced by 55.1 g of diethylene glycol bis (3-aminopropyl) ether, and 2-methacryloyloxyethyl isocyanate (product name of Showa Denko KK Compound No. B-8 was obtained in the same manner as in Example 1, except that 37.6 g (0.25 mol) was used instead of 77.6 g (Karenz MOI).
  • the methacryl equivalent of compound B-8 was 397 g / mol.
  • Example 9 Method for Producing BEI-DEtA (Compound B-9) 26.3 g (0.25 mol) of diethanolamine was placed in a separable flask having a capacity of 500 mL, and 150 mL of tetrahydrofuran was added and stirred at room temperature. Next, a solution prepared by adding 150 mL of tetrahydrofuran to 59.8 g (0.25 mol) of 1,1- (bisacryloyloxymethyl) ethyl isocyanate (manufactured by Showa Denko KK, product name: Karenz BEI) under ice cooling for 30 minutes. The mixture was dropped into the flask and stirred at room temperature for 5 hours. Thereafter, tetrahydrofuran was distilled off using a rotary evaporator to obtain a compound B-9. The acrylic equivalent of compound B-9 was 172 g / mol.
  • Example 10 Method for Producing BEI-BHEA (Compound B-10)
  • diethanolamine 26.3 g (0.25 mol) was replaced with 37.1 g (0.25 mol) of N, N'-bis (2-hydroxyethyl) ethylenediamine, and 1,1- (bisacryloyloxymethyl) was used.
  • Compound B-10 was obtained in the same manner as in Example 9, except that 59.8 g (0.25 mol) of ethyl isocyanate was replaced with 119.6 g (0.50 mol).
  • the acrylic equivalent of compound B-10 was 157 g / mol.
  • Example 12 (Compound B-12) Synthesis was carried out in the same manner as in Example 11, except that 2.10 g (0.020 mol) of diethanolamine was replaced by 2.10 g (0.020 mol) of 2- (2-aminoethoxy) ethanol. Compound B-12 was obtained.
  • Example 13 (Compound B-13) The compound was synthesized in the same manner as in Example 11 except that 2.10 g (0.020 mol) of diethanolamine was replaced by 2.66 g (0.020 mol) of bis (2-methoxyethyl) amine. B-13 was obtained.
  • a negative photosensitive resin composition was prepared by the following method, and the prepared composition was evaluated.
  • the viscosity of the resulting solution was adjusted to about 30 poise by further adding a small amount of GBL to obtain a negative photosensitive resin composition.
  • the composition was evaluated according to the method described above. Table 1 shows the results.
  • Example 15 to 26 A negative photosensitive resin composition was prepared in the same manner as in Example 14 except that the composition was prepared as shown in Table 1, and evaluated according to the above-mentioned method. Table 1 shows the results.
  • a negative photosensitive resin composition was prepared by the following method, and the prepared composition was evaluated.
  • the viscosity of the resulting solution was adjusted to about 30 poise by further adding a small amount of GBL to obtain a negative photosensitive resin composition.
  • the composition was evaluated according to the method described above. Table 2 shows the results.
  • Example 28 to 36 A negative photosensitive resin composition was prepared in the same manner as in Example 14 except that the composition was prepared at the compounding ratio shown in Table 2, and evaluated according to the method described above. Table 1 shows the results.
  • a negative photosensitive resin composition was prepared by the following method, and the prepared composition was evaluated.
  • the composition was evaluated according to the method described above. Table 2 shows the results.
  • Example 38 A negative photosensitive resin composition was prepared in the same manner as in Example 24 except that polymer A-4 was used instead of polymer A-3, and evaluated in accordance with the above-mentioned method. Table 2 shows the results.
  • the compounds (B-1 to B-13) and the photosensitizer (C-1) described in Table 1 are the following compounds, respectively.
  • the negative photosensitive resin composition according to the present invention it is possible to obtain a cured relief pattern having high chemical resistance and resolution, and to suppress generation of voids on the Cu surface.
  • the present invention can be suitably used in the field of photosensitive materials useful for manufacturing electric and electronic materials such as semiconductor devices and multilayer wiring boards.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

高い耐薬品性および解像度が得られ、高温保存試験後、Cu層の樹脂層に接する界面でボイドの発生を抑制することができるネガ型感光性樹脂組成物、及びこれを用いた硬化レリーフパターンの形成方法を提供する。(A)以下の一般式(1)で表されるポリイミド前駆体;(B)ウレタン結合、及びウレア結合から選択される少なくとも1種を含む化合物;並びに(C)光重合開始剤を含む、ネガ型感光性樹脂組成物が提供される。式中、X、Y、n、R及びRは、それぞれ本願明細書中に定義される。

Description

ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法
 本発明は、ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法に関するものである。
 従来、電子部品の絶縁材料、及び半導体装置のパッシベーション膜、表面保護膜、層間絶縁膜等には、優れた耐熱性、電気特性及び機械特性を併せ持つポリイミド樹脂、ポリベンゾオキサゾール樹脂、フェノール樹脂等が用いられている。これらの樹脂の中でも、感光性樹脂組成物の形態で提供されるものは、該組成物の塗布、露光、現像、及び硬化による熱イミド化処理によって、耐熱性のレリーフパターン皮膜を容易に形成することができる。このような感光性樹脂組成物は、従来の非感光型材料に比べて、大幅な工程短縮を可能にするという特徴を有している。
 ところで、半導体装置(以下、「素子」ともいう。)は、目的に合わせて、様々な方法でプリント基板に実装される。従来の素子は、素子の外部端子(パッド)からリードフレームまで細いワイヤで接続するワイヤボンディング法により作製されることが一般的であった。しかしながら、近年では、素子の高速化が進み、動作周波数がGHzまで到達したため、実装における各端子の配線長さの違いが、素子の動作に影響を及ぼすようになった。そのため、ハイエンド用途の素子の実装では、実装配線の長さを正確に制御する必要が生じ、ワイヤボンディングではその要求を満たすことが困難となった。
 したがって、半導体チップの表面に再配線層を形成し、その上にバンプ(電極)を形成した後、該チップを裏返して、プリント基板に直接実装する、フリップチップ実装が提案されている(例えば特許文献1参照)。このフリップチップ実装では、配線距離を正確に制御できるため、高速な信号を取り扱うハイエンド用途の素子に、又は実装サイズの小ささから携帯電話等に、それぞれ採用され、需要が急拡大している。フリップチップ実装にポリイミド、ポリベンゾオキサゾール、フェノール樹脂等の材料を使用する場合、該樹脂層のパターンが形成された後に、金属配線層形成工程を経る。金属配線層は、通常、樹脂層表面をプラズマエッチングして表面を粗化した後、メッキのシード層となる金属層を、1μm以下の厚みでスパッタにより形成し、その金属層を電極として電解メッキを行うことにより形成される。このとき、一般に、シード層となる金属としてはチタン(Ti)が、電解メッキにより形成される再配線層の金属としては銅(Cu)が用いられる。
 このような金属再配線層について、信頼性試験後に再配線された金属層と樹脂層との密着性が高いことが求められる。信頼性試験としては、例えば、空気中、125℃以上の高温で100時間以上保存する、高温保存試験;配線を組んで電圧を印加しながら、空気中で、125℃程度の温度で100時間以上に亘る保存下での動作を確認する、高温動作試験;空気中で、-65℃~-40℃程度の低温状態と、125℃~150℃程度の高温状態とをサイクルで行き来させる、温度サイクル試験;85℃以上の温度で湿度85%以上の水蒸気雰囲気下で保存する、高温高湿保存試験;高温高湿保存試験と同じ試験を、配線を組んで電圧を印加しながら行なう、高温高湿バイアス試験;並びに空気中又は窒素下で260℃のはんだリフロー炉を複数回通過させる、はんだリフロー試験等を挙げることができる。
特開2001-338947号公報
 しかしながら、従来、上記信頼性試験の中で、高温保存試験の場合、試験後、再配線されたCu層の、樹脂層に接する界面でボイドが発生する、という問題があった。Cu層と樹脂層との界面でボイドが発生すると、両者の密着性が低下してしまう。
 ボイドの問題に加えて、金属再配線層には耐薬品性が求められ、また、微細化要求も大きくなっている。このため、特に半導体の再配線層の形成に用いられる感光性樹脂組成物には、ボイドの発生を抑制するとともに、高い耐薬品性と解像性を示すことが求められる。
 本発明は、このような従来の実情に鑑みて考案されたものであり、高い耐薬品性および解像度が得られ、かつ、高温保存(high temperature storage)試験後、Cu層の、樹脂層に接する界面でボイドの発生を抑制することができる、ネガ型感光性樹脂組成物(以下、本願明細書において単に「感光性樹脂組成物」ともいう。)を提供することを目的の一つとする。また、本発明のネガ型感光性樹脂組成物を用いた硬化レリーフパターンの形成方法を提供することも目的の一つである。
 また、近年ファンアウト型半導体パッケージが注目されている。ファンナウト型の半導体パッケージでは、半導体チップを封止材で覆うことにより半導体チップのチップサイズよりも大きいチップ封止体を形成する。更に、半導体チップ及び封止材の領域にまで及ぶ再配線層を形成する。再配線層は、薄い膜厚で形成される。また、再配線層は、封止材の領域まで形成できるため、外部接続端子の数を多くすることができる。ファンアウト型半導体パッケージは、硬化温度の更なる低温化が必要となり、その結果モールド樹脂などの封止材との密着性が低下するため、更なる改良が必要となった。
 本発明者らは、特定の構造のポリイミド前駆体と特定の構造を有する(メタ)アクリレートと光重合開始剤を組み合わせることにより、上記課題を解決することができることを見出し、本発明を完成するに至った。本発明の実施形態の例を以下に列記する。
[1]
 (A)下記一般式(1)で表されるポリイミド前駆体;
 (B)ウレタン結合、及びウレア結合から選択される少なくとも1種を含む、化合物;並びに
 (C)光重合開始剤
を含む、ネガ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000029
{式中、Xは4価の有機基であり、Yは2価の有機基であり、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基であり、R及びRの少なくとも一方は、下記一般式(2)で表される1価の有機基である。}
Figure JPOXMLDOC01-appb-C000030
{式中、L、L及びLは、それぞれ独立に、水素原子又は炭素数1~3の有機基であり、そしてmは、2~10の整数である。}
[2]
 上記(B)化合物が、ウレア結合を有する化合物である、項目1記載のネガ型感光性樹脂組成物。
[3]
 上記(B)化合物が、(メタ)アクリル基、水酸基、アルコキシ基、及びアミノ基から選択される少なくとも1種の官能基を更に含む、項目1又は2に記載のネガ型感光性樹脂組成物。
[4]
 上記(B)化合物が、(メタ)アクリル基及びウレア結合を有する化合物であって、(メタ)アクリル当量が150~400g/molである、項目1~3のいずれか一項に記載のネガ型感光性樹脂組成物。
[5]
 上記(B)化合物が、(メタ)アクリル基及びウレア結合を有する化合物であって、(メタ)アクリル当量が210~400g/molである、項目1~3のいずれか一項に記載のネガ型感光性樹脂組成物。
[6]
 上記(B)化合物が、(メタ)アクリル基及びウレア結合を有する化合物であって、(メタ)アクリル当量が220~400g/molである、項目1~3のいずれか一項に記載のネガ型感光性樹脂組成物。
[7]
 上記(B)化合物が、下記一般式(3)で表される構造を有する、項目1~6のいずれか一項に記載のネガ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000031
{式中、Rは水素原子又はメチル基であり、Aは-O-、-NH-、及び-NL-からなる群より選ばれる一つの基であり、Lは炭素数1~12の1価の有機基であり、Zは炭素数2~24のm価の有機基であり、Zは炭素数2~8の2価の有機基であり、そしてmは1~3の整数である。}
[8]
 上記(B)化合物が、(メタ)アクリル基と、水酸基、アルコキシ基、及びアミノ基から選択される少なくとも1種の官能基とを更に含む、項目1~7のいずれか一項に記載のネガ型感光性樹脂組成物。
[9]
 上記(B)化合物が、下記式(4)~(7)、及び(11)~(14)からなる群から選択される少なくとも1種の化合物である、項目1~8のいずれか一項に記載のネガ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
[10]
 (D)防錆剤を更に含む、項目1~9のいずれか一項に記載のネガ型感光性樹脂組成物。
[11]
 上記(D)防錆剤は、含窒素複素環化合物を含む、項目10に記載のネガ型感光性樹脂組成物。
[12]
 上記含窒素複素環化合物は、アゾール化合物である、項目11に記載のネガ型感光性樹脂組成物。
[13]
 上記含窒素複素環化合物は、プリン誘導体である、項目11に記載のネガ型感光性樹脂組成物。
[14]
 (E)シランカップリング剤を更に含む、項目1~13のいずれか一項に記載のネガ型感光性樹脂組成物。
[15]
 上記(A)ポリイミド前駆体におけるX1が、下記一般式(20a)、(20b)及び(20c)からなる群から選択される少なくとも1種を含む、項目1~14のいずれか一項に記載のネガ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
{式中、R6は、それぞれ独立に、水素原子、フッ素原子、C~C10の炭化水素基、及びC~C10の含フッ素炭化水素基から成る群から選ばれる1価の基であり、lは、0~2から選ばれる整数であり、そしてmは0~3から選ばれる整数である。}
[16]
 上記(A)ポリイミド前駆体におけるY1が、下記一般式(21a)、(21b)及び(21c)からなる群から選択される少なくとも1種を含む、項目1~15のいずれか一項に記載のネガ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
{式中、R6は、それぞれ独立に、水素原子、フッ素原子、C~C10の炭化水素基、及びC~C10の含フッ素炭化水素基から成る群から選ばれる1価の基であり、そしてnは0~4から選ばれる整数である。}
[17]
 上記(A)ポリイミド前駆体が、下記一般式(8):
Figure JPOXMLDOC01-appb-C000046
{式中、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基である。}
で表される構造単位を有するポリイミド前駆体を含む、項目1~16のいずれか一項に記載のネガ型感光性樹脂組成物。
[18]
 上記(A)ポリイミド前駆体が、下記一般式(9):
Figure JPOXMLDOC01-appb-C000047
{式中、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基である。}
で表される構造単位を有するポリイミド前駆体を含む、項目1~17のいずれか一項に記載のネガ型感光性樹脂組成物。
[19]
 上記(A)ポリイミド前駆体が、下記一般式(8):
Figure JPOXMLDOC01-appb-C000048
{式中、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基であり、一般式(9)中のR、R、及びnとは同じであるか、又は異なってよい。}
で表される構造単位と、
 下記一般式(9):
Figure JPOXMLDOC01-appb-C000049
{式中、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基であり、一般式(8)中のR、R、及びnとは同じであるか、又は異なってよい。}
で表される構造単位との共重合体であるか、又は
 上記一般式(8)で表される構造単位を有するポリイミド前駆体と、上記一般式(9)で表される構造単位を有するポリイミド前駆体とのブレンドである、項目1~18のいずれか一項に記載のネガ型感光性樹脂組成物。
[20]
 上記(A)ポリイミド前駆体が、上記一般式(8)で表される構造単位と、上記一般式(9)で表される構造単位との共重合体である、項目19に記載のネガ型感光性樹脂組成物。
[21]
 100質量部の上記(A)ポリイミド前駆体と、
 上記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の上記(B)化合物と、
 上記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の上記(C)光重合開始剤と
を含む、項目1~20のいずれか一項に記載のネガ型感光性樹脂組成物。
[22]
 項目1~21のいずれか一項に記載のネガ型感光性樹脂組成物をポリイミドに変換する工程を含む、ポリイミドの製造方法。
[23]
 (1)項目1~21のいずれか一項に記載のネガ型感光性樹脂組成物を基板上に塗布して、感光性樹脂層を上記基板上に形成する工程と、
 (2)上記感光性樹脂層を露光する工程と、
 (3)露光後の上記感光性樹脂層を現像して、レリーフパターンを形成する工程と、
 (4)上記レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と
を含む、硬化レリーフパターンの製造方法。
[24]
 下記式(5)で表される化合物。
Figure JPOXMLDOC01-appb-C000050
[25]
 下記式(6)で表される化合物。
Figure JPOXMLDOC01-appb-C000051
[26]
 下記式(7)で表される化合物。
Figure JPOXMLDOC01-appb-C000052
[27]
 下記式(11)で表される化合物。
Figure JPOXMLDOC01-appb-C000053
[28]
 下記式(12)で表される化合物。
Figure JPOXMLDOC01-appb-C000054
[29]
 下記式(13)で表される化合物。
Figure JPOXMLDOC01-appb-C000055
[30]
 下記式(14)で表される化合物。
Figure JPOXMLDOC01-appb-C000056
 本発明によれば、高い耐薬品性と解像度が得られ、高温保存(high temperature storage)試験後、Cu層の、樹脂層に接する界面でボイドの発生を抑制するネガ型感光性樹脂組成物を提供することができ、また該ネガ型感光性樹脂組成物を用いた硬化レリーフパターンの形成方法を提供することができる。また、本発明によれば、ファンアウト型半導体パッケージに用いられるモールド樹脂との密着性が良好であるネガ型感光性樹脂組成物を提供することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。尚、本発明は、以下の本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。なお、本明細書を通じ、一般式において同一符号で表されている構造は、分子中に複数存在する場合に、互いに同一であるか、又は異なっていてもよい。
<ネガ型感光性樹脂組成物>
 本実施形態に係るネガ型感光性樹脂組成物は、(A)ポリイミド前駆体;(B)ウレタン結合、及びウレア結合から選択される少なくとも1種を含む、化合物;並びに(C)光重合開始剤を含む。
 ネガ型感光性樹脂組成物は、高い耐薬品性を得るという観点から、100質量部の(A)ポリイミド前駆体と、(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の(B)化合物と、(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の(C)光重合開始剤とを含むことが好ましい。
(A)ポリイミド前駆体
 本実施形態における(A)ポリイミド前駆体は、ネガ型感光性樹脂組成物に含まれる樹脂成分であり、加熱環化処理を施すことによってポリイミドに変換される。ポリイミド前駆体は下記一般式(1)で表される構造を有するポリアミドである。
Figure JPOXMLDOC01-appb-C000057
 {式中、Xは4価の有機基であり、Yは2価の有機基であり、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基である。}
 R及びRの少なくとも一方は、下記一般式(2)で表される1価の有機基である。
Figure JPOXMLDOC01-appb-C000058
 {式中、L、L及びLは、それぞれ独立に、水素原子又は炭素数1~3の有機基であり、そしてmは、2~10の整数である。}
 一般式(1)におけるnは、2~150の整数であれば限定されないが、ネガ型感光性樹脂組成物の感光特性及び機械特性の観点から、3~100の整数が好ましく、5~70の整数がより好ましい。一般式(1)中、Xで表される4価の有機基は、耐熱性と感光特性とを両立するという点で、好ましくは炭素数6~40の有機基であり、より好ましくは、-COOR基及び-COOR基と-CONH-基とが互いにオルト位置にある芳香族基、又は脂環式脂肪族基である。Xで表される4価の有機基として、具体的には、芳香族環を含有する炭素原子数6~40の有機基、例えば、下記一般式(20)で表される構造を有する基が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000059
{式中、R6は、水素原子、フッ素原子、C~C10の炭化水素基、及びC~C10の含フッ素炭化水素基から成る群から選ばれる1価の基であり、lは、0~2から選ばれる整数であり、mは0~3から選ばれる整数であり、そしてnは0~4から選ばれる整数である。}
 Xの構造は1種でも2種以上の組み合わせでもよい。上記式(20)で表される構造を有するX基は、耐熱性と感光特性とを両立するという点で特に好ましい。X基としては、上記式(20)で表される構造のなかでも特に、下式(20a)、(20b)及び(20c)で表される構造は、耐薬品性、解像度、及び高温保存試験後のボイド抑制の観点から特に好ましい。
Figure JPOXMLDOC01-appb-C000060
{式中、R6は、それぞれ独立に、水素原子、フッ素原子、C~C10の炭化水素基、及びC~C10の含フッ素炭化水素基からなる群から選ばれる1価の基であり、lは、0~2から選ばれる整数であり、mは0~3から選ばれる整数であり、そしてnは0~4から選ばれる整数である。}一般式(20a)~(20c)のRは、それぞれ、後述する一般式(21a)~(21c)のRと同じであってもよく、又は異なってもよい。
 上記一般式(1)中、Yで表される2価の有機基は、耐熱性と感光特性とを両立するという点で、好ましくは炭素数6~40の芳香族基であり、例えば、下記式(21)で表される構造が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000061
{式中、R6は、水素原子、フッ素原子、C~C10の炭化水素基、及びC~C10の含フッ素炭化水素基から成る群から選ばれる1価の基であり、そしてnは0~4から選ばれる整数である。}
 Yの構造は1種でも2種以上の組み合わせでもよい。上記式(21)で表される構造を有するY基は、耐熱性及び感光特性を両立するという点で特に好ましい。Y基としては、上記式(21)で表される構造のなかでも特に、下式(21a)、(21b)及び(21c)で表される構造は、耐薬品性、解像度、及び高温保存試験後のボイド抑制の観点から特に好ましい。
Figure JPOXMLDOC01-appb-C000062
{式中、R6は、それぞれ独立に、水素原子、フッ素原子、C~C10の炭化水素基、及びC~C10の含フッ素炭化水素基から成る群から選ばれる1価の基であり、そしてnは0~4から選ばれる整数である。}一般式(21a)~(21c)のRは、それぞれ、前述の一般式(20a)~(20c)のRと同じであってもよく、又は異なってもよい。
 上記一般式(2)中のLは、水素原子又はメチル基であることが好ましく、L及びLは、感光特性の観点から水素原子であることが好ましい。また、mは、感光特性の観点から2以上10以下の整数、好ましくは2以上4以下の整数である。
 一実施形態において、(A)ポリイミド前駆体は、下記一般式(8):
Figure JPOXMLDOC01-appb-C000063
{式中、R、R、及びnは上記に定義したものである。}
で表される構造単位を有するポリイミド前駆体であることが好ましい。一般式(8)において、R及びRの少なくとも一方は、上記一般式(2)で表される1価の有機基であることがより好ましい。(A)ポリイミド前駆体が、一般式(8)で表される構造単位を有するポリイミド前駆体を含むことで、特に解像性の効果が高くなる。
 一実施形態において、(A)ポリイミド前駆体は、下記一般式(9):
Figure JPOXMLDOC01-appb-C000064
{式中、R、R、及びnは上記に定義したものである。}
で表される構造単位を有するポリイミド前駆体であることが好ましい。
 一般式(9)において、R及びRの少なくとも一方は、上記一般式(2)で表される1価の有機基であることがより好ましい。(A)ポリイミド前駆体が、一般式(8)で表される構造単位を有するポリイミド前駆体に加えて、一般式(9)で表される構造単位を有するポリイミド前駆体を含むことにより、特に解像性の効果がさらに高くなる。
 (A)ポリイミド前駆体は、一般式(8)で表される構造単位を有するポリイミド前駆体と、一般式(9)で表される構造単位を有するポリイミド前駆体との混合物であるか、又は、上記一般式(8)で表される構造単位と上記一般式(9)で表される構造単位との共重合体であることが、耐薬品性、解像度、及び高温保存試験後のボイド抑制の観点から特に好ましい。一般式(8)及び(9)において、一方の式中のR、R、及びnは、それぞれ、他方の式中のR、R、及びnと同じであってもよく、又は異なってもよい。
(A)ポリイミド前駆体の調製方法
 (A)ポリイミド前駆体は、まず前述の4価の有機基Xを含むテトラカルボン酸二無水物と、光重合性の不飽和二重結合を有するアルコール類及び任意に不飽和二重結合を有さないアルコール類とを反応させて、部分的にエステル化したテトラカルボン酸(以下、アシッド/エステル体ともいう)を調製した後、これと、前述の2価の有機基Yを含むジアミン類とをアミド重縮合させることにより得られる。
(アシッド/エステル体の調製)
 本実施形態で、(A)ポリイミド前駆体を調製するために好適に用いられる、4価の有機基Xを含むテトラカルボン酸二無水物としては、上記一般式(20)に示されるテトラカルボン酸二無水物をはじめ、例えば、無水ピロメリット酸、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、ジフェニルスルホン-3,3’,4,4’-テトラカルボン酸二無水物、ジフェニルメタン-3,3’,4,4’-テトラカルボン酸二無水物、2,2-ビス(3,4-無水フタル酸)プロパン、2,2-ビス(3,4-無水フタル酸)-1,1,1,3,3,3-ヘキサフルオロプロパン等が挙げられる。好ましくは、無水ピロメリット酸、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を挙げることができるが、これらに限定されるものではない。また、これらは単独で用いることができ、2種以上を混合して用いてもよい。
 本実施形態で、(A)ポリイミド前駆体を調製するために好適に用いられる、光重合性の不飽和二重結合を有するアルコール類としては、例えば、2-ヒドロキシエチルメタクリレート(HEMA)、2-アクリロイルオキシエチルアルコール、1-アクリロイルオキシ-3-プロピルアルコール、2-アクリルアミドエチルアルコール、メチロールビニルケトン、2-ヒドロキシエチルビニルケトン、2-ヒドロキシ-3-メトキシプロピルアクリレート、2-ヒドロキシ-3-ブトキシプロピルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-ヒドロキシ-3-ブトキシプロピルアクリレート、2-ヒドロキシ-3-t-ブトキシプロピルアクリレート、2-ヒドロキシ-3-シクロヘキシルオキシプロピルアクリレート、2-メタクリロイルオキシエチルアルコール、1-メタクリロイルオキシ-3-プロピルアルコール、2-メタクリルアミドエチルアルコール、メチロールビニルケトン、2-ヒドロキシ-3-メトキシプロピルメタクリレート、2-ヒドロキシ-3-ブトキシプロピルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート、2-ヒドロキシ-3-ブトキシプロピルメタクリレート、2-ヒドロキシ-3-t-ブトキシプロピルメタクリレート、2-ヒドロキシ-3-シクロヘキシルオキシプロピルメタクリレート等を挙げることができる。
 上記光重合性の不飽和二重結合を有するアルコール類に、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、ネオペンチルアルコール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、3-オクタノール、1-ノナノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノメチルエーテル、テトラエチレングリコールモノエチルエーテル、ベンジルアルコールなどの不飽和二重結合を有さないアルコール類を一部混合して用いることもできる。
 また、ポリイミド前駆体として、上記不飽和二重結合を有さないアルコール類のみで調製された非感光性ポリイミド前駆体を、感光性ポリイミド前駆体と混合して用いてもよい。解像性の観点から、非感光性ポリイミド前駆体は、感光性ポリイミド前駆体100質量部を基準として、200質量部以下であることが好ましい。
 上記の好適なテトラカルボン酸二無水物と上記のアルコール類とを、ピリジン等の塩基性触媒の存在下、後述するような溶剤中、温度20~50℃で4~10時間撹拌溶解、混合することにより、酸無水物のエステル化反応が進行し、所望のアシッド/エステル体を得ることができる。
(ポリイミド前駆体の調製)
 上記アシッド/エステル体(典型的には後述する溶剤中の溶液)に、氷冷下、適当な脱水縮合剤、例えば、ジシクロヘキシルカルボジイミド、1-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキノリン、1,1-カルボニルジオキシ-ジ-1,2,3-ベンゾトリアゾール、N,N’-ジスクシンイミジルカーボネート等を投入混合してアシッド/エステル体をポリ酸無水物とした後、これに、本実施形態で好適に用いられる2価の有機基Yを含むジアミン類を別途溶媒に溶解又は分散させたものを滴下投入し、アミド重縮合させることにより、目的のポリイミド前駆体を得ることができる。代替的には、上記アシッド/エステル体を、塩化チオニル等を用いてアシッド部分を酸クロライド化した後に、ピリジン等の塩基存在下に、ジアミン化合物と反応させることにより、目的のポリイミド前駆体を得ることができる。
 本実施形態で好適に用いられる2価の有機基Yを含むジアミン類としては、上記一般式(21)に示される構造を有するジアミンをはじめ、例えば、p-フェニレンジアミン、m-フェニレンジアミン、4,4-ジアミノジフェニルエーテル(4,4’-オキシジアニリン(ODA))、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、4,4-ビス(4-アミノフェノキシ)ビフェニル、4,4-ビス(3-アミノフェノキシ)ビフェニル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、1,4-ビス(3-アミノプロピルジメチルシリル)ベンゼン、オルト-トリジンスルホン、9,9-ビス(4-アミノフェニル)フルオレン、及びこれらのベンゼン環上の水素原子の一部が、メチル基、エチル基、ヒドロキシメチル基、ヒドロキシエチル基、ハロゲン等で置換されたもの、例えば3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル(2,2’-ジメチルビフェニル-4,4’-ジアミン(m-TB))、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、2,2’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、及びその混合物等が挙げられるが、これに限定されるものではない。
 アミド重縮合反応終了後、当該反応液中に共存している脱水縮合剤の吸水副生物を必要に応じて濾別した後、水、脂肪族低級アルコール、又はその混合液等の貧溶媒を、得られた重合体成分に投入し、重合体成分を析出させ、さらに、再溶解、再沈析出操作等を繰り返すことにより、重合体を精製し、真空乾燥を行い、目的のポリイミド前駆体を単離する。精製度を向上させるために、陰イオン及び/又は陽イオン交換樹脂を適当な有機溶剤で膨潤させて充填したカラムに、この重合体の溶液を通し、イオン性不純物を除去してもよい。
 上記(A)ポリイミド前駆体の分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算重量平均分子量で測定した場合に、8,000~150,000であることが好ましく、9,000~50,000であることがより好ましい。重量平均分子量が8,000以上である場合、機械物性が良好であり、150,000以下である場合現像液への分散性が良好で、レリーフパターンの解像性能が良好である。ゲルパーミエーションクロマトグラフィーの展開溶媒としては、テトラヒドロフラン、及びN-メチル-2-ピロリドンが推奨される。また重量平均分子量は標準単分散ポリスチレンを用いて作成した検量線から求める。標準単分散ポリスチレンとしては、昭和電工社製 有機溶媒系標準試料 STANDARD SM-105から選ぶことが推奨される。
(B)ウレタン結合、又はウレア結合を有する化合物
 本実施形態に用いられる(B)化合物は、分子構造中にウレタン結合、及びウレア結合から選択される少なくとも1種を含む(以下、本実施形態において、「ウレタン/ウレア化合物」ともいう。)。本実施形態に用いられる化合物は、分子構造中にウレタン結合及び/又はウレア結合を有していれば、その他の構造は限定されない。この中で、Cu表面ボイド抑制や耐薬品性の観点から、ウレア結合を有することが好ましい。本実施形態において、(B)化合物は、(メタ)アクリル基、水酸基、及びアルコキシ基、及びアミノ基からなる群から選択される少なくとも1種の官能基を更に有することが好ましい。
 本実施形態にかかる(B)化合物を含有することによって、耐薬品性や解像性が良い理由については明らかではないが、本発明者らは以下のように考えている。すなわち、一態様において、ネガ型感光性樹脂組成物は、180℃以下という低い温度で加熱硬化させるので、ポリイミド前駆体のポリイミドへの変換が十分ではない傾向にある。一方、本実施形態のネガ型感光性樹脂組成物は、ウレタン/ウレア化合物(B)を含有することにより、(B)化合物の一部が熱分解することにより、アミン等が発生し、当該アミン等が、ポリイミド前駆体のポリイミドへの変換を促進すると考えている。そして、好ましい態様において、化合物(B)が(メタ)アクリル基を更に有することにより、特にネガ型感光性樹脂組成物とした場合、光照射により化合物(B)がポリイミド前駆体の側鎖部分と反応し、架橋することで、よりポリイミド前駆体の近傍に存在しやすく、変換効率を飛躍的に高めることができると考えている。
 本実施形態において、(B)化合物が(メタ)アクリル基を更に有する場合、(B)化合物の(メタ)アクリル当量は、150~400g/molであることが好ましい。(B)化合物の(メタ)アクリル当量が150g/mol以上であることで、ネガ型感光性樹脂組成物の耐薬品性が良好となる傾向にあり、400g/mol以下であることで、現像性が良好となる傾向にある。(B)化合物の(メタ)アクリル当量の下限値は、より好ましくは200g/mol以上、210g/mol以上、220g/mol以上、230g/mol以上、更に好ましくは240g/mol以上、250g/mol以上であり、下限値は、より好ましくは350g/mol以下、330g/mol以下、更に好ましくは300g/mol以下である。(B)化合物の(メタ)アクリル当量は、より更に好ましくは210~400g/mol、特に好ましくは220~400g/molである。
 本実施形態に用いられるウレタン/ウレア化合物(B)は、下記一般式(3)で表される構造を有する、(メタ)アクリル基含有ウレタン/ウレア化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000065
{式中、Rは水素原子又はメチル基であり、Aは-O-、-NH-、及び-NL-からなる群より選ばれる一つの基であり、Lは炭素数1~12の1価の有機基であり、Zは炭素数2~24のm価の有機基であり、Zは炭素数2~8の2価の有機基であり、そしてmは1~3の整数である。}
 Rは水素原子又はメチル基であれば限定されないが、現像性の観点からメチル基が好ましい。Zは炭素数2~20のm価の有機基であれば限定されない。ここで、Zは、酸素原子、硫黄原子、窒素原子、リン原子などのヘテロ原子も含むことができる。Zの炭素数が2以上であれば、ネガ型感光性樹脂組成物の耐薬品性が良好な傾向にあり、炭素数20以下であれば現像性が良好な傾向にある。Zの炭素数は3以上が好ましく、4以上がより好ましく、18以下が好ましく、16以下がより好ましい。Zは炭素数2~8の2価の有機基であれば限定されない。ここで、Zは、酸素原子、硫黄原子、窒素原子、リン原子などのヘテロ原子も含むことができる。Zの炭素数が2以上であれば、ネガ型感光性樹脂組成物の耐薬品性が良好な傾向にあり、炭素数8以下であれば耐熱性が良好な傾向にある。Zの炭素数は6以下が好ましく、4以下がより好ましい。Aは-O-、-NH-、及び-NL-からなる群より選ばれる一つの基-である。耐薬品性の観点から、Aは-NH-または-NL-が好ましい。
 上記一般式(3)の(メタ)アクリル基含有ウレア/ウレタン化合物の製造方法は特に限定されないが、例えば下記一般式で表されるイソシアネート化合物と、アミン及び/又は水酸基含有化合物を反応させることによって得ることができる。
Figure JPOXMLDOC01-appb-C000066
 上記で説明された(B)化合物の中でも、耐薬品性、ボイド抑制、及び現像性の観点から、下記式(4)~(7)、及び(11)~(14)からなる群から選択される少なくとも1種の化合物が特に好ましい。なお、下記式(4)~(7)、及び(11)~(14)で表される化合物も本発明の一実施形態である。
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
 本実施形態のウレタン/ウレア化合物(B)は、水酸基、アルコキシ基、及びアミノ基からなる群から選択される少なくとも1種の官能基を更に有することが好ましい。本実施形態のウレタン/ウレア化合物は、水酸基、アルコキシ基、及びアミノ基からなる群から選択される少なくとも1種を含有することにより、例えば、一態様であるファンアウト型半導体パッケージに用いられるモールド樹脂との密着性が良好となる傾向にある。その理由については明らかではないが、本発明者らは以下のように考えている。すなわち、一態様において、ネガ型感光性樹脂組成物は、180℃以下という低い温度で加熱硬化する。そのような低い温度では、ファンアウト型半導体パッケージに用いられるモールド樹脂中に含まれるエポキシ樹脂は、一部開環せずエポキシ構造を有しており、当該エポキシ構造は、ウレタン/ウレア化合物(B)中に含まれる水酸基、アルコキシ基、アミノ基等と相互作用する傾向にある。一方、化合物(B)中に含まれるウレタン/ウレア構造がポリイミド樹脂と相互作用することにより、モールド樹脂と高い密着性を発現すると推定している。これらの官能基の中で、水酸基、アルコキシ基が好ましく、水酸基が特に好ましい。モールド樹脂との密着性、耐薬品性、及びCuボイド抑制の観点から、化合物(B)は、ウレタン/ウレア構造に加えて、分子構造中に(メタ)アクリル基と水酸基とを有することがより好ましい。
 アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基などの炭素数1~10のアルコキシ基であることがより好ましい。これらの化合物としては、下記構造を有する化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
 本実施形態における(B)化合物は、1種を単独で用いてもよく、又は2種以上を混合して用いてもよい。(B)化合物の配合量は、(A)ポリイミド前駆体100質量部に対して、好ましくは0.1質量部以上30質量部であり、より好ましくは1質量部以上20質量部以下である。上記(B)の配合量は、光感度又はパターニング性の観点で0.1質量部以上であり、ネガ型感光性樹脂組成物の硬化後の感光性樹脂層の物性の観点から30質量部以下である。
(C)光重合開始剤
 光重合開始剤としては、光ラジカル重合開始剤であることが好ましい。光ラジカル重合開始剤としては、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、及びフルオレノン等のベンゾフェノン誘導体;2,2’-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、及び1-ヒドロキシシクロヘキシルフェニルケトン等のアセトフェノン誘導体;チオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン等のチオキサントン誘導体、ベンジル、ベンジルジメチルケタール、及びベンジル-β-メトキシエチルアセタール等のベンジル誘導体;ベンゾイン、及びベンゾインメチルエーテル等のベンゾイン誘導体;1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、及び1-フェニル-3-エトキシプロパントリオン-2-(o-ベンゾイル)オキシム等のオキシム類;N-フェニルグリシン等のN-アリールグリシン類;ベンゾイルパークロライド等の過酸化物類;芳香族ビイミダゾール類;チタノセン類;並びにα-(n-オクタンスルフォニルオキシイミノ)-4-メトキシベンジルシアニド等の光酸発生剤類等が挙げられるが、これらに限定されるものではない。上記の光重合開始剤の中では、特に光感度の点で、オキシム類がより好ましい。
 (C)光重合開始剤の配合量は、(A)ポリイミド前駆体100質量部に対して、好ましくは0.1質量部以上20質量部であり、より好ましくは1質量部以上8質量部以下である。上記配合量は、光感度又はパターニング性の観点で0.1質量部以上であり、ネガ型感光性樹脂組成物の硬化後の感光性樹脂層の物性の観点から20質量部以下である。
(D)防錆剤
 本実施形態のネガ型感光性樹脂組成物は、防錆剤を更に含むことができる。防錆剤としては、金属を防錆できれば限定されないが、含窒素複素環化合物を挙げることができる。含窒素複素環化合物としては、アゾール化合物、及びプリン誘導体等が挙げられる。
 アゾール化合物としては、1H-トリアゾール、5-メチル-1H-トリアゾール、5-エチル-1H-トリアゾール、4,5-ジメチル-1H-トリアゾール、5-フェニル-1H-トリアゾール、4-t-ブチル-5-フェニル-1H-トリアゾール、5-ヒドロキシフェニル-1H-トリアゾール、フェニルトリアゾール、p-エトキシフェニルトリアゾール、5-フェニル-1-(2-ジメチルアミノエチル)トリアゾール、5-ベンジル-1H-トリアゾール、ヒドロキシフェニルトリアゾール、1,5-ジメチルトリアゾール、4,5-ジエチル-1H-トリアゾール、1H-ベンゾトリアゾール、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-ベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、ヒドロキシフェニルベンゾトリアゾール、トリルトリアゾール、5-メチル-1H-ベンゾトリアゾール、4-メチル-1H-ベンゾトリアゾール、4-カルボキシ-1H-ベンゾトリアゾール、5-カルボキシ-1H-ベンゾトリアゾール、1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾール、5-アミノ-1H-テトラゾール、及び1-メチル-1H-テトラゾール等が挙げられる。
 アゾール化合物としては、特に好ましくは、トリルトリアゾール、5-メチル-1H-ベンゾトリアゾール、及び4-メチル-1H-ベンゾトリアゾールが挙げられる。また、これらのアゾール化合物は、1種を単独で用いても、2種以上を混合して用いても構わない。
 プリン誘導体としては、プリン、アデニン、グアニン、ヒポキサンチン、キサンチン、テオブロミン、カフェイン、尿酸、イソグアニン、2,6-ジアミノプリン、9-メチルアデニン、2-ヒドロキシアデニン、2-メチルアデニン、1-メチルアデニン、N-メチルアデニン、N,N-ジメチルアデニン、2-フルオロアデニン、9-(2-ヒドロキシエチル)アデニン、グアニンオキシム、N-(2-ヒドロキシエチル)アデニン、8-アミノアデニン、6-アミノ‐8-フェニル‐9H-プリン、1-エチルアデニン、6-エチルアミノプリン、1-ベンジルアデニン、N-メチルグアニン、7-(2-ヒドロキシエチル)グアニン、N-(3-クロロフェニル)グアニン、N-(3-エチルフェニル)グアニン、2-アザアデニン、5-アザアデニン、8-アザアデニン、8-アザグアニン、8-アザプリン、8-アザキサンチン、及び8-アザヒポキサンチン等、並びにこれらの誘導体が挙げられる。
 ネガ型感光性樹脂組成物がアゾール化合物又はプリン誘導体を含有する場合、その配合量は、(A)ポリイミド前駆体100質量部に対し、0.05~5質量部であることが好ましく、光感度特性の観点から0.1~5質量部がより好ましい。アゾール化合物の(A)ポリイミド前駆体100質量部に対する配合量が0.05質量部以上である場合、本実施形態のネガ型感光性樹脂組成物を銅又は銅合金の上に形成した場合に、銅又は銅合金表面の変色が抑制され、一方、アゾール化合物が5質量部以下である場合には光感度に優れる。
 本実施形態のネガ型感光性樹脂組成物が(D)防錆剤を含む場合、特にCu層のボイド形成が抑制される。効果を奏する理由は定かではないが、Cu表面に存在する防錆剤と、ウレタン/ウレア化合物の好ましい実施態様に含まれる(メタ)アクリル基、水酸基、アルコキシ基、又はアミノ基とが相互作用し、Cu界面近傍で緻密な層を形成する為と考えられる。
(E)シランカップリング剤
 本実施形態のネガ型感光性樹脂組成物は、シランカップリング剤を更に含むことができる。シランカップリング剤としては、γ-アミノプロピルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、3-メタクリロキシプロピルジメトキシメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、ジメトキシメチル-3-ピペリジノプロピルシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、N-(3-ジエトキシメチルシリルプロピル)スクシンイミド、N-[3-(トリエトキシシリル)プロピル]フタルアミド酸、ベンゾフェノン-3,3’-ビス(N-[3-トリエトキシシリル]プロピルアミド)-4,4’-ジカルボン酸、ベンゼン-1,4-ビス(N-[3-トリエトキシシリル]プロピルアミド)-2,5-ジカルボン酸、3-(トリエトキシシリル)プロピルスクシニックアンハイドライド、N-フェニルアミノプロピルトリメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、及び3-(トリアルコキシシリル)プロピルスクシン酸無水物等のシランカップリング剤を挙げることができる。
 シランカップリング剤として、より具体的には、3-メルカプトプロピルトリメトキシシラン(信越化学工業株式会社製:商品名 KBM803、チッソ株式会社製:商品名 サイラエースS810)、3-メルカプトプロピルトリエトキシシラン(アズマックス株式会社製:商品名 SIM6475.0)、3-メルカプトプロピルメチルジメトキシシラン(信越化学工業株式会社製:商品名 LS1375、アズマックス株式会社製:商品名 SIM6474.0)、メルカプトメチルトリメトキシシラン(アズマックス株式会社製:商品名 SIM6473.5C)、メルカプトメチルメチルジメトキシシラン(アズマックス株式会社製:商品名 SIM6473.0)、3-メルカプトプロピルジエトキシメトキシシラン、3-メルカプトプロピルエトキシジメトキシシラン、3-メルカプトプロピルトリプロポキシシラン、3-メルカプトプロピルジエトキシプロポキシシラン、3-メルカプトプロピルエトキシジプロポキシシラン、3-メルカプトプロピルジメトキシプロポキシシラン、3-メルカプトプロピルメトキシジプロポキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルジエトキシメトキシシラン、2-メルカプトエチルエトキシジメトキシシラン、2-メルカプトエチルトリプロポキシシラン、2-メルカプトエチルトリプロポキシシラン、2-メルカプトエチルエトキシジプロポキシシラン、2-メルカプトエチルジメトキシプロポキシシラン、2-メルカプトエチルメトキシジプロポキシシラン、4-メルカプトブチルトリメトキシシラン、4-メルカプトブチルトリエトキシシラン、4-メルカプトブチルトリプロポキシシラン、N-(3-トリエトキシシリルプロピル)ウレア(信越化学工業株式会社製:商品名 LS3610、アズマックス株式会社製:商品名 SIU9055.0)、N-(3-トリメトキシシリルプロピル)ウレア(アズマックス株式会社製:商品名 SIU9058.0)、N-(3-ジエトキシメトキシシリルプロピル)ウレア、N-(3-エトキシジメトキシシリルプロピル)ウレア、N-(3-トリプロポキシシリルプロピル)ウレア、N-(3-ジエトキシプロポキシシリルプロピル)ウレア、N-(3-エトキシジプロポキシシリルプロピル)ウレア、N-(3-ジメトキシプロポキシシリルプロピル)ウレア、N-(3-メトキシジプロポキシシリルプロピル)ウレア、N-(3-トリメトキシシリルエチル)ウレア、N-(3-エトキシジメトキシシリルエチル)ウレア、N-(3-トリプロポキシシリルエチル)ウレア、N-(3-トリプロポキシシリルエチル)ウレア、N-(3-エトキシジプロポキシシリルエチル)ウレア、N-(3-ジメトキシプロポキシシリルエチル)ウレア、N-(3-メトキシジプロポキシシリルエチル)ウレア、N-(3-トリメトキシシリルブチル)ウレア、N-(3-トリエトキシシリルブチル)ウレア、N-(3-トリプロポキシシリルブチル)ウレア、3-(m-アミノフェノキシ)プロピルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0598.0)、m-アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.0)、p-アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.1)アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.2)、2-(トリメトキシシリルエチル)ピリジン(アズマックス株式会社製:商品名 SIT8396.0)、2-(トリエトキシシリルエチル)ピリジン、2-(ジメトキシシリルメチルエチル)ピリジン、2-(ジエトキシシリルメチルエチル)ピリジン、(3-トリエトキシシリルプロピル)-t-ブチルカルバメート、(3-グリシドキシプロピル)トリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-i-ブトキシシラン、テトラ-t-ブトキシシラン、テトラキス(メトキシエトキシシラン)、テトラキス(メトキシ-n-プロポキシシラン)、テトラキス(エトキシエトキシシラン)、テトラキス(メトキシエトキシエトキシシラン)、ビス(トリメトキシシリル)エタン、ビス(トリメトキシシリル)ヘキサン、ビス(トリエトキシシリル)メタン、ビス(トリエトキシシリル)エタン、ビス(トリエトキシシリル)エチレン、ビス(トリエトキシシリル)オクタン、ビス(トリエトキシシリル)オクタジエン、ビス[3-(トリエトキシシリル)プロピル]ジスルフィド、ビス[3-(トリエトキシシリル)プロピル]テトラスルフィド、ジ-t-ブトキシジアセトキシシラン、ジ-i-ブトキシアルミノキシトリエトキシシラン、フェニルシラントリオール、メチルフェニルシランジオール、エチルフェニルシランジオール、n-プロピルフェニルシランジオール、イソプロピルフェニルシランジオール、n-ブチルシフェニルシランジオール、イソブチルフェニルシランジオール、tert-ブチルフェニルシランジオール、ジフェニルシランジオール、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシジ-p-トリルシラン、エチルメチルフェニルシラノール、n-プロピルメチルフェニルシラノール、イソプロピルメチルフェニルシラノール、n-ブチルメチルフェニルシラノール、イソブチルメチルフェニルシラノール、tert-ブチルメチルフェニルシラノール、エチルn-プロピルフェニルシラノール、エチルイソプロピルフェニルシラノール、n-ブチルエチルフェニルシラノール、イソブチルエチルフェニルシラノール、tert-ブチルエチルフェニルシラノール、メチルジフェニルシラノール、エチルジフェニルシラノール、n-プロピルジフェニルシラノール、イソプロピルジフェニルシラノール、n-ブチルジフェニルシラノール、イソブチルジフェニルシラノール、tert-ブチルジフェニルシラノール、及びトリフェニルシラノール等が挙げられるが、これらに限定されない。これらは一種を単独で用いても、複数を組み合わせて用いてもよい。
 シランカップリング剤としては、上記のシランカップリング剤の中でも、保存安定性の観点から、フェニルシラントリオール、トリメトキシフェニルシラン、トリメトキシ(p-トリル)シラン、ジフェニルシランジオール、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシジ-p-トリルシラン、トリフェニルシラノール、及び下記式で表される構造を有するシランカップリング剤が好ましい。
Figure JPOXMLDOC01-appb-C000078
 シランカップリング剤を使用する場合の配合量としては、(A)ポリイミド前駆体100質量部に対して、0.1~20質量部が好ましい。本実施形態のネガ型感光性樹脂組成物が(E)シランカップリング剤を含む場合、特にCu層のボイド形成が抑制される。効果を奏する理由は定かではないが、Cu表面に偏在するシランカップリング剤と、ウレタン/ウレア化合物の好ましい実施態様に含まれる(メタ)アクリル基、水酸基、アルコキシ基、又はアミノ基とが相互作用し、Cu界面近傍で緻密な層を形成する為と考えられる。
(F)その他の成分
 本実施形態のネガ型感光性樹脂組成物は、上記(A)~(E)成分以外の成分をさらに含有していてもよい。(A)~(E)成分以外の成分としては、限定されないが、溶剤、ヒンダードフェノール化合物、有機チタン化合物、増感剤、光重合性不飽和モノマー、熱重合禁止剤等が挙げられる。
 溶剤
 溶剤としては、アミド類、スルホキシド類、ウレア類、ケトン類、エステル類、ラクトン類、エーテル類、ハロゲン化炭化水素類、炭化水素類、及びアルコール類等が挙げられる。より具体的には、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル、乳酸エチル、乳酸メチル、乳酸ブチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ベンジルアルコール、フェニルグリコール、テトラヒドロフルフリルアルコール、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、モルフォリン、ジクロロメタン、1,2-ジクロロエタン、1,4-ジクロロブタン、クロロベンゼン、o-ジクロロベンゼン、アニソール、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン等を使用することができる。中でも、樹脂の溶解性、樹脂組成物の安定性、及び基板への接着性の観点から、N-メチル-2-ピロリドン、ジメチルスルホキシド、テトラメチル尿素、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ベンジルアルコール、フェニルグリコール、及びテトラヒドロフルフリルアルコールが好ましい。
 このような溶剤の中で、とりわけ、生成ポリマーを完全に溶解するものが好ましく、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、及びガンマブチロラクトン等が挙げられる。
 本実施形態のネガ型感光性樹脂組成物において、溶剤の使用量は、(A)ポリイミド前駆体100質量部に対して、好ましくは100~1000質量部であり、より好ましくは120~700質量部であり、さらに好ましくは125~500質量部の範囲である。
 ヒンダードフェノール化合物
 銅表面上の変色を抑制するために、ネガ型感光性樹脂組成物は、ヒンダードフェノール化合物を任意に含んでもよい。ヒンダードフェノール化合物としては、2,6-ジ-t-ブチル-4-メチルフェノール、2,5-ジ-t-ブチル-ハイドロキノン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネ-ト、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4、4’-メチレンビス(2、6-ジ-t-ブチルフェノール)、4,4’-チオ-ビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-イソプロピルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-s-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-(1-エチルプロピル)-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-トリエチルメチル-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-フェニルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5,6-トリメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5-エチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5,6-ジエチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、及び1,3,5-トリス(4-t-ブチル-5‐エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が挙げられるが、これに限定されるものではない。これらの中でも、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が特に好ましい。
 ヒンダードフェノール化合物の配合量は、(A)ポリイミド前駆体100質量部に対し、0.1~20質量部であることが好ましく、光感度特性の観点から0.5~10質量部であることがより好ましい。ヒンダードフェノール化合物の(A)ポリイミド前駆体100質量部に対する配合量が0.1質量部以上である場合、例えば銅又は銅合金の上に本発明の感光性樹脂組成物を形成した場合に、銅又は銅合金の変色・腐食が防止され、一方、20質量部以下である場合には光感度に優れる。
 有機チタン化合物
 本実施形態のネガ型感光性樹脂組成物は、有機チタン化合物を含有してもよい。有機チタン化合物を含有することにより、低温で硬化した場合であっても耐薬品性に優れる感光性樹脂層を形成できる。
 使用可能な有機チタン化合物としては、チタン原子に有機化学物質が共有結合又はイオン結合を介して結合しているものが挙げられる。有機チタン化合物の具体的例を以下のI)~VII)に示す:
 I)チタンキレート化合物:中でも、ネガ型感光性樹脂組成物の保存安定性及び良好なパターンが得られることから、アルコキシ基を2個以上有するチタンキレートがより好ましい。具体的な例は、チタニウムビス(トリエタノールアミン)ジイソプロポキサイド、チタニウムジ(n-ブトキサイド)ビス(2,4-ペンタンジオネート、チタニウムジイソプロポキサイドビス(2,4-ペンタンジオネート)、チタニウムジイソプロポキサイドビス(テトラメチルヘプタンジオネート)、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)等である。
 II)テトラアルコキシチタン化合物:例えば、チタニウムテトラ(n-ブトキサイド)、チタニウムテトラエトキサイド、チタニウムテトラ(2-エチルヘキソキサイド)、チタニウムテトライソブトキサイド、チタニウムテトライソプロポキサイド、チタニウムテトラメトキサイド、チタニウムテトラメトキシプロポキサイド、チタニウムテトラメチルフェノキサイド、チタニウムテトラ(n-ノニロキサイド)、チタニウムテトラ(n-プロポキサイド)、チタニウムテトラステアリロキサイド、チタニウムテトラキス[ビス{2,2-(アリロキシメチル)ブトキサイド}]等である。
 III)チタノセン化合物:例えば、ペンタメチルシクロペンタジエニルチタニウムトリメトキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロフェニル)チタニウム、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム等である。
 IV)モノアルコキシチタン化合物:例えば、チタニウムトリス(ジオクチルホスフェート)イソプロポキサイド、チタニウムトリス(ドデシルベンゼンスルホネート)イソプロポキサイド等である。
 V)チタニウムオキサイド化合物:例えば、チタニウムオキサイドビス(ペンタンジオネート)、チタニウムオキサイドビス(テトラメチルヘプタンジオネート)、フタロシアニンチタニウムオキサイド等である。
 VI)チタニウムテトラアセチルアセトネート化合物:例えば、チタニウムテトラアセチルアセトネート等である。
 VII)チタネートカップリング剤:例えば、イソプロピルトリドデシルベンゼンスルホニルチタネート等である。
 中でも、有機チタン化合物は、上記I)チタンキレート化合物、II)テトラアルコキシチタン化合物、及びIII)チタノセン化合物から成る群から選ばれる少なくとも1種の化合物であることが、より良好な耐薬品性を奏するという観点から好ましい。特に、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)、チタニウムテトラ(n-ブトキサイド)、及びビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウムが好ましい。
 有機チタン化合物を配合する場合の配合量は、(A)ポリイミド前駆体100質量部に対し、0.05~10質量部であることが好ましく、より好ましくは0.1~2質量部である。有機チタン化合物の配合量が0.05質量部以上である場合、良好な耐熱性及び耐薬品性が発現し、一方10質量部以下である場合、保存安定性に優れる。
 増感剤
 本実施形態のネガ型感光性樹脂組成物は、光感度を向上させるために、増感剤を任意に含んでもよい。増感剤としては、例えば、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2,5-ビス(4’-ジエチルアミノベンザル)シクロペンタン、2,6-ビス(4’-ジエチルアミノベンザル)シクロヘキサノン、2,6-ビス(4’-ジエチルアミノベンザル)-4-メチルシクロヘキサノン、4,4’-ビス(ジメチルアミノ)カルコン、4,4’-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビフェニレン)-ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4’-ジメチルアミノベンザル)アセトン、1,3-ビス(4’-ジエチルアミノベンザル)アセトン、3,3’-カルボニル-ビス(7-ジエチルアミノクマリン)、3-アセチル-7-ジメチルアミノクマリン、3-エトキシカルボニル-7-ジメチルアミノクマリン、3-ベンジロキシカルボニル-7-ジメチルアミノクマリン、3-メトキシカルボニル-7-ジエチルアミノクマリン、3-エトキシカルボニル-7-ジエチルアミノクマリン、N-フェニル-N’-エチルエタノールアミン、N-フェニルジエタノールアミン、N-p-トリルジエタノールアミン、N-フェニルエタノールアミン、4-モルホリノベンゾフェノン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、2-メルカプトベンズイミダゾール、1-フェニル-5-メルカプトテトラゾール、2-メルカプトベンゾチアゾール、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、及び2-(p-ジメチルアミノスチリル)ナフト(1,2-d)チアゾール、2-(p-ジメチルアミノベンゾイル)スチレン等が挙げられる。これらは1種を単独で用いてもよく、又は複数を組み合わせて、例えば2~5種類を組み合わせて用いることができる。
 感光性樹脂組成物が増感剤を含有する場合の配合量は、(A)ポリイミド前駆体100質量部に対し、0.1~25質量部であることが好ましい。
 光重合性不飽和モノマー
 ネガ型感光性樹脂組成物は、レリーフパターンの解像性を向上させるために、光重合性の不飽和結合を有するモノマー(光重合性不飽和モノマー)を任意に含んでもよい。このようなモノマーとしては、光重合開始剤によりラジカル重合反応する(メタ)アクリル化合物が好ましく、特に以下に限定するものではないが、ジエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレートなどの、エチレングリコール又はポリエチレングリコールのモノ又はジアクリレート及びメタクリレート、プロピレングリコール又はポリプロピレングリコールのモノ又はジアクリレート及びメタクリレート、グリセロールのモノ、ジ又はトリアクリレート及びメタクリレート、シクロヘキサンジアクリレート及びジメタクリレート、1,4-ブタンジオールのジアクリレート及びジメタクリレート、1,6-ヘキサンジオールのジアクリレート及びジメタクリレート、ネオペンチルグリコールのジアクリレート及びジメタクリレート、ビスフェノールAのモノ又はジアクリレート及びメタクリレート、ベンゼントリメタクリレート、イソボルニルアクリレート及びメタクリレート、アクリルアミド及びその誘導体、メタクリルアミド及びその誘導体、トリメチロールプロパントリアクリレート及びメタクリレート、グリセロールのジ又はトリアクリレート及びメタクリレート、ペンタエリスリトールのジ、トリ、又はテトラアクリレート及びメタクリレート、並びにこれら化合物のエチレンオキサイド又はプロピレンオキサイド付加物等の化合物を挙げることができる。
 感光性樹脂組成物が光重合性不飽和モノマーを含有する場合、その配合量は、(A)ポリイミド前駆体100質量部に対し、1~50質量部であることが好ましい。
 熱重合禁止剤
 本実施形態のネガ型感光性樹脂組成物は、特に溶剤を含む溶液の状態での保存時のネガ型感光性樹脂組成物の粘度及び光感度の安定性を向上させるために、熱重合禁止剤を任意に含んでもよい。熱重合禁止剤としては、ヒドロキノン、N-ニトロソジフェニルアミン、p-tert-ブチルカテコール、フェノチアジン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-p-メチルフェノール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルホプロピルアミノ)フェノール、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩、及びN-ニトロソ-N(1-ナフチル)ヒドロキシルアミンアンモニウム塩等が用いられる。
<硬化レリーフパターンの製造方法及び半導体装置>
 本実施形態の硬化レリーフパターンの製造方法は、
 (1)上述した本実施形態のネガ型感光性樹脂組成物を基板上に塗布して、感光性樹脂層を上記基板上に形成する工程と、
 (2)上記感光性樹脂層を露光する工程と、
 (3)露光後の上記感光性樹脂層を現像してレリーフパターンを形成する工程と、
 (4)上記レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程とを含む。
(1)感光性樹脂層形成工程
 本工程では、本実施形態のネガ型感光性樹脂組成物を基材上に塗布し、必要に応じてその後乾燥させて感光性樹脂層を形成する。塗布方法としては、従来から感光性樹脂組成物の塗布に用いられていた方法、例えば、スピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布する方法、及びスプレーコーターで噴霧塗布する方法等を用いることができる。
 必要に応じて、感光性樹脂組成物を含む塗膜を乾燥させることができる。乾燥方法としては、風乾、オーブン又はホットプレートによる加熱乾燥、真空乾燥等の方法が用いられる。具体的には、風乾又は加熱乾燥を行う場合、20℃~140℃で1分~1時間の条件で乾燥を行うことができる。このようにして、基板上に感光性樹脂層を形成できる。
(2)露光工程
 本工程では、上記で形成した感光性樹脂層を、紫外線光源等により露光する。露光方法としては、コンタクトアライナー、ミラープロジェクション、ステッパー等の露光装置を用いることができる。露光は、パターンを有するフォトマスク又はレチクルを介して又は直接に行うことができる。
 この後、光感度の向上等の目的で、必要に応じて、任意の温度及び時間の組合せによる露光後ベーク(PEB)及び/又は現像前ベークを施してもよい。ベーク条件の範囲は、温度は40℃~120℃であり、そして時間は10秒~240秒であることが好ましいが、本発明の感光性樹脂組成物の諸特性を阻害するものでない限り、この範囲に限らない。
(3)レリーフパターン形成工程
 本工程では、露光後の感光性樹脂層のうち未露光部を基板上から現像除去することにより、基板上にレリーフパターンを残す。露光(照射)後の感光性樹脂層を現像する現像方法としては、従来知られているフォトレジストの現像方法、例えば、回転スプレー法、パドル法、超音波処理を伴う浸漬法等の中から任意の方法を選択して使用することができる。また、現像の後、レリーフパターンの形状を調整する等の目的で、必要に応じて、任意の温度及び時間の組合せによる現像後ベークを施してもよい。
 現像に使用される現像液としては、例えば、ネガ型感光性樹脂組成物に対する良溶媒、又は該良溶媒と貧溶媒との組合せが好ましい。良溶媒としては、例えば、N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルアセトアミド、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、及びα-アセチル-γ-ブチロラクトン等が好ましい。貧溶媒としては、例えば、トルエン、キシレン、メタノール、エタノール、イソプロピルアルコール、乳酸エチル、プロピレングリコールメチルエーテルアセテート、及び水等が好ましい。良溶媒と貧溶媒とを混合して用いる場合には、ネガ型感光性樹脂組成物中のポリマーの溶解性によって良溶媒に対する貧溶媒の割合を調整することが好ましい。また、各溶媒を2種以上、例えば数種類組合せて用いることもできる。
(4)硬化レリーフパターン形成工程
 本工程では、上記現像により得られたレリーフパターンを加熱して感光成分を希散させるとともに、(A)ポリイミド前駆体をイミド化させることによって、ポリイミドから成る硬化レリーフパターンに変換する。加熱硬化の方法としては、例えば、ホットプレートによるもの、オーブンを用いるもの、温度プログラムを設定できる昇温式オーブンを用いるもの等種々の方法を選ぶことができる。加熱は、例えば、170℃~400℃で30分~5時間の条件で行うことができる。加熱硬化時の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。
<ポリイミド>
 上記ポリイミド前駆体組成物から形成される硬化レリーフパターンに含まれるポリイミドの構造は、下記一般式(10)で表される。
Figure JPOXMLDOC01-appb-C000079
 {一般式(10)中、X及びYは、一般式(1)中のX及びYと同じであり、mは正の整数である。}
 一般式(1)中の好ましいXとYは、同じ理由により、一般式(10)のポリイミドにおいても好ましい。一般式(10)の繰り返し単位数mは、特に限定は無いが、2~150の整数であってもよい。また、上記で説明されたネガ型感光性樹脂組成物をポリイミドに変換する工程を含むポリイミドの製造方法も本発明の一態様である。
<半導体装置>
 本実施形態では、上述した硬化レリーフパターンの製造方法により得られる硬化レリーフパターンを有する、半導体装置も提供される。したがって、半導体素子である基材と、上述した硬化レリーフパターン製造方法により該基材上に形成されたポリイミドの硬化レリーフパターンとを有する半導体装置が提供されることができる。また、本発明は、基材として半導体素子を用い、上述した硬化レリーフパターンの製造方法を工程の一部として含む半導体装置の製造方法にも適用できる。本発明の半導体装置は、上記硬化レリーフパターン製造方法で形成される硬化レリーフパターンを、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、又はバンプ構造を有する半導体装置の保護膜等として形成し、既知の半導体装置の製造方法と組合せることで製造することができる。
<表示体装置>
 本実施形態では、表示体素子と該表示体素子の上部に設けられた硬化膜とを備える表示体装置であって、該硬化膜は上述の硬化レリーフパターンである表示体装置が提供される。ここで、当該硬化レリーフパターンは、当該表示体素子に直接接して積層されていてもよく、別の層を間に挟んで積層されていてもよい。例えば、該硬化膜として、TFT液晶表示素子及びカラーフィルター素子の表面保護膜、絶縁膜、及び平坦化膜、MVA型液晶表示装置用の突起、並びに有機EL素子陰極用の隔壁を挙げることができる。
 本発明のネガ型感光性樹脂組成物は、上記のような半導体装置への適用の他、多層回路の層間絶縁、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、及び液晶配向膜等の用途にも有用である。
 以下、実施例により本実施形態を具体的に説明するが、本実施形態はこれに限定されるものではない。実施例、比較例、及び製造例においては、ポリマー又はネガ型感光性樹脂組成物の物性を以下の方法に従って測定及び評価した。
<測定及び評価方法>
(1)重量平均分子量
 各樹脂の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(標準ポリスチレン換算)を用いて以下の条件下で測定した。
 ポンプ:JASCO PU-980
 検出器:JASCO RI-930
 カラムオーブン:JASCO CO-965 40℃
 カラム:昭和電工(株)製Shodex KD-806M 直列に2本、又は
     昭和電工(株)製Shodex 805M/806M直列
 標準単分散ポリスチレン:昭和電工(株)製Shodex STANDARD SM-105
 移動相:0.1mol/L LiBr/N-メチル-2-ピロリドン(NMP)
 流速:1mL/min
(2)Cu上の硬化レリーフパターンの作製
 6インチシリコンウェハー(フジミ電子工業株式会社製、厚み625±25μm)上に、スパッタ装置(L-440S-FHL型、キヤノンアネルバ社製)を用いて200nm厚のTi、400nm厚のCuをこの順にスパッタした。続いて、このウェハー上に、後述の方法により調製したネガ型感光性樹脂組成物をコーターデベロッパー(D-Spin60A型、SOKUDO社製)を用いて回転塗布し、110℃で180秒間ホットプレートにてプリベークを行い、約7μm厚の塗膜を形成した。この塗膜に、テストパターン付マスクを用いて、プリズマGHI(ウルトラテック社製)により500mJ/cmのエネルギーを照射した。次いで、この塗膜を、現像液としてシクロペンタノンを用いてコーターデベロッパー(D-Spin60A型、SOKUDO社製)でスプレー現像し、プロピレングリコールメチルエーテルアセテートで、リンスすることにより、Cu上のレリーフパターンを得た。Cu上に該レリーフパターンを形成したウェハーを、昇温プログラム式キュア炉(VF-2000型、光洋リンドバーグ社製)を用いて、窒素雰囲気下、表1に記載の硬化温度において2時間加熱処理することにより、Cu上に約4~5μm厚の樹脂から成る硬化レリーフパターンを得た。
(3)Cu上の硬化レリーフパターンの解像性評価
 上記の方法で得た硬化レリーフパターンを光学顕微鏡下で観察し、最少開口パターンのサイズを求めた。このとき、得られたパターンの開口部の面積が、対応するパターンマスク開口面積の1/2以上であれば解像されたものとみなし、解像された開口部のうち最小面積を有するものに対応するマスク開口辺の長さを解像度とした。解像度が10μm未満のものを「優」、10μm以上14μm未満のものを「良」、14μm以上18μm未満のものを「可」、18μm以上のものを「不可」とした。
(4)Cu上の硬化レリーフパターンの高温保存(high temperature storage)試験と、その後のCu表面ボイド面積評価
 Cu上に該硬化レリーフパターンを形成したウェハーを、昇温プログラム式キュア炉(VF-2000型、光洋リンドバーグ社製)を用いて、空気中、150℃で168時間加熱した。続いて、プラズマ表面処理装置(EXAM型、神港精機社製)を用いて、Cu上の樹脂層を全てプラズマエッチングにより除去した。プラズマエッチング条件は下記の通りである。
 出力:133W
 ガス種・流量:O:40mL/分 + CF:1mL/分
 ガス圧:50Pa
 モード:ハードモード
 エッチング時間:1800秒
 樹脂層を全て除去したCu表面を、FE-SEM(S-4800型、日立ハイテクノロジーズ社製)によって観察し、画像解析ソフト(A像くん、旭化成社製)を用いて、Cu層の表面に占めるボイドの面積を算出した。比較例1に記載のネガ型感光性樹脂組成物を評価した際のボイドの総面積を100%とした際に、ボイドの総面積比率が50%未満のものを「優」、50%以上75%未満のものを「良」、75%以上100%未満のものを「可」100%以上のものを「不可」と判定した。
(5)硬化レリーフパターン(ポリイミド塗膜)の耐薬品性評価
 Cu上に形成した該硬化レリーフパターンを、レジスト剥離液{ATMI社製、製品名ST-44、主成分は2-(2-アミノエトキシ)エタノール、1-シクロヘキシル-2-ピロリドン}を50℃に加熱したものに5分間浸漬し、流水で1分間洗浄し、風乾した。その後、膜表面を光学顕微鏡で目視観察し、クラック等の薬液によるダメージの有無や、薬液処理後の膜厚の変化率をもって耐薬品性を評価した。評価基準として、クラック等が発生せず、膜厚変化率が薬品浸漬前の膜厚を基準として10%以下のものを「優」、10%超~15%以下のものを「良」、15%超~20%以下のものを「可」とし、クラックが発生したもの、または膜厚変化率が20%を超えるものを「不可」とした。
(6)封止材との密着性試験
 エポキシ系封止材として、長瀬ケムテックス社製のR4000シリーズを用意した。アルミスパッタしたシリコーンウエハー上に、封止材を厚みが約150ミクロンになるようにスピンコートし、130℃で熱硬化させてエポキシ系封止材を硬化させた。上記エポキシ系硬化膜上に、各実施例、及び各比較例で作製した感光性樹脂組成物を最終膜厚が10ミクロンになるように塗布した。塗布した感光性樹脂組成物を、アライナ(PLA-501F、キャノン社製)を用いて露光量600mJ/cm2のghi線で全面を露光した。その後、180℃、2時間にて熱硬化させて、厚み10ミクロンの1層目の硬化膜を作成した。
 上記1層目の硬化膜上に、1層目の硬化膜形成で使用した感光性樹脂組成物を塗布し、1層目の硬化膜作製時と同じ条件で全面を露光した後、熱硬化させて、厚み10ミクロンの2層目の硬化膜を作製した。封止材劣化試験で作製したサンプルにピンを立て、引取試験機(クワッドグループ社製、セバスチャン5型)を用いて密着性試験を行った。即ち、エポキシ系封止材と、各実施例及び各比較例で作製した感光性樹脂組成物から作製された硬化レリーフパターンとの接着強度を測定し、以下の基準で評価した。
評価:接着強度70MPa以上・・・密着力A
   接着強度50MPa以上~70MPa未満・・・密着力B
   接着強度30MPa以上~50MPa未満・・・密着力C
   接着強度30MPa未満・・・密着力D
 製造例1:(A)ポリイミド前駆体としてのポリマーA-1の合成
 4,4’-オキシジフタル酸二無水物(ODPA)155.1gを2L容量のセパラブルフラスコに入れ、2-ヒドロキシエチルメタクリレート(HEMA)131.2gとγ-ブチロラクトン400mLを入れて室温下で攪拌し、攪拌しながらピリジン81.5gを加えて反応混合物を得た。反応による発熱の終了後に反応混合物を室温まで放冷し、16時間放置した。次に、氷冷下において、ジシクロヘキシルカルボジイミド(DCC)206.3gをγ-ブチロラクトン180mLに溶解した溶液を攪拌しながら40分掛けて反応混合物に加え、続いて4,4’-オキシジアニリン(ODA)93.0gをγ-ブチロラクトン350mLに懸濁したものを攪拌しながら60分掛けて加えた。更に室温で2時間攪拌した後、エチルアルコール30mLを加えて1時間攪拌し、次に、γ-ブチロラクトン400mLを加えた。反応混合物に生じた沈殿物をろ過により取り除き、反応液を得た。得られた反応液を3Lのエチルアルコールに加えて粗ポリマーから成る沈殿物を生成した。生成した粗ポリマーを濾別し、テトラヒドロフラン1.5Lに溶解して粗ポリマー溶液を得た。得られた粗ポリマー溶液を28Lの水に滴下してポリマーを沈殿させ、得られた沈殿物を濾別した後、真空乾燥して粉末状のポリマー(ポリマーA-1)を得た。ポリマー(A-1)の分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は20,000であった。
 製造例2:(A)ポリイミド前駆体としてのポリマーA-2の合成
 製造例1の4,4’-オキシジフタル酸二無水物(ODPA)155.1gに代えて、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)147.1gを用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマー(A-2)を得た。ポリマー(A-2)の分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は22,000であった。
 製造例3:(A)ポリイミド前駆体としてのポリマーA-3の合成
 製造例1の4,4’-オキシジアニリン(ODA)93.0gに代えて、2,2’-ジメチルビフェニル-4,4’-ジアミン(m-TB)98.6gを用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマー(A-3)を得た。ポリマー(A-3)の分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は21,000であった。
 製造例4:(A)ポリイミド前駆体としてのポリマーA-4の合成
 製造例1の4,4’-オキシジアニリン(ODA)に代えて、p-フェニレンジアミン(50.3g)を用いた以外は、前述の製造例1に記載の方法と同様にして反応を行い、ポリマー(A-3)を得た。ポリマー(A-3)の分子量をゲルパーミエーションクロマトグラフィー(標準ポリスチレン換算)で測定したところ、重量平均分子量(Mw)は18,000であった。
<実施例1>MOI-Dの製造方法(化合物B-1)
 ジエチレングリコールビス(3-アミノプロピル)エーテル55.1g(0.25mol)を500mL容量のセパラブルフラスコに入れ、テトラヒドロフラン150mLを入れて室温下で攪拌した。次に、氷冷下において、2-メタクリロイルオキシエチルイソシアネート(昭和電工社品、製品名:カレンズMOI)77.6g(0.50mol)にテトラヒドロフラン150mLを加えた溶液を30分掛けて上記フラスコ内に滴下し、室温で5時間攪拌した。その後、ロータリーエバポレーターを用いてテトラヒドロフランを留去し、化合物B-1を得た。化合物B-1のメタアクリル当量は、265g/molであった。
<実施例2>MOI-APの製造方法(化合物B-2)
 上記実施例1において、ジエチレングリコールビス(3-アミノプロピル)エーテル55.1gを1,4-ブタンジオールビス(3-アミノプロピルエーテル)51.1g(0.25mol)に代えた以外は実施例1と同様の方法で合成を行い、化合物B-2を得た。化合物B-2のメタアクリル当量:257g/molであった。
<実施例3>MOI-ODAの製造方法(化合物B-3)
 上記実施例1において、ジエチレングリコールビス(3-アミノプロピル)エーテル55.1gをODA50.1g(0.25mol)に代えた以外は実施例1と同様の方法で合成を行い、化合物B-3を得た。化合物B-3のメタアクリル当量:255g/molであった。
<実施例4>MOI-DEtAの製造方法(化合物B-4)
 上記実施例1において、ジエチレングリコールビス(3-アミノプロピル)エーテル55.1gをジエタノールアミン26.3g(0.25mol)に代え、2-メタクリロイルオキシエチルイソシアネート(昭和電工社品、製品名:カレンズMOI)77.6gを38.8g(0.25mol)に代えた以外は実施例1と同様の方法で合成を行い、化合物B-4を得た。化合物B-4のメタアクリル当量:260g/molであった。
<実施例5>MOI-EG-MOIの製造方法(化合物B-5)
 上記実施例1において、2-メタクリロイルオキシエチルイソシアネート(昭和電工社品、製品名:カレンズMOI)77.6gを2-(2-イソシアナトエチルオキシ)エチルメタクリレート99.6g(0.50mol)に代えた以外は実施例1と同様の方法で合成を行い、化合物B-5を得た。化合物B-5のメタアクリル当量:309g/molであった。
<実施例6>MOI-DEAの製造方法(化合物B-6)
 N-フェニルジエタノールアミン55.1g(0.25mol)を500mL容量の3口ナスフラスコに入れ、プロピレングリコールモノメチルエーテルアセテート100mLを入れて室温下で攪拌した。更に、2-メタクリロイルオキシエチルイソシアネート(昭和電工社品、製品名:カレンズMOI)77.6g(0.50mol)にプロピレングリコールモノメチルエーテルアセテート150mLを加えた。そして、オイルバスでフラスコを120℃まで昇温し、120℃で13時間攪拌後、室温まで冷却した。その後、ロータリーエバポレーターを用いてプロピレングリコールモノメチルエーテルアセテートを留去し、化合物B-6を得た。化合物B-6のメタアクリル当量:245g/molであった。
<実施例7>MOI-AEEの製造方法(化合物B-7)
 上記製造例5において、ジエチレングリコールビス(3-アミノプロピル)エーテル55.1gを2-(2-アミノエトキシ)エタノール26.3g(0.25mol)に代え、2-メタクリロイルオキシエチルイソシアネート(昭和電工社品、製品名:カレンズMOI)77.6gを38.8g(0.25mol)に代えた以外は実施例1と同様の方法で合成を行い、化合物B-7を得た。化合物B-7のメタアクリル当量:260g/molであった。
<実施例8>MOI-DOAの製造方法(化合物B-8)
 上記実施例1において、ジエチレングリコールビス(3-アミノプロピル)エーテル55.1gをジ-n-オクチルアミン60.4g(0.25mol)に代え、2-メタクリロイルオキシエチルイソシアネート(昭和電工社品、製品名:カレンズMOI)77.6gを38.8g(0.25mol)に代えた以外は実施例1と同様の方法で合成を行い、化合物B-8を得た。化合物B-8のメタアクリル当量:397g/molであった。
<実施例9>BEI-DEtAの製造方法(化合物B-9)
 ジエタノールアミン26.3g(0.25mol)を500mL容量のセパラブルフラスコに入れ、テトラヒドロフラン150mLを入れて室温下で攪拌した。次に、氷冷下において、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート(昭和電工社品、製品名:カレンズBEI)59.8g(0.25mol)にテトラヒドロフラン150mLを加えた溶液を30分掛けて上記フラスコ内に滴下し、室温で5時間攪拌した。その後、ロータリーエバポレーターを用いてテトラヒドロフランを留去し、化合物B-9を得た。化合物B-9のアクリル当量:172g/molであった。
<実施例10>BEI-BHEAの製造方法(化合物B-10)
 上記実施例9において、ジエタノールアミン26.3g(0.25mol)をN,N’-ビス(2-ヒドロキシエチル)エチレンジアミン37.1g(0.25mol)に代え、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート59.8g(0.25mol)を119.6g(0.50mol)に代えた以外は実施例9と同様の方法で合成を行い、化合物B-10を得た。化合物B-10のアクリル当量は157g/molであった。
<実施例11>(化合物B-11)
 ジエタノールアミン2.10g(0.020mol)を100mL容量の三口フラスコに入れ、テトラヒドロフラン5.6gを入れて室温下で攪拌した。次に、氷冷下において、ヘキシルイソシアネート2.67g(0.021mol)にテトラヒドロフラン5.6gを加えた溶液を15分掛けて上記フラスコ内に滴下し、室温で4時間攪拌した。その後、ロータリーエバポレーターを用いてテトラヒドロフランを留去し、化合物B-11を得た。
<実施例12>(化合物B-12)
 上記実施例11において、ジエタノールアミン2.10g(0.020mol)を2-(2-アミノエトキシ)エタノール2.10g(0.020mol)に代えた以外は実施例11と同様の方法で合成を行い、化合物B-12を得た。
<実施例13>(化合物B-13)
 上記実施例11において、ジエタノールアミン2.10g(0.020mol)をビス(2-メトキシエチル)アミン2.66g(0.020mol)に代えた以外は実施例11と同様の方法で合成を行い、化合物B-13を得た。
<実施例14>
 ポリマーA-1を用いて以下の方法でネガ型感光性樹脂組成物を調製し、調製した組成物の評価を行った。(A)ポリイミド前駆体としてポリマーA-1:100g、(B)化合物として実施例1の化合物B-1:8g、(C)光重合開始剤としてエタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(OXE-02、感光剤C-1に該当):3gを、γ-ブチルラクトン(GBL):150gに溶解した。得られた溶液の粘度を、少量のGBLをさらに加えることによって、約30ポイズに調整し、ネガ型感光性樹脂組成物とした。該組成物を、前述の方法に従って評価した。結果を表1に示す。
<実施例15~26>
 表1に示すとおりの配合比で調製したこと以外は、実施例14と同様のネガ型感光性樹脂組成物を調製し、前述の方法に従って評価した。その結果を表1に示す。
<実施例27>
 ポリマーA-1及びA-2を用いて以下の方法でネガ型感光性樹脂組成物を調製し、調製した組成物の評価を行った。(A)ポリイミド前駆体としてポリマーA-1:50g、及びポリマーA-2:50g、(B)化合物として化合物B-1:8g、(C)光重合開始剤としてエタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(OXE-02、感光剤C-1に該当):3gを、γ-ブチルラクトン(GBL):150gに溶解した。得られた溶液の粘度を、少量のGBLをさらに加えることによって、約30ポイズに調整し、ネガ型感光性樹脂組成物とした。該組成物を、前述の方法に従って評価した。結果を表2に示す。
<実施例28~36>
 表2に示すとおりの配合比で調製したこと以外は、実施例14と同様のネガ型感光性樹脂組成物を調製し、前述の方法に従って評価した。その結果を表1に示す。
<実施例37>
 ポリマーA-3を用いて以下の方法でネガ型感光性樹脂組成物を調製し、調製した組成物の評価を行った。(A)ポリイミド前駆体としてポリマーA-3:100g、(B)化合物として化合物B-1:8g、(C)光重合開始剤としてエタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(OXE-02、感光剤C-1に該当):3gを、γ-ブチルラクトン(GBL):150gに溶解した。得られた溶液の粘度を、少量のGBLをさらに加えることによって、約30ポイズに調整し、ネガ型感光性樹脂組成物とした。該組成物を、前述の方法に従って評価した。結果を表2に示す。
<実施例38>
 ポリマーA-3の代わりにポリマーA-4を用いたこと以外は実施例24と同様にネガ型感光性樹脂組成物を製造し、前述の方法に従って評価した。結果を表2に示す。
<比較例1>
 (B)化合物を用いなかったこと以外は実施例1と同様にネガ型感光性樹脂組成物を製造し、前述の方法に従って評価した。結果を表2に示す。
 表1に記載されている、化合物(B-1~B-13)と感光剤(C-1)は、それぞれ以下の化合物である。
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
 C-1:エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(商標名:IRGACURE OXE-02(OXE-02))
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000094
 本発明によるネガ型感光性樹脂組成物を用いることで、高い耐薬品性と解像性を持つ硬化レリーフパターンを得ることができ、かつ、Cu表面のボイド発生を抑制することができる。本発明は、例えば半導体装置、多層配線基板等の電気・電子材料の製造に有用な感光性材料の分野で好適に利用できる。

Claims (30)

  1.  (A)下記一般式(1)で表されるポリイミド前駆体;
     (B)ウレタン結合、及びウレア結合から選択される少なくとも1種を含む、化合物;並びに
     (C)光重合開始剤
    を含む、ネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    {式中、Xは4価の有機基であり、Yは2価の有機基であり、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基であり、R及びRの少なくとも一方は、下記一般式(2)で表される1価の有機基である。}
    Figure JPOXMLDOC01-appb-C000002
    {式中、L、L及びLは、それぞれ独立に、水素原子又は炭素数1~3の有機基であり、そしてmは、2~10の整数である。}
  2.  前記(B)化合物が、ウレア結合を有する化合物である、請求項1記載のネガ型感光性樹脂組成物。
  3.  前記(B)化合物が、(メタ)アクリル基、水酸基、アルコキシ基、及びアミノ基から選択される少なくとも1種の官能基を更に含む、請求項1又は2に記載のネガ型感光性樹脂組成物。
  4.  前記(B)化合物が、(メタ)アクリル基及びウレア結合を有する化合物であって、(メタ)アクリル当量が150~400g/molである、請求項1~3のいずれか一項に記載のネガ型感光性樹脂組成物。
  5.  前記(B)化合物が、(メタ)アクリル基及びウレア結合を有する化合物であって、(メタ)アクリル当量が210~400g/molである、請求項1~3のいずれか一項に記載のネガ型感光性樹脂組成物。
  6.  前記(B)化合物が、(メタ)アクリル基及びウレア結合を有する化合物であって、(メタ)アクリル当量が220~400g/molである、請求項1~3のいずれか一項に記載のネガ型感光性樹脂組成物。
  7.  前記(B)化合物が、下記一般式(3)で表される構造を有する、請求項1~6のいずれか一項に記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    {式中、Rは水素原子又はメチル基であり、Aは-O-、-NH-、及び-NL-からなる群より選ばれる一つの基であり、Lは炭素数1~12の1価の有機基であり、Zは炭素数2~24のm価の有機基であり、Zは炭素数2~8の2価の有機基であり、そしてmは1~3の整数である。}
  8.  前記(B)化合物が、(メタ)アクリル基と、水酸基、アルコキシ基、及びアミノ基から選択される少なくとも1種の官能基とを更に含む、請求項1~7のいずれか一項に記載のネガ型感光性樹脂組成物。
  9.  前記(B)化合物が、下記式(4)~(7)、及び(11)~(14)からなる群から選択される少なくとも1種の化合物である、請求項1~8のいずれか一項に記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
  10.  (D)防錆剤を更に含む、請求項1~9のいずれか一項に記載のネガ型感光性樹脂組成物。
  11.  前記(D)防錆剤は、含窒素複素環化合物を含む、請求項10に記載のネガ型感光性樹脂組成物。
  12.  前記含窒素複素環化合物は、アゾール化合物である、請求項11に記載のネガ型感光性樹脂組成物。
  13.  前記含窒素複素環化合物は、プリン誘導体である、請求項11に記載のネガ型感光性樹脂組成物。
  14.  (E)シランカップリング剤を更に含む、請求項1~13のいずれか一項に記載のネガ型感光性樹脂組成物。
  15.  前記(A)ポリイミド前駆体におけるX1が、下記一般式(20a)、(20b)及び(20c)からなる群から選択される少なくとも1種を含む、請求項1~14のいずれか一項に記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    {式中、R6は、それぞれ独立に、水素原子、フッ素原子、C~C10の炭化水素基、及びC~C10の含フッ素炭化水素基から成る群から選ばれる1価の基であり、lは、0~2から選ばれる整数であり、そしてmは0~3から選ばれる整数である。}
  16.  前記(A)ポリイミド前駆体におけるY1が、下記一般式(21a)、(21b)及び(21c)からなる群から選択される少なくとも1種を含む、請求項1~15のいずれか一項に記載のネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    {式中、R6は、それぞれ独立に、水素原子、フッ素原子、C~C10の炭化水素基、及びC~C10の含フッ素炭化水素基から成る群から選ばれる1価の基であり、そしてnは0~4から選ばれる整数である。}
  17.  前記(A)ポリイミド前駆体が、下記一般式(8):
    Figure JPOXMLDOC01-appb-C000018
    {式中、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基である。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項1~16のいずれか一項に記載のネガ型感光性樹脂組成物。
  18.  前記(A)ポリイミド前駆体が、下記一般式(9):
    Figure JPOXMLDOC01-appb-C000019
    {式中、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基である。}
    で表される構造単位を有するポリイミド前駆体を含む、請求項1~17のいずれか一項に記載のネガ型感光性樹脂組成物。
  19.  前記(A)ポリイミド前駆体が、下記一般式(8):
    Figure JPOXMLDOC01-appb-C000020
    {式中、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基であり、一般式(9)中のR、R、及びnとは同じであるか、又は異なってよい。}
    で表される構造単位と、
     下記一般式(9):
    Figure JPOXMLDOC01-appb-C000021
    {式中、nは2~150の整数であり、そしてR及びRは、それぞれ独立に、水素原子、又は1価の有機基であり、一般式(8)中のR、R、及びnとは同じであるか、又は異なってよい。}
    で表される構造単位との共重合体であるか、又は
     上記一般式(8)で表される構造単位を有するポリイミド前駆体と、上記一般式(9)で表される構造単位を有するポリイミド前駆体との混合物である、請求項1~18のいずれか一項に記載のネガ型感光性樹脂組成物。
  20.  前記(A)ポリイミド前駆体が、上記一般式(8)で表される構造単位と、上記一般式(9)で表される構造単位との共重合体である、請求項19に記載のネガ型感光性樹脂組成物。
  21.  100質量部の前記(A)ポリイミド前駆体と、
     前記(A)ポリイミド前駆体100質量部を基準として0.1~30質量部の前記(B)化合物と、
     前記(A)ポリイミド前駆体100質量部を基準として0.1~20質量部の前記(C)光重合開始剤と
    を含む、請求項1~20のいずれか一項に記載のネガ型感光性樹脂組成物。
  22.  請求項1~21のいずれか一項に記載のネガ型感光性樹脂組成物をポリイミドに変換する工程を含む、ポリイミドの製造方法。
  23.  (1)請求項1~21のいずれか一項に記載のネガ型感光性樹脂組成物を基板上に塗布して、感光性樹脂層を前記基板上に形成する工程と、
     (2)前記感光性樹脂層を露光する工程と、
     (3)露光後の前記感光性樹脂層を現像して、レリーフパターンを形成する工程と、
     (4)前記レリーフパターンを加熱処理して、硬化レリーフパターンを形成する工程と
    を含む、硬化レリーフパターンの製造方法。
  24.  下記式(5)で表される化合物。
    Figure JPOXMLDOC01-appb-C000022
  25.  下記式(6)で表される化合物。
    Figure JPOXMLDOC01-appb-C000023
  26.  下記式(7)で表される化合物。
    Figure JPOXMLDOC01-appb-C000024
  27.  下記式(11)で表される化合物。
    Figure JPOXMLDOC01-appb-C000025
  28.  下記式(12)で表される化合物。
    Figure JPOXMLDOC01-appb-C000026
  29.  下記式(13)で表される化合物。
    Figure JPOXMLDOC01-appb-C000027
  30.  下記式(14)で表される化合物。
    Figure JPOXMLDOC01-appb-C000028
PCT/JP2019/028340 2018-07-31 2019-07-18 ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法 WO2020026840A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980041387.6A CN112334833A (zh) 2018-07-31 2019-07-18 负型感光性树脂组合物、以及使用其的聚酰亚胺及固化浮雕图案的制造方法
KR1020237021238A KR102652516B1 (ko) 2018-07-31 2019-07-18 네거티브형 감광성 수지 조성물, 그리고 이것을 사용한 폴리이미드 및 경화 릴리프 패턴의 제조 방법
JP2020533421A JP7210588B2 (ja) 2018-07-31 2019-07-18 ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法
KR1020207025894A KR102596594B1 (ko) 2018-07-31 2019-07-18 네거티브형 감광성 수지 조성물, 그리고 이것을 사용한 폴리이미드 및 경화 릴리프 패턴의 제조 방법
US17/260,811 US20210294213A1 (en) 2018-07-31 2019-07-18 Negative-type photosensitive resin composition and method for producing polyimide and cured relief pattern using same
JP2022184276A JP2023025070A (ja) 2018-07-31 2022-11-17 ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018143610 2018-07-31
JP2018-143610 2018-07-31
JP2018-147982 2018-08-06
JP2018147982 2018-08-06
JP2018-243228 2018-12-26
JP2018243228 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020026840A1 true WO2020026840A1 (ja) 2020-02-06

Family

ID=69232510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028340 WO2020026840A1 (ja) 2018-07-31 2019-07-18 ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法

Country Status (6)

Country Link
US (1) US20210294213A1 (ja)
JP (2) JP7210588B2 (ja)
KR (2) KR102596594B1 (ja)
CN (1) CN112334833A (ja)
TW (2) TWI756783B (ja)
WO (1) WO2020026840A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111522200A (zh) * 2020-04-07 2020-08-11 中国科学院化学研究所 一种用于12英寸硅晶圆的负型pspi树脂及其制备方法与应用
WO2022145355A1 (ja) * 2020-12-28 2022-07-07 富士フイルム株式会社 樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
WO2022153873A1 (ja) * 2021-01-14 2022-07-21 日産化学株式会社 重合体組成物、液晶配向剤、樹脂膜、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子
WO2023008001A1 (ja) * 2021-07-26 2023-02-02 富士フイルム株式会社 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2023162905A1 (ja) * 2022-02-25 2023-08-31 富士フイルム株式会社 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス、並びに、化合物
WO2024101295A1 (ja) * 2022-11-08 2024-05-16 富士フイルム株式会社 硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11854927B2 (en) 2021-03-24 2023-12-26 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor package and method of forming same
US12009226B2 (en) * 2021-08-27 2024-06-11 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method of forming same
CN114561009B (zh) * 2022-02-28 2024-01-30 波米科技有限公司 一种负型感光性聚酰胺酸酯树脂及其组合物的制备方法和应用
CN115536841B (zh) * 2022-10-24 2023-09-15 广东粤港澳大湾区黄埔材料研究院 负性光敏树脂及其制备方法与应用
KR102599334B1 (ko) * 2023-08-08 2023-11-07 주식회사 경원켐텍 박리효율이 높은 pcb 박리액 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194520A (ja) * 2010-08-05 2012-10-11 Asahi Kasei E-Materials Corp 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
WO2017131037A1 (ja) * 2016-01-29 2017-08-03 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法、および半導体デバイス
WO2017150039A1 (ja) * 2016-02-29 2017-09-08 富士フイルム株式会社 平版印刷版原版及び平版印刷版の製版方法
JP2017194677A (ja) * 2016-04-14 2017-10-26 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
WO2017209177A1 (ja) * 2016-06-02 2017-12-07 富士フイルム株式会社 硬化膜の製造方法、積層体の製造方法および半導体素子の製造方法
WO2018038001A1 (ja) * 2016-08-25 2018-03-01 富士フイルム株式会社 膜の製造方法、積層体の製造方法および電子デバイスの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028683A (en) * 1988-04-22 1991-07-02 Minnesota Mining And Manufacturing Company Electron-beam curable polyurethane compositions; and method
JP3047647B2 (ja) * 1992-01-20 2000-05-29 日立化成工業株式会社 新規ジアミノ化合物、ポリアミド酸樹脂、ポリアミド酸エステル樹脂、ポリイミド樹脂、それらの製造方法及び該樹脂を含有する感光性樹脂組成物並びにポリイミダゾピロロン樹脂及びポリイミダゾピロロンイミド樹脂
JP2001338947A (ja) 2000-05-26 2001-12-07 Nec Corp フリップチップ型半導体装置及びその製造方法
US7282323B2 (en) * 2002-07-11 2007-10-16 Asahi Kasei Emd Corporation Highly heat-resistant, negative-type photosensitive resin composition
JP4401262B2 (ja) * 2004-02-02 2010-01-20 富士フイルム株式会社 平版印刷版原版
US8399569B2 (en) * 2007-05-23 2013-03-19 Showa Denko K.K. Reactive urethane compound having ether bond, curable composition, and cured material
JP2010169944A (ja) * 2009-01-23 2010-08-05 Mitsui Chemicals Inc ネガ型感光性樹脂組成物、それを用いたネガ型パターンの形成方法、回路基板材料および回路基板用カバーレイ
JP5253433B2 (ja) * 2010-02-19 2013-07-31 富士フイルム株式会社 平版印刷版の作製方法
JP5713502B2 (ja) * 2011-09-03 2015-05-07 関西ペイント株式会社 水性塗料組成物
CN104781263B (zh) * 2012-08-08 2017-10-17 3M创新有限公司 脲(多)‑(甲基)丙烯酸酯(多)‑硅烷组合物及包含所述组合物的制品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194520A (ja) * 2010-08-05 2012-10-11 Asahi Kasei E-Materials Corp 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
WO2017131037A1 (ja) * 2016-01-29 2017-08-03 富士フイルム株式会社 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法、および半導体デバイス
WO2017150039A1 (ja) * 2016-02-29 2017-09-08 富士フイルム株式会社 平版印刷版原版及び平版印刷版の製版方法
JP2017194677A (ja) * 2016-04-14 2017-10-26 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
WO2017209177A1 (ja) * 2016-06-02 2017-12-07 富士フイルム株式会社 硬化膜の製造方法、積層体の製造方法および半導体素子の製造方法
WO2018038001A1 (ja) * 2016-08-25 2018-03-01 富士フイルム株式会社 膜の製造方法、積層体の製造方法および電子デバイスの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111522200A (zh) * 2020-04-07 2020-08-11 中国科学院化学研究所 一种用于12英寸硅晶圆的负型pspi树脂及其制备方法与应用
CN111522200B (zh) * 2020-04-07 2021-07-27 中国科学院化学研究所 一种用于12英寸硅晶圆的负型pspi树脂及其制备方法与应用
WO2022145355A1 (ja) * 2020-12-28 2022-07-07 富士フイルム株式会社 樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
WO2022153873A1 (ja) * 2021-01-14 2022-07-21 日産化学株式会社 重合体組成物、液晶配向剤、樹脂膜、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子
WO2023008001A1 (ja) * 2021-07-26 2023-02-02 富士フイルム株式会社 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2023162905A1 (ja) * 2022-02-25 2023-08-31 富士フイルム株式会社 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス、並びに、化合物
WO2024101295A1 (ja) * 2022-11-08 2024-05-16 富士フイルム株式会社 硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス

Also Published As

Publication number Publication date
JPWO2020026840A1 (ja) 2021-02-15
TW202100570A (zh) 2021-01-01
TWI756783B (zh) 2022-03-01
JP7210588B2 (ja) 2023-01-23
KR102652516B1 (ko) 2024-03-29
US20210294213A1 (en) 2021-09-23
KR20230100750A (ko) 2023-07-05
KR20200119284A (ko) 2020-10-19
KR102596594B1 (ko) 2023-11-01
JP2023025070A (ja) 2023-02-21
TW202012455A (zh) 2020-04-01
CN112334833A (zh) 2021-02-05
TWI771605B (zh) 2022-07-21

Similar Documents

Publication Publication Date Title
JP7210588B2 (ja) ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法
JP7393491B2 (ja) ネガ型感光性樹脂組成物及びその製造方法、並びに硬化レリーフパターンの製造方法
JP2023171788A (ja) ネガ型感光性樹脂組成物及びその製造方法
JP2023085410A (ja) ネガ型感光性樹脂組成物及び硬化レリーフパターンの製造方法
TWI703406B (zh) 負型感光性樹脂組合物及硬化浮凸圖案之製造方法
JP2021120703A (ja) 感光性樹脂組成物、硬化レリーフパターン及びその製造方法
KR102456730B1 (ko) 네거티브형 감광성 수지 조성물, 폴리이미드의 제조 방법 및 경화 릴리프 패턴의 제조 방법
JP2021120697A (ja) ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法
JP2021120698A (ja) ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法
JP7488659B2 (ja) ネガ型感光性樹脂組成物、並びにこれを用いたポリイミド及び硬化レリーフパターンの製造方法
JP7445443B2 (ja) ネガ型感光性樹脂組成物及びその製造方法、並びに硬化レリーフパターンの製造方法
TWI841991B (zh) 負型感光性樹脂組合物、以及使用其之聚醯亞胺及硬化浮凸圖案之製造方法
WO2024095927A1 (ja) 感光性樹脂組成物、並びにこれを用いた硬化レリーフパターンの製造方法及びポリイミド膜の製造方法
TW202402952A (zh) 負型感光性樹脂組合物及其製造方法、以及硬化浮凸圖案之製造方法
TW202411778A (zh) 感光性樹脂組合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533421

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207025894

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843420

Country of ref document: EP

Kind code of ref document: A1