WO2020017328A1 - Plasma processing device and plasma processing method - Google Patents

Plasma processing device and plasma processing method Download PDF

Info

Publication number
WO2020017328A1
WO2020017328A1 PCT/JP2019/026424 JP2019026424W WO2020017328A1 WO 2020017328 A1 WO2020017328 A1 WO 2020017328A1 JP 2019026424 W JP2019026424 W JP 2019026424W WO 2020017328 A1 WO2020017328 A1 WO 2020017328A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
gas
plasma generation
generation chamber
processing apparatus
Prior art date
Application number
PCT/JP2019/026424
Other languages
French (fr)
Japanese (ja)
Inventor
山涌 純
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020017328A1 publication Critical patent/WO2020017328A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • Various aspects and embodiments of the present disclosure relate to a plasma processing apparatus and a plasma processing method.
  • the density of electrons in the generated plasma is improved by increasing the frequency of the high-frequency power used for generating the plasma.
  • the frequency of the high-frequency power it is possible to reduce damage to a semiconductor wafer to be processed (hereinafter, referred to as a wafer) due to ions in the plasma.
  • the gas used to generate the plasma is a negative gas
  • increasing the frequency of the high-frequency power in the pressure range used for film formation conversely lowers the electron density in the plasma. It is conceivable to improve the electron density by lowering the frequency of the high-frequency power, but the problem of ion damage to the wafer to be processed remains.
  • a so-called remote plasma in which a processing apparatus for processing a wafer and a generating apparatus for generating plasma are realized by separate apparatuses, and active species contained in the plasma are supplied from the generating apparatus to the processing apparatus via a pipe, is called a remote plasma.
  • a method is conceivable. As a result, ion damage to the wafer to be processed can be reduced.
  • One aspect of the present disclosure is a plasma processing apparatus that includes a first gas supply unit, a plasma generation unit, and a partition plate.
  • the first gas supply unit supplies a reaction gas containing a negative gas into the plasma generation chamber.
  • the plasma generation unit generates a plasma of a reaction gas in a plasma generation chamber.
  • the partition plate separates the reaction chamber into which the object is loaded from the plasma generation chamber. Further, the partition plate has a plurality of through holes, and supplies active species contained in the plasma generated in the plasma generation chamber to the reaction chamber through the plurality of through holes.
  • active species can be efficiently supplied to a target object.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of a plasma processing apparatus according to the first embodiment of the present disclosure.
  • FIG. 2 is an enlarged cross-sectional view for explaining an example of a positional relationship between the partition plate and the shielding member according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of the relationship between pressure and electron density.
  • FIG. 4 is a flowchart illustrating an example of the film forming process.
  • FIG. 5 is a schematic cross-sectional view illustrating an example of a plasma processing apparatus according to the second embodiment of the present disclosure.
  • FIG. 6 is an enlarged cross-sectional view illustrating an example of a positional relationship between a partition plate and a shielding member according to the second embodiment.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of a plasma processing apparatus according to the first embodiment of the present disclosure.
  • FIG. 2 is an enlarged cross-sectional view for explaining an example of a positional relationship between the partition plate and the
  • FIG. 7 is a schematic cross-sectional view illustrating an example of a plasma processing apparatus according to the third embodiment of the present disclosure.
  • FIG. 8 is a diagram illustrating an example of a pulse waveform.
  • FIG. 9 is a diagram illustrating another example of the pulse waveform.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a plasma processing apparatus according to the fourth embodiment of the present disclosure.
  • FIG. 11 is a schematic cross-sectional view illustrating an example of a plasma processing apparatus according to the fifth embodiment of the present disclosure.
  • FIG. 1 is a schematic sectional view illustrating an example of a plasma processing apparatus 1 according to the first embodiment of the present disclosure.
  • the plasma processing apparatus 1 according to the present embodiment is a CCP (capacitively coupled plasma) processing apparatus.
  • the plasma processing apparatus 1 includes a substantially cylindrical processing container 10 having a bottom and an upper opening, and a mounting table 11 provided in the processing container 10.
  • the processing container 10 is grounded.
  • the inner wall of the processing container 10 is covered with a liner (not shown) having a sprayed coating made of, for example, a plasma-resistant material on the surface.
  • the mounting table 11 is formed of a metal such as nickel, for example. On the mounting table 11, a wafer W, which is an example of the object to be processed, is mounted.
  • the lower surface of the mounting table 11 is electrically connected to a support member 13 formed of a conductive material, and the mounting table 11 is supported by the support member 13.
  • the support member 13 is supported on the bottom surface of the processing container 10.
  • the lower end of the support member 13 is electrically connected to the bottom surface of the processing container 10 and is grounded via the processing container 10.
  • the lower end of the support member 13 may be electrically connected to the bottom surface of the processing container 10 via a circuit adjusted so as to lower the impedance between the mounting table 11 and the ground potential.
  • the mounting table 11 has a built-in heater 12, and the heater 12 can heat the wafer W mounted on the mounting table 11 to a predetermined temperature. Further, a flow path (not shown) for circulating the refrigerant is formed inside the mounting table 11, and the refrigerant whose temperature is controlled by a chiller unit provided outside the processing container 10 is provided in the flow path. Circulated supply. By the heating by the heater 12 and the cooling by the cooling medium supplied from the chiller unit, the mounting table 11 can control the temperature of the wafer W to a predetermined temperature.
  • the electrodes may be embedded in the mounting table 11.
  • the wafer W mounted on the mounting table 11 can be attracted to the upper surface of the mounting table 11 by the electrostatic force generated by the DC voltage supplied to the electrodes.
  • the mounting table 11 is provided with elevating pins (not shown) for transferring the wafer W to and from a transfer mechanism (not shown) provided outside the processing container 10.
  • An upper electrode 30 formed in a substantially disc shape is provided above the mounting table 11 and on the inner side surface of the processing container 10.
  • the upper electrode 30 is supported on the mounting table 11 via an insulating member 33 such as a ceramic. Therefore, the processing container 10 and the upper electrode 30 are electrically insulated.
  • the upper electrode 30 is formed of, for example, a conductive metal such as nickel (Ni).
  • the upper electrode 30 is an example of an electrode plate.
  • a gas supply pipe 50 is connected to the upper electrode 30, and the gas supplied via the gas supply pipe 50 diffuses in the plasma generation chamber 42 below the upper electrode 30.
  • a gas supply unit 51 is connected to the gas supply pipe 50, for example, as shown in FIG.
  • the gas supply unit 51 in the present embodiment includes a gas supply source 52-1 for supplying a reactive gas, a gas supply source 52-2 for supplying an inert gas, and a gas supply source for supplying a precursor gas for film formation. 52-3.
  • the gas supply source 52-1 is an example of a first gas supply unit.
  • the reaction gas contains a negative gas.
  • the reaction gas is, for example, an oxygen-containing gas.
  • the reaction gas is, for example, O2 gas.
  • the reaction gas may include a hydrogen-containing gas (for example, H2 gas).
  • the reaction gas may include a rare gas such as Ar gas.
  • the inert gas is, for example, N2 gas. Note that a rare gas may be used as the inert gas.
  • the precursor gas is a source gas for forming a Ti film on the wafer W, and is, for example, a TiCl4 gas.
  • the gas supply unit 51 includes a plurality of valves 53-1 to 53-3, a plurality of flow controllers 54-1 to 54-3, and valves 55-1 to 55-3.
  • the flow controller 54-1 controls the flow rate of the O2 gas supplied from the gas supply source 52-1 via the valve 53-1 and supplies the O2 gas whose flow rate is controlled to the valve 55-1 and the gas supply pipe.
  • the gas is supplied into the plasma generation chamber 42 through the chamber 50.
  • the flow controller 54-2 controls the flow rate of the N2 gas supplied from the gas supply source 52-2 via the valve 53-2, and supplies the N2 gas whose flow rate is controlled to the valve 55-2 and the gas supply pipe.
  • the gas is supplied into the plasma generation chamber 42 through the chamber 50.
  • the flow controller 54-3 controls the flow rate of the TiCl4 gas supplied from the gas supply source 52-3 via the valve 53-3, and supplies the TiCl4 gas whose flow rate is controlled to the valve 55-3 and the gas supply pipe.
  • the gas is supplied into the plasma generation chamber 42 through the chamber 50.
  • the TiCl4 gas supplied into the plasma generation chamber 42 is supplied to the reaction chamber 61 via a through hole 40a of a partition plate 40 described later.
  • valve 53 is used to refer to the valve 53 in a generic manner.
  • the plurality of flow controllers 54-1 to 54-3 are collectively referred to without distinction, they are referred to as the flow controllers 54, and the plurality of valves 55-1 to 55-3 are distinguished.
  • the term “valve 55” will be used when the term is generically used.
  • a high-frequency power supply 20 for supplying high-frequency power for generating plasma is electrically connected to the upper electrode 30 via a matching unit 21.
  • the high-frequency power supply 20 supplies high-frequency power having a frequency of, for example, 100 kHz to 100 MHz to the upper electrode 30 via the matching unit 21.
  • a DC power supply 22 for supplying a DC voltage is connected to the upper electrode 30 via a filter 24 and a switch 23.
  • the DC power supply 22 supplies a negative DC voltage to the upper electrode 30.
  • DC power supply 22 may supply a positive DC voltage to upper electrode 30.
  • the filter 24 suppresses the high-frequency component of the DC voltage supplied from the DC power supply 22 via the switch 23 and suppresses the high-frequency power flowing from the high-frequency power supply 20 to the DC power supply 22 via the matching device 21.
  • the matching unit 21 matches the internal impedance of the high-frequency power supply 20 with the load impedance. Specifically, the matching device 21 acts so that the internal impedance and the load impedance of the high-frequency power supply 20 seem to match when the plasma is generated in the plasma generation chamber 42.
  • the high-frequency power supplied from the high-frequency power supply 20 via the matching unit 21 is applied to the upper electrode 30 with the DC voltage supplied from the DC power supply 22 superimposed thereon.
  • a partition plate 40 is provided between the upper electrode 30 and the mounting table 11 to partition a space in the processing container 10 into a plasma generation chamber 42 and a reaction chamber 61.
  • the partition plate 40 is formed of a metal such as aluminum whose surface is anodized.
  • the partition plate 40 is arranged in the processing container 10 so as to be parallel to the upper electrode 30.
  • the partition plate 40 is supported by a side wall of the processing container 10.
  • the partition plate 40 is electrically connected to the processing container 10 and is grounded via the processing container 10.
  • a shielding member 60 made of quartz or the like is provided between the partition plate 40 and the mounting table 11, a shielding member 60 made of quartz or the like is provided.
  • the shielding member 60 is an example of a suppression unit.
  • FIG. 2 is an enlarged cross-sectional view for explaining an example of the positional relationship between the partition plate 40 and the shielding member 60.
  • the partition plate 40 is provided with a plurality of through-holes 40a penetrating the partition plate 40 in the thickness direction, for example, as shown in FIG.
  • a plurality of through holes 60a penetrating in the thickness direction of the shielding member 60 are formed in the shielding member 60, for example, as shown in FIG.
  • the through hole 60a of the shielding member 60 is formed at a position corresponding to the position of the partition plate 40 where the through hole 40a is not formed in the horizontal direction.
  • the through hole 40 a of the partition plate 40 is shielded by the shielding member 60 in the vertical direction. Therefore, the shielding member 60 suppresses intrusion of ions from the plasma generation chamber 42 into the reaction chamber 61 through the plurality of through holes 60a.
  • the plasma generation chamber 42 in which the plasma is generated and the reaction chamber 61 in which the wafer W is accommodated are separated, and the configuration is such that the wafer W does not directly contact the plasma. Has become. Therefore, it is possible to prevent the ions in the plasma from colliding with the wafer W. Further, since the intrusion of ions into the reaction chamber 61 is suppressed by the shielding member 60, damage to the wafer W by ions in the plasma is reduced.
  • An exhaust device 70 for exhausting the inside of the processing container 10 is connected to a bottom surface of the processing container 10 via an exhaust pipe 71.
  • the exhaust pipe 71 is provided with an adjustment valve 72 for adjusting the amount of exhaust by the exhaust device 70.
  • An opening 14 for loading and unloading the wafer W is formed in the side wall of the processing container 10.
  • the opening 14 is opened and closed by a gate valve G.
  • Control device 100 has a memory and a processor.
  • the processor controls each unit of the plasma processing apparatus 1 by reading and executing a program or a recipe stored in the memory.
  • the control device 100 controls each part of the plasma processing apparatus 1 so as to form a TiO2 film on the wafer W on the mounting table 11 by PEALD (Plasma-Enhanced Atomic Layer Deposition).
  • the TiO2 film is an example of an insulating film.
  • the control device 100 drives the exhaust device 70 and adjusts the opening of the adjustment valve 72 to thereby control the processing container 10.
  • the pressure inside is reduced to a predetermined degree of vacuum.
  • the control device 100 executes an adsorption process.
  • the valve 53-3, the flow controller 54-3, and the valve 55-3 are controlled, and a predetermined flow of TiCl4 gas is supplied from the gas supply source 52-3 into the plasma generation chamber 42.
  • the TiCl 4 gas supplied into the plasma generation chamber 42 diffuses inside the plasma generation chamber 42.
  • the molecules of the TiCl 4 gas are not hindered by the shielding member 60, for example, as shown by the dashed arrow in FIG. Is supplied in the form of a shower.
  • the molecules of the TiCl 4 gas supplied into the reaction chamber 61 are adsorbed on the surface of the wafer W on the mounting table 11.
  • the control device 100 stops the supply of the TiCl4 gas by controlling the valve 53-3 and the valve 55-3. Then, the control device 100 executes the first purge step.
  • the valve 53-2, the flow controller 54-2, and the valve 55-2 are controlled, and a predetermined flow rate of N2 gas is supplied into the plasma generation chamber 42 through the gas supply pipe 50.
  • the N 2 gas supplied into the plasma generation chamber 42 diffuses in the plasma generation chamber 42 and is supplied in a shower shape into the reaction chamber 61 through the through hole 40 a of the partition plate 40 and the through hole 60 a of the shielding member 60. You.
  • the molecules of the TiCl 4 gas excessively adsorbed on the surface of the wafer W are removed by the N 2 gas supplied to the reaction chamber 61.
  • the control device 100 stops the supply of the N2 gas by controlling the valve 53-2 and the valve 55-2. Then, the control device 100 executes the reaction process.
  • the valve 53-1, the flow controller 54-1 and the valve 55-1 are controlled, and a predetermined flow of O2 gas is supplied into the plasma generation chamber 42 via the gas supply pipe 50.
  • the O 2 gas supplied into the plasma generation chamber 42 diffuses in the plasma generation chamber 42.
  • the control device 100 generates the high-frequency power in the high-frequency power supply 20, controls the switch 23 to be on, and superimposes a DC voltage of a predetermined magnitude supplied from the DC power supply 22 on the high-frequency power.
  • the high frequency power on which the DC voltage is superimposed is supplied to the upper electrode 30 and radiated into the plasma generation chamber 42.
  • O2 gas plasma is generated in the plasma generation chamber 42 by the high frequency power and the DC voltage radiated into the plasma generation chamber 42.
  • the high frequency power supply 20 and the DC power supply 22 are examples of a plasma generation unit. Plasma contains electrons, ions, and active species.
  • the partition plate 40 since the partition plate 40 is grounded via the processing container 10, the charge of charged particles such as electrons and ions in contact with the surface of the partition plate 40 is neutralized.
  • the charged particles that have not contacted the surface of the partition plate 40 pass through the through holes 40a of the partition plate 40.
  • the through hole 40a in the present embodiment is shielded by the shielding member 60 in the vertical direction, for example, as shown in FIG. Therefore, the charged particles that have passed through the through holes 40 a come into contact with the upper surface 62 of the shielding member 60. Then, on the upper surface 62 of the shielding member 60, the charge of the ions is neutralized by the charge of the electrons. Therefore, the number of ions that enter the reaction chamber 61 through the through hole 60a of the shielding member 60 is reduced. Thereby, damage caused to the wafer W by the ions is reduced.
  • the active species contained in the plasma are electrically neutral, and therefore hardly deactivated even when they come into contact with the surface of the partition plate 40 or the shielding member 60. Therefore, the active species that have entered the through hole 40a of the partition plate 40 are supplied to the reaction chamber 61 through the through hole 60a of the shielding member 60, for example, as shown by a dotted arrow in FIG.
  • the active species supplied to the reaction chamber 61 reacts with TiCl4 molecules on the wafer W to form a TiO2 film.
  • the control device 100 stops the supply of the O2 gas by controlling the valve 53-1 and the valve 55-1. Then, the control device 100 executes a second purge step. In the second purge step, the valve 53-2, the flow rate controller 54-2, and the valve 55-2 are controlled, and a predetermined flow rate of N2 gas is supplied into the plasma generation chamber 42 via the gas supply pipe 50. You.
  • the N 2 gas supplied into the plasma generation chamber 42 is supplied to the reaction chamber 61 via the through hole 40 a of the partition plate 40 and the through hole 60 a of the shielding member 60.
  • the N2 gas supplied to the reaction chamber 61 removes molecules of TiO2 excessively generated on the surface of the wafer W.
  • the control device 100 forms a TiO2 film having a predetermined thickness on the surface of the wafer W by repeating a predetermined cycle of the adsorption step, the first purge step, the reaction step, and the second purge step.
  • FIG. 3 is a diagram showing an example of the relationship between pressure and electron density.
  • FIG. 3 shows the electron density in the plasma of a negative gas (specifically, O2 gas) generated using 500 W of high-frequency power.
  • a negative gas specifically, O2 gas
  • the electron density in the plasma increases as the frequency of the high-frequency power increases.
  • the pressure range of 0.5 Torr or more the electron density in the plasma decreases as the frequency of the high-frequency power increases. Since the film forming process is often performed at a pressure in the range of 0.5 Torr or more, it is difficult to improve the electron density in the film forming process by increasing the high frequency.
  • the density was about 21 ⁇ 10 10 / cm 3 .
  • the electron density when the high frequency power of 13 MHz is 500 W, the electron density is about 15 ⁇ 10 10 / cm 3 . Therefore, by superimposing a DC voltage on the high-frequency power, the electron density could be increased by about 40%.
  • the electron density can be more than doubled by setting the 13 MHz high frequency power to 300 W and superimposing the 480 W DC voltage on the 13 MHz high frequency power.
  • the plasma generation chamber 42 and the reaction chamber 61 are separated, the plasma generation chamber 42 and the reaction chamber 61 are realized in separate devices, and the plasma generation chamber 42 and the reaction chamber 61 are connected via piping. It is also conceivable to employ a so-called remote plasma configuration for connection. However, in that case, the active species contained in the plasma may be deactivated in the process of flowing through the piping, and it is difficult to supply a sufficient amount of the active species into the reaction chamber 61.
  • the plasma generation chamber 42 and the reaction chamber 61 are adjacent via the partition plate 40. Therefore, many active species contained in the plasma generated in the plasma generation chamber 42 can be guided to the reaction chamber 61 without being deactivated.
  • plasma may be generated by a plasma generation method such as ICP (Inductively Coupled Plasma) or SWP (Surface Wave Plasma) having a higher electron density than CCP.
  • a plasma generation method such as ICP or SWP
  • the volume of the plasma generation chamber 42 can be smaller than that of a plasma generation method such as ICP or SWP. Thereby, gas replacement can be realized at a higher speed, and the throughput of the film forming process by ALD can be improved.
  • FIG. 4 is a flowchart illustrating an example of the film forming process.
  • the gate valve G is opened, and the wafer W is loaded into the processing chamber 10 by the robot arm (not shown) and is mounted on the mounting table 11 (S100). Then, the gate valve G is closed. Then, the control device 100 drives the exhaust device 70 and adjusts the opening degree of the adjustment valve 72 to reduce the pressure inside the processing container 10 to a predetermined degree of vacuum (S101). The control device 100 controls the pressure in the processing container 10 to a pressure within a range of, for example, 0.5 Torr or more and 2.0 Torr or less.
  • the control device 100 executes an adsorption process (S102).
  • the valve 53-3, the flow controller 54-3, and the valve 55-3 are controlled, and a predetermined flow rate of the precursor gas (for example, TiCl4 gas) is supplied into the plasma generation chamber 42.
  • a predetermined flow rate of the precursor gas for example, TiCl4 gas
  • the molecules of the TiCl 4 gas supplied into the plasma generation chamber 42 diffuse in the plasma generation chamber 42, and are supplied to the reaction chamber 61 through the through holes 40 a of the partition plate 40 and the through holes 60 a of the shielding member 60.
  • the wafer W adheres to the surface of the mounting table 11.
  • the control device 100 stops the supply of the TiCl4 gas by controlling the valve 53-3 and the valve 55-3.
  • the control device 100 executes a first purge step (S103).
  • the valve 53-2, the flow controller 54-2, and the valve 55-2 are controlled, and a predetermined flow rate of the inert gas (for example, N2 gas) is generated through the gas supply pipe 50 to generate plasma. It is supplied into the chamber 42.
  • the N 2 gas supplied into the plasma generation chamber 42 diffuses in the plasma generation chamber 42, and is supplied to the reaction chamber 61 through the through hole 40 a of the partition plate 40 and the through hole 60 a of the shielding member 60.
  • the molecules of the TiCl 4 gas excessively adsorbed on the surface of the wafer W are removed by the N 2 gas supplied to the reaction chamber 61.
  • the control device 100 stops the supply of the N2 gas by controlling the valve 53-2 and the valve 55-2.
  • Step S104 is an example of a gas supply step.
  • the reaction gas is, for example, O2 gas.
  • the O 2 gas supplied into the plasma generation chamber 42 diffuses in the plasma generation chamber 42.
  • the control device 100 controls the switch 23 to turn on, thereby applying a DC voltage of a predetermined magnitude supplied from the DC power supply 22 to the upper electrode 30 (S105).
  • the control device 100 applies a DC voltage having a magnitude in a range of more than 0 V and 1 kV or less to the upper electrode 30, for example.
  • the control device 100 applies the high frequency power to the upper electrode 30 by causing the high frequency power supply 20 to generate the high frequency power (S106).
  • the control device 100 applies, for example, high-frequency power having a magnitude in a range of 100 W or more and 1000 W or less to the upper electrode 30. Thereby, the high-frequency power on which the DC voltage is superimposed is applied to the upper electrode 30 and is radiated into the plasma generation chamber 42.
  • Step S106 is an example of a plasma generation step.
  • the active species in the plasma are supplied into the reaction chamber 61 through the through holes 40 a of the partition plate 40 and the through holes 60 a of the shielding member 60.
  • the active species supplied into the reaction chamber 61 reacts with molecules of TiCl 4 on the wafer W to form an insulating film (for example, a TiO 2 film) on the wafer W.
  • the control device 100 stops the supply of the O2 gas by controlling the valve 53-1 and the valve 55-1.
  • the control device 100 stops the application of the DC voltage from the DC power supply 22 to the upper electrode 30 by controlling the switch 23 to be turned off, and causes the high-frequency power supply 20 to stop generating the high-frequency power.
  • the application of the high frequency power to 30 is stopped.
  • the control device 100 executes a second purge step (S107).
  • the valve 53-2, the flow controller 54-2, and the valve 55-2 are controlled, and a predetermined flow rate of an inert gas (for example, N2 gas) is generated through the gas supply pipe 50 to generate plasma. It is supplied into the chamber 42.
  • the N 2 gas supplied into the plasma generation chamber 42 is supplied to the reaction chamber 61 via the through hole 40 a of the partition plate 40 and the through hole 60 a of the shielding member 60.
  • the N2 gas supplied to the reaction chamber 61 removes molecules of TiO2 excessively generated on the surface of the wafer W.
  • the control device 100 stops the supply of the N2 gas by controlling the valve 53-2 and the valve 55-2.
  • control device 100 determines whether or not the processing of steps S102 to S107 has been repeated a predetermined number of times (S108). If the processing of steps S102 to S107 has not been repeated a predetermined number of times (S108: No), control device 100 executes the processing shown in step S102 again. On the other hand, when the processing of steps S102 to S107 is repeated a predetermined number of times (S108: Yes), the gate valve G is opened, and the wafer W is unloaded from the processing chamber 10 by the robot arm (not shown) (S109). Then, the film forming process shown in the flowchart is completed.
  • the plasma processing apparatus 1 As described above, the plasma processing apparatus 1 according to the present embodiment has been described. As is clear from the above description, according to the plasma processing apparatus 1 of the present embodiment, active species can be efficiently supplied to the wafer W. Further, according to the plasma processing apparatus 1 of the present embodiment, it is possible to achieve both an improvement in electron density and a reduction in ion damage.
  • the plasma processing apparatus 1 of the above-described embodiment is an apparatus that performs PEALD on the wafer W
  • the disclosed technology can be applied to a plasma processing apparatus other than the film forming apparatus.
  • a plasma processing apparatus other than the film forming apparatus for example, a plasma etching apparatus that etches the wafer W using active species included in plasma is exemplified.
  • the shielding member 60 is provided between the plasma generation chamber 42 and the reaction chamber 61 in the plasma processing apparatus 1 according to the above-described embodiment. Therefore, even when the plasma is generated only by the high-frequency power, the incidence of ions from the plasma to the wafer W is shielded by the shielding member 60. Therefore, even when plasma is generated only by high-frequency power, ion damage to wafer W can be reduced.
  • a reaction gas and a precursor gas are supplied into the plasma generation chamber 42.
  • the reaction gas is supplied into the plasma generation chamber 42, and the precursor gas is supplied into the reaction chamber 61. Thereby, it is possible to prevent the film from being formed on the inner wall of the plasma generation chamber 42.
  • FIG. 5 is a schematic cross-sectional view illustrating an example of a plasma processing apparatus according to the second embodiment of the present disclosure. Except for the points described below, in FIG. 5, the components denoted by the same reference numerals as those in FIG. 1 have the same functions as those of the plasma processing apparatus 1 described with reference to FIG. Omitted.
  • the partition plate 40 in the present embodiment has a gas diffusion chamber 41 provided therein.
  • a plurality of gas discharge ports 41a extending downward are formed in the gas diffusion chamber 41.
  • Each gas discharge port 41a is provided at a position different from the through hole 40a.
  • a precursor gas for film formation (eg, TiCl 4 gas) is supplied to the gas diffusion chamber 41 via a valve 55-3, a flow controller 54-3, and a valve 53-3.
  • the gas supply source 52-3 to be supplied is connected.
  • the TiCl4 gas supplied from the gas supply source 52-3 into the gas diffusion chamber 41 via the valve 53-3, the flow controller 54-3, and the valve 55-3 diffuses inside the gas diffusion chamber 41.
  • the TiCl 4 gas diffused in the gas diffusion chamber 41 is supplied into the reaction chamber 61 in a shower form from a gas discharge port 41 a provided on the lower surface of the partition plate 40.
  • the gas supply source 52-3 is an example of a second gas supply unit.
  • FIG. 6 is an enlarged cross-sectional view for explaining an example of the positional relationship between the partition plate 40 and the shielding member 60 in the second embodiment.
  • the through hole 60a of the shielding member 60 is provided at a position corresponding to the gas discharge port 41a of the partition plate 40, for example, as shown in FIG. Therefore, the molecules of the TiCl4 gas diffused in the gas diffusion chamber 41 of the partition plate 40 pass through the gas discharge port 41a and the through hole 60a without being obstructed by the shielding member 60, for example, as shown by a solid arrow in FIG. Via the reaction chamber 61.
  • active species contained in the plasma generated in the plasma generation chamber 42 react via the through-holes 40 a of the partition plate 40 and the through-holes 60 a of the shielding member 60, as indicated by, for example, broken arrows in FIG. 6. It is supplied to the chamber 61. Note that charged particles such as ions contained in the plasma generated in the plasma generation chamber 42 come into contact with the upper surface of the shielding member 60 through the through holes 40 a of the partition plate 40 to neutralize the charge.
  • the film formed on the wafer W is an insulating film
  • a DC voltage is applied to the upper electrode 30
  • an insulating deposit adheres to the inside of the processing container 10, and thus the inside of the processing container 10 is formed. May cause abnormal discharge. If an abnormal discharge occurs during the film formation, components in the processing container 10 will be damaged. When the components inside the processing container 10 are damaged, a member peeled from the component damaged by the abnormal discharge drifts as particles in the processing container 10 and adheres to the wafer W, which may cause a defect of the wafer W. Therefore, it is necessary to suppress occurrence of abnormal discharge.
  • the space in the processing chamber 10 is partitioned by the partition plate 40 into the plasma generation chamber 42 and the reaction chamber 61, and the precursor gas is not supplied into the plasma generation chamber 42. For this reason, in the plasma generation chamber 42, no deposit is generated due to the reaction between the molecules of the precursor gas and the active species in the plasma. Therefore, even if a DC voltage is applied to the upper electrode 30 exposed in the plasma generation chamber 42, no abnormal discharge occurs in the plasma generation chamber 42.
  • a predetermined film is formed on the surface of the wafer W by the reaction between the molecules of the precursor gas and the active species supplied via the partition plate 40, but faces the reaction chamber 61. Deposits generated by the reaction between the molecules of the precursor gas and the active species also adhere to the surface of the member. However, when viewed from the reaction chamber 61, the abnormal discharge does not occur in the reaction chamber 61 because the upper electrode 30 is shielded by the partitioning plate 40 that is grounded.
  • the plasma processing apparatus 1 of the present embodiment can achieve both an improvement in electron density and a reduction in ion damage by superimposing a DC voltage on the high-frequency power, and can suppress occurrence of abnormal discharge. It becomes possible.
  • FIG. 7 is a schematic cross-sectional view illustrating an example of the plasma processing apparatus 1 according to the third embodiment of the present disclosure.
  • the plasma processing apparatus 1 according to the present embodiment is different from the plasma processing apparatus 1 according to the second embodiment in that a DC voltage is applied to the partition plate 40.
  • a DC voltage is applied to the partition plate 40.
  • the partition plate 40 is supported by the processing vessel 10 via an insulating member 47 made of an insulating member such as ceramics.
  • the partition plate 40 is electrically insulated from the processing container 10 by the insulating member 47.
  • a DC power supply 22 that supplies a DC voltage is connected to the partition plate 40 via a filter 24 and a switch 23.
  • the filter 24 suppresses a high frequency component of the DC voltage supplied from the DC power supply 22 via the switch 23.
  • the switch 23 controls the waveform of the DC voltage applied to the upper electrode 30 in a pulse shape by alternately controlling the DC voltage supplied from the DC power supply 22 to ON and OFF.
  • the DC voltage controlled in a pulse-like waveform (hereinafter, referred to as a pulse waveform) is applied to the partition plate 40 via the filter 24.
  • FIG. 8 is a diagram illustrating an example of a pulse waveform.
  • the DC power supply 22 generates a DC voltage having a magnitude of Va, for example.
  • the switch 23 operates so as to be turned on in the period T1 and turned off in the period T2.
  • the switch 23 is controlled by the control device 100.
  • the duty ratio is T1 / (TI + T2).
  • the conditions of the pulse waveform of the DC voltage applied to the partition plate 40 are, for example, as follows. Repetition frequency: 100 kHz or more and 1 MHz or less DC voltage magnitude: More than 0 V and 1 kV or less Duty ratio: 10% or more and 90% or less
  • the duty ratio of the DC voltage applied to the partition plate 40 is 100%, that is, when the DC voltage is continuously applied to the partition plate 40, the depot attached to the lower surface of the partition plate 40 causes An abnormal discharge may occur in the reaction chamber 61.
  • the occurrence of abnormal discharge in the reaction chamber 61 can be suppressed.
  • the magnitude of the DC voltage may be changed as time elapses in the film forming process.
  • the magnitude of the DC voltage may be reduced from Va to Va 'as time elapses in the film forming process.
  • a variable DC power supply that can change the magnitude of the voltage by a control signal is used as the DC power supply 22.
  • the magnitude of the voltage of DC power supply 22 is controlled by control device 100.
  • FIG. 10 is a schematic sectional view illustrating an example of the plasma processing apparatus 1 according to the fourth embodiment of the present disclosure.
  • the plasma processing apparatus 1 according to the present embodiment is different from the plasma processing apparatus 1 according to the second embodiment in that the partition plate 40 is grounded via the impedance adjustment circuit 25.
  • the components denoted by the same reference numerals as those in FIG. 1, FIG. 5, or FIG. 7 are the same as the components described with reference to FIG. 1, FIG. Since they have similar functions, duplicate description will be omitted.
  • the impedance adjustment circuit 25 has, for example, a variable capacitor and an inductor.
  • the variable capacitor and the inductor are connected in series. By adjusting the capacity of the variable capacitor, the potential of the partition plate 40 can be made closer to the potential of the ground.
  • the capacity of the variable capacitor is controlled by the control device 100.
  • the impedance adjustment circuit 25 may be configured by connecting a capacitor having a fixed capacitance value and a variable inductor having a variable inductance value in series.
  • the capacity of the variable capacitor in the impedance adjustment circuit 25 it is possible to intentionally control the potential of the partition plate 40 to a potential different from the ground potential. Thereby, the amount of ions flowing into the reaction chamber 61 through the through hole 40a can be controlled. Depending on the type of film to be formed and the film forming conditions, it may be necessary to supply some ions to the wafer W. Therefore, in the plasma processing apparatus 1 of the present embodiment, the amount of ions supplied to the wafer W can be controlled by adjusting the capacity of the variable capacitor. As a result, in the film forming process, it is possible to achieve both improvement of the electron density and reduction of the ion damage, and it is possible to suppress the occurrence of the abnormal discharge. Further, it is possible to perform the film forming process with more flexibility. Becomes
  • FIG. 11 is a schematic cross-sectional view illustrating an example of the plasma processing apparatus 1 according to the fifth embodiment of the present disclosure.
  • the plasma processing apparatus 1 according to the present embodiment is different from the plasma processing apparatus 1 according to the second embodiment in that high-frequency power is applied to the partition plate 40.
  • the components denoted by the same reference numerals as those in FIG. 1, FIG. 5, or FIG. 7 are the same as the components described with reference to FIG. 1, FIG. Since they have similar functions, duplicate description will be omitted.
  • the high frequency power supply 20 supplies the high frequency power to the partition plate 40 via the matching unit 21.
  • the high-frequency power supplied to the partition plate 40 is radiated into the plasma generation chamber 42, and a plasma of the reaction gas is generated in the plasma generation chamber 42. Also in such a configuration, it is possible to achieve both an improvement in electron density and a reduction in ion damage in the film forming process, and to suppress occurrence of abnormal discharge.
  • the inert gas used in the first purge step and the second purge step is supplied from the upper electrode 30 into the reaction chamber 61 via the plasma generation chamber 42.
  • the disclosed technology is not limited to this.
  • the inert gas is supplied to the gas diffusion chamber 41 in the partition plate 40 like the precursor gas, and is supplied from the gas discharge port 41a into the reaction chamber 61. May be supplied.
  • the DC voltage applied to the upper electrode 30 is equal to the third voltage.
  • a pulse waveform may be used.

Abstract

This plasma processing device is provided with a first gas supply part, a plasma generation part, and a partition plate. The first gas supply part supplies a reaction gas including a negative gas into a plasma generation chamber. The plasma generation part generates a plasma of the reaction gas in the plasma generation chamber. The partition plate partitions the plasma generation chamber and a reaction chamber into which a body to be processed is carried. The partition plate also has a plurality of through holes, and a reactive species included in the plasma generated in the plasma generation chamber is supplied to the reaction chamber via the plurality of through holes.

Description

プラズマ処理装置およびプラズマ処理方法Plasma processing apparatus and plasma processing method
 本開示の種々の側面および実施形態は、プラズマ処理装置およびプラズマ処理方法に関する。 Various aspects and embodiments of the present disclosure relate to a plasma processing apparatus and a plasma processing method.
 プラズマを用いた処理では、プラズマの生成に用いられる高周波電力の周波数を高くすることにより、生成されるプラズマ中の電子密度が向上する。また、高周波電力の周波数を高くすることにより、プラズマ中のイオンによる、処理対象の半導体ウエハ(以下、ウエハと記載する)へのダメージを低減することができる。しかし、プラズマの生成に用いられるガスが負性ガスである場合、成膜で使用される圧力範囲では高周波電力の周波数を高くすることによって、逆にプラズマ中の電子密度が低下してしまう。高周波電力の周波数を低くすることにより、電子密度の向上を図ることが考えられるが、処理対象のウエハへのイオンダメージの問題が残る。そこで、ウエハの処理を行う処理装置と、プラズマを生成する生成装置とを別々の装置により実現し、プラズマに含まれる活性種を、配管を介して生成装置から処理装置へ供給する、いわゆるリモートプラズマ方式が考えられる。これにより、処理対象のウエハへのイオンダメージを低減することができる。 処理 In the processing using plasma, the density of electrons in the generated plasma is improved by increasing the frequency of the high-frequency power used for generating the plasma. In addition, by increasing the frequency of the high-frequency power, it is possible to reduce damage to a semiconductor wafer to be processed (hereinafter, referred to as a wafer) due to ions in the plasma. However, when the gas used to generate the plasma is a negative gas, increasing the frequency of the high-frequency power in the pressure range used for film formation conversely lowers the electron density in the plasma. It is conceivable to improve the electron density by lowering the frequency of the high-frequency power, but the problem of ion damage to the wafer to be processed remains. Therefore, a so-called remote plasma, in which a processing apparatus for processing a wafer and a generating apparatus for generating plasma are realized by separate apparatuses, and active species contained in the plasma are supplied from the generating apparatus to the processing apparatus via a pipe, is called a remote plasma. A method is conceivable. As a result, ion damage to the wafer to be processed can be reduced.
特開平9-192479号公報JP-A-9-192479
 しかし、リモートプラズマでは、プラズマに含まれる活性種が配管を流れる間に失活してしまい、十分な量の活性種をウエハが収容された処理装置内に供給することが難しい。また、ウエハを処理する処理装置と、プラズマを生成する生成装置とを別々に設けることになるため、全体の装置が大型化する。 However, in the remote plasma, active species contained in the plasma are deactivated while flowing through the piping, and it is difficult to supply a sufficient amount of the active species into the processing apparatus containing the wafer. Further, since a processing apparatus for processing a wafer and a generating apparatus for generating plasma are separately provided, the size of the entire apparatus is increased.
 本開示の一側面は、プラズマ処理装置であって、第1のガス供給部と、プラズマ生成部と、仕切板とを備える。第1のガス供給部は、プラズマ生成室内に負性ガスを含む反応ガスを供給する。プラズマ生成部は、プラズマ生成室内に反応ガスのプラズマを生成する。仕切板は、被処理体が搬入された反応室とプラズマ生成室とを仕切る。また、仕切板は、複数の貫通穴を有し、プラズマ生成室内に生成されたプラズマに含まれる活性種を、複数の貫通穴を介して反応室に供給する。 の 一 One aspect of the present disclosure is a plasma processing apparatus that includes a first gas supply unit, a plasma generation unit, and a partition plate. The first gas supply unit supplies a reaction gas containing a negative gas into the plasma generation chamber. The plasma generation unit generates a plasma of a reaction gas in a plasma generation chamber. The partition plate separates the reaction chamber into which the object is loaded from the plasma generation chamber. Further, the partition plate has a plurality of through holes, and supplies active species contained in the plasma generated in the plasma generation chamber to the reaction chamber through the plurality of through holes.
 本開示の種々の側面および実施形態によれば、活性種を効率よく被処理体に供給することができる。 According to various aspects and embodiments of the present disclosure, active species can be efficiently supplied to a target object.
図1は、本開示の第1の実施形態におけるプラズマ処理装置の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating an example of a plasma processing apparatus according to the first embodiment of the present disclosure. 図2は、第1の実施形態における仕切板と遮蔽部材との位置関係の一例を説明するための拡大断面図である。FIG. 2 is an enlarged cross-sectional view for explaining an example of a positional relationship between the partition plate and the shielding member according to the first embodiment. 図3は、圧力と電子密度の関係の一例を示す図である。FIG. 3 is a diagram illustrating an example of the relationship between pressure and electron density. 図4は、成膜処理の一例を示すフローチャートである。FIG. 4 is a flowchart illustrating an example of the film forming process. 図5は、本開示の第2の実施形態におけるプラズマ処理装置の一例を示す概略断面図である。FIG. 5 is a schematic cross-sectional view illustrating an example of a plasma processing apparatus according to the second embodiment of the present disclosure. 図6は、第2の実施形態における仕切板と遮蔽部材との位置関係の一例を説明するための拡大断面図である。FIG. 6 is an enlarged cross-sectional view illustrating an example of a positional relationship between a partition plate and a shielding member according to the second embodiment. 図7は、本開示の第3の実施形態におけるプラズマ処理装置の一例を示す概略断面図である。FIG. 7 is a schematic cross-sectional view illustrating an example of a plasma processing apparatus according to the third embodiment of the present disclosure. 図8は、パルス波形の一例を示す図である。FIG. 8 is a diagram illustrating an example of a pulse waveform. 図9は、パルス波形の他の例を示す図である。FIG. 9 is a diagram illustrating another example of the pulse waveform. 図10は、本開示の第4の実施形態におけるプラズマ処理装置の一例を示す概略断面図である。FIG. 10 is a schematic cross-sectional view illustrating an example of a plasma processing apparatus according to the fourth embodiment of the present disclosure. 図11は、本開示の第5の実施形態におけるプラズマ処理装置の一例を示す概略断面図である。FIG. 11 is a schematic cross-sectional view illustrating an example of a plasma processing apparatus according to the fifth embodiment of the present disclosure.
 以下に、開示されるプラズマ処理装置およびプラズマ処理方法の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態により、開示されるプラズマ処理装置およびプラズマ処理方法が限定されるものではない。 Hereinafter, embodiments of the disclosed plasma processing apparatus and plasma processing method will be described in detail with reference to the drawings. Note that the disclosed plasma processing apparatus and plasma processing method are not limited by the following embodiments.
(第1の実施形態)
[プラズマ処理装置1の構成]
 図1は、本開示の第1の実施形態におけるプラズマ処理装置1の一例を示す概略断面図である。本実施形態におけるプラズマ処理装置1は、CCP(容量結合型プラズマ)処理装置である。プラズマ処理装置1は、有底で上方が開口した略円筒状の処理容器10と、処理容器10内に設けられた載置台11とを備える。処理容器10は、接地されている。また、処理容器10の内壁は、例えば表面に耐プラズマ性の材料からなる溶射被膜が形成されたライナ(図示せず)により覆われている。
(First embodiment)
[Configuration of Plasma Processing Apparatus 1]
FIG. 1 is a schematic sectional view illustrating an example of a plasma processing apparatus 1 according to the first embodiment of the present disclosure. The plasma processing apparatus 1 according to the present embodiment is a CCP (capacitively coupled plasma) processing apparatus. The plasma processing apparatus 1 includes a substantially cylindrical processing container 10 having a bottom and an upper opening, and a mounting table 11 provided in the processing container 10. The processing container 10 is grounded. The inner wall of the processing container 10 is covered with a liner (not shown) having a sprayed coating made of, for example, a plasma-resistant material on the surface.
 載置台11は、例えばニッケル等の金属により形成されている。載置台11には、被処理体の一例であるウエハWが載置される。載置台11の下面は、導電性材料により形成された支持部材13に電気的に接続されており、載置台11は、支持部材13によって支持されている。支持部材13は、処理容器10の底面で支持されている。支持部材13の下端は、処理容器10の底面に電気的に接続されており、処理容器10を介して接地されている。支持部材13の下端は、載置台11とグランド電位との間のインピーダンスを下げるように調整された回路を介して処理容器10の底面に電気的に接続されていてもよい。 The mounting table 11 is formed of a metal such as nickel, for example. On the mounting table 11, a wafer W, which is an example of the object to be processed, is mounted. The lower surface of the mounting table 11 is electrically connected to a support member 13 formed of a conductive material, and the mounting table 11 is supported by the support member 13. The support member 13 is supported on the bottom surface of the processing container 10. The lower end of the support member 13 is electrically connected to the bottom surface of the processing container 10 and is grounded via the processing container 10. The lower end of the support member 13 may be electrically connected to the bottom surface of the processing container 10 via a circuit adjusted so as to lower the impedance between the mounting table 11 and the ground potential.
 載置台11には、ヒータ12が内蔵されており、載置台11に載置されるウエハWをヒータ12によって所定の温度に加熱することができる。また、載置台11内部には、冷媒を流通させるための流路(図示せず)が形成されており、処理容器10の外部に設けられたチラーユニットによって温度制御された冷媒が流路内に循環供給される。ヒータ12による加熱と、チラーユニットから供給された冷媒による冷却とにより、載置台11は、ウエハWを所定の温度に制御することができる。 (4) The mounting table 11 has a built-in heater 12, and the heater 12 can heat the wafer W mounted on the mounting table 11 to a predetermined temperature. Further, a flow path (not shown) for circulating the refrigerant is formed inside the mounting table 11, and the refrigerant whose temperature is controlled by a chiller unit provided outside the processing container 10 is provided in the flow path. Circulated supply. By the heating by the heater 12 and the cooling by the cooling medium supplied from the chiller unit, the mounting table 11 can control the temperature of the wafer W to a predetermined temperature.
 なお、載置台11には、電極が埋め込まれていてもよい。この電極に供給された直流電圧によって発生した静電気力により、載置台11に載置されたウエハWが載置台11の上面に吸着させることができる。また、載置台11には、処理容器10の外部に設けられた図示しない搬送機構との間でウエハWを受け渡すための昇降ピン(図示せず)が設けられている。 The electrodes may be embedded in the mounting table 11. The wafer W mounted on the mounting table 11 can be attracted to the upper surface of the mounting table 11 by the electrostatic force generated by the DC voltage supplied to the electrodes. The mounting table 11 is provided with elevating pins (not shown) for transferring the wafer W to and from a transfer mechanism (not shown) provided outside the processing container 10.
 載置台11の上方であって処理容器10の内側面には、略円盤状に形成された上部電極30が設けられている。上部電極30は、セラミックス等の絶縁部材33を介して、載置台11の上部に支持されている。そのため、処理容器10と上部電極30とは、電気的に絶縁されている。上部電極30は、例えばニッケル(Ni)等の導電性の金属により形成されている。上部電極30は、電極板の一例である。 上部 An upper electrode 30 formed in a substantially disc shape is provided above the mounting table 11 and on the inner side surface of the processing container 10. The upper electrode 30 is supported on the mounting table 11 via an insulating member 33 such as a ceramic. Therefore, the processing container 10 and the upper electrode 30 are electrically insulated. The upper electrode 30 is formed of, for example, a conductive metal such as nickel (Ni). The upper electrode 30 is an example of an electrode plate.
 上部電極30には、ガス供給管50が接続されており、ガス供給管50を介して供給されたガスは、上部電極30の下方のプラズマ生成室42内を拡散する。ガス供給管50には、例えば図1に示されるように、ガス供給部51が接続されている。 ガ ス A gas supply pipe 50 is connected to the upper electrode 30, and the gas supplied via the gas supply pipe 50 diffuses in the plasma generation chamber 42 below the upper electrode 30. A gas supply unit 51 is connected to the gas supply pipe 50, for example, as shown in FIG.
 本実施形態におけるガス供給部51は、反応ガスを供給するガス供給源52-1と、不活性ガスを供給するガス供給源52-2と、成膜用の前駆体ガスを供給するガス供給源52-3とを有する。ガス供給源52-1は、第1のガス供給部の一例である。本実施形態において、反応ガスには、負性ガスが含まれる。反応ガスは、例えば酸素含有ガスである。具体的には、反応ガスは、例えばO2ガスである。なお、反応ガスには、水素含有ガス(例えばH2ガス)が含まれていてもよい。また、反応ガスには、例えばArガス等の希ガスが含まれていてもよい。また、本実施形態において、不活性ガスは、例えばN2ガスである。なお、不活性ガスとして、希ガスが用いられてもよい。本実施形態において、前駆体ガスは、ウエハWにTi膜を成膜するための原料ガスであり、例えばTiCl4ガスである。 The gas supply unit 51 in the present embodiment includes a gas supply source 52-1 for supplying a reactive gas, a gas supply source 52-2 for supplying an inert gas, and a gas supply source for supplying a precursor gas for film formation. 52-3. The gas supply source 52-1 is an example of a first gas supply unit. In the present embodiment, the reaction gas contains a negative gas. The reaction gas is, for example, an oxygen-containing gas. Specifically, the reaction gas is, for example, O2 gas. Note that the reaction gas may include a hydrogen-containing gas (for example, H2 gas). Further, the reaction gas may include a rare gas such as Ar gas. In the present embodiment, the inert gas is, for example, N2 gas. Note that a rare gas may be used as the inert gas. In the present embodiment, the precursor gas is a source gas for forming a Ti film on the wafer W, and is, for example, a TiCl4 gas.
 また、ガス供給部51は、複数のバルブ53-1~53-3、複数の流量制御器54-1~54-3、およびバルブ55-1~55-3を有する。流量制御器54-1は、バルブ53-1を介してガス供給源52-1から供給されたO2ガスの流量を制御し、流量が制御されたO2ガスを、バルブ55-1およびガス供給管50を介してプラズマ生成室42内に供給する。流量制御器54-2は、バルブ53-2を介してガス供給源52-2から供給されたN2ガスの流量を制御し、流量が制御されたN2ガスを、バルブ55-2およびガス供給管50を介してプラズマ生成室42内に供給する。流量制御器54-3は、バルブ53-3を介してガス供給源52-3から供給されたTiCl4ガスの流量を制御し、流量が制御されたTiCl4ガスを、バルブ55-3およびガス供給管50を介してプラズマ生成室42内に供給する。プラズマ生成室42内に供給されたTiCl4ガスは、後述する仕切板40の貫通穴40aを介して反応室61に供給される。 The gas supply unit 51 includes a plurality of valves 53-1 to 53-3, a plurality of flow controllers 54-1 to 54-3, and valves 55-1 to 55-3. The flow controller 54-1 controls the flow rate of the O2 gas supplied from the gas supply source 52-1 via the valve 53-1 and supplies the O2 gas whose flow rate is controlled to the valve 55-1 and the gas supply pipe. The gas is supplied into the plasma generation chamber 42 through the chamber 50. The flow controller 54-2 controls the flow rate of the N2 gas supplied from the gas supply source 52-2 via the valve 53-2, and supplies the N2 gas whose flow rate is controlled to the valve 55-2 and the gas supply pipe. The gas is supplied into the plasma generation chamber 42 through the chamber 50. The flow controller 54-3 controls the flow rate of the TiCl4 gas supplied from the gas supply source 52-3 via the valve 53-3, and supplies the TiCl4 gas whose flow rate is controlled to the valve 55-3 and the gas supply pipe. The gas is supplied into the plasma generation chamber 42 through the chamber 50. The TiCl4 gas supplied into the plasma generation chamber 42 is supplied to the reaction chamber 61 via a through hole 40a of a partition plate 40 described later.
 なお、以下では、複数のガス供給源52-1~52-3のそれぞれを区別することなく総称する場合にガス供給源52と記載し、複数のバルブ53-1~53-3のそれぞれを区別することなく総称する場合にバルブ53と記載する。また、以下では、複数の流量制御器54-1~54-3のそれぞれを区別することなく総称する場合に流量制御器54と記載し、複数のバルブ55-1~55-3のそれぞれを区別することなく総称する場合にバルブ55と記載する。 In the following, a plurality of gas supply sources 52-1 to 52-3 will be collectively referred to as a gas supply source 52 without distinction, and each of the plurality of valves 53-1 to 53-3 will be distinguished. The term "valve 53" is used to refer to the valve 53 in a generic manner. In the following, when the plurality of flow controllers 54-1 to 54-3 are collectively referred to without distinction, they are referred to as the flow controllers 54, and the plurality of valves 55-1 to 55-3 are distinguished. The term “valve 55” will be used when the term is generically used.
 上部電極30には、整合器21を介して、プラズマを生成するための高周波電力を供給する高周波電源20が電気的に接続されている。高周波電源20は、例えば100kHz~100MHzの周波数の高周波電力を、整合器21を介して上部電極30に供給する。また、上部電極30には、フィルタ24およびスイッチ23を介して、直流電圧を供給する直流電源22が接続されている。本実施形態において、直流電源22は、上部電極30に負の直流電圧を供給する。なお、他の形態として、直流電源22は、上部電極30に正の直流電圧を供給してもよい。フィルタ24は、スイッチ23を介して直流電源22から供給される直流電圧の高周波成分を抑制すると共に、高周波電源20から整合器21を介して直流電源22へ流れ込む高周波電力を抑制する。 高周波 A high-frequency power supply 20 for supplying high-frequency power for generating plasma is electrically connected to the upper electrode 30 via a matching unit 21. The high-frequency power supply 20 supplies high-frequency power having a frequency of, for example, 100 kHz to 100 MHz to the upper electrode 30 via the matching unit 21. Further, a DC power supply 22 for supplying a DC voltage is connected to the upper electrode 30 via a filter 24 and a switch 23. In the present embodiment, the DC power supply 22 supplies a negative DC voltage to the upper electrode 30. As another form, DC power supply 22 may supply a positive DC voltage to upper electrode 30. The filter 24 suppresses the high-frequency component of the DC voltage supplied from the DC power supply 22 via the switch 23 and suppresses the high-frequency power flowing from the high-frequency power supply 20 to the DC power supply 22 via the matching device 21.
 整合器21は、高周波電源20の内部インピーダンスと負荷インピーダンスをマッチングさせる。具体的には、整合器21は、プラズマ生成室42内にプラズマが生成されているときに、高周波電源20の内部インピーダンスと負荷インピーダンスとが見かけ上一致するように作用する。整合器21を介して高周波電源20から供給された高周波電力は、直流電源22から供給された直流電圧が重畳されて上部電極30に印加される。 The matching unit 21 matches the internal impedance of the high-frequency power supply 20 with the load impedance. Specifically, the matching device 21 acts so that the internal impedance and the load impedance of the high-frequency power supply 20 seem to match when the plasma is generated in the plasma generation chamber 42. The high-frequency power supplied from the high-frequency power supply 20 via the matching unit 21 is applied to the upper electrode 30 with the DC voltage supplied from the DC power supply 22 superimposed thereon.
 上部電極30と載置台11との間には、処理容器10内の空間を、プラズマ生成室42と反応室61とに仕切る仕切板40が設けられている。仕切板40は、例えば表面が陽極酸化処理されたアルミニウム等の金属によって形成される。仕切板40は、上部電極30と平行になるように処理容器10内に配置されている。本実施形態において、仕切板40は、処理容器10の側壁によって支持されている。仕切板40は、処理容器10と電気的に接続されており、処理容器10を介して接地されている。仕切板40と載置台11との間には、石英等によって構成された遮蔽部材60が設けられている。遮蔽部材60は、抑制部の一例である。 仕 A partition plate 40 is provided between the upper electrode 30 and the mounting table 11 to partition a space in the processing container 10 into a plasma generation chamber 42 and a reaction chamber 61. The partition plate 40 is formed of a metal such as aluminum whose surface is anodized. The partition plate 40 is arranged in the processing container 10 so as to be parallel to the upper electrode 30. In the present embodiment, the partition plate 40 is supported by a side wall of the processing container 10. The partition plate 40 is electrically connected to the processing container 10 and is grounded via the processing container 10. Between the partition plate 40 and the mounting table 11, a shielding member 60 made of quartz or the like is provided. The shielding member 60 is an example of a suppression unit.
 さらに図2を参照して説明を続ける。図2は、仕切板40と遮蔽部材60との位置関係の一例を説明するための拡大断面図である。仕切板40には、例えば図2に示されるように、仕切板40を厚さ方向に貫通する複数の貫通穴40aが設けられている。 (4) The description will be continued with reference to FIG. FIG. 2 is an enlarged cross-sectional view for explaining an example of the positional relationship between the partition plate 40 and the shielding member 60. The partition plate 40 is provided with a plurality of through-holes 40a penetrating the partition plate 40 in the thickness direction, for example, as shown in FIG.
 遮蔽部材60には、例えば図2に示されるように、遮蔽部材60の厚さ方向に貫通する複数の貫通穴60aが形成されている。遮蔽部材60の貫通穴60aは、水平方向において、貫通穴40aが形成されていない仕切板40の位置に対応する位置に形成されている。これにより、仕切板40の貫通穴40aは、鉛直方向において、遮蔽部材60によって遮蔽されている。そのため、遮蔽部材60は、複数の貫通穴60aを介してプラズマ生成室42から反応室61へのイオンの侵入を抑制する。 A plurality of through holes 60a penetrating in the thickness direction of the shielding member 60 are formed in the shielding member 60, for example, as shown in FIG. The through hole 60a of the shielding member 60 is formed at a position corresponding to the position of the partition plate 40 where the through hole 40a is not formed in the horizontal direction. Thereby, the through hole 40 a of the partition plate 40 is shielded by the shielding member 60 in the vertical direction. Therefore, the shielding member 60 suppresses intrusion of ions from the plasma generation chamber 42 into the reaction chamber 61 through the plurality of through holes 60a.
 このように、本実施形態のプラズマ処理装置1では、プラズマが生成されるプラズマ生成室42と、ウエハWが収容される反応室61とが分かれており、ウエハWが直接プラズマに触れない構成となっている。そのため、プラズマ中のイオンがウエハWに衝突することを回避することができる。さらに、遮蔽部材60によって反応室61へのイオンの侵入が抑制されるため、プラズマ中のイオンによるウエハWのダメージが低減される。 As described above, in the plasma processing apparatus 1 according to the present embodiment, the plasma generation chamber 42 in which the plasma is generated and the reaction chamber 61 in which the wafer W is accommodated are separated, and the configuration is such that the wafer W does not directly contact the plasma. Has become. Therefore, it is possible to prevent the ions in the plasma from colliding with the wafer W. Further, since the intrusion of ions into the reaction chamber 61 is suppressed by the shielding member 60, damage to the wafer W by ions in the plasma is reduced.
 図1に戻って説明を続ける。処理容器10の底面には、処理容器10内を排気する排気装置70が排気管71を介して接続されている。排気管71には、排気装置70による排気量を調節する調節バルブ72が設けられている。排気装置70を駆動することにより、排気管71を介して処理容器10内のガスが排気され、調節バルブ72の開度を調整することにより、処理容器10内が所定の真空度まで減圧される。 戻 っ Return to FIG. 1 and continue the description. An exhaust device 70 for exhausting the inside of the processing container 10 is connected to a bottom surface of the processing container 10 via an exhaust pipe 71. The exhaust pipe 71 is provided with an adjustment valve 72 for adjusting the amount of exhaust by the exhaust device 70. By driving the exhaust device 70, the gas in the processing container 10 is exhausted through the exhaust pipe 71, and the inside of the processing container 10 is depressurized to a predetermined degree of vacuum by adjusting the opening of the control valve 72. .
 処理容器10の側壁には、ウエハWを搬入および搬出するための開口14が形成されている。開口14は、ゲートバルブGによって開閉される。 開口 An opening 14 for loading and unloading the wafer W is formed in the side wall of the processing container 10. The opening 14 is opened and closed by a gate valve G.
 プラズマ処理装置1の各部は、制御装置100によって制御される。制御装置100は、メモリおよびプロセッサを有する。プロセッサは、メモリに格納されたプログラムやレシピを読み出して実行することにより、プラズマ処理装置1の各部を制御する。本実施形態において、制御装置100は、PEALD(Plasma-Enhanced Atomic Layer Deposition)により、載置台11上のウエハW上にTiO2膜を成膜するように、プラズマ処理装置1の各部を制御する。TiO2膜は、絶縁膜の一例である。 各 Each part of the plasma processing apparatus 1 is controlled by the control device 100. Control device 100 has a memory and a processor. The processor controls each unit of the plasma processing apparatus 1 by reading and executing a program or a recipe stored in the memory. In the present embodiment, the control device 100 controls each part of the plasma processing apparatus 1 so as to form a TiO2 film on the wafer W on the mounting table 11 by PEALD (Plasma-Enhanced Atomic Layer Deposition). The TiO2 film is an example of an insulating film.
 例えば、載置台11上にウエハWが載置され、ゲートバルブGが閉じられた後、制御装置100は、排気装置70を駆動し、調節バルブ72の開度を調整することにより、処理容器10内を所定の真空度まで減圧する。そして、制御装置100は、吸着工程を実行する。吸着工程では、バルブ53-3、流量制御器54-3、およびバルブ55-3が制御され、ガス供給源52-3からの所定流量のTiCl4ガスがプラズマ生成室42内に供給される。 For example, after the wafer W is mounted on the mounting table 11 and the gate valve G is closed, the control device 100 drives the exhaust device 70 and adjusts the opening of the adjustment valve 72 to thereby control the processing container 10. The pressure inside is reduced to a predetermined degree of vacuum. Then, the control device 100 executes an adsorption process. In the adsorption step, the valve 53-3, the flow controller 54-3, and the valve 55-3 are controlled, and a predetermined flow of TiCl4 gas is supplied from the gas supply source 52-3 into the plasma generation chamber 42.
 プラズマ生成室42内に供給されたTiCl4ガスは、プラズマ生成室42内を拡散する。そして、TiCl4ガスの分子は、例えば図2の破線矢印で示されるように、遮蔽部材60に妨げられることなく、仕切板40の貫通穴40aおよび遮蔽部材60の貫通穴60aを介して反応室61にシャワー状に供給される。反応室61内に供給されたTiCl4ガスの分子は、載置台11上のウエハWの表面に吸着する。 Ti The TiCl 4 gas supplied into the plasma generation chamber 42 diffuses inside the plasma generation chamber 42. The molecules of the TiCl 4 gas are not hindered by the shielding member 60, for example, as shown by the dashed arrow in FIG. Is supplied in the form of a shower. The molecules of the TiCl 4 gas supplied into the reaction chamber 61 are adsorbed on the surface of the wafer W on the mounting table 11.
 次に、制御装置100は、バルブ53-3およびバルブ55-3を制御することにより、TiCl4ガスの供給を停止する。そして、制御装置100は、第1のパージ工程を実行する。第1のパージ工程では、バルブ53-2、流量制御器54-2、およびバルブ55-2が制御され、所定流量のN2ガスが、ガス供給管50を介してプラズマ生成室42内に供給される。プラズマ生成室42内に供給されたN2ガスは、プラズマ生成室42内を拡散し、仕切板40の貫通穴40aおよび遮蔽部材60の貫通穴60aを介して反応室61内にシャワー状に供給される。反応室61に供給されたN2ガスにより、ウエハWの表面に過剰に吸着したTiCl4ガスの分子が除去される。 Next, the control device 100 stops the supply of the TiCl4 gas by controlling the valve 53-3 and the valve 55-3. Then, the control device 100 executes the first purge step. In the first purge step, the valve 53-2, the flow controller 54-2, and the valve 55-2 are controlled, and a predetermined flow rate of N2 gas is supplied into the plasma generation chamber 42 through the gas supply pipe 50. You. The N 2 gas supplied into the plasma generation chamber 42 diffuses in the plasma generation chamber 42 and is supplied in a shower shape into the reaction chamber 61 through the through hole 40 a of the partition plate 40 and the through hole 60 a of the shielding member 60. You. The molecules of the TiCl 4 gas excessively adsorbed on the surface of the wafer W are removed by the N 2 gas supplied to the reaction chamber 61.
 次に、制御装置100は、バルブ53-2およびバルブ55-2を制御することにより、N2ガスの供給を停止する。そして、制御装置100は、反応工程を実行する。反応工程では、バルブ53-1、流量制御器54-1、およびバルブ55-1が制御され、所定流量のO2ガスが、ガス供給管50を介してプラズマ生成室42内に供給される。プラズマ生成室42内に供給されたO2ガスは、プラズマ生成室42内を拡散する。 Next, the control device 100 stops the supply of the N2 gas by controlling the valve 53-2 and the valve 55-2. Then, the control device 100 executes the reaction process. In the reaction step, the valve 53-1, the flow controller 54-1 and the valve 55-1 are controlled, and a predetermined flow of O2 gas is supplied into the plasma generation chamber 42 via the gas supply pipe 50. The O 2 gas supplied into the plasma generation chamber 42 diffuses in the plasma generation chamber 42.
 そして、制御装置100は、高周波電源20に高周波電力を発生させると共に、スイッチ23をオンに制御し、高周波電力に直流電源22から供給された所定の大きさの直流電圧を重畳させる。直流電圧が重畳された高周波電力は、上部電極30に供給され、プラズマ生成室42内に放射される。プラズマ生成室42内に放射された高周波電力および直流電圧により、プラズマ生成室42内でO2ガスのプラズマが生成される。高周波電源20および直流電源22は、プラズマ生成部の一例である。プラズマには、電子、イオン、および活性種が含まれる。 Then, the control device 100 generates the high-frequency power in the high-frequency power supply 20, controls the switch 23 to be on, and superimposes a DC voltage of a predetermined magnitude supplied from the DC power supply 22 on the high-frequency power. The high frequency power on which the DC voltage is superimposed is supplied to the upper electrode 30 and radiated into the plasma generation chamber 42. O2 gas plasma is generated in the plasma generation chamber 42 by the high frequency power and the DC voltage radiated into the plasma generation chamber 42. The high frequency power supply 20 and the DC power supply 22 are examples of a plasma generation unit. Plasma contains electrons, ions, and active species.
 本実施形態において、仕切板40は、処理容器10を介して接地されているため、仕切板40の表面に接触した電子やイオン等の荷電粒子の電荷は中和される。また、仕切板40の表面に接触しなかった荷電粒子は、仕切板40の貫通穴40aを通過する。ここで、本実施形態における貫通穴40aは、例えば図2に示されるように、鉛直方向において、遮蔽部材60によって遮蔽されている。そのため、貫通穴40a内を通過した荷電粒子は、遮蔽部材60の上面62に接触する。そして、遮蔽部材60の上面62において、イオンの電荷が電子の電荷によって中和される。そのため、遮蔽部材60の貫通穴60aを介して反応室61内に侵入するイオンが減少する。これにより、イオンによってウエハWに生じるダメージが低減される。 In the present embodiment, since the partition plate 40 is grounded via the processing container 10, the charge of charged particles such as electrons and ions in contact with the surface of the partition plate 40 is neutralized. The charged particles that have not contacted the surface of the partition plate 40 pass through the through holes 40a of the partition plate 40. Here, the through hole 40a in the present embodiment is shielded by the shielding member 60 in the vertical direction, for example, as shown in FIG. Therefore, the charged particles that have passed through the through holes 40 a come into contact with the upper surface 62 of the shielding member 60. Then, on the upper surface 62 of the shielding member 60, the charge of the ions is neutralized by the charge of the electrons. Therefore, the number of ions that enter the reaction chamber 61 through the through hole 60a of the shielding member 60 is reduced. Thereby, damage caused to the wafer W by the ions is reduced.
 一方、プラズマに含まれる活性種は、電気的に中性であるため、仕切板40や遮蔽部材60の表面に接触しても失活し難い。そのため、仕切板40の貫通穴40aに侵入した活性種は、例えば図2の点線矢印に示されるように、遮蔽部材60の貫通穴60aを通って、反応室61に供給される。反応室61に供給された活性種は、ウエハW上のTiCl4の分子と反応し、TiO2膜を形成する。 On the other hand, the active species contained in the plasma are electrically neutral, and therefore hardly deactivated even when they come into contact with the surface of the partition plate 40 or the shielding member 60. Therefore, the active species that have entered the through hole 40a of the partition plate 40 are supplied to the reaction chamber 61 through the through hole 60a of the shielding member 60, for example, as shown by a dotted arrow in FIG. The active species supplied to the reaction chamber 61 reacts with TiCl4 molecules on the wafer W to form a TiO2 film.
 次に、制御装置100は、バルブ53-1およびバルブ55-1を制御することにより、O2ガスの供給を停止する。そして、制御装置100は、第2のパージ工程を実行する。第2のパージ工程では、バルブ53-2、流量制御器54-2、およびバルブ55-2が制御され、所定流量のN2ガスが、ガス供給管50を介してプラズマ生成室42内に供給される。プラズマ生成室42内に供給されたN2ガスは、仕切板40の貫通穴40aおよび遮蔽部材60の貫通穴60aを介して反応室61に供給される。反応室61に供給されたN2ガスにより、ウエハWの表面に過剰に生成されたTiO2の分子が除去される。 Next, the control device 100 stops the supply of the O2 gas by controlling the valve 53-1 and the valve 55-1. Then, the control device 100 executes a second purge step. In the second purge step, the valve 53-2, the flow rate controller 54-2, and the valve 55-2 are controlled, and a predetermined flow rate of N2 gas is supplied into the plasma generation chamber 42 via the gas supply pipe 50. You. The N 2 gas supplied into the plasma generation chamber 42 is supplied to the reaction chamber 61 via the through hole 40 a of the partition plate 40 and the through hole 60 a of the shielding member 60. The N2 gas supplied to the reaction chamber 61 removes molecules of TiO2 excessively generated on the surface of the wafer W.
 制御装置100は、吸着工程、第1のパージ工程、反応工程、および第2のパージ工程を、所定サイクル繰り返すことにより、ウエハWの表面に所定の膜厚のTiO2膜を形成する。 The control device 100 forms a TiO2 film having a predetermined thickness on the surface of the wafer W by repeating a predetermined cycle of the adsorption step, the first purge step, the reaction step, and the second purge step.
[直流電圧と電子密度の関係]
 ここで、プラズマ中の活性種が増加すれば、ウエハW上の前駆体ガスの分子を短時間で反応させることができ、成膜処理のスループットを向上させることができる。プラズマ中の活性種を増加させるためには、プラズマ中の電子密度を増加させる必要がある。
[Relationship between DC voltage and electron density]
Here, when the number of active species in the plasma increases, the molecules of the precursor gas on the wafer W can be reacted in a short time, and the throughput of the film formation process can be improved. In order to increase the active species in the plasma, it is necessary to increase the electron density in the plasma.
 図3は、圧力と電子密度の関係の一例を示す図である。図3には、500Wの高周波電力を用いて生成された負性ガス(具体的にはO2ガス)のプラズマ中の電子密度が示されている。例えば図3に示されるように、圧力が0.5Torr未満の範囲では、高周波電力の周波数を増加させるほど、プラズマ中の電子密度が増加している。しかし、圧力が0.5Torr以上の範囲では、高周波電力の周波数を増加させるほど、プラズマ中の電子密度が減少している。成膜処理は0.5Torr以上の範囲の圧力で行われることが多いため、成膜処理では、高周波の周波数を高くすることでは電子密度の向上は難しい。 FIG. 3 is a diagram showing an example of the relationship between pressure and electron density. FIG. 3 shows the electron density in the plasma of a negative gas (specifically, O2 gas) generated using 500 W of high-frequency power. For example, as shown in FIG. 3, in the range where the pressure is less than 0.5 Torr, the electron density in the plasma increases as the frequency of the high-frequency power increases. However, in the pressure range of 0.5 Torr or more, the electron density in the plasma decreases as the frequency of the high-frequency power increases. Since the film forming process is often performed at a pressure in the range of 0.5 Torr or more, it is difficult to improve the electron density in the film forming process by increasing the high frequency.
 ここで、例えば13MHzの高周波電力を300Wとし、13MHzの高周波電力に-300V×0.7A=210Wの直流電圧を重畳させた場合、例えば図3の参考値(1)で示されるように、電子密度が約21×1010/cm3となった。図3を参照すると、13MHzの高周波電力が500Wである場合、電子密度が約15×1010/cm3である。そのため、高周波電力に直流電圧を重畳させることにより、電子密度を約40%増加させることができた。 Here, for example, when the high frequency power of 13 MHz is set to 300 W and the DC voltage of −300 V × 0.7 A = 210 W is superposed on the high frequency power of 13 MHz, for example, as shown by the reference value (1) in FIG. The density was about 21 × 10 10 / cm 3 . Referring to FIG. 3, when the high frequency power of 13 MHz is 500 W, the electron density is about 15 × 10 10 / cm 3 . Therefore, by superimposing a DC voltage on the high-frequency power, the electron density could be increased by about 40%.
 さらに、13MHzの高周波電力を300Wとし、13MHzの高周波電力に-400V×1.2A=480Wの直流電圧を重畳させた場合、例えば図3の参考値(2)で示されるように、電子密度が約40×1010/cm3となった。13MHzの高周波電力が500Wである場合と比較すると、13MHzの高周波電力を300Wとし、13MHzの高周波電力に480Wの直流電圧を重畳させることにより、電子密度を2倍以上に増加させることができた。 Further, when the 13 MHz high frequency power is set to 300 W and the DC voltage of −400 V × 1.2 A = 480 W is superimposed on the 13 MHz high frequency power, for example, as shown by the reference value (2) in FIG. It was about 40 × 10 10 / cm 3 . Compared with the case where the 13 MHz high frequency power is 500 W, the electron density can be more than doubled by setting the 13 MHz high frequency power to 300 W and superimposing the 480 W DC voltage on the 13 MHz high frequency power.
 このように、高周波電力に重畳させる直流電圧の電力を増加させることにより、高周波電力の周波数を下げることなく電子密度を増加させることが可能となる。高周波電力の周波数を高く維持することができるため、ウエハWへのイオンダメージの低減という効果を維持することができる。従って、高周波電力に直流電圧を重畳させることにより、電子密度の向上とイオンダメージの低減とを両立させることが可能となる。 As described above, by increasing the power of the DC voltage superimposed on the high-frequency power, it is possible to increase the electron density without lowering the frequency of the high-frequency power. Since the frequency of the high-frequency power can be kept high, the effect of reducing ion damage to the wafer W can be maintained. Therefore, by superimposing a DC voltage on high-frequency power, it is possible to achieve both an improvement in electron density and a reduction in ion damage.
 また、プラズマ生成室42と反応室61とを分けるだけであれば、プラズマ生成室42と反応室61とを別々の装置内で実現し、配管を介してプラズマ生成室42と反応室61とを接続する、いわゆるリモートプラズマの構成を採用することも考えられる。しかし、その場合、プラズマに含まれる活性種が、配管内を流れる過程で失活してしまう場合があり、反応室61内に十分な量の活性種を供給することが難しい。 Further, if only the plasma generation chamber 42 and the reaction chamber 61 are separated, the plasma generation chamber 42 and the reaction chamber 61 are realized in separate devices, and the plasma generation chamber 42 and the reaction chamber 61 are connected via piping. It is also conceivable to employ a so-called remote plasma configuration for connection. However, in that case, the active species contained in the plasma may be deactivated in the process of flowing through the piping, and it is difficult to supply a sufficient amount of the active species into the reaction chamber 61.
 これに対し、本実施形態のプラズマ処理装置1では、プラズマ生成室42と反応室61とが仕切板40を介して隣接している。そのため、プラズマ生成室42で生成されたプラズマに含まれる多くの活性種を、失活することなく反応室61へ導くことが可能となる。 On the other hand, in the plasma processing apparatus 1 of the present embodiment, the plasma generation chamber 42 and the reaction chamber 61 are adjacent via the partition plate 40. Therefore, many active species contained in the plasma generated in the plasma generation chamber 42 can be guided to the reaction chamber 61 without being deactivated.
 また、大量の活性種を供給するだけであれば、CCPよりも電子密度が高いICP(Inductively Coupled Plasma)やSWP(Surface Wave Plasma)等のプラズマ生成方式によりプラズマを生成することも考えられる。しかし、ICPやSWP等のプラズマ生成方式では、CCPよりもプラズマ生成室42の容積を大きくする必要がある。そのため、ALDのようにガスの置換時間が処理のスループットに大きく影響する成膜方式にICPやSWP等のプラズマ生成方式を適用した場合には、スループットの向上が難しい。 If only a large amount of active species is supplied, plasma may be generated by a plasma generation method such as ICP (Inductively Coupled Plasma) or SWP (Surface Wave Plasma) having a higher electron density than CCP. However, in a plasma generation method such as ICP or SWP, it is necessary to make the volume of the plasma generation chamber 42 larger than that of the CCP. Therefore, when a plasma generation method such as ICP or SWP is applied to a film formation method in which the gas replacement time greatly affects the processing throughput like ALD, it is difficult to improve the throughput.
 これに対し、本実施形態のプラズマ処理装置1では、CCPによりプラズマを生成するため、ICPやSWP等のプラズマ生成方式に比べてプラズマ生成室42の容積を小さくすることができる。これにより、ガス置換をより高速に実現することができ、ALDによる成膜処理のスループットを向上させることができる。 On the other hand, in the plasma processing apparatus 1 of the present embodiment, since the plasma is generated by the CCP, the volume of the plasma generation chamber 42 can be smaller than that of a plasma generation method such as ICP or SWP. Thereby, gas replacement can be realized at a higher speed, and the throughput of the film forming process by ALD can be improved.
[成膜処理]
 図4は、成膜処理の一例を示すフローチャートである。
[Film formation process]
FIG. 4 is a flowchart illustrating an example of the film forming process.
 まず、ゲートバルブGが開かれ、図示しないロボットアームにより、ウエハWが処理容器10内に搬入され、載置台11上に載置される(S100)。そして、ゲートバルブGが閉じられる。そして、制御装置100は、排気装置70を駆動し、調節バルブ72の開度を調整することにより、処理容器10内を所定の真空度まで減圧する(S101)。制御装置100は、処理容器10内の圧力を、例えば0.5Torr以上2.0Torr以下の範囲内の圧力に制御する。 {First, the gate valve G is opened, and the wafer W is loaded into the processing chamber 10 by the robot arm (not shown) and is mounted on the mounting table 11 (S100). Then, the gate valve G is closed. Then, the control device 100 drives the exhaust device 70 and adjusts the opening degree of the adjustment valve 72 to reduce the pressure inside the processing container 10 to a predetermined degree of vacuum (S101). The control device 100 controls the pressure in the processing container 10 to a pressure within a range of, for example, 0.5 Torr or more and 2.0 Torr or less.
 次に、制御装置100は、吸着工程を実行する(S102)。吸着工程では、バルブ53-3、流量制御器54-3、およびバルブ55-3が制御され、所定流量の前駆体ガス(例えばTiCl4ガス)がプラズマ生成室42内に供給される。プラズマ生成室42内に供給されたTiCl4ガスの分子は、プラズマ生成室42内を拡散し、仕切板40の貫通穴40aおよび遮蔽部材60の貫通穴60aを介して反応室61に供給され、載置台11上のウエハWの表面に吸着する。そして、制御装置100は、バルブ53-3およびバルブ55-3を制御することにより、TiCl4ガスの供給を停止する。 Next, the control device 100 executes an adsorption process (S102). In the adsorption step, the valve 53-3, the flow controller 54-3, and the valve 55-3 are controlled, and a predetermined flow rate of the precursor gas (for example, TiCl4 gas) is supplied into the plasma generation chamber 42. The molecules of the TiCl 4 gas supplied into the plasma generation chamber 42 diffuse in the plasma generation chamber 42, and are supplied to the reaction chamber 61 through the through holes 40 a of the partition plate 40 and the through holes 60 a of the shielding member 60. The wafer W adheres to the surface of the mounting table 11. Then, the control device 100 stops the supply of the TiCl4 gas by controlling the valve 53-3 and the valve 55-3.
 次に、制御装置100は、第1のパージ工程を実行する(S103)。第1のパージ工程では、バルブ53-2、流量制御器54-2、およびバルブ55-2が制御され、所定流量の不活性ガス(例えばN2ガス)が、ガス供給管50を介してプラズマ生成室42内に供給される。プラズマ生成室42内に供給されたN2ガスは、プラズマ生成室42内を拡散し、仕切板40の貫通穴40aおよび遮蔽部材60の貫通穴60aを通って、反応室61に供給される。反応室61に供給されたN2ガスにより、ウエハWの表面に過剰に吸着したTiCl4ガスの分子が除去される。そして、制御装置100は、バルブ53-2およびバルブ55-2を制御することにより、N2ガスの供給を停止する。 Next, the control device 100 executes a first purge step (S103). In the first purge step, the valve 53-2, the flow controller 54-2, and the valve 55-2 are controlled, and a predetermined flow rate of the inert gas (for example, N2 gas) is generated through the gas supply pipe 50 to generate plasma. It is supplied into the chamber 42. The N 2 gas supplied into the plasma generation chamber 42 diffuses in the plasma generation chamber 42, and is supplied to the reaction chamber 61 through the through hole 40 a of the partition plate 40 and the through hole 60 a of the shielding member 60. The molecules of the TiCl 4 gas excessively adsorbed on the surface of the wafer W are removed by the N 2 gas supplied to the reaction chamber 61. Then, the control device 100 stops the supply of the N2 gas by controlling the valve 53-2 and the valve 55-2.
 次に、制御装置100は、反応工程を実行する(S104~S106)。反応工程では、バルブ53-1、流量制御器54-1、およびバルブ55-1が制御され、所定流量の反応ガスが、ガス供給管50を介してプラズマ生成室42内に供給される(S104)。ステップS104は、ガス供給工程の一例である。本実施形態において、反応ガスは、例えばO2ガスである。プラズマ生成室42内に供給されたO2ガスは、プラズマ生成室42内を拡散する。 Next, the control device 100 executes a reaction process (S104 to S106). In the reaction step, the valve 53-1, the flow rate controller 54-1 and the valve 55-1 are controlled, and a predetermined flow rate of the reaction gas is supplied into the plasma generation chamber 42 via the gas supply pipe 50 (S104). ). Step S104 is an example of a gas supply step. In the present embodiment, the reaction gas is, for example, O2 gas. The O 2 gas supplied into the plasma generation chamber 42 diffuses in the plasma generation chamber 42.
 そして、制御装置100は、スイッチ23をオンに制御することにより、直流電源22から供給された所定の大きさの直流電圧を上部電極30に印加する(S105)。制御装置100は、例えば、0Vより大きく1kV以下の範囲の大きさの直流電圧を上部電極30に印加する。そして、制御装置100は、高周波電源20に高周波電力を発生させることにより、高周波電力を上部電極30に印加する(S106)。制御装置100は、例えば、100W以上1000W以下の範囲の大きさの高周波電力を上部電極30に印加する。これにより、直流電圧が重畳された高周波電力が上部電極30に印加され、プラズマ生成室42内に放射される。 Then, the control device 100 controls the switch 23 to turn on, thereby applying a DC voltage of a predetermined magnitude supplied from the DC power supply 22 to the upper electrode 30 (S105). The control device 100 applies a DC voltage having a magnitude in a range of more than 0 V and 1 kV or less to the upper electrode 30, for example. Then, the control device 100 applies the high frequency power to the upper electrode 30 by causing the high frequency power supply 20 to generate the high frequency power (S106). The control device 100 applies, for example, high-frequency power having a magnitude in a range of 100 W or more and 1000 W or less to the upper electrode 30. Thereby, the high-frequency power on which the DC voltage is superimposed is applied to the upper electrode 30 and is radiated into the plasma generation chamber 42.
 プラズマ生成室42内に放射された高周波電力および直流電圧により、プラズマ生成室42内でO2ガスのプラズマが生成される。ステップS106は、プラズマ生成工程の一例である。プラズマ中の活性種は、仕切板40の貫通穴40aおよび遮蔽部材60の貫通穴60aを介して、反応室61内に供給される。反応室61内に供給された活性種が、ウエハW上のTiCl4の分子と反応することにより、ウエハW上に絶縁膜(例えばTiO2膜)が形成される。そして、制御装置100は、バルブ53-1およびバルブ55-1を制御することにより、O2ガスの供給を停止する。また、制御装置100は、スイッチ23をオフに制御することにより、直流電源22から上部電極30への直流電圧の印加を停止し、高周波電源20に高周波電力の発生を停止させることにより、上部電極30への高周波電力の印加を停止する。 (4) O2 gas plasma is generated in the plasma generation chamber 42 by the high-frequency power and the DC voltage radiated into the plasma generation chamber 42. Step S106 is an example of a plasma generation step. The active species in the plasma are supplied into the reaction chamber 61 through the through holes 40 a of the partition plate 40 and the through holes 60 a of the shielding member 60. The active species supplied into the reaction chamber 61 reacts with molecules of TiCl 4 on the wafer W to form an insulating film (for example, a TiO 2 film) on the wafer W. Then, the control device 100 stops the supply of the O2 gas by controlling the valve 53-1 and the valve 55-1. The control device 100 stops the application of the DC voltage from the DC power supply 22 to the upper electrode 30 by controlling the switch 23 to be turned off, and causes the high-frequency power supply 20 to stop generating the high-frequency power. The application of the high frequency power to 30 is stopped.
 次に、制御装置100は、第2のパージ工程を実行する(S107)。第2のパージ工程では、バルブ53-2、流量制御器54-2、およびバルブ55-2が制御され、所定流量の不活性ガス(例えばN2ガス)が、ガス供給管50を介してプラズマ生成室42内に供給される。プラズマ生成室42内に供給されたN2ガスは、仕切板40の貫通穴40aおよび遮蔽部材60の貫通穴60aを介して反応室61に供給される。反応室61に供給されたN2ガスにより、ウエハWの表面に過剰に生成されたTiO2の分子が除去される。そして、制御装置100は、バルブ53-2およびバルブ55-2を制御することにより、N2ガスの供給を停止する。 Next, the control device 100 executes a second purge step (S107). In the second purge step, the valve 53-2, the flow controller 54-2, and the valve 55-2 are controlled, and a predetermined flow rate of an inert gas (for example, N2 gas) is generated through the gas supply pipe 50 to generate plasma. It is supplied into the chamber 42. The N 2 gas supplied into the plasma generation chamber 42 is supplied to the reaction chamber 61 via the through hole 40 a of the partition plate 40 and the through hole 60 a of the shielding member 60. The N2 gas supplied to the reaction chamber 61 removes molecules of TiO2 excessively generated on the surface of the wafer W. Then, the control device 100 stops the supply of the N2 gas by controlling the valve 53-2 and the valve 55-2.
 次に、制御装置100は、ステップS102~S107の処理が所定回数繰り返されたか否かを判定する(S108)。ステップS102~S107の処理が所定回数繰り返されていない場合(S108:No)、制御装置100は、再びステップS102に示された処理を実行する。一方、ステップS102~S107の処理が所定回数繰り返された場合(S108:Yes)、ゲートバルブGが開かれ、図示しないロボットアームにより、ウエハWが処理容器10から搬出される(S109)。そして、本フローチャートに示された成膜処理が終了する。 Next, the control device 100 determines whether or not the processing of steps S102 to S107 has been repeated a predetermined number of times (S108). If the processing of steps S102 to S107 has not been repeated a predetermined number of times (S108: No), control device 100 executes the processing shown in step S102 again. On the other hand, when the processing of steps S102 to S107 is repeated a predetermined number of times (S108: Yes), the gate valve G is opened, and the wafer W is unloaded from the processing chamber 10 by the robot arm (not shown) (S109). Then, the film forming process shown in the flowchart is completed.
 以上、本実施形態におけるプラズマ処理装置1について説明した。上記説明から明らかなように、本実施形態のプラズマ処理装置1によれば、活性種を効率よくウエハWに供給することができる。また、本実施形態のプラズマ処理装置1によれば、電子密度の向上とイオンダメージの低減とを両立させることができる。 As described above, the plasma processing apparatus 1 according to the present embodiment has been described. As is clear from the above description, according to the plasma processing apparatus 1 of the present embodiment, active species can be efficiently supplied to the wafer W. Further, according to the plasma processing apparatus 1 of the present embodiment, it is possible to achieve both an improvement in electron density and a reduction in ion damage.
 なお、図3に示された実験結果からも明らかなように、直流電圧を増加させるほど、プラズマ中の電子密度を増加させることができる。そのため、上部電極30には、高周波電源20からの高周波電力を印加せずに、直流電源22から供給された直流電圧のみを印加するようにしてもよい。この場合、プラズマ生成室42内には、アーク放電によりO2ガスのプラズマが生成される。直流電圧のみによってプラズマを生成した場合でも、電子密度の向上とイオンダメージの低減とを両立させることができる。 (3) As is clear from the experimental results shown in FIG. 3, as the DC voltage is increased, the electron density in the plasma can be increased. Therefore, only the DC voltage supplied from the DC power supply 22 may be applied to the upper electrode 30 without applying the high frequency power from the high frequency power supply 20. In this case, an O2 gas plasma is generated in the plasma generation chamber 42 by arc discharge. Even when plasma is generated only by a DC voltage, both improvement in electron density and reduction in ion damage can be achieved.
 また、上記した実施形態のプラズマ処理装置1は、ウエハWに対してPEALDを行う装置であるが、開示の技術は成膜装置以外のプラズマ処理装置に対しても適用可能である。成膜装置以外のプラズマ処理装置としては、例えば、プラズマに含まれる活性種を用いてウエハWをエッチングするプラズマエッチング装置が挙げられる。 In addition, although the plasma processing apparatus 1 of the above-described embodiment is an apparatus that performs PEALD on the wafer W, the disclosed technology can be applied to a plasma processing apparatus other than the film forming apparatus. As a plasma processing apparatus other than the film forming apparatus, for example, a plasma etching apparatus that etches the wafer W using active species included in plasma is exemplified.
 また、上記した実施形態のプラズマ処理装置1には、プラズマ生成室42と反応室61との間に遮蔽部材60が設けられている。そのため、プラズマが高周波電力のみによって生成される場合であっても、プラズマからウエハWへのイオンの入射が遮蔽部材60によって遮蔽される。従って、プラズマが高周波電力のみによって生成される場合であっても、ウエハWへのイオンダメージを低減することができる。 The shielding member 60 is provided between the plasma generation chamber 42 and the reaction chamber 61 in the plasma processing apparatus 1 according to the above-described embodiment. Therefore, even when the plasma is generated only by the high-frequency power, the incidence of ions from the plasma to the wafer W is shielded by the shielding member 60. Therefore, even when plasma is generated only by high-frequency power, ion damage to wafer W can be reduced.
(第2の実施形態)
 第1の実施形態におけるプラズマ処理装置1では、反応ガスおよび前駆体ガスがプラズマ生成室42内に供給される。これに対して、本実施形態のプラズマ処理装置1では、反応ガスがプラズマ生成室42内に供給され、前駆体ガスが反応室61内に供給される。これにより、プラズマ生成室42の内壁に成膜されることを防止することができる。
(Second embodiment)
In the plasma processing apparatus 1 according to the first embodiment, a reaction gas and a precursor gas are supplied into the plasma generation chamber 42. On the other hand, in the plasma processing apparatus 1 of the present embodiment, the reaction gas is supplied into the plasma generation chamber 42, and the precursor gas is supplied into the reaction chamber 61. Thereby, it is possible to prevent the film from being formed on the inner wall of the plasma generation chamber 42.
 図5は、本開示の第2の実施形態におけるプラズマ処理装置の一例を示す概略断面図である。なお、以下に説明する点を除き、図5において、図1と同一の符号が付された構成は、図1を用いて説明したプラズマ処理装置1と同様の機能を有するため、重複する説明を省略する。 FIG. 5 is a schematic cross-sectional view illustrating an example of a plasma processing apparatus according to the second embodiment of the present disclosure. Except for the points described below, in FIG. 5, the components denoted by the same reference numerals as those in FIG. 1 have the same functions as those of the plasma processing apparatus 1 described with reference to FIG. Omitted.
 本実施形態における仕切板40は、内部にガス拡散室41が設けられている。ガス拡散室41には、下方に向かって延伸する複数のガス吐出口41aが形成されている。それぞれのガス吐出口41aは、貫通穴40aとは異なる位置に設けられている。 仕 The partition plate 40 in the present embodiment has a gas diffusion chamber 41 provided therein. In the gas diffusion chamber 41, a plurality of gas discharge ports 41a extending downward are formed. Each gas discharge port 41a is provided at a position different from the through hole 40a.
 ガス拡散室41には、例えば図5に示されるように、バルブ55-3、流量制御器54-3、およびバルブ53-3を介して、成膜用の前駆体ガス(例えばTiCl4ガス)を供給するガス供給源52-3が接続されている。バルブ53-3、流量制御器54-3、およびバルブ55-3を介して、ガス供給源52-3からガス拡散室41内に供給されたTiCl4ガスは、ガス拡散室41内を拡散する。ガス拡散室41内を拡散したTiCl4ガスは、仕切板40の下面に設けられたガス吐出口41aから反応室61内にシャワー状に供給される。ガス供給源52-3は、第2のガス供給部の一例である。 As shown in FIG. 5, for example, a precursor gas for film formation (eg, TiCl 4 gas) is supplied to the gas diffusion chamber 41 via a valve 55-3, a flow controller 54-3, and a valve 53-3. The gas supply source 52-3 to be supplied is connected. The TiCl4 gas supplied from the gas supply source 52-3 into the gas diffusion chamber 41 via the valve 53-3, the flow controller 54-3, and the valve 55-3 diffuses inside the gas diffusion chamber 41. The TiCl 4 gas diffused in the gas diffusion chamber 41 is supplied into the reaction chamber 61 in a shower form from a gas discharge port 41 a provided on the lower surface of the partition plate 40. The gas supply source 52-3 is an example of a second gas supply unit.
 図6は、第2の実施形態における仕切板40と遮蔽部材60との位置関係の一例を説明するための拡大断面図である。本実施形態において、遮蔽部材60の貫通穴60aは、例えば図6に示されるように、仕切板40のガス吐出口41aに対応する位置に設けられている。そのため、仕切板40のガス拡散室41内を拡散したTiCl4ガスの分子は、例えば図6の実線矢印に示されるように、遮蔽部材60に妨げられることなく、ガス吐出口41aおよび貫通穴60aを介して、反応室61に供給される。 FIG. 6 is an enlarged cross-sectional view for explaining an example of the positional relationship between the partition plate 40 and the shielding member 60 in the second embodiment. In the present embodiment, the through hole 60a of the shielding member 60 is provided at a position corresponding to the gas discharge port 41a of the partition plate 40, for example, as shown in FIG. Therefore, the molecules of the TiCl4 gas diffused in the gas diffusion chamber 41 of the partition plate 40 pass through the gas discharge port 41a and the through hole 60a without being obstructed by the shielding member 60, for example, as shown by a solid arrow in FIG. Via the reaction chamber 61.
 また、プラズマ生成室42内で生成されたプラズマに含まれる活性種は、例えば図6の破線矢印に示されるように、仕切板40の貫通穴40aおよび遮蔽部材60の貫通穴60aを介して反応室61に供給される。なお、プラズマ生成室42内で生成されたプラズマに含まれるイオン等の荷電粒子は、仕切板40の貫通穴40aを介して遮蔽部材60の上面に接触して電荷が中和される。 In addition, active species contained in the plasma generated in the plasma generation chamber 42 react via the through-holes 40 a of the partition plate 40 and the through-holes 60 a of the shielding member 60, as indicated by, for example, broken arrows in FIG. 6. It is supplied to the chamber 61. Note that charged particles such as ions contained in the plasma generated in the plasma generation chamber 42 come into contact with the upper surface of the shielding member 60 through the through holes 40 a of the partition plate 40 to neutralize the charge.
 ここで、ウエハW上に成膜される膜が絶縁膜である場合、上部電極30に直流電圧が印加されると、処理容器10内に絶縁性のデポが付着することにより、処理容器10内で異常放電が発生する場合がある。成膜中に異常放電が発生すると、処理容器10内の部品が損傷する。処理容器10の内部の部品が損傷すると、異常放電により損傷した部品から剥離した部材がパーティクルとして処理容器10内に漂い、ウエハWに付着し、ウエハWの不良の原因となる場合がある。そのため、異常放電の発生を抑制する必要がある。 Here, when the film formed on the wafer W is an insulating film, when a DC voltage is applied to the upper electrode 30, an insulating deposit adheres to the inside of the processing container 10, and thus the inside of the processing container 10 is formed. May cause abnormal discharge. If an abnormal discharge occurs during the film formation, components in the processing container 10 will be damaged. When the components inside the processing container 10 are damaged, a member peeled from the component damaged by the abnormal discharge drifts as particles in the processing container 10 and adheres to the wafer W, which may cause a defect of the wafer W. Therefore, it is necessary to suppress occurrence of abnormal discharge.
 そこで、本実施形態のプラズマ処理装置1では、処理容器10内の空間が仕切板40によってプラズマ生成室42と反応室61とに仕切られ、プラズマ生成室42内には前駆体ガスが供給されない。そのため、プラズマ生成室42内では、前駆体ガスの分子と、プラズマ中の活性種との反応によるデポは発生しない。そのため、プラズマ生成室42に露出している上部電極30に直流電圧が印加されても、プラズマ生成室42内において異常放電は発生しない。 Therefore, in the plasma processing apparatus 1 of the present embodiment, the space in the processing chamber 10 is partitioned by the partition plate 40 into the plasma generation chamber 42 and the reaction chamber 61, and the precursor gas is not supplied into the plasma generation chamber 42. For this reason, in the plasma generation chamber 42, no deposit is generated due to the reaction between the molecules of the precursor gas and the active species in the plasma. Therefore, even if a DC voltage is applied to the upper electrode 30 exposed in the plasma generation chamber 42, no abnormal discharge occurs in the plasma generation chamber 42.
 また、反応室61内では、前駆体ガスの分子と、仕切板40を介して供給された活性種との反応によりウエハWの表面に所定の膜が形成されるが、反応室61に面している部材の表面にも、前駆体ガスの分子と活性種との反応によって発生したデポが付着する。しかし、反応室61から見た場合、上部電極30は、接地されている仕切板40によって遮蔽されているため、反応室61内において異常放電は発生しない。 Further, in the reaction chamber 61, a predetermined film is formed on the surface of the wafer W by the reaction between the molecules of the precursor gas and the active species supplied via the partition plate 40, but faces the reaction chamber 61. Deposits generated by the reaction between the molecules of the precursor gas and the active species also adhere to the surface of the member. However, when viewed from the reaction chamber 61, the abnormal discharge does not occur in the reaction chamber 61 because the upper electrode 30 is shielded by the partitioning plate 40 that is grounded.
 従って、本実施形態のプラズマ処理装置1は、高周波電力に直流電圧を重畳させることにより、電子密度の向上とイオンダメージの低減とを両立させることができると共に、異常放電の発生を抑制することが可能となる。 Therefore, the plasma processing apparatus 1 of the present embodiment can achieve both an improvement in electron density and a reduction in ion damage by superimposing a DC voltage on the high-frequency power, and can suppress occurrence of abnormal discharge. It becomes possible.
(第3の実施形態)
 図7は、本開示の第3の実施形態におけるプラズマ処理装置1の一例を示す概略断面図である。本実施形態におけるプラズマ処理装置1は、直流電圧が仕切板40に印加される点が第2の実施形態におけるプラズマ処理装置1とは異なる。なお、以下に説明する点を除き、図7において、図1または図5と同一の符号が付された構成は、図1または図5を用いて説明した構成と同様の機能を有するため、重複する説明を省略する。
(Third embodiment)
FIG. 7 is a schematic cross-sectional view illustrating an example of the plasma processing apparatus 1 according to the third embodiment of the present disclosure. The plasma processing apparatus 1 according to the present embodiment is different from the plasma processing apparatus 1 according to the second embodiment in that a DC voltage is applied to the partition plate 40. Except for the points described below, in FIG. 7, the components denoted by the same reference numerals as those in FIG. 1 or FIG. 5 have the same functions as the configurations described with reference to FIG. 1 or FIG. The description of the operation will be omitted.
 仕切板40は、セラミックス等の絶縁性の部材により構成された絶縁部材47を介して処理容器10に支持されている。仕切板40は、絶縁部材47により、処理容器10と電気的に絶縁されている。仕切板40には、フィルタ24、スイッチ23を介して、直流電圧を供給する直流電源22が接続されている。フィルタ24は、スイッチ23を介して直流電源22から供給される直流電圧の高周波成分を抑制する。 The partition plate 40 is supported by the processing vessel 10 via an insulating member 47 made of an insulating member such as ceramics. The partition plate 40 is electrically insulated from the processing container 10 by the insulating member 47. A DC power supply 22 that supplies a DC voltage is connected to the partition plate 40 via a filter 24 and a switch 23. The filter 24 suppresses a high frequency component of the DC voltage supplied from the DC power supply 22 via the switch 23.
 また、スイッチ23は、直流電源22から供給された直流電圧をオンおよびオフに交互に制御することにより、上部電極30に印加される直流電圧の波形をパルス状に制御する。パルス状の波形(以下、パルス波形と記載する)に制御された直流電圧は、フィルタ24を介して仕切板40に印加される。図8は、パルス波形の一例を示す図である。直流電源22は、例えば大きさがVaの直流電圧を生成する。スイッチ23は、期間T1でオンとなり、期間T2でオフとなるように動作する。スイッチ23は、制御装置100によって制御される。この場合、デューティ比はT1/(TI+T2)である。これにより、例えば図8に示されるように、期間T1において直流電源22から仕切板40に直流電圧が印加され、期間T2において仕切板40への直流電圧の印加が遮断される。 {Circle around (2)} The switch 23 controls the waveform of the DC voltage applied to the upper electrode 30 in a pulse shape by alternately controlling the DC voltage supplied from the DC power supply 22 to ON and OFF. The DC voltage controlled in a pulse-like waveform (hereinafter, referred to as a pulse waveform) is applied to the partition plate 40 via the filter 24. FIG. 8 is a diagram illustrating an example of a pulse waveform. The DC power supply 22 generates a DC voltage having a magnitude of Va, for example. The switch 23 operates so as to be turned on in the period T1 and turned off in the period T2. The switch 23 is controlled by the control device 100. In this case, the duty ratio is T1 / (TI + T2). Thereby, as shown in FIG. 8, for example, a DC voltage is applied from the DC power supply 22 to the partition plate 40 in the period T1, and the application of the DC voltage to the partition plate 40 is cut off in the period T2.
 本実施形態において、仕切板40に印加される直流電圧のパルス波形の条件は、例えば以下の通りである。
   繰り返し周波数:100kHz以上1MHz以下
 直流電圧の大きさ:0Vより大きく1kV以下
   デューティ比:10%以上90%以下
In the present embodiment, the conditions of the pulse waveform of the DC voltage applied to the partition plate 40 are, for example, as follows.
Repetition frequency: 100 kHz or more and 1 MHz or less DC voltage magnitude: More than 0 V and 1 kV or less Duty ratio: 10% or more and 90% or less
 ここで、仕切板40に印加される直流電圧のデューティ比が100%である場合、即ち、仕切板40に直流電圧が継続的に印加される場合、仕切板40の下面に付着したデポにより、反応室61内で異常放電が発生する場合がある。これに対し、本実施形態のように、パルス状に成形された直流電圧を仕切板40に印加することにより、反応室61内での異常放電の発生を抑制することができる。 Here, when the duty ratio of the DC voltage applied to the partition plate 40 is 100%, that is, when the DC voltage is continuously applied to the partition plate 40, the depot attached to the lower surface of the partition plate 40 causes An abnormal discharge may occur in the reaction chamber 61. On the other hand, by applying a pulsed DC voltage to the partition plate 40 as in the present embodiment, the occurrence of abnormal discharge in the reaction chamber 61 can be suppressed.
 なお、成膜処理の進行に応じて、仕切板40の下面に付着するデポの厚さが増加し、反応室61内において、異常放電が発生する条件が変化する。そのため、成膜処理における時間の経過に応じて、直流電圧の大きさを変更してもよい。例えば図9に示されるように、成膜処理における時間の経過に応じて、直流電圧の大きさをVaからVa’に減少させてもよい。図9のような制御を行う場合、直流電源22には、制御信号により電圧の大きさを変更することが可能な可変直流電源が用いられる。直流電源22の電圧の大きさは、制御装置100によって制御される。 (4) As the film forming process proceeds, the thickness of the deposit adhering to the lower surface of the partition plate 40 increases, and the condition under which abnormal discharge occurs in the reaction chamber 61 changes. Therefore, the magnitude of the DC voltage may be changed as time elapses in the film forming process. For example, as shown in FIG. 9, the magnitude of the DC voltage may be reduced from Va to Va 'as time elapses in the film forming process. When performing the control as shown in FIG. 9, a variable DC power supply that can change the magnitude of the voltage by a control signal is used as the DC power supply 22. The magnitude of the voltage of DC power supply 22 is controlled by control device 100.
 本実施形態のプラズマ処理装置1においても、成膜処理において、電子密度の向上とイオンダメージの低減とを両立させることができると共に、異常放電の発生を抑制することが可能となる。 に お い て Also in the plasma processing apparatus 1 of the present embodiment, it is possible to achieve both an improvement in electron density and a reduction in ion damage in the film forming process, and to suppress the occurrence of abnormal discharge.
(第4の実施形態)
 図10は、本開示の第4の実施形態におけるプラズマ処理装置1の一例を示す概略断面図である。本実施形態におけるプラズマ処理装置1は、仕切板40がインピーダンス調整回路25を介して接地されている点が第2の実施形態におけるプラズマ処理装置1とは異なる。なお、以下に説明する点を除き、図10において、図1、図5、または図7と同一の符号が付された構成は、図1、図5、または図7を用いて説明した構成と同様の機能を有するため、重複する説明を省略する。
(Fourth embodiment)
FIG. 10 is a schematic sectional view illustrating an example of the plasma processing apparatus 1 according to the fourth embodiment of the present disclosure. The plasma processing apparatus 1 according to the present embodiment is different from the plasma processing apparatus 1 according to the second embodiment in that the partition plate 40 is grounded via the impedance adjustment circuit 25. Except for the points described below, in FIG. 10, the components denoted by the same reference numerals as those in FIG. 1, FIG. 5, or FIG. 7 are the same as the components described with reference to FIG. 1, FIG. Since they have similar functions, duplicate description will be omitted.
 インピーダンス調整回路25は、例えば、可変容量コンデンサおよびインダクタを有する。可変容量コンデンサとインダクタとは直列に接続されている。可変容量コンデンサの容量が調節されることにより、仕切板40の電位をグランドの電位に近づけることができる。可変容量コンデンサの容量は、制御装置100によって制御される。なお、インピーダンス調整回路25は、容量の値が固定のコンデンサと、インダクタンスの値が可変の可変インダクタとが直列に接続されたものであってもよい。 The impedance adjustment circuit 25 has, for example, a variable capacitor and an inductor. The variable capacitor and the inductor are connected in series. By adjusting the capacity of the variable capacitor, the potential of the partition plate 40 can be made closer to the potential of the ground. The capacity of the variable capacitor is controlled by the control device 100. The impedance adjustment circuit 25 may be configured by connecting a capacitor having a fixed capacitance value and a variable inductor having a variable inductance value in series.
 また、インピーダンス調整回路25内の可変容量コンデンサの容量が調節されることにより、仕切板40の電位を意図的にグランド電位とは異なる電位に制御することも可能である。これにより、貫通穴40aを介して反応室61内へ流れるイオンの量を制御することができる。成膜される膜の種類や成膜条件によっては、ウエハWに多少のイオンの供給が必要になる場合がある。そこで、本実施形態のプラズマ処理装置1では、可変容量コンデンサの容量を調節することにより、ウエハWに供給されるイオンの量を制御することが可能となる。これにより、成膜処理において、電子密度の向上とイオンダメージの低減とを両立させることができると共に、異常放電の発生を抑制することが可能となり、さらに、より自由度の高い成膜処理が可能となる。 (4) By adjusting the capacity of the variable capacitor in the impedance adjustment circuit 25, it is possible to intentionally control the potential of the partition plate 40 to a potential different from the ground potential. Thereby, the amount of ions flowing into the reaction chamber 61 through the through hole 40a can be controlled. Depending on the type of film to be formed and the film forming conditions, it may be necessary to supply some ions to the wafer W. Therefore, in the plasma processing apparatus 1 of the present embodiment, the amount of ions supplied to the wafer W can be controlled by adjusting the capacity of the variable capacitor. As a result, in the film forming process, it is possible to achieve both improvement of the electron density and reduction of the ion damage, and it is possible to suppress the occurrence of the abnormal discharge. Further, it is possible to perform the film forming process with more flexibility. Becomes
(第5の実施形態)
 図11は、本開示の第5の実施形態におけるプラズマ処理装置1の一例を示す概略断面図である。本実施形態におけるプラズマ処理装置1は、仕切板40に高周波電力が印加される点が第2の実施形態におけるプラズマ処理装置1とは異なる。なお、以下に説明する点を除き、図11において、図1、図5、または図7と同一の符号が付された構成は、図1、図5、または図7を用いて説明した構成と同様の機能を有するため、重複する説明を省略する。
(Fifth embodiment)
FIG. 11 is a schematic cross-sectional view illustrating an example of the plasma processing apparatus 1 according to the fifth embodiment of the present disclosure. The plasma processing apparatus 1 according to the present embodiment is different from the plasma processing apparatus 1 according to the second embodiment in that high-frequency power is applied to the partition plate 40. Except for the points described below, in FIG. 11, the components denoted by the same reference numerals as those in FIG. 1, FIG. 5, or FIG. 7 are the same as the components described with reference to FIG. 1, FIG. Since they have similar functions, duplicate description will be omitted.
 高周波電源20は、高周波電力を、整合器21を介して仕切板40に供給する。仕切板40に供給された高周波電力は、プラズマ生成室42内に放射され、プラズマ生成室42内に反応ガスのプラズマが生成される。このような構成においても、成膜処理において、電子密度の向上とイオンダメージの低減とを両立させることができると共に、異常放電の発生を抑制することが可能となる。 The high frequency power supply 20 supplies the high frequency power to the partition plate 40 via the matching unit 21. The high-frequency power supplied to the partition plate 40 is radiated into the plasma generation chamber 42, and a plasma of the reaction gas is generated in the plasma generation chamber 42. Also in such a configuration, it is possible to achieve both an improvement in electron density and a reduction in ion damage in the film forming process, and to suppress occurrence of abnormal discharge.
[その他]
 なお、本願に開示された技術は、上記した実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
[Others]
The technology disclosed in the present application is not limited to the above-described embodiment, and various modifications can be made within the scope of the gist.
 例えば、上記した各実施形態のプラズマ処理装置1では、第1のパージ工程および第2のパージ工程で用いられる不活性ガスが、上部電極30からプラズマ生成室42を介して反応室61内に供給されるが、開示の技術はこれに限られない。例えば、第1のパージ工程および第2のパージ工程において、不活性ガスは、前駆体ガスと同様に、仕切板40内のガス拡散室41に供給され、ガス吐出口41aから反応室61内に供給されてもよい。 For example, in the plasma processing apparatus 1 of each of the above-described embodiments, the inert gas used in the first purge step and the second purge step is supplied from the upper electrode 30 into the reaction chamber 61 via the plasma generation chamber 42. However, the disclosed technology is not limited to this. For example, in the first purge step and the second purge step, the inert gas is supplied to the gas diffusion chamber 41 in the partition plate 40 like the precursor gas, and is supplied from the gas discharge port 41a into the reaction chamber 61. May be supplied.
 また、上記した第1の実施形態、第2の実施形態、第4の実施形態、および第5の実施形態のプラズマ処理装置1においても、上部電極30に印加される直流電圧は、第3の実施形態のプラズマ処理装置1の場合と同様に、パルス波形とされてもよい。 In the above-described first, second, fourth, and fifth embodiments of the plasma processing apparatus 1, the DC voltage applied to the upper electrode 30 is equal to the third voltage. As in the case of the plasma processing apparatus 1 of the embodiment, a pulse waveform may be used.
 なお、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の特許請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. Indeed, the above embodiments can be embodied in various forms. Further, the above embodiments may be omitted, replaced, or modified in various forms without departing from the scope and spirit of the appended claims.
1 プラズマ処理装置
20 高周波電源
22 直流電源
23 スイッチ
40 仕切板
40a 貫通穴
42 プラズマ生成室
51 ガス供給部
61 反応室
DESCRIPTION OF SYMBOLS 1 Plasma processing apparatus 20 High frequency power supply 22 DC power supply 23 Switch 40 Partition plate 40a Through hole 42 Plasma generation chamber 51 Gas supply unit 61 Reaction chamber

Claims (14)

  1.  プラズマ生成室内に負性ガスを含む反応ガスを供給する第1のガス供給部と、
     前記プラズマ生成室内に前記反応ガスのプラズマを生成するプラズマ生成部と、
     被処理体が搬入される反応室と前記プラズマ生成室とを仕切る仕切板と
    を備え、
     前記仕切板は、複数の貫通穴を有し、前記プラズマ生成室内に生成されたプラズマに含まれる活性種を、前記複数の貫通穴を介して前記反応室に供給することを特徴とするプラズマ処理装置。
    A first gas supply unit that supplies a reaction gas containing a negative gas into the plasma generation chamber;
    A plasma generation unit that generates a plasma of the reaction gas in the plasma generation chamber;
    A partition plate that partitions the reaction chamber into which the object to be processed is carried in and the plasma generation chamber,
    The plasma processing, wherein the partition plate has a plurality of through holes, and supplies active species contained in plasma generated in the plasma generation chamber to the reaction chamber through the plurality of through holes. apparatus.
  2.  前記プラズマ生成部は、
     直流電圧を前記プラズマ生成室内に供給することにより、前記プラズマ生成室内に前記反応ガスのプラズマを生成することを特徴とする請求項1に記載のプラズマ処理装置。
    The plasma generator,
    The plasma processing apparatus according to claim 1, wherein a plasma of the reaction gas is generated in the plasma generation chamber by supplying a DC voltage to the plasma generation chamber.
  3.  前記プラズマ生成部は、
     高周波電力を前記プラズマ生成室内にさらに供給することにより、前記プラズマ生成室内に前記反応ガスのプラズマを生成することを特徴とする請求項2に記載のプラズマ処理装置。
    The plasma generator,
    3. The plasma processing apparatus according to claim 2, wherein the plasma of the reaction gas is generated in the plasma generation chamber by further supplying high-frequency power to the plasma generation chamber.
  4.  前記プラズマ生成室には、電極板が設けられ、
     前記仕切板は、金属により構成され、
     前記プラズマ生成部は、前記電極板に前記直流電圧および高周波電力を印加することにより、前記電極板と前記仕切板との間に前記反応ガスのプラズマを生成することを特徴とする請求項3に記載のプラズマ処理装置。
    An electrode plate is provided in the plasma generation chamber,
    The partition plate is made of metal,
    The plasma generator according to claim 3, wherein the plasma of the reaction gas is generated between the electrode plate and the partition plate by applying the DC voltage and the high-frequency power to the electrode plate. The plasma processing apparatus as described in the above.
  5.  インピーダンスを調整することが可能なインピーダンス調整回路を備え、
     前記仕切板は、前記インピーダンス調整回路を介して接地されていることを特徴とする請求項4に記載のプラズマ処理装置。
    Equipped with an impedance adjustment circuit that can adjust the impedance,
    The plasma processing apparatus according to claim 4, wherein the partition plate is grounded via the impedance adjustment circuit.
  6.  前記プラズマ生成室には、電極板が設けられ、
     前記仕切板は、金属により構成され、
     前記プラズマ生成部は、前記仕切板に前記直流電圧を印加し、前記電極板に高周波を印加することにより、前記電極板と前記仕切板との間に前記反応ガスのプラズマを生成することを特徴とする請求項3に記載のプラズマ処理装置。
    An electrode plate is provided in the plasma generation chamber,
    The partition plate is made of metal,
    The plasma generation unit generates the plasma of the reaction gas between the electrode plate and the partition plate by applying the DC voltage to the partition plate and applying a high frequency to the electrode plate. The plasma processing apparatus according to claim 3, wherein
  7.  前記電極板と前記仕切板は平行となるように配置されていることを特徴とする請求項4から6のいずれか一項に記載のプラズマ処理装置。 7. The plasma processing apparatus according to claim 4, wherein the electrode plate and the partition plate are arranged to be parallel. 8.
  8.  前記プラズマ生成部は、
     前記直流電圧をオンおよびオフに交互に制御することにより、前記プラズマ生成室に印加される前記直流電圧の波形をパルス状に制御することを特徴とする請求項2から7のいずれか一項に記載のプラズマ処理装置。
    The plasma generator,
    The method according to any one of claims 2 to 7, wherein the waveform of the DC voltage applied to the plasma generation chamber is controlled in a pulse shape by alternately controlling the DC voltage to ON and OFF. The plasma processing apparatus as described in the above.
  9.  前記プラズマ生成部は、
     前記直流電圧のパルスの周波数を100kHz以上1MHz以下の範囲に制御し、前記直流電圧のパルスの大きさを0Vより大きく1kV以下の範囲に制御し、前記直流電圧のパルスのデューティ比を10%以上90%以下の範囲に制御することを特徴とする請求項8に記載のプラズマ処理装置。
    The plasma generator,
    The frequency of the pulse of the DC voltage is controlled in a range of 100 kHz or more and 1 MHz or less, the magnitude of the pulse of the DC voltage is controlled in a range of more than 0 V and 1 kV or less, and the duty ratio of the pulse of the DC voltage is 10% or more. The plasma processing apparatus according to claim 8, wherein the control is performed within a range of 90% or less.
  10.  前記反応室内に前駆体ガスを供給する第2のガス供給部を備え、
     複数の前記貫通穴を介して前記反応室内に供給された前記活性種は、前記被処理体上の前記前駆体ガスの分子と反応することにより、前記被処理体上に所定の膜を形成することを特徴とする請求項1から9のいずれか一項に記載のプラズマ処理装置。
    A second gas supply unit that supplies a precursor gas into the reaction chamber,
    The active species supplied into the reaction chamber through the plurality of through holes reacts with molecules of the precursor gas on the object to form a predetermined film on the object. The plasma processing apparatus according to claim 1, wherein:
  11.  前記被処理体上に形成される膜は絶縁膜でることを特徴とする請求項10に記載のプラズマ処理装置。 11. The plasma processing apparatus according to claim 10, wherein the film formed on the object to be processed is an insulating film.
  12.  前記反応ガスは、酸素含有ガスでることを特徴とする請求項1から11のいずれか一項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 11, wherein the reaction gas is an oxygen-containing gas.
  13.  前記反応室に内に設けられ、複数の前記貫通穴を介して前記プラズマ生成室から前記反応室へのイオンの侵入を抑制する抑制部を備えることを特徴とする請求項1から12のいずれか一項に記載のプラズマ処理装置。 13. The plasma processing apparatus according to claim 1, further comprising: a suppression unit provided in the reaction chamber to suppress intrusion of ions from the plasma generation chamber into the reaction chamber via the plurality of through holes. A plasma processing apparatus according to claim 1.
  14.  プラズマ生成室内に負性ガスを含む反応ガスを供給するガス供給工程と、
     前記プラズマ生成室内に前記反応ガスのプラズマを生成するプラズマ生成工程と
    を含み、
     前記プラズマ生成室内に生成されたプラズマに含まれる活性種が、被処理体が搬入される反応室と前記プラズマ生成室とを仕切る仕切板に設けられた複数の貫通穴を介して前記プラズマ生成室から前記反応室に供給され、前記活性種によって、前記被処理体が処理されることを特徴とするプラズマ処理方法。
    A gas supply step of supplying a reaction gas containing a negative gas into the plasma generation chamber,
    A plasma generation step of generating a plasma of the reaction gas in the plasma generation chamber,
    Activated species contained in the plasma generated in the plasma generation chamber are supplied to the plasma generation chamber through a plurality of through holes provided in a partition plate that separates the reaction chamber into which the object is loaded and the plasma generation chamber. Wherein the object to be processed is processed by the active species.
PCT/JP2019/026424 2018-07-17 2019-07-03 Plasma processing device and plasma processing method WO2020017328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-134172 2018-07-17
JP2018134172 2018-07-17

Publications (1)

Publication Number Publication Date
WO2020017328A1 true WO2020017328A1 (en) 2020-01-23

Family

ID=69164303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026424 WO2020017328A1 (en) 2018-07-17 2019-07-03 Plasma processing device and plasma processing method

Country Status (1)

Country Link
WO (1) WO2020017328A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225226A (en) * 1990-12-26 1992-08-14 Fujitsu Ltd Plasma treating apparatus
JPH06236850A (en) * 1993-02-10 1994-08-23 Sony Corp Plasma processing apparatus
JPH08167596A (en) * 1994-12-09 1996-06-25 Sony Corp Plasma treatment device, plasma treatment method, and manufacture of semiconductor device
JPH09330798A (en) * 1996-06-11 1997-12-22 Asahi Glass Co Ltd Plasma generator
JPH1131685A (en) * 1997-07-14 1999-02-02 Hitachi Electron Eng Co Ltd Plasma cvd device and its cleaning method
US20050211170A1 (en) * 2004-03-26 2005-09-29 Applied Materials, Inc. Chemical vapor deposition plasma reactor having plural ion shower grids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225226A (en) * 1990-12-26 1992-08-14 Fujitsu Ltd Plasma treating apparatus
JPH06236850A (en) * 1993-02-10 1994-08-23 Sony Corp Plasma processing apparatus
JPH08167596A (en) * 1994-12-09 1996-06-25 Sony Corp Plasma treatment device, plasma treatment method, and manufacture of semiconductor device
JPH09330798A (en) * 1996-06-11 1997-12-22 Asahi Glass Co Ltd Plasma generator
JPH1131685A (en) * 1997-07-14 1999-02-02 Hitachi Electron Eng Co Ltd Plasma cvd device and its cleaning method
US20050211170A1 (en) * 2004-03-26 2005-09-29 Applied Materials, Inc. Chemical vapor deposition plasma reactor having plural ion shower grids

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11776789B2 (en) 2020-07-31 2023-10-03 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11887813B2 (en) 2021-06-23 2024-01-30 Applied Materials, Inc. Pulsed voltage source for plasma processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Similar Documents

Publication Publication Date Title
WO2020017328A1 (en) Plasma processing device and plasma processing method
WO2020022318A1 (en) Film deposition method and film deposition device
JP7186032B2 (en) Film forming apparatus and film forming method
US8641916B2 (en) Plasma etching apparatus, plasma etching method and storage medium
KR100886273B1 (en) Plasma processing apparatus and plasma processing method
JP2019153789A (en) Quartz part with protective coating
JP5099101B2 (en) Plasma processing equipment
WO2020195980A1 (en) Plasma processing device, and plasma processing method
JP2013143432A (en) Plasma processing apparatus
US20070227450A1 (en) Plasma Cvd Equipment
KR101802559B1 (en) Substrate processing apparatus
US10290496B2 (en) Substrate processing apparatus and substrate processing method
US9953862B2 (en) Plasma processing method and plasma processing apparatus
KR102278074B1 (en) Apparatus and method for treating substrate
WO2022172757A1 (en) Film forming device and film forming method
US11335542B2 (en) Plasma processing apparatus
WO2021024823A1 (en) Plasma processing device
US10541170B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP2021027176A (en) Plasma processing apparatus
US20240133031A1 (en) Film forming device and film forming method
WO2020161957A1 (en) Film forming apparatus and film forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP