WO2020017526A1 - Wavelength conversion member - Google Patents

Wavelength conversion member Download PDF

Info

Publication number
WO2020017526A1
WO2020017526A1 PCT/JP2019/028015 JP2019028015W WO2020017526A1 WO 2020017526 A1 WO2020017526 A1 WO 2020017526A1 JP 2019028015 W JP2019028015 W JP 2019028015W WO 2020017526 A1 WO2020017526 A1 WO 2020017526A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
phosphor
wavelength conversion
inorganic
conversion member
Prior art date
Application number
PCT/JP2019/028015
Other languages
French (fr)
Japanese (ja)
Inventor
達也 奥野
将啓 中村
直樹 栗副
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020531328A priority Critical patent/JP7170235B2/en
Publication of WO2020017526A1 publication Critical patent/WO2020017526A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a wavelength conversion member.
  • a light emitting device in which a wavelength conversion member including a phosphor is combined with a laser beam for exciting the phosphor has been known.
  • the light-emitting device is expected to be a device that enables downsizing and high output of solid-state lighting.
  • a wavelength conversion member there is known a wavelength conversion member that includes a phosphor particle that emits light when irradiated with excitation light, and a wavelength converter that includes a binder that holds the phosphor particle.
  • a wavelength converter in which a phosphor is filled in a silicone resin is known.
  • the wavelength conversion member has been irradiated with high-power excitation light such as laser light.
  • high-power excitation light such as laser light.
  • an organic binder such as a silicone resin has poor heat resistance and heat dissipation.
  • discoloration or burning occurs in the organic matter constituting the binder, and the light transmittance is reduced, and the light output efficiency of the wavelength conversion member is reduced. Will get worse.
  • the wavelength conversion member containing the organic binder when high-power excitation light is applied to the wavelength conversion member containing the organic binder, the wavelength conversion member generates heat because the thermal conductivity of the organic substance is usually low, less than 1 W / m ⁇ K. Accordingly, the wavelength conversion member containing the organic binder has a problem that the temperature quenching of the phosphor is easily generated.
  • Patent Document 1 the inorganic phosphor particles and the sinterable ceramic particles are contained, the sinterable ceramic particles are interposed between the inorganic phosphor particles, and the inorganic phosphor particles are easily sintered.
  • a wavelength conversion member bound by conductive ceramic particles is disclosed. It also discloses that the easily sinterable ceramic particles are easily sinterable alumina particles.
  • the easily sinterable ceramic particles have better thermal conductivity than glass or the like, the heat generated by the inorganic phosphor particles is efficiently released to the outside, and the temperature quenching of the phosphor is performed. Is described as being less likely to occur.
  • the inorganic phosphor particles are bound by the sinterable ceramic particles, the inorganic phosphor particles and the sinterable ceramic particles are in a state of point contact with each other. ing. Therefore, even if sinterable ceramic particles are used, the contact area between the inorganic phosphor particles and the sinterable ceramic particles is small, and a heat conduction path is not sufficiently formed. In some cases, heat dissipation was insufficient. Then, when such a wavelength conversion member is irradiated with high-power excitation light, there is a problem that the temperature quenching of the phosphor cannot be sufficiently suppressed.
  • An object of the present invention is to provide a wavelength conversion member which has excellent heat dissipation even when irradiated with high-power excitation light and can suppress temperature quenching of a phosphor.
  • a wavelength conversion member includes a plurality of phosphor particles and a plurality of inorganic particles, and the surface of the phosphor particles includes an amorphous inorganic compound. Including an amorphous portion.
  • the inorganic particles and the amorphous portion contain the same metal element, and the metal element is at least one selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals and semimetals.
  • FIG. 1 is a cross-sectional view schematically illustrating an example of the wavelength conversion member according to the present embodiment.
  • FIG. 2 is an enlarged schematic view showing the inside of the wavelength conversion member according to the present embodiment.
  • FIG. 3 is a sectional view schematically showing another example of the wavelength conversion member according to the present embodiment.
  • FIG. 4 is a photograph showing a result of observing a part of the test sample of the example with a transmission electron microscope.
  • FIG. 4A is a photograph showing the result of observing the surface state of the phosphor in the test sample.
  • FIG. 4B is a photograph showing an enlarged portion of “ ⁇ ” in FIG. 4A.
  • FIG. 4C is a photograph showing the photograph of FIG. 4B in a further enlarged manner.
  • FIG. 5 is a photograph showing the result of observing a part of the test sample of the example with a transmission electron microscope.
  • FIG. 5A is a photograph showing the photograph of FIG. 4C further enlarged.
  • FIG. 5B is a diagram showing an electron diffraction pattern of the inorganic compound existing between the phosphor particles and the zinc oxide particles in FIG.
  • FIG. 6 is a photograph showing a result of observing another portion of the test sample of the example with a transmission electron microscope.
  • FIG. 6A is a photograph showing the result of observing the surface state of the phosphor in the test sample.
  • FIG. 6B is a photograph showing an enlarged portion of “ ⁇ ” in FIG. 6A.
  • FIG. 6C is a photograph showing the photograph of FIG. 6B in a further enlarged manner.
  • FIG. 7 is a photograph showing the result of observing another portion of the test sample of the example with a transmission electron microscope.
  • FIG. 7A is a photograph showing the photograph of FIG. 6C in a further enlarged manner.
  • FIG. 7B is a diagram showing an electron diffraction pattern of the inorganic compound existing between the phosphor particles and the zinc oxide particles in FIG. 7A.
  • FIG. 8 shows a scanning transmission electron micrograph (STEM), and oxygen (O), zinc (Zn), silicon (Si), and yttrium when an energy dispersive X-ray analysis was performed on the test sample of the example. It is a figure which shows the mapping data of (Y) and aluminum (Al).
  • FIG. 9 is a diagram illustrating a result of performing energy dispersive X-ray analysis on a part of the test sample of the example.
  • FIG. 9A is a view showing a bright field image (BF) of the test sample and mapping data of oxygen (O), silicon (Si), and zinc (Zn).
  • FIG. 9B is a graph showing the result of simple quantification after extracting a spectrum from the mapping data for the amorphous portion indicated by “ ⁇ ”in FIG. 9A.
  • FIG. 10 is a diagram illustrating a result of performing energy dispersive X-ray analysis on another portion of the test sample of the example.
  • FIG. 10A is a diagram showing a bright field image (BF) of the test sample and mapping data of oxygen (O), silicon (Si), and zinc (Zn).
  • FIG. 10B is a graph showing the result of simple quantification after extracting a spectrum from the mapping data for the amorphous portion indicated by “ ⁇ ”in FIG. 10A.
  • the wavelength conversion member 1 of the present embodiment includes a wavelength converter 10 that is a member that converts the wavelength of incident light.
  • the wavelength converter 10 has a plurality of phosphor particles 20 that convert the wavelength of incident light, and a binder layer 30 that connects the phosphor particles 20 to each other.
  • the phosphor particles 20 dispersed inside the wavelength converter 10 are excited by incident light (excitation light) and emit light having a longer wavelength than the incident light. Therefore, the wavelength converter 10 exerts the function of wavelength-converting incident light by the action of the phosphor particles 20.
  • each phosphor particle 20 is covered with the binder layer 30.
  • the binder layer 30 may be formed so as to connect at least the adjacent phosphor particles 20. Therefore, as an embodiment other than the wavelength converter 10 shown in FIG. 1, a part of the surface of each phosphor particle 20 may be exposed without being covered with the binder layer 30.
  • the phosphor particles 20 included in the wavelength conversion member 1 absorb light (excitation light) in the excitation wavelength range of the phosphor particles 20, and emit light (converted light) having a longer wavelength than the excitation light.
  • the phosphor particles 20 may be particles formed of an appropriate phosphor.
  • examples of the phosphor include CaAlSiN 3 : Eu 2+ , (Ca, Sr) AlSiN 3 : Eu 2+ , CaS: Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu Red fluorescent materials such as 2+ .
  • green phosphors such as CaSc 2 O 4 : Ce 3+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , (Ca, Sr, Ba) Al 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ are also available. No.
  • Y 3 Al 5 O 12 Ce 3+, (Ca, Sr, Ba, Zn) 2 SiO 4: also mentioned yellow-green phosphor, such as Eu 2+: Eu 2+ yellow phosphor, such as, (Ba, Sr) 2 SiO 4 Can be Further, orange phosphors such as Sr 3 SiO 5 : Eu 2+ and Ca 0.7 Sr 0.3 AlSiN 3 : Eu 2+ are also included.
  • examples of the phosphor include (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce, (Ca, Sr, Ba) 2 SiO 4 : Eu, Li Oxide phosphors such as 2 SrSiO 4 : Eu and (Ba, Sr) 3 SiO 5 : Eu are exemplified.
  • Ca 3 Sc 2 Si 3 O 12 Ce, SrAl 2 O 4 : Eu, Tb 3 Al 5 O 12 : Ce, BAM: Eu, BAM: Mn, Eu, (Mg, Ca, Sr, Ba) 10
  • ZnS Cu, Al, CaGa 2 S 4 : Eu, SrGa 2 S 4 : Eu, BaGa 2 S 4 : Eu, Ca (Ga, Al, In) 2 S 4 : Eu, Sr (Ga, Al, In) ) 2 S 4: Eu, Ba (Ga, Al, in) 2 S 4: sulfide phosphor such as Eu can also be mentioned.
  • Oxysulfide phosphors such as Y 2 O 2 S: Eu and La 2 O 2 S: Eu are also included.
  • the phosphor particles 20 are preferably made of an oxide phosphor having a garnet (garnet) crystal structure.
  • Garnet compounds are chemically stable and easy to handle in atmospheric air at normal pressure. Further, the phosphor particles of the garnet compound can be easily formed into monodisperse particles having a polyhedral shape or monodisperse particles having a shape close to a polyhedron. For this reason, it becomes possible to obtain the wavelength converter 10 having a high filling factor of the phosphor and excellent translucency.
  • the average particle diameter of the phosphor particles 20 is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • the value of the “average particle diameter” is set to several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) unless otherwise specified. The value calculated as the average value of the particle diameters of the particles observed therein is adopted.
  • the binder layer 30 included in the wavelength conversion member 1 connects the adjacent phosphor particles 20 to each other.
  • the binder layer 30 contains a plurality of inorganic particles 31, and the inorganic particles 31 are preferably in contact with each other. Thereby, the phosphor particles 20 can be connected by the intermolecular force between the inorganic particles 31 and the like, and the phosphor particles 20 can be fixed.
  • the inorganic particles 31 contain at least one metal element selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals and semimetals.
  • alkaline earth metals include beryllium and magnesium in addition to calcium, strontium, barium and radium.
  • Base metals include aluminum, zinc, gallium, cadmium, indium, tin, mercury, thallium, lead, bismuth and polonium.
  • Metalloids include boron, silicon, germanium, arsenic, antimony and tellurium. Among these, it is preferable that the inorganic particles 31 contain at least one metal element of zinc and magnesium.
  • the inorganic particles 31 containing these metal elements can easily form an amorphous portion 32 derived from the inorganic particles 31 by a pressure heating method as described later.
  • the inorganic particles 31 preferably contain at least one of an oxide and a nitride of the metal element, and more preferably contain at least one of an oxide and a nitride of the metal element as a main component. That is, the inorganic particles 31 preferably contain at least one of an oxide and a nitride of the above-described metal element at 50 mol% or more, and more preferably at least 80 mol%. Since the oxides and nitrides of the above metal elements have high thermal conductivity, the use of the inorganic particles 31 containing them increases the thermal conductivity of the binder layer 30 and improves the heat dissipation of the wavelength conversion member 1. Becomes possible.
  • the inorganic particles 31 are preferably crystalline particles containing at least one metal element selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals and semimetals. Further, the inorganic particles 31 are preferably crystalline particles containing at least one of an oxide and a nitride of the above-described metal element, and a crystal mainly containing at least one of the oxide and a nitride of the above-mentioned metal element. More preferably, the particles are quality particles.
  • the average particle diameter of the inorganic particles 31 is not particularly limited, but is preferably smaller than the average particle diameter of the phosphor particles 20. Further, the average particle diameter of the inorganic particles 31 is more preferably 300 nm or more and 30 ⁇ m or less, further preferably 300 nm or more and 10 ⁇ m or less, and particularly preferably 300 nm or more and 5 ⁇ m or less. When the average particle diameter of the inorganic particles 31 is 300 nm or more, the inorganic particles 31 are in contact with each other and a heat conduction path is easily formed, so that the heat radiation of the wavelength conversion member 1 can be enhanced. Further, when the average particle diameter of the inorganic particles 31 is within this range, the phosphor particles 20 can be strongly connected to each other, and the strength of the wavelength conversion member 1 can be increased.
  • the shape of the inorganic particles 31 is not particularly limited, but may be, for example, spherical.
  • the inorganic particles 31 may be whisker-like (needle-like) particles or scale-like particles. Whisker-like particles or flake-like particles have higher contact with other particles than spherical particles, and thermal conductivity is easily improved. Therefore, by using particles having such a shape as the inorganic particles 31, it is possible to enhance the heat dissipation of the binder layer 30.
  • the whisker-like inorganic particles 31 for example, particles containing at least one selected from the group consisting of aluminum nitride (AlN), zinc oxide (ZnO), and aluminum oxide (Al 2 O 3 ) may be used. it can.
  • the scaly inorganic particles 31 for example, particles containing boron nitride (BN) can be used.
  • the wavelength conversion member when the binder layer is composed of only a plurality of inorganic particles as in Patent Document 1, the inorganic particles, the phosphor particles, and the inorganic particles are in a state of point contact with each other.
  • the conduction path is not sufficiently formed.
  • the heat radiation of the wavelength conversion member becomes insufficient, and the temperature quenching of the phosphor may not be sufficiently suppressed. Therefore, in the wavelength conversion member 1 of the present embodiment, an amorphous portion 32 containing an amorphous inorganic compound is provided on the surface of the phosphor particles 20.
  • the amorphous portion 32 is made of an inorganic material and has excellent thermal conductivity.
  • the amorphous portion 32 on the surface of the phosphor particles 20 the heat conduction path from the phosphor particles 20 to the inorganic particles 31 increases, so that the heat dissipation of the binder layer 30 increases, and the phosphor particles 20 Temperature quenching can be suppressed.
  • the binder layer 30 includes a plurality of inorganic particles 31 and an amorphous portion 32 containing an amorphous inorganic compound. Then, as shown in FIG. 2, the inorganic particles 31 are interposed between the adjacent phosphor particles 20 and connect the phosphor particles 20.
  • the inorganic particles 31 are preferably in contact with each other, but the adjacent inorganic particles 31 may not be in contact with each other, and the amorphous portion 32 may be interposed between them.
  • the amorphous portion 32 preferably exists at least in contact with the surface of the phosphor particles 20, and furthermore, exists between the phosphor particles 20 and the inorganic particles 31 and also between adjacent inorganic particles 31. More preferred.
  • both the inorganic particles 31 and the amorphous portion 32 become a heat conduction path. For this reason, heat from the phosphor particles 20 generated due to excitation with high-density light is efficiently radiated to the outside of the wavelength converter 10 through both the inorganic particles 31 and the amorphous portion 32. As a result, the temperature rise of the entire wavelength converter 10 is less likely to occur, so that the temperature quenching of the phosphor particles 20 is suppressed, and high-output light emission can be obtained.
  • the amorphous portion 32 preferably contains an amorphous inorganic compound.
  • the amorphous portion 32 may be a portion composed of only an amorphous inorganic compound, or may be a portion composed of a mixture of an amorphous inorganic compound and a crystalline inorganic compound. .
  • the amorphous portion 32 may be a portion in which a crystalline inorganic compound is dispersed inside an amorphous inorganic compound. When the amorphous inorganic compound and the crystalline inorganic compound are mixed, the amorphous inorganic compound and the crystalline inorganic compound may have the same chemical composition, and different chemical compositions from each other. May be provided.
  • the inorganic particles 31 and the amorphous portion 32 contain the same metal element, and the metal element is preferably at least one selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals and semimetals. That is, the inorganic compound forming the inorganic particles 31 and the amorphous inorganic compound forming the amorphous portion 32 contain at least the same metal element. However, the inorganic compound forming the inorganic particles 31 and the amorphous inorganic compound forming the amorphous portion 32 may have the same chemical composition or may have different chemical compositions.
  • both the inorganic compound forming the inorganic particles 31 and the amorphous inorganic compound forming the amorphous portion 32 may be zinc oxide (ZnO).
  • the inorganic compound forming the inorganic particles 31 is ZnO, but the amorphous inorganic compound forming the amorphous portion 32 may be a zinc-containing oxide other than ZnO.
  • the amorphous portion 32 is a portion where the amorphous inorganic compound and the crystalline inorganic compound are mixed
  • the amorphous inorganic compound and the crystalline inorganic compound may have the same chemical composition.
  • the chemical composition may be different from each other.
  • the inorganic particles 31 and the amorphous part 32 preferably contain an oxide of at least one metal element selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals and semimetals. . Since the oxide of such a metal element has high thermal conductivity, it is possible to enhance the heat dissipation of the binder layer 30 and suppress the temperature quenching of the phosphor particles 20.
  • the oxide of the metal element contained in both the inorganic particles 31 and the amorphous portion 32 is preferably at least one selected from the group consisting of zinc oxide, magnesium oxide, and a composite of zinc oxide and magnesium oxide. Since the oxides of these metal elements have higher thermal conductivity, it is possible to improve the heat dissipation of the binder layer 30. Further, as described later, by using oxides of these metal elements, the amorphous portion 32 can be formed by a simple method.
  • the inorganic particles 31 and the amorphous portion 32 contain a nitride of at least one metal element selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals and metalloids. Good. Since the nitrides of these metal elements also have high thermal conductivity, it is possible to improve the heat dissipation of the binder layer 30. As a nitride of a metal element contained in both the inorganic particles 31 and the amorphous portion 32, boron nitride (BN) can be given.
  • boron nitride boron nitride
  • the inorganic particles 31 and the amorphous portion 32 contain the same metal element.
  • the amorphous portion 32 may include a metal element that is not included in the inorganic particles 31.
  • the inorganic particles 31 are made of zinc oxide (ZnO)
  • the amorphous portion 32 contains at least a zinc oxide.
  • the amorphous portion 32 may contain silicon in addition to the zinc oxide.
  • the mixing route of the silicon is not particularly limited.
  • the mixing route may be mixed as an impurity at the time of manufacturing and segregated in the amorphous portion 32.
  • the amorphous portion 32 is made of an inorganic compound and has high thermal conductivity. It is possible to increase.
  • the silicon is preferably contained as an oxide.
  • the silicon oxide may be crystalline or amorphous.
  • the amorphous portion 32 is preferably made of an inorganic compound, and preferably contains as little organic matter as possible. However, the amorphous portion 32 may contain an organic substance of an impurity that does not affect the thermal conductivity.
  • the wavelength conversion member 1 shown in FIG. 1 can convert the wavelength of the incident light only by the wavelength conversion member 10, so that the wavelength conversion member 10 can be used alone in a light emitting device.
  • the wavelength conversion member 1A of the present embodiment includes a wavelength converter 10 and a substrate 40 that supports the wavelength converter 10.
  • the substrate 40 By using the substrate 40, the mechanical durability of the wavelength converter 10 can be increased.
  • heat of the wavelength converter 10 generated due to excitation with high-density light can be efficiently radiated to the outside through the substrate 40. Therefore, it is possible to suppress temperature quenching of the phosphor particles 20 and obtain high-output light emission.
  • the substrate 40 can adhere to the wavelength converter 10 by being fixed to the binder layer 30 constituting the wavelength converter 10. Therefore, as shown in FIG. 3, the wavelength converter 10 may be provided directly on the surface of the substrate 40. Further, the wavelength converter 10 may be provided indirectly on the surface of the substrate 40. For example, between the substrate 40 and the wavelength converter 10, a member having excellent adhesion to the substrate 40 and being fixed to the wavelength converter 10 can be provided. As such a member, for example, a member made of a metal thin film, an oxide thin film, or a combination thereof can be used.
  • the substrate 40 is not particularly limited as long as it can support the wavelength converter 10, and for example, at least one selected from the group consisting of a transparent substrate, a metal substrate, and a ceramic substrate can be used.
  • the transparent substrate include a glass substrate.
  • the metal substrate include a copper substrate and a stainless steel substrate.
  • the ceramic substrate include a sapphire substrate and an aluminum nitride substrate.
  • the thickness of the wavelength conversion body 10 is not particularly limited, but is preferably, for example, 40 ⁇ m to 400 ⁇ m, and more preferably 80 ⁇ m to 200 ⁇ m. When the thickness of the wavelength converter 10 is within the above range, the heat radiation can be kept relatively high.
  • the wavelength conversion members 1 and 1A include the plurality of phosphor particles 20 and the plurality of inorganic particles 31.
  • the surface of the phosphor particles 20 has an amorphous portion 32 containing an amorphous inorganic compound.
  • the inorganic particles 31 and the amorphous portion 32 contain the same metal element, and the metal element is at least one selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals, and metalloids. Since both the inorganic particles 31 and the amorphous portion 32 contain an inorganic compound, they have high thermal conductivity.
  • the heat of the wavelength converter 10 can be efficiently radiated to the outside even when irradiated with high-power excitation light. Can be. As a result, the temperature quenching of the phosphor particles 20 is suppressed, and high-output light emission can be obtained.
  • the amorphous portion 32 fills not only the surface of the phosphor particles 20 but also the gap between the phosphor particles 20 and the inorganic particles 31 and the gap between the adjacent inorganic particles 31. Can be provided. Therefore, it is possible to reduce voids that remain inside the binder layer 30 and reduce the thermal conductivity, and improve the thermal conductivity of the entire binder layer 30.
  • the total volume of the phosphor particles 20 is preferably larger than the total volume of the inorganic particles 31. Increasing the total volume of the phosphor particles 20 increases the packing density of the phosphor. Therefore, in the wavelength conversion members 1 and 1A, the density of the output light from the phosphor particles 20 can be further increased.
  • the total volume of the inorganic particles 31 is preferably larger than the total volume of the phosphor particles 20.
  • the adjacent phosphor particles 20 are easily separated from each other.
  • the inorganic particles 31 and the amorphous portion 32 become a heat conduction path, and the efficiency becomes outside the wavelength converter 10. Dissipates heat well. Therefore, the heat dissipation of the binder layer 30 is enhanced, and the temperature quenching of the phosphor particles 20 can be suppressed.
  • the average particle diameter of the phosphor particles 20 is preferably larger than the average particle diameter of the inorganic particles 31. Since the average particle diameter of the inorganic particles 31 is smaller than that of the phosphor particles 20, the phosphor particles 20 can be connected by the intermolecular force between the inorganic particles 31 and the like, and the phosphor particles 20 can be fixed. In addition, since the average particle diameter of the phosphor particles 20 is increased, the excitation light emitted by the excitation source is efficiently absorbed, and the absorbed excitation light is easily converted into color-controlled fluorescence.
  • the wavelength converter 10 in the wavelength converters 1 and 1A can be manufactured by pressurizing and heating the phosphor particles and the inorganic particles in a state containing water. By using such a pressurized heating method, a part of the inorganic particles 31 is eluted, and the amorphous portion 32 can be formed on the surface of the phosphor particles 20.
  • a powder of the phosphor particles 20 and a powder of the inorganic particles 31 are mixed to prepare a composite powder.
  • the method of mixing the powder of the phosphor particles 20 and the powder of the inorganic particles 31 is not particularly limited, and can be performed by a dry method or a wet method.
  • the powder of the phosphor particles 20 and the powder of the inorganic particles 31 may be mixed in the air or may be mixed under an inert atmosphere.
  • an acidic aqueous solution or an alkaline aqueous solution is added to the composite powder.
  • an acidic aqueous solution or an alkaline aqueous solution By adding an acidic aqueous solution or an alkaline aqueous solution, the elution of the inorganic particles 31 can be promoted.
  • an acidic aqueous solution an aqueous solution having a pH of 1 to 3 can be used.
  • an alkaline aqueous solution an aqueous solution having a pH of 10 to 14 can be used.
  • the inorganic particles 31 have solubility in at least one of an acidic aqueous solution and an alkaline aqueous solution. Specifically, the inorganic particles 31 more preferably have solubility in at least one of an acidic aqueous solution having a pH of 1 to 3 and an alkaline aqueous solution having a pH of 10 to 14. By having solubility in at least one of the acidic aqueous solution and the alkaline aqueous solution, a part of the inorganic compound constituting the inorganic particles 31 is dissolved in the pressurizing and heating step.
  • the dissolved inorganic compound penetrates into the surface of the phosphor particles 20 in the composite powder, the gap between the phosphor particles 20 and the inorganic particles 31, and the gap between the inorganic particles 31. Then, by removing the water in the composite powder in this state, the inorganic particles constituting the inorganic particles 31 are formed between the surfaces of the fluorescent particles 20, between the fluorescent particles 20 and the inorganic particles 31, and between the inorganic particles 31.
  • the amorphous portion 32 containing the compound can be formed.
  • the phosphor particles 20 preferably have at least one of acid resistance and alkali resistance. Specifically, it is more preferable that the phosphor particles 20 do not have solubility in at least one of an acidic aqueous solution having a pH of 1 to 3 and an alkaline aqueous solution having a pH of 10 to 14.
  • the particle shape of the phosphor particles 20 can be maintained even in the pressurizing and heating step, so that it is possible to suppress a decrease in the luminous efficiency of the phosphor particles 20. .
  • the inorganic particles 31 When the above-mentioned acidic aqueous solution is added to the composite powder, the inorganic particles 31 preferably have solubility in the acidic aqueous solution, and the phosphor particles 20 preferably have acid resistance.
  • the inorganic particles 31 When the above-mentioned alkaline aqueous solution is added to the composite powder, the inorganic particles 31 preferably have solubility in the alkaline aqueous solution, and the phosphor particles 20 preferably have alkali resistance.
  • a composite powder containing an acidic aqueous solution or an alkaline aqueous solution is filled in the mold.
  • the mold may be heated as necessary.
  • a high temperature and high pressure state is created inside the mold.
  • the phosphor particles 20 and the inorganic particles 31 are densified, and at the same time, the inorganic particles 31 and the phosphor particles 20 and the inorganic particles 31 are connected to each other.
  • the inorganic compound constituting the inorganic particles 31 is dissolved in the aqueous solution, and the dissolved inorganic compound forms a surface of the phosphor particles 20, a gap between the phosphor particles 20 and the inorganic particles 31, and an inorganic compound. It penetrates into the gaps between the particles 31. Then, by removing moisture in this state, an amorphous portion 32 containing an inorganic compound constituting the inorganic particles 31 is formed.
  • the heating and pressing conditions of the composite powder containing the acidic aqueous solution or the alkaline aqueous solution are not particularly limited as long as the dissolution of the inorganic particles 31 proceeds.
  • a composite powder containing an acidic aqueous solution or an alkaline aqueous solution is heated to 50 to 300 ° C., preferably 80 to 250 ° C., and then pressurized at a pressure of 10 to 600 MPa, preferably 50 to 400 MPa.
  • the wavelength conversion body 10 can be obtained by taking out the molded body from the inside of the mold.
  • the method for fixing the wavelength converter 10 to the substrate 40 is not particularly limited, and may be fixed using, for example, an adhesive. Alternatively, the obtained wavelength converter 10 and the substrate 40 may be fixed by pressing them.
  • the binder layer 30 having the inorganic particles 31 and the amorphous portions 32 is formed by using the pressure heating method, and the surface of the phosphor particles 20 is further formed. May be provided with an amorphous portion 32.
  • the manufacturing method of the wavelength conversion members 1 and 1A is not limited to the above-described pressurization and heating method, and for example, a warm isostatic pressing method (WIP) can also be applied.
  • WIP warm isostatic pressing method
  • the composite powder containing the acidic aqueous solution or the alkaline aqueous solution is filled in the mold, but the present embodiment is not limited to such an aspect. That is, after the composite powder is filled into the mold, an acidic aqueous solution or an alkaline aqueous solution may be dropped on the composite powder to include the aqueous solution in the composite powder. Further, in the above-described manufacturing method, the pressing and the heating are performed using the mold, but the present embodiment is not limited to such an aspect. That is, in the manufacturing method of the present embodiment, the raw material may be pressurized and heated using an autoclave instead of the mold. Further, the raw material may be pressurized and heated using a vacuum press molding machine.
  • a sol-gel method As a method for forming an amorphous inorganic compound, a sol-gel method has been conventionally known.
  • the sol-gel method uses an organic substance as a raw material, a large amount of the organic substance remains in the obtained inorganic compound.
  • the thermal conductivity is reduced due to the remaining organic matter and the temperature is easily increased, so that the temperature quenching of the phosphor is easily generated, and the light output efficiency is deteriorated.
  • the organic substance is scorched and colored by the temperature rise at the time of light emission of the phosphor, so that the light output efficiency is deteriorated.
  • the amorphous portion 32 is formed by heating and pressing the inorganic particles 31, the binder layer 30 hardly contains an organic substance. Therefore, the obtained wavelength conversion members 1 and 1A can suppress the temperature quenching of the phosphor and exhibit high light output efficiency.
  • YAG particles (Y 3 Al 5 O 12 : Ce 3+ ) having an average particle diameter D 50 of about 19 ⁇ m were prepared as phosphor particles.
  • an average particle diameter D 50 was prepared zinc oxide particles of about 1 [mu] m (ZnO).
  • the YAG particles and the zinc oxide particles were dry-mixed at a ratio of 50% by volume, respectively, to obtain 0.52 g of a composite powder.
  • the obtained composite powder was charged into a cylindrical molding die ( ⁇ 10) having an internal space. Further, 100 ⁇ L of 1M acetic acid was added to the composite powder filled in the molding die. Then, the test powder of this example was obtained by pressing the composite powder containing acetic acid at 400 MPa and 80 ° C. for 1 hour.
  • FIG. 4 shows the result of observing the test sample with a transmission electron microscope. As shown in FIG. 4, it can be seen that a plurality of zinc oxide particles (ZnO particles) having a smaller particle diameter than the phosphor are in contact with the surface of the phosphor. Further, it can be seen that an inorganic compound is present on the surface of the phosphor, between the phosphor and the zinc oxide particles, and between adjacent zinc oxide particles.
  • ZnO particles zinc oxide particles having a smaller particle diameter than the phosphor
  • FIG. 5 (a) shows the result of further enlarging the photograph of FIG. 4 (c)
  • FIG. 5 (b) shows the electron diffraction pattern of the inorganic compound portion in FIG. 5 (a).
  • FIG. 5B shows the electron diffraction pattern of the inorganic compound, no pattern showing crystallinity was found, indicating that the inorganic compound present on the surface of the phosphor was amorphous.
  • FIG. 6 shows the result of observing the test sample with a transmission electron microscope and enlarging a portion different from that of FIG.
  • a plurality of zinc oxide particles having a smaller particle diameter than the phosphor are in contact with the surface of the phosphor.
  • an inorganic compound is present on the surface of the phosphor, between the phosphor and the zinc oxide particles, and between adjacent zinc oxide particles.
  • FIG. 7 (a) shows the result of further enlarging the photograph of FIG. 6 (c)
  • FIG. 7 (b) shows the electron diffraction pattern of the inorganic compound portion in FIG. 7 (a).
  • FIG. 7B shows the electron diffraction pattern of the inorganic compound. That is, in the portion of the inorganic compound in FIG. 7A, a lattice showing crystallinity was slightly observed.
  • the amorphous portion there are both a portion composed of only the amorphous inorganic compound and a portion where the amorphous inorganic compound and the crystalline inorganic compound are mixed. .
  • FIG. 8 shows mapping data of oxygen (O), zinc (Zn), silicon (Si), yttrium (Y) and aluminum (Al) in addition to a scanning transmission electron micrograph (STEM).
  • the test sample contained silicon as an impurity, and that silicon was segregated in the amorphous portion. Therefore, it can be seen that the amorphous portion may contain a silicon compound in addition to the zinc oxide generated by dissolution from the zinc oxide particles.
  • FIG. 9 shows the result of performing energy dispersive X-ray analysis on the test sample.
  • FIG. 9A shows mapping data of oxygen (O), silicon (Si), and zinc (Zn) in addition to the bright-field image (BF).
  • FIG. 9B shows the result of simple quantification after extracting a spectrum from the mapping data for the amorphous portion indicated by “ ⁇ ”in FIG. 9A.
  • FIG. 10 shows the result of performing energy dispersive X-ray analysis on the test sample, and shows the result of observing a site different from that in FIG. 9.
  • FIG. 10A shows mapping data of oxygen (O), silicon (Si), and zinc (Zn) in addition to the bright field image (BF).
  • FIG. 10B shows the result of simple quantification after extracting a spectrum from the mapping data for the amorphous portion indicated by “ ⁇ ”in FIG. 10A.
  • FIG. 9B shows that the number of silicon atoms in the amorphous portion shown in FIG. 9A is larger than that of zinc atoms.
  • FIG. 10B shows that the number of silicon atoms in the amorphous portion shown in FIG. 10A is smaller than that of zinc atoms. Therefore, it can be seen that an amorphous inorganic compound can be formed regardless of whether zinc atoms or silicon atoms are large in the amorphous portion.
  • the present disclosure it is possible to provide a wavelength conversion member that is excellent in heat dissipation even when irradiated with high-power excitation light and that can suppress temperature quenching of a phosphor.
  • 1,1A wavelength conversion member 20 phosphor particles 31 inorganic particles 32 amorphous portion

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Optical Filters (AREA)
  • Led Device Packages (AREA)

Abstract

A wavelength conversion member (1, 1A) according to the present invention contains a plurality of phosphor particles (20) and a plurality of inorganic particles (31); and the surface of each phosphor particle has an amorphous part (32) that contains an amorphous inorganic compound. The inorganic particles and the amorphous part contain a same metal element; and the metal element is at least one element that is selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals and semimetals.

Description

波長変換部材Wavelength conversion member
 本発明は、波長変換部材に関する。 The present invention relates to a wavelength conversion member.
 従来より、蛍光体を含む波長変換部材と、当該蛍光体を励起するレーザー光とを組み合わせてなる発光装置が知られている。当該発光装置は、固体照明の小型化及び高出力化を可能にする装置として期待されている。このような波長変換部材としては、励起光の照射により発光する蛍光体粒子と、当該蛍光体粒子を保持するバインダーから構成される波長変換体を備えるものが知られている。具体的には、シリコーン樹脂に蛍光体を充填させた波長変換体が知られている。 (2) Conventionally, a light emitting device in which a wavelength conversion member including a phosphor is combined with a laser beam for exciting the phosphor has been known. The light-emitting device is expected to be a device that enables downsizing and high output of solid-state lighting. As such a wavelength conversion member, there is known a wavelength conversion member that includes a phosphor particle that emits light when irradiated with excitation light, and a wavelength converter that includes a binder that holds the phosphor particle. Specifically, a wavelength converter in which a phosphor is filled in a silicone resin is known.
 近年、発光装置の更なる高出力化が求められていることから、波長変換部材には、レーザー光などのハイパワーな励起光が照射されるようになってきている。しかし、シリコーン樹脂などの有機バインダーは、耐熱性及び放熱性に乏しい。このため、有機バインダーを含む波長変換部材にハイパワーな励起光が照射されると、バインダーを構成する有機物に変色や焦げが発生して光の透過性が低下し、波長変換部材の光出力効率が悪化してしまう。また、有機バインダーを含む波長変換部材にハイパワーな励起光が照射されると、有機物の熱伝導率が通常1W/m・K未満と低いことから、波長変換部材は発熱してしまう。これにより、有機バインダーを含む波長変換部材は、蛍光体の温度消光が発生しやすいという問題がある。 In recent years, since higher output of the light emitting device has been demanded, the wavelength conversion member has been irradiated with high-power excitation light such as laser light. However, an organic binder such as a silicone resin has poor heat resistance and heat dissipation. For this reason, when a high-power excitation light is irradiated to the wavelength conversion member containing the organic binder, discoloration or burning occurs in the organic matter constituting the binder, and the light transmittance is reduced, and the light output efficiency of the wavelength conversion member is reduced. Will get worse. In addition, when high-power excitation light is applied to the wavelength conversion member containing the organic binder, the wavelength conversion member generates heat because the thermal conductivity of the organic substance is usually low, less than 1 W / m · K. Accordingly, the wavelength conversion member containing the organic binder has a problem that the temperature quenching of the phosphor is easily generated.
 そのため、特許文献1では、無機蛍光体粒子及び易焼結性セラミック粒子を含有し、無機蛍光体粒子間に易焼結性セラミック粒子が介在しており、かつ、無機蛍光体粒子が易焼結性セラミック粒子により結着されている波長変換部材が開示されている。また、易焼結性セラミック粒子が、易焼結性アルミナ粒子であることも開示されている。そして、特許文献1では、易焼結性セラミック粒子はガラスなどと比較して熱伝導性に優れているため、無機蛍光体粒子で発生した熱を効率よく外部に放出し、蛍光体の温度消光を生じ難くすることできると記載されている。 Therefore, in Patent Document 1, the inorganic phosphor particles and the sinterable ceramic particles are contained, the sinterable ceramic particles are interposed between the inorganic phosphor particles, and the inorganic phosphor particles are easily sintered. A wavelength conversion member bound by conductive ceramic particles is disclosed. It also discloses that the easily sinterable ceramic particles are easily sinterable alumina particles. In Patent Document 1, since the easily sinterable ceramic particles have better thermal conductivity than glass or the like, the heat generated by the inorganic phosphor particles is efficiently released to the outside, and the temperature quenching of the phosphor is performed. Is described as being less likely to occur.
特開2017-107071号公報JP 2017-107071 A
 しかしながら、特許文献1の波長変換部材では、無機蛍光体粒子が易焼結性セラミック粒子により結着されていることから、無機蛍光体粒子と易焼結性セラミック粒子は互いに点接触の状態になっている。そのため、たとえ易焼結性セラミック粒子を用いたとしても、無機蛍光体粒子と易焼結性セラミック粒子との間の接触面積が小さく、熱伝導パスが十分に形成されないことから、波長変換部材の放熱性が不十分となる場合があった。そして、このような波長変換部材にハイパワーな励起光が照射された際には、蛍光体の温度消光を十分に抑制できないという問題があった。 However, in the wavelength conversion member of Patent Literature 1, since the inorganic phosphor particles are bound by the sinterable ceramic particles, the inorganic phosphor particles and the sinterable ceramic particles are in a state of point contact with each other. ing. Therefore, even if sinterable ceramic particles are used, the contact area between the inorganic phosphor particles and the sinterable ceramic particles is small, and a heat conduction path is not sufficiently formed. In some cases, heat dissipation was insufficient. Then, when such a wavelength conversion member is irradiated with high-power excitation light, there is a problem that the temperature quenching of the phosphor cannot be sufficiently suppressed.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、ハイパワーな励起光が照射された場合でも放熱性に優れ、蛍光体の温度消光を抑制することが可能な波長変換部材を提供することにある。 The present invention has been made in view of such problems of the prior art. An object of the present invention is to provide a wavelength conversion member which has excellent heat dissipation even when irradiated with high-power excitation light and can suppress temperature quenching of a phosphor.
 上記課題を解決するために、本発明の態様に係る波長変換部材は、複数の蛍光体粒子と、複数の無機粒子と、を含み、蛍光体粒子の表面には、非晶質の無機化合物を含むアモルファス部を有する。無機粒子及びアモルファス部は同じ金属元素を含有し、金属元素はアルカリ金属、アルカリ土類金属、遷移金属、卑金属及び半金属からなる群より選ばれる少なくとも一つである。 In order to solve the above problems, a wavelength conversion member according to an aspect of the present invention includes a plurality of phosphor particles and a plurality of inorganic particles, and the surface of the phosphor particles includes an amorphous inorganic compound. Including an amorphous portion. The inorganic particles and the amorphous portion contain the same metal element, and the metal element is at least one selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals and semimetals.
図1は、本実施形態に係る波長変換部材の一例を概略的に示す断面図である。FIG. 1 is a cross-sectional view schematically illustrating an example of the wavelength conversion member according to the present embodiment. 図2は、本実施形態に係る波長変換部材の内部を拡大して示す概略図である。FIG. 2 is an enlarged schematic view showing the inside of the wavelength conversion member according to the present embodiment. 図3は、本実施形態に係る波長変換部材の他の例を概略的に示す断面図である。FIG. 3 is a sectional view schematically showing another example of the wavelength conversion member according to the present embodiment. 図4は、実施例の試験サンプルの一部分を透過型電子顕微鏡で観察した結果を示す写真である。図4(a)は、当該試験サンプルにおける蛍光体の表面状態を観察した結果を示す写真である。図4(b)は、図4(a)の「○」の部分を拡大して示す写真である。図4(c)は、図4(b)の写真をさらに拡大して示す写真である。FIG. 4 is a photograph showing a result of observing a part of the test sample of the example with a transmission electron microscope. FIG. 4A is a photograph showing the result of observing the surface state of the phosphor in the test sample. FIG. 4B is a photograph showing an enlarged portion of “○” in FIG. 4A. FIG. 4C is a photograph showing the photograph of FIG. 4B in a further enlarged manner. 図5は、実施例の試験サンプルの一部分を透過型電子顕微鏡で観察した結果を示す写真である。図5(a)は、図4(c)の写真をさらに拡大して示す写真である。図5(b)は、図5(a)において、蛍光体粒子と酸化亜鉛粒子との間に存在する無機化合物の電子線回折パターンを示す図である。FIG. 5 is a photograph showing the result of observing a part of the test sample of the example with a transmission electron microscope. FIG. 5A is a photograph showing the photograph of FIG. 4C further enlarged. FIG. 5B is a diagram showing an electron diffraction pattern of the inorganic compound existing between the phosphor particles and the zinc oxide particles in FIG. 図6は、実施例の試験サンプルの他の部分を透過型電子顕微鏡で観察した結果を示す写真である。図6(a)は、当該試験サンプルにおける蛍光体の表面状態を観察した結果を示す写真である。図6(b)は、図6(a)の「○」の部分を拡大して示す写真である。図6(c)は、図6(b)の写真をさらに拡大して示す写真である。FIG. 6 is a photograph showing a result of observing another portion of the test sample of the example with a transmission electron microscope. FIG. 6A is a photograph showing the result of observing the surface state of the phosphor in the test sample. FIG. 6B is a photograph showing an enlarged portion of “○” in FIG. 6A. FIG. 6C is a photograph showing the photograph of FIG. 6B in a further enlarged manner. 図7は、実施例の試験サンプルの他の部分を透過型電子顕微鏡で観察した結果を示す写真である。図7(a)は、図6(c)の写真をさらに拡大して示す写真である。図7(b)は、図7(a)において、蛍光体粒子と酸化亜鉛粒子との間に存在する無機化合物の電子線回折パターンを示す図である。FIG. 7 is a photograph showing the result of observing another portion of the test sample of the example with a transmission electron microscope. FIG. 7A is a photograph showing the photograph of FIG. 6C in a further enlarged manner. FIG. 7B is a diagram showing an electron diffraction pattern of the inorganic compound existing between the phosphor particles and the zinc oxide particles in FIG. 7A. 図8は、実施例の試験サンプルに対してエネルギー分散型X線分析を行った際の、走査透過電子顕微鏡写真(STEM)、並びに酸素(O)、亜鉛(Zn)、ケイ素(Si)、イットリウム(Y)及びアルミニウム(Al)のマッピングデータを示す図である。FIG. 8 shows a scanning transmission electron micrograph (STEM), and oxygen (O), zinc (Zn), silicon (Si), and yttrium when an energy dispersive X-ray analysis was performed on the test sample of the example. It is a figure which shows the mapping data of (Y) and aluminum (Al). 図9は、実施例の試験サンプルの一部分に対してエネルギー分散型X線分析を行った結果を示す図である。図9(a)は、当該試験サンプルの明視野像(BF)、並びに酸素(O)、ケイ素(Si)及び亜鉛(Zn)のマッピングデータを示す図である。図9(b)は、図9(a)において「○」で示すアモルファス部に関し、マッピングデータからスペクトルを抽出した後、簡易定量を行った結果を示すグラフである。FIG. 9 is a diagram illustrating a result of performing energy dispersive X-ray analysis on a part of the test sample of the example. FIG. 9A is a view showing a bright field image (BF) of the test sample and mapping data of oxygen (O), silicon (Si), and zinc (Zn). FIG. 9B is a graph showing the result of simple quantification after extracting a spectrum from the mapping data for the amorphous portion indicated by “「 ”in FIG. 9A. 図10は、実施例の試験サンプルの他の部分に対してエネルギー分散型X線分析を行った結果を示す図である。図10(a)は、当該試験サンプルの明視野像(BF)、並びに酸素(O)、ケイ素(Si)及び亜鉛(Zn)のマッピングデータを示す図である。図10(b)は、図10(a)において「○」で示すアモルファス部に関し、マッピングデータからスペクトルを抽出した後、簡易定量を行った結果を示すグラフである。FIG. 10 is a diagram illustrating a result of performing energy dispersive X-ray analysis on another portion of the test sample of the example. FIG. 10A is a diagram showing a bright field image (BF) of the test sample and mapping data of oxygen (O), silicon (Si), and zinc (Zn). FIG. 10B is a graph showing the result of simple quantification after extracting a spectrum from the mapping data for the amorphous portion indicated by “「 ”in FIG. 10A.
 以下、本実施形態に係る波長変換部材について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the wavelength conversion member according to the present embodiment will be described in detail. Note that the dimensional ratios in the drawings are exaggerated for the sake of explanation, and may differ from the actual ratios.
[波長変換部材]
 本実施形態の波長変換部材1は、図1に示すように、入射光を波長変換する部材である波長変換体10を備えている。波長変換体10は、入射光を波長変換する複数の蛍光体粒子20と、蛍光体粒子20同士を連結するバインダー層30とを有する。波長変換体10の内部で分散している蛍光体粒子20は、入射光(励起光)により励起されて、入射光よりも長波長の光を放射する。そのため、波長変換体10は、蛍光体粒子20の作用により、入射光を波長変換する作用を発現する。
[Wavelength conversion member]
As shown in FIG. 1, the wavelength conversion member 1 of the present embodiment includes a wavelength converter 10 that is a member that converts the wavelength of incident light. The wavelength converter 10 has a plurality of phosphor particles 20 that convert the wavelength of incident light, and a binder layer 30 that connects the phosphor particles 20 to each other. The phosphor particles 20 dispersed inside the wavelength converter 10 are excited by incident light (excitation light) and emit light having a longer wavelength than the incident light. Therefore, the wavelength converter 10 exerts the function of wavelength-converting incident light by the action of the phosphor particles 20.
 図1に示す波長変換体10では、個々の蛍光体粒子20の表面全体がバインダー層30で被覆されている。しかしながら、本実施形態はこのような態様に限定されず、バインダー層30は、少なくとも隣接する蛍光体粒子20同士を連結するように形成されていればよい。このため、図1に示す波長変換体10以外の実施形態として、個々の蛍光体粒子20における表面の一部がバインダー層30で被覆されずに露出していてもよい。 で は In the wavelength converter 10 shown in FIG. 1, the entire surface of each phosphor particle 20 is covered with the binder layer 30. However, the embodiment is not limited to such an aspect, and the binder layer 30 may be formed so as to connect at least the adjacent phosphor particles 20. Therefore, as an embodiment other than the wavelength converter 10 shown in FIG. 1, a part of the surface of each phosphor particle 20 may be exposed without being covered with the binder layer 30.
 (蛍光体粒子)
 波長変換部材1に含まれる蛍光体粒子20は、この蛍光体粒子20の励起波長域の光(励起光)を吸収して、励起光よりも長波長の光(変換光)を放射する。蛍光体粒子20は、適宜の蛍光体から形成される粒子であればよい。
(Phosphor particles)
The phosphor particles 20 included in the wavelength conversion member 1 absorb light (excitation light) in the excitation wavelength range of the phosphor particles 20, and emit light (converted light) having a longer wavelength than the excitation light. The phosphor particles 20 may be particles formed of an appropriate phosphor.
 蛍光体が発する光に基づけば、蛍光体の例としては、CaAlSiN:Eu2+、(Ca、Sr)AlSiN:Eu2+、CaS:Eu2+、(Ca、Sr)Si:Eu2+などの赤色蛍光体が挙げられる。また、CaSc:Ce3+、CaScSi12:Ce3+、(Ca、Sr、Ba)Al:Eu2+、SrGa:Eu2+などの緑色蛍光体も挙げられる。YAl12:Ce3+、(Ca、Sr、Ba、Zn)SiO:Eu2+などの黄色蛍光体、(Ba、Sr)SiO:Eu2+などの黄緑色蛍光体も挙げられる。さらに、SrSiO:Eu2+、Ca0.7Sr0.3AlSiN:Eu2+などの橙色蛍光体も挙げられる。 Based on the light emitted by the phosphor, examples of the phosphor include CaAlSiN 3 : Eu 2+ , (Ca, Sr) AlSiN 3 : Eu 2+ , CaS: Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu Red fluorescent materials such as 2+ . Also, green phosphors such as CaSc 2 O 4 : Ce 3+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , (Ca, Sr, Ba) Al 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ are also available. No. Y 3 Al 5 O 12: Ce 3+, (Ca, Sr, Ba, Zn) 2 SiO 4: also mentioned yellow-green phosphor, such as Eu 2+: Eu 2+ yellow phosphor, such as, (Ba, Sr) 2 SiO 4 Can be Further, orange phosphors such as Sr 3 SiO 5 : Eu 2+ and Ca 0.7 Sr 0.3 AlSiN 3 : Eu 2+ are also included.
 また、蛍光体の化合物の系統に基づけば、蛍光体の例としては、(Y,Gd)(Al,Ga)12:Ce、(Ca,Sr,Ba)SiO:Eu、LiSrSiO:Eu、(Ba,Sr)SiO:Euなどの酸化物蛍光体が挙げられる。また、CaScSi12:Ce、SrAl:Eu、TbAl12:Ce、BAM:Eu、BAM:Mn,Eu、(Mg,Ca,Sr,Ba)10(POCl:Eu、Sr(POCl:Euなどの酸化物蛍光体も挙げられる。さらに、ZnS:Cu,Al、CaGa:Eu、SrGa:Eu、BaGa:Eu、Ca(Ga,Al,In):Eu、Sr(Ga,Al,In):Eu、Ba(Ga,Al,In):Euなどの硫化物蛍光体も挙げられる。YS:Eu、LaS:Euなどの酸硫化物蛍光体も挙げられる。CaSi:Eu、SrSi:Eu、BaSi:Eu、(Ca,Ba)Si:Eu、(Sr,Ba)Si:Eu、(Ca,Sr)Si:Euなどの窒化物系または酸窒化物系の蛍光体も挙げられる。 Further, based on the system of the phosphor compound, examples of the phosphor include (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce, (Ca, Sr, Ba) 2 SiO 4 : Eu, Li Oxide phosphors such as 2 SrSiO 4 : Eu and (Ba, Sr) 3 SiO 5 : Eu are exemplified. Also, Ca 3 Sc 2 Si 3 O 12 : Ce, SrAl 2 O 4 : Eu, Tb 3 Al 5 O 12 : Ce, BAM: Eu, BAM: Mn, Eu, (Mg, Ca, Sr, Ba) 10 ( Oxide phosphors such as PO 4 ) 6 Cl 2 : Eu and Sr 5 (PO 4 ) 3 Cl: Eu are also included. Further, ZnS: Cu, Al, CaGa 2 S 4 : Eu, SrGa 2 S 4 : Eu, BaGa 2 S 4 : Eu, Ca (Ga, Al, In) 2 S 4 : Eu, Sr (Ga, Al, In) ) 2 S 4: Eu, Ba (Ga, Al, in) 2 S 4: sulfide phosphor such as Eu can also be mentioned. Oxysulfide phosphors such as Y 2 O 2 S: Eu and La 2 O 2 S: Eu are also included. CaSi 2 O 2 N 2 : Eu, SrSi 2 O 2 N 2 : Eu, BaSi 2 O 2 N 2 : Eu, (Ca, Ba) Si 2 O 2 N 2 : Eu, (Sr, Ba) Si 2 O 2 Nitride-based or oxynitride-based phosphors such as N 2 : Eu and (Ca, Sr) Si 2 O 2 N 2 : Eu can also be used.
 蛍光体粒子20は、ガーネット(柘榴石)の結晶構造を持つ酸化物蛍光体からなることが好ましい。ガーネット化合物は、化学的に安定であり、かつ、常圧の大気中での取り扱いが容易である。さらに、ガーネット化合物の蛍光体粒子は、多面体形状を持つ単分散粒子、または多面体に近い形状を持つ単分散粒子とすることが容易である。このため、蛍光体の充填率が大きく、かつ、透光性に優れる波長変換体10を得ることが可能となる。 The phosphor particles 20 are preferably made of an oxide phosphor having a garnet (garnet) crystal structure. Garnet compounds are chemically stable and easy to handle in atmospheric air at normal pressure. Further, the phosphor particles of the garnet compound can be easily formed into monodisperse particles having a polyhedral shape or monodisperse particles having a shape close to a polyhedron. For this reason, it becomes possible to obtain the wavelength converter 10 having a high filling factor of the phosphor and excellent translucency.
 蛍光体粒子20の粒子径は特に制限されないが、蛍光体粒子20の平均粒子径が大きい方が蛍光体粒子20中の欠陥密度が小さくなって、発光時のエネルギー損失が少なくなり、発光効率が高くなる。このため、発光効率を向上させる観点からは、蛍光体粒子20の平均粒子径は1μm以上100μm以下であることが好ましく、1μm以上30μm以下であれば更に好ましい。なお、本明細書において、「平均粒子径」の値としては、特に言及のない限り、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用する。 Although the particle size of the phosphor particles 20 is not particularly limited, the larger the average particle size of the phosphor particles 20 is, the smaller the defect density in the phosphor particles 20 is, the smaller the energy loss at the time of light emission, and the lower the luminous efficiency. Get higher. Therefore, from the viewpoint of improving the luminous efficiency, the average particle diameter of the phosphor particles 20 is preferably 1 μm or more and 100 μm or less, more preferably 1 μm or more and 30 μm or less. In the present specification, the value of the “average particle diameter” is set to several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) unless otherwise specified. The value calculated as the average value of the particle diameters of the particles observed therein is adopted.
 (バインダー層)
 波長変換部材1に含まれるバインダー層30は、図2に示すように、隣接する蛍光体粒子20同士を連結している。バインダー層30は複数の無機粒子31を含有し、さらに無機粒子31は互いに接触していることが好ましい。これにより、無機粒子31の間の分子間力等により蛍光体粒子20を連結し、蛍光体粒子20を固定することが可能となる。
(Binder layer)
As shown in FIG. 2, the binder layer 30 included in the wavelength conversion member 1 connects the adjacent phosphor particles 20 to each other. The binder layer 30 contains a plurality of inorganic particles 31, and the inorganic particles 31 are preferably in contact with each other. Thereby, the phosphor particles 20 can be connected by the intermolecular force between the inorganic particles 31 and the like, and the phosphor particles 20 can be fixed.
 無機粒子31は、アルカリ金属、アルカリ土類金属、遷移金属、卑金属及び半金属からなる群より選ばれる少なくとも一つの金属元素を含有している。本明細書において、アルカリ土類金属は、カルシウム、ストロンチウム、バリウム及びラジウムに加えて、ベリリウム及びマグネシウムを包含する。卑金属は、アルミニウム、亜鉛、ガリウム、カドミウム、インジウム、すず、水銀、タリウム、鉛、ビスマス及びポロニウムを包含する。半金属は、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン及びテルルを包含する。この中でも、無機粒子31は、亜鉛及びマグネシウムの少なくとも一方の金属元素を含有していることが好ましい。これらの金属元素を含有する無機粒子31は、後述するように、加圧加熱法により、無機粒子31に由来するアモルファス部32を容易に形成することが可能となる。 The inorganic particles 31 contain at least one metal element selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals and semimetals. As used herein, alkaline earth metals include beryllium and magnesium in addition to calcium, strontium, barium and radium. Base metals include aluminum, zinc, gallium, cadmium, indium, tin, mercury, thallium, lead, bismuth and polonium. Metalloids include boron, silicon, germanium, arsenic, antimony and tellurium. Among these, it is preferable that the inorganic particles 31 contain at least one metal element of zinc and magnesium. The inorganic particles 31 containing these metal elements can easily form an amorphous portion 32 derived from the inorganic particles 31 by a pressure heating method as described later.
 無機粒子31は、上記金属元素の酸化物及び窒化物の少なくとも一方を含有することが好ましく、上記金属元素の酸化物及び窒化物の少なくとも一方を主成分として含有することがより好ましい。つまり、無機粒子31は、上記金属元素の酸化物及び窒化物の少なくとも一方を50mol%以上含有することが好ましく、80mol%以上含有することがより好ましい。上記金属元素の酸化物及び窒化物は熱伝導性が高いことから、これらを含む無機粒子31を用いることで、バインダー層30の熱伝導性を高め、波長変換部材1の放熱性を向上させることが可能となる。 The inorganic particles 31 preferably contain at least one of an oxide and a nitride of the metal element, and more preferably contain at least one of an oxide and a nitride of the metal element as a main component. That is, the inorganic particles 31 preferably contain at least one of an oxide and a nitride of the above-described metal element at 50 mol% or more, and more preferably at least 80 mol%. Since the oxides and nitrides of the above metal elements have high thermal conductivity, the use of the inorganic particles 31 containing them increases the thermal conductivity of the binder layer 30 and improves the heat dissipation of the wavelength conversion member 1. Becomes possible.
 無機粒子31は、アルカリ金属、アルカリ土類金属、遷移金属、卑金属及び半金属からなる群より選ばれる少なくとも一つの金属元素を含有する結晶質の粒子であることが好ましい。また、無機粒子31は、上記金属元素の酸化物及び窒化物の少なくとも一方を含有する結晶質の粒子であることが好ましく、上記金属元素の酸化物及び窒化物の少なくとも一方を主成分とする結晶質の粒子であることがより好ましい。 (4) The inorganic particles 31 are preferably crystalline particles containing at least one metal element selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals and semimetals. Further, the inorganic particles 31 are preferably crystalline particles containing at least one of an oxide and a nitride of the above-described metal element, and a crystal mainly containing at least one of the oxide and a nitride of the above-mentioned metal element. More preferably, the particles are quality particles.
 無機粒子31の平均粒子径は特に限定されないが、蛍光体粒子20の平均粒子径よりも小さいことが好ましい。また、無機粒子31の平均粒子径は300nm以上30μm以下であることがより好ましく、300nm以上10μm以下であることがさらに好ましく、300nm以上5μm以下であることが特に好ましい。無機粒子31の平均粒子径が300nm以上であることにより、無機粒子31同士が接触し、熱伝導パスが形成され易くなることから、波長変換部材1の放熱性を高めることが可能となる。また、無機粒子31の平均粒子径がこの範囲内であることにより、蛍光体粒子20同士を強固に連結し、波長変換部材1の強度を高めることができる。 平均 The average particle diameter of the inorganic particles 31 is not particularly limited, but is preferably smaller than the average particle diameter of the phosphor particles 20. Further, the average particle diameter of the inorganic particles 31 is more preferably 300 nm or more and 30 μm or less, further preferably 300 nm or more and 10 μm or less, and particularly preferably 300 nm or more and 5 μm or less. When the average particle diameter of the inorganic particles 31 is 300 nm or more, the inorganic particles 31 are in contact with each other and a heat conduction path is easily formed, so that the heat radiation of the wavelength conversion member 1 can be enhanced. Further, when the average particle diameter of the inorganic particles 31 is within this range, the phosphor particles 20 can be strongly connected to each other, and the strength of the wavelength conversion member 1 can be increased.
 無機粒子31の形状は特に限定されないが、例えば球状とすることができる。また、無機粒子31は、ウィスカー状(針状)の粒子、又は鱗片状の粒子であってもよい。ウィスカー状粒子又は鱗片状粒子は、球状粒子と比べて他の粒子との接触性が高まり、熱伝導性が向上しやすい。そのため、無機粒子31としてこのような形状の粒子を用いることにより、バインダー層30の放熱性を高めることが可能となる。なお、ウィスカー状の無機粒子31としては、例えば、窒化アルミニウム(AlN)、酸化亜鉛(ZnO)及び酸化アルミニウム(Al)からなる群より選ばれる少なくとも一つを含有する粒子を用いることができる。また、鱗片状の無機粒子31としては、例えば、窒化ホウ素(BN)を含有する粒子を用いることができる。 The shape of the inorganic particles 31 is not particularly limited, but may be, for example, spherical. In addition, the inorganic particles 31 may be whisker-like (needle-like) particles or scale-like particles. Whisker-like particles or flake-like particles have higher contact with other particles than spherical particles, and thermal conductivity is easily improved. Therefore, by using particles having such a shape as the inorganic particles 31, it is possible to enhance the heat dissipation of the binder layer 30. As the whisker-like inorganic particles 31, for example, particles containing at least one selected from the group consisting of aluminum nitride (AlN), zinc oxide (ZnO), and aluminum oxide (Al 2 O 3 ) may be used. it can. Further, as the scaly inorganic particles 31, for example, particles containing boron nitride (BN) can be used.
 ここで、波長変換部材において、特許文献1のようにバインダー層が複数の無機粒子のみからなる場合、無機粒子と蛍光体粒子、及び無機粒子同士は、互いに点接触の状態となることから、熱伝導パスが十分に形成されない。その結果、波長変換部材の放熱性が不十分となり、蛍光体の温度消光を十分に抑制できない場合がある。そのため、本実施形態の波長変換部材1では、蛍光体粒子20の表面に、非晶質の無機化合物を含むアモルファス部32を備えている。アモルファス部32は無機物からなり、熱伝導性に優れる。そのため、蛍光体粒子20の表面にアモルファス部32を設けることにより、蛍光体粒子20から無機粒子31に至る熱伝導パスが増加することから、バインダー層30の放熱性が高まり、蛍光体粒子20の温度消光を抑制することが可能となる。 Here, in the wavelength conversion member, when the binder layer is composed of only a plurality of inorganic particles as in Patent Document 1, the inorganic particles, the phosphor particles, and the inorganic particles are in a state of point contact with each other. The conduction path is not sufficiently formed. As a result, the heat radiation of the wavelength conversion member becomes insufficient, and the temperature quenching of the phosphor may not be sufficiently suppressed. Therefore, in the wavelength conversion member 1 of the present embodiment, an amorphous portion 32 containing an amorphous inorganic compound is provided on the surface of the phosphor particles 20. The amorphous portion 32 is made of an inorganic material and has excellent thermal conductivity. Therefore, by providing the amorphous portion 32 on the surface of the phosphor particles 20, the heat conduction path from the phosphor particles 20 to the inorganic particles 31 increases, so that the heat dissipation of the binder layer 30 increases, and the phosphor particles 20 Temperature quenching can be suppressed.
 より詳細に説明すると、波長変換部材1において、バインダー層30は、複数の無機粒子31と、非晶質の無機化合物を含むアモルファス部32とを備えている。そして、図2に示すように、無機粒子31は、隣接する蛍光体粒子20の間に介在し、蛍光体粒子20を連結している。無機粒子31は互いに接触していることが好ましいが、隣接する無機粒子31同士が接触せず、それらの間にアモルファス部32が介在していてもよい。アモルファス部32は、少なくとも蛍光体粒子20の表面に接触するように存在することが好ましく、さらに蛍光体粒子20と無機粒子31との間、並びに隣接する無機粒子31の間にも存在することがより好ましい。これにより、バインダー層30において、無機粒子31とアモルファス部32の両方が熱伝導パスとなる。このため、高密度光での励起に伴い生じる蛍光体粒子20からの熱が、無機粒子31とアモルファス部32の両方を通じて波長変換体10の外部に効率よく放散される。その結果、波長変換体10全体の温度上昇が生じ難くなることから、蛍光体粒子20の温度消光が抑制され、高出力の発光を得ることが可能となる。 More specifically, in the wavelength conversion member 1, the binder layer 30 includes a plurality of inorganic particles 31 and an amorphous portion 32 containing an amorphous inorganic compound. Then, as shown in FIG. 2, the inorganic particles 31 are interposed between the adjacent phosphor particles 20 and connect the phosphor particles 20. The inorganic particles 31 are preferably in contact with each other, but the adjacent inorganic particles 31 may not be in contact with each other, and the amorphous portion 32 may be interposed between them. The amorphous portion 32 preferably exists at least in contact with the surface of the phosphor particles 20, and furthermore, exists between the phosphor particles 20 and the inorganic particles 31 and also between adjacent inorganic particles 31. More preferred. Thereby, in the binder layer 30, both the inorganic particles 31 and the amorphous portion 32 become a heat conduction path. For this reason, heat from the phosphor particles 20 generated due to excitation with high-density light is efficiently radiated to the outside of the wavelength converter 10 through both the inorganic particles 31 and the amorphous portion 32. As a result, the temperature rise of the entire wavelength converter 10 is less likely to occur, so that the temperature quenching of the phosphor particles 20 is suppressed, and high-output light emission can be obtained.
 アモルファス部32は、非晶質の無機化合物を含むことが好ましい。具体的には、アモルファス部32は、非晶質の無機化合物のみからなる部位であってもよく、非晶質の無機化合物と結晶質の無機化合物とが混在してなる部位であってもよい。また、アモルファス部32は、非晶質の無機化合物の内部に結晶質の無機化合物が分散した部位であってもよい。非晶質の無機化合物と結晶質の無機化合物とが混在している場合、非晶質の無機化合物と結晶質の無機化合物とは、同じ化学組成を有していてもよく、互いに異なる化学組成を有していてもよい。 (4) The amorphous portion 32 preferably contains an amorphous inorganic compound. Specifically, the amorphous portion 32 may be a portion composed of only an amorphous inorganic compound, or may be a portion composed of a mixture of an amorphous inorganic compound and a crystalline inorganic compound. . The amorphous portion 32 may be a portion in which a crystalline inorganic compound is dispersed inside an amorphous inorganic compound. When the amorphous inorganic compound and the crystalline inorganic compound are mixed, the amorphous inorganic compound and the crystalline inorganic compound may have the same chemical composition, and different chemical compositions from each other. May be provided.
 無機粒子31及びアモルファス部32は同じ金属元素を含有し、当該金属元素はアルカリ金属、アルカリ土類金属、遷移金属、卑金属及び半金属からなる群より選ばれる少なくとも一つであることが好ましい。つまり、無機粒子31を構成する無機化合物と、アモルファス部32を構成する非晶質の無機化合物は、少なくとも同じ金属元素を含有している。しかし、無機粒子31を構成する無機化合物と、アモルファス部32を構成する非晶質の無機化合物は化学組成が同じであってもよく、または化学組成が異なっていてもよい。具体的には、金属元素が亜鉛である場合、無機粒子31を構成する無機化合物とアモルファス部32を構成する非晶質の無機化合物は、両方とも酸化亜鉛(ZnO)であってもよい。または、無機粒子31を構成する無機化合物がZnOであるが、アモルファス部32を構成する非晶質の無機化合物はZnO以外の亜鉛含有酸化物であってもよい。 The inorganic particles 31 and the amorphous portion 32 contain the same metal element, and the metal element is preferably at least one selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals and semimetals. That is, the inorganic compound forming the inorganic particles 31 and the amorphous inorganic compound forming the amorphous portion 32 contain at least the same metal element. However, the inorganic compound forming the inorganic particles 31 and the amorphous inorganic compound forming the amorphous portion 32 may have the same chemical composition or may have different chemical compositions. Specifically, when the metal element is zinc, both the inorganic compound forming the inorganic particles 31 and the amorphous inorganic compound forming the amorphous portion 32 may be zinc oxide (ZnO). Alternatively, the inorganic compound forming the inorganic particles 31 is ZnO, but the amorphous inorganic compound forming the amorphous portion 32 may be a zinc-containing oxide other than ZnO.
 なお、アモルファス部32が非晶質の無機化合物と結晶質の無機化合物とが混在してなる部位の場合、非晶質の無機化合物と結晶質の無機化合物は化学組成が同じであってもよく、また化学組成が互いに異なっていてもよい。 When the amorphous portion 32 is a portion where the amorphous inorganic compound and the crystalline inorganic compound are mixed, the amorphous inorganic compound and the crystalline inorganic compound may have the same chemical composition. And the chemical composition may be different from each other.
 波長変換部材1において、無機粒子31及びアモルファス部32は、アルカリ金属、アルカリ土類金属、遷移金属、卑金属及び半金属からなる群より選ばれる少なくとも一つの金属元素の酸化物を含有することが好ましい。このような金属元素の酸化物は、熱伝導性が高いことから、バインダー層30の放熱性を高め、蛍光体粒子20の温度消光を抑制することが可能となる。 In the wavelength conversion member 1, the inorganic particles 31 and the amorphous part 32 preferably contain an oxide of at least one metal element selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals and semimetals. . Since the oxide of such a metal element has high thermal conductivity, it is possible to enhance the heat dissipation of the binder layer 30 and suppress the temperature quenching of the phosphor particles 20.
 無機粒子31及びアモルファス部32の両方に含まれる金属元素の酸化物は、酸化亜鉛、酸化マグネシウム、並びに酸化亜鉛と酸化マグネシウムとの複合体からなる群より選ばれる少なくとも一つであることが好ましい。これらの金属元素の酸化物は、熱伝導性がより高いことから、バインダー層30の放熱性を向上させることが可能となる。また、後述するように、これらの金属元素の酸化物を用いることにより、簡易な方法でアモルファス部32を形成することが可能となる。 金属 The oxide of the metal element contained in both the inorganic particles 31 and the amorphous portion 32 is preferably at least one selected from the group consisting of zinc oxide, magnesium oxide, and a composite of zinc oxide and magnesium oxide. Since the oxides of these metal elements have higher thermal conductivity, it is possible to improve the heat dissipation of the binder layer 30. Further, as described later, by using oxides of these metal elements, the amorphous portion 32 can be formed by a simple method.
 波長変換部材1において、無機粒子31及びアモルファス部32は、アルカリ金属、アルカリ土類金属、遷移金属、卑金属及び半金属からなる群より選ばれる少なくとも一つの金属元素の窒化物を含有していてもよい。これらの金属元素の窒化物も熱伝導性が高いことから、バインダー層30の放熱性を向上させることが可能となる。無機粒子31及びアモルファス部32の両方に含まれる金属元素の窒化物としては、窒化ホウ素(BN)を挙げることができる。 In the wavelength conversion member 1, even if the inorganic particles 31 and the amorphous portion 32 contain a nitride of at least one metal element selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals and metalloids. Good. Since the nitrides of these metal elements also have high thermal conductivity, it is possible to improve the heat dissipation of the binder layer 30. As a nitride of a metal element contained in both the inorganic particles 31 and the amorphous portion 32, boron nitride (BN) can be given.
 上述のように、本実施形態において、無機粒子31及びアモルファス部32は同じ金属元素を含有している。しかしながら、アモルファス部32は、無機粒子31に含まれていない金属元素を含有していてもよい。具体的には、無機粒子31が酸化亜鉛(ZnO)からなる場合、アモルファス部32は少なくとも亜鉛の酸化物が含まれている。しかしながら、アモルファス部32は亜鉛の酸化物以外に、ケイ素が含まれていてもよい。このケイ素の混入経路は特に限定されないが、例えば製造時に不純物として混入し、アモルファス部32に偏析したものであってもよい。アモルファス部32が無機粒子31に含まれていない金属元素を含有している場合でも、アモルファス部32は無機化合物からなり、高い熱伝導性を有していることから、バインダー層30の放熱性を高めることが可能となる。 As described above, in the present embodiment, the inorganic particles 31 and the amorphous portion 32 contain the same metal element. However, the amorphous portion 32 may include a metal element that is not included in the inorganic particles 31. Specifically, when the inorganic particles 31 are made of zinc oxide (ZnO), the amorphous portion 32 contains at least a zinc oxide. However, the amorphous portion 32 may contain silicon in addition to the zinc oxide. The mixing route of the silicon is not particularly limited. For example, the mixing route may be mixed as an impurity at the time of manufacturing and segregated in the amorphous portion 32. Even when the amorphous portion 32 contains a metal element that is not contained in the inorganic particles 31, the amorphous portion 32 is made of an inorganic compound and has high thermal conductivity. It is possible to increase.
 無機粒子31が酸化亜鉛からなり、アモルファス部32が亜鉛の酸化物及びケイ素を含む場合、当該ケイ素は酸化物として含まれていることが好ましい。また、ケイ素の酸化物は結晶質であってもよく、非晶質であってもよい。 (4) When the inorganic particles 31 are made of zinc oxide and the amorphous portion 32 contains zinc oxide and silicon, the silicon is preferably contained as an oxide. The silicon oxide may be crystalline or amorphous.
 上述のように、有機物は熱伝導性が低いため、バインダー層30に有機物が含まれる場合、蛍光体の温度消光が発生してしまう可能性がある。また、有機物にハイパワーな励起光が照射されると、有機物の変色や焦げが発生し、波長変換部材の光出力効率が低下する可能性がある。そのため、アモルファス部32は、無機化合物からなることが好ましく、有機物は可能な限り含まれていないことが好ましい。ただ、アモルファス部32には、熱伝導性に影響を与えない不純物程度の有機物が含まれていてもよい。 As described above, since the organic substance has low thermal conductivity, when the binder layer 30 contains the organic substance, the temperature quenching of the phosphor may occur. Further, when the organic substance is irradiated with high-power excitation light, the organic substance may be discolored or burnt, and the light output efficiency of the wavelength conversion member may be reduced. Therefore, the amorphous portion 32 is preferably made of an inorganic compound, and preferably contains as little organic matter as possible. However, the amorphous portion 32 may contain an organic substance of an impurity that does not affect the thermal conductivity.
 図1に示す波長変換部材1は、波長変換体10のみで入射光を波長変換できることから、波長変換体10単独で発光装置に用いることができる。ただ、図3に示すように、本実施形態の波長変換部材1Aは、波長変換体10と、波長変換体10を支持する基板40とを備えることが好ましい。基板40を用いることにより、波長変換体10の機械的な耐久性を高めることが可能となる。また、基板40を用いることにより、高密度光での励起に伴い生じる波長変換体10の熱を、基板40を通じて効率よく外部に放散できる。そのため、蛍光体粒子20の温度消光を抑制し、高出力の発光を得ることが可能となる。 The wavelength conversion member 1 shown in FIG. 1 can convert the wavelength of the incident light only by the wavelength conversion member 10, so that the wavelength conversion member 10 can be used alone in a light emitting device. However, as shown in FIG. 3, it is preferable that the wavelength conversion member 1A of the present embodiment includes a wavelength converter 10 and a substrate 40 that supports the wavelength converter 10. By using the substrate 40, the mechanical durability of the wavelength converter 10 can be increased. In addition, by using the substrate 40, heat of the wavelength converter 10 generated due to excitation with high-density light can be efficiently radiated to the outside through the substrate 40. Therefore, it is possible to suppress temperature quenching of the phosphor particles 20 and obtain high-output light emission.
 基板40は、波長変換体10を構成するバインダー層30と固着することにより、波長変換体10と密着することができる。そのため、図3に示すように、波長変換体10は、基板40の表面に直接的に設けられていてもよい。また、波長変換体10は、基板40の表面に間接的に設けられていてもよい。例えば、基板40と波長変換体10との間に、基板40との密着性に優れるとともに波長変換体10と固着する部材を備えたものとすることができる。このような部材としては、例えば、金属薄膜、酸化物薄膜、又はこれらの組み合わせからなる部材を用いることができる。 The substrate 40 can adhere to the wavelength converter 10 by being fixed to the binder layer 30 constituting the wavelength converter 10. Therefore, as shown in FIG. 3, the wavelength converter 10 may be provided directly on the surface of the substrate 40. Further, the wavelength converter 10 may be provided indirectly on the surface of the substrate 40. For example, between the substrate 40 and the wavelength converter 10, a member having excellent adhesion to the substrate 40 and being fixed to the wavelength converter 10 can be provided. As such a member, for example, a member made of a metal thin film, an oxide thin film, or a combination thereof can be used.
 基板40は、波長変換体10を支持することが可能ならば特に限定されないが、例えば、透明基板、金属基板及びセラミック基板からなる群より選ばれる少なくとも一つを用いることができる。透明基板としては、ガラス基板を挙げることができる。金属基板としては、銅基板又はステンレス鋼基板を挙げることができる。セラミック基板としては、サファイア基板又は窒化アルミニウム基板を挙げることができる。基板40が金属基板からなる場合、金属基板は一般的に熱伝導性が高いことから、波長変換体10で発生した熱を効率よく放散することが可能となる。また、基板40がセラミック基板からなる場合、基板40と波長変換体10との間の熱膨張係数の差が小さくなることから、基板40から波長変換体10が剥離し難くなる。なお、セラミック基板のうち、サファイア基板及び窒化アルミニウム基板は耐熱性が高いため、より好ましい。 The substrate 40 is not particularly limited as long as it can support the wavelength converter 10, and for example, at least one selected from the group consisting of a transparent substrate, a metal substrate, and a ceramic substrate can be used. Examples of the transparent substrate include a glass substrate. Examples of the metal substrate include a copper substrate and a stainless steel substrate. Examples of the ceramic substrate include a sapphire substrate and an aluminum nitride substrate. When the substrate 40 is made of a metal substrate, the metal substrate generally has high thermal conductivity, so that heat generated in the wavelength converter 10 can be efficiently dissipated. Further, when the substrate 40 is formed of a ceramic substrate, the difference in the coefficient of thermal expansion between the substrate 40 and the wavelength converter 10 is reduced, so that the wavelength converter 10 is less likely to be separated from the substrate 40. Note that among the ceramic substrates, a sapphire substrate and an aluminum nitride substrate are more preferable because of their high heat resistance.
 波長変換部材1,1Aにおいて、波長変換体10の厚さは特に限定されないが、例えば40μm~400μmであることが好ましく、80μm~200μmであることが好ましい。波長変換体10の厚さが上記範囲内であると、放熱性を比較的高く維持することができる。 In the wavelength conversion members 1 and 1A, the thickness of the wavelength conversion body 10 is not particularly limited, but is preferably, for example, 40 μm to 400 μm, and more preferably 80 μm to 200 μm. When the thickness of the wavelength converter 10 is within the above range, the heat radiation can be kept relatively high.
 このように、本実施形態に係る波長変換部材1,1Aは、複数の蛍光体粒子20と、複数の無機粒子31とを含む。蛍光体粒子20の表面には、非晶質の無機化合物を含むアモルファス部32を有する。無機粒子31及びアモルファス部32は同じ金属元素を含有し、当該金属元素はアルカリ金属、アルカリ土類金属、遷移金属、卑金属及び半金属からなる群より選ばれる少なくとも一つである。無機粒子31とアモルファス部32は共に無機化合物を含有することから、高い熱伝導性を有する。そのため、バインダー層30において、無機粒子31とアモルファス部32の両方が熱伝導パスとなることから、ハイパワーな励起光が照射された場合でも波長変換体10の熱を効率よく外部に放散することができる。その結果、蛍光体粒子20の温度消光が抑制され、高出力の発光を得ることが可能となる。 As described above, the wavelength conversion members 1 and 1A according to the present embodiment include the plurality of phosphor particles 20 and the plurality of inorganic particles 31. The surface of the phosphor particles 20 has an amorphous portion 32 containing an amorphous inorganic compound. The inorganic particles 31 and the amorphous portion 32 contain the same metal element, and the metal element is at least one selected from the group consisting of alkali metals, alkaline earth metals, transition metals, base metals, and metalloids. Since both the inorganic particles 31 and the amorphous portion 32 contain an inorganic compound, they have high thermal conductivity. Therefore, in the binder layer 30, since both the inorganic particles 31 and the amorphous portion 32 serve as heat conduction paths, the heat of the wavelength converter 10 can be efficiently radiated to the outside even when irradiated with high-power excitation light. Can be. As a result, the temperature quenching of the phosphor particles 20 is suppressed, and high-output light emission can be obtained.
 また、図2に示すように、アモルファス部32は、蛍光体粒子20の表面だけでなく、蛍光体粒子20と無機粒子31と間の空隙、及び隣接する無機粒子31の間にある空隙を充填するように設けることができる。そのため、バインダー層30の内部に残存して熱伝導性を低下させる空隙を低減し、バインダー層30全体の熱伝導性を向上させることが可能となる。 As shown in FIG. 2, the amorphous portion 32 fills not only the surface of the phosphor particles 20 but also the gap between the phosphor particles 20 and the inorganic particles 31 and the gap between the adjacent inorganic particles 31. Can be provided. Therefore, it is possible to reduce voids that remain inside the binder layer 30 and reduce the thermal conductivity, and improve the thermal conductivity of the entire binder layer 30.
 波長変換部材1,1Aにおいて、蛍光体粒子20の全体積は、無機粒子31の全体積よりも大きいことが好ましい。蛍光体粒子20の全体積を大きくすることにより、蛍光体の充填密度が高くなる。そのため、波長変換部材1,1Aにおいて、蛍光体粒子20からの出力光の密度をより高めることが可能となる。 In the wavelength conversion members 1 and 1A, the total volume of the phosphor particles 20 is preferably larger than the total volume of the inorganic particles 31. Increasing the total volume of the phosphor particles 20 increases the packing density of the phosphor. Therefore, in the wavelength conversion members 1 and 1A, the density of the output light from the phosphor particles 20 can be further increased.
 波長変換部材1,1Aにおいて、無機粒子31の全体積は、蛍光体粒子20の全体積よりも大きいことも好ましい。無機粒子31の全体積を高めることにより、隣接する蛍光体粒子20同士が離間しやすくなる。蛍光体粒子20が離間することにより、ハイパワーな励起光が照射されて蛍光体粒子20が発熱したとしても、無機粒子31及びアモルファス部32が熱伝導パスとなり、波長変換体10の外部に効率よく放熱される。そのため、バインダー層30の放熱性が高まり、蛍光体粒子20の温度消光を抑制することが可能となる。 In the wavelength conversion members 1 and 1A, the total volume of the inorganic particles 31 is preferably larger than the total volume of the phosphor particles 20. By increasing the total volume of the inorganic particles 31, the adjacent phosphor particles 20 are easily separated from each other. When the phosphor particles 20 are separated from each other, even if the phosphor particles 20 generate heat by being irradiated with high-power excitation light, the inorganic particles 31 and the amorphous portion 32 become a heat conduction path, and the efficiency becomes outside the wavelength converter 10. Dissipates heat well. Therefore, the heat dissipation of the binder layer 30 is enhanced, and the temperature quenching of the phosphor particles 20 can be suppressed.
 波長変換部材1,1Aにおいて、蛍光体粒子20の平均粒子径は、無機粒子31の平均粒子径よりも大きいことが好ましい。無機粒子31の平均粒子径が蛍光体粒子20よりも小さいことにより、無機粒子31の間の分子間力等により蛍光体粒子20を連結し、蛍光体粒子20を固定することが可能となる。また、蛍光体粒子20の平均粒子径が大きくなることにより、励起源が放つ励起光を効率的に吸収し、吸収した励起光を色調制御された蛍光に変換しやすくなる。 In the wavelength conversion members 1 and 1A, the average particle diameter of the phosphor particles 20 is preferably larger than the average particle diameter of the inorganic particles 31. Since the average particle diameter of the inorganic particles 31 is smaller than that of the phosphor particles 20, the phosphor particles 20 can be connected by the intermolecular force between the inorganic particles 31 and the like, and the phosphor particles 20 can be fixed. In addition, since the average particle diameter of the phosphor particles 20 is increased, the excitation light emitted by the excitation source is efficiently absorbed, and the absorbed excitation light is easily converted into color-controlled fluorescence.
[波長変換部材の製造方法]
 次に、本実施形態に係る波長変換部材1,1Aの製造方法について説明する。なお、蛍光体粒子及び無機粒子は、上述の波長変換部材で説明したものと同じであるため、それらの説明は省略する。
[Production method of wavelength conversion member]
Next, a method for manufacturing the wavelength conversion members 1 and 1A according to the present embodiment will be described. Note that the phosphor particles and the inorganic particles are the same as those described in the above-described wavelength conversion member, and thus description thereof will be omitted.
 波長変換部材1,1Aにおける波長変換体10は、水分を含んだ状態で蛍光体粒子及び無機粒子を加圧して加熱することにより製造することができる。このような加圧加熱法を用いることにより、無機粒子31の一部が溶出して、蛍光体粒子20の表面にアモルファス部32を形成することが可能となる。 波長 The wavelength converter 10 in the wavelength converters 1 and 1A can be manufactured by pressurizing and heating the phosphor particles and the inorganic particles in a state containing water. By using such a pressurized heating method, a part of the inorganic particles 31 is eluted, and the amorphous portion 32 can be formed on the surface of the phosphor particles 20.
 具体的には、まず、蛍光体粒子20の粉末と無機粒子31の粉末とを混合して複合粉末を調製する。蛍光体粒子20の粉末と無機粒子31の粉末の混合方法は特に限定されず、乾式又は湿式で行うことができる。また、蛍光体粒子20の粉末と無機粒子31の粉末は空気中で混合してもよく、不活性雰囲気下で混合してもよい。 Specifically, first, a powder of the phosphor particles 20 and a powder of the inorganic particles 31 are mixed to prepare a composite powder. The method of mixing the powder of the phosphor particles 20 and the powder of the inorganic particles 31 is not particularly limited, and can be performed by a dry method or a wet method. The powder of the phosphor particles 20 and the powder of the inorganic particles 31 may be mixed in the air or may be mixed under an inert atmosphere.
 次に、複合粉末に、酸性水溶液又はアルカリ性水溶液を添加する。酸性水溶液又はアルカリ性水溶液を添加することにより、無機粒子31の溶出を促進することが可能となる。酸性水溶液としては、pH1~3の水溶液を用いることができる。アルカリ性水溶液としては、pH10~14の水溶液を用いることができる。 Next, an acidic aqueous solution or an alkaline aqueous solution is added to the composite powder. By adding an acidic aqueous solution or an alkaline aqueous solution, the elution of the inorganic particles 31 can be promoted. As the acidic aqueous solution, an aqueous solution having a pH of 1 to 3 can be used. As the alkaline aqueous solution, an aqueous solution having a pH of 10 to 14 can be used.
 無機粒子31は、酸性水溶液及びアルカリ性水溶液の少なくとも一方への溶解性を有することが好ましい。具体的には、無機粒子31は、pH1~3の酸性水溶液及びpH10~14のアルカリ性水溶液の少なくとも一方への溶解性を有することがより好ましい。酸性水溶液及びアルカリ性水溶液の少なくとも一方への溶解性を有することにより、加圧加熱工程で無機粒子31を構成する無機化合物の一部が溶解する。溶解した無機化合物は、複合粉末における蛍光体粒子20の表面、蛍光体粒子20と無機粒子31との間の空隙、及び無機粒子31の間の空隙に浸入する。そして、この状態で複合粉末中の水分を除去することにより、蛍光体粒子20の表面、蛍光体粒子20と無機粒子31との間、及び無機粒子31の間に、無機粒子31を構成する無機化合物を含むアモルファス部32を形成することが可能となる。 It is preferable that the inorganic particles 31 have solubility in at least one of an acidic aqueous solution and an alkaline aqueous solution. Specifically, the inorganic particles 31 more preferably have solubility in at least one of an acidic aqueous solution having a pH of 1 to 3 and an alkaline aqueous solution having a pH of 10 to 14. By having solubility in at least one of the acidic aqueous solution and the alkaline aqueous solution, a part of the inorganic compound constituting the inorganic particles 31 is dissolved in the pressurizing and heating step. The dissolved inorganic compound penetrates into the surface of the phosphor particles 20 in the composite powder, the gap between the phosphor particles 20 and the inorganic particles 31, and the gap between the inorganic particles 31. Then, by removing the water in the composite powder in this state, the inorganic particles constituting the inorganic particles 31 are formed between the surfaces of the fluorescent particles 20, between the fluorescent particles 20 and the inorganic particles 31, and between the inorganic particles 31. The amorphous portion 32 containing the compound can be formed.
 蛍光体粒子20は、耐酸性及び耐アルカリ性の少なくとも一方を有することが好ましい。具体的には、蛍光体粒子20は、pH1~3の酸性水溶液及びpH10~14のアルカリ性水溶液の少なくとも一方への溶解性を有しないことがより好ましい。耐酸性及び耐アルカリ性の少なくとも一方を有することにより、加圧加熱工程でも蛍光体粒子20の粒子形状を維持することができるため、蛍光体粒子20の発光効率の低下を抑制することが可能となる。 The phosphor particles 20 preferably have at least one of acid resistance and alkali resistance. Specifically, it is more preferable that the phosphor particles 20 do not have solubility in at least one of an acidic aqueous solution having a pH of 1 to 3 and an alkaline aqueous solution having a pH of 10 to 14. By having at least one of acid resistance and alkali resistance, the particle shape of the phosphor particles 20 can be maintained even in the pressurizing and heating step, so that it is possible to suppress a decrease in the luminous efficiency of the phosphor particles 20. .
 複合粉末に上述の酸性水溶液を添加する場合、無機粒子31は当該酸性水溶液への溶解性を有することが好ましく、蛍光体粒子20は耐酸性を有することが好ましい。また、複合粉末に上述のアルカリ性水溶液を添加する場合、無機粒子31は当該アルカリ性水溶液への溶解性を有することが好ましく、蛍光体粒子20は耐アルカリ性を有することが好ましい。 When the above-mentioned acidic aqueous solution is added to the composite powder, the inorganic particles 31 preferably have solubility in the acidic aqueous solution, and the phosphor particles 20 preferably have acid resistance. When the above-mentioned alkaline aqueous solution is added to the composite powder, the inorganic particles 31 preferably have solubility in the alkaline aqueous solution, and the phosphor particles 20 preferably have alkali resistance.
 次いで、酸性水溶液又はアルカリ性水溶液を含んだ複合粉末を、金型の内部に充填する。当該複合粉末を金型に充填した後、必要に応じて金型を加熱してもよい。そして、金型の内部の複合粉末に圧力を加えることにより、金型の内部で高温高圧状態となる。この際、蛍光体粒子20及び無機粒子31が緻密化すると同時に、無機粒子31同士、並びに蛍光体粒子20と無機粒子31とが互いに連結する。また、高温高圧状態では、無機粒子31を構成する無機化合物が水溶液に溶解し、溶解した無機化合物は、蛍光体粒子20の表面、蛍光体粒子20と無機粒子31との間の空隙、及び無機粒子31の間の空隙に浸入する。そして、この状態で水分が除去されることにより、無機粒子31を構成する無機化合物を含むアモルファス部32が形成される。 Next, a composite powder containing an acidic aqueous solution or an alkaline aqueous solution is filled in the mold. After filling the composite powder into a mold, the mold may be heated as necessary. Then, by applying pressure to the composite powder inside the mold, a high temperature and high pressure state is created inside the mold. At this time, the phosphor particles 20 and the inorganic particles 31 are densified, and at the same time, the inorganic particles 31 and the phosphor particles 20 and the inorganic particles 31 are connected to each other. In a high-temperature and high-pressure state, the inorganic compound constituting the inorganic particles 31 is dissolved in the aqueous solution, and the dissolved inorganic compound forms a surface of the phosphor particles 20, a gap between the phosphor particles 20 and the inorganic particles 31, and an inorganic compound. It penetrates into the gaps between the particles 31. Then, by removing moisture in this state, an amorphous portion 32 containing an inorganic compound constituting the inorganic particles 31 is formed.
 酸性水溶液又はアルカリ性水溶液を含んだ複合粉末の加熱加圧条件は、無機粒子31の溶解が進行するような条件であれば特に限定されない。例えば、酸性水溶液又はアルカリ性水溶液を含んだ複合粉末を、50~300℃、好ましくは80~250℃に加熱した後、10~600MPa、好ましくは50~400MPaの圧力で加圧することが好ましい。 加熱 The heating and pressing conditions of the composite powder containing the acidic aqueous solution or the alkaline aqueous solution are not particularly limited as long as the dissolution of the inorganic particles 31 proceeds. For example, it is preferable that a composite powder containing an acidic aqueous solution or an alkaline aqueous solution is heated to 50 to 300 ° C., preferably 80 to 250 ° C., and then pressurized at a pressure of 10 to 600 MPa, preferably 50 to 400 MPa.
 そして、金型の内部から成形体を取り出すことにより、波長変換体10を得ることができる。波長変換体10を基板40に固定する方法は特に限定されず、例えば接着剤を用いて固定してもよい。また、得られた波長変換体10と基板40とを加圧することにより、これらを固着させてもよい。 波長 Then, the wavelength conversion body 10 can be obtained by taking out the molded body from the inside of the mold. The method for fixing the wavelength converter 10 to the substrate 40 is not particularly limited, and may be fixed using, for example, an adhesive. Alternatively, the obtained wavelength converter 10 and the substrate 40 may be fixed by pressing them.
 このように、本実施形態の波長変換部材1,1Aでは、加圧加熱法を用いることにより、無機粒子31とアモルファス部32とを備えたバインダー層30を形成し、さらに蛍光体粒子20の表面にアモルファス部32を設けることができる。なお、波長変換部材1,1Aの製造方法は、上述の加圧加熱法に限定されず、例えば温間等方圧プレス法(WIP)も適用することができる。 As described above, in the wavelength conversion members 1 and 1A of the present embodiment, the binder layer 30 having the inorganic particles 31 and the amorphous portions 32 is formed by using the pressure heating method, and the surface of the phosphor particles 20 is further formed. May be provided with an amorphous portion 32. In addition, the manufacturing method of the wavelength conversion members 1 and 1A is not limited to the above-described pressurization and heating method, and for example, a warm isostatic pressing method (WIP) can also be applied.
 なお、上述の製造方法では、酸性水溶液又はアルカリ性水溶液を含んだ複合粉末を、金型の内部に充填しているが、本実施形態はこのような態様に限定されない。つまり、複合粉末を金型の内部に充填した後、酸性水溶液又はアルカリ性水溶液を複合粉末に滴下することにより、複合粉末に水溶液を含ませてもよい。また、上述の製造方法では、金型を用いて加圧及び加熱を行っているが、本実施形態はこのような態様に限定されない。つまり、本実施形態の製造方法では、金型の代わりにオートクレーブを用いて、原料を加圧及び加熱してもよい。また、真空プレス成形機を用いて原料を加圧及び加熱してもよい。 In the above-described manufacturing method, the composite powder containing the acidic aqueous solution or the alkaline aqueous solution is filled in the mold, but the present embodiment is not limited to such an aspect. That is, after the composite powder is filled into the mold, an acidic aqueous solution or an alkaline aqueous solution may be dropped on the composite powder to include the aqueous solution in the composite powder. Further, in the above-described manufacturing method, the pressing and the heating are performed using the mold, but the present embodiment is not limited to such an aspect. That is, in the manufacturing method of the present embodiment, the raw material may be pressurized and heated using an autoclave instead of the mold. Further, the raw material may be pressurized and heated using a vacuum press molding machine.
 ここで、非晶質の無機化合物を形成する方法としては、従来よりゾル-ゲル法が知られている。しかし、ゾル-ゲル法は原料として有機物を使用することから、得られる無機化合物には多量の有機物が残存する。このような無機化合物を用いた波長変換部材は、残存する有機物により熱伝導性が低下して温度が上昇しやすくなることから、蛍光体の温度消光が発生しやすくなり、光出力効率が悪化してしまう。また、蛍光体の発光時における温度上昇により有機物が焦げて着色することから、光出力効率が悪化してしまう。しかしながら、本実施形態の波長変換部材1,1Aの製造方法では、無機粒子31を加熱及び加圧することによりアモルファス部32を形成することから、バインダー層30は殆ど有機物を含まない。そのため、得られる波長変換部材1,1Aは、蛍光体の温度消光を抑制し、高い光出力効率を発揮することが可能となる。 Here, as a method for forming an amorphous inorganic compound, a sol-gel method has been conventionally known. However, since the sol-gel method uses an organic substance as a raw material, a large amount of the organic substance remains in the obtained inorganic compound. In the wavelength conversion member using such an inorganic compound, the thermal conductivity is reduced due to the remaining organic matter and the temperature is easily increased, so that the temperature quenching of the phosphor is easily generated, and the light output efficiency is deteriorated. Would. Further, the organic substance is scorched and colored by the temperature rise at the time of light emission of the phosphor, so that the light output efficiency is deteriorated. However, in the method of manufacturing the wavelength conversion members 1 and 1A of the present embodiment, since the amorphous portion 32 is formed by heating and pressing the inorganic particles 31, the binder layer 30 hardly contains an organic substance. Therefore, the obtained wavelength conversion members 1 and 1A can suppress the temperature quenching of the phosphor and exhibit high light output efficiency.
 以下、実施例により本実施形態を更に詳しく説明するが、本実施形態は当該実施例に限定されるものではない。 Hereinafter, the present embodiment will be described in more detail with reference to examples, but the present embodiment is not limited to the examples.
[試験サンプルの調製]
 はじめに、蛍光体粒子として、平均粒子径D50が約19μmのYAG粒子(YAl12:Ce3+)を用意した。無機粒子として、平均粒子径D50が約1μmの酸化亜鉛粒子(ZnO)を用意した。そして、YAG粒子及び酸化亜鉛粒子をそれぞれ50体積%の割合で乾式混合し、0.52gの複合粉末を得た。
[Preparation of test sample]
First, YAG particles (Y 3 Al 5 O 12 : Ce 3+ ) having an average particle diameter D 50 of about 19 μm were prepared as phosphor particles. As the inorganic particles, an average particle diameter D 50 was prepared zinc oxide particles of about 1 [mu] m (ZnO). Then, the YAG particles and the zinc oxide particles were dry-mixed at a ratio of 50% by volume, respectively, to obtain 0.52 g of a composite powder.
 次に、得られた複合粉末を、内部空間を有する円筒状の成形用金型(Φ10)の内部に投入した。さらに、成形用金型の内部に充填した複合粉末に、1Mの酢酸を100μL添加した。そして、当該酢酸を含んだ複合粉末に、400MPa、80℃の条件で1時間加圧することにより、本例の試験サンプルを得た。 Next, the obtained composite powder was charged into a cylindrical molding die (Φ10) having an internal space. Further, 100 μL of 1M acetic acid was added to the composite powder filled in the molding die. Then, the test powder of this example was obtained by pressing the composite powder containing acetic acid at 400 MPa and 80 ° C. for 1 hour.
[試験サンプルの評価]
 (透過型電子顕微鏡観察)
 得られた試験サンプルを透過型電子顕微鏡で観察した。図4は、試験サンプルを透過型電子顕微鏡で観察した結果を示している。図4に示すように、蛍光体の表面には、蛍光体よりも粒子径が小さい酸化亜鉛粒子(ZnO粒子)が複数接触していることが分かる。さらに、蛍光体の表面、蛍光体と酸化亜鉛粒子との間、及び隣接する酸化亜鉛粒子の間には、無機化合物が存在することが分かる。
[Evaluation of test sample]
(Transmission electron microscope observation)
The obtained test sample was observed with a transmission electron microscope. FIG. 4 shows the result of observing the test sample with a transmission electron microscope. As shown in FIG. 4, it can be seen that a plurality of zinc oxide particles (ZnO particles) having a smaller particle diameter than the phosphor are in contact with the surface of the phosphor. Further, it can be seen that an inorganic compound is present on the surface of the phosphor, between the phosphor and the zinc oxide particles, and between adjacent zinc oxide particles.
 さらに図5(a)では、図4(c)の写真をさらに拡大した結果を示し、図5(b)では、図5(a)における無機化合物の部分の電子線回折パターンを示している。図5(b)に示すように、無機化合物における電子線回折パターンでは、結晶性を示すパターンが見られなかったことから、蛍光体の表面に存在する無機化合物はアモルファスであることが分かる。 5 (a) shows the result of further enlarging the photograph of FIG. 4 (c), and FIG. 5 (b) shows the electron diffraction pattern of the inorganic compound portion in FIG. 5 (a). As shown in FIG. 5B, in the electron diffraction pattern of the inorganic compound, no pattern showing crystallinity was found, indicating that the inorganic compound present on the surface of the phosphor was amorphous.
 図6は、試験サンプルを透過型電子顕微鏡で観察し、図4とは異なる部分を拡大した結果を示している。図4と同様に、蛍光体の表面には、蛍光体よりも粒子径が小さい酸化亜鉛粒子が複数接触していることが分かる。さらに、蛍光体の表面、蛍光体と酸化亜鉛粒子との間、及び隣接する酸化亜鉛粒子の間には、無機化合物が存在することが分かる。 FIG. 6 shows the result of observing the test sample with a transmission electron microscope and enlarging a portion different from that of FIG. As in FIG. 4, it can be seen that a plurality of zinc oxide particles having a smaller particle diameter than the phosphor are in contact with the surface of the phosphor. Further, it can be seen that an inorganic compound is present on the surface of the phosphor, between the phosphor and the zinc oxide particles, and between adjacent zinc oxide particles.
 さらに図7(a)では、図6(c)の写真をさらに拡大した結果を示し、図7(b)では、図7(a)における無機化合物の部分の電子線回折パターンを示している。図7(b)に示すように、無機化合物における電子線回折パターンでは、結晶性を示すパターンが観察された。つまり、図7(a)における無機化合物の部分には、結晶性を示す格子が僅かに観察された。 7 (a) shows the result of further enlarging the photograph of FIG. 6 (c), and FIG. 7 (b) shows the electron diffraction pattern of the inorganic compound portion in FIG. 7 (a). As shown in FIG. 7B, in the electron diffraction pattern of the inorganic compound, a pattern showing crystallinity was observed. That is, in the portion of the inorganic compound in FIG. 7A, a lattice showing crystallinity was slightly observed.
 これらのことから、試験サンプルでは、アモルファス部として、非晶質の無機化合物のみからなる部位と、非晶質の無機化合物と結晶質の無機化合物とが混在した部位の両方が存在することが分かる。 From these facts, it can be seen that in the test sample, as the amorphous portion, there are both a portion composed of only the amorphous inorganic compound and a portion where the amorphous inorganic compound and the crystalline inorganic compound are mixed. .
 (エネルギー分散型X線分析(EDX))
 得られた試験サンプルに対して、エネルギー分散型X線分析(EDX)を行った。図8には、走査透過電子顕微鏡写真(STEM)に加え、酸素(O)、亜鉛(Zn)、ケイ素(Si)、イットリウム(Y)及びアルミニウム(Al)のマッピングデータを示している。
(Energy dispersive X-ray analysis (EDX))
The obtained test sample was subjected to energy dispersive X-ray analysis (EDX). FIG. 8 shows mapping data of oxygen (O), zinc (Zn), silicon (Si), yttrium (Y) and aluminum (Al) in addition to a scanning transmission electron micrograph (STEM).
 図8より、イットリウム及びアルミニウムは、蛍光体粒子でのみ観察されており、酸化亜鉛粒子及びアモルファス部では観察されていないことから、蛍光体粒子からイットリウム及びアルミニウムは溶出していないと推測される。また、酸化亜鉛粒子及びアモルファス部では、亜鉛と酸素の両方が観察されることから、酸化亜鉛粒子及びアモルファス部は、同じ金属元素である亜鉛が含まれることが分かる。 よ り From FIG. 8, since yttrium and aluminum are observed only in the phosphor particles and are not observed in the zinc oxide particles and the amorphous portion, it is presumed that yttrium and aluminum are not eluted from the phosphor particles. Since both zinc and oxygen are observed in the zinc oxide particles and the amorphous portion, it is understood that the zinc oxide particles and the amorphous portion contain zinc, which is the same metal element.
 なお、図8に示すEDX分析の結果、試験サンプルには不純物としてのケイ素が含まれており、さらにケイ素はアモルファス部に偏析していることが確認された。そのため、アモルファス部は、酸化亜鉛粒子から溶け出して生成した亜鉛の酸化物に加えて、ケイ素化合物が存在していてもよいことが分かる。 ED In addition, as a result of the EDX analysis shown in FIG. 8, it was confirmed that the test sample contained silicon as an impurity, and that silicon was segregated in the amorphous portion. Therefore, it can be seen that the amorphous portion may contain a silicon compound in addition to the zinc oxide generated by dissolution from the zinc oxide particles.
 図9では、試験サンプルに対してエネルギー分散型X線分析を行った結果を示す。図9(a)では、明視野像(BF)に加え、酸素(O)、ケイ素(Si)、亜鉛(Zn)のマッピングデータを示す。図9(b)では、図9(a)において「○」で示すアモルファス部に関し、マッピングデータからスペクトルを抽出した後、簡易定量を行った結果を示す。図10では、試験サンプルに対してエネルギー分散型X線分析を行った結果を示しており、図9とは異なる部位を観察した結果を示している。図10(a)では、明視野像(BF)に加え、酸素(O)、ケイ素(Si)、亜鉛(Zn)のマッピングデータを示す。図10(b)では、図10(a)において「○」で示すアモルファス部に関し、マッピングデータからスペクトルを抽出した後、簡易定量を行った結果を示す。 FIG. 9 shows the result of performing energy dispersive X-ray analysis on the test sample. FIG. 9A shows mapping data of oxygen (O), silicon (Si), and zinc (Zn) in addition to the bright-field image (BF). FIG. 9B shows the result of simple quantification after extracting a spectrum from the mapping data for the amorphous portion indicated by “「 ”in FIG. 9A. FIG. 10 shows the result of performing energy dispersive X-ray analysis on the test sample, and shows the result of observing a site different from that in FIG. 9. FIG. 10A shows mapping data of oxygen (O), silicon (Si), and zinc (Zn) in addition to the bright field image (BF). FIG. 10B shows the result of simple quantification after extracting a spectrum from the mapping data for the amorphous portion indicated by “「 ”in FIG. 10A.
 図9(b)より、図9(a)に示すアモルファス部におけるケイ素原子の数は、亜鉛原子よりも多いことが分かる。これに対して、図10(b)より、図10(a)に示すアモルファス部におけるケイ素原子の数は、亜鉛原子よりも少ないことが分かる。そのため、アモルファス部において、亜鉛原子及びケイ素原子のいずれが多い場合でも、非晶質の無機化合物を形成できることが分かる。 FIG. 9B shows that the number of silicon atoms in the amorphous portion shown in FIG. 9A is larger than that of zinc atoms. In contrast, FIG. 10B shows that the number of silicon atoms in the amorphous portion shown in FIG. 10A is smaller than that of zinc atoms. Therefore, it can be seen that an amorphous inorganic compound can be formed regardless of whether zinc atoms or silicon atoms are large in the amorphous portion.
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。 Although the present embodiment has been described above, the present embodiment is not limited to these, and various modifications can be made within the scope of the present embodiment.
 特願2018-135828号(出願日:2018年7月19日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2018-135828 (filing date: July 19, 2018) are incorporated herein by reference.
 本開示によれば、ハイパワーな励起光が照射された場合でも放熱性に優れ、蛍光体の温度消光を抑制することが可能な波長変換部材を提供することができる。 According to the present disclosure, it is possible to provide a wavelength conversion member that is excellent in heat dissipation even when irradiated with high-power excitation light and that can suppress temperature quenching of a phosphor.
 1,1A 波長変換部材
 20 蛍光体粒子
 31 無機粒子
 32 アモルファス部
1,1A wavelength conversion member 20 phosphor particles 31 inorganic particles 32 amorphous portion

Claims (9)

  1.  複数の蛍光体粒子と、複数の無機粒子と、を含み、
     前記蛍光体粒子の表面には、非晶質の無機化合物を含むアモルファス部を有し、
     前記無機粒子及び前記アモルファス部は同じ金属元素を含有し、前記金属元素はアルカリ金属、アルカリ土類金属、遷移金属、卑金属及び半金属からなる群より選ばれる少なくとも一つである、波長変換部材。
    Including a plurality of phosphor particles and a plurality of inorganic particles,
    The surface of the phosphor particles has an amorphous portion containing an amorphous inorganic compound,
    The wavelength conversion member, wherein the inorganic particles and the amorphous portion contain the same metal element, and the metal element is at least one selected from the group consisting of an alkali metal, an alkaline earth metal, a transition metal, a base metal, and a metalloid.
  2.  前記アモルファス部は、前記蛍光体粒子の表面、及び隣接する無機粒子の間に存在する、請求項1に記載の波長変換部材。 The wavelength conversion member according to claim 1, wherein the amorphous portion exists between the surface of the phosphor particles and adjacent inorganic particles.
  3.  前記無機粒子は、隣接する前記蛍光体粒子を連結する、請求項1又は2に記載の波長変換部材。 The wavelength conversion member according to claim 1 or 2, wherein the inorganic particles connect adjacent phosphor particles.
  4.  前記無機粒子の平均粒子径は300nm以上30μm以下である、請求項1乃至3のいずれか一項に記載の波長変換部材。 4. The wavelength conversion member according to claim 1, wherein an average particle diameter of the inorganic particles is 300 nm or more and 30 μm or less. 5.
  5.  前記無機粒子は、酸性水溶液及びアルカリ性水溶液の少なくとも一方への溶解性を有する、請求項1乃至4のいずれか一項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 4, wherein the inorganic particles have solubility in at least one of an acidic aqueous solution and an alkaline aqueous solution.
  6.  前記無機粒子及び前記アモルファス部は前記金属元素の酸化物を含有する、請求項1乃至5のいずれか一項に記載の波長変換部材。 6. The wavelength conversion member according to claim 1, wherein the inorganic particles and the amorphous portion contain an oxide of the metal element. 7.
  7.  前記金属元素の酸化物は、酸化亜鉛、酸化マグネシウム、並びに酸化亜鉛と酸化マグネシウムとの複合体からなる群より選ばれる少なくとも一つである、請求項6に記載の波長変換部材。 The wavelength conversion member according to claim 6, wherein the oxide of the metal element is at least one selected from the group consisting of zinc oxide, magnesium oxide, and a composite of zinc oxide and magnesium oxide.
  8.  前記蛍光体粒子は、耐酸性及び耐アルカリ性の少なくとも一方を有する、請求項1乃至7のいずれか一項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 7, wherein the phosphor particles have at least one of acid resistance and alkali resistance.
  9.  前記蛍光体粒子の平均粒子径は、前記無機粒子の平均粒子径よりも大きい、請求項1乃至8のいずれか一項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 8, wherein the average particle diameter of the phosphor particles is larger than the average particle diameter of the inorganic particles.
PCT/JP2019/028015 2018-07-19 2019-07-17 Wavelength conversion member WO2020017526A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020531328A JP7170235B2 (en) 2018-07-19 2019-07-17 Wavelength conversion member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018135828 2018-07-19
JP2018-135828 2018-07-19

Publications (1)

Publication Number Publication Date
WO2020017526A1 true WO2020017526A1 (en) 2020-01-23

Family

ID=69164894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028015 WO2020017526A1 (en) 2018-07-19 2019-07-17 Wavelength conversion member

Country Status (2)

Country Link
JP (1) JP7170235B2 (en)
WO (1) WO2020017526A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241194A1 (en) * 2020-05-27 2021-12-02 パナソニックIpマネジメント株式会社 Inorganic structure and method for producing same
WO2022172940A1 (en) * 2021-02-15 2022-08-18 パナソニックIpマネジメント株式会社 Inorganic structure and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107072A (en) * 2015-12-10 2017-06-15 日本電気硝子株式会社 Wavelength conversion member and wavelength conversion element, and light emitting device using the same
WO2017098730A1 (en) * 2015-12-11 2017-06-15 パナソニックIpマネジメント株式会社 Wavelength converter, wavelength conversion member, and light-emitting device
JP2017181685A (en) * 2016-03-29 2017-10-05 日本特殊陶業株式会社 Wavelength conversion member and method of manufacturing the same, and light emitting device
WO2017179521A1 (en) * 2016-04-12 2017-10-19 パナソニックIpマネジメント株式会社 Wavelength conversion member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107072A (en) * 2015-12-10 2017-06-15 日本電気硝子株式会社 Wavelength conversion member and wavelength conversion element, and light emitting device using the same
WO2017098730A1 (en) * 2015-12-11 2017-06-15 パナソニックIpマネジメント株式会社 Wavelength converter, wavelength conversion member, and light-emitting device
JP2017181685A (en) * 2016-03-29 2017-10-05 日本特殊陶業株式会社 Wavelength conversion member and method of manufacturing the same, and light emitting device
WO2017179521A1 (en) * 2016-04-12 2017-10-19 パナソニックIpマネジメント株式会社 Wavelength conversion member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241194A1 (en) * 2020-05-27 2021-12-02 パナソニックIpマネジメント株式会社 Inorganic structure and method for producing same
CN115551804A (en) * 2020-05-27 2022-12-30 松下知识产权经营株式会社 Inorganic structure and method for producing same
EP4159393A4 (en) * 2020-05-27 2023-11-22 Panasonic Intellectual Property Management Co., Ltd. Inorganic structure and method for producing same
WO2022172940A1 (en) * 2021-02-15 2022-08-18 パナソニックIpマネジメント株式会社 Inorganic structure and method for producing same

Also Published As

Publication number Publication date
JPWO2020017526A1 (en) 2021-08-02
JP7170235B2 (en) 2022-11-14

Similar Documents

Publication Publication Date Title
CN102333844B (en) Nitridosilicates co-doped with zirconium and hafnium
TWI384053B (en) Fluorescence material and manufacture thereof and luminaire
US8674388B2 (en) Phosphor, method of manufacturing the same, and light-emitting device
JP5575488B2 (en) Illumination system including a synthetic monolithic ceramic luminescence converter
US8608980B2 (en) Phosphor, method for producing the same and light-emitting device using the same
JP4582095B2 (en) Light converting structure and light emitting device using the same
TWI399422B (en) Fluorescence material and manufacture thereof and luminaire
JP5326182B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
CN108603956B (en) Light emitting device
JP6941821B2 (en) Wavelength converter, its manufacturing method, and light emitting device using the wavelength converter
KR20080009198A (en) Phosphor phosphor sheet, and manufacturing method therefore, and light emission device using the phosphor
US11292963B2 (en) Wavelength converting member and method for producing the same
JP2007191702A (en) Light emission color converting material
US8858834B2 (en) Co-doped 1-1-2 nitrides
JP6890299B2 (en) Garnet silicate, garnet silicate phosphor, and wavelength converter and light emitting device using garnet silicate phosphor
WO2020017526A1 (en) Wavelength conversion member
JP2006173433A (en) Light transforming ceramic compound, and light emitting device using the same
JP2005298721A (en) Oxynitride phosphor and light emitting device using the same
JP7019496B2 (en) Wavelength conversion member and its manufacturing method
JP2007231105A (en) Phosphor, fluorescent film, light emitting device, and manufacturing method of phosphor
JP5360370B2 (en) Light emitting device
JP6945133B2 (en) Wavelength conversion member
US11597875B2 (en) Wavelength converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838184

Country of ref document: EP

Kind code of ref document: A1