WO2020026593A1 - 高強度熱延鋼板およびその製造方法 - Google Patents

高強度熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2020026593A1
WO2020026593A1 PCT/JP2019/022886 JP2019022886W WO2020026593A1 WO 2020026593 A1 WO2020026593 A1 WO 2020026593A1 JP 2019022886 W JP2019022886 W JP 2019022886W WO 2020026593 A1 WO2020026593 A1 WO 2020026593A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
phase
rolled steel
temperature
Prior art date
Application number
PCT/JP2019/022886
Other languages
English (en)
French (fr)
Inventor
山崎 和彦
横田 毅
寿実雄 海宝
永明 森安
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020217002705A priority Critical patent/KR102495090B1/ko
Priority to JP2019553584A priority patent/JP6874857B2/ja
Priority to US17/262,884 priority patent/US20210140007A1/en
Priority to CN201980050754.9A priority patent/CN112534077B/zh
Priority to EP19843333.6A priority patent/EP3831972B1/en
Publication of WO2020026593A1 publication Critical patent/WO2020026593A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention is a high-strength material having excellent press-formability and low-temperature toughness and having a tensile strength TS of 1180 MPa or more, which is suitable for undercarriage members such as automobile structural members, framework members, suspensions, etc., truck frame members, and construction equipment members.
  • the present invention relates to a hot-rolled steel sheet and a method for manufacturing the same.
  • the demand for high-strength hot-rolled steel sheets having a predetermined strength is increasing year by year as a material for automobile parts.
  • a high-strength hot-rolled steel sheet having a tensile strength TS of 1180 MPa or more is greatly expected as a material that can dramatically improve the fuel efficiency of automobiles.
  • Automobile underbody members are mainly formed by press molding, and the material is required to have excellent stretch flange formability and bend formability.
  • a member for an automobile be hardly broken even after being subjected to an impact due to a collision or the like after being attached to the automobile as a member after press molding.
  • Stretch flange formability is measured by a hole expanding test or the like in accordance with the Iron Steel Standard JFST # 1001.
  • the bending formability is measured by a bending test or the like according to JIS Z 2248.
  • the low-temperature toughness is measured by a Charpy impact test or the like according to JIS Z 2242.
  • Patent Literature 1 states that a steel structure has a tempered martensite fraction of 5% or more, a balance of ferrite and bainite, a retained austenite fraction of 2% or less, and less than 1% martensite.
  • Patent Document 2 discloses that, in mass%, C: 0.01% or more, 0.35% or less, Si: 2.0% or less, Mn: 0.1% or more, 4.0% or less, Al : 0.001% or more, 2.0% or less, P: 0.2% or less, S: 0.0005% or more, 0.02% or less, N: 0.02% or less, O: 0.0003% or more , Having a component composition of 0.01% or less, a tempered martensite fraction of 5% or more, a retained austenite fraction of less than 2%, a martensite fraction of less than 1%, pearlite A stretch flange having a steel structure having a fraction of less than 5%, a balance of ferrite and bainite, and an average grain size of the tempered martensite phase in a range of 0.5 ⁇ m or more and
  • Patent Document 3 discloses that, by mass%, C: 0.05% or more and 0.20% or less, Si: 0.01% or more and 0.55% or less, Mn: 0.1% or more and 2.5% or less. %, P: 0.1% or less, S: 0.01% or less, Al: 0.005% or more, 0.10% or less, N: 0.01% or less, Nb: 0.005% or more, 0 .10% or less, B: has a component composition of 0.0003% or more and 0.0050% or less, 90% or more of the structure is martensite, and the average aspect ratio of the prior austenite grains near the surface layer is 3 or more; A high-strength hot-rolled steel sheet having a structure of 20 or less is disclosed.
  • finish rolling is performed to reduce the cumulative rolling reduction in the unrecrystallized austenite region to more than 40% and 80% or less, finish the rolling at three or more Ar points, and cool at an average cooling rate of 15 ° C./s or more. It is disclosed that a steel sheet excellent in bending formability can be manufactured by winding in a temperature range of 200 ° C. or lower.
  • Patent Document 4 in mass%, C: 0.08% or more and less than 0.16%, Si: 0.01 to 1.0%, Mn: 0.8 to 2.0%, Al: 0.
  • a steel material containing 005 to 0.10%, N: 0.002 to 0.006%, and further containing Nb, Ti, Cr, and B is heated to a temperature of 1100 to 1250 ° C., and RDT: 900 Rough rolling to ⁇ 1100 ° C. and finish rolling to make the cumulative reduction ratio in the temperature range of FET: 900 to 1100 ° C., FDT: 800 to 900 ° C. and less than 930 ° C. 20 to 90%.
  • the martensite phase and / or the tempered martensite phase of 90% by area or more are the main phases, the average grain size of the old ⁇ grains is 20 ⁇ m or less in the L section, the aspect ratio is 18 or less, and YS: 960 MPa or more. It is disclosed that a high-strength hot-rolled steel sheet excellent in bending formability and low-temperature toughness can be obtained.
  • the chemical composition is as follows: C: 0.01 to 0.20%, Si: 2.50% or less (excluding 0), Mn: 4.00% or less (0% by mass). P: 0.10% or less (excluding 0), S: 0.03% or less (excluding 0), Al: 0.001 to 2.00%, N: 0.01% Or less (0 is not included), O: 0.01% or less (0 is not included), one or two of Ti and Nb: 0.01 to 0.30% in total, the balance being iron and unavoidable Stretch flange forming comprising impurities and having a microstructure containing one or both of tempered martensite and lower bainite in a volume fraction of 90% or more and having a standard deviation ⁇ of Vickers hardness distribution of 15 or less. Discloses a high-strength hot-rolled steel sheet with excellent tensile strength and low-temperature toughness and a maximum tensile strength of 980 MPa or more It has been.
  • Patent Document 6 discloses that the chemical composition is, by mass%, C: 0.01 to 0.2%, Si: 2.50% or less (excluding 0), and Mn: 1.0 to 4.00. %, P: 0.10% or less, S: 0.03% or less, Al: 0.001 to 2.0%, N: 0.01% or less (excluding 0), O: 0.01% or less (0 is not included), Cu: 0 to 2.0%, Ni: 0 to 2.0%, Mo: 0 to 1.0%, V: 0 to 0.3%, Cr: 0 to 2.0 %, Mg: 0 to 0.01%, Ca: 0 to 0.01%, REM: 0 to 0.1%, and B: 0 to 0.01%, either Ti or Nb Alternatively, both have a composition containing 0.01 to 0.30% in total, the balance being iron and impurities, and a structure in which the volume fraction of tempered martensite and lower bainite is 90% or more in total, From the surface / 4 has an average effective crystal grain size of 10 ⁇ m or
  • Patent Documents 1 and 2 require a process of reheating a hot-rolled steel sheet in order to obtain excellent stretch flange formability, and a problem that high strength of 1180 MPa or more cannot be obtained. was there.
  • Patent Document 3 refers to bending formability at a high strength of 1180 MPa or more, but does not mention stretch flange formability and low-temperature toughness. It is feared that destruction will occur.
  • Patent Document 4 refers to bending formability and low-temperature toughness at a high strength of 1180 MPa or more, but does not refer to stretch flange formability at all, and has high elongation such as an automobile underbody member. When applied to a member requiring flange formability, there is a concern that a molding defect may occur.
  • Patent Document 5 refers to stretch flange formability and low-temperature toughness, but does not refer to bend formability, and requires high bend formability such as track frame members and construction machine members. When applied to a member to be formed, there is a concern that molding failure may occur and there is a problem that high strength of 1180 MPa or more cannot be obtained.
  • the present invention solves the problem of the prior art and maintains a high strength of tensile strength TS of 1180 MPa or more, and further has a high strength having excellent stretch flange formability, bending formability and low-temperature toughness.
  • An object of the present invention is to provide a hot-rolled steel sheet and a method for producing the same.
  • the present inventors have intensively studied to improve stretch flange formability, bendability, and low-temperature toughness of a hot-rolled steel sheet while maintaining a high tensile strength TS of 1180 MPa or more.
  • the steel structure has a lower bainite phase and / or a tempered martensite phase as a main phase, and by controlling the area average grain size (average grain size) of the steel structure, high strength of 1180 MPa or more and excellent low-temperature toughness are obtained.
  • excellent stretch-flange formability can be obtained by controlling the amount of Fe in the Fe-based precipitate, and high bendability can be obtained by controlling the arithmetic average roughness (Ra) of the surface of the hot-rolled steel sheet.
  • the lower bainite phase and / or tempered martensite phase referred to herein means a structure having Fe-based carbide in and / or between laths of lath-like ferrite.
  • the lower bainite and the tempered martensite can be distinguished from each other in the orientation and crystal structure of Fe-based carbide in the lath by using a TEM (transmission electron microscope), but are not distinguished in the present invention because they have substantially the same characteristics. .
  • TEM transmission electron microscope
  • lath-like ferrite has a lath-like shape and has a relatively high dislocation density inside, so both are SEM (scanning electron microscope) or TEM.
  • the upper bainite phase means a structure having a retained austenite phase between laths of lath ferrite.
  • the pearlite phase means a structure having lamellar ferrite and Fe-based carbide. Since the lamellar ferrite has a lower dislocation density than the lath ferrite, the pearlite phase and the lower bainite phase and / or the tempered martensite phase or the upper bainite phase can be easily distinguished by SEM, TEM, or the like.
  • the fresh martensite phase, the island martensite phase (martensite-retained austenite mixed phase), and the massive retained austenite phase are structures having no Fe-based carbide as compared with the tempered martensite phase, and are tempered martensite.
  • the phases can be distinguished using SEM.
  • the fresh martensite phase, the island martensite phase (mixed martensite-retained austenite phase), and the massive retained austenite phase have the same massive shape and contrast in SEM, so that electron beam backscatter diffraction (Diffraction) Patterns: It can be distinguished using the EBSD) method.
  • the retained austenite phase in the upper bainite phase has a lath shape and is different in shape from the massive retained austenite phase, both retained austenite phases can be easily distinguished.
  • the polygonal ferrite phase is formed at a higher temperature than the upper bainite phase and is a lump, so that it can be easily distinguished from lath-like ferrite by SEM, TEM, or the like.
  • the present inventors conducted further research and needed to improve stretch flange formability, bend formability, and low-temperature toughness while maintaining a high tensile strength TS of 1180 MPa or more.
  • the composition ratio, the area ratio and the average grain size of the lower bainite phase and / or the tempered martensite phase, the amount of Fe in Fe-based precipitates, and the arithmetic average roughness (Ra) of the surface of the hot-rolled steel sheet were examined.
  • C 0.07% to 0.20%, Si: 0.10% to 2.0%, Mn: 0.8% to 3.0%, P: 0.100 % Or less (including 0%), S: 0.0100% or less (including 0%), Al: 0.010% or more and 2.00% or less, N: 0.010% or less (including 0%), Ti: contains 0.02% or more and less than 0.16%, B: contains 0.0003% or more and 0.0100% or less, has a component composition comprising the balance of Fe and inevitable impurities, and further has a steel structure having an area
  • the main phase is a lower bainite phase and / or a tempered martensite phase having a percentage of 90% or more, and the main phase has an average particle size of 10.0 ⁇ m or less. To 0.70% or less, and the arithmetic average roughness (Ra) of the steel sheet surface to 2.50 ⁇ m or less. It was found that it was essential.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
  • the main phase is a lower bainite phase and / or a tempered martensite phase, and the average particle size of the main phase is 10.0 ⁇ m or less, and the amount of Fe in the Fe-based precipitate is 0.70% or less by mass%.
  • the arithmetic average roughness (Ra) of the surface is 2.50 ⁇ m or less, and the tensile strength is A high-strength hot-rolled steel sheet having a TS of 1180 MPa or more.
  • the component composition further includes, by mass%, Cr: 0.01% to 2.0%, Mo: 0.01% to 0.50%, Cu: 0.01% to 0.50. % Or less and Ni: one or more selected from 0.01% or more and 0.50% or less.
  • the component composition further includes, in mass%, one or two members selected from Nb: 0.001% to 0.060% and V: 0.01% to 0.50%.
  • the component composition further includes, by mass%, Ca: 0.0005% to 0.0100%, Mg: 0.0005% to 0.0100%, and REM: 0.0005% to 0.0100%. %.
  • the average cooling rate is 20 ° C./s or more, and the finish rolling end temperature is RC or more, the cooling from the end of the finish rolling to the start of cooling is performed within 2.0 s, and At the stop temperature, the cooled steel sheet is wound up.
  • a method for producing a high-strength hot-rolled steel sheet wherein the sheet is cooled under the condition that the average cooling rate is less than 20 ° C / s and the cooling stop temperature is 100 ° C or less.
  • a high-strength hot-rolled steel sheet having a tensile strength TS of 1180 MPa or more and having excellent stretch flange formability, bending formability, and low-temperature toughness can be obtained.
  • the high-strength hot-rolled steel sheet of the present invention can be stably manufactured.
  • the weight of the vehicle body is reduced while ensuring the safety of the vehicle. Because of the reduction, it is possible to contribute to the reduction of the environmental load, and there is an industrially significant effect.
  • C 0.07% to 0.20%, Si: 0.10% to 2.0%, Mn: 0.8% to 3.0% by mass. %, P: 0.100% or less (including 0%), S: 0.0100% or less (including 0%), Al: 0.010% to 2.00%, N: 0.010% Or less (including 0%), Ti: 0.02% or more and less than 0.16%, B: 0.0003% or more and 0.0100% or less, and has a component composition consisting of the balance of Fe and unavoidable impurities.
  • C 0.07% or more and 0.20% or less
  • C is an element that promotes the formation of a lower bainite phase and / or a tempered martensite phase by improving the strength of steel and improving hardenability.
  • the C content needs to be 0.07% or more in order to obtain a high strength of 1180 MPa or more.
  • the C content is set to 0.07% or more and 0.20% or less.
  • the C content is 0.08% or more and 0.19% or less. More preferably, the C content is 0.08% or more and 0.17% or less. More preferably, the C content is 0.09% or more and less than 0.15%.
  • Si 0.10% or more and 2.0% or less
  • Si is an element contributing to solid solution strengthening and an element contributing to improvement of the strength of steel. Further, Si has an effect of suppressing the formation of Fe-based carbides, and is one of the elements necessary for controlling the amount of Fe in the Fe-based precipitates and improving the bending formability. To obtain such an effect, the Si content needs to be 0.10% or more.
  • Si is an element that forms a subscale on the steel sheet surface during hot rolling. If the Si content exceeds 2.0%, the subscale becomes too thick, the arithmetic average roughness (Ra) of the steel sheet surface after descaling becomes excessive, and the bending formability of the hot-rolled steel sheet deteriorates.
  • the Si content is set to 2.0% or less.
  • the Si content is from 0.20% to 1.8%. More preferably, the Si content is 0.40% or more and 1.7% or less. More preferably, the Si content is 0.50% or more and 1.5% or less.
  • Mn 0.8% or more and 3.0% or less Mn contributes to increase the strength of steel by forming a solid solution, and promotes the formation of a lower bainite phase and / or a tempered martensite phase by improving hardenability. To obtain such an effect, the Mn content needs to be 0.8% or more. On the other hand, if the Mn content exceeds 3.0%, the fresh martensite phase increases, and the low-temperature toughness of the hot-rolled steel sheet deteriorates. Therefore, the Mn content is set to 0.8% or more and 3.0% or less. Preferably, the Mn content is 1.0% or more and 2.8% or less. More preferably, the Mn content is 1.2% or more and 2.6% or less. More preferably, the Mn content is from 1.4% to 2.4%.
  • P 0.100% or less (including 0%)
  • P is an element that forms a solid solution and contributes to an increase in the strength of steel.
  • P is also an element that segregates at austenite grain boundaries during hot rolling, thereby generating cracks during hot rolling. Further, even if the generation of cracks can be avoided, segregation at grain boundaries lowers low-temperature toughness and lowers workability. For this reason, it is preferable to reduce the P content as much as possible, but the content of P up to 0.100% is acceptable. Therefore, the P content is set to 0.100% or less.
  • the P content is 0.050% or less, more preferably, the P content is 0.050% or less.
  • S 0.0100% or less (including 0%) S combines with Ti and Mn to form coarse sulfides and lowers the low-temperature toughness of the hot-rolled steel sheet. For this reason, it is preferable to minimize the S content, but the S content of up to 0.0100% is acceptable. Therefore, the S content is set to 0.0100% or less. From the viewpoint of low-temperature toughness, the S content is preferably 0.0050% or less, and more preferably the S content is 0.0030% or less.
  • Al 0.010% or more and 2.00% or less
  • Al is an element that acts as a deoxidizing agent and is effective for improving the cleanliness of steel. If the Al content is less than 0.010%, the effect is not always sufficient, so the Al content is set to 0.010% or more.
  • Al has the effect of suppressing the formation of carbides, like Si, and is one of the elements necessary for controlling the amount of Fe in Fe-based precipitates and improving stretch flange formability.
  • excessive addition of Al causes an increase in oxide inclusions, lowers the toughness of the hot-rolled steel sheet, and causes flaws. Therefore, the Al content is set to 0.010% or more and 2.00% or less.
  • the Al content is 0.015% or more and 1.80% or less. More preferably, the Al content is from 0.020% to 1.50%.
  • N 0.010% or less (including 0%) N precipitates as a nitride by combining with a nitride-forming element, and contributes to crystal grain refinement.
  • N tends to combine with Ti at a high temperature to form coarse nitrides, and lowers the toughness of the hot-rolled steel sheet. Therefore, the N content is set to 0.010% or less.
  • the N content is less than or equal to 0.008%. More preferably, the N content is 0.006% or less.
  • Ti 0.02% or more and less than 0.16%
  • Ti is an element having an effect of improving the strength of a steel sheet by precipitation strengthening or solid solution strengthening.
  • Ti forms nitrides in the high-temperature region of the austenitic phase (the high-temperature region in the austenitic phase and the region higher in temperature than the austenitic phase (casting stage)).
  • B becomes a solid solution state, whereby the hardenability necessary for the formation of the lower bainite phase and / or the tempered martensite phase can be obtained, which contributes to the improvement in strength.
  • Ti increases the recrystallization temperature of the austenite phase during hot rolling, thereby enabling rolling in the austenite non-recrystallized region, thereby reducing the grain size of the lower bainite phase and / or the tempered martensite phase. And improve low-temperature toughness.
  • the Ti content needs to be 0.02% or more.
  • the Ti content is set to 0.02% or more and less than 0.16%.
  • the Ti content is 0.02% or more and 0.15% or less. More preferably, the Ti content is 0.03% or more and 0.14% or less. More preferably, the Ti content is 0.04% or more and 0.13% or less.
  • B 0.0003% or more and 0.0100% or less B segregates at the prior austenite grain boundary and suppresses the formation of ferrite, thereby promoting the formation of the lower bainite phase and / or the tempered martensite phase, It is an element that contributes to the improvement of the strength and the stretch flangeability.
  • the B content is set to 0.0003% or more.
  • the B content is limited to the range of 0.0003% to 0.0100%.
  • the B content is 0.0006% or more and 0.0050% or less, and more preferably, the B content is 0.0007% or more and 0.0030% or less.
  • the steel sheet of the present invention can obtain the desired properties, but the high-strength hot-rolled steel sheet of the present invention further improves, for example, high strength, stretch flange formability, bending formability, and low-temperature toughness.
  • the following optional elements can be contained, if necessary, for the purpose of performing the following.
  • Cr 0.01% to 2.0%
  • Mo 0.01% to 0.50%
  • Cu 0.01% to 0.50%
  • Ni 0.01% to 0.50%
  • One or more selected from the following Cr: 0.01% or more and 2.0% or less Cr is an element having an effect of improving the strength of a steel sheet by solid solution strengthening. Further, it is an element that promotes the formation of a lower bainite phase and / or a tempered martensite phase by improving hardenability. Further, Cr has an effect of suppressing the formation of Fe-based carbides, and is one of the elements necessary for controlling the amount of Fe in Fe-based precipitates and improving stretch flange formability. In order to exhibit these effects, the Cr content is set to 0.01% or more.
  • Cr like Si
  • Cr is an element that forms a subscale on the steel sheet surface during hot rolling. Therefore, when the Cr content exceeds 2.0%, the subscale becomes too thick, the arithmetic average roughness (Ra) of the steel sheet surface after descaling becomes excessive, and the bending formability of the hot-rolled steel sheet deteriorates. . Therefore, when Cr is contained, the Cr content is set to 0.01% or more and 2.0% or less. Preferably, the Cr content is 0.05% or more and 1.8% or less. More preferably, the Cr content is 0.10% or more and 1.5% or less. More preferably, the Cr content is 0.15% or more and 1.0% or less.
  • Mo 0.01% or more and 0.50% or less
  • Mo forms a solid solution to contribute to an increase in strength of the steel, and promotes the formation of a lower bainite phase and / or a tempered martensite phase by improving hardenability.
  • the Mo content needs to be 0.01% or more.
  • the Mo content is set to 0.01% or more and 0.50% or less.
  • the Mo content is 0.05% or more and 0.40% or less. More preferably, the Mo content is 0.10% or more and 0.30% or less.
  • Cu 0.01% or more and 0.50% or less
  • Cu forms a solid solution and contributes to an increase in the strength of steel. Further, Cu promotes formation of a lower bainite phase and / or a tempered martensite phase through improvement of hardenability, and contributes to improvement of strength.
  • the Cu content is preferably set to 0.01% or more. However, if the Cu content exceeds 0.50%, the surface properties of the hot-rolled steel sheet are reduced, and the hot-rolled steel sheet is deteriorated. Deteriorates the bending formability. Therefore, when Cu is contained, the Cu content is set to 0.01% or more and 0.50% or less. Preferably, the Cu content is 0.05% or more and 0.30% or less.
  • Ni 0.01% or more and 0.50% or less
  • Ni forms a solid solution and contributes to an increase in the strength of steel.
  • Ni promotes the formation of a lower bainite phase and / or a tempered martensite phase through improvement of hardenability, and contributes to improvement of strength.
  • the Ni content is preferably set to 0.01% or more.
  • the Ni content is set to 0.01% or more and 0.50% or less.
  • the Ni content is 0.05% or more and 0.30% or less.
  • Nb 0.001% or more and 0.060% or less
  • V One or two kinds selected from 0.01% or more and 0.50% or less
  • Nb 0.001% or more and 0.060% or less
  • Nb like Ti, raises the recrystallization temperature of the austenite phase during hot rolling, thereby enabling rolling in the austenite unrecrystallized region, and lower bainite phase and / or tempered martensite phase. To improve the low-temperature toughness. In order to exhibit these effects, the Nb content needs to be 0.001% or more.
  • the Nb content when the Nb content exceeds 0.060%, the formation of island-like martensite is promoted, and the stretch flange formability and low-temperature toughness deteriorate. Therefore, when Nb is contained, the Nb content is set to 0.001% or more and 0.060% or less. Preferably, the Nb content is 0.005% or more and 0.050% or less. More preferably, the Nb content is 0.010% or more and 0.040% or less.
  • V 0.01% or more and 0.50% or less
  • V is an element having an effect of improving the strength of the steel sheet by precipitation strengthening or solid solution strengthening. Further, V increases the recrystallization temperature of the austenite phase at the time of hot rolling in the same manner as Ti, thereby enabling rolling in the austenite unrecrystallized region, and lower bainite phase and / or tempered martensite phase. To improve the low-temperature toughness. In order to exhibit these effects, the V content needs to be 0.01% or more. On the other hand, if the V content exceeds 0.50%, the formation of island-like martensite is promoted, and the stretch flangeability and low-temperature toughness deteriorate.
  • the V content when V is contained, is made 0.01% or more and 0.50% or less.
  • the V content is 0.05% or more and 0.40% or less. More preferably, the V content is 0.10% or more and 0.30% or less.
  • Sb 0.0005% or more and 0.0500% or less
  • Sb has an effect of suppressing nitriding of the slab surface in the slab heating step, and suppresses precipitation of BN on the slab surface layer.
  • the presence of solid solution B can provide the hardenability required for generation of bainite even in the surface layer portion of the hot-rolled steel sheet, and improves the strength of the hot-rolled steel sheet.
  • the Sb content needs to be 0.0005% or more.
  • the Sb content exceeds 0.0500%, the rolling load is increased, and the productivity may be reduced. Therefore, when Sb is contained, the Sb content is set to 0.0005% or more and 0.0500% or less.
  • the Sb content is 0.0008% or more and 0.0350% or less, and more preferably the Sb content is 0.0010% or more and 0.0200% or less.
  • Ca 0.0005% to 0.0100%
  • Mg 0.0005% to 0.0100%
  • REM One or more selected from 0.0005% to 0.0100%. : 0.0005% or more and 0.0100% or less
  • Ca controls the shape of oxide or sulfide-based inclusions and is effective in improving the low-temperature toughness of the hot-rolled steel sheet.
  • the Ca content is preferably set to 0.0005% or more.
  • the Ca content is set to 0.0005% or more and 0.0100% or less.
  • the Ca content is 0.0010% or more and 0.0050% or less.
  • Mg 0.0005% or more and 0.0100% or less Mg, like Ca, controls the shape of oxides and sulfide-based inclusions, and is effective in improving the low-temperature toughness of a hot-rolled steel sheet.
  • the Mg content is preferably set to 0.0005% or more.
  • the Mg content is set to 0.0005% or more and 0.0100% or less.
  • the Mg content is 0.0010% or more and 0.0050% or less.
  • REM 0.0005% or more and 0.0100% or less REM, like Ca, controls the shape of oxide or sulfide-based inclusions and is effective in improving the low-temperature toughness of a hot-rolled steel sheet.
  • the REM content is preferably set to 0.0005% or more.
  • the REM content is set to 0.0005% or more and 0.0100% or less.
  • the REM content is 0.0010% or more and 0.0050% or less.
  • the balance other than the above is Fe and inevitable impurities.
  • unavoidable impurities include Zr, Co, Sn, Zn, W, and the like. Their contents are acceptable if the total content is 0.2% or less.
  • the optional elements contained below the lower limit are included as unavoidable impurities.
  • the steel structure of the high-strength hot-rolled steel sheet of the present invention has a lower bainite phase and / or a tempered martensite phase having an area ratio of 90% or more as a main phase, and an average grain size of the main phase is 10.0 ⁇ m or less.
  • the amount of Fe in the Fe-based precipitate is 0.70% or less by mass% and the arithmetic average roughness (Ra) of the steel sheet surface is 2.50 ⁇ m or less.
  • the remainder is a fresh martensite phase, an island martensite phase, a massive retained austenite phase, an upper bainite phase, a pearlite phase, a polygonal ferrite phase, a pseudo pearlite, and an acicular ferrite, and the area ratio of these phases is low. If the total is 0 to 10% or less, the effect of the present invention can be obtained.
  • the steel structure of the high-strength hot-rolled steel sheet of the present invention is as follows.
  • Main phase Lower bainite phase and / or tempered martensite phase is 90% or more in total area ratio, and average particle size of lower bainite phase and / or tempered martensite phase is 10.0 ⁇ m or less Fe-based precipitate
  • Fe content in Fe Fe content in Fe-based precipitate is 0.70% or less by mass%
  • Remainder Fresh martensite phase, island martensite phase, massive retained austenite phase, upper bainite phase, pearlite phase, polygonal The remaining area of the ferrite phase, pseudo-pearlite, and acicular ferrite is 0% or more and 10% or less in total of the respective area ratios.
  • the high-strength hot-rolled steel sheet of the present invention has a lower bainite phase and / or a tempered martensite phase as a main phase.
  • the lower bainite phase and / or the tempered martensitic phase means a structure having Fe-based carbide in and / or between laths of lath-like ferrite.
  • the lower bainite and the tempered martensite can be distinguished by using a TEM for the orientation and crystal structure of the Fe-based carbide in the lath, but are not distinguished in the present invention because they have substantially the same characteristics.
  • lath-like ferrite Unlike lamellar ferrite and polygonal ferrite in the pearlite phase, lath-like ferrite has a lath-like shape and has a relatively high dislocation density inside, so that both can be distinguished using SEM or TEM.
  • TS tensile strength
  • a lower bainite phase and / or a tempered martensite phase it is necessary to use a lower bainite phase and / or a tempered martensite phase as a main phase.
  • the total area ratio of the lower bainite phase and / or the tempered martensite phase is 90% or more and the average grain size of the lower bainite phase and / or the tempered martensite phase is 10.0 ⁇ m or less, it is 1180 MPa or more. It is possible to have both tensile strength TS, excellent stretch flange formability and low-temperature toughness. Therefore, the total area ratio of the lower bainite phase and / or the tempered martensite phase is set to 90% or more.
  • the total area ratio of the lower bainite phase and / or the tempered martensite phase is preferably 95% or more, more preferably more than 97%.
  • the upper limit is not particularly limited, and may be 100%.
  • the average particle size of the lower bainite phase and / or the tempered martensite phase is preferably 9.0 ⁇ m or less, more preferably 8.0 ⁇ m or less. More preferably, it is 7.0 ⁇ m or less. The smaller the average particle size is, the more preferable it is.
  • the amount of Fe in the Fe-based precipitate is set to 0.70% or less by mass%. If the amount of Fe in the Fe-based precipitates exceeds 0.70% in mass% and precipitates in a large amount, voids originating from the Fe-based precipitates are easily connected during stretch flange forming, and local ductility is reduced. Moldability decreases. For this reason, the amount of Fe in the Fe-based precipitate is limited to 0.70% or less by mass%.
  • the amount of Fe in the Fe-based precipitate is 0.60% or less by mass%. More preferably, the amount of Fe in the Fe-based precipitate is 0.50% or less by mass%. More preferably, the amount of Fe in the Fe-based precipitate is 0.30% or less by mass%.
  • the Fe-based precipitates include ⁇ carbide and ⁇ carbide in addition to cementite ( ⁇ carbide).
  • the structure other than the lower bainite phase and / or the tempered martensite phase, which is the main phase, includes a fresh martensite phase, an island martensite phase, a massive retained austenite phase, an upper bainite phase, a pearlite phase, and a polygonal ferrite phase ( However, it does not include each phase). Further, pseudo-perlite and acicular ferrite may be contained.
  • the fresh martensite phase is a structure having no Fe-based carbide as compared with the tempered martensite phase, and both can be distinguished using SEM or TEM.
  • the fresh martensite phase is inferior in low temperature toughness as compared to the lower bainite phase and / or the tempered martensite phase.
  • the island-like martensite (martensite-retained austenite mixed phase) is easily formed when the cooling stop temperature (winding temperature) becomes high, and the lower bainite phase and / or the tempered martensite phase, the upper bainite phase, and the polygonal ferrite phase. It is surrounded by such phases.
  • the island martensite phase has a higher contrast in the SEM image than the lower bainite phase and / or the tempered martensite phase, the upper bainite phase, and the polygonal ferrite phase, and thus can be distinguished using SEM.
  • the island martensite like the fresh martensite phase, is inferior in low temperature toughness as compared to the lower bainite phase and / or the tempered martensite phase.
  • C is distributed from the surrounding phase, C concentration is high, and strength is high.
  • voids are generated at the interface between the low-strength phase and the high-strength phase during a hole expanding test. Since the generated voids are connected to each other, a crack penetrating through the sheet thickness occurs at an early stage of the hole expanding test, so that the stretch flange formability decreases. Therefore, when the area ratio of the island-like martensite phase, which is a high-strength phase, increases, stretch-flange formability deteriorates.
  • the massive residual austenite phase is formed with a high C concentration due to the distribution of C from the surrounding phase. Since the C concentration is high at the time of stretch flange forming and the material is transformed into high-strength fresh martensite, the stretch flange formability deteriorates when the area ratio of the massive retained austenite phase increases.
  • the upper bainite phase means a structure having a retained austenite phase between laths of lath ferrite.
  • the upper bainite phase is formed at a higher temperature than the lower bainite phase and / or the tempered martensite phase, and thus has a lower strength. Therefore, when the area ratio of the upper bainite phase is increased, high strength of 1180 MPa or more cannot be obtained.
  • the pearlite phase means a structure having lamellar ferrite and Fe-based carbide. Since the lamellar ferrite has a lower dislocation density than the lath ferrite, the pearlite phase and the lower bainite phase and / or the tempered martensite phase or the upper bainite phase can be easily distinguished by SEM, TEM, or the like.
  • the pearlite phase is inferior in low temperature toughness as compared to the lower bainite phase and / or the tempered martensite phase.
  • the polygonal ferrite phase is formed at a higher temperature than the upper bainite phase and is lump, so that it can be easily distinguished from lath-like ferrite by SEM or TEM. Since the strength of the polygonal ferrite phase is low, a high strength of 1180 MPa or more cannot be obtained when the area ratio of the polygonal ferrite phase is high.
  • Arithmetic average roughness (Ra) of the steel sheet surface is 2.50 ⁇ m or less If the arithmetic average roughness (Ra) of the steel sheet surface is large, local stress concentration occurs at the apex of the bend at the time of bending and cracks occur. Sometimes. Therefore, in order to ensure good bending formability with a high-strength hot-rolled steel sheet, the arithmetic average roughness (Ra) of the steel sheet surface is set to 2.50 ⁇ m or less. Since the smaller the arithmetic average roughness (Ra) of the steel sheet surface is, the better the bending formability is, the arithmetic average roughness (Ra) of the steel sheet surface is preferably 2.20 ⁇ m or less. More preferably, the arithmetic average roughness (Ra) of the steel sheet surface is 2.00 ⁇ m or less. More preferably, the arithmetic average roughness (Ra) of the steel sheet surface is 1.80 ⁇ m or less.
  • a surface-treated steel sheet having a plating layer on the surface of the steel sheet having the above-described structure or the like may be used for the purpose of improving corrosion resistance and the like.
  • the plating layer include an electrogalvanized layer.
  • the plating amount is not particularly limited, and may be the same as in the related art.
  • the average grain size of the lower bainite phase and / or the tempered martensite phase, the amount of Fe in the Fe-based precipitate, and the arithmetic average roughness (Ra) of the steel sheet surface are described in Examples described later. Can be measured.
  • the high-strength hot-rolled steel sheet of the present invention has high strength. Specifically, the tensile strength (TS) measured by the method described in the examples is 1180 MPa or more. In the present invention, the tensile strength is often 1500 MPa or less.
  • the high-strength hot-rolled steel sheet of the present invention has excellent stretch flange formability.
  • the hole expansion ratio ⁇ measured by the method described in the example is 50% or more.
  • the hole expansion ratio ⁇ is often 90% or less.
  • the high-strength hot-rolled steel sheet of the present invention has excellent bendability. Specifically, R / t measured by the method described in the examples is 3.0 or less. In the present invention, R / t is often 0.5 or more.
  • the high-strength hot-rolled steel sheet of the present invention has excellent low-temperature toughness.
  • vTrs measured by the method described in the examples is ⁇ 40 ° C. or less.
  • vTrs is often ⁇ 100 ° C. or higher.
  • ° C.” regarding temperature indicates the temperature on the surface of the steel plate or the surface of the steel material.
  • the steel material having the above-described composition is heated to 1150 ° C. or higher, the steel material after the heating is roughly rolled, and before the finish rolling performed after the rough rolling, the collision pressure is 2.5 MPa.
  • the high-pressure water descaling is performed under the above conditions, and the steel sheet after the high-pressure water descaling is defined as the RC temperature by the equation (1), the finish rolling end temperature is not less than (RC ⁇ 200 ° C.) and not more than (RC + 50 ° C.).
  • the finish rolling cooling is started after the finish rolling, and when the Ms temperature is defined by the equation (2), the cooling stop temperature is 200 ° C.
  • the average cooling rate is 20 ° C./s or more.
  • the rolling end temperature is equal to or higher than RC
  • cooling is performed under the condition that the time from the finish rolling end to the start of cooling is within 2.0 s, and the steel sheet after cooling is wound at the cooling stop temperature, and after the winding, the steel sheet is cooled.
  • the average cooling rate is less than 20 ° C / s, cooling Cool under the condition that the stop temperature is 100 ° C. or less.
  • a plating process may be further performed. Equations (1) and (2) are as described below.
  • the method for producing the steel material is not particularly limited, and the molten steel having the above-described composition is melted by a known method such as a converter, and the steel such as a slab is cast by a casting method such as continuous casting.
  • a known method such as a converter
  • the steel such as a slab is cast by a casting method such as continuous casting.
  • any of the usual methods can be applied.
  • a known casting method such as an ingot-bulking rolling method may be used. Further, scrap may be used as a raw material.
  • Slab after casting Slab after casting is directly rolled, or slab (steel material) that has been turned into a hot or cold piece is heated to 1150 ° C or higher.
  • slab steel material
  • the presence of the coarse and non-uniform precipitate causes deterioration of various properties (for example, strength, low-temperature toughness, etc.) of the hot-rolled steel sheet. Therefore, the steel material before hot rolling is directly hot-rolled (direct-conveyed rolling) at a high temperature after casting, or the steel material before hot rolling is heated to dissolve coarse precipitates.
  • the heating temperature of the steel material needs to be 1150 ° C. or higher in order to sufficiently dissolve the coarse precipitate before hot rolling.
  • the heating temperature of the steel material is preferably set to 1350 ° C. or less.
  • the heating temperature of the steel material is more preferably 1180 ° C or more and 1300 ° C or less, and further preferably 1200 ° C or more and 1280 ° C or less.
  • the steel material is heated to a heating temperature of 1150 ° C. or more and held for a predetermined time.
  • the holding time of the steel material in the temperature range of 1150 ° C. or more is preferably set to 10000 s or less. More preferably, the holding time of the steel material in a temperature range of 1150 ° C. or more is 8000 s or less.
  • the holding time of the steel material in a temperature range of 1150 ° C. or more is preferably 1800 s or more from the viewpoint of uniformity of slab heating.
  • RC temperature in finish rolling is defined by the formula (1), (RC-200 ° C) or more and (RC + 50 ° C) or less.
  • RC (° C.) 850 + 100 ⁇ C + 100 ⁇ N + 10 ⁇ Mn + 700 ⁇ Ti + 5000 ⁇ B + 10 ⁇ Cr + 50 ⁇ Mo + 2000 ⁇ Nb + 150 ⁇ V Equation (1)
  • each element symbol in the formula (1) is the content (% by mass) of each element in the steel. In the case of an element that does not include, the calculation is performed with the element symbol in the formula set to 0.
  • hot rolling including rough rolling and finish rolling is performed.
  • rough rolling it is sufficient that a desired sheet bar dimension can be secured, and the conditions do not need to be particularly limited.
  • descaling using high-pressure water is performed on the entrance side of the finishing mill.
  • High pressure water descaling collision pressure 2.5 MPa or more
  • a descaling process by high pressure water injection is performed.
  • Ra arithmetic average roughness
  • the upper limit is not particularly defined, but is preferably not more than 15.0 MPa. Note that descaling may be performed during the rolling between the finish rolling stands. Moreover, you may cool a steel plate between stands as needed.
  • the collision pressure is a force per unit area at which high-pressure water collides with the steel material surface.
  • Finish rolling finish temperature (RC-200 ° C.) or more and (RC + 50 ° C.) or less
  • the rolling may be performed at a two-phase temperature of ferrite + austenite.
  • the desired area ratio of the lower bainite phase and / or the tempered martensite phase cannot be sufficiently obtained, and the tensile strength TS of 1180 MPa or more makes it impossible to secure excellent stretch flange formability.
  • the finish rolling end temperature is higher than (RC + 50 ° C.)
  • austenite grains grow remarkably, the austenite grains become coarse, and the average grain size of the lower bainite phase and / or the tempered martensite phase is reduced.
  • the finish rolling finish temperature is set to (RC ⁇ 200 ° C.) or more and (RC + 50 ° C.) or less.
  • the temperature is (RC-150 ° C) or more and (RC + 30 ° C) or less. More preferably, it is not less than (RC-100 ° C.) and not more than RC.
  • the finish rolling end temperature represents the surface temperature of the steel sheet.
  • Cooling start time within 2.0 s after finishing rolling (when finishing rolling temperature is RC or higher)
  • forced cooling may be simply referred to as cooling
  • cooling is started within 2.0 seconds after finishing rolling is completed, and cooling is stopped at a cooling stop temperature (winding temperature). And wind it into a coil. If the time from the end of the finish rolling to the start of the forced cooling exceeds 2.0 s when the finish rolling end temperature is equal to or higher than RC, the austenite grains grow, causing the lower bainite phase and / or the baking. The average particle size of the returned martensite phase becomes large, and the good low-temperature toughness aimed at by the present invention cannot be obtained.
  • the forced cooling start time is set to within 2.0 s after the finish rolling.
  • the finish rolling end temperature is lower than the RC temperature, the upper limit of the forced cooling start time need not be particularly defined.
  • the forced cooling start time is preferably within 2.0 seconds from the viewpoint of low-temperature toughness. Regardless of the finish rolling end temperature, more preferably, the forced cooling start time is within 1.5 seconds after the finish rolling finishes. More preferably, the forced cooling start time is within 1.0 s after the finish rolling.
  • the average cooling rate from finishing rolling finishing temperature to winding temperature is less than 20 ° C / s.
  • the average cooling rate is set to 20 ° C./s or more.
  • the average cooling rate is preferably at least 25 ° C./s, more preferably at least 30 ° C./s.
  • the upper limit of the average cooling rate is not particularly defined.
  • the average cooling rate is preferably set to 500 ° C./s or less.
  • the average cooling rate is defined based on the average cooling rate on the surface of the steel sheet.
  • Cooling stop temperature 200 ° C. or more and Ms temperature or less
  • the cooling stop temperature is set to 200 ° C. or higher.
  • the cooling stop temperature defines the Ms temperature by equation (2), if the Ms temperature exceeds the Ms temperature, one of the massive residual austenite phase, island martensite phase, upper bainite phase, pearlite phase, and ferrite phase is obtained.
  • the cooling stop temperature (winding temperature) is set to 200 ° C. or more and Ms temperature or less.
  • the cooling stop temperature is preferably 250 ° C. or more (Ms ⁇ 10 ° C.) or less. More preferably, it is 300 ° C. or more (Ms ⁇ 20 ° C.) or less.
  • Ms (° C.) 560-470 ⁇ C-33 ⁇ Mn-24 ⁇ Cr-17 ⁇ Ni-20 ⁇ Mo (2)
  • each element symbol in the formula (2) is the content (% by mass) of each element in the steel. In the case of an element that does not include, the calculation is performed with the element symbol in the formula set to 0.
  • the hot-rolled steel sheet After winding, the hot-rolled steel sheet is cooled at a cooling stop temperature of 100 ° C. or less and an average cooling rate of less than 20 ° C./s.
  • the average cooling rate of the hot-rolled steel sheet after winding affects the tempering behavior of the martensite phase.
  • the average cooling rate when cooling the hot-rolled steel sheet after winding to 100 ° C. is 20 ° C./s or more, the tempering of the martensite phase becomes insufficient, the fresh martensite phase increases, and the desired excellent low temperature is reduced. The toughness cannot be obtained. Therefore, the average cooling rate of the steel sheet after winding is set to less than 20 ° C./s.
  • the average cooling rate of the steel sheet after winding is 2 ° C / s or less. More preferably, the average cooling rate of the steel sheet after winding is 0.02 ° C./s or less.
  • the lower limit of the average cooling rate is not particularly limited, but is preferably 0.0001 ° C./s or more.
  • the cooling stop temperature may be lower than 100 ° C., and the temperature is usually cooled to room temperature of about 10 to 30 ° C.
  • the high-strength hot-rolled steel sheet of the present invention is manufactured.
  • segregation reduction treatments such as electromagnetic stirring (EMS) and light pressure reduction casting (IBSR) can be applied to reduce component segregation of steel during continuous casting.
  • EMS electromagnetic stirring
  • IBSR light pressure reduction casting
  • an equiaxed crystal can be formed at the center of the plate thickness, and segregation can be reduced.
  • light pressure casting is performed, segregation at the center of the plate thickness can be reduced by preventing the flow of molten steel in the unsolidified portion of the continuous casting slab.
  • temper rolling may be performed in accordance with a conventional method, and scale formed on the surface may be removed by pickling. Further, after the pickling treatment or the temper rolling, a plating treatment or a chemical conversion treatment may be further performed using a usual zinc plating line. For example, as a plating process, a process of passing a steel sheet through an electrogalvanizing line to form a galvanized layer on the surface of the steel sheet may be performed.
  • the cooling start time time from the end of the finish rolling to the start of cooling (forced cooling)
  • the average cooling rate the winding time from the finish rolling end temperature to the winding time
  • the steel sheet is cooled and wound at the cooling temperature, and the steel sheet after winding is cooled to 100 ° C. or less at the average cooling rate shown in Table 2-1 and Table 2-2.
  • Hot rolled steel sheets having the thicknesses shown in Tables 2-1 and 2-2 were obtained.
  • the hot-rolled steel sheet thus obtained was subjected to skin pass rolling, followed by pickling (hydrochloric acid concentration: 10% by mass%, temperature: 85 ° C.), and electrogalvanizing for a part.
  • a test specimen is sampled from the hot-rolled steel sheet obtained as described above, and the arithmetic average roughness (Ra) of the hot-rolled steel sheet surface is measured, the structure is observed, the amount of Fe in the Fe-based precipitate is measured, a tensile test, a hole expanding test. , Bending test, and Charpy impact test were performed.
  • the structure observation method and various test methods are as follows. In the case of a plated steel sheet, tests and evaluations were performed on the plated steel sheet.
  • each crystal grain that could not be distinguished was measured using the EBSD method.
  • a sample in which no retained austenite was identified in the crystal grains was a fresh martensite phase
  • a sample in which an austenite phase having an area ratio of less than 80% was identified in the crystal grains was an island-like martensite phase and a crystal grain.
  • those in which an austenite phase having an area ratio of 80% or more were identified were distinguished from the massive retained austenite phase.
  • the grain size of the lower bainite phase and / or the tempered martensite phase was measured from the obtained hot-rolled steel sheet by the EBSD method using SEM. Test pieces were collected. Finish polishing was performed using a colloidal silica solution with a plane parallel to the rolling direction as an observation plane. Thereafter, an area of 100 ⁇ m ⁇ 100 ⁇ m was measured at 10 positions at a plate thickness of 1/4 at an electron beam acceleration voltage of 20 keV and a measurement interval of 0.1 ⁇ m using an EBSD measuring apparatus.
  • the threshold of the large-angle grain boundary generally recognized as a crystal grain boundary is defined as 15 °, and the grain boundary having a crystal orientation difference of 15 ° or more is visualized to form a lower bainite phase and / or a tempered martensite phase.
  • the area average particle size of the lower bainite phase and / or the tempered martensite phase is calculated using OIM Analysis software manufactured by TSL. At this time, the area average particle size (referred to as the average particle size) can be obtained by defining the grain ⁇ Toleance ⁇ Angle as 15 ° as the definition of the crystal grain.
  • ⁇ (%) ⁇ (d ⁇ 10) / 10 ⁇ ⁇ 100
  • the hole expansion ratio ⁇ (%) defined by was calculated.
  • the clearance is the ratio (%) of the gap between the die and the punch to the plate thickness.
  • stretchable flange formability was evaluated as good when ⁇ obtained by the hole expansion test was 50% or more.
  • V Bending test
  • a bending test piece of 35 mm (width) x 100 mm (length) was collected so that the longitudinal direction of the test piece was perpendicular to the rolling direction.
  • a V-block 90 ° bending test was performed according to the press bending method specified in JIS Z 2248. At this time, a test was performed for each steel sheet using three test pieces, and a minimum bending radius at which no crack occurred in any of the test pieces was defined as a critical bending radius R (mm), and R was a hot-rolled steel sheet.
  • the R / t value divided by the thickness t (mm) was obtained, and the bending formability of the hot-rolled steel sheet was evaluated.
  • the value of R / t was 3.5 or less, it evaluated that it was excellent in bending formability.
  • the value of R / t is more preferably 3.0 or less, even more preferably 2.5 or less.
  • V notch sub-size test piece
  • the Charpy impact test was performed in accordance with the regulations of the above, the brittle-ductile fracture surface transition temperature (vTrs) was measured, and the toughness was evaluated.
  • vTrs brittle-ductile fracture surface transition temperature
  • test pieces were prepared and subjected to a Charpy impact test. In the present invention, when the measured vTrs is ⁇ 40 ° C. or less, the low-temperature toughness was evaluated as good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

引張強さTSが1180MPa以上という高強度を維持しつつ、さらに、優れた伸びフランジ成形性、曲げ成形性と低温靭性とを有する高強度熱延鋼板およびその製造方法を提供する。 特定の成分組成と、合計面積率で90%以上の下部ベイナイト相および/または焼き戻しマルテンサイト相を主相とし、かつ、該主相の平均粒径が10.0μm以下であり、Fe系析出物中のFe量が質量%で0.70%以下である鋼組織と、を有し、表面の算術平均粗さ(Ra)が、2.50μm以下であり、引張強さTSが1180MPa以上である高強度熱延鋼板とする。

Description

高強度熱延鋼板およびその製造方法
 本発明は、自動車の構造部材、骨格部材、サスペンションなどの足回り部材、トラックフレーム部材、建機用部材として好適な、プレス成形性と低温靭性に優れた引張強さTSが1180MPa以上の高強度熱延鋼板およびその製造方法に関する。
 近年、地球環境の保全の観点から、自動車排ガス規制が強化されている。そのため、自動車の燃費向上が重要な課題となっている。そして、使用する材料の一層の高強度化および薄肉化が要求されている。これに伴い、自動車部品の素材として、高強度熱延鋼板が積極的に適用されるようになっている。この高強度熱延鋼板の利用は、自動車の構造部材や骨格部材だけでなく、足回り部材やトラックフレーム部材、建機用部材等に対しても行われている。
 上述のように、所定の強度を備えた高強度熱延鋼板は、自動車部品の素材として年々需要が高まっている。特に、引張強さTSが1180MPa以上の高強度熱延鋼板は、自動車の燃費を飛躍的に向上し得る素材として大いに期待されている。
 しかしながら、鋼板の高強度化にともない、一般的に伸びフランジ成形性、曲げ成形性や低温靭性等の材料特性が劣化する。自動車の足回り部材は、主にプレス成形によって成形され、素材には優れた伸びフランジ成形性および曲げ成形性が要求される。
 また、自動車用の部材は、プレス成形後に部材として自動車に取り付けた後に、衝突等による衝撃を受けても破壊しにくいようにすることが要求される。特に、寒冷地における耐衝撃性を確保するために、低温靭性も向上させる必要がある。
 伸びフランジ成形性は鉄連規格JFST 1001に準拠した穴広げ試験等により測定される。また曲げ成形性はJIS Z 2248に準拠した曲げ試験等により測定される。また低温靭性はJIS Z 2242に準拠したシャルピー衝撃試験等により測定される。
 以上のように、これらの材料特性を劣化させることなく鋼板を高強度化するため、従来より種々の検討がなされている。
 例えば、特許文献1には、鋼組織に焼戻しマルテンサイト分率が5%以上であり、残部がフェライト、ベイナイトからなり、残留オーステナイト分率が2%以下、マルテンサイトが1%未満であることを特徴とする伸びと穴拡げ性と2次加工割れ性に優れた高強度熱延鋼板と、圧延終了温度をAr3変態点以上で圧延を行い、200℃以下で捲取の後、再度、次式に示す条件にて再加熱を行うことを特徴とする伸びフランジ成形性に優れた高強度熱延鋼板の製造方法とが開示されている。
12000≦(T+273)×(log(t/60)+19.8)≦17000
 T:熱処理温度(℃)、t:処理時間(min)
 また、特許文献2には、質量%にて、C:0.01%以上、0.35%以下、Si:2.0%以下、Mn:0.1%以上、4.0%以下、Al:0.001%以上、2.0%以下、P:0.2%以下、S:0.0005%以上、0.02%以下、N:0.02%以下、O:0.0003%以上、0.01%以下からなる成分組成を有し、かつ、相分率で、焼戻しマルテンサイト分率が5%以上、残留オーステナイト分率が2%未満、マルテンサイト分率が1%未満、パーライト分率が5%未満であり、残部がフェライト及びベイナイトからなる鋼組織を有し、上記焼戻しマルテンサイト相の平均粒径が0.5μm以上、5μm以下の範囲にあることを特徴とする伸びフランジ成形性に優れた高強度熱延鋼板が開示されている。
 また、特許文献3には、質量%でC:0.05%以上、0.20%以下、Si:0.01%以上、0.55%以下、Mn:0.1%以上、2.5%以下、P:0.1%以下、S:0.01%以下、Al:0.005%以上、0.10%以下、N:0.01%以下、Nb:0.005%以上、0.10%以下、B:0.0003%以上、0.0050%以下の成分組成を有し、組織の90%以上がマルテンサイトであり、表層付近の旧オーステナイト粒の平均アスペクト比が3以上、20以下である組織を有する高強度熱延鋼板が開示されている。粗圧延後に未再結晶オーステナイト域での累積圧下率を40%超、80%以下とする仕上圧延を施し、Ar3点以上で仕上圧延を終了し、15℃/s以上の平均冷却速度で冷却し、200℃以下の温度域で巻き取ることにより、曲げ成形性に優れた鋼板が製造できることが開示されている。
 また、特許文献4では、質量%で、C:0.08%以上0.16%未満、Si:0.01~1.0%、Mn:0.8~2.0%、Al:0.005~0.10%、N:0.002~0.006%を含み、さらにNb、Ti、Cr、Bを含有する組成の鋼素材を、1100~1250℃の温度に加熱し、RDT:900~1100℃とする粗圧延と、FET:900~1100℃、FDT:800~900℃、930℃未満の温度域の累積圧下率を20~90%とする仕上圧延とを施し、仕上圧延終了後、100℃/s以上の平均冷却速度で、300℃以下の冷却停止温度まで冷却し、300℃以下の温度で巻き取る。これにより、90面積%以上のマルテンサイト相および/または焼戻マルテンサイト相を主相とし、旧γ粒の平均粒径が、L断面で20μm以下、アスペクト比が18以下で、YS:960MPa以上の曲げ成形性と低温靭性に優れた高強度熱延鋼板を得られることが開示されている。
 また、特許文献5には、化学組成が、質量%で、C:0.01~0.20%、Si:2.50%以下(0は含まない)、Mn:4.00%以下(0は含まない)、P:0.10%以下(0は含まない)、S:0.03%以下(0は含まない)、Al:0.001~2.00%、N:0.01%以下(0は含まない)、O:0.01%以下(0は含まない)、Ti及びNbの1種又は2種:合計で0.01~0.30%を含み、残部鉄及び不可避的不純物からなり、ミクロ組織が、焼戻しマルテンサイト及び下部ベイナイトの一方又は両方を体積分率で合計90%以上含有し、ビッカース硬度分布の標準偏差σが15以下であることを特徴とする伸びフランジ成形性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板が開示されている。
 また、特許文献6には、化学組成が、質量%で、C:0.01~0.2%、Si:2.50%以下(0は含まない)、Mn:1.0~4.00%、P:0.10%以下、S:0.03%以下、Al:0.001~2.0%、N:0.01%以下(0は含まない)、O:0.01%以下(0は含まない)、Cu:0~2.0%、Ni:0~2.0%、Mo:0~1.0%、V:0~0.3%、Cr:0~2.0%、Mg:0~0.01%、Ca:0~0.01%、REM:0~0.1%、及び、B:0~0.01%を含有し、TiとNbのいずれか一方あるいは両方を合計で0.01~0.30%含有し、残部は鉄及び不純物である組成と、焼き戻しマルテンサイトと下部ベイナイトの体積分率が合計で90%以上である組織を有し、表面から1/4の範囲の部分の平均有効結晶粒径が10μm以下であり、表面から50μmの範囲の部分の平均有効結晶粒径が6μm以下であり、前記焼き戻しマルテンサイト及び下部ベイナイト中に存在する鉄系炭化物が1×10(個/mm)以上であり、前記焼き戻しマルテンサイト及び下部ベイナイトの有効結晶粒の平均アスペクト比が2以下であることを特徴とする熱延鋼板が開示されている。
特開2005-146379号公報 特開2013-181208号公報 特開2014-227583号公報 特開2016-211073号公報 特開2015-196891号公報 特許第6048580号公報
 しかしながら、特許文献1、2に記載の技術では、優れた伸びフランジ成形性を得るために、熱延鋼板を再加熱するプロセスが必要であり、また、1180MPa以上の高強度が得られないという問題があった。
 特許文献3に記載の技術では、1180MPa以上の高強度で曲げ成形性について言及しているが、伸びフランジ成形性と低温靭性については何ら言及されておらず、寒冷地で使用された場合、脆性破壊を生じることが懸念される。
 特許文献4に記載の技術では、1180MPa以上の高強度で曲げ成形性と低温靭性について言及しているが、伸びフランジ成形性については何ら言及されておらず、自動車足回り部材のような高い伸びフランジ成形性が要求される部材に適用した際に成形不良を生じることが懸念される。
 特許文献5に記載の技術では、伸びフランジ成形性と低温靭性について言及しているが、曲げ成形性については何ら言及されておらず、トラックフレーム部材や建機部材等の高い曲げ成形性が要求される部材に適用した場合、成形不良を生じることが懸念され、また、1180MPa以上の高強度が得られないという問題があった。
 特許文献6に記載の技術では、低温靭性について言及しているが、伸びフランジ成形性と曲げ成形性については何ら言及されておらず、自動車足回り部材のような高い伸びフランジ成形性が要求される部材や、トラックフレーム部材や建機部材等の高い曲げ成形性が要求される部材に適用した場合、成形不良を生じることが懸念される。
 以上のように、従来技術では、引張強さTSが1180MPa以上という高強度を維持しつつ、さらに優れた伸びフランジ成形性と曲げ成形性、低温靭性を有する熱延鋼板の技術は確立されていない。
 そこで、本発明では、かかる従来技術の問題を解決し、引張強さTSが1180MPa以上という高強度を維持しつつ、さらに、優れた伸びフランジ成形性、曲げ成形性と低温靭性とを有する高強度熱延鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために、引張強さTSが1180MPa以上という高強度を維持しつつ、熱延鋼板の伸びフランジ成形性、曲げ性、低温靱性を向上させるべく鋭意研究した。その結果、鋼組織を下部ベイナイト相および/または焼き戻しマルテンサイト相を主相とし、該鋼組織の面積平均粒径(平均粒径)を制御することで1180MPa以上の高強度と優れた低温靭性が得られ、かつ、Fe系析出物中のFe量を制御することで優れた伸びフランジ成形性が得られ、熱延鋼板の表面の算術平均粗さ(Ra)を制御することで高い曲げ性が得られることを知見した。
 なお、ここでいう下部ベイナイト相および/または焼き戻しマルテンサイト相とは、ラス状フェライトのラス内および/またはラス間にFe系炭化物を有する組織を意味する。下部ベイナイトと焼き戻しマルテンサイトはラス内のFe系炭化物の方位や結晶構造をTEM(透過型電子顕微鏡)を用いて区別可能であるが、本発明では実質同じ特性を有しているため区別しない。ラス状フェライトは、パーライト相中のラメラ状(層状)フェライトやポリゴナルフェライトと異なり、形状がラス状でかつ内部に比較的高い転位密度を有するため、両者はSEM(走査型電子顕微鏡)やTEMを用いて区別可能である。上部ベイナイト相は、ラス状フェライトのラス間に残留オーステナイト相を有する組織を意味する。パーライト相はラメラ状のフェライトとFe系炭化物とを有する組織を意味する。ラメラ状フェライトはラス状フェライトと比較して転位密度が低いため、パーライト相と、下部ベイナイト相および/または焼き戻しマルテンサイト相や上部ベイナイト相とは、SEMやTEM等で容易に区別できる。フレッシュマルテンサイト相と島状マルテンサイト相(マルテンサイト-残留オーステナイト混合相)と塊状残留オーステナイト相は、焼き戻しマルテンサイト相と比較してFe系炭化物を有さない組織であり、焼き戻しマルテンサイト相とはSEMを用いて区別可能である。フレッシュマルテンサイト相と島状マルテンサイト相(マルテンサイト-残留オーステナイト混合相)と塊状残留オーステナイト相は、SEMでは同様の塊状の形状とコントラストを有するため、電子線後方散乱回折(Electron Backscatter Diffraction Patterns:EBSD)法を用いて区別ができる。なお、上部ベイナイト相中の残留オーステナイト相はラス状の形状を有しており塊状残留オーステナイト相とは形状が異なるため、両者の残留オーステナイト相は容易に区別ができる。また、ポリゴナルフェライト相は上部ベイナイト相よりも高温で生成し、塊状のため、ラス状フェライトとSEMやTEM等で容易に区別ができる。
 以上の知見を踏まえ、本発明者らは更なる研究を行い、引張強さTSが1180MPa以上という高強度を維持した状態で、伸びフランジ成形性、曲げ成形性と低温靭性を向上させるために必要な成分組成、下部ベイナイト相および/または焼き戻しマルテンサイト相の面積率と平均粒径、Fe系析出物のFe量、および熱延鋼板の表面の算術平均粗さ(Ra)について検討した。
 そして、質量%で、C:0.07%以上0.20%以下、Si:0.10%以上2.0%以下、Mn:0.8%以上3.0%以下、P:0.100%以下(0%を含む)、S:0.0100%以下(0%を含む)、Al:0.010%以上2.00%以下、N:0.010%以下(0%を含む)、Ti:0.02%以上0.16%未満、B:0.0003%以上0.0100%以下を含有し、残部Feおよび不可避的不純物からなる成分組成を有し、さらに、鋼組織が、面積率で90%以上の下部ベイナイト相および/または焼き戻しマルテンサイト相を主相とし、かつ、該主相の平均粒径が10.0μm以下であり、Fe系析出物中のFe量を質量%で0.70%以下とし、かつ、鋼板表面の算術平均粗さ(Ra)が2.50μm以下とすることが肝要であることを見出した。
 本発明は、かかる知見に基づき、更なる検討を加えて完成したものである。すなわち、本発明の要旨はつぎの通りである。
 [1]質量%で、C:0.07%以上0.20%以下、Si:0.10%以上2.0%以下、Mn:0.8%以上3.0%以下、P:0.100%以下(0%を含む)、S:0.0100%以下(0%を含む)、Al:0.010%以上2.00%以下、N:0.010%以下(0%を含む)、Ti:0.02%以上0.16%未満、B:0.0003%以上0.0100%以下を含有し、残部Feおよび不可避的不純物からなる成分組成と、合計面積率で90%以上の下部ベイナイト相および/または焼き戻しマルテンサイト相を主相とし、かつ、該主相の平均粒径が10.0μm以下であり、Fe系析出物中のFe量が質量%で0.70%以下である鋼組織と、を有し、表面の算術平均粗さ(Ra)が、2.50μm以下であり、引張強さTSが1180MPa以上である高強度熱延鋼板。
 [2]前記成分組成は、さらに、質量%で、Cr:0.01%以上2.0%以下、Mo:0.01%以上0.50%以下、Cu:0.01%以上0.50%以下及びNi:0.01%以上0.50%以下のうちから選ばれた1種または2種以上を含有する[1]に記載の高強度熱延鋼板。
 [3]前記成分組成は、さらに、質量%で、Nb:0.001%以上0.060%以下及びV:0.01%以上0.50%以下のうちから選ばれた1種または2種を含有する[1]又は[2]に記載の高強度熱延鋼板。
 [4]前記成分組成は、さらに、質量%で、Sb:0.0005%以上0.0500%以下を含有する[1]~[3]のいずれかに記載の高強度熱延鋼板。
 [5]前記成分組成は、さらに、質量%で、Ca:0.0005%以上0.0100%以下、Mg:0.0005%以上0.0100%以下及びREM:0.0005%以上0.0100%以下のうちから選ばれた1種または2種以上を含有する[1]~[4]のいずれかに記載の高強度熱延鋼板。
 [6]表面に、めっき層を有する[1]~[5]のいずれかに記載の高強度熱延鋼板。
 [7][1]~[5]のいずれかに記載された高強度熱延鋼板の製造方法であって、鋼素材を1150℃以上に加熱し、該加熱後の鋼素材を粗圧延し、該粗圧延後に行う仕上圧延前に、衝突圧が2.5MPa以上の条件で高圧水デスケーリングし、該高圧水デスケーリング後の鋼板を、RC温度を式(1)で定義したとき、仕上圧延終了温度が(RC-200℃)以上(RC+50℃)以下の条件で仕上圧延し、該仕上圧延終了後に冷却を開始し、Ms温度を式(2)で定義したときに冷却停止温度が200℃以上Ms温度以下、平均冷却速度が20℃/s以上、前記仕上圧延終了温度がRC以上の場合には前記仕上圧延終了から冷却開始までの時間が2.0s以内の条件で冷却し、前記冷却停止温度で、冷却後の鋼板を巻取り、該巻取後、鋼板を平均冷却速度が20℃/s未満、冷却停止温度が100℃以下の条件で冷却する高強度熱延鋼板の製造方法。
RC(℃)=850+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V ・・・式(1)
Ms(℃)=560-470×C-33×Mn-24×Cr-17×Ni-20×Mo ・・・式(2)
ここで、式(1)および式(2)における各元素記号は、各元素の鋼中の含有量(質量%)である。含まない元素の場合は、式中の元素記号を0として計算する。
 [8]さらに、鋼板の表面にめっき処理を施す[7]に記載の高強度熱延鋼板の製造方法。
 本発明によれば、引張強さTSが1180MPa以上であり、かつ伸びフランジ成形性、曲げ成形性および低温靭性に優れた高強度熱延鋼板が得られる。
 また、本発明の製造方法によれば、上記本発明の高強度熱延鋼板を安定して製造することができる。
 そして、本発明の高強度熱延鋼板を、自動車の足回り部材、構造部材、骨格部材、トラックフレーム部材、建機部材等に適用した場合、自動車の安全性を確保しつつ自動車車体の重量を軽減するため、環境負荷の低減に寄与でき、産業上格段の効果を奏する。
 以下、本発明の実施形態について具体的に説明する。なお、本発明は以下の実施形態に限定されない。
 本発明の高強度熱延鋼板は、質量%で、C:0.07%以上0.20%以下、Si:0.10%以上2.0%以下、Mn:0.8%以上3.0%以下、P:0.100%以下(0%を含む)、S:0.0100%以下(0%を含む)、Al:0.010%以上2.00%以下、N:0.010%以下(0%を含む)、Ti:0.02%以上0.16%未満、B:0.0003%以上0.0100%以下を含有し、残部Feおよび不可避的不純物からなる成分組成を有する。
 まず、本発明の高強度熱延鋼板の成分組成の限定理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%を意味するものとする。
 C:0.07%以上0.20%以下
 Cは、鋼の強度を向上させ、焼入れ性を向上させることによって下部ベイナイト相および/または焼き戻しマルテンサイト相の生成を促進する元素である。本発明では、1180MPa以上の高強度とするためC含有量を0.07%以上とする必要がある。一方、C含有量が0.20%を超えると、Fe系炭化物の生成が増加し、Fe系析出物中のFe量を質量%で0.70%以下に制御できなくなる。したがって、C含有量は0.07%以上0.20%以下とする。好ましくは、C含有量は0.08%以上0.19%以下である。より好ましくは、C含有量は0.08%以上0.17%以下である。さらに好ましくは、C含有量は0.09%以上0.15%未満である。
 Si:0.10%以上2.0%以下
 Siは、固溶強化に寄与する元素であり、鋼の強度向上に寄与する元素である。また、SiはFe系炭化物の形成を抑制する効果があり、Fe系析出物中のFe量を制御し、曲げ成形性を向上させるために必要な元素の1つである。このような効果を得るためにはSi含有量を0.10%以上とする必要がある。一方、Siは、熱間圧延中に鋼板表面にサブスケールを形成する元素である。Si含有量が2.0%を超えるとサブスケールが厚くなり過ぎてしまい、デスケーリング後の鋼板表面の算術平均粗さ(Ra)が過大となり、熱延鋼板の曲げ成形性が劣化する。したがって、Si含有量は2.0%以下とする。好ましくは、Si含有量は0.20%以上1.8%以下である。より好ましくは、Si含有量は0.40%以上1.7%以下である。さらに好ましくは、Si含有量は0.50%以上1.5%以下である。
 Mn:0.8%以上3.0%以下
 Mnは、固溶して鋼の強度増加に寄与するとともに、焼入れ性向上によって下部ベイナイト相および/または焼き戻しマルテンサイト相の生成を促進させる。このような効果を得るためには、Mn含有量を0.8%以上とする必要がある。一方、Mn含有量が3.0%を超えると、フレッシュマルテンサイト相が増加し、熱延鋼板の低温靭性が劣化する。したがって、Mn含有量を0.8%以上3.0%以下とする。好ましくは、Mn含有量は1.0%以上2.8%以下である。より好ましくは、Mn含有量は1.2%以上2.6%以下である。さらに好ましくは、Mn含有量は1.4%以上2.4%以下である。
 P:0.100%以下(0%を含む)
 Pは、固溶して鋼の強度増加に寄与する元素である。しかし、Pは、熱間圧延時のオーステナイト粒界に偏析することで、熱間圧延時の割れを発生させる元素でもある。また、割れの発生が回避できても、粒界に偏析して低温靭性を低下させるとともに、加工性を低下させる。このため、P含有量を極力低くすることが好ましいが、0.100%までのPの含有は許容できる。したがって、P含有量は0.100%以下とする。好ましくは、P含有量は0.050%以下であり、より好ましくは、P含有量は0.020%以下である。
 S:0.0100%以下(0%を含む)
 Sは、TiやMnと結合して粗大な硫化物を形成し、熱延鋼板の低温靭性を低下させる。そのため、S含有量を極力低くすることが好ましいが、0.0100%までのSの含有は許容できる。したがって、S含有量を0.0100%以下とする。低温靭性の観点からは、S含有量は0.0050%以下とすることが好ましく、さらに好ましくは、S含有量は0.0030%以下である。
 Al:0.010%以上2.00%以下
 Alは、脱酸剤として作用し、鋼の清浄度を向上させるのに有効な元素である。Alが0.010%未満ではその効果が必ずしも十分ではないため、Al含有量は0.010%以上とする。また、Alは、Siと同様に、炭化物の形成を抑制する効果があり、Fe系析出物中のFe量を制御し、伸びフランジ成形性を向上させるために必要な元素の1つである。一方、Alの過剰な添加は、酸化物系介在物の増加を招き、熱延鋼板の靭性を低下させるとともに、疵発生の原因となる。したがって、Al含有量を0.010%以上2.00%以下とする。好ましくは、Al含有量は0.015%以上1.80%以下である。より好ましくは、Al含有量は0.020%以上1.50%以下である。
 N:0.010%以下(0%を含む)
 Nは、窒化物形成元素と結合することにより窒化物として析出し、結晶粒微細化に寄与する。しかし、Nは、高温でTiと結合して粗大な窒化物になり易く、熱延鋼板の靭性を低下させる。このため、N含有量を0.010%以下とする。好ましくは、N含有量は0.008%以下である。より好ましくは、N含有量は0.006%以下である。
 Ti:0.02%以上0.16%未満
 Tiは、析出強化または固溶強化により鋼板の強度を向上させる作用を有する元素である。Tiは、オーステナイト相高温域(オーステナイト相での高温の域とオーステナイト相よりも高温の域(鋳造の段階))で窒化物を形成する。これにより、BNの析出が抑制され、Bが固溶状態になることで下部ベイナイト相および/または焼き戻しマルテンサイト相の生成に必要な焼入れ性を得ることができ、強度向上に寄与する。また、Tiは熱間圧延時のオーステナイト相の再結晶温度を上昇させることで、オーステナイト未再結晶域での圧延を可能とし、これにより下部ベイナイト相および/または焼き戻しマルテンサイト相の粒径微細化に寄与し、低温靭性を向上させる。これらの効果を発現させるためには、Ti含有量を0.02%以上とする必要がある。一方、Ti含有量が0.16%以上になると、島状マルテンサイトの生成を促進し、伸びフランジ成形性と低温靭性が劣化する。したがって、Ti含有量を0.02%以上0.16%未満とする。好ましくは、Ti含有量は0.02%以上0.15%以下である。より好ましくは、Ti含有量は0.03%以上0.14%以下である。さらに好ましくは、Ti含有量は0.04%以上0.13%以下である。
 B:0.0003%以上0.0100%以下
 Bは、旧オーステナイト粒界に偏析し、フェライトの生成を抑制することで、下部ベイナイト相および/または焼き戻しマルテンサイト相の生成を促進し、鋼板の強度向上と伸びフランジ成形性向上に寄与する元素である。これらの効果を発現させるためには、B含有量を0.0003%以上とする。一方、B含有量が0.0100%を超えると、上記した効果が飽和する。したがって、B含有量を0.0003%以上0.0100%以下の範囲に限定する。好ましくは、B含有量は0.0006%以上0.0050%以下であり、より好ましくは、B含有量は0.0007%以上0.0030%以下の範囲である。
 以上の必須含有元素で、本発明の鋼板は目的とする特性が得られるが、本発明の高強度熱延鋼板は、例えば高強度化や伸びフランジ成形性や曲げ成形性、低温靭性をさらに向上させることを目的として、必要に応じて下記の任意元素を含有することができる。
 Cr:0.01%以上2.0%以下、Mo:0.01%以上0.50%以下、Cu:0.01%以上0.50%以下、Ni:0.01%以上0.50%以下のうちから選ばれた1種または2種以上
 Cr:0.01%以上2.0%以下
 Crは、固溶強化により鋼板の強度を向上させる作用を有する元素である。また、焼入れ性向上によって下部ベイナイト相および/または焼き戻しマルテンサイト相の生成を促進させる元素である。また、CrはFe系炭化物の形成を抑制する効果があり、Fe系析出物中のFe量を制御し、伸びフランジ成形性を向上させるために必要な元素の1つである。これらの効果を発現させるためには、Cr含有量を0.01%以上とする。一方、Crは、Siと同様に、熱間圧延中に鋼板表面にサブスケールを形成する元素である。そのため、Cr含有量が2.0%を超えるとサブスケールが厚くなりすぎてしまい、デスケーリング後の鋼板表面の算術平均粗さ(Ra)が過大となり、熱延鋼板の曲げ成形性が劣化する。したがって、Crを含有する場合は、Cr含有量を0.01%以上2.0%以下とする。好ましくは、Cr含有量は0.05%以上1.8%以下である。より好ましくは、Cr含有量は0.10%以上1.5%以下である。また、さらに好ましくは、Cr含有量は0.15%以上1.0%以下である。
 Mo:0.01%以上0.50%以下
 Moは、固溶して鋼の強度増加に寄与するとともに、焼入れ性向上によって下部ベイナイト相および/または焼き戻しマルテンサイト相の生成を促進させる。このような効果を得るためには、Mo含有量を0.01%以上とする必要がある。一方、Mo含有量が0.50%を超えると、フレッシュマルテンサイト相が増加し、熱延鋼板の低温靭性が劣化する。したがって、Moを含有する場合は、Mo含有量を0.01%以上0.50%以下とする。好ましくは、Mo含有量は0.05%以上0.40%以下である。より好ましくは、Mo含有量は0.10%以上0.30%以下である。
 Cu:0.01%以上0.50%以下
 Cuは、固溶して鋼の強度増加に寄与する。また、Cuは、焼入れ性の向上を通じて下部ベイナイト相および/または焼き戻しマルテンサイト相の形成を促進し、強度向上に寄与する。これらの効果を得るためには、Cu含有量を0.01%以上とすることが好ましいが、その含有量が0.50%を超えると熱延鋼板の表面性状の低下を招き、熱延鋼板の曲げ成形性を劣化させる。したがって、Cuを含有する場合は、Cu含有量を0.01%以上0.50%以下とする。好ましくは、Cu含有量は0.05%以上0.30%以下である。
 Ni:0.01%以上0.50%以下
 Niは、固溶して鋼の強度増加に寄与する。また、Niは、焼入れ性の向上を通じて下部ベイナイト相および/または焼き戻しマルテンサイト相の形成を促進し、強度向上に寄与する。これらの効果を得るためには、Ni含有量を0.01%以上とすることが好ましい。但し、Ni含有量が0.50%を超えると、フレッシュマルテンサイト相が増加して、熱延鋼板の低温靭性を劣化させる。したがって、Niを含有する場合は、Ni含有量を0.01%以上0.50%以下とする。好ましくは、Ni含有量は0.05%以上0.30%以下である。
 Nb:0.001%以上0.060%以下、V:0.01%以上0.50%以下のうちから選ばれた1種または2種
 Nb:0.001%以上0.060%以下
 Nbは、析出強化または固溶強化により鋼板の強度を向上させる作用を有する元素である。また、Nbは、Tiと同様に、熱間圧延時のオーステナイト相の再結晶温度を上昇させることで、オーステナイト未再結晶域での圧延を可能とし、下部ベイナイト相および/または焼き戻しマルテンサイト相の粒径微細化に寄与し、低温靭性を向上させる。これらの効果を発現させるためには、Nb含有量を0.001%以上とする必要がある。一方、Nb含有量が0.060%を超えると、島状マルテンサイトの生成を促進し、伸びフランジ成形性と低温靭性が劣化する。したがって、Nbを含有する場合は、Nb含有量を0.001%以上0.060%以下とする。好ましくは、Nb含有量は、0.005%以上0.050%以下である。より好ましくは、Nb含有量は0.010%以上0.040%以下である。
 V:0.01%以上0.50%以下
 Vは、析出強化または固溶強化により鋼板の強度を向上させる作用を有する元素である。また、Vは、Tiと同様に、熱間圧延時のオーステナイト相の再結晶温度を上昇させることで、オーステナイト未再結晶域での圧延を可能とし、下部ベイナイト相および/または焼き戻しマルテンサイト相の粒径微細化に寄与し、低温靭性を向上させる。これらの効果を発現させるためには、V含有量を0.01%以上とする必要がある。一方、V含有量が0.50%を超えると、島状マルテンサイトの生成を促進し、伸びフランジ成形性と低温靭性が劣化する。したがって、Vを含有する場合は、V含有量を0.01%以上0.50%以下とする。好ましくは、V含有量は0.05%以上0.40%以下である。より好ましくは、V含有量は0.10%以上0.30%以下である。
 Sb:0.0005%以上0.0500%以下
 Sbは、スラブ加熱段階でスラブ表面の窒化を抑制する効果を有し、スラブ表層部のBNの析出が抑制される。また、固溶Bが存在することにより、熱延鋼板表層部においてもベイナイトの生成に必要な焼入れ性を得ることができ、熱延鋼板の強度を向上させる。このような効果の発現のためには、Sb含有量を0.0005%以上とする必要がある。一方、Sb含有量が0.0500%を超えると、圧延荷重の増大を招き、生産性を低下させる場合がある。したがって、Sbを含有する場合は、Sb含有量を0.0005%以上0.0500%以下とする。好ましくは、Sb含有量は0.0008%以上0.0350%以下であり、さらに好ましくは、Sb含有量は0.0010%以上0.0200%以下である。
 Ca:0.0005%以上0.0100%以下、Mg:0.0005%以上0.0100%以下、REM:0.0005%以上0.0100%以下のうちから選ばれる1種または2種以上
 Ca:0.0005%以上0.0100%以下
 Caは、酸化物や硫化物系の介在物の形状を制御し、熱延鋼板の低温靭性の向上に有効である。これらの効果を発現させるためには、Ca含有量を0.0005%以上とすることが好ましい。但し、Ca含有量が0.0100%を超えると、熱延鋼板の表面欠陥を引き起こす場合があり、熱延鋼板の曲げ成形性を劣化させる。したがって、Caを含有する場合、Ca含有量を0.0005%以上0.0100%以下とする。好ましくは、Ca含有量は0.0010%以上0.0050%以下である。
 Mg:0.0005%以上0.0100%以下
 Mgは、Caと同様に、酸化物や硫化物系の介在物の形状を制御し、熱延鋼板の低温靭性の向上に有効である。これらの効果を発現させるためには、Mg含有量を0.0005%以上とすることが好ましい。但し、Mg含有量が0.0100%を超えると、逆に鋼の清浄度を劣化させ、低温靭性を劣化する。したがって、Mgを含有する場合、Mg含有量を0.0005%以上0.0100%以下とする。好ましくは、Mg含有量は0.0010%以上0.0050%以下である。
 REM:0.0005%以上0.0100%以下
 REMは、Caと同様に、酸化物や硫化物系の介在物の形状を制御し、熱延鋼板の低温靭性の向上に有効である。これらの効果を発現させるためには、REM含有量を0.0005%以上とすることが好ましい。但し、REM含有量が0.0100%を超えると、逆に鋼の清浄度を劣化させ、低温靭性を劣化する。したがって、REMを含有する場合、REM含有量を0.0005%以上0.0100%以下とする。好ましくは、REM含有量は0.0010%以上0.0050%以下である。
 本発明において、上記以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、Zr、Co、Sn、Zn、W等が挙げられ、これらの含有量は、合計で0.2%以下であれば許容できる。また、上記任意元素を下限値未満で含む場合、下限値未満で含まれる任意元素は不可避的不純物として含まれるものとする。
 次に、本発明の高強度熱延鋼板の鋼組織、鋼板表面の算術平均粗さ(Ra)の限定理由について説明する。
 本発明の高強度熱延鋼板の鋼組織は、面積率で90%以上の下部ベイナイト相および/または焼き戻しマルテンサイト相を主相とし、かつ、該主相の平均粒径が10.0μm以下であり、Fe系析出物中のFe量を質量%で0.70%以下とし、かつ、鋼板表面の算術平均粗さ(Ra)が、2.50μm以下であることを特徴とする。なお、残部は、フレッシュマルテンサイト相、島状マルテンサイト相、塊状残留オーステナイト相、上部ベイナイト相、パーライト相、ポリゴナルフェライト相、疑似パーライト、アシキュラーフェライトであるが、これらの相の面積率が合計で0~10%以下であれば本発明の効果は得られる。
 本発明の高強度熱延鋼板の鋼組織は以下の通りである。
 主相:下部ベイナイト相および/または焼き戻しマルテンサイト相が、合計面積率で90%以上、かつ、下部ベイナイト相および/または焼き戻しマルテンサイト相の平均粒径が10.0μm以下
 Fe系析出物中のFe量:Fe系析出物中のFe量が、質量%で0.70%以下
 残部:フレッシュマルテンサイト相、島状マルテンサイト相、塊状残留オーステナイト相、上部ベイナイト相、パーライト相、ポリゴナルフェライト相、疑似パーライト、アシキュラーフェライトの残部が、各面積率の合計で、0%以上10%以下
 本発明の高強度熱延鋼板は、下部ベイナイト相および/または焼き戻しマルテンサイト相を主相とする。下部ベイナイト相および/または焼き戻しマルテンサイト相とは、ラス状フェライトのラス内および/またはラス間にFe系炭化物を有する組織を意味する。下部ベイナイトと焼き戻しマルテンサイトはラス内のFe系炭化物の方位や結晶構造をTEMを用いて区別可能であるが、本発明では実質同じ特性を有しているため区別しない。ラス状フェライトは、パーライト相中のラメラ状フェライトやポリゴナルフェライトと異なり、形状がラス状でかつ内部に比較的高い転位密度を有するため、両者はSEMやTEMを用いて区別可能である。引張強さTSが1180MPa以上の強度を実現し、伸びフランジ成形性と低温靭性を高めるためには、下部ベイナイト相および/または焼き戻しマルテンサイト相を主相とする必要がある。下部ベイナイト相および/または焼き戻しマルテンサイト相の合計面積率が90%以上で、かつ、下部ベイナイト相および/または焼き戻しマルテンサイト相の平均粒径が10.0μm以下であれば、1180MPa以上の引張強さTSと優れた伸びフランジ成形性と低温靭性とを兼備することができる。したがって、下部ベイナイト相および/または焼き戻しマルテンサイト相の合計面積率を90%以上とする。下部ベイナイト相および/または焼き戻しマルテンサイト相の合計面積率は、好ましくは95%以上、より好ましくは97%超である。上限は特に限定されず100%でもよい。また、下部ベイナイト相および/または焼き戻しマルテンサイト相の平均粒径は、好ましくは9.0μm以下、より好ましくは8.0μm以下である。さらに好ましくは7.0μm以下である。また、上記平均粒径は小さいほど好ましいが、本発明では3.0μm以上になることが多い。
 上記の通り、下部ベイナイトと焼き戻しマルテンサイトを区別する必要は無く、一方のみしか含まなくても本発明の効果は得られる。また、下部ベイナイトと焼き戻しマルテンサイトのいずれかが極端に多い必要もないため、下部ベイナイトと焼き戻しマルテンサイトの面積率比(下部ベイナイト/焼き戻しマルテンサイト)は1/5~5/1でもよい。
 また、本発明では、Fe系析出物中のFe量を質量%で0.70%以下とする。Fe系析出物のFe量が質量%で0.70%を超えて多量に析出すると、伸びフランジ成形時にFe系析出物を起点としたボイドが連結しやすくなり、局部延性が低下し、伸びフランジ成形性が低下する。このため、Fe系析出物中のFe量を質量%で0.70%以下に限定した。なお、好ましくは、Fe系析出物中のFe量は質量%で0.60%以下である。より好ましくは、Fe系析出物中のFe量は質量%で0.50%以下である。さらに好ましくは、Fe系析出物中のFe量は質量%で0.30%以下である。なお、Fe系析出物としては、セメンタイト(θ炭化物)の他に、η炭化物、ε炭化物が挙げられる。
 なお、主相である下部ベイナイト相および/または焼き戻しマルテンサイト相以外の組織は、フレッシュマルテンサイト相、島状マルテンサイト相、塊状残留オーステナイト相、上部ベイナイト相、パーライト相、ポリゴナルフェライト相(ただし、各相を有さない場合も含む)である。また、疑似パーライト、アシキュラーフェライトが含まれる場合もある。
 フレッシュマルテンサイト相は焼き戻しマルテンサイト相と比較してFe系炭化物を有さない組織であり、両者はSEMやTEMを用いて区別可能である。フレッシュマルテンサイト相は下部ベイナイト相および/または焼き戻しマルテンサイト相と比較して低温靭性が劣る。
 島状マルテンサイト(マルテンサイト-残留オーステナイト混合相)は冷却停止温度(巻取り温度)が高温となると生成しやすく、下部ベイナイト相および/または焼き戻しマルテンサイト相、上部ベイナイト相、ポリゴナルフェライト相などの相に囲まれて存在する。島状マルテンサイト相は下部ベイナイト相および/または焼き戻しマルテンサイト相、上部ベイナイト相、ポリゴナルフェライト相と比べてSEM像のコントラストが明るいため、SEMを用いて区別可能である。島状マルテンサイトはフレッシュマルテンサイト相と同様に、下部ベイナイト相および/または焼き戻しマルテンサイト相と比較して低温靭性が劣る。さらに、島状マルテンサイトは周囲の相からCが分配されてC濃化が高く、強度が高い。一般的に、鋼板内に低強度相と高強度相が存在すると穴広げ試験の際に低強度相と高強度相との界面にボイドが発生する。発生したボイド同士が連結することで、穴広げ試験の早期において板厚を貫通する割れに至るため、伸びフランジ成形性が低下する。したがって、高強度相である島状マルテンサイト相の面積率が高くなると伸びフランジ成形性が劣化する。
 塊状残留オーステナイト相は島状マルテンサイト相と同様に周囲の相からCが分配されて高C濃度で生成する。伸びフランジ成形時にC濃度が高く、高強度なフレッシュマルテンサイトに変態するため、塊状残留オーステナイト相の面積率が高くなると伸びフランジ成形性が劣化する。
 上部ベイナイト相とは、ラス状フェライトのラス間に残留オーステナイト相を有する組織を意味する。上部ベイナイト相は下部ベイナイト相および/または焼き戻しマルテンサイト相と比較して高温で生成するため、強度が低い。したがって上部ベイナイト相の面積率が高くなると1180MPa以上の高強度を得られない。
 パーライト相はラメラ状のフェライトとFe系炭化物とを有する組織を意味する。ラメラ状フェライトはラス状フェライトと比較して転位密度が低いため、パーライト相と下部ベイナイト相および/または焼き戻しマルテンサイト相や上部ベイナイト相とはSEMやTEM等で容易に区別できる。パーライト相は下部ベイナイト相および/または焼き戻しマルテンサイト相と比較して低温靭性が劣る。
 ポリゴナルフェライト相は上部ベイナイト相よりも高温で生成し、塊状のため、ラス状フェライトとSEMやTEM等で容易に区別ができる。ポリゴナルフェライト相は強度が低いため、ポリゴナルフェライト相の面積率が高くなると1180MPa以上の高強度を得られない。
 鋼板表面の算術平均粗さ(Ra)が2.50μm以下
 鋼板表面の算術平均粗さ(Ra)が大きいと、曲げ成形の際に、曲げ頂点部で局所的な応力集中が生じ、割れが生じてしまうことがある。したがって、高強度熱延鋼板で良好な曲げ成形性を確保するためには、鋼板表面の算術平均粗さ(Ra)を2.50μm以下とする。鋼板表面の算術平均粗さ(Ra)が小さいほど曲げ成形性は向上するため、鋼板表面の算術平均粗さ(Ra)は好ましくは2.20μm以下である。より好ましくは、鋼板表面の算術平均粗さ(Ra)は2.00μm以下である。さらに好ましくは、鋼板表面の算術平均粗さ(Ra)は1.80μm以下である。
 鋼板の表面処理(好適条件)
 上記した組織等を有する鋼板の表面には、耐食性の向上等を目的としてめっき層を備えた表面処理鋼板としてもよい。めっき層としては、例えば電気亜鉛めっき層等があげられる。めっき付着量は特に制限されず、従来と同様でよい。
 なお、上述の下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、島状マルテンサイト相、塊状残留オーステナイト相、上部ベイナイト相、パーライト相、ポリゴナルフェライト相、疑似パーライト、アシキュラーフェライトの各面積率、下部ベイナイト相および/または焼き戻しマルテンサイト相の平均粒径、Fe系析出物中のFe量、鋼板表面の算術平均粗さ(Ra)は、後述する実施例に記載の方法で測定することができる。
 次いで、本発明の高強度熱延鋼板の特性について説明する。
 本発明の高強度熱延鋼板は、高強度である。具体的には、実施例に記載の方法で測定した引張強さ(TS)が1180MPa以上である。なお、本発明において、引張強さは1500MPa以下になることが多い。
 本発明の高強度熱延鋼板は、優れた伸びフランジ成形性を有する。具体的には、実施例に記載の方法で測定した穴広げ率λが50%以上である。なお、本発明において、穴広げ率λは90%以下になることが多い。
 本発明の高強度熱延鋼板は、優れた曲げ成形性を有する。具体的には、実施例に記載の方法で測定したR/tが3.0以下である。なお、本発明において、R/tは0.5以上になることが多い。
 本発明の高強度熱延鋼板は、優れた低温靱性を有する。具体的には、実施例に記載の方法で測定したvTrsが-40℃以下である。なお、本発明においてvTrsは-100℃以上になることが多い。
 次に、本発明の高強度熱延鋼板の製造方法について説明する。なお、説明において、温度に関する「℃」表示は、鋼板表面あるいは鋼素材の表面における温度を表すものとする。
 本発明に係る製造方法では、上記した成分組成の鋼素材を1150℃以上に加熱し、該加熱後の鋼素材を粗圧延し、該粗圧延後に行う仕上圧延前に、衝突圧が2.5MPa以上の条件で高圧水デスケーリングし、該高圧水デスケーリング後の鋼板を、RC温度を式(1)で定義したとき、仕上圧延終了温度が(RC-200℃)以上(RC+50℃)以下の条件で仕上圧延し、該仕上圧延終了後に冷却を開始し、Ms温度を式(2)で定義したときに冷却停止温度が200℃以上Ms温度以下、平均冷却速度が20℃/s以上、仕上圧延終了温度がRC以上の場合には仕上圧延終了から冷却開始までの時間が2.0s以内の条件で冷却し、上記冷却停止温度で、冷却後の鋼板を巻取り、該巻取後、鋼板を平均冷却速度が20℃/s未満、冷却停止温度が100℃以下の条件で冷却する。本発明に係る製造方法において、さらに、めっき処理を施してもよい。なお、式(1)及び式(2)は後述する通りである。
 以下、詳細に説明する。
 本発明において、鋼素材の製造方法は、特に限定する必要はなく、上記した成分組成を有する溶鋼を、転炉等の公知の方法で溶製し、連続鋳造等の鋳造方法でスラブ等の鋼素材とする、常用の方法がいずれも適用できる。なお、造塊-分塊圧延方法など、公知鋳造方法を用いてもよい。また、原料としてスクラップを使用しても構わない。
 鋳造後スラブ:鋳造後のスラブを直送圧延、または、温片や冷片となったスラブ(鋼素材)を1150℃以上に加熱
 低温まで冷却された後のスラブ等の鋼素材中では、Tiなどの炭窒化物形成元素の殆どが、粗大な炭窒化物として存在している。この粗大で不均一な析出物の存在は、熱延鋼板の諸特性(例えば、強度、低温靭性など)の劣化を招く。そのため、熱間圧延前の鋼素材を鋳造後高温のままで直接熱間圧延(直送圧延)する、または、熱間圧延前の鋼素材を加熱して、粗大な析出物を固溶する。スラブを加熱する場合、粗大な析出物を熱間圧延前に十分に固溶させるためには、鋼素材の加熱温度を1150℃以上とする必要がある。一方、鋼素材の加熱温度が高くなりすぎるとスラブ疵の発生や、スケールオフによる歩留まり低下を招く。そのため、鋼素材の加熱温度は1350℃以下とすることが好ましい。鋼素材の加熱温度は、より好ましくは1180℃以上1300℃以下であり、さらに好ましくは1200℃以上1280℃以下である。
 なお、鋼素材は、1150℃以上の加熱温度に加熱して所定時間保持するが、保持時間が10000sを超えると、スケール発生量が増大する。その結果、続く熱間圧延においてスケール噛み込み等が発生し易くなり、熱延鋼板の表面粗さが劣化して、曲げ成形性が劣化する傾向にある。したがって、1150℃以上の温度域における鋼素材の保持時間は、10000s以下とすることが好ましい。より好ましくは、1150℃以上の温度域における鋼素材の保持時間は、8000s以下である。保持時間の下限は特に定めないが、スラブ加熱の均一性の観点から、1150℃以上の温度域における鋼素材の保持時間は1800s以上が好ましい。
 熱間圧延:粗圧延後、仕上圧延前に、衝突圧を2.5MPa以上とする高圧水デスケーリングを行い、仕上圧延における、RC温度を式(1)で定義したとき、仕上圧延終了温度を(RC-200℃)以上(RC+50℃)以下とする。
RC(℃)=850+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V ・・・式(1)
ここで、式(1)における各元素記号は、各元素の鋼中の含有量(質量%)である。含まない元素の場合は、式中の元素記号を0として計算する。
 本発明では、鋼素材の加熱に続き、粗圧延と仕上圧延からなる熱間圧延を行う。粗圧延では、所望のシートバー寸法が確保できればよく、その条件は特に限定する必要はない。粗圧延後、仕上圧延前に、仕上圧延機の入り側で高圧水を使用したデスケーリングを行う。
 高圧水デスケーリングの衝突圧:2.5MPa以上
 仕上圧延前までに発生した1次スケールを除去するため、高圧水噴射によるデスケーリング処理を実施する。高強度熱延鋼板の表面の算術平均粗さ(Ra)を2.50μm以下に制御するためには、高圧水デスケーリングの衝突圧を2.5MPa以上とする必要がある。上限は特に規定しないが、好ましくは衝突圧15.0MPa以下である。なお、仕上圧延のスタンド間の圧延途中で、デスケーリングを行っても構わない。また、必要に応じてスタンド間で鋼板を冷却しても良い。
 なお、上記において、衝突圧とは、高圧水が鋼材表面に衝突する単位面積あたりの力である。
 仕上圧延終了温度:(RC-200℃)以上(RC+50℃)以下
 仕上圧延終了温度が(RC-200℃)未満の場合、圧延がフェライト+オーステナイトの二相域温度で行われることがあるため、所望の下部ベイナイト相および/または焼き戻しマルテンサイト相の面積率が十分に得られず、引張強さTSが1180MPa以上と優れた伸びフランジ成形性を確保できなくなる。また、仕上圧延終了温度が(RC+50℃)超えであると、オーステナイト粒の粒成長が顕著に生じてしまい、オーステナイト粒が粗大化し、下部ベイナイト相および/または焼き戻しマルテンサイト相の平均粒径が大きくなり、本発明の目的とする優れた低温靭性を確保することができなくなる。したがって、仕上圧延終了温度を(RC-200℃)以上(RC+50℃)以下とする。好ましくは(RC-150℃)以上(RC+30℃)以下とする。より好ましくは(RC-100℃)以上RC以下である。なお、ここでの仕上圧延終了温度は、鋼板の表面温度を表すものとする。
 冷却開始時間:仕上圧延終了後2.0s以内(仕上圧延終了温度がRC以上の場合)
 仕上圧延終了温度がRC以上の場合には、仕上圧延が終了した後、2.0s以内に強制冷却(単に冷却という場合がある)を開始し、冷却停止温度(巻取り温度)で冷却を停止し、コイル状に巻き取る。仕上圧延終了温度がRC以上の場合に仕上圧延終了から強制冷却を開始するまでの時間が、2.0sを超えて長くなると、オーステナイト粒の粒成長が生じてしまい、下部ベイナイト相および/または焼き戻しマルテンサイト相の平均粒径が大きくなり、本発明の目的とする良好な低温靭性が得られない。したがって、仕上圧延終了温度がRC以上の場合には、強制冷却開始時間を仕上圧延終了後2.0s以内とする。なお、仕上圧延終了温度がRC温度未満の場合、強制冷却開始時間の上限は、特に定めなくても良い。ただし、オーステナイト粒に導入したひずみが回復してしまうため、低温靭性の観点から、強制冷却開始時間は2.0s以内が好ましい。仕上圧延終了温度に関係なく、より好ましくは、強制冷却開始時間は、仕上圧延終了後1.5s以内である。さらに好ましくは、強制冷却開始時間は、仕上圧延終了後1.0s以内である。
 仕上圧延終了温度から冷却停止温度(巻取り温度)までの平均冷却速度:20℃/s以上
 強制冷却において、仕上圧延終了温度から巻取り温度までの平均冷却速度が、20℃/s未満であると、下部ベイナイト変態またはマルテンサイト変態の前にフェライト変態や上部ベイナイト変態が起こり、所望の面積率の下部ベイナイト相および/または焼き戻しマルテンサイト相が得られない。したがって、平均冷却速度を20℃/s以上とする。平均冷却速度は、好ましくは25℃/s以上であり、より好ましくは30℃/s以上である。なお、ここでの平均冷却速度の上限は特に規定しないが、平均冷却速度が大きくなりすぎると、冷却停止温度の管理が困難となり、所望のミクロ組織を得ることが困難となることがある。このため、平均冷却速度を500℃/s以下とすることが好ましい。なお、平均冷却速度は、鋼板の表面における平均冷却速度をもとに規定される。
 冷却停止温度(巻取り温度):200℃以上Ms温度以下
 冷却停止温度(巻取り温度)が、200℃未満となるとフレッシュマルテンサイト相が生成し、所望の優れた低温靭性が得られない。したがって冷却停止温度(巻取り温度)を200℃以上とする。冷却停止温度(巻取り温度)が、Ms温度を式(2)で定義したとき、Ms温度を超えると塊状残留オーステナイト相、島状マルテンサイト相、上部ベイナイト相、パーライト相、フェライト相のうち1相または2相以上が生成し、所望の1180MPa以上の高強度や優れた伸びフランジ成形性や優れた低温靭性が得られない。したがって、冷却停止温度(巻取り温度)は、200℃以上Ms温度以下とする。冷却停止温度は、好ましくは、250℃以上(Ms-10℃)以下である。より好ましくは、300℃以上(Ms-20℃)以下である。
Ms(℃)=560-470×C-33×Mn-24×Cr-17×Ni-20×Mo ・・・式(2)
ここで、式(2)における各元素記号は、各元素の鋼中の含有量(質量%)である。含まない元素の場合は、式中の元素記号を0として計算する。
 巻取り後、熱延鋼板を冷却停止温度100℃以下、平均冷却速度20℃/s未満で冷却
 巻取後の熱延鋼板の平均冷却速度は、マルテンサイト相の焼き戻し挙動に影響を及ぼす。巻取後の熱延鋼板を100℃まで冷却する際の平均冷却速度が20℃/s以上となるとマルテンサイト相の焼き戻しが不十分となり、フレッシュマルテンサイト相が増大して所望の優れた低温靭性を得ることができない。したがって巻取り後の鋼板の平均冷却速度を20℃/s未満とする。好ましくは、巻取り後の鋼板の平均冷却速度は2℃/s以下である。より好ましくは、巻取り後の鋼板の平均冷却速度は0.02℃/s以下である。上記平均冷却速度の下限は特に限定されないが、0.0001℃/s以上が好ましい。また、この冷却において、冷却停止温度は100℃未満でもよく、通常、10~30℃程度の室温まで冷却する。
 以上の工程により、本発明の高強度熱延鋼板が製造される。
 なお、本発明においては、連続鋳造時の鋼の成分偏析低減のために、電磁撹拌(EMS)、軽圧下鋳造(IBSR)等の偏析低減処理を適用することができる。電磁撹拌処理を行うことにより、板厚中心部に等軸晶を形成させ、偏析を低減させることができる。また、軽圧下鋳造を施した場合は、連続鋳造スラブの未凝固部の溶鋼の流動を防止することにより、板厚中心部の偏析を低減させることができる。これらの偏析低減処理の少なくとも1つの適用により、後述するプレス成形性、低温靭性をより優れたレベルにすることができる。
 巻取り後は、常法にしたがい、調質圧延を施してもよく、また、酸洗を施して表面に形成されたスケールを除去してもよい。また、酸洗処理後あるいは調質圧延後に、さらに、常用の亜鉛めっきラインを利用して、めっき処理や化成処理を施してもよい。例えば、めっき処理として、鋼板を電気亜鉛めっきラインに通過させて、鋼板の表面に亜鉛めっき層を形成する処理を施してもよい。
 表1に示す成分組成の溶鋼を転炉で溶製し、連続鋳造法により鋼スラブ(鋼素材)を製造した。次いで、これらの鋼素材を、表2-1および表2-2に示す製造条件で加熱し、粗圧延を施し、表2-1および表2-2に示す条件で鋼板表面のデスケーリングを施し、表2-1および表2-2に示す条件で仕上圧延を施した。仕上圧延終了後、表2-1および表2-2に示す条件の冷却開始時間(仕上圧延終了後から冷却(強制冷却)を開始するまでの時間)、平均冷却速度(仕上圧延終了温度から巻取り温度までの平均冷却速度)、および冷却停止温度で鋼板を冷却して巻取り、表2-1および表2-2に示す平均冷却速度で100℃以下まで巻取り後の鋼板を冷却し、表2-1および表2-2に示す板厚の熱延鋼板とした。このようにして得られた熱延鋼板をスキンパス圧延し、その後酸洗(塩酸濃度:質量%で10%、温度85℃)を行い、一部については電気亜鉛めっき処理を施した。
 以上により得られた熱延鋼板から試験片を採取し、熱延鋼板表面の算術平均粗さ(Ra)の測定、組織観察、Fe系析出物中のFe量の測定、引張試験、穴広げ試験、曲げ試験、およびシャルピー衝撃試験を実施した。組織観察方法および各種試験方法は以下の通りである。なお、めっき鋼板の場合は、めっき後の鋼板で試験および評価を行った。
 (i)熱延鋼板表面の算術平均粗さ(Ra)の測定
 得られた熱延鋼板から鋼板表面の算術平均粗さ測定用試験片(大きさ:t(板厚:mm)×100mm(幅)×100mm(長さ))を採取し、JIS B0601に準拠して、算術平均粗さ(Ra)の測定を行った。また、算術平均粗さ(Ra)の測定は、圧延方向と直角方向でそれぞれ5mmピッチで25回行い、その平均値を算出して評価した。なお、めっき板については、めっき後の鋼板のRaを、熱延鋼板については酸洗してスケールを除去した後の鋼板のRaを求めた。
 (ii)組織観察
 各組織の面積率、下部ベイナイト相および/または焼き戻しマルテンサイト相の平均粒径
 得られた熱延鋼板からSEM用試験片を採取し、圧延方向に平行な板厚断面を研磨後、腐食液(3質量%ナイタール溶液)で組織を現出させた。板厚1/4位置にてSEMを用い、5000倍の倍率で10視野を撮影して画像処理により各相(下部ベイナイト相および/または焼き戻しマルテンサイト相、上部ベイナイト相、パーライト相、ポリゴナルフェライト相)の面積率(%)を定量化した。フレッシュマルテンサイト相、島状マルテンサイト相、塊状残留オーステナイト相はSEMでは区別が困難なため、EBSD法を用いて、区別できなかった各結晶粒を測定した。EBSD法による測定の結果、結晶粒内に残留オーステナイトが同定されないものをフレッシュマルテンサイト相、結晶粒内に面積率で80%未満のオーステナイト相が同定されたものを島状マルテンサイト相、結晶粒内に面積率で80%以上のオーステナイト相が同定されたものを塊状残留オーステナイト相と区別した。
 下部ベイナイト相および/または焼き戻しマルテンサイト相の平均粒径の測定のため、得られた熱延鋼板から、SEMを使用したEBSD法による下部ベイナイト相および/または焼き戻しマルテンサイト相の粒径測定用の試験片を採取した。圧延方向に平行な面を観察面として、コロイダルシリカ溶液を用いて仕上げ研磨を行った。その後、EBSD測定装置によって、電子線の加速電圧20keV、測定間隔0.1μmステップで、100μm×100μmの面積を、板厚1/4位置で10箇所測定した。一般的に結晶粒界として認識されている大傾角粒界の閾値を15°と定義して、結晶方位差が15°以上の粒界を可視化して下部ベイナイト相および/または焼き戻しマルテンサイト相の平均粒径を算出した。下部ベイナイト相および/または焼き戻しマルテンサイト相の面積平均(Area fraction average)の粒径は、TSL社製OIM Analysisソフトを使用して算出する。この際、結晶粒の定義として、Grain Tolerance Angleを15°とすることで面積平均粒径(平均粒径と称する)を求めることができる。
 Fe系析出物中におけるFe量の測定
 得られた熱延鋼板から採取した試験片を陽極として10%AA系電解液中で定電流電解を行い、この試験片の一定量を溶解した。その後、電解によって得られた抽出残渣を孔径0.2μmのフィルターを用いて濾過し、Fe系析出物を回収した。ついで、得られたFe系析出物を混酸で溶解した後、ICP発光分光分析法によってFeを定量し、その測定値からFe析出物中のFe量を算出した。なお、Fe系析出物は凝集しているため、孔径0.2μmのフィルターを用いて濾過を行うことで、粒径0.2μm未満のFe系析出物も回収することが可能である。
 (iii)引張試験
 得られた熱延鋼板から、引張方向が圧延方向と直角方向になるようにJIS5号試験片(GL:50mm)を採取し、JIS Z 2241の規定に準拠して引張試験を行い、降伏強度(降伏点、YP)、引張強さ(TS)、降伏比(YR)、および全伸び(El)を求めた。試験は各熱延鋼板について2回行い、それぞれの平均値をその鋼板の機械特性値とした。
 (iv)穴広げ試験
 得られた熱延鋼板から、穴広げ試験用試験片(大きさ:t(板厚:mm)×100mm(幅)×100mm(長さ))を採取し、鉄連規格JFST 1001に準拠して、試験片中央に10mmφポンチで、クリアランス:12%±1%で、ポンチ穴を打ち抜いた後、該ポンチ穴に60°円錐ポンチを打抜き方向から押し上げるように挿入して、亀裂が板厚を貫通した時点での穴径d(mm)を求め、次式
        λ(%)={(d-10)/10}×100
で定義される穴広げ率λ(%)を算出した。なお、クリアランスは、板厚に対するダイスとポンチとの間隙の割合(%)である。本発明では、穴広げ試験で得られたλが50%以上の場合を、伸びフランジ成形性が良好と評価した。
 (v)曲げ試験
 得られた熱延鋼板にせん断加工を施し、試験片の長手方向が圧延方向と直角になるように35mm(幅)×100mm(長さ)の曲げ試験片を採取した。せん断端面を有するこれらの試験片を用いて、JIS Z 2248に規定の押し曲げ法に準拠し、Vブロック90°曲げ試験を行った。このとき、各鋼板について、3個の試験片を用いて試験を行い、いずれの試験片にも割れが発生しない最小の曲げ半径を限界曲げ半径R(mm)とし、Rを熱延鋼板の板厚t(mm)で除したR/t値を求め、熱延鋼板の曲げ成形性を評価した。なお、本発明では、R/tの値が3.5以下である場合を、曲げ成形性に優れていると評価した。R/tの値はより好ましくは3.0以下、さらに好ましくは2.5以下である。
 (vi)シャルピー衝撃試験
 得られた熱延鋼板から、試験片の長手方向が圧延方向と直角になるように、厚さ2.5mmのサブサイズ試験片(Vノッチ)を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を行い、脆性延性破面遷移温度(vTrs)を測定し、靭性を評価した。ここで、板厚が2.5mmを超える熱延鋼板については両面研削にて板厚を2.5mmとして試験片を作製し、板厚が2.5mm以下の熱延鋼板については元厚にて試験片を作製し、シャルピー衝撃試験に供した。本発明では、測定されたvTrsが-40℃以下である場合を、低温靭性が良好であると評価した。
 以上の試験および評価により得られた結果を表3-1および表3-2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3-1および表3-2より、本発明例では、伸びフランジ成形性、曲げ成形性、低温靭性に優れた引張強さTSが1180MPa以上の高強度熱延鋼板が得られているのがわかる。一方、本発明の範囲を外れる比較例は、強度、伸びフランジ成形性、曲げ成形性、低温靭性のいずれか1つ以上が、上述の目標性能を満足できない。
 

Claims (8)

  1.  質量%で、
    C:0.07%以上0.20%以下、
    Si:0.10%以上2.0%以下、
    Mn:0.8%以上3.0%以下、
    P:0.100%以下(0%を含む)、
    S:0.0100%以下(0%を含む)、
    Al:0.010%以上2.00%以下、
    N:0.010%以下(0%を含む)、
    Ti:0.02%以上0.16%未満、
    B:0.0003%以上0.0100%以下を含有し、残部Feおよび不可避的不純物からなる成分組成と、
     合計面積率で90%以上の下部ベイナイト相および/または焼き戻しマルテンサイト相を主相とし、かつ、該主相の平均粒径が10.0μm以下であり、Fe系析出物中のFe量が質量%で0.70%以下である鋼組織と、を有し、
     表面の算術平均粗さ(Ra)が、2.50μm以下であり、
     引張強さTSが1180MPa以上である高強度熱延鋼板。
  2.  前記成分組成は、さらに、質量%で、
    Cr:0.01%以上2.0%以下、
    Mo:0.01%以上0.50%以下、
    Cu:0.01%以上0.50%以下及び
    Ni:0.01%以上0.50%以下のうちから選ばれた1種または2種以上を含有する請求項1に記載の高強度熱延鋼板。
  3.  前記成分組成は、さらに、質量%で、
    Nb:0.001%以上0.060%以下及び
    V:0.01%以上0.50%以下のうちから選ばれた1種または2種を含有する請求項1又は2に記載の高強度熱延鋼板。
  4.  前記成分組成は、さらに、質量%で、
    Sb:0.0005%以上0.0500%以下を含有する請求項1~3のいずれかに記載の高強度熱延鋼板。
  5.  前記成分組成は、さらに、質量%で、
    Ca:0.0005%以上0.0100%以下、
    Mg:0.0005%以上0.0100%以下及び
    REM:0.0005%以上0.0100%以下のうちから選ばれた1種または2種以上を含有する請求項1~4のいずれかに記載の高強度熱延鋼板。
  6.  表面に、めっき層を有する請求項1~5のいずれかに記載の高強度熱延鋼板。
  7.  請求項1~5のいずれかに記載された高強度熱延鋼板の製造方法であって、
     鋼素材を1150℃以上に加熱し、
     該加熱後の鋼素材を粗圧延し、
     該粗圧延後に行う仕上圧延前に、衝突圧が2.5MPa以上の条件で高圧水デスケーリングし、
     該高圧水デスケーリング後の鋼板を、RC温度を式(1)で定義したとき、仕上圧延終了温度が(RC-200℃)以上(RC+50℃)以下の条件で仕上圧延し、
     該仕上圧延終了後に冷却を開始し、Ms温度を式(2)で定義したときに冷却停止温度が200℃以上Ms温度以下、平均冷却速度が20℃/s以上、前記仕上圧延終了温度がRC以上の場合には前記仕上圧延終了から冷却開始までの時間が2.0s以内の条件で冷却し、
     前記冷却停止温度で、冷却後の鋼板を巻取り、
     該巻取後、鋼板を平均冷却速度が20℃/s未満、冷却停止温度が100℃以下の条件で冷却する高強度熱延鋼板の製造方法。
    RC(℃)=850+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V ・・・式(1)
    Ms(℃)=560-470×C-33×Mn-24×Cr-17×Ni-20×Mo ・・・式(2)
    ここで、式(1)および式(2)における各元素記号は、各元素の鋼中の含有量(質量%)である。含まない元素の場合は、式中の元素記号を0として計算する。
  8.  さらに、鋼板の表面にめっき処理を施す請求項7に記載の高強度熱延鋼板の製造方法。
     
     
PCT/JP2019/022886 2018-07-31 2019-06-10 高強度熱延鋼板およびその製造方法 WO2020026593A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217002705A KR102495090B1 (ko) 2018-07-31 2019-06-10 고강도 열연 강판 및 그의 제조 방법
JP2019553584A JP6874857B2 (ja) 2018-07-31 2019-06-10 高強度熱延鋼板およびその製造方法
US17/262,884 US20210140007A1 (en) 2018-07-31 2019-06-10 High-strength hot rolled steel sheet and method for manufacturing same
CN201980050754.9A CN112534077B (zh) 2018-07-31 2019-06-10 高强度热轧钢板及其制造方法
EP19843333.6A EP3831972B1 (en) 2018-07-31 2019-06-10 High-strength hot-rolled steel sheet and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-143803 2018-07-31
JP2018143803 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020026593A1 true WO2020026593A1 (ja) 2020-02-06

Family

ID=69231200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022886 WO2020026593A1 (ja) 2018-07-31 2019-06-10 高強度熱延鋼板およびその製造方法

Country Status (6)

Country Link
US (1) US20210140007A1 (ja)
EP (1) EP3831972B1 (ja)
JP (1) JP6874857B2 (ja)
KR (1) KR102495090B1 (ja)
CN (1) CN112534077B (ja)
WO (1) WO2020026593A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250735A1 (ja) * 2019-06-14 2020-12-17 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2021187321A1 (ja) * 2020-03-17 2021-09-23 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2021147645A (ja) * 2020-03-17 2021-09-27 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2022153927A1 (ja) * 2021-01-15 2022-07-21 日本製鉄株式会社 熱延鋼板
EP4206347A4 (en) * 2020-08-27 2024-03-27 Baoshan Iron & Steel Co., Ltd. GPA QUALITY BAINITIC STEEL HAVING ULTRA HIGH YIELD RATIO AND METHOD FOR MANUFACTURING GPA QUALITY BAINITIC STEEL

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3584337B1 (en) * 2017-02-17 2020-12-23 JFE Steel Corporation High strength hot-rolled steel sheet and method for producing same
CN115011884A (zh) * 2022-06-16 2022-09-06 山西太钢不锈钢股份有限公司 一种断裂为韧性断裂高强度热轧钢板
CN117327972A (zh) * 2022-06-24 2024-01-02 宝山钢铁股份有限公司 一种屈服强度1000MPa及以上的汽车结构用钢及其制造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048580B2 (ja) 1978-03-31 1985-10-28 工業技術院長 水素貯蔵用合金
JP2005146379A (ja) 2003-11-18 2005-06-09 Nippon Steel Corp 伸びと穴拡げ性と2次加工割れ性に優れた高強度熱延鋼板及びその製造方法
JP2006241528A (ja) * 2005-03-03 2006-09-14 Kobe Steel Ltd 冷間加工性と品質安定性に優れた高強度ばね用鋼
JP2013181208A (ja) 2012-03-01 2013-09-12 Nippon Steel & Sumitomo Metal Corp 伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板及びその製造方法
WO2014185405A1 (ja) * 2013-05-14 2014-11-20 新日鐵住金株式会社 熱延鋼板およびその製造方法
JP2014227583A (ja) 2013-05-24 2014-12-08 新日鐵住金株式会社 曲げ加工性と耐摩耗性に優れた高強度熱延鋼板及びその製造方法
JP2015196891A (ja) 2014-04-02 2015-11-09 新日鐵住金株式会社 打抜き穴広げ性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板及びその製造方法
JP2016204716A (ja) * 2015-04-24 2016-12-08 新日鐵住金株式会社 加工性と熱処理性に優れた高炭素鋼帯の製造方法
JP2016211073A (ja) 2015-05-12 2016-12-15 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2017138384A1 (ja) * 2016-02-10 2017-08-17 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
JP2017150051A (ja) * 2016-02-26 2017-08-31 Jfeスチール株式会社 曲げ性に優れた高強度鋼板およびその製造方法
WO2018030501A1 (ja) * 2016-08-10 2018-02-15 Jfeスチール株式会社 薄鋼板およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081640A1 (fr) * 2000-04-21 2001-11-01 Nippon Steel Corporation Plaque d'acier presentant une excellente aptitude a l'ebarbage et une resistance elevee a la fatigue, et son procede de production
EP1559798B1 (en) * 2004-01-28 2016-11-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength and low yield ratio cold rolled steel sheet and method of manufacturing the same
US7846275B2 (en) * 2006-05-24 2010-12-07 Kobe Steel, Ltd. High strength hot rolled steel sheet having excellent stretch flangeability and its production method
KR101142620B1 (ko) * 2007-03-27 2012-05-03 신닛뽄세이테쯔 카부시키카이샤 박리의 발생이 없어 표면 성상 및 버링성이 우수한 고강도 열연 강판 및 그 제조 방법
JP5463715B2 (ja) * 2009-04-06 2014-04-09 Jfeスチール株式会社 自動車構造部材用高強度溶接鋼管の製造方法
JP5720208B2 (ja) * 2009-11-30 2015-05-20 新日鐵住金株式会社 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板
EP2987886B1 (en) * 2013-04-15 2018-06-06 JFE Steel Corporation High strength hot rolled steel sheet and method for producing same
US20160076124A1 (en) * 2013-04-15 2016-03-17 Jfe Steel Corporation High strength hot rolled steel sheet and method for manufacturing the same (as amended)
RU2686715C1 (ru) * 2015-04-08 2019-04-30 Ниппон Стил Энд Сумитомо Метал Корпорейшн Элемент из термообработанного стального листа и способ его производства
JP6179584B2 (ja) * 2015-12-22 2017-08-16 Jfeスチール株式会社 曲げ性に優れた高強度鋼板およびその製造方法
CN110100030B (zh) * 2016-12-23 2021-04-20 Posco公司 弯曲加工性优异的超高强度热轧钢板及其制造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048580B2 (ja) 1978-03-31 1985-10-28 工業技術院長 水素貯蔵用合金
JP2005146379A (ja) 2003-11-18 2005-06-09 Nippon Steel Corp 伸びと穴拡げ性と2次加工割れ性に優れた高強度熱延鋼板及びその製造方法
JP2006241528A (ja) * 2005-03-03 2006-09-14 Kobe Steel Ltd 冷間加工性と品質安定性に優れた高強度ばね用鋼
JP2013181208A (ja) 2012-03-01 2013-09-12 Nippon Steel & Sumitomo Metal Corp 伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板及びその製造方法
WO2014185405A1 (ja) * 2013-05-14 2014-11-20 新日鐵住金株式会社 熱延鋼板およびその製造方法
JP2014227583A (ja) 2013-05-24 2014-12-08 新日鐵住金株式会社 曲げ加工性と耐摩耗性に優れた高強度熱延鋼板及びその製造方法
JP2015196891A (ja) 2014-04-02 2015-11-09 新日鐵住金株式会社 打抜き穴広げ性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板及びその製造方法
JP2016204716A (ja) * 2015-04-24 2016-12-08 新日鐵住金株式会社 加工性と熱処理性に優れた高炭素鋼帯の製造方法
JP2016211073A (ja) 2015-05-12 2016-12-15 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2017138384A1 (ja) * 2016-02-10 2017-08-17 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
JP2017150051A (ja) * 2016-02-26 2017-08-31 Jfeスチール株式会社 曲げ性に優れた高強度鋼板およびその製造方法
WO2018030501A1 (ja) * 2016-08-10 2018-02-15 Jfeスチール株式会社 薄鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3831972A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250735A1 (ja) * 2019-06-14 2020-12-17 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP6819840B1 (ja) * 2019-06-14 2021-01-27 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2021187321A1 (ja) * 2020-03-17 2021-09-23 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2021147645A (ja) * 2020-03-17 2021-09-27 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP6973694B1 (ja) * 2020-03-17 2021-12-01 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN115244200A (zh) * 2020-03-17 2022-10-25 杰富意钢铁株式会社 高强度钢板及其制造方法
JP7192818B2 (ja) 2020-03-17 2022-12-20 Jfeスチール株式会社 高強度鋼板およびその製造方法
EP4206347A4 (en) * 2020-08-27 2024-03-27 Baoshan Iron & Steel Co., Ltd. GPA QUALITY BAINITIC STEEL HAVING ULTRA HIGH YIELD RATIO AND METHOD FOR MANUFACTURING GPA QUALITY BAINITIC STEEL
WO2022153927A1 (ja) * 2021-01-15 2022-07-21 日本製鉄株式会社 熱延鋼板

Also Published As

Publication number Publication date
CN112534077B (zh) 2022-06-14
US20210140007A1 (en) 2021-05-13
EP3831972A1 (en) 2021-06-09
JP6874857B2 (ja) 2021-05-19
KR20210024135A (ko) 2021-03-04
EP3831972A4 (en) 2021-06-09
EP3831972B1 (en) 2023-04-05
JPWO2020026593A1 (ja) 2020-08-06
KR102495090B1 (ko) 2023-02-06
CN112534077A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
EP3584337B1 (en) High strength hot-rolled steel sheet and method for producing same
JP6354921B1 (ja) 鋼板およびその製造方法
EP3476963B1 (en) High-strength cold rolled steel sheet and method for producing the same
JP6874857B2 (ja) 高強度熱延鋼板およびその製造方法
US11649531B2 (en) Steel sheet and plated steel sheet
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP6179584B2 (ja) 曲げ性に優れた高強度鋼板およびその製造方法
US10174392B2 (en) Method for producing cold-rolled steel sheet
KR101424859B1 (ko) 고강도 강판 및 그 제조 방법
KR101621639B1 (ko) 강판, 도금 강판 및 그들의 제조 방법
KR102242067B1 (ko) 고강도 강판 및 그 제조 방법
WO2012036308A1 (ja) 打抜き加工性に優れた高強度熱延鋼板およびその製造方法
US20220056549A1 (en) Steel sheet, member, and methods for producing them
KR20180031751A (ko) 고강도 박강판 및 그 제조 방법
KR20190045298A (ko) 강판
KR102635009B1 (ko) 고강도 열연 강판 및 그 제조 방법
WO2020026594A1 (ja) 高強度熱延めっき鋼板
US20220090247A1 (en) Steel sheet, member, and methods for producing them
WO2017164139A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2009280899A (ja) 780MPa以上の引張強度を有する高強度熱延鋼板の製造方法
KR102274284B1 (ko) 고강도 냉연 강판 및 그의 제조 방법
KR102245332B1 (ko) 고강도 강판 및 그 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019553584

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217002705

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019843333

Country of ref document: EP

Effective date: 20210301