WO2020022010A1 - 積層体 - Google Patents

積層体 Download PDF

Info

Publication number
WO2020022010A1
WO2020022010A1 PCT/JP2019/026444 JP2019026444W WO2020022010A1 WO 2020022010 A1 WO2020022010 A1 WO 2020022010A1 JP 2019026444 W JP2019026444 W JP 2019026444W WO 2020022010 A1 WO2020022010 A1 WO 2020022010A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
liquid crystal
laminate
polymerizable liquid
Prior art date
Application number
PCT/JP2019/026444
Other languages
English (en)
French (fr)
Inventor
智煕 柳
恩瑛 金
東輝 金
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019081954A external-priority patent/JP7281953B2/ja
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201980041695.9A priority Critical patent/CN112368143B/zh
Priority to KR1020207033047A priority patent/KR20210038423A/ko
Publication of WO2020022010A1 publication Critical patent/WO2020022010A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a laminate composed of a base material layer and a polarizing layer.
  • Patent Document 1 proposes a stretchable display device.
  • Patent Document 2 proposes a polarizing plate that can be subjected to hot bending.
  • An object of the present invention is to provide a stretchable laminate in which even when stretched, optical properties such as luminosity-corrected single transmittance and luminosity-corrected polarization degree do not significantly change, and appearance defects such as haze and cracks do not occur. That is.
  • the present invention provides the following laminate.
  • a stretchable laminate comprising a substrate layer and a polarizing layer, wherein the moisture content of the substrate layer is 5.0% or less, and satisfies the following formula (1). .
  • a stretchable laminate in which optical properties such as luminosity-corrected single transmittance and luminosity-corrected polarization degree do not significantly change, and appearance defects such as haze and cracks do not occur. Can be provided.
  • FIG. 1 is a schematic cross-sectional view of a laminate according to one embodiment of the present invention.
  • laminated body according to one embodiment of the present invention (hereinafter, simply referred to as a “laminated body”) will be described.
  • FIG. 1 is a schematic cross-sectional view of a laminate according to one embodiment of the present invention.
  • the laminate 10 is a stretchable laminate including a base material layer 11 and a polarizing layer 12.
  • the term “stretchable” means that when the laminate 10 is pulled in at least one of the absorption axis direction and the transmission axis direction, it can be extended without breaking.
  • the direction of the absorption axis refers to the case where the polymerizable liquid crystal compound is cured in a state where the dichroic dye and the polymerizable liquid crystal compound, which will be described later, constituting the polarizing layer 12 are horizontally aligned with respect to the surface of the base material layer.
  • the transmission axis direction refers to the case where the polymerizable liquid crystal compound is cured in a state where the dichroic dye and the polymerizable liquid crystal compound, which will be described later, constituting the polarizing layer 12 are horizontally aligned with respect to the base material layer surface, and indicates the liquid crystallinity.
  • the dichroic dye is horizontally oriented with respect to the substrate layer surface, it refers to a direction horizontal to the substrate layer surface and perpendicular to the orientation direction.
  • the orientation state of the polarizing layer can be confirmed by observation with a polarizing microscope.
  • a laminate sample is inserted in a direction of about 45 ° between crossed Nicols with a polarizing microscope, and observation is performed in a state of light leakage.
  • the liquid crystal molecules are vertically aligned, no light leakage occurs and a dark field state is observed.
  • the liquid crystal molecules are horizontally aligned, light leakage occurs and the light field state is observed.
  • the laminate 10 may have elongation at break in both the absorption axis direction and the transmission axis direction of, for example, 5% or more. When the elongation at break in both the absorption axis direction and the transmission axis direction is 5% or more, sufficient stretchability tends to be easily obtained.
  • the laminate 10 has an elongation at break in both the absorption axis direction and the transmission axis direction of preferably 5% to 20%, more preferably 5% to 15%. When the elongation at break in both the absorption axis direction and the transmission axis direction is 5% to 20%, sufficient stretchability can be easily obtained, and changes in optical properties and appearance defects such as haze and cracks are less likely to occur. There is a tendency.
  • the elongation at break in the absorption axis direction and the transmission axis direction is the elongation at the time when the laminate is broken in the tensile test when the laminate is pulled in the absorption axis direction or the transmission axis direction.
  • UTM The measurement can be performed using Universal Testing Machine, Autograph AG-X, Shimadzu Corporation.
  • As the elongation at break a value at normal temperature (23 ° C.) can be adopted.
  • Laminate 10 when the tensile elastic modulus in the absorption axis direction and the transmission axis direction is respectively E A and E T, satisfies the following equation (1).
  • the laminated body 10 does not satisfy the formula (1), when the laminated body 10 is pulled, there is a tendency that optical properties change, breakage, or appearance defects such as haze and cracks easily occur. . The reason for this is presumed that the laminate has a certain degree of tensile elasticity isotropically, so that the optical properties of the laminate are maintained even when the laminate is stretched.
  • the invention is not at all limited to this estimation.
  • the tensile modulus can be measured according to the measuring method described in the section of Examples described later.
  • may be, for example, 0.01.
  • the value at normal temperature (temperature of 23 ° C.) can be adopted as the tensile modulus.
  • the laminate 10 may be adjusted to satisfy the formula (1), for example, by adjusting the thicknesses of the base layer 11, the polarizing layer 12, and the alignment layer, selecting a material to be used for the base layer, and dichroic properties for forming the polarizing layer. Selection of dyes and polymerizable liquid crystal compounds and adjustment of their composition ratios, selection of raw materials used for the composition for forming an alignment layer and adjustment of composition ratios, conditions for forming a polarizing layer and an alignment layer, such as coating conditions, drying It can be produced by combining conditions and polymerization conditions and the like.
  • the tensile modulus of the laminate is related to the tensile modulus of the substrate layer, it is preferable to use a substrate layer having an elongation of 5% or more.
  • the laminate 10 preferably satisfies the following expression (2).
  • Both tensile modulus E A and E T may be, for example, 1 MPa ⁇ 30,000 mPa, preferably 10 MPa ⁇ 20,000 mPa, more preferably 50 MPa ⁇ 15,000 mPa, at 1,000 MPa ⁇ 7,000 mPa And may be 1,000 MPa to 5,000 MPa. If the tensile modulus E A and E T are both a 50 MPa ⁇ 15,000 mPa, it tends to be difficult to break even when stretched laminate 10.
  • the laminate 10 may have a total haze value of, for example, 3% or less. When the total haze value is 3% or less, it can be suitably used for a display device.
  • the laminate 10 has a total haze value of preferably 2.8% or less, more preferably 2.5% or less. When the total haze value is 3% or less, when the laminate 10 is used for a display device, the visibility tends to be easily improved.
  • the total haze value can be measured according to the method described in the section of Examples described later. On the other hand, the total haze value is usually 0.1% or more. The total haze value can be measured according to the measurement method described in the section of Examples below.
  • the laminate 10 may have a total haze value difference ( ⁇ H) before and after stretching of, for example, 1.5% or less, preferably 1.2% or less, more preferably 1% or less.
  • the laminate 10 may have a difference ( ⁇ H) between the total haze value before stretching and after 5% stretching of, for example, 1.5% or less, preferably 1.2% or less, more preferably 1% or less. % Or less.
  • the laminate 10 may have a difference ( ⁇ H) between the total haze values before and after the 10% stretching of, for example, 1.5% or less, preferably 1.2% or less, more preferably 1% or less.
  • the polarization performance of the laminate 10 can be measured using a spectrophotometer.
  • the transmittance (T1) in the transmission axis direction (the direction perpendicular to the orientation direction of the dichroic dye) and the absorption axis direction (the orientation direction of the dichroic dye) in the wavelength range of 380 nm to 780 nm, which is visible light.
  • T2 can be measured by a double beam method using an apparatus in which a holder with a polarizer is set in a spectrophotometer.
  • the polarization performance in the visible light range is calculated by calculating the single transmittance and the degree of polarization at each wavelength using the following formulas (3) and (4), and further viewing with a 2-degree visual field (C light source) according to JIS Z8701.
  • a 2-degree visual field C light source
  • Single transmittance (%) (T1 + T2) / 2 Equation (3)
  • Degree of polarization (%) (T1 ⁇ T2) / (T1 + T2) ⁇ 100 Equation (4)
  • the laminate 10 may have a visibility correction single transmittance of, for example, 30% or more, preferably 35% or more, and more preferably 38% or more.
  • the laminated body 10 generally has a visibility correction single transmittance of 70% or less, preferably 48% or less, and more preferably 46% or less.
  • the luminosity-corrected single transmittance can be measured according to the method described in the section of Examples described later.
  • the laminate 10 may have, for example, a difference ( ⁇ T) in luminosity-corrected single transmittance before and after stretching in the absorption axis direction and the transmission axis direction of 1.5% or less, and preferably 1.2% or less, for example. More preferably, it is 1% or less.
  • the laminate 10 has a difference ( ⁇ T) in luminosity corrected single transmittance before stretching and after stretching by 5% in the absorption axis direction and the transmission axis direction, for example, of 1.5% or less, respectively. And preferably 1.2% or less, more preferably 1% or less.
  • the laminate (10) has a difference ( ⁇ T) in luminosity-corrected single transmittance value before stretching and after 10% stretching in the absorption axis direction and the transmission axis direction of, for example, 1.5% or less. And preferably 1.2% or less, more preferably 1% or less.
  • the laminate 10 may have a visibility correction polarization degree of, for example, 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the visibility correction polarization degree is usually 100% or less, may be 99.99% or less, or may be 99.0% or less.
  • the visibility correction polarization degree can be measured according to the method described in the section of Examples described later.
  • the difference ( ⁇ P) between the visibility correction polarization degrees before and after stretching in the absorption axis direction and the transmission axis direction may be, for example, not more than 3%, preferably not more than 2.5%, more preferably not more than 2.5%. 2% or less.
  • the laminate 10 may have a difference ( ⁇ P) in the visibility correction polarization degree before stretching and after stretching by 5% in the absorption axis direction and the transmission axis direction, for example, of 3% or less, respectively. Preferably it is 2.5% or less, more preferably 2% or less.
  • the difference ( ⁇ P) in the luminosity correction polarization degree between before the stretching and after the 10% stretching in the absorption axis direction and the transmission axis direction may be, for example, 3% or less. , Preferably 2.5% or less, more preferably 2% or less.
  • the thickness of the laminate 10 may be, for example, 25 ⁇ m to 1000 ⁇ m, preferably 30 ⁇ m to 500 ⁇ m, and more preferably 35 ⁇ m to 100 ⁇ m. When the thickness of the laminate 10 is 25 ⁇ m to 1000 ⁇ m, the display device tends to be thinner.
  • the base material layer 11 may be composed of, for example, a resin film, and may preferably be composed of a transparent resin film.
  • the resin film may be a long roll-shaped resin film or a sheet-like resin film. A long roll-shaped resin film is preferable in that it can be manufactured continuously.
  • the resin constituting the resin film examples include polyolefins such as polyethylene, polypropylene, and norbornene-based polymers; cyclic olefin-based resins; polyvinyl alcohol; polyethylene terephthalate; polymethacrylate; polyacrylate; triacetyl cellulose, diacetyl cellulose; Cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; polyphenylene sulfide; and plastics such as polyphenylene oxide.
  • cyclic olefin resins, cellulose esters and polyimides are preferred.
  • cyclic olefin resins examples include “Topas” (registered trademark) (manufactured by Ticona (Germany)), “ARTON” (registered trademark) (manufactured by JSR Corporation), and “ZEONOR”. (Registered trademark), “ZEONEX” (registered trademark) (all manufactured by Zeon Corporation), “Apel” (registered trademark) (made by Mitsui Chemicals, Inc.) and the like.
  • a cyclic olefin-based resin can be formed into a resin film by a known method such as a solvent casting method or a melt extrusion method.
  • a commercially available cyclic olefin-based resin film can also be used.
  • Examples of typical commercial products of the cyclic olefin-based resin film include “ESCINA” (registered trademark), “SCA40” (registered trademark) (all manufactured by Sekisui Chemical Co., Ltd.), and “ZEONOR FILM” (registered trademark) ( Optes Co., Ltd.) and “ARTON FILM” (registered trademark) (manufactured by JSR Corporation).
  • Examples of typical commercially available resin films composed of cellulose ester include “Fujitac Film” (manufactured by Fuji Photo Film Co., Ltd.); “KC8UX2M”, “KC8UY” and “KC4UY” (Konica Minolta Opto, Inc.) Manufactured by a company).
  • the moisture content of the base material layer 11 is 5.0% or less, preferably 3.0% or less.
  • the moisture content of the base material layer 11 can be 0.0% or more.
  • the uniformity of the alignment direction of the polymerizable liquid crystal compound and the dichroic dye tends to increase when the polarizing layer 12 is formed.
  • the polarizing layer can easily maintain good optical properties.
  • the moisture content of the base material layer is measured by a method described in Examples described later.
  • the thickness of the resin film is preferably thinner from the viewpoint of reducing the thickness of the laminate 10, but if it is too thin, it tends to be difficult to secure impact resistance.
  • the thickness of the resin film may be, for example, 10 to 200 ⁇ m, preferably 15 to 150 ⁇ m, and more preferably 20 to 100 ⁇ m.
  • the base material layer 11 may have a hard coat layer, an antireflection layer, or an antistatic layer on at least one surface.
  • a hard coat layer, an antireflection layer, an antistatic layer, or the like may be formed only on the surface on which the polarizing layer 12 is not formed.
  • the base layer 11 may have a hard coat layer, an antireflection layer, an antistatic layer, or the like formed only on the surface on the side where the polarizing layer 12 is formed.
  • a window film described later can be used as the substrate layer 11, a window film described later can be used.
  • the polarizing layer 12 is a layer composed of a cured product of a composition containing one or more polymerizable liquid crystal compounds (hereinafter also referred to as polymerizable liquid crystal (a)) and a dichroic dye, or one or more liquid crystal compounds. It is preferably a layer composed of a cured product of a composition containing a dichroic dye showing When the polarizing layer 12 has polarization characteristics in the plane direction of the laminate 10, the dichroic dye and the polymerizable liquid crystal (a) cure the polymerizable liquid crystal (a) in a state of being horizontally aligned with the plane of the laminate 10.
  • the dichroic dye exhibiting liquid crystallinity may be horizontally oriented with respect to the plane of the laminate 10, and when the polarizing layer 12 has polarization characteristics in the thickness direction of the laminate 10,
  • the polarizing layer 12 is preferably a coating layer, for example, a composition for forming a polarizing layer containing one or more polymerizable liquid crystals (a) and a dichroic dye [hereinafter, also referred to as composition (A)]. May be a cured product.
  • the thickness of the polarizing layer 12 may be, for example, 0.5 to 10 ⁇ m, preferably 1 to 8 ⁇ m, and more preferably 1.5 to 5 ⁇ m.
  • the polarizing layer 12 can be formed by, for example, applying the composition (A) on the base layer 11 or an alignment layer described below, and polymerizing the polymerizable liquid crystal (a) in the obtained coating film. .
  • the polymerizable liquid crystal (a) is a compound having a polymerizable group and having liquid crystallinity.
  • the polymerizable group means a group involved in a polymerization reaction, and is preferably a photopolymerizable group.
  • the photopolymerizable group refers to a group that can participate in a polymerization reaction by an active radical, an acid, or the like generated from a photopolymerization initiator described below.
  • Examples of the polymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxiranyl group, an oxetanyl group, and the like. Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred.
  • the liquid crystal may be a thermotropic liquid crystal or a lyotropic liquid crystal, but when mixed with a dichroic dye described later, a thermotropic liquid crystal is preferable.
  • the polymerizable liquid crystal (a) is a thermotropic liquid crystal
  • it may be a thermotropic liquid crystal compound exhibiting a nematic liquid crystal phase or a thermotropic liquid crystal compound exhibiting a smectic liquid crystal phase.
  • the liquid crystal state of the polymerizable liquid crystal (a) is preferably a smectic phase, and a higher-order smectic phase is more preferable from the viewpoint of high performance. .
  • a higher smectic liquid crystal compound forming a smectic B phase, a smectic D phase, a smectic E phase, a smectic F phase, a smectic G phase, a smectic H phase, a smectic I phase, a smectic J phase, a smectic K phase or a smectic L phase is preferred.
  • Higher order smectic liquid crystal compounds that form a smectic B phase, a smectic F phase or a smectic I phase are more preferable.
  • a polarizing layer having higher polarization performance can be manufactured. Further, such a polarizing layer having a high polarization performance can obtain a Bragg peak derived from a higher-order structure such as a hexatic phase or a crystal phase in X-ray diffraction measurement.
  • the Bragg peak is a peak derived from a periodic structure of molecular orientation, and a film having a periodic interval of 3 to 6 ° can be obtained.
  • the polarizing layer of the present invention preferably contains a polymer of the polymerizable liquid crystal (a) obtained by polymerizing the polymerizable liquid crystal (a) in a smectic phase, from the viewpoint of obtaining higher polarization characteristics.
  • Such a compound include a compound represented by the following formula (I) [hereinafter, also referred to as compound (I)].
  • the polymerizable liquid crystal (a) may be used alone or in combination of two or more.
  • X 1 , X 2 and X 3 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group.
  • the hydrogen atom contained in the divalent aromatic group or the divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, It may be substituted with an alkoxy group, a cyano group or a nitro group of formulas 1 to 4.
  • a carbon atom constituting the divalent aromatic group or the divalent alicyclic hydrocarbon group may be substituted with an oxygen atom, a sulfur atom or a nitrogen atom.
  • X 1 , X 2 and X 3 is a 1,4-phenylene group which may have a substituent or a cyclohexane-1,4-diyl group which may have a substituent It is.
  • Y 1 , Y 2 , W 1 and W 2 are each independently a single bond or a divalent linking group.
  • V 1 and V 2 independently represent an alkanediyl group having 1 to 20 carbon atoms which may have a substituent.
  • —CH 2 — constituting the alkanediyl group may be replaced by —O—, —S— or —NH—.
  • U 1 and U 2 independently represent a polymerizable group or a hydrogen atom, at least one of which is a polymerizable group.
  • At least one of X 1 , X 2 and X 3 is a 1,4-phenylene group which may have a substituent, or a cyclohexane-1 which may have a substituent. , 4-diyl group.
  • X 1 and X 3 are preferably a cyclohexane-1,4-diyl group which may have a substituent, and the cyclohexane-1,4-diyl group is preferably trans-cyclohexane- More preferably, it is a 1,4-diyl group.
  • compound (I) contains a trans-cyclohexane-1,4-diyl group
  • substituents which the 1,4-phenylene group which may have a substituent or the cyclohexane-1,4-diyl group which may have a substituent optionally have include a methyl group
  • substituents include an alkyl group having 1 to 4 carbon atoms such as an ethyl group and a butyl group, a cyano group, and a halogen atom such as a chlorine atom and a fluorine atom.
  • the 1,4-phenylene group or cyclohexane-1,4-diyl group is preferably unsubstituted.
  • Y 1 and Y 2 are more preferably —CH 2 CH 2 —, —COO—, —OCO— or a single bond, and all of X 1 , X 2 and X 3 represent a cyclohexane-1,4-diyl group. If not included, it is more preferable that Y 1 and Y 2 are different from each other. When Y 1 and Y 2 are different from each other, the smectic liquid crystal tends to be easily developed.
  • W 1 and W 2 are preferably each independently a single bond, —O—, —S—, —COO— or OCO—, more preferably each independently a single bond or —O—.
  • Examples of the alkanediyl group having 1 to 20 carbon atoms represented by V 1 and V 2 include a methylene group, an ethylene group, a propane-1,3-diyl group, a butane-1,3-diyl group, and a butane-1,4. -Diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, decane-1,10-diyl group, tetradecane And a 1,14-diyl group and an icosan-1,20-diyl group.
  • V 1 and V 2 are preferably an alkanediyl group having 2 to 12 carbon atoms, and more preferably a straight-chain alkanediyl group having 6 to 12 carbon atoms.
  • a linear alkanediyl group having 6 to 12 carbon atoms crystallinity is improved, and smectic liquid crystallinity tends to be easily exhibited.
  • Examples of the substituent optionally contained in the alkanediyl group having 1 to 20 carbon atoms which may have a substituent include a cyano group and a halogen atom such as a chlorine atom and a fluorine atom.
  • the alkanediyl group is preferably unsubstituted, and more preferably an unsubstituted and linear alkanediyl group.
  • Both U 1 and U 2 are preferably a polymerizable group, and more preferably both are photopolymerizable groups.
  • a polymerizable liquid crystal compound having a photopolymerizable group can be polymerized at a lower temperature than a polymerizable liquid crystal compound having a thermopolymerizable group, and thus is advantageous in that a liquid crystal can form a polymer with a higher degree of order. is there.
  • the polymerizable groups represented by U 1 and U 2 may be different from each other, but are preferably the same.
  • Examples of the polymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxiranyl group, an oxetanyl group, and the like.
  • an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and a methacryloyloxy group or an acryloyloxy group is more preferred.
  • Examples of such a polymerizable liquid crystal compound include the following.
  • the compounds represented by the formulas (1-2), (1-3), (1-4), (1-6), (1-7), (1-8), and (1-8) At least one selected from the group consisting of compounds represented by formula (1-13), formula (1-14) and formula (1-15) is preferable.
  • the dichroic dye refers to a dye having a property that the absorbance in the major axis direction of the molecule is different from the absorbance in the minor axis direction.
  • the dichroic dye preferably has a property of absorbing visible light, and more preferably has a maximum absorption wavelength ( ⁇ MAX) in the range of 380 to 680 nm.
  • Such dichroic dyes include, for example, acridine dyes, oxazine dyes, cyanine dyes, naphthalene dyes, azo dyes and anthraquinone dyes. Among them, an azo dye is preferable as the dichroic dye.
  • the azo dye examples include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye, and a stilbeneazo dye, and are preferably a bisazo dye and a trisazo dye.
  • the dichroic dyes may be used alone or in combination. In order to obtain absorption in the entire visible light region, it is preferable to use a combination of three or more dichroic dyes, and it is more preferable to use a combination of three or more azo dyes.
  • Examples of the azo dye include a compound represented by the formula (II) (hereinafter, also referred to as “compound (II)”).
  • T 1 -A 1 (-N NA 2 )
  • p -N NA 3 -T 2 (II)
  • a 1, A 2 and A 3 each independently represent a 1,4-phenylene group which may have a substituent, a naphthalene-1,4-diyl group or a divalent group which may have a substituent Represents a heterocyclic group.
  • T 1 and T 2 are an electron-withdrawing group or an electron-emitting group, and are located substantially at 180 ° with respect to the azo bond plane.
  • p represents an integer of 0 to 4.
  • each A 2 may be the same or different.
  • Examples of the substituent that the 1,4-phenylene group, naphthalene-1,4-diyl group and divalent heterocyclic group in A 1 , A 2 and A 3 optionally have include a methyl group, an ethyl group and a butyl group.
  • C1-C4 alkyl group C1-C4 alkoxy group such as methoxy group, ethoxy group and butoxy group
  • C1-C4 fluorinated alkyl group such as trifluoromethyl group
  • cyano group nitro group
  • a halogen atom such as a chlorine atom or a fluorine atom
  • a substituted or unsubstituted amino group such as an amino group, a diethylamino group or a pyrrolidino group (a substituted amino group is an amino group having one or two alkyl groups having 1 to 6 carbon atoms); Or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 8 carbon atoms.
  • examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, and a hexyl group.
  • examples of the alkanediyl group having 2 to 8 carbon atoms include an ethylene group, a propane-1,3-diyl group, a butane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group. Hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group and the like.
  • a 1 and A 2 and A 3 are unsubstituted or 1,4-phenylene groups in which hydrogen is substituted by a methyl group or a methoxy group, or divalent.
  • p is preferably 0 or 1.
  • p is 1 and at least two of the three structures A 1, A 2 and A 3 are 1,4-phenylene groups in that both of the simplicity of molecular synthesis and high performance are obtained. More preferred.
  • Examples of the divalent heterocyclic group include groups obtained by removing two hydrogen atoms from quinoline, thiazole, benzothiazole, thienothiazole, imidazole, benzimidazole, oxazole, and benzoxazole.
  • a 2 is a divalent heterocyclic group, a structure in which the molecular bonding angle is substantially 180 ° is preferable.
  • benzothiazole, benzimidazole, and benzoxazole in which two 5-membered rings are fused The structure is more preferred.
  • T 1 and T 2 are an electron-withdrawing group or an electron-emitting group, and preferably have mutually different structures.
  • a combination wherein T 2 is an electron-withdrawing group is more preferred.
  • T 1 and T 2 are each independently one or more of an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group, a nitro group, and an alkyl group having 1 to 6 carbon atoms.
  • T 1 and T 2 are each independently an alkyl group having 1 to 6 carbon atoms.
  • azo dyes examples include the following.
  • B 1 to B 20 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a cyano group, a nitro group, a substituted or unsubstituted amino group (substituted amino group and The unsubstituted amino group is as defined above), a chlorine atom or a trifluoromethyl group.
  • B 2 , B 6 , B 9 , B 14 , B 18 , and B 19 are preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • n1 to n4 each independently represent an integer of 0 to 3.
  • a plurality of B 2 may be the same or different, and when n2 is 2 or more, a plurality of B 6 may be the same,
  • n3 is 2 or more, a plurality of B 9 may be the same or different, and when n4 is 2 or more, a plurality of B 14 may be the same. May be present or different.
  • anthraquinone dye a compound represented by the formula (2-7) is preferable.
  • R 1 ⁇ R 8 independently represent a hydrogen atom, -R x, -NH 2, -NHR x, -NR x 2, -SR x , or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • a compound represented by the formula (2-8) is preferable.
  • R 9 ⁇ R 15 independently of each other, represent a hydrogen atom, -R x, -NH 2, -NHR x, -NR x 2, the -SR x, or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • a compound represented by the formula (2-9) is preferable.
  • R 16 to R 23 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms represented by R x includes a methyl group, an ethyl group, a propyl group and a butyl group.
  • a pentyl group and a hexyl group, and the aryl group having 6 to 12 carbon atoms includes a phenyl group, a toluyl group, a xylyl group, and a naphthyl group.
  • cyanine dye a compound represented by the formula (2-10) and a compound represented by the formula (2-11) are preferable.
  • D 1 and D 2 each independently represent a group represented by any of formulas (2-10a) to (2-10d).
  • n5 represents an integer of 1 to 3.
  • D 3 and D 4 each independently represent a group represented by any of formulas (2-11a) to (2-11h).
  • n6 represents an integer of 1 to 3.
  • the content of the dichroic dye (in the case of including a plurality of types) is usually 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal (a) from the viewpoint of obtaining good light absorption characteristics. Parts, preferably 1 to 20 parts by mass, more preferably 2 to 15 parts by mass. When the content of the dichroic dye is less than this range, light absorption becomes insufficient, and sufficient polarization performance cannot be obtained. When the content is more than this range, the alignment of liquid crystal molecules may be inhibited.
  • the laminate 10 may have an alignment layer between the base layer 11 and the polarizing layer 12.
  • the alignment layer has an alignment regulating force for aligning the polymerizable liquid crystal constituting the polarizing layer 12 formed on the base material layer 11 in a desired direction.
  • the alignment layer facilitates liquid crystal alignment of the polymerizable liquid crystal.
  • the state of liquid crystal alignment such as horizontal alignment, vertical alignment, hybrid alignment, and tilt alignment changes depending on the properties of the alignment layer and the polymerizable liquid crystal, and a combination thereof can be arbitrarily selected.
  • the alignment layer is a material that develops horizontal alignment as an alignment regulating force
  • the polymerizable liquid crystal can form horizontal alignment or hybrid alignment
  • it is a material that develops vertical alignment the polymerizable liquid crystal becomes vertical.
  • An oriented or tilted orientation can be formed. Expressions such as horizontal and vertical indicate the direction of the major axis of the aligned polymerizable liquid crystal with respect to the plane of the polarizing layer 12.
  • vertical alignment means having the major axis of the polymerizable liquid crystal aligned in a direction perpendicular to the plane of the polarizing layer 12.
  • perpendicular means 90 ° ⁇ 20 ° with respect to the plane of the polarizing layer 12.
  • the alignment regulating force can be arbitrarily adjusted depending on the surface state and the rubbing condition when the alignment layer is formed from the alignment polymer, and the polarization irradiation condition when the alignment layer is formed from the photo alignment polymer. It can be arbitrarily adjusted by the above method.
  • the liquid crystal alignment can also be controlled by selecting physical properties such as surface tension and liquid crystallinity of the polymerizable liquid crystal compound.
  • the alignment layer formed between the base material layer 11 and the polarizing layer 12 is insoluble in a solvent used when forming the polarizing layer 12 on the alignment layer, and is used for removing the solvent and aligning the liquid crystal. Having heat resistance in the heat treatment for the above is preferred.
  • the alignment layer may be an alignment layer made of an alignment polymer, a photo alignment layer, a groove alignment layer, or the like. Above all, a photo-alignment layer is preferable in that the alignment direction can be easily controlled when applied to a long roll-shaped resin film.
  • the thickness of the alignment layer may be, for example, in the range of 10 nm to 5000 nm, preferably in the range of 10 nm to 1000 nm, and more preferably 30 to 300 nm.
  • orientation polymer used in the orientation layer composed of the orientation polymer examples include polyamides and gelatins having an amide bond in the molecule, polyimides having an imide bond in the molecule, and polyamic acids, polyvinyl alcohol, and alkyls which are hydrolysates thereof.
  • Modified polyvinyl alcohol, polyacrylamide, polyoxazole, polyethyleneimine, polystyrene, polyvinylpyrrolidone, polyacrylic acid, polyacrylic esters and the like can be mentioned.
  • polyvinyl alcohol is preferable as the oriented polymer.
  • These orientation polymers may be used alone or in combination of two or more.
  • the alignment layer composed of the oriented polymer is usually composed of a composition in which the oriented polymer is dissolved in a solvent (hereinafter, referred to as “orientation layer”).
  • the polymer is also obtained by applying a polymer composition to a resin film and removing the solvent, or by applying an oriented polymer composition to the resin film, removing the solvent and rubbing (rubbing method).
  • the solvent examples include water; alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, methyl cellosolve, butyl cellosolve and propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone; Ester solvents such as propylene glycol methyl ether acetate and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl amyl ketone and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane and heptane; Aromatic hydrocarbon solvents such as xylene, nitrile solvents such as acetonitrile; tetrahydrofuran and dihydrofuran Ether solvent
  • the concentration of the orienting polymer in the orienting polymer composition may be within a range in which the orienting polymer can be completely dissolved in a solvent, but is preferably 0.1 to 20% by mass in terms of solid content with respect to the solution. It is more preferably from 1 to 10% by mass.
  • a commercially available material for forming an alignment layer may be used as it is as the alignment polymer composition.
  • Examples of commercially available materials for forming an alignment layer include Sanever (registered trademark) (manufactured by Nissan Chemical Industries, Ltd.) and Optmer (registered trademark) (manufactured by JSR Corporation).
  • a coating method such as a spin coating method, an extrusion method, a gravure coating method, a die coating method, a bar coating method and an applicator method, and a printing method such as a flexo method.
  • a printing method such as a gravure coating method, a die coating method, or a flexo method is usually employed as the coating method.
  • a dried film of the oriented polymer is formed.
  • the method for removing the solvent include a natural drying method, a ventilation drying method, a heating drying method, and a reduced-pressure drying method.
  • the rubbing roll is a roll on which a rubbing cloth is wound and can rotate.
  • the photo-alignment layer is usually formed by applying a composition containing a polymer or monomer having a photoreactive group and a solvent (hereinafter, also referred to as a “composition for forming a photo-alignment layer”) to a resin film, and polarizing (preferably, (Polarized light UV).
  • a composition for forming a photo-alignment layer preferably, (Polarized light UV).
  • the photo-alignment layer is more preferable in that the direction of the alignment regulating force can be arbitrarily controlled by selecting the polarization direction of the polarized light to be irradiated.
  • the photoreactive group refers to a group that generates liquid crystal alignment ability when irradiated with light. Specifically, it generates a photoreaction that is the origin of the liquid crystal alignment ability, such as an orientation-induced or isomerization reaction, dimerization reaction, photocrosslinking reaction, or photodecomposition reaction of molecules caused by irradiation with light. is there.
  • a photoreactive group those that cause a dimerization reaction or a photocrosslinking reaction are preferable in terms of excellent orientation.
  • a chalcone group and a cinnamoyl group are preferred from the viewpoint that the reactivity is easily controlled and the expression of the alignment regulating force at the time of photoalignment.
  • These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group, and a halogenated alkyl group.
  • a photoreactive group capable of causing a photodimerization reaction is preferable, and a cinnamoyl group and a chalcone group are required to have a relatively small amount of polarized light required for photoalignment, and a photoalignment layer excellent in thermal stability and stability over time. It is preferable because it can be easily obtained.
  • a polymer having a photoreactive group a polymer having a cinnamoyl group such that the terminal portion of the polymer side chain has a cinnamic acid structure is particularly preferable.
  • Particularly preferred polymers having a photoreactive group include, for example, a compound represented by the formula (A ′), because the composition for forming a photo-alignment layer is easy to handle and an alignment layer having high durable alignment is easily obtained. (Hereinafter, also referred to as “polymer (A ′)” in some cases).
  • n 0 or 1.
  • Y 1 represents a single bond or —O—.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. * Represents a bond to the polymer main chain.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a halogenated alkyl group, a halogenated alkoxy group, a cyano group, a nitro group, an alkyl group, an alkoxy group, an aryl group, an allyloxy group.
  • An alkoxycarbonyl group, a carboxyl group, a sulfonic acid group, an amino group or a hydroxy group, and the carboxyl group and the sulfonic acid group may form a salt with an alkali metal ion.
  • R 1 and R 2 are more preferably each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group and a butyl group
  • examples of the alkoxy group include a methoxy group, an ethoxy group and a butoxy group.
  • the main chain of the polymer (A ') is not particularly limited, a (meth) acrylate unit represented by the formula (M-1) or (M-2); a formula (M-3) or a formula (M- (Meth) acrylamide unit represented by 4); vinyl ether unit represented by formula (M-5) or (M-6); represented by formula (M-7) or (M-8) (
  • the polymer (A) has a main chain composed of a unit selected from the group consisting of a methyl) styrene unit and a vinyl ester unit represented by the formula (M-9) or (M-10).
  • the polymer (A ′) has a main chain composed of a unit selected from the group consisting of a (meth) acrylate unit and a (meth) acrylamide unit.
  • the “main chain of the polymer (A ′)” refers to the longest molecular chain among the molecular chains of the polymer (A ′).
  • the unit represented by any one of the formulas (M-1) to (M-10) and the group represented by the formula (A ′) may be directly bonded or may be bonded via an appropriate linking group. It may be.
  • the linking group has a carbonyloxy group (ester bond), an oxygen atom (ether bond), an imide group, a carbonylimino group (amide bond), an iminocarbonylimino group (urethane bond), and a substituent.
  • a divalent aromatic hydrocarbon group which may have a substituent, and a divalent group obtained by combining these.
  • the divalent aromatic hydrocarbon group which may have a substituent include a phenylene group, a 2-methoxy-1,4-phenylene group, a 3-methoxy-1,4-phenylene group, and a 2-ethoxy group.
  • examples thereof include a 1,4-phenylene group, a 3-ethoxy-1,4-phenylene group, and a 2,3,5-trimethoxy-1,4-phenylene group.
  • the linking group is preferably an aliphatic hydrocarbon group, and more preferably an alkanediyl group having 1 to 11 carbon atoms which may have a substituent.
  • alkanediyl group examples include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, a decamethylene group, and an undecamethylene group. And these may be linear or branched. Further, such an alkanediyl group may have a substituent. This substituent is, for example, an alkoxy group having 1 to 4 carbon atoms.
  • structural unit (A ′) a structural unit represented by the formula (A) (hereinafter, sometimes also referred to as “structural unit (A)”, Is also referred to as “polymer (A)”).
  • the molecular weight of the polymer (A ′) or the polymer (A) is preferably, for example, in the range of 1 ⁇ 10 3 to 1 ⁇ 10 7 , expressed as a polystyrene-equivalent weight average molecular weight determined by a gel permeation method (GPC method).
  • GPC method gel permeation method
  • the polymer (A) may have a structural unit represented by the formula (B) (hereinafter, sometimes also referred to as a “structural unit (B)”) in addition to the structural unit (A).
  • m 0 or 1.
  • S 2 represents an alkanediyl group having 1 to 11 carbon atoms.
  • Y 2 represents a single bond or —O—.
  • R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. ]
  • the structural unit (A) may be one type or two or more types.
  • the polymer (A) has structural units other than the structural units (A) and (B) (hereinafter, also referred to as “other structural units” in some cases) as long as the alignment ability by light irradiation is not significantly impaired. It may be.
  • the polymer (A) can be produced by polymerizing or copolymerizing a monomer for deriving the structural unit (A) and, if necessary, a monomer for deriving the structural unit (B) or another structural unit.
  • an addition polymerization method is employed for the polymerization or copolymerization.
  • Examples of such addition polymerization include chain polymerization such as radical polymerization, anionic polymerization and cationic polymerization, and coordination polymerization.
  • the polymerization conditions are set according to the type and amount of the monomer to be used, so that the above-mentioned preferable molecular weight of the polymer (A) is satisfied.
  • the polymer (A) has been described in detail as a preferable polymer having a photoreactive group.
  • the composition for forming an alignment layer includes a polymer having the photoreactive group (preferably, the polymer (A)). Is dissolved in a suitable solvent. Such a solvent can be appropriately selected within a range in which the polymer having the photoreactive group can be dissolved and a composition for forming an alignment layer having an appropriate viscosity can be obtained.
  • the solvent examples include alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether and propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ Ester solvents such as butyrolactone or propylene glycol methyl ether acetate and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane and heptane Aromatic solvents such as toluene and xylene, acetonitrile, etc.
  • alcohol solvents such as methanol, ethanol, ethylene glycol, isoprop
  • Ether solvents such as tetrahydrofuran and dimethoxyethane; nitrile solvents chloroform and chlorine-containing solvents such as chlorobenzene; N- methylpyrrolidone, N, N- dimethylformamide, an amide-based solvents such as ⁇ - butyrolactone and dimethylacetamide. These solvents may be used alone or in combination of two or more.
  • the content of the polymer or monomer having a photoreactive group with respect to the composition for forming a photoalignment layer can be appropriately adjusted depending on the type of the polymer or monomer having the photoreactive group or the thickness of the photoalignment layer to be produced. Is preferably at least 0.2% by mass, and particularly preferably in the range of 0.3 to 10% by mass.
  • a polymer material such as polyvinyl alcohol or polyimide or a photosensitizer may be contained as long as the properties of the photo alignment layer are not significantly impaired.
  • the same method as the method for applying the above-described oriented polymer composition to a resin film can be used.
  • the method for removing the solvent from the applied composition for forming a photo-alignment layer includes, for example, the same method as the method for removing the solvent from the oriented polymer composition.
  • the composition for forming a photo-alignment layer applied on a resin film or the like is directly irradiated with polarized light after removing the solvent. May be transmitted. It is particularly preferable that the polarized light is substantially parallel light.
  • the wavelength of the polarized light to be irradiated is preferably in a wavelength region where the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, UV (ultraviolet light) having a wavelength in the range of 250 to 400 nm is particularly preferred.
  • Examples of the light source used for the polarized light irradiation include a xenon lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a metal halide lamp, an ultraviolet laser such as KrF and ArF, and a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a metal halide lamp. preferable. These lamps are preferable because of their high emission intensity of ultraviolet light having a wavelength of 313 nm.
  • Polarized light can be emitted by irradiating the light from the light source through an appropriate polarizer.
  • a polarizing filter, a polarizing prism such as Glan-Thompson or Glan-Taylor, or a wire grid type polarizer can be used.
  • the glove (groove) alignment layer is a film having an uneven pattern or a plurality of grubs (grooves) on the film surface.
  • the liquid crystal molecules are placed on a film having a plurality of linear grubs arranged at equal intervals, the liquid crystal molecules are oriented in a direction along the grooves.
  • a method of forming an uneven pattern by performing exposure and development and rinsing treatment after exposure through an exposure mask having a pattern-shaped slit on the photosensitive polyimide film surface, a plate having grooves on the surface A method of forming a layer of a UV-curable resin before curing on a resin-shaped master, transferring the resin layer to a resin film and then curing, and a method of forming a layer of the UV-curable resin before curing formed on the resin film, A method of pressing a roll-shaped master having grooves of the above to form irregularities and then curing the same. Specific examples include the methods described in JP-A-6-34976 and JP-A-2011-242743.
  • the width of the convex portion of the grub alignment layer is preferably 0.05 ⁇ m to 5 ⁇ m, and the width of the concave portion is preferably 0.1 ⁇ m to 5 ⁇ m.
  • the depth is preferably 2 ⁇ m or less, more preferably 0.01 ⁇ m to 1 ⁇ m.
  • the laminate 10 may further have an adhesive layer on the polarizing layer 12 side.
  • the pressure-sensitive adhesive layer is used for attaching the laminate 10 to an image display element, a window film, or a touch sensor of a display device, or used for laminating the retardation layer and the laminate.
  • the adhesive (meth) acrylic adhesive, styrene adhesive, silicone adhesive, rubber adhesive, urethane adhesive, polyester adhesive, epoxy copolymer adhesive, etc. may be used. it can.
  • the laminate 10 may have a retardation layer.
  • the retardation layer include a ⁇ / 4 plate, a ⁇ / 2 plate, a positive C plate, an inverse wavelength dispersive ⁇ / 4 plate, an inverse wavelength dispersive ⁇ / 2 plate, and a combination thereof.
  • the combination of the retardation layers include a combination of a ⁇ / 4 plate having a reverse wavelength dispersion and a positive C plate, and a combination of a ⁇ / 2 plate and a ⁇ / 4 plate.
  • the retardation layer can be produced from a composition containing a transparent resin film or a polymerizable liquid crystal compound forming the base layer.
  • the retardation layer can be produced by applying a composition containing a polymerizable liquid crystal compound on an alignment film and curing the polymerizable liquid crystal compound.
  • the retardation layer may be a layer containing a cured product of the polymerizable liquid crystal compound, and may be a layer further containing an alignment film and a substrate.
  • a polymerizable liquid crystal compound exemplified in the above description of the polarizing layer 12 a polymerizable liquid crystal compound described in JP-A-2010-31223 or JP-A-2009-173893, or the like is used. Can be.
  • the alignment film included in the retardation layer may be, for example, the alignment film exemplified in the description of the polarizing layer 12 described above.
  • the base material included in the retardation layer may be, for example, the resin film exemplified in the description of the base material layer 11 described above.
  • the retardation layer can be laminated via the above-mentioned pressure-sensitive adhesive layer.
  • the laminate 10 may have a surface treatment layer (coating layer) such as a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer, and an antifouling layer.
  • a surface treatment layer such as a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer, and an antifouling layer.
  • the laminate 10 may have a window film or a light-shielding pattern (bezel) disposed on the viewing side with respect to the polarizing layer 12.
  • the window film includes a hard coat layer on at least one surface of the transparent base material layer. Window films are not rigid like the existing glass, but have flexible properties.
  • the wiring of the display device can be hidden by the light-shielding pattern so that it is not visible to the user.
  • the laminate 10 may be laminated on a touch sensor.
  • the polarizing layer 12 can be formed by applying the composition (A) on the base material layer 11 and, if present, the alignment layer.
  • the composition (A) further includes a polymerization initiator, a leveling agent, and a solvent, in addition to the dichroic dye and the polymerizable liquid crystal compound, and may further include a photosensitizer, a polymerization inhibitor, a leveling agent, and the like.
  • the polymerization initiator is a compound that can initiate a polymerization reaction of a polymerizable liquid crystal or the like. From the viewpoint that the polymerization initiator does not depend on the phase state of the thermotropic liquid crystal, a photopolymerization initiator that generates an active radical by the action of light is preferable.
  • Examples of the polymerization initiator include, for example, benzoin compounds, benzophenone compounds, alkylphenone compounds, acylphosphine oxide compounds, triazine compounds, iodonium salts, sulfonium salts and the like.
  • benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether.
  • benzophenone compound examples include, for example, benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4′-methyldiphenylsulfide, 3,3 ′, 4,4′-tetra (tert-butylperoxycarbonyl) ) Benzophenone and 2,4,6-trimethylbenzophenone.
  • alkylphenone compound examples include diethoxyacetophenone, 2-methyl-2-morpholino-1- (4-methylthiophenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl ) Butan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1,2-diphenyl-2,2-dimethoxyethane-1-one, 2-hydroxy-2-methyl-1 -[4- (2-hydroxyethoxy) phenyl] propan-1-one, 1-hydroxycyclohexylphenyl ketone and 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propane-1- ON oligomers and the like.
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide.
  • triazine compound examples include 2,4-bis (trichloromethyl) -6- (4-methoxyphenyl) -1,3,5-triazine and 2,4-bis (trichloromethyl) -6- (4-methoxy Naphthyl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- (4-methoxystyryl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- [2- (5-methylfuran-2-yl) ethenyl] -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- [2- (furan-2-yl) ethenyl] -1 , 3,5-triazine, 2,4-bis (trichloromethyl) -6- [2- (4-diethylamino-2-methylphenyl) ethenyl] -1,3,5-triazine and 2,4-bis (t
  • a commercially available polymerization initiator can be used.
  • Commercially available polymerization initiators include Irgacure (registered trademark) 907, 184, 651, 819, 250, and 369, 379, 127, 754, OXE01, OXE02, OXE03 (manufactured by Ciba Specialty Chemicals Co., Ltd.) Sakeall (registered trademark) BZ, Z, and BEE (manufactured by Seiko Chemical Co., Ltd.); Kayacure (registered trademark) BP100, and UVI-6992 (manufactured by Dow Chemical Company); Adeka Optomer SP-152; N-1717, N-1919, SP-170, ADEKA ARKULS NCI-831, ADEKA ARKULS NCI-930 (manufactured by ADEKA Corporation); TAZ-A and TAZ-PP (manufactured by Nippon SiberHegner Co., Ltd.); TAZ-104 (Cor
  • the content of the polymerization initiator in the composition (A) can be appropriately adjusted according to the type and the amount of the polymerizable liquid crystal.
  • the content of the polymerization initiator is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass, more preferably 0.5 to 10 parts by mass, based on 100 parts by mass of the polymerizable liquid crystal. 88 parts by mass.
  • polymerization can be performed without disturbing the alignment of the polymerizable liquid crystal.
  • Sensitizer Composition (A) may contain a sensitizer.
  • a photosensitizer is preferable.
  • the sensitizer include xanthone compounds such as xanthone and thioxanthone (eg, 2,4-diethylthioxanthone, 2-isopropylthioxanthone); anthracenes such as anthracene and anthracene containing an alkoxy group (eg, dibutoxyanthracene) Compounds: phenothiazine, rubrene and the like.
  • the polymerization reaction of the polymerizable liquid crystal contained in the composition (A) can be further promoted.
  • the amount of the sensitizer to be used is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, and more preferably 0.5 to 3 parts by mass based on 100 parts by mass of the polymerizable liquid crystal. Is more preferred.
  • the composition (A) may contain a polymerization inhibitor.
  • the progress of the polymerization reaction of the polymerizable liquid crystal can be controlled by the polymerization inhibitor.
  • polymerization inhibitor examples include radicals such as hydroquinone, alkoxy-containing hydroquinone, alkoxy-containing catechol (eg, butyl catechol, etc.), pyrogallol, and 2,2,6,6-tetramethyl-1-piperidinyloxy radical. Scavengers; thiophenols; ⁇ -naphthylamines, ⁇ -naphthols and the like.
  • the content of the polymerization inhibitor is preferably from 0.1 to 10 parts by mass, more preferably from 100 parts by mass of the polymerizable liquid crystal.
  • the amount is 0.5 to 5 parts by mass, and more preferably 0.5 to 3 parts by mass.
  • the composition (A) may contain a leveling agent.
  • the leveling agent is an additive having a function of adjusting the fluidity of the composition and making the film obtained by applying the composition more flat.
  • Examples of the leveling agent include organically modified silicone oil-based, polyacrylate-based and perfluoroalkyl-based leveling agents.
  • DC3PA, SH7PA, DC11PA, SH28PA, SH29PA, SH30PA, ST80PA, ST86PA, SH8400, SH8700, FZ2123 (all manufactured by Dow Corning Toray Co., Ltd.), KP321, KP323, KP324, KP326, KP340 KP341, X22-161A, KF6001 (all are manufactured by Shin-Etsu Chemical Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF-4446, TSF4452, TSF4460 (all are Momentive Performance Materials Japan GK) Fluorinert (registered trademark) FC-72, FC-40, FC-43, and FC-3283 (above, (Manufactured by Sumitomo 3M Limited), Megafac (registered trademark) R-08, R-30, R-90, F-410, F-411, F-443, F-445, F-445 F-
  • the content of the leveling agent is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 5 parts by mass, based on 100 parts by mass of the polymerizable liquid crystal.
  • the amount is 1 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.
  • the content of the leveling agent is within the above range, the polymerizable liquid crystal tends to be horizontally aligned, and the obtained polarizing layer tends to be smoother.
  • the content of the leveling agent with respect to the polymerizable liquid crystal exceeds the above range, unevenness tends to occur in the obtained polarizing layer.
  • the composition (A) may contain two or more types of leveling agents.
  • composition (A) may contain a solvent.
  • a solvent that can completely dissolve the polymerizable liquid crystal compound, and is preferably a solvent that is inert to the polymerization reaction of the polymerizable liquid crystal compound.
  • Solvents include alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether and propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone Or ester solvents such as propylene glycol methyl ether acetate and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane and heptane; toluene And aromatic hydrocarbon solvents such as xylene and nitrile solvents such as acetonitrile; Ether solvents such as lahydrofuran and dim
  • the content of the solvent is preferably 50 to 98% by mass based on the total amount of the composition (A).
  • the content of the solid content in the composition (A) is preferably from 2 to 50% by mass.
  • the viscosity of the composition (A) decreases, so that the thickness of the polarizing layer tends to be substantially uniform. As a result, unevenness is less likely to occur in the polarizing layer.
  • the content of the solid content can be determined in consideration of the thickness of the polarizing layer to be manufactured.
  • Composition (A) may include a reactive additive.
  • the reactive additive those having a carbon-carbon unsaturated bond and an active hydrogen reactive group in the molecule are preferable.
  • active hydrogen reactive group refers to a group having reactivity with a group having active hydrogen such as a carboxyl group (-COOH), a hydroxyl group (-OH), an amino group (-NH 2 ).
  • glycidyl group, oxazoline group, carbodiimide group, aziridine group, imide group, isocyanate group, thioisocyanate group, maleic anhydride group and the like are typical examples.
  • the number of carbon-carbon unsaturated bonds and active hydrogen reactive groups of the reactive additive is usually 1 to 20, preferably 1 to 10, respectively.
  • At least two active hydrogen-reactive groups are present in the reactive additive.
  • a plurality of active hydrogen-reactive groups may be the same or different.
  • the carbon-carbon unsaturated bond of the reactive additive may be a carbon-carbon double bond or a carbon-carbon triple bond, or a combination thereof, but is preferably a carbon-carbon double bond.
  • the reactive additive preferably contains a carbon-carbon unsaturated bond as a vinyl group and / or a (meth) acryl group.
  • a reactive additive in which the active hydrogen reactive group is at least one selected from the group consisting of an epoxy group, a glycidyl group and an isocyanate group is preferable, and a reactive additive having an acryl group and an isocyanate group is more preferable.
  • the reactive additive include compounds having a (meth) acrylic group and an epoxy group, such as methacryloxyglycidyl ether and acryloxyglycidyl ether; (meth) acrylic groups, such as oxetane acrylate and oxetane methacrylate, and oxetane A compound having a (meth) acrylic group and a lactone group, such as lactone acrylate and lactone methacrylate; a compound having a vinyl group and an oxazoline group, such as vinyl oxazoline and isopropenyl oxazoline; isocyanatomethyl acrylate And oligomers of compounds having a (meth) acrylic group and an isocyanate group, such as isocyanatomethyl methacrylate, 2-isocyanatoethyl acrylate and 2-isocyanatoethyl methacrylate.
  • an epoxy group such as methacryloxyglycidyl ether and acryloxygly
  • compounds having a vinyl group or a vinylene group and an acid anhydride such as methacrylic anhydride, acrylic anhydride, maleic anhydride and vinyl maleic anhydride, may be mentioned.
  • methacryloxyglycidyl ether, acryloxyglycidyl ether, isocyanatomethyl acrylate, isocyanatomethyl methacrylate, vinyl oxazoline, 2-isocyanatoethyl acrylate, 2-isocyanatoethyl methacrylate and the above oligomers are preferable, and isocyanatomethyl acrylate, 2-isocyanatoethyl acrylate and the aforementioned oligomers are particularly preferred.
  • a compound represented by the following formula (Y) is preferable.
  • n represents an integer of 1 to 10
  • R 1 ′ is a divalent aliphatic or alicyclic hydrocarbon group having 2 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 5 to 20 carbon atoms.
  • R 3 ′ represents a hydroxyl group or a group having a carbon-carbon unsaturated bond.
  • at least one R 3 ′ is a group having a carbon-carbon unsaturated bond.
  • a compound represented by the following formula (YY) (hereinafter sometimes referred to as a compound (YY)) is particularly preferred (n is the same as described above). Meaning).
  • a commercially available product can be used as the compound (YY) as it is or after purification as necessary.
  • Examples of commercially available products include Laromer (registered trademark) LR-9000 (manufactured by BASF).
  • the content of the reactive additive is usually 0.01 to 10 parts by mass, preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the polymerizable liquid crystal. To 5 parts by mass.
  • the moisture content of the substrate layer is adjusted.
  • the moisture content of the base material layer can be 5.0% or less, and is preferably 3.0% or less.
  • the moisture content of the base material layer 11 can be 0.0% or more.
  • the moisture content of the substrate layer is adjusted by heating or humidifying the substrate layer. Heating the base layer is also effective in adjusting the elastic modulus of the laminate.
  • the heating temperature can be 50 ° C. or more and 150 ° C. or less, and the heating time can be 1 minute or more and 10 minutes or less.
  • the method for applying the composition (A) onto the base material layer 11 or the alignment layer includes extrusion coating, direct gravure coating, reverse gravure coating, CAP coating, slit coating, microgravure, and die coating. And an inkjet method. Further, a coating method using a coater such as a dip coater, a bar coater, and a spin coater may be used. Among them, a microgravure method, an ink-jet method, a slit coating method, and a die coating method are preferable for continuous application in a roll-to-roll format, and a uniform method for application to a sheet material such as glass. A spin coating method having high performance is preferred.
  • an orientation polymer composition or a composition for forming a photo-alignment layer is applied to the base material layer 11 to form an orientation layer, and the composition (A) is further formed on the obtained orientation layer. ) Can be applied continuously.
  • drying method examples of the drying method for removing the solvent contained in the composition (A) include natural drying, ventilation drying, heat drying, drying under reduced pressure, and a combination thereof. Above all, natural drying or heat drying is preferable.
  • the drying temperature is preferably in the range of 0 to 200 ° C, more preferably in the range of 20 to 150 ° C, and still more preferably in the range of 50 to 130 ° C.
  • the drying time is preferably from 10 seconds to 10 minutes, more preferably from 30 seconds to 5 minutes.
  • the composition for forming a photo-alignment layer and the polymer composition for orientation can be similarly dried.
  • Photopolymerization method As a method for polymerizing the polymerizable liquid crystal compound, photopolymerization is preferable. Photopolymerization is performed by irradiating the composition (A) containing the polymerizable liquid crystal compound applied on the base material layer 11 or the alignment layer with an active energy ray.
  • the type of the polymerizable liquid crystal compound contained in the dried film (particularly, the type of the photopolymerizable functional group included in the polymerizable liquid crystal compound) as the active energy ray to be irradiated, and the photopolymerization initiator when the photopolymerization initiator is contained. are appropriately selected in accordance with the types and the amounts thereof.
  • examples of the active energy ray include at least one kind of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-ray, ⁇ -ray, ⁇ -ray, and ⁇ -ray.
  • ultraviolet light is preferable in that it is easy to control the progress of the polymerization reaction and that a photopolymerization apparatus that is widely used in this field can be used. It is preferable to select the type of the liquid crystal compound.
  • Examples of the light source of the active energy ray include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a tungsten lamp, a gallium lamp, an excimer laser, and a wavelength range.
  • Examples include an LED light source that emits light at 380 to 440 nm, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, and a metal halide lamp.
  • Ultraviolet irradiation intensity is usually, 10mW / cm 2 ⁇ 3,000mW / cm 2.
  • the ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating a cationic polymerization initiator or a radical polymerization initiator.
  • the time for irradiating light is generally 0.1 second to 10 minutes, preferably 0.1 second to 5 minutes, more preferably 0.1 second to 3 minutes, and further preferably 0.1 second. ⁇ 1 minute.
  • the cumulative amount of light is, for example, 10mJ / cm 2 ⁇ 3,000mJ / cm 2, there preferably 50mJ / cm 2 ⁇ 2,000mJ / cm 2 , more preferably 100mJ / cm 2 ⁇ 1,000mJ / cm 2.
  • the integrated light amount is less than the lower limit, the curing of the polymerizable liquid crystal compound may be insufficient, and good transferability may not be obtained.
  • the optical film including the optically anisotropic layer may be colored.
  • the display device is not particularly limited, and examples thereof include an organic electroluminescence (organic EL) display device, an inorganic electroluminescence (inorganic EL) display device, a liquid crystal display device, a touch panel display device, and an electroluminescent display device. Since the display device of the present embodiment includes the stretchable laminate 10, it can be suitably used for a stretchable display device, and particularly, can be suitably used for an organic EL display device.
  • the tensile modulus was measured in accordance with JIS K7161 using UTM (Universal Testing Machine, Autograph AG-X, Shimadzu Corporation) when stretched in the absorption axis direction and the transmission axis direction, respectively.
  • the stretching conditions were as follows: room temperature (temperature 23 ° C.), speed 1.5 mm / min, width 40 mm, gauge length 50 mm.
  • the polymerizable liquid crystal compound includes 75 parts of a polymerizable liquid crystal compound represented by the formula (1-6) [hereinafter, also referred to as compound (1-6)] and a polymerizable liquid crystal compound represented by the formula (1-7) [ Hereinafter, also referred to as compound (1-7)].
  • dichroic dye an azo dye described in Examples of JP-A-2013-101328, represented by the following formulas (2-1a), (2-1b), and (2-3a), was used.
  • composition for forming a polarizing layer comprises 75 parts by weight of the compound (1-6), 25 parts by weight of the compound (1-7), and the above-mentioned formulas (2-1a), (2-1b) and (2) as dichroic dyes.
  • Polymer 1 is a polymer having a photoreactive group consisting of the following structural units.
  • the molecular weight of the obtained polymer 1 showed a number average molecular weight of 28,200 and Mw / Mn of 1.82, and the monomer content was 0.5%.
  • composition for forming alignment layer A solution in which polymer 1 was dissolved in cyclopentanone at a concentration of 5% by weight was used as a composition for forming an alignment layer.
  • Example 1 A substrate layer made of triacetyl cellulose (TAC) having a thickness of 25 ⁇ m was prepared. This base material layer was dried by heating at 120 ° C. for 5 minutes so that the water content was 2%. The composition for forming an alignment layer was applied on the base material layer by a bar coating method, and the coating film was dried at 80 ° C. for 1 minute. The thickness was 100 nm.
  • TAC triacetyl cellulose
  • the composition for forming a polarizing layer was applied on the obtained alignment layer by a bar coating method.
  • the coating film was dried by heating at 100 ° C. for 2 minutes, and then cooled to room temperature to obtain a dried film.
  • the obtained film was irradiated with ultraviolet rays using a UV irradiation apparatus (SPOT CURE SP-7) so that the integrated light amount became 1200 mJ / cm 2 (based on 365 nm) to obtain a polarizing layer having a thickness of 3 ⁇ m. .
  • SPOT CURE SP-7 UV irradiation apparatus
  • the resulting laminate was then measured each tensile modulus in the absorption axis direction and the transmission axis direction (E A and E T).
  • the laminate, E T E A is 3180MPa was 3900MPa.
  • Example 2 A laminated body was produced in the same manner as in Example 1, except that the stretching ratio in the absorption axis direction and the stretching ratio in the transmission axis direction were each set to 10%.
  • Example 3 A laminate was produced in the same manner as in Example 1, except that the substrate layer made of triacetyl cellulose (TAC) was changed to a substrate layer made of polyethylene terephthalate (PET). The thickness of the substrate layer made of PET was 50 ⁇ m. The laminate, E T E A is 4500MPa was 3,300 MPa.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • Example 4 A laminate was produced in the same manner as in Example 3, except that the stretching ratio in the absorption axis direction and the stretching ratio in the transmission axis direction were each set to 10%.
  • a base layer made of a 25 ⁇ m-thick TAC film (trade name “KC2UA” manufactured by Konica Minolta Co., Ltd.) is bonded to one surface of the obtained polarizing layer via an adhesive made of an aqueous solution of a polyvinyl alcohol-based resin.
  • a polarizing plate was manufactured.
  • the laminate, E T E A is 8500MPa was 4950MPa.
  • the obtained laminated body was stretched at a stretching rate of 5% to the absorption axis direction, and the tensile modulus in each after a stretching rate of 5% to the transmission axis direction (E A and E T) were measured.
  • E A and E T the tensile modulus in each after a stretching rate of 5% to the transmission axis direction
  • Comparative Example 2 In Comparative Example 1, a laminate was produced in the same manner as in Comparative Example 1, except that the stretching ratio in the absorption axis direction and the stretching ratio in the transmission axis direction were each set to 10%.
  • Comparative Example 3 A laminated body was produced in the same manner as in Comparative Example 1, except that a polyethylene terephthalate (PET) film (Toray Industries, Inc.) was used instead of the TAC film having a thickness of 25 ⁇ m. The thickness of the PET film was 38 ⁇ m. The laminate, E T E A is 9900MPa was 5100MPa.
  • PET polyethylene terephthalate
  • Example 4 A laminate was produced in the same manner as in Example 1, except that the substrate layer was not heated and dried.
  • the laminates of Examples 1 to 4 had small differences in total haze value, luminosity-corrected single transmittance and luminosity-correction polarization degree before and after stretching, and were excellent after stretching. Appeared appearance.
  • Comparative Example 1 the difference between the luminosity correction polarization degrees before and after stretching was large, and sufficient results were not obtained in the appearance evaluation after stretching.
  • Comparative Example 2 breakage occurred during stretching.
  • Comparative Example 3 the differences in the total haze value, the luminosity-corrected single transmittance, and the luminosity-correction polarization degree were all large, and sufficient results were not obtained in the appearance evaluation.
  • the reflectance was measured by placing a measurement sample and a reflector (aluminum plate, reflectance: 97%) on a spectrophotometer (CM-2600d, manufactured by Konica Minolta, Inc., SCI mode) in this order.
  • ⁇ reflectance [%] of the difference between the reflectance [%] measured before stretching and the reflectance [%] measured while maintaining the stretched state was determined.
  • ⁇ reflectance [%] can be obtained by the following equation.
  • ⁇ reflectance [%]
  • composition for forming alignment film 5 parts by mass (weight average molecular weight: 30,000) of a photo-alignment material having a structure represented by the following formula and 95 parts by mass of cyclopentanone (solvent) are mixed, and the obtained mixture is heated at 80 ° C. for 1 hour. By stirring, a composition for forming an alignment film was obtained.
  • composition for forming retardation layer A leveling agent (F-556; manufactured by DIC Corporation) was added to 100 parts by mass of a mixture obtained by mixing the polymerizable liquid crystal compound A and the polymerizable liquid crystal compound B represented by the following formula at a mass ratio of 90:10. 0 parts by mass and 6 parts by mass of 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butan-1-one (Irgacure 369, manufactured by BASF Japan Ltd.) as a polymerization initiator were added. Further, N-methyl-2-pyrrolidone (NMP) was added so that the solid content concentration became 13%, and the mixture was stirred at 80 ° C. for 1 hour to obtain a composition for forming a retardation layer. (Polymerizable liquid crystal compound A)
  • Polymerizable liquid crystal compound A was produced by the method described in JP-A-2010-31223.
  • the polymerizable liquid crystal compound B was produced according to the method described in JP-A-2009-173893.
  • a 50 ⁇ m-thick cycloolefin-based resin film [ZF-14-50, manufactured by Zeon Corporation] was prepared as a substrate and subjected to corona treatment.
  • the composition for forming an alignment film was applied to the surface subjected to the corona treatment using a bar coater.
  • the coating film was dried at 80 ° C. for 1 minute.
  • the dried coating film was irradiated with polarized UV at an axis angle of 45 ° using a polarized UV irradiator (trade name “SPOT CURE SP-9” of USHIO Inc.) to obtain an alignment film.
  • the irradiation with the polarized UV was performed so that the integrated light amount at a wavelength of 313 nm was 100 mJ / cm 2 .
  • the composition for forming a retardation layer was applied on the alignment film using a bar coater.
  • the coating film was dried at 120 ° C. for 1 minute.
  • the dried coating film was irradiated with ultraviolet rays by using a high-pressure mercury lamp [trade name of USHIO Inc .: “Unicure VB-15201BY-A”].
  • the ultraviolet irradiation step was performed in a nitrogen atmosphere so that the integrated light amount at a wavelength of 365 nm was 400 mJ / cm 2 .
  • the cured film was put into an oven set at 5 ° C. for 20 seconds.
  • the ultraviolet irradiation step and the cooling step were performed again (that is, the total integrated light amount of the two ultraviolet irradiations was 800 mJ / cm 2 ), and the base material, the alignment film, and the polymerizable liquid crystal were used.
  • a laminate comprising a layer in which the compound was cured was obtained.
  • the pressure-sensitive adhesive layer described later was laminated on the cured layer of the polymerizable liquid crystal compound in the produced laminate.
  • the base material was peeled off from the laminate, and the pressure-sensitive adhesive layer was similarly laminated on the surface that was peeled off and exposed.
  • a coating type retardation layer having a double-sided pressure-sensitive adhesive layer comprising a pressure-sensitive adhesive layer, a layer in which a polymerizable liquid crystal compound was cured, an alignment film, and a pressure-sensitive adhesive layer was prepared.
  • the layer where the polymerizable liquid crystal compound was cured had a retardation value of ⁇ / 4.
  • the pressure-sensitive adhesive layers described below were laminated on both surfaces of the film.
  • Adhesive layer 70 parts by mass of butyl acrylate, 20 parts by mass of ethyl acrylate, 2.0 parts by mass of acrylic acid, and 0.2 parts by mass of a radical polymerization initiator (2,2′-azobisisobutyronitrile). The reaction was carried out at 55 ° C. while stirring under a nitrogen atmosphere to obtain an acrylic resin.
  • Acrylic resin 100 parts by mass, crosslinking agent ("Coronate L” manufactured by Tosoh Corporation): 0.7 parts by mass, silane coupling agent ("X-12-981" manufactured by Shin-Etsu Chemical Co., Ltd.): 0.5 parts by mass Parts were mixed. Ethyl acetate was added so that the total solid concentration became 10%, to obtain a pressure-sensitive adhesive composition.
  • the obtained pressure-sensitive adhesive composition was applied to a release-treated surface of a release-treated polyethylene terephthalate film (38 ⁇ m in thickness) using an applicator so that the thickness after drying was 25 ⁇ m.
  • the coating layer was dried at 100 ° C. for 1 minute to obtain a film having an adhesive layer.
  • another release-treated polyethylene terephthalate film (thickness: 38 ⁇ m) was bonded onto the pressure-sensitive adhesive layer. Then, it was cured for 7 days at a temperature of 23 ° C. and a relative humidity of 50% RH.
  • Example 5 The above-mentioned coating type retardation layer with a double-sided pressure-sensitive adhesive layer was bonded to the polarizing layer of the base material layer / polarizing layer laminate prepared in Example 1 via one pressure-sensitive adhesive layer.
  • the slow axis of the layer where the polymerizable liquid crystal compound was cured was 45 degrees with respect to the absorption axis of the polarizing layer.
  • a circularly polarizing plate comprising the base layer / polarizing layer / adhesive layer / coating type retardation plate / adhesive layer was produced.
  • a stretching test was performed on the obtained circularly polarizing plate. Table 2 shows the results.
  • Example 6 The polarizing layer of the laminate composed of the base material layer / polarizing layer prepared in Example 1 and the above-mentioned film-type retardation layer were bonded together via an adhesive layer.
  • the slow axis of the film type retardation layer was 45 degrees with respect to the absorption axis of the polarizing layer.
  • a circularly polarizing plate composed of the substrate layer / polarizing layer / adhesive layer / film type retardation layer / adhesive layer was produced.
  • a stretching test was performed on the obtained circularly polarizing plate. Table 2 shows the results.
  • Example 5 In the same manner as in Example 5, except that the laminate composed of the substrate layer / polarizing layer prepared in Comparative Example 4 was used, the substrate / polarizing layer / adhesive layer / coating type retardation layer / adhesive was used. A circularly polarizing plate comprising an agent layer was produced. A stretching test was performed on the obtained circularly polarizing plate. Table 2 shows the results.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

延伸した場合でも、光学特性が変化せず、かつ外観不良も生じない延伸可能な積層体を提供すること。基材層および偏光層から構成される延伸可能な積層体であって、基材層の水分率は5.0%以下であり、以下の式(1)を満たす、積層体。 |E-E|/|E+E|≦0.25 (1) [式中、EおよびEはそれぞれ、吸収軸方向および透過軸方向における引張弾性率を示す]

Description

積層体
 本発明は、基材層および偏光層から構成される積層体に関する。
 特許文献1には、延伸可能な表示装置が提案されている。特許文献2には、熱曲げ加工可能な偏光板が提案されている。
韓国公開特許第10-2016-0090977号公報 特許第5633228号公報
 本発明の目的は、延伸した場合でも、視感度補正単体透過率および視感度補正偏光度といった光学特性が著しく変化せず、かつヘイズおよびクラックといった外観不良も生じない延伸可能な積層体を提供することである。
 本発明は、以下に示す積層体を提供する。
[1] 基材層および偏光層から構成される延伸可能な積層体であって、前記基材層の水分率は、5.0%以下であり、以下の式(1)を満たす、積層体。
 |E-E|/|E+E|≦0.25    (1)
[式中、EおよびEはそれぞれ、吸収軸方向および透過軸方向における引張弾性率を示す]
[2] 全ヘイズ値が3%以下である、[1]に記載の積層体。
[3] 前記偏光層の厚みは、0.5μm~10μmである、[1]または[2]に記載の積層体。
[4] 前記偏光層は、重合性液晶化合物と二色性色素とを含む偏光層形成用組成物の硬化物から構成される、[1]~[3]のいずれか1つに記載の積層体。
[5] 前記偏光層中の二色性色素の含有量は、重合性液晶化合物100質量部に対して0.1~30質量部である、[1]~[4]のいずれか1つに記載の積層体。
[6] 前記偏光層側に粘着剤層を更に有する、[1]~[5]のいずれか1つに記載の積層体。
[7] 前記粘着剤層を介して積層される位相差層を有する[6]に記載の積層体。
[8] [1]~[7]のいずれか1つに記載の積層体が、画像表示素子に貼合された、表示装置。
 本発明の一態様によれば、延伸した場合でも、視感度補正単体透過率や視感度補正偏光度といった光学特性が著しく変化せず、かつヘイズやクラックといった外観不良も生じない延伸可能な積層体を提供することができる。
図1は、本発明の一態様に係る積層体の概略断面図を示す。
 以下、図面を参照して、本発明の一態様に係る積層体(以下、単に「積層体」ともいう)について説明する。
<積層体>
 図1に本発明の一態様に係る積層体の概略断面図を示す。積層体10は、基材層11および偏光層12から構成される延伸可能な積層体である。延伸可能とは、積層体10を、吸収軸方向および透過軸方向の少なくとも一方へと引張した場合、破断せずに伸長することができることをいう。吸収軸方向とは、偏光層12を構成する後述の二色性色素および重合性液晶化合物が基材層面に対して水平配向した状態で重合性液晶化合物が硬化された場合や液晶性を示す二色性色素が基材層面に対して水平配向した場合において、二色性色素および重合性液晶化合物の配向方向をいう。透過軸方向とは、偏光層12を構成する後述の二色性色素と重合性液晶化合物とが基材層面に対して水平配向した状態で重合性液晶化合物が硬化された場合や液晶性を示す二色性色素が基材層面に対して水平配向した場合において、基材層面に対して水平な方向であって、かつ配向方向に対して垂直な方向をいう。偏光層の配向状態は偏光顕微鏡観察によって確認することができる。偏光顕微鏡クロスニコルの間に約45°の方向に積層体サンプルを挿入し、光抜けの状態で観察する。垂直方向に配向している場合、光抜けは発生せずに暗視野の状態が観察され、水平配向している場合、光抜けが発生して明視野の状態で観察される。
 積層体10は、吸収軸方向および透過軸方向における破断伸び率がいずれも例えば5%以上であってよい。吸収軸方向および透過軸方向における破断伸び率がいずれも5%以上である場合、十分な延伸性が得られ易くなる傾向にある。積層体10は、吸収軸方向および透過軸方向における破断伸び率がいずれも好ましくは5%~20%であり、より好ましくは5%~15%である。吸収軸方向および透過軸方向における破断伸び率がいずれも5%~20%である場合、十分な延伸性が得られ易くなると共に、光学特性の変化や、ヘイズおよびクラックといった外観不良が起こり難くなる傾向にある。吸収軸方向および透過軸方向における破断伸び率は、引張試験において吸収軸方向または透過軸方向に引張した場合に積層体が破断した時の伸び率であり、JIS K7161に準拠して、例えばUTM(Universal Testing Machine、オートグラフAG-X、株式会社島津製作所)を用いて測定することができる。破断伸び率は、常温(温度23℃)における値を採用することができる。
 積層体10は、吸収軸方向および透過軸方向における引張弾性率をそれぞれEおよびEとした場合、以下の式(1)を満たす。
 |E-E|/|E+E|≦0.25    (1)
 積層体10が式(1)を満たさない場合、積層体10を引張した場合に、光学特性が変化したり、破断したり、あるいはヘイズおよびクラック等の外観不良が起こったりし易くなる傾向にある。この理由としては、積層体が等方的にある程度の大きさの引張弾性率を持つことで、積層体を延伸した場合でも積層体の光学特性が維持されると推定される。しかしながら、本発明はこの推定に何ら限定されない。引張弾性率は、後述の実施例の欄において説明する測定方法に従って測定することができる。|E-E|/|E+E|の下限値は、例えば0.01であってよい。引張弾性率は、常温(温度23℃)における値を採用することができる。
 積層体10は、式(1)を満たすように、例えば基材層11、偏光層12および配向層の厚みの調節、基材層に用いる材料の選定、偏光層を形成するための二色性色素や重合性液晶化合物の選定やそれらの組成比の調節、配向層形成用組成物に用いる原料の選定および組成比の調節、偏光層および配向層を形成するための条件、例えば塗布条件、乾燥条件および重合条件等の調節等を組合わせることにより製造することができる。特に積層体の引張弾性率は基材層の引張弾性率と関係するので、基材層としては伸び率が5%以上であるものを使用することが好ましい。
 積層体10は、好ましくは以下の式(2)を満たす。
 |E-E|/|E+E|≦0.20    (2)
 引張弾性率EおよびEはいずれも、例えば1MPa~30,000MPaであってよく、好ましくは10MPa~20,000MPa、より好ましくは50MPa~15,000MPaであり、1,000MPa~7,000MPaであってもよく、1,000MPa~5,000MPaであってもよい。引張弾性率EおよびEがいずれも50MPa~15,000MPaである場合、積層体10を延伸した場合でも破断しにくくなる傾向にある。
 積層体10は、全ヘイズ値が例えば3%以下であってよい。全ヘイズ値が3%以下である場合、表示装置に好適に用いることができる。積層体10は、全ヘイズ値が好ましくは2.8%以下、より好ましくは2.5%以下である。全ヘイズ値が3%以下である場合、積層体10を表示装置に用いた場合、視認性が向上し易くなる傾向にある。全ヘイズ値は、後述する実施例の欄において説明する方法に従って測定することができる。一方、全ヘイズ値は、通常、0.1%以上である。全ヘイズ値は、後述の実施例の欄において説明する測定方法に従って測定することができる。
 積層体10は、延伸前後の全ヘイズ値の差(ΔH)が例えば1.5%以下であってよく、好ましくは1.2%以下、より好ましくは1%以下である。好ましい実施態様において、積層体10は、延伸前と5%延伸後の全ヘイズ値の差(ΔH)が例えば1.5%以下であってよく、好ましくは1.2%以下、より好ましくは1%以下である。より好ましい実施態様において、積層体10は、延伸前と10%延伸後の全ヘイズ値の差(ΔH)が例えば1.5%以下であってよく、好ましくは1.2%以下、より好ましくは1%以下である。
 積層体10の偏光性能は、分光光度計を用いて測定することができる。例えば、可視光である波長380nm~780nmの範囲で透過軸方向(二色性色素の配向方向に対して垂直な方向)の透過率(T1)および吸収軸方向(二色性色素の配向方向と同一方向)の透過率(T2)を、分光光度計に偏光子付ホルダーをセットした装置を用いてダブルビーム法で測定することができる。可視光範囲での偏光性能は、下記式(3)ならびに式(4)を用いて、各波長における単体透過率、偏光度を算出し、さらにJIS Z 8701の2度視野(C光源)により視感度補正を行うことで、視感度補正単体透過率(Ty)および視感度補正偏光度(Py)を算出することができる。
 単体透過率(%)=(T1+T2)/2          式(3)
 偏光度(%)=(T1-T2)/(T1+T2)×100  式(4)
 積層体10は、視感度補正単体透過率が例えば30%以上であってよく、好ましくは35%以上、より好ましくは38%以上である。一方、積層体10は、視感度補正単体透過率が通常、70%以下であり、48%以下であることが好ましく、46%以下であることがより好ましい。視感度補正単体透過率は後述する実施例の欄において説明する方法に従って測定することができる。
 積層体10は、吸収軸方向および透過軸方向への延伸前後の視感度補正単体透過率の差(ΔT)がいずれも例えば1.5%以下であってよく、好ましくは1.2%以下、より好ましくは1%以下である。好ましい実施態様において、積層体10は、延伸前と吸収軸方向および透過軸方向への5%延伸後との視感度補正単体透過率の差(ΔT)がいずれも例えば1.5%以下であってよく、好ましくは1.2%以下、より好ましくは1%以下である。より好ましい実施態様において、積層体10は、延伸前と吸収軸方向および透過軸方向への10%延伸後との視感度補正単体透過率値の差(ΔT)がいずれも例えば1.5%以下であってよく、好ましくは1.2%以下、より好ましくは1%以下である。
 積層体10は、視感度補正偏光度が例えば80%以上であってよく、好ましくは85%以上、より好ましくは90%以上である。一方、積層体10は、視感度補正偏光度が通常、100%以下であり、99.99%以下であってもよく、99.0%以下であってもよい。視感度補正偏光度は後述する実施例の欄において説明する方法に従って測定することができる。
 積層体10は、吸収軸方向および透過軸方向への延伸前後の視感度補正偏光度の差(ΔP)がいずれも例えば3%以下であってよく、好ましくは2.5%以下、より好ましくは2%以下である。好ましい実施態様において、積層体10は、延伸前と吸収軸方向および透過軸方向への5%延伸後との視感度補正偏光度の差(ΔP)がいずれも例えば3%以下であってよく、好ましくは2.5%以下、より好ましくは2%以下である。より好ましい実施態様において、積層体10は、延伸前と吸収軸方向および透過軸方向への10%延伸後との視感度補正偏光度の差(ΔP)がいずれも例えば3%以下であってよく、好ましくは2.5%以下、より好ましくは2%以下である。
 積層体10は、厚みが例えば25μm~1000μmであってよく、好ましくは30μm~500μmであり、より好ましくは35μm~100μmである。積層体10の厚みが25μm~1000μmである場合、表示装置を薄膜化し易くなる傾向にある。
 以下、積層体10を構成する各層について説明する。
[基材層]
 基材層11は、例えば樹脂フィルムから構成されてよく、好ましくは透明樹脂フィルムから構成されてよい。樹脂フィルムは、長尺のロール状樹脂フィルムであってよく、枚葉状樹脂フィルムであってよい。連続的に製造できる点で長尺のロール状樹脂フィルムが好ましい。
 樹脂フィルムを構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマー等のポリオレフィン;環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロースおよびセルロースアセテートプロピオネート等のセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィド;ポリフェニレンオキシド等のプラスチックが挙げられる。中でも環状オレフィン系樹脂、セルロースエステルおよびポリイミドが好ましい。
 環状オレフィン系樹脂の代表的市販品の例としては、“Topas”(登録商標)(Ticona社(独)製)、“アートン”(登録商標)(JSR株式会社製)、“ゼオノア(ZEONOR)”(登録商標)、“ゼオネックス(ZEONEX)”(登録商標)(以上、日本ゼオン株式会社製)および“アペル”(登録商標)(三井化学株式会社製)等が挙げられる。このような環状オレフィン系樹脂を、溶剤キャスト法、溶融押出法等の公知の手段により製膜して、樹脂フィルムとすることができる。市販されている環状オレフィン系樹脂フィルムを用いることもできる。環状オレフィン系樹脂フィルムの代表的市販品の例としては、“エスシーナ”(登録商標)、“SCA40”(登録商標)(以上、積水化学工業株式会社製)、“ゼオノアフィルム”(登録商標)(オプテス株式会社製)および“アートンフィルム”(登録商標)(JSR株式会社製)等が挙げられる。
 セルロースエステルから構成される樹脂フィルムの代表的市販品の例としては、“フジタックフィルム”(富士写真フイルム株式会社製);“KC8UX2M”、“KC8UY”および“KC4UY”(以上、コニカミノルタオプト株式会社製)等が挙げられる。
 基材層11の水分率は、5.0%以下であり、3.0%以下であることが好ましい。基材層11の水分率は、0.0%以上であることができる。基材層11の水分率が5.0%以下である場合、偏光層12を形成するときに、重合性液晶化合物および二色性色素の配向方向の均一性が高まる傾向にある。特に、積層体10を延伸した場合、光学特性のムラが視認されやすくなるところ、延伸後であっても偏光層が良好な光学特性を維持しやすい。基材層の水分率は、後述の実施例に記載された方法で測定される。
 樹脂フィルムの厚みは、積層体10の薄膜化の観点からは薄い方が好ましいが、あまりに薄いと耐衝撃性が確保しにくくなる傾向がある。樹脂フィルムの厚みは、例えば10~200μmであってよく、好ましくは15~150μm、より好ましくは20~100μmである。
 基材層11は、少なくとも一方の表面にハードコート層、反射防止層、または帯電防止層を有していてもよい。基材層11は、偏光層12が形成されない側の表面のみに、ハードコート層、反射防止層、または帯電防止層等が形成されていてもよい。基材層11は、偏光層12が形成されている側の表面のみに、ハードコート層、反射防止層、または帯電防止層等が形成されていてもよい。基材層11として、後述のウインドウフィルムを用いることもできる。
[偏光層]
 偏光層12は、1種類以上の重合性液晶化合物[以下、重合性液晶(a)ともいう]および二色性色素を含む組成物の硬化物から構成される層または、1種類以上の液晶性を示す二色性色素を含む組成物の硬化物から構成される層であることが好ましい。偏光層12が積層体10平面方向での偏光特性を有する場合、二色性色素と重合性液晶(a)が、積層体10平面に対して水平配向した状態で重合性液晶(a)を硬化するか、積層体10平面に対して液晶性を示す二色性色素が水平配向すればよく、偏光層12が積層体10の厚み方向での偏光特性を有する場合、二色性色素と重合性液晶(a)とが、積層体10平面に対して垂直配向した常態で重合性液晶(a)を硬化するか、積層体10平面に対して液晶性を示す二色性色素が垂直配向すればよい。偏光層12は、コーティング層であることが好ましく、例えば1種類以上の重合性液晶(a)と二色性色素とを含有する偏光層形成用組成物[以下、組成物(A)ともいう]の硬化物であってよい。
 偏光層12は、厚みが例えば0.5~10μmであってよく、好ましくは1~8μmであり、より好ましくは1.5~5μmである。
 偏光層12は、例えば組成物(A)を、基材層11または後述する配向層上に塗布し、得られた塗膜中の重合性液晶(a)を重合させることにより形成することができる。
(重合性液晶)
 重合性液晶(a)は、重合性基を有し、かつ液晶性を有する化合物である。重合性基は、重合反応に関与する基を意味し、光重合性基であることが好ましい。ここで、光重合性基とは、後述する光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基のことをいう。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基およびオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。液晶性はサーモトロピック液晶でもリオトロピック液晶でもよいが、後述する二色性色素と混合する場合には、サーモトロピック液晶が好ましい。
 重合性液晶(a)がサーモトロピック液晶である場合は、ネマチック液晶相を示すサーモトロピック性液晶化合物であってもよいし、スメクチック液晶相を示すサーモトロピック性液晶化合物であってもよい。重合反応により硬化膜として偏光機能を発現する際には、重合性液晶(a)が示す液晶状態は、スメクチック相であることが好ましく、高次スメクチック相であれば高性能化の観点からより好ましい。中でも、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相またはスメクチックL相を形成する高次スメクチック液晶化合物がより好ましく、スメクチックB相、スメクチックF相またはスメクチックI相を形成する高次スメクチック液晶化合物がさらに好ましい。重合性液晶(a)が形成する液晶相がこれらの高次スメクチック相であると、偏光性能のより高い偏光層を製造することができる。また、このように偏光性能の高い偏光層はX線回折測定においてヘキサチック相やクリスタル相といった高次構造由来のブラッグピークが得られるものである。当該ブラッグピークは分子配向の周期構造に由来するピークであり、その周期間隔が3~6Åである膜を得ることができる。本発明の偏光層は、この重合性液晶(a)がスメクチック相の状態で重合された重合性液晶(a)の重合体を含むことが、より高い偏光特性が得られるという観点から好ましい。
 このような化合物としては、具体的には、下記式(I)で表される化合物〔以下、化合物(I)ともいう〕等が挙げられる。当該重合性液晶(a)は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 U-V-W-X-Y-X-Y-X-W-V-U   (I)
[式(A)中、
 X、XおよびXは、それぞれ独立に、2価の芳香族基または2価の脂環式炭化水素基を表す。ここで、該2価の芳香族基または2価の脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシ基、シアノ基またはニトロ基に置換されていてもよい。該2価の芳香族基または2価の脂環式炭化水素基を構成する炭素原子が、酸素原子、硫黄原子または窒素原子に置換されていてもよい。ただし、X、XおよびXのうち少なくとも1つは、置換基を有していてもよい1,4-フェニレン基または置換基を有していてもよいシクロヘキサン-1,4-ジイル基である。
 Y、Y、WおよびWは、互いに独立に、単結合または二価の連結基である。
 VおよびVは、互いに独立に、置換基を有していてもよい炭素数1~20のアルカンジイル基を表す。該アルカンジイル基を構成する-CH-は、-O-、-S-または-NH-に置き換わっていてもよい。
 UおよびUは、互いに独立に、重合性基または水素原子を表し、少なくとも一方は重合性基である。]
 化合物(I)において、X、XおよびXのうち少なくとも1つは、置換基を有していてもよい1,4-フェニレン基、または置換基を有していてもよいシクロヘキサン-1,4-ジイル基である。特に、XおよびXは置換基を有していてもよいシクロヘキサン-1,4-ジイル基であることが好ましく、該シクロへキサン-1,4-ジイル基は、トランス-シクロへキサン-1,4-ジイル基であることがさらに好ましい。化合物(I)がトランス-シクロへキサン-1,4-ジイル基を含む場合、スメクチック液晶性が発現しやすい傾向にある。また、置換基を有していてもよい1,4-フェニレン基、または置換基を有していてもよいシクロへキサン-1,4-ジイル基が任意に有する置換基としては、メチル基、エチル基およびブチル基などの炭素数1~4のアルキル基、シアノ基および塩素原子、フッ素原子などのハロゲン原子が挙げられる。1,4-フェニレン基、またはシクロへキサン-1,4-ジイル基は、好ましくは無置換である。
 YおよびYは、互いに独立に、単結合、-CHCH-、-CHO-、-COO-、-OCO-、-N=N-、-CR=CR-、-C≡C-または-CR=N-が好ましく、RおよびRは、互いに独立に、水素原子または炭素数1~4のアルキル基を表す。YおよびYは、-CHCH-、-COO-、-OCO-または単結合であることがより好ましく、X、XおよびXが全てシクロヘキサン-1,4-ジイル基を含まない場合、YおよびYが互いに異なる結合方式であることがより好ましい。YおよびYが互いに異なる結合方式である場合には、スメクチック液晶性が発現しやすい傾向にある。
 WおよびWは、互いに独立に、単結合、-O-、-S-、-COO-またはOCO-が好ましく、互いに独立に単結合または-O-であることがより好ましい。
 VおよびVで表される炭素数1~20のアルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、デカン-1,10-ジイル基、テトラデカン-1,14-ジイル基およびイコサン-1,20-ジイル基などが挙げられる。VおよびVは、好ましくは炭素数2~12のアルカンジイル基であり、より好ましくは直鎖状の炭素数6~12のアルカンジイル基である。直鎖状の炭素数6~12のアルカンジイル基とすることで結晶性が向上し、スメクチック液晶性を発現しやすい傾向にある。
 置換基を有していてもよい炭素数1~20のアルカンジイル基が任意に有する置換基としては、シアノ基および塩素原子、フッ素原子などのハロゲン原子などが挙げられる。該アルカンジイル基は、無置換であることが好ましく、無置換かつ直鎖状のアルカンジイル基であることがより好ましい。
 UおよびUは、ともに重合性基であると好ましく、ともに光重合性基であるとより好ましい。光重合性基を有する重合性液晶化合物は、熱重合性基を有する重合性液晶化合物よりも低温条件下で重合できるため、液晶がより秩序度の高い状態で重合体を形成できる点で有利である。
 UおよびUで表される重合性基は、互いに異なっていてもよいが、同一であると好ましい。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基およびオキセタニル基が好ましく、メタクリロイルオキシ基、または、アクリロイルオキシ基がより好ましい。
 このような重合性液晶化合物としては、例えば、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 例示した前記化合物の中でも、式(1-2)、式(1-3)、式(1-4)、式(1-6)、式(1-7)、式(1-8)、式(1-13)、式(1-14)および式(1-15)で表される化合物からなる群より選ばれる少なくとも1種が好ましい。
(二色性色素)
 二色性色素とは、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する色素をいう。二色性色素としては、可視光を吸収する特性を有する特性を有する事が好ましく、380~680nmの範囲に吸収極大波長(λMAX)を有するものがより好ましい。このような二色性色素としては、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素およびアントラキノン色素などが挙げられる。中でも二色性色素としてはアゾ色素が好ましい。アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素およびスチルベンアゾ色素などが挙げられ、好ましくはビスアゾ色素およびトリスアゾ色素である。二色性色素は単独で用いてもよいし、組み合わせて用いてもよい。可視光全域で吸収を得るためには、3種類以上の二色性色素を組み合わせて用いるのが好ましく、3種類以上のアゾ色素を組み合わせて用いるのがより好ましい。
 アゾ色素としては、例えば、式(II)で表される化合物(以下、「化合物(II)」ということもある)が挙げられる。
 T-A(-N=N-A-N=N-A-T (II)
[式(II)中、
 AおよびAおよびAは、互いに独立に、置換基を有していてもよい1,4-フェニレン基、ナフタレン-1,4-ジイル基または置換基を有していてもよい2価の複素環基を表す。TおよびTは電子吸引基あるいは電子放出基であり、アゾ結合面内に対して実質的に180°の位置に有する。pは0~4の整数を表す。pが2以上である場合、各々のAは互いに同一でもよいし、異なっていてもよい。可視域に吸収を示す範囲で-N=N-結合が-C=C-、-COO-、-NHCO-、または-N=CH-結合に置き換わっていてもよい。]
 A、AおよびAにおける1,4-フェニレン基、ナフタレン-1,4-ジイル基および2価の複素環基が任意に有する置換基としては、メチル基、エチル基およびブチル基などの炭素数1~4のアルキル基;メトキシ基、エトキシ基およびブトキシ基などの炭素数1~4のアルコキシ基;トリフルオロメチル基などの炭素数1~4のフッ化アルキル基;シアノ基;ニトロ基;塩素原子、フッ素原子などのハロゲン原子;アミノ基、ジエチルアミノ基およびピロリジノ基などの置換または無置換アミノ基(置換アミノ基とは、炭素数1~6のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NHである。)が挙げられる。なお、炭素数1~6のアルキル基としては、メチル基、エチル基およびヘキシル基などが挙げられる。炭素数2~8のアルカンジイル基としては、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基などが挙げられる。スメクチック液晶のような高秩序液晶構造中に包摂するためには、AおよびAおよびAは無置換または水素がメチル基またはメトキシ基で置換された1,4-フェニレン基、または2価の複素環基が好ましく、pは0または1である事が好ましい。中でもpが1であり、かつ、AおよびAおよびAの3つの構造のうち少なくとも2つが1,4-フェニレン基であることが分子合成の簡便さと高い性能の両方を有するという点でより好ましい。
 2価の複素環基としては、キノリン、チアゾール、ベンゾチアゾール、チエノチアゾール、イミダゾール、ベンゾイミダゾール、オキサゾールおよびベンゾオキサゾールから2個の水素原子を除いた基が挙げられる。Aが2価の複素環基の場合には、分子結合角度が実質的に180°となる構造が好ましく、具体的には、二つの5員環が縮合したベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール構造がより好ましい。
 TおよびTは電子吸引基あるいは電子放出基であり、互いに異なる構造である事が好ましく、Tが電子吸引基でありTが電子放出基である組み合わせ、あるいはTが電子放出基でありTが電子吸引基である組み合わせがさらに好ましい。具体的には、TおよびTは互いに独立に炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、シアノ基、ニトロ基、炭素数1~6のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基、またはトリフルオロメチル基が好ましい。スメクチック液晶のような高秩序液晶構造中に包摂するためには、分子の排除体積がより小さい構造体である必要があるため、TおよびTは互いに独立に炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基、炭素数1~6のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基が好ましい。
 このようなアゾ色素としては、例えば、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 式(2-1)~(2-6)中、
 B~B20は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基、ニトロ基、置換または無置換のアミノ基(置換アミノ基および無置換アミノ基の定義は前記のとおり)、塩素原子またはトリフルオロメチル基を表す。高い偏光性能が得られる観点から、B、B、B、B14、B18、B19は水素原子またはメチル基が好ましく、水素原子がより好ましい。
 n1~n4は、それぞれ独立に0~3の整数を表す。
 n1が2以上である場合、複数のBはそれぞれ同一であってもよいし、異なっていてもよく、n2が2以上である場合、複数のBはそれぞれ同一であってもよいし、異なっていてもよく、n3が2以上である場合、複数のBはそれぞれ同一であってもよいし、異なっていてもよく、n4が2以上である場合、複数のB14はそれぞれ同一であってもよいし、異なっていてもよい。
 前記アントラキノン色素としては、式(2-7)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000007
[式(2-7)中、
 R~Rは、互いに独立に、水素原子、-R、-NH、-NHR、-NR 、-SRまたはハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基または炭素数6~12のアリール基を表す。]
 前記オキサジン色素としては、式(2-8)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000008
[式(2-8)中、
 R~R15は、互いに独立に、水素原子、-R、-NH、-NHR、-NR 、-SRまたはハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基または炭素数6~12のアリール基を表す。]
 前記アクリジン色素としては、式(2-9)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
[式(2-9)中、
 R16~R23は、互いに独立に、水素原子、-R、-NH、-NHR、-NR 、-SRまたはハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基または炭素数6~12のアリール基を表す。]
 式(2-7)、式(2-8)および式(2-9)における、Rで表される炭素数1~4のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基およびヘキシル基等が挙げられ、炭素数6~12のアリール基としては、フェニル基、トルイル基、キシリル基およびナフチル基等が挙げられる。
 前記シアニン色素としては、式(2-10)で表される化合物および式(2-11)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000010
[式(2-10)中、
 DおよびDは、互いに独立に、式(2-10a)~式(2-10d)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000011

 n5は1~3の整数を表す。]
Figure JPOXMLDOC01-appb-C000012
[式(2-11)中、
 DおよびDは、互いに独立に、式(2-11a)~式(2-11h)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000013

 n6は1~3の整数を表す。]
 二色性色素の含有量(複数種含む場合にはその合計量)は、良好な光吸収特性を得る観点から、重合性液晶(a)100質量部に対して、通常0.1~30質量部であり、好ましくは1~20質量部であり、より好ましくは2~15質量部である。二色性色素の含有量がこの範囲より少ないと光吸収が不十分となり、十分な偏光性能が得られず、この範囲よりも多いと液晶分子の配向を阻害する場合がある。
(配向層)
 積層体10は、基材層11と偏光層12との間に配向層を有していてよい。配向層は、基材層11上に形成される偏光層12を構成する重合性液晶を所望の方向に液晶配向させる、配向規制力を有するものである。
 配向層は、重合性液晶の液晶配向を容易にする。水平配向、垂直配向、ハイブリッド配向、傾斜配向等の液晶配向の状態は、配向層および重合性液晶の性質によって変化し、その組み合わせは任意に選択することができる。例えば、配向層が配向規制力として水平配向を発現させる材料であれば、重合性液晶は水平配向またはハイブリッド配向を形成することができ、垂直配向を発現させる材料であれば、重合性液晶は垂直配向または傾斜配向を形成することができる。水平、垂直等の表現は、偏光層12平面を基準とした場合の、配向した重合性液晶の長軸の方向を表す。例えば、垂直配向とは偏光層12平面に対して垂直な方向に、配向した重合性液晶の長軸を有することである。ここでいう垂直とは、偏光層12平面に対して90°±20°のことを意味する。
 配向規制力は、配向層が配向性ポリマーから形成されている場合は、表面状態やラビング条件によって任意に調整することが可能であり、光配向性ポリマーから形成されている場合は、偏光照射条件等によって任意に調整することが可能である。また、重合性液晶化合物の、表面張力や液晶性等の物性を選択することにより、液晶配向を制御することもできる。
 基材層11と偏光層12との間に形成される配向層としては、配向層上に偏光層12を形成する際に使用される溶剤に不溶であり、また、溶剤の除去や液晶の配向のための加熱処理における耐熱性を有するものが好ましい。配向層は、配向性ポリマーからなる配向層、光配向層およびグルブ(groove)配向層等であってよい。中でも、長尺のロール状樹脂フィルムに適用する場合に配向方向を容易に制御できる点で、光配向層が好ましい。
 配向層の厚みは、例えば10nm~5000nmの範囲であってよく、好ましくは10nm~1000nmの範囲であり、より好ましくは30~300nmである。
 配向性ポリマーからなる配向層に用いられる配向性ポリマーとしては、分子内にアミド結合を有するポリアミドやゼラチン類、分子内にイミド結合を有するポリイミドおよびその加水分解物であるポリアミック酸、ポリビニルアルコール、アルキル変性ポリビニルアルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンイミン、ポリスチレン、ポリビニルピロリドン、ポリアクリル酸およびポリアクリル酸エステル類等が挙げられる。中でも、配向性ポリマーとしては、ポリビニルアルコールが好ましい。これらの配向性ポリマーは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 樹脂フィルムから構成される基材層上に配向性ポリマーからなる配向層を形成する場合、配向性ポリマーからなる配向層は、通常、配向性ポリマーが溶剤に溶解した組成物(以下、「配向性ポリマー組成物」ともいう。)を樹脂フィルムに塗布し、溶剤を除去するか、または配向性ポリマー組成物を樹脂フィルムに塗布し、溶剤を除去し、ラビングすること(ラビング法)により得られる。
 前記溶剤としては、水;メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、メチルセロソルブ、ブチルセロソルブおよびプロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテートおよび乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルアミルケトンおよびメチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサンおよびヘプタン等の脂肪族炭化水素溶剤;トルエンおよびキシレン等の芳香族炭化水素溶剤、アセトニトリル等のニトリル溶剤;テトラヒドロフランおよびジメトキシエタン等のエーテル溶剤;クロロホルムおよびクロロベンゼン等の塩素置換炭化水素溶剤;等が挙げられる。これら溶剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 配向性ポリマー組成物中の配向性ポリマーの濃度は、配向性ポリマーが、溶剤に完溶できる範囲であればよいが、溶液に対して固形分換算で0.1~20質量%が好ましく、0.1~10質量%がより好ましい。
 配向性ポリマー組成物として、市販の配向層形成用材料をそのまま使用してもよい。市販の配向層形成用材料の例としては、サンエバー(登録商標)(日産化学工業株式会社製)またはオプトマー(登録商標)(JSR株式会社製)等が挙げられる。
 配向性ポリマー組成物を樹脂フィルムに塗布する方法としては、スピンコーティング法、エクストルージョン法、グラビアコーティング法、ダイコーティング法、バーコーティング法およびアプリケータ法等の塗布方法や、フレキソ法等の印刷法等の公知の方法が挙げられる。本発明の積層体を、Roll-to-Roll形式の連続的製造方法により製造する場合、当該塗布方法には通常、グラビアコーティング法、ダイコーティング法またはフレキソ法等の印刷法が採用される。
 配向性ポリマー組成物に含まれる溶剤を除去することにより、配向性ポリマーの乾燥被膜が形成される。溶剤の除去方法としては、自然乾燥法、通風乾燥法、加熱乾燥法および減圧乾燥法等が挙げられる。
 ラビングする方法としては、ラビングロールに、配向性ポリマーの膜を、接触させる方法が挙げられる。ラビングロールは、ラビング布が巻きつけられ、回転することができるロールである。
 光配向層は、通常、光反応性基を有するポリマーまたはモノマー、および溶剤を含む組成物(以下、「光配向層形成用組成物」ともいう)を樹脂フィルムに塗布し、偏光(好ましくは、偏光UV)を照射することで得られる。光配向層は、照射する偏光の偏光方向を選択することにより、配向規制力の方向を任意に制御できる点でより好ましい。
 光反応性基とは、光を照射することにより液晶配向能を生じる基をいう。具体的には、光を照射することで生じる分子の配向誘起または異性化反応、二量化反応、光架橋反応、または光分解反応のような、液晶配向能の起源となる光反応を生じるものである。当該光反応性基の中でも、二量化反応または光架橋反応を起こすものが、配向性に優れる点で好ましい。以上のような反応を生じうる光反応性基としては、不飽和結合、特に二重結合を有するものが好ましく、炭素-炭素二重結合(C=C結合)、炭素-窒素二重結合(C=N結合)、窒素-窒素二重結合(N=N結合)、および炭素-酸素二重結合(C=O結合)からなる群より選ばれる少なくとも一つを有する基がより好ましい。
 C=C結合を有する光反応性基としては例えば、ビニル基、ポリエン基、スチルベン基、スチルバゾ-ル基、スチルバゾリウム基、カルコン基およびシンナモイル基等が挙げられる。反応性の制御が容易であるという点や光配向時の配向規制力発現の観点から、カルコン基およびシンナモイル基が好ましい。C=N結合を有する光反応性基としては、芳香族シッフ塩基および芳香族ヒドラゾン等の構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基およびホルマザン基等や、アゾキシベンゼンを基本構造とするものが挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基およびマレイミド基等が挙げられる。これらの基は、アルキル基、アルコキシ基、アリール基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基およびハロゲン化アルキル基等の置換基を有していてもよい。中でも、光二量化反応を生じうる光反応性基が好ましく、シンナモイル基およびカルコン基が、光配向に必要な偏光照射量が比較的少なく、かつ、熱安定性や経時安定性に優れる光配向層が得られやすいため好ましい。光反応性基を有するポリマーとしては、当該ポリマー側鎖の末端部が桂皮酸構造となるようなシンナモイル基を有するものが特に好ましい。
 前記光配向層形成用組成物の取り扱いの容易さと、高耐久性の配向性を実現した配向層が得られやすいこととから、特に好ましい光反応性基を有するポリマーは例えば、式(A’)で表される基を側鎖に有するポリマー(以下、場合により「ポリマー(A’)」ともいう。)である。
Figure JPOXMLDOC01-appb-C000014

[式(A’)中、
 nは、0または1を表す。
 Xは、単結合、-O-、-COO-、-OCO-、-N=N-、-CH=CH-または-CH-を表す。
 Yは、単結合または-O-を表す。
 RおよびRはそれぞれ独立に、水素原子、炭素数1~4のアルキル基または炭素数1~4のアルコキシ基を表す。
 *は、ポリマー主鎖に対する結合手を表す。]
 式(A’)において、Xは、単結合、-O-、-COO-、-OCO-、-N=N-、-C=C-および-CH-のいずれかであると、ポリマー(A’)自体の製造が容易となるため、特に好ましい。
 式(A’)において、RおよびRはそれぞれ独立に、水素原子、ハロゲン原子、ハロゲン化アルキル基、ハロゲン化アルコキシ基、シアノ基、ニトロ基、アルキル基、アルコキシ基、アリール基、アリルオキシ基、アルコキシカルボニル基、カルボキシル基、スルホン酸基、アミノ基またはヒドロキシ基を表し、該カルボキシル基および該スルホン酸基はアルカリ金属イオンと塩を形成していてもよい。これらの中でも、RおよびRはそれぞれ独立に、水素原子、炭素数1~4のアルキル基または炭素数1~4のアルコキシ基であるとさらに好ましい。該アルキル基としては、メチル基、エチル基およびブチル基などが挙げられ、該アルコキシ基としては、メトキシ基、エトキシ基およびブトキシ基などが挙げられる。
 ポリマー(A’)の主鎖は特に限定されないが、式(M-1)または式(M-2)で表される(メタ)アクリル酸エステル単位;式(M-3)または式(M-4)で表される(メタ)アクリルアミド単位;式(M-5)または式(M-6)で表されるビニルエーテル単位;式(M-7)または式(M-8)で表される(メチル)スチレン単位、および式(M-9)または式(M-10)で表されるビニルエステル単位からなる群より選ばれるものから構成される主鎖をポリマー(A)は有していると好ましく、中でも、(メタ)アクリル酸エステル単位および(メタ)アクリルアミド単位からなる群より選ばれる単位から構成される主鎖をポリマー(A’)が有しているとさらに好ましい。なお、ここでいう「ポリマー(A’)の主鎖」とは、ポリマー(A’)が有する分子鎖のうち、最も長い分子鎖をいう。
Figure JPOXMLDOC01-appb-C000015
 式(M-1)~式(M-10)のいずれかで表される単位と、式(A’)で表される基は、直接結合していても、適当な連結基を介して結合していてもよい。この連結基としては、カルボニルオキシ基(エステル結合)、酸素原子(エ-テル結合)、イミド基、カルボニルイミノ基(アミド結合)、イミノカルボニルイミノ基(ウレタン結合)、置換基を有していてもよい2価の脂肪族炭化水素基および置換基を有していてもよい2価の芳香族炭化水素基、並びにこれらを組み合わせてなる2価の基などを挙げることができる。置換基を有していてもよい2価の芳香族炭化水素基の具体例は、フェニレン基、2-メトキシ-1,4-フェニレン基、3-メトキシ-1,4-フェニレン基、2-エトキシ-1,4-フェニレン基、3-エトキシ-1,4-フェニレン基、2,3,5-トリメトキシ-1,4-フェニレン基などが挙げられる。これらの中でも、該連結基は、脂肪族炭化水素基が好ましく、置換基を有していてもよい炭素数1~11のアルカンジイル基がさらに好ましい。なお、かかるアルカンジイル基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基およびウンデカメチレン基などが挙げられ、これらは直鎖状であっても、分岐鎖状であってもよい。また、かかるアルカンジイル基は置換基を有していてもよい。この置換基は例えば、炭素数1~4のアルコキシ基などである。
 換言すると、式(A’)で表される基を有する構造単位としては、式(A)で表されるもの(以下、場合により「構造単位(A)」ともいい、当該構造単位(A)を含むポリマーを「ポリマー(A)」ともいう。)が好ましい。
Figure JPOXMLDOC01-appb-C000016

[式(A)中、
 X、Y、R、Rおよびnは式(A’)と同義であり、
 Sは、炭素数1~11のアルカンジイル基であり、
Figure JPOXMLDOC01-appb-C000017

で表される構造は、式(M-1)~式(M-10)のいずれかで表される構造である。] 
 ポリマー(A’)またはポリマー(A)の分子量は、例えばゲルパーミエイション法(GPC法)で求められるポリスチレン換算の重量平均分子量で表して、1×10~1×10の範囲が好ましい。ただし、あまり分子量が高くなると、溶媒への溶解性が低下して配向層形成用組成物の調製が困難になることや、光照射に対する感度が下がる傾向があるので、1×10~1×10の範囲が好ましい。
 ポリマー(A)は、構造単位(A)に加え、式(B)で表される構造単位(以下、場合により「構造単位(B)」ともいう。)を有していてもよい。
Figure JPOXMLDOC01-appb-C000018

[式(B)中、
 mは、0または1を表す。
 Sは、炭素数1~11のアルカンジイル基を表す。
Figure JPOXMLDOC01-appb-C000019

で表される構造は、式(M-1)~式(M-10)のいずれかで表される構造である。
 Xは、単結合、-O-、-COO-、-OCO-、-N=N-、-CH=CH-または-CH-を表す。
 Yは、単結合または-O-を表す。
 RおよびRはそれぞれ独立に、水素原子、炭素数1~4のアルキル基または炭素数1~4のアルコキシ基を表す。]
 式(B)において、Sの具体例は、式(A)のSの具体例と同じであり、RおよびRのアルキル基およびアルコキシ基の具体例についてはそれぞれ、式(A)のRおよびRの具体例と同じである。
 ポリマー(A)の全構造単位に対する構造単位(A)および構造単位(B)のモル分率をそれぞれ、pおよびqとした(p+qは1である。)場合、0.25<p≦1および0≦q<0.75の関係を満たすことが好ましい〔ここで、ポリマー(A)が構造単位(A)を有し、pが1である場合とは、ポリマー(A)が構造単位(A)からなるポリマーであることを意味する。構造単位(A)からなるポリマーには、該構造単位(A)が1種であっても、2種以上であってもよい。〕。ただし、ポリマー(A)は光照射による配向能を著しく損なわない限り、構造単位(A)および構造単位(B)以外の構造単位(以下、場合により「他の構造単位」ともいう。)を有していてもよい。
 ポリマー(A)は、構造単位(A)を誘導するモノマーと、必要に応じて構造単位(B)や他の構造単位を誘導するモノマーとを重合または共重合することで製造できる。当該重合または共重合には通常、付加重合法が採用される。かかる付加重合としては、ラジカル重合、アニオン重合およびカチオン重合などの連鎖重合、並びに配位重合などが挙げられる。重合条件は使用するモノマーの種類およびその量に応じて、上述の好ましいポリマー(A)の分子量が満たされるようにして設定される。
 以上、光反応性基を有するポリマーの中で好ましいものとして、ポリマー(A)について詳述したが、配向層形成用組成物は、当該光反応性基を有するポリマー(好ましくは、ポリマー(A))を適当な溶剤に溶解することで調製される。かかる溶剤は、当該光反応性基を有するポリマーが溶解することができ、適正な粘度の配向層形成用組成物が得られる範囲で適宜選択できる。溶剤としては、例えば、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテルおよびプロピレングリコールモノメチルエーテルなどのアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトンまたはプロピレングリコールメチルエーテルアセテートおよび乳酸エチルなどのエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノンおよびメチルイソブチルケトンなどのケトン溶剤;ペンタン、ヘキサンおよびヘプタンなどの脂肪族炭化水素溶剤;トルエンおよびキシレンなどの芳香族炭化水素溶剤、アセトニトリルなどのニトリル溶剤;テトラヒドロフランおよびジメトキシエタンなどのエーテル溶剤;クロロホルムおよびクロロベンゼンなどの塩素含有溶剤;N-メチルピロリドン、N,N-ジメチルホルムアミド、γ-ブチロラクトンおよびジメチルアセトアミドなどのアミド系溶剤などが挙げられる。これら溶剤は、単独種で用いてもよいし、複数種を組み合わせて用いてもよい。
 光配向層形成用組成物に対する、光反応性基を有するポリマーまたはモノマーの含有量は、当該光反応性基を有するポリマーまたはモノマーの種類や製造しようとする光配向層の厚さによって適宜調節できるが、0.2質量%以上とすることが好ましく、0.3~10質量%の範囲が特に好ましい。また、光配向層の特性が著しく損なわれない範囲で、ポリビニルアルコールやポリイミド等の高分子材料や光増感剤が含まれていてもよい。
 光配向層形成用組成物を樹脂フィルムに塗布する方法としては、前述した配向性ポリマー組成物を樹脂フィルムに塗布する方法と同様の方法が挙げられる。塗布された光配向層形成用組成物から、溶剤を除去する方法としては、例えば、配向性ポリマー組成物から溶剤を除去する方法と同じ方法が挙げられる。
 偏光を照射するには、樹脂フィルム等の上に塗布された光配向層形成用組成物から、溶剤を除去したものに直接、偏光を照射する形式でも、樹脂フィルム側から偏光を照射し、偏光を透過させて照射する形式でもよい。また、当該偏光は、実質的に平行光であることが特に好ましい。照射する偏光の波長は、光反応性基を有するポリマーまたはモノマーの光反応性基が、光エネルギーを吸収し得る波長領域のものがよい。具体的には、波長250~400nmの範囲のUV(紫外光)が特に好ましい。当該偏光照射に用いる光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArF等の紫外光レーザー等が挙げられ、高圧水銀ランプ、超高圧水銀ランプおよびメタルハライドランプがより好ましい。これらのランプは、波長313nmの紫外光の発光強度が大きいため好ましい。前記光源からの光を、適当な偏光子を通過して照射することにより、偏光を照射することができる。かかる偏光子としては、偏光フィルターやグラントムソン、グランテーラー等の偏光プリズムやワイヤーグリッドタイプの偏光子を用いることができる。
 なお、ラビングまたは偏光照射を行う時に、マスキングを行えば、液晶配向の方向が異なる複数の領域(パターン)を形成することもできる。
 グルブ(groove)配向層は、膜表面に凹凸パターンまたは複数のグルブ(溝)を有する膜である。等間隔に並んだ複数の直線状のグルブを有する膜に液晶分子を置いた場合、その溝に沿った方向に液晶分子が配向する。
 グルブ配向層を得る方法としては、感光性ポリイミド膜表面にパターン形状のスリットを有する露光用マスクを介して露光後、現像およびリンス処理を行って凹凸パターンを形成する方法、表面に溝を有する板状の原盤に、硬化前のUV硬化性樹脂の層を形成し、樹脂層を樹脂フィルムへ移してから硬化する方法、および樹脂フィルム上に形成した硬化前のUV硬化性樹脂の膜に、複数の溝を有するロール状の原盤を押し当てて凹凸を形成し、その後硬化する方法等が挙げられる。具体的には、特開平6-34976号公報および、特開2011-242743号公報記載の方法等が挙げられる。
 配向乱れの小さな配向を得るためには、グルブ配向層の凸部の幅は0.05μm~5μmであることが好ましく、凹部の幅は0.1μm~5μmであることが好ましく、凹凸の段差の深さは2μm以下であることが好ましく、0.01μm~1μm以下であることが好ましい。
(その他の層)
 積層体10は、偏光層12側に粘着剤層をさらに有していてよい。粘着剤層は、積層体10を表示装置の画像表示素子、ウインドウフィルムまたはタッチセンサーに貼合するために用いられたり、位相差層と積層体とを積層するために用いられたりする。粘着剤としては、(メタ)アクリル系粘着剤、スチレン系粘着剤、シリコーン系粘着剤、ゴム系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、エポキシ系共重合体粘着剤等を用いることができる。
 積層体10は、位相差層を有していてもよい。位相差層としては、λ/4板、λ/2板、ポジティブCプレート、逆波長分散性のλ/4板、逆波長分散性のλ/2板、およびそれらの組合せが挙げられる。位相差層の組み合わせとしては、逆波長分散性のλ/4板およびポジティブCプレートの組み合わせ、λ/2板とλ/4板との組み合わせが挙げられる。位相差層は、上記基材層を形成する透明樹脂フィルムや重合性液晶化合物を含む組成物から作製することができる。位相差層は、配向膜上に重合性液晶化合物を含む組成物を塗布し、重合性液晶化合物を硬化させることにより作製することができる。位相差層は、重合性液晶化合物の硬化物を含む層であってよく、配向膜及び基材をさらに含む層であってよい。位相差層の作製には、例えば上述の偏光層12の説明において例示した重合性液晶化合物、特開2010-31223号公報や特開2009-173893号公報に記載の重合性液晶化合物等を用いることができる。位相差層に含まれる配向膜は、例えば上述の偏光層12の説明において例示した配向膜であってよい。位相差層に含まれる基材は、例えば上述の基材層11の説明において例示した樹脂フィルムであってよい。位相差層は、上述の粘着剤層を介して積層されることができる。
 積層体10は、ハードコート層、防眩層、反射防止層、帯電防止層、防汚層等の表面処理層(コーティング層)を有していてもよい。
 積層体10は、偏光層12を基準にその視認側に配置されるウインドウフィルムや、遮光パターン(ベゼル)を有していてもよい。ウインドウフィルムは、透明基材層の少なくとも一面にハードコート層を含んでなる。ウインドウフィルムは、既存のガラスのように硬直ではなく、フレキシブルな特性を有する。遮光パターンによって表示装置の配線が隠されて使用者に視認されないようにすることができる。積層体10は、タッチセンサーに積層されてもよい。
<積層体の製造方法>
 偏光層12は、基材層11および存在する場合には配向層上に組成物(A)を塗布することで形成することができる。組成物(A)は、上述の二色性色素および重合性液晶化合物に加え、重合開始剤、レベリング剤、溶剤をさらに含み、光増感剤、重合禁止剤、レベリング剤等をさらに含み得る。
(重合開始剤)
 重合開始剤は、重合性液晶等の重合反応を開始し得る化合物である。重合開始剤としては、サーモトロピック液晶の相状態に依存しないという観点から、光の作用により活性ラジカルを発生する光重合開始剤が好ましい。
 重合開始剤としては、例えばベンゾイン化合物、ベンゾフェノン化合物、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、トリアジン化合物、ヨードニウム塩およびスルホニウム塩等が挙げられる。
 ベンゾイン化合物としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルおよびベンゾインイソブチルエーテル等が挙げられる。
 ベンゾフェノン化合物としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボニル)ベンゾフェノンおよび2,4,6-トリメチルベンゾフェノン等が挙げられる。
 アルキルフェノン化合物としては、例えば、ジエトキシアセトフェノン、2-メチル-2-モルホリノ-1-(4-メチルチオフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1,2-ジフェニル-2,2-ジメトキシエタン-1-オン、2-ヒドロキシ-2-メチル-1-〔4-(2-ヒドロキシエトキシ)フェニル〕プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトンおよび2-ヒドロキシ-2-メチル-1-〔4-(1-メチルビニル)フェニル〕プロパン-1-オンのオリゴマー等が挙げられる。
 アシルホスフィンオキサイド化合物としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドおよびビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド等が挙げられる。
 トリアジン化合物としては、例えば、2,4-ビス(トリクロロメチル)-6-(4-メトキシフェニル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシナフチル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシスチリル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(5-メチルフラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(フラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(4-ジエチルアミノ-2-メチルフェニル)エテニル〕-1,3,5-トリアジンおよび2,4-ビス(トリクロロメチル)-6-〔2-(3,4-ジメトキシフェニル)エテニル〕-1,3,5-トリアジン等が挙げられる。
 重合開始剤として市販のものを用いることができる。市販の重合開始剤としては、イルガキュア(Irgacure)(登録商標)907、184、651、819、250、および369、379、127、754、OXE01、OXE02、OXE03(チバ・スペシャルティ・ケミカルズ株式会社製);セイクオール(登録商標)BZ、Z、およびBEE(精工化学株式会社製);カヤキュアー(kayacure)(登録商標)BP100、およびUVI-6992(ダウ・ケミカル株式会社製);アデカオプトマーSP-152、N-1717、N-1919、SP-170、アデカアークルズNCI-831、アデカアークルズNCI-930(株式会社ADEKA製);TAZ-A、およびTAZ-PP(日本シイベルヘグナー株式会社製);並びに、TAZ-104(株式会社三和ケミカル製);等が挙げられる。組成物(A)は、重合開始剤を1種類含んでいてもよいし、光源に合わせて2種類以上の複数の重合開始剤を含んでいてもよい。
 組成物(A)中の重合開始剤の含有量は、重合性液晶の種類およびその量に応じて適宜調節できる。重合開始剤の含有量は、重合性液晶の含有量100質量部に対して、通常0.1~30質量部であり、好ましくは0.5~10質量部であり、より好ましくは0.5~8質量部である。重合開始剤の含有量が上記範囲内であると、重合性液晶の配向を乱すことなく重合を行うことができる。
(増感剤)
 組成物(A)は増感剤を含有してもよい。増感剤としては、光増感剤が好ましい。該増感剤としては、例えば、キサントンおよびチオキサントン等のキサントン化合物(例えば、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン等);アントラセンおよびアルコキシ基含有アントラセン(例えば、ジブトキシアントラセン等)等のアントラセン化合物;フェノチアジンおよびルブレン等が挙げられる。
 組成物(A)が増感剤を含有する場合、組成物(A)に含有される重合性液晶の重合反応をより促進することができる。かかる増感剤の使用量は、重合性液晶の含有量100質量部に対して、0.1~10質量部が好ましく、0.5~5質量部がより好ましく、0.5~3質量部がさらに好ましい。
(重合禁止剤)
 重合反応を安定的に進行させる観点から、組成物(A)は重合禁止剤を含有してもよい。重合禁止剤により、重合性液晶の重合反応の進行度合いをコントロールすることができる。
 前記重合禁止剤としては、例えばハイドロキノン、アルコキシ基含有ハイドロキノン、アルコキシ基含有カテコール(例えば、ブチルカテコール等)、ピロガロール、2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル等のラジカル捕捉剤;チオフェノール類;β-ナフチルアミン類およびβ-ナフトール類等が挙げられる。
 組成物(A)が重合禁止剤を含有する場合、重合禁止剤の含有量は、重合性液晶の含有量100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは0.5~5質量部であり、さらに好ましくは0.5~3質量部である。重合禁止剤の含有量が、上記範囲内であると、重合性液晶の配向を乱すことなく重合を行うことができる。
(レベリング剤)
 組成物(A)には、レベリング剤を含有させてもよい。レベリング剤とは、組成物の流動性を調整し、組成物を塗布して得られる膜をより平坦にする機能を有する添加剤である。レベリング剤としては、例えば、有機変性シリコーンオイル系、ポリアクリレート系およびパーフルオロアルキル系のレベリング剤が挙げられる。具体的には、DC3PA、SH7PA、DC11PA、SH28PA、SH29PA、SH30PA、ST80PA、ST86PA、SH8400、SH8700、FZ2123(以上、全て東レ・ダウコーニング(株)製)、KP321、KP323、KP324、KP326、KP340、KP341、X22-161A、KF6001(以上、全て信越化学工業(株)製)、TSF400、TSF401、TSF410、TSF4300、TSF4440、TSF4445、TSF-4446、TSF4452、TSF4460(以上、全てモメンティブ パフォーマンス マテリアルズ ジャパン合同会社製)、フロリナート(fluorinert)(登録商標)FC-72、同FC-40、同FC-43、同FC-3283(以上、全て住友スリーエム(株)製)、メガファック(登録商標)R-08、同R-30、同R-90、同F-410、同F-411、同F-443、同F-445、同F-470、同F-477、同F-479、同F-482、同F-483(以上、いずれもDIC(株)製)、エフトップ(商品名)EF301、同EF303、同EF351、同EF352(以上、全て三菱マテリアル電子化成(株)製)、サーフロン(登録商標)S-381、同S-382、同S-383、同S-393、同SC-101、同SC-105、KH-40、SA-100(以上、全てAGCセイミケミカル(株)製)、商品名E1830、同E5844((株)ダイキンファインケミカル研究所製)、BM-1000、BM-1100、BYK-352、BYK-353およびBYK-361N(いずれも商品名:BM Chemie社製)等が挙げられる。中でも、ポリアクリレート系レベリング剤およびパーフルオロアルキル系レベリング剤が好ましい。
 組成物(A)がレベリング剤を含有する場合、レベリング剤の含有量は、重合性液晶の含有量100質量部に対して、好ましくは0.01~5質量部であり、より好ましくは0.1~5質量部であり、さらに好ましくは0.1~3質量部である。レベリング剤の含有量が上記範囲内であると、重合性液晶を水平配向させることが容易であり、かつ得られる偏光層がより平滑となる傾向がある。重合性液晶に対するレベリング剤の含有量が上記範囲を超えると、得られる偏光層にムラが生じやすい傾向がある。なお、組成物(A)は、レベリング剤を2種以上含有していてもよい。
(溶剤)
 組成物(A)は溶剤を含有してよい。一般に重合性液晶化合物は粘度が高いため、溶剤に溶解させた組成物(A)とすることで塗布が容易になり、結果として偏光層の形成がし易くなる場合が多い。溶剤としては、重合性液晶化合物を完全に溶解し得るものが好ましく、また、重合性液晶化合物の重合反応に不活性な溶剤であることが好ましい。
 溶剤としては、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテルおよびプロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトンまたはプロピレングリコールメチルエーテルアセテートおよび乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノンおよびメチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサンおよびヘプタン等の脂肪族炭化水素溶剤;トルエンおよびキシレン等の芳香族炭化水素溶剤、アセトニトリル等のニトリル溶剤;テトラヒドロフランおよびジメトキシエタン等のエーテル溶剤;クロロホルムおよびクロロベンゼン等の塩素含有溶剤;ジメチルアセトアミド、ジメチルホルミアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶剤等が挙げられる。これら溶剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 溶剤の含有量は、前記組成物(A)の総量に対して50~98質量%が好ましい。換言すると、組成物(A)における固形分の含有量は、2~50質量%が好ましい。該固形分の含有量が50質量%以下であると、組成物(A)の粘度が低くなることから、偏光層の厚さが略均一になりやすい。その結果、当該偏光層にムラが生じにくくなる傾向がある。また、かかる固形分の含有量は、製造しようとする偏光層の厚さを考慮して定めることができる。
(反応性添加剤)
 組成物(A)は、反応性添加剤を含んでもよい。反応性添加剤としては、その分子内に炭素-炭素不飽和結合と活性水素反応性基とを有するものが好ましい。なお、ここでいう「活性水素反応性基」とは、カルボキシル基(-COOH)、水酸基(-OH)、アミノ基(-NH)等の活性水素を有する基に対して反応性を有する基を意味し、グリシジル基、オキサゾリン基、カルボジイミド基、アジリジン基、イミド基、イソシアネート基、チオイソシアネート基、無水マレイン酸基等がその代表例である。反応性添加剤が有する、炭素-炭素不飽和結合および活性水素反応性基の個数は、通常、それぞれ1~20個であり、好ましくはそれぞれ1~10個である。
 反応性添加剤において、活性水素反応性基が少なくとも2つ存在することが好ましく、この場合、複数存在する活性水素反応性基は同一でも、異なるものであってもよい。
 反応性添加剤が有する炭素-炭素不飽和結合とは、炭素-炭素二重結合または炭素-炭素三重結合、またはそれらの組み合わせであってよいが、炭素-炭素二重結合であることが好ましい。中でも、反応性添加剤としては、ビニル基および/または(メタ)アクリル基として炭素-炭素不飽和結合を含むことが好ましい。さらに、活性水素反応性基が、エポキシ基、グリシジル基およびイソシアネート基からなる群から選ばれる少なくとも1種である反応性添加剤が好ましく、アクリル基とイソシアネート基とを有する反応性添加剤がより好ましい。
 反応性添加剤の具体例としては、メタクリロキシグリシジルエーテルやアクリロキシグリシジルエーテル等の、(メタ)アクリル基とエポキシ基とを有する化合物;オキセタンアクリレートやオキセタンメタクリレート等の、(メタ)アクリル基とオキセタン基とを有する化合物;ラクトンアクリレートやラクトンメタクリレート等の、(メタ)アクリル基とラクトン基とを有する化合物;ビニルオキサゾリンやイソプロペニルオキサゾリン等の、ビニル基とオキサゾリン基とを有する化合物;イソシアナトメチルアクリレート、イソシアナトメチルメタクリレート、2-イソシアナトエチルアクリレートおよび2-イソシアナトエチルメタクリレート等の、(メタ)アクリル基とイソシアネート基とを有する化合物のオリゴマー等が挙げられる。また、メタクリル酸無水物、アクリル酸無水物、無水マレイン酸およびビニル無水マレイン酸等の、ビニル基やビニレン基と酸無水物とを有する化合物等が挙げられる。中でも、メタクリロキシグリシジルエーテル、アクリロキシグリシジルエーテル、イソシアナトメチルアクリレート、イソシアナトメチルメタクリレート、ビニルオキサゾリン、2-イソシアナトエチルアクリレート、2-イソシアナトエチルメタクリレートおよび前記のオリゴマーが好ましく、イソシアナトメチルアクリレート、2-イソシアナトエチルアクリレートおよび前記のオリゴマーが特に好ましい。
 具体的には、下記式(Y)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000020
[式(Y)中、
 nは1~10までの整数を表わし、R1’は、炭素数2~20の2価の脂肪族または脂環式炭化水素基、或いは炭素数5~20の2価の芳香族炭化水素基を表わす。各繰返し単位にある2つのR2’は、一方が-NH-であり、他方が>N-C(=O)-R3’で示される基である。R3’は、水酸基または炭素-炭素不飽和結合を有する基を表す。
 式(Y)中のR3’のうち、少なくとも1つのR3’は炭素-炭素不飽和結合を有する基である。]
 前記式(Y)で表される反応性添加剤の中でも、下記式(YY)で表される化合物(以下、化合物(YY)という場合がある。)が特に好ましい(なお、nは前記と同じ意味である)。
Figure JPOXMLDOC01-appb-C000021
 化合物(YY)には、市販品をそのまま又は必要に応じて精製して用いることができる。市販品としては、例えば、Laromer(登録商標)LR-9000(BASF社製)が挙げられる。
 組成物(A)が反応性添加剤を含有する場合、反応性添加剤の含有量は、重合性液晶100質量部に対して、通常0.01~10質量部であり、好ましくは0.1~5質量部である。
 組成物(A)が基材層に塗布される前に、基材層は水分率を調整されることが好ましい。基材層の水分率は、5.0%以下であることができ、3.0%以下であることが好ましい。基材層11の水分率は、0.0%以上であることができる。組成物(A)が、このような水分率の基材層に塗工されると、重合性液晶および二色性色素の配向方向の均一性が高まる。特に、積層体10を延伸した場合、光学特性のムラが視認されやすくなるところ、延伸後であっても偏光層が良好な光学特性を維持しやすい。基材層の水分率は、後述の実施例に記載された方法で測定される。
 基材層の水分率は、基材層が加熱または加湿されることで調整される。基材層を加熱することは、積層体の弾性率を調整するのにも有効である。基材層を加熱する場合、加熱温度は、50℃以上150℃以下とすることができ、加熱時間は、1分以上10分以下とすることができる。
(塗布方法)
 組成物(A)を基材層11または配向層上に塗布する方法としては、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、CAPコーティング法、スリットコーティング法、マイクログラビア法、ダイコーティング法、インクジェット法等が挙げられる。また、ディップコーター、バーコーター、スピンコーター等のコーターを用いて塗布する方法等も挙げられる。中でも、Roll to Roll形式で連続的に塗布する場合には、マイクログラビア法、インクジェット法、スリットコーティング法、ダイコーティング法による塗布方法が好ましく、ガラス等の枚葉体に塗布する場合には、均一性の高いスピンコーティング法が好ましい。Roll to Roll形式で塗布する場合、基材層11に配向性ポリマー組成物または光配向層形成用組成物等を塗布して配向層を形成し、さらに得られた配向層上に組成物(A)を連続的に塗布することもできる。
(乾燥方法)
 組成物(A)に含まれる溶剤を除去する乾燥方法としては、例えば、自然乾燥、通風乾燥、加熱乾燥、減圧乾燥およびこれらを組み合わせた方法が挙げられる。中でも、自然乾燥または加熱乾燥が好ましい。乾燥温度は、0~200℃の範囲が好ましく、20~150℃の範囲がより好ましく、50~130℃の範囲がさらに好ましい。乾燥時間は、10秒間~10分間が好ましく、より好ましくは30秒間~5分間である。光配向層形成用組成物および配向性ポリマー組成物も同様に乾燥することができる。
(重合方法)
 重合性液晶化合物を重合させる方法としては、光重合が好ましい。光重合は、基材層11上または配向層上に塗布された重合性液晶化合物を含む組成物(A)に活性エネルギー線を照射することにより行われる。照射する活性エネルギー線としては、乾燥被膜に含まれる重合性液晶化合物の種類(特に、重合性液晶化合物が有する光重合性官能基の種類)、光重合開始剤を含む場合には光重合開始剤の種類、およびそれらの量に応じて適宜選択される。具体的には、活性エネルギー線としては、可視光、紫外光、赤外光、X線、α線、β線、およびγ線からなる群より選択される一種以上の光が挙げられる。中でも、重合反応の進行を制御し易い点、および光重合装置として当分野で広範に用いられているものが使用できるという点で、紫外光が好ましく、紫外光によって光重合可能なように、重合性液晶化合物の種類を選択することが好ましい。
 前記活性エネルギー線の光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380~440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。
 紫外線照射強度は、通常、10mW/cm~3,000mW/cmである。紫外線照射強度は、好ましくはカチオン重合開始剤またはラジカル重合開始剤の活性化に有効な波長領域における強度である。光を照射する時間は、通常0.1秒~10分であり、好ましくは0.1秒~5分であり、より好ましくは0.1秒~3分であり、さらに好ましくは0.1秒~1分である。このような紫外線照射強度で1回または複数回照射すると、その積算光量は、例えば10mJ/cm~3,000mJ/cmであり、好ましくは50mJ/cm~2,000mJ/cmであり、より好ましくは100mJ/cm~1,000mJ/cmである。積算光量がこの下限値未満である場合には、重合性液晶化合物の硬化が不十分となり、良好な転写性が得られない場合がある。逆に、積算光量がこの上限値を超える場合には、光学異方層を含む光学フィルムが着色する場合がある。
<表示装置>
 表示装置としては特に限定されず、例えば、有機エレクトロルミネッセンス(有機EL)表示装置、無機エレクトロルミネッセンス(無機EL)表示装置、液晶表示装置、タッチパネル表示装置、電界発光表示装置等を挙げることができる。本実施の形態の表示装置は、延伸可能な積層体10を有するため、延伸可能な表示装置に好適に用いることができ、特に有機EL表示装置に好適に用いることができる。
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」および「部」は、特記のない限り、質量%および質量部である。
[引張弾性率]
 引張弾性率は、JIS K7161に準拠して、UTM(Universal Testing Machine、オートグラフAG-X、株式会社島津製作所)を用いて吸収軸方向および透過軸方向へそれぞれ延伸した場合に測定した。延伸条件は、常温(温度23℃)で速度1.5mm/分、幅40mm、標点距離50mmとした。
[全ヘイズ値]
 各延伸方向および延伸率で延伸する前および延伸した後の積層体についてそれぞれ、JIS K7136に準拠して、ヘイズメーター(HM-150、株式会社村上色彩技術研究所)を用いて全ヘイズ値を測定した。各延伸率で延伸する前および延伸した後の積層体の全ヘイズ値の差の絶対値をΔHとした。
 なお全ヘイズ値は、以下の式で算出することができる。
 全ヘイズ値(%)=散乱透過率(%)/全光線透過率(%)×100
[視感度補正単体透過率および視感度補正偏光度]
 各延伸方向および延伸率で延伸する前および延伸した後の積層体についてそれぞれ、JISZ 8701に準拠して、視感度補正単体透過率および視感度補正偏光度を、紫外可視分光光度計(V7100、日本分光株式会社)を用いて測定した。各延伸率で延伸する前および延伸した後の積層体の視感度補正単体透過率および視感度補正偏光度の差の絶対値をそれぞれΔTおよびΔPとした。
[基材層の水分率]
 基材層の水分率は、株式会社エー・アンド・デイ製の加熱乾燥式水分計であるMS-70を用いて、以下の式に基づいて算出した。水分率を測定するときの基材層の大きさは、100mm×100mmとした。
  基材層の水分率(%)=100×(W-W-W)/(W-W
  W=W-W
 Wは、基材層を載せた試料皿の重さである。
 Wは、基材層を載せた試料皿を120℃で加熱し、水分率の時間変化が0.02%/分以下になったときの重さである。
 Wは、試料皿の重さである。
 Wは、試料皿を120℃で加熱し、水分率の時間変化が0.02%/分以下になったときの重さである。
 Wは、試料皿の表面水分量を反映している。
[外観評価]
 各延伸方向および延伸率で延伸した後の積層体においてムラ、クラック、ヘイズおよび破断発生の有無について目視により評価した。
 ○:ムラ無し、クラック無し、ヘイズ無し、かつ破断未発生
 ×:ムラ無し、クラック無し、ヘイズ有り、かつ破断未発生
 ××:クラック発生、破断発生、またはムラ発生
[重合性液晶化合物]
 重合性液晶化合物は、式(1-6)で表される重合性液晶化合物[以下、化合物(1-6)ともいう]75部と式(1-7)で表される重合性液晶化合物[以下、化合物(1-7)ともいう]25部とを用いた。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 化合物(1-6)および化合物(1-7)は、Lub et al.Recl.Trav.Chim.Pays-Bas、115、321-328(1996)記載の方法により合成した。
 二色性色素には、下記式(2-1a)、(2-1b)、(2-3a)で示される特開2013-101328号公報の実施例に記載のアゾ色素を用いた。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
[偏光層形成用組成物]
 偏光層形成用組成物は、化合物(1-6)75重量部、化合物(1-7)25重量部、二色性染料としての上記式(2-1a)、(2-1b)、(2-3a)で示されるアゾ色素各2.5重量部、重合開始剤としての2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(Irgacure369、BASFジャパン社製)6重量部、およびレベリング剤としてのポリアクリレート化合物(BYK-361N、BYK-Chemie社製)1.2重量部を、溶剤のトルエン400部に混合し、得られた混合物を80℃で1時間攪拌することにより調製した。
[ポリマー1]
 ポリマー1は、以下の構造単位からなる光反応性基を有するポリマーである。
Figure JPOXMLDOC01-appb-C000027

 GPC測定より、得られたポリマー1の分子量は数平均分子量28200、Mw/Mn1.82を示し、モノマー含有量は0.5%であった。
[配向層形成用組成物]
 ポリマー1を濃度5重量%で、シクロペンタノンに溶解した溶液を配向層形成用組成物として用いた。
[実施例1]
 厚みが25μmのトリアセチルセルロース(TAC)からなる基材層を準備した。この基材層を120℃で5分間加熱乾燥し、水分率が2%となるようにした。基材層上に、配向層形成用組成物をバーコート法により塗布し、塗膜を80℃で1分間乾燥した。厚さは100nmであった。
 次いでUV照射装置(SPOT CURE SP-7、ウシオ電機株式会社製)を用いて、波長365nmで測定した積算光量が100mJ/cmの光を、ワイヤーグリッド(UIS-27132##、ウシオ電機株式会社製)を通過した偏光を照射することで配向性能を付与し、配向層を得た。
 得られた配向層上に偏光層形成用組成物をバーコート法により塗布した。塗膜を100℃で2分間加熱乾燥した後、室温まで冷却して乾燥された膜を得た。得られた膜に、UV照射装置(SPOT CURE SP-7)を用いて、積算光量が1200mJ/cm(365nm基準)となるように、紫外線を照射して厚みが3μmの偏光層を得た。得られた積層体について、吸収軸方向および透過軸方向への各引張弾性率(EおよびE)を測定した。この積層体は、Eが3180MPaでありEが3900MPaであった。また、延伸する前、吸収軸方向へ延伸率5%で延伸した後、および透過軸方向へ延伸率5%で延伸した後のそれぞれにおいて、全ヘイズ値、視感度補正単体透過率、視感度補正偏光度および外観を評価した。結果を表1に示す。延伸はUTMを用いて行った。延伸条件は、常温で速度1.5mm/分、幅40mm、標点距離50mmとした。
[実施例2]
 実施例1において、吸収軸方向への延伸率および透過軸方向への延伸率をそれぞれ10%としたこと以外は、実施例1と同様にして積層体を作製した。
[実施例3]
 実施例1において、トリアセチルセルロース(TAC)からなる基材層をポリエチレンテレフタレート(PET)からなる基材層に変えたこと以外は、実施例1と同様にして積層体を作製した。PETからなる基材層の厚みは50μmであった。この積層体は、Eが4500MPaでありEが3300MPaであった。
[実施例4]
 実施例3において、吸収軸方向への延伸率および透過軸方向への延伸率をそれぞれ10%としたこと以外は、実施例3と同様にして積層体を作製した。
[比較例1]
 平均重合度約2400、ケン化度99.9モル%、厚み30μmのポリビニルアルコールフィルム〔株式会社クラレ製の商品名「クラレビニロン VF-PE♯3000」〕を、37℃の純水に浸漬した後、ヨウ素とヨウ化カリウムとを含む30℃の水溶液(ヨウ素/ヨウ化カリウム/水(重量比)=0.05/1.7/100)に浸漬した。
 ヨウ化カリウムとホウ酸とを含む58℃の水溶液(ヨウ化カリウム/ホウ酸/水(重量比)=12/3.2/100)に浸漬した。フィルムを15℃の純水で洗浄した後、80℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向した厚み約12μmの偏光層を得た。延伸は、主にヨウ素染色およびホウ酸処理の工程で行い、トータルの延伸倍率は5.5倍であった。得られた偏光層の片面に、厚み25μmのTACフィルムからなる基材層〔コニカミノルタ株式会社製の商品名「KC2UA」〕を、ポリビニルアルコール系樹脂の水溶液からなる接着剤を介して貼り合わせて偏光板を作製した。この積層体は、Eが8500MPaでありEが4950MPaであった。
 得られた積層体について、吸収軸方向へ延伸率5%で延伸した後、および透過軸方向へ延伸率5%で延伸した後のそれぞれにおいて引張弾性率(EおよびE)を測定した。
また、延伸する前、吸収軸方向へ延伸率5%で延伸した後、および透過軸方向へ延伸率5%で延伸した後のそれぞれにおいて、全ヘイズ値、視感度補正単体透過率、視感度補正偏光度および外観を評価した。結果を表1に示す。
[比較例2]
 比較例1において、吸収軸方向への延伸率および透過軸方向への延伸率をそれぞれ10%としたこと以外は、比較例1と同様にして積層体を作製した。
[比較例3]
 比較例1において、厚み25μmのTACフィルムの代わりに、ポリエチレンテレフタレート(PET)フィルム(東レ株式会社)を使用したこと以外は、比較例1と同様にして積層体を作製した。PETフィルムの厚みは38μmであった。この積層体は、Eが9900MPaでありEが5100MPaであった。
[比較例4]
 基材層を加熱乾燥しなかったこと以外は、実施例1と同様にして、積層体を作製した。
Figure JPOXMLDOC01-appb-T000028
 表1に示される通り、実施例1~4の積層体は、延伸前と延伸後とにおいて全ヘイズ値、視感度補正単体透過率および視感度補正偏光度の差が小さく、延伸後も良好な外観を呈した。一方、比較例1では、延伸前と延伸後の視感度補正偏光度の差が大きく、延伸後における外観評価において十分な結果が得られなかった。比較例2では延伸時に破断が生じた。比較例3では全ヘイズ値、視感度補正単体透過率および視感度補正偏光度の差がいずれも大きく、外観評価において十分な結果が得られなかった。比較例4では、偏光層にムラが生じており、外観が悪かった。
 [延伸試験]
 実施例5、6及び比較例5で作製した積層体について、反射率測定を行った後、UTMを用いて温度60℃の環境下で速度2.5mm/分で延伸率5%延伸後、延伸状態を維持して、反射率測定および外観評価を行った。各積層体の測定用サンプルは、初期延伸方向長さ50mm、幅40mmであった。吸収軸方向(MD方向)および透過軸方向(TD方向)に延伸した場合についてそれぞれ延伸試験を行った。
 反射率は、分光測色計(CM-2600d、コニカミノルタ株式会社製、SCIモード)に、測定用サンプル、反射板(アルミ板、反射率97%)の順に設置し、測定を行った。延伸前に測定した反射率[%]および延伸状態を維持して測定した反射率[%]の差の絶対値Δ反射率[%]を求めた。Δ反射率[%]は以下の式により求めることができる。
 Δ反射率[%]=|Y(延伸前)-Y(延伸状態)|
 Y(延伸前)=延伸前に測定した反射率[%]
 Y(延伸状態)=延伸状態を維持して測定した反射率[%]
 外観評価は、ムラ、クラック、ヘイズおよび破断発生の有無について目視により評価した。
 ○:ムラ無し、クラック無し、ヘイズ無し、かつ破断未発生
 ×:ムラ無し、クラック無し、ヘイズ有り、かつ破断未発生
 ××:クラック発生、破断発生、またはムラ発生
[両面粘着剤層付コーティング型位相差層の作製]
(配向膜形成用組成物)
 下記式で表される構造を有する光配向性材料5質量部(重量平均分子量:30,000)とシクロペンタノン(溶媒)95質量部とを混合し、得られた混合物を80℃で1時間攪拌することにより、配向膜形成用組成物を得た。
Figure JPOXMLDOC01-appb-C000029
(位相差層形成用組成物)
 下記式で表される重合性液晶化合物A及び重合性液晶化合物Bを90:10の質量比で混合した混合物100質量部に対して、レベリング剤(F-556;DIC株式会社製)を1.0質量部、及び重合開始剤である2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア369、BASFジャパン株式会社製)を6質量部添加した。さらに、固形分濃度が13%となるようにN-メチル-2-ピロリドン(NMP)を添加し、80℃で1時間攪拌することにより、位相差層形成用組成物を得た。
(重合性液晶化合物A)
Figure JPOXMLDOC01-appb-C000030

(重合性液晶化合物B)
Figure JPOXMLDOC01-appb-C000031

 重合性液晶化合物Aは、特開2010-31223号公報に記載された方法で製造した。また、重合性液晶化合物Bは、特開2009-173893号公報に記載された方法に準じて製造した。
(基材、配向膜、重合性液晶化合物が硬化した層からなる積層体の作製)
 基材として50μm厚のシクロオレフィン系樹脂フィルム〔ZF-14-50、日本ゼオン株式会社製〕を準備し、コロナ処理を施した。コロナ処理が施された面に、配向膜形成用組成物をバーコーターで塗布した。塗布膜を80℃で1分間乾燥した。乾燥した塗布膜に、偏光UV照射装置〔ウシオ電機株式会社の商品名「SPOT CURE SP-9」〕を用いて、軸角度45°にて偏光UVを照射し、配向膜を得た。偏光UVの照射は、波長313nmにおける積算光量が100mJ/cmとなるように行われた。
 続いて、配向膜上に、位相差層形成用組成物を、バーコーターを用いて塗布した。塗布膜を120℃で1分間乾燥した。乾燥した塗布膜に、高圧水銀ランプ〔ウシオ電機株式会社の商品名:「ユニキュアVB-15201BY-A」〕を用いて、紫外線を照射した。
紫外線の照射工程は、波長365nmにおける積算光量が400mJ/cmとなるように、窒素雰囲気下で行われた。照射直後に冷却工程として、硬化膜を5℃に設定したオーブンに20秒間投入した。オーブンから取り出し後、すぐに再度前記紫外線照射工程および冷却工程を実施し(すなわち2回の紫外線照射の合計の積算光量は800mJ/cmである。)、基材、配向膜、および重合性液晶化合物が硬化した層からなる積層体を得た。
 作製した積層体における重合性液晶化合物が硬化した層上に後述の粘着剤層を積層した。次に、積層体から基材を剥離し、剥離して露出した面にも同様に粘着剤層を積層した。
このようにして、粘着剤層、重合性液晶化合物が硬化した層、配向膜、および粘着剤層からなる両面粘着剤層付きのコーティング型位相差層を作製した。重合性液晶化合物が硬化した層は、λ/4の位相差値を有していた。
[両面粘着剤層付フィルム型位相差層の作製]
 環状オレフィン系樹脂フィルムを一軸延伸したフィルムであるゼオノアフィルム(日本ゼオン株式会社、波長λ=550nmの光に対する面内位相差値:138nm)を準備した。このフィルムの両面に後述の粘着剤層をそれぞれ積層した。
(粘着剤層)
 アクリル酸ブチル:70質量部、アクリル酸エチル:20質量部、アクリル酸:2.0質量部、およびラジカル重合開始剤(2,2’-アゾビスイソブチロニトリル):0.2質量部を、窒素雰囲気下で撹拌しながら55℃で反応させることによりアクリル樹脂を得た。
 アクリル樹脂:100質量部、架橋剤(東ソー株式会社製「コロネートL」):0.7質量部、シランカップリング剤(信越化学工業株式会社製「X-12-981」):0.5質量部を混合した。全体固形分濃度が10%になるように酢酸エチルを添加して、粘着剤組成物を得た。
 得られた粘着剤組成物を離型処理されたポリエチレンテレフタレートフィルム(厚み38μm)の離型処理面に、アプリケータを利用して乾燥後の厚みが25μmになるように塗布した。塗布層を100℃で1分間乾燥して、粘着剤層を備えるフィルムを得た。その後、粘着剤層上に、離型処理された別のポリエチレンテレフタレートフィルム(厚み38μm)を貼合した。その後、温度23℃、相対湿度50%RHの条件で7日間養生させた。
 <実施例5>
 実施例1で作製した基材層/偏光層からなる積層体の偏光層上に、上述の両面粘着剤層付コーティング型位相差層を、一方の粘着剤層を介して貼り合わせた。重合性液晶化合物が硬化した層の遅相軸は、偏光層の吸収軸に対して45度であった。このようにして、基材層/偏光層/粘着剤層/コ-ティング型位相差板/粘着剤層からなる円偏光板を作製した。得られた円偏光板について延伸試験を行った。結果を表2に示す。
 <実施例6>
 実施例1で作製した基材層/偏光層からなる積層体の偏光層と上述のフィルム型位相差層とを粘着剤層を介して貼り合わせた。フィルム型位相差層の遅相軸は、偏光層の吸収軸に対して45度であった。このようにして、基材層/偏光層/粘着剤層/フィルム型位相差層/粘着剤層からなる円偏光板を作製した。得られた円偏光板について延伸試験を行った。結果を表2に示す。
 <比較例5>
 比較例4で作製した基材層/偏光層からなる積層体を用いたこと以外は、実施例5と同様にして、基材/偏光層/粘着剤層/コ-ティング型位相差層/粘着剤層からなる円偏光板を作製した。得られた円偏光板について延伸試験を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000032
 10 積層体、11 基材層、12 偏光層。

Claims (8)

  1. 基材層および偏光層から構成される延伸可能な積層体であって、
    前記基材層の水分率は、5.0%以下であり、
    以下の式(1)を満たす、積層体。
     |E-E|/|E+E|≦0.25    (1)
    [式中、EおよびEはそれぞれ、吸収軸方向および透過軸方向における引張弾性率を示す]
  2. 全ヘイズ値が3%以下である、請求項1に記載の積層体。
  3. 前記偏光層の厚みは、0.5μm~10μmである、請求項1または2に記載の積層体。
  4. 前記偏光層は、重合性液晶化合物と二色性色素とを含む偏光層形成用組成物の硬化物から構成される、請求項1~3のいずれか1項に記載の積層体。
  5. 前記偏光層中の二色性色素の含有量は、重合性液晶化合物100質量部に対して0.1~30質量部である、請求項1~4のいずれか1項に記載の積層体。
  6. 前記偏光層側に粘着剤層を更に有する、請求項1~5のいずれか1項に記載の積層体。
  7. 前記粘着剤層を介して積層される位相差層を有する、請求項6に記載の積層体。
  8. 請求項1~7のいずれか1項に記載の積層体が、画像表示素子に貼合された、表示装置。
PCT/JP2019/026444 2018-07-25 2019-07-03 積層体 WO2020022010A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980041695.9A CN112368143B (zh) 2018-07-25 2019-07-03 层叠体
KR1020207033047A KR20210038423A (ko) 2018-07-25 2019-07-03 적층체

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-139146 2018-07-25
JP2018139146 2018-07-25
JP2019-081954 2019-04-23
JP2019081954A JP7281953B2 (ja) 2018-07-25 2019-04-23 積層体

Publications (1)

Publication Number Publication Date
WO2020022010A1 true WO2020022010A1 (ja) 2020-01-30

Family

ID=69180743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026444 WO2020022010A1 (ja) 2018-07-25 2019-07-03 積層体

Country Status (1)

Country Link
WO (1) WO2020022010A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279705A (ja) * 2006-03-13 2007-10-25 Fujifilm Corp 半透過型液晶表示装置
WO2013114979A1 (ja) * 2012-01-30 2013-08-08 コニカミノルタアドバンストレイヤー株式会社 偏光板、偏光板の製造方法及び液晶表示装置
JP2014206725A (ja) * 2013-03-19 2014-10-30 富士フイルム株式会社 偏光板および液晶表示装置
JP2014211601A (ja) * 2013-03-08 2014-11-13 富士フイルム株式会社 光学フィルム、偏光板、及び液晶表示装置
JP2015200861A (ja) * 2013-09-11 2015-11-12 富士フイルム株式会社 光学異方性層とその製造方法、積層体とその製造方法、偏光板、液晶表示装置及び有機el表示装置
JP2017111451A (ja) * 2014-09-30 2017-06-22 住友化学株式会社 偏光板、液晶表示装置及び有機エレクトロルミネッセンス表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279705A (ja) * 2006-03-13 2007-10-25 Fujifilm Corp 半透過型液晶表示装置
WO2013114979A1 (ja) * 2012-01-30 2013-08-08 コニカミノルタアドバンストレイヤー株式会社 偏光板、偏光板の製造方法及び液晶表示装置
JP2014211601A (ja) * 2013-03-08 2014-11-13 富士フイルム株式会社 光学フィルム、偏光板、及び液晶表示装置
JP2014206725A (ja) * 2013-03-19 2014-10-30 富士フイルム株式会社 偏光板および液晶表示装置
JP2015200861A (ja) * 2013-09-11 2015-11-12 富士フイルム株式会社 光学異方性層とその製造方法、積層体とその製造方法、偏光板、液晶表示装置及び有機el表示装置
JP2017111451A (ja) * 2014-09-30 2017-06-22 住友化学株式会社 偏光板、液晶表示装置及び有機エレクトロルミネッセンス表示装置

Similar Documents

Publication Publication Date Title
TWI713619B (zh) 偏光板、具備該偏光板的顯示裝置,及其製造方法
CN109477925B (zh) 椭圆偏光板
JP2023009102A (ja) 長尺偏光フィルムの製造方法
JP2023096154A (ja) パターン偏光フィルム
JP2015206852A (ja) パターン偏光フィルムの製造方法
JP7281953B2 (ja) 積層体
JP2023080141A (ja) 偏光フィルム及びその製造方法
JP7198683B2 (ja) 積層体
KR20240032006A (ko) 복합 편광판 및 액정 표시 장치
TW202032177A (zh) 積層體及圖像顯示裝置
JP7287896B2 (ja) 偏光フィルムの製造方法及び偏光フィルム
CN111279233B (zh) 偏光膜的制造方法及偏光膜
WO2020022009A1 (ja) 積層体
WO2020170697A1 (ja) 積層体、及び画像表示装置
WO2020022010A1 (ja) 積層体
JP6010910B2 (ja) 組成物及び光学フィルム
WO2021256199A1 (ja) 偏光膜、偏光板、光学積層体、楕円偏光板、有機el表示装置およびフレキシブル画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840175

Country of ref document: EP

Kind code of ref document: A1