WO2020015400A1 - 显示面板及其显示方法 - Google Patents

显示面板及其显示方法 Download PDF

Info

Publication number
WO2020015400A1
WO2020015400A1 PCT/CN2019/082294 CN2019082294W WO2020015400A1 WO 2020015400 A1 WO2020015400 A1 WO 2020015400A1 CN 2019082294 W CN2019082294 W CN 2019082294W WO 2020015400 A1 WO2020015400 A1 WO 2020015400A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
substrate
display panel
liquid crystal
data signal
Prior art date
Application number
PCT/CN2019/082294
Other languages
English (en)
French (fr)
Inventor
杨艳娜
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Publication of WO2020015400A1 publication Critical patent/WO2020015400A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a display method thereof.
  • Thin film transistor liquid crystal display (Thin Film Transistor-Liquid Crystal Display; TFT-LCD) still occupies the mainstream position in the current flat panel display field due to its advantages of high color, small size, and low power consumption.
  • TFT-LCD Thin film transistor liquid crystal display
  • the display panel of the thin film transistor liquid crystal display on the mainstream market is concerned, it can be roughly divided into three types, which are twisted nematic (TN) or super twisted nematic (STN), flat In-Plane Switching (IPS) type and Vertical Alignment (VA) type.
  • TN twisted nematic
  • STN super twisted nematic
  • IPS In-Plane Switching
  • VA Vertical Alignment
  • the vertical alignment type liquid crystal display has extremely high contrast compared to other types of liquid crystal displays, and has a wide range of applications in large-sized displays such as televisions.
  • polymer stabilized vertical alignment technology In the related field of vertical alignment type liquid crystal displays, a large amount of polymer stabilized vertical alignment technology (PSVA) is currently applied in the industry.
  • PSVA polymer stabilized vertical alignment technology
  • This technology doped photopolymerizable molecules into the liquid crystal and applied an appropriate voltage to the liquid crystal layer.
  • the photopolymerizable molecules in the liquid crystal were irradiated with ultraviolet light or heated.
  • the polymerization reaction generates a polymer layer so that the liquid crystal has an initial pre-tilt angle, thereby achieving the purpose of polymer stabilization and vertical alignment.
  • the liquid crystal molecules Because the polymer protrusions are formed on the surface of the alignment film, the liquid crystal molecules have a pretilt angle, so the liquid crystal display panel can have benefits such as high contrast, wide viewing angle, low power consumption, fast response, and high transmittance.
  • the present application proposes a display panel and a display method thereof.
  • the present application provides a display method for a display panel, which includes the steps of providing a display panel including a first substrate, a liquid crystal layer, and a second substrate, wherein the liquid crystal layer is located between the first substrate and the substrate. Between the second substrates, the first side of the first substrate has a first transparent electrode, the second side of the second substrate has a second transparent electrode and a third transparent electrode, and the third transparent electrode is located in the second The first side of the transparent electrode overlaps a portion of the second transparent electrode; a first data signal is continuously input to the second transparent electrode via a first data line; a second data signal is continuously input via a second data line To the third transparent electrode; performing light treatment on the display panel to cause photopolymerization molecules in the liquid crystal layer to polymerize; when the photopolymerization molecules are polymerized, stop inputting the first data signal and The second data signal.
  • an area where the second transparent electrode overlaps with the third transparent electrode is stronger than an area where the second transparent electrode does not overlap with the third transparent electrode. Electric field.
  • the present application also proposes a display panel including: a first substrate; a first transparent electrode located on a first surface of the first substrate; a second substrate located on a first side of the first substrate and facing the first substrate; A first substrate, a second transparent electrode, located on the second substrate, facing the first transparent electrode, and a third transparent electrode, located between the second substrate and the second transparent electrode, facing the A second transparent electrode, the third transparent electrode overlapping a part of the second transparent electrode; an insulating layer between the second transparent electrode and the third transparent electrode; a liquid crystal layer filled in the first transparent electrode And a second transparent electrode; a first data line is coupled to the second transparent electrode; and a second data line is coupled to the third transparent electrode.
  • the second transparent electrode is divided into a first block and a second block, and the third transparent electrode is located on a first side of the second block and is only connected with the first block.
  • the two blocks overlap.
  • the liquid crystal molecules on the second side of the second block and the liquid crystal molecules on the second side of the first block have different pretilt angles.
  • the display panel further includes: a first polymer layer located on a second side of the liquid crystal layer and located on a first surface of the first transparent electrode; and a second polymer layer Is located on the first side of the liquid crystal layer and on the second surface of the second transparent electrode.
  • the display panel further includes: a first alignment film on the first surface of the first transparent electrode; and a second alignment film on the second surface of the second transparent electrode.
  • the first transparent electrode is a flat common electrode
  • the second transparent electrode is a pixel electrode having a fishbone pattern
  • This application further proposes a display method for a display panel, which is applicable to the above display panel, and includes the steps of: inputting a first data signal to the second transparent electrode via the first data line; and via the second data line Inputting a second data signal to the third transparent electrode; maintaining the state of the input first data signal and the input second data signal, and performing light treatment on the display panel to make light in the liquid crystal layer
  • Polymerization molecules are polymerized on the first surface of the first transparent electrode and the second surface of the second transparent electrode; when the polymerization of the photopolymerization molecules is completed, the input of the first data signal and the second Data signal.
  • the light used for the light treatment is ultraviolet light.
  • a first polymer layer is formed on the first surface of the first transparent electrode, and a first polymer layer is formed on the second surface of the second transparent electrode. Two polymer layers.
  • the present application proposes a new display panel and a display method for the display panel.
  • the polymer layer By generating two different electric fields between the pixel electrode and the common electrode, the polymer layer has different orientations in different regions, and forms different Pre-tilt angle. Therefore, the liquid crystal molecules in the liquid crystal layer can have two different pretilt angles at the same time due to the effect of the polymer layer, thereby improving the color shift generated by the display panel during display.
  • FIG. 1 is a cross-sectional view of an exemplary display panel.
  • FIG. 2 is an exemplary top view of a pixel electrode.
  • FIG 3 is a cross-sectional view of a display panel according to the present application.
  • FIG. 4a is a top view of a second transparent electrode in an embodiment of the present application.
  • FIG. 4b is a top view of a third transparent electrode in an embodiment of the present application.
  • FIG. 5 is a method flowchart of a display method of a display panel according to the present application.
  • FIG. 6 is a method flowchart of a display method of a display panel in another embodiment of the present application.
  • FIG. 1 is a cross-sectional view of an exemplary display panel, showing that a voltage is applied to a liquid crystal layer to cause a pretilt angle of liquid crystal molecules.
  • the display panel 1 mainly includes a first substrate 10, a liquid crystal layer 12, and a second substrate 14.
  • a common electrode 100 having a flat distribution is provided on a first surface of the first substrate 10, and an alignment film 102 is provided on a first surface of the common electrode 100.
  • the second substrate 14 is located on the first side of the first substrate 10 and faces the first substrate 10.
  • an alignment film 142 is provided on the second surface of the pixel electrode 140.
  • the liquid crystal layer 12 is filled between the first substrate 10 and the second substrate 14, that is, between the common electrode 100 and the pixel electrode 140.
  • the liquid crystal layer 12 includes liquid crystal molecules 120 and photopolymerizable molecules 122.
  • an appropriate voltage may be applied to the liquid crystal layer 12.
  • the photopolymerization molecules 122 in the liquid crystal layer 12 are polymerized using ultraviolet light irradiation or heating.
  • the polymer layer is generated so that the liquid crystal molecules 120 have an initial pre-tilt angle, thereby achieving an alignment effect.
  • FIG. 2 is an exemplary top view of a pixel electrode.
  • the pixel electrode 20 is fabricated as a pixel electrode having a fishbone pattern.
  • the pixel electrode 20 includes a frame 200 surrounding the periphery, a main trunk 201 extending vertically in the center, a main trunk 202 extending horizontally in the center, and four sets of branch sections 203 with an angle of ⁇ 45 degrees and ⁇ 135 degrees from the X axis. composition.
  • the vertical trunk 201 and the horizontal trunk 202 divide an area of one pixel into four domains, each of which includes the branches 203 extending diagonally and tiled.
  • the branch portion 203 is generated because a plurality of hollow strip-shaped openings are formed in the four regions of the pixel electrode 20, respectively. These strip-shaped openings extend along the extending direction, and are different from the X axis along with the area.
  • the included angle is ⁇ 45 degrees, ⁇ 135 degrees.
  • the entire pixel electrode 20 in the frame 200 will form a fishbone pattern structure that mirrors symmetrically on the top and bottom, respectively. Since the liquid crystal molecules on the pixel electrode 20 are respectively distributed along the angles of the four groups of branch portions 203, when viewed in different directions, there will be an effect of compensating for color shift.
  • the main components of the display panel 3 include a first substrate 30, a second substrate 31, a liquid crystal layer 32, a first transparent electrode 300, a second transparent electrode 310, a third transparent electrode 311, and an insulating layer 312.
  • the first transparent electrode 300 is located on the first surface of the first substrate 30.
  • the first substrate 30 is a glass substrate and is a color filter substrate.
  • the material of the first transparent electrode 300 is indium tin oxide (ITO), and the first transparent electrode 300 is a flat common electrode.
  • the second substrate 31 is located on the first side of the first substrate 30 and faces the first substrate 30.
  • the second transparent electrode 310 is located on the second side of the second substrate 31 and faces the first transparent electrode 300 and the first substrate 30.
  • the second substrate 31 is a glass substrate and is a pixel array substrate.
  • the material of the second transparent electrode 310 is indium tin oxide (ITO), and the second transparent electrode 310 is a pixel electrode having a fishbone pattern.
  • a third transparent electrode 311 is located between the second substrate 31 and the second transparent electrode 310, and faces the second transparent electrode 310.
  • the third transparent electrode 311 and a portion of the second transparent electrode 310 overlap.
  • the third transparent electrode 311 is formed on the second surface of the second substrate 31 and is located on the first side of the second transparent electrode 310. It overlaps with a portion of the second transparent electrode 310, but is parallel to each other. No electrical connection.
  • the size of the third transparent electrode 311 is smaller than the size of the second transparent electrode 310.
  • a material of the third transparent electrode 311 is indium tin oxide (ITO).
  • the second transparent electrode 310 may be divided into a first block 3101 and a second block 3102, and the third transparent electrode 311 is located on a first side of the second block 3102 and only The second block 3102 overlaps.
  • the insulating layer 312 is located between the second transparent electrode 310 and the third transparent electrode 311 and isolates the second transparent electrode 310 and the third transparent electrode 311 from each other. That is, the insulating layer 312 is formed on the second surface of the third transparent electrode 311 and completely covers the third transparent electrode 311, and the second transparent electrode 310 is formed on the second surface of the insulating layer 312.
  • the liquid crystal layer 32 is located between the first substrate 30 and the second substrate 31 and is filled between the first transparent electrode 300 and the second transparent electrode 310.
  • the liquid crystal layer 31 is doped with photopolymerizable molecules 3210.
  • the photopolymerizable molecules 3210 are polymerized on the second side and the first side of the liquid crystal layer 32 to form a first polymer layer 321 and a second polymer layer 322, respectively. As shown in FIG.
  • a first polymer layer 321 is located on the second side of the liquid crystal layer 32 and is located on the first surface of the first transparent electrode 300; a second polymer layer 322 is located on the liquid crystal layer 32 The first side is located on the second surface of the second transparent electrode 310.
  • the liquid crystal molecules 3200 are arranged between the first polymer layer 321 and the second polymer layer 322 to form a liquid crystal molecule layer 320.
  • the display panel 3 further includes a first alignment film 302 and a second alignment film 313.
  • the first alignment film 302 is located on a first surface of the first transparent electrode 300.
  • the second alignment film 313 is located on the second surface of the second transparent electrode 310.
  • the display panel 3 further includes a first data line coupled to the second transparent electrode 310 and a second data line coupled to the third transparent electrode 311.
  • first data line and the second data line please refer to the related description of FIG. 4a and FIG. 4b below.
  • FIG. 4a is a top view of the second transparent electrode of the present application
  • FIG. 4b is a top view of the third transparent electrode of the present application.
  • the second transparent electrode 310 is a pixel electrode and can be divided into a first block 3101 on the first side and a second block 3102 on the second side.
  • a gate line 40 crosses the second transparent electrode 310 laterally and is located between the first block 3101 and the second block 3102.
  • a thin film transistor 43 is coupled to the gate line 40, is located in the center of the second transparent electrode 310, and is located between the first block 3101 and the second block 3102.
  • the thin film transistor 43 includes a first electrode 431 and a second electrode 432.
  • the second electrode 432 is electrically connected to the second block 3102 of the second transparent electrode 310 via the contact point 44.
  • the second electrode 432 is also electrically connected to the first block 3101 of the second transparent electrode 310 via the contact point 45.
  • the first data line 41 extends straight along the left side of the second transparent electrode 310 and is connected to the first electrode 431 of the thin film transistor 43.
  • the second data line 42 extends straight to the right of the second transparent electrode 310.
  • the first data signal of the first data line 41 is transmitted to the contact point 44 through the turned-on first pole 431 and the second pole 432. And is transmitted to the second block 3102 of the second transparent electrode 310 via the contact point 44. In addition, the first data signal of the first data line 41 is also transmitted to the contact point 45 through the first pole 431 and the second pole 432 that are turned on, and to the first point of the second transparent electrode 310 through the contact point 45.
  • the first block 3101 of the second transparent electrode 310 has a fishbone pattern.
  • the first block 3101 includes a surrounding frame 3101a, a central vertical extending trunk 3101b, a central horizontal extending trunk 3101c, and four sets of branch portions 3101d with an angle of ⁇ 45 degrees to the X axis and ⁇ 135 degrees.
  • the vertical trunk 3101b and the horizontal trunk 3101c divide an area of one pixel into four areas, each of which includes a diagonally extending branch portion 3101d tiled.
  • the branch portion 3101d is generated because a plurality of hollow strip-shaped openings are formed in the four areas of the first block 3101, respectively. These strip-shaped openings extend along the extending direction, and are different from each other according to the area.
  • the X-axis included angle is ⁇ 45 degrees, ⁇ 135 degrees.
  • a fishbone pattern structure that is mirror-symmetrical on the top and bottom and left and right is formed. Since the liquid crystal molecules on the first block 3101 are respectively distributed along the angles of the four groups of branch portions 3101d, when viewed in different directions, there will be an effect of compensating for color shift.
  • the second block 3102 of the second transparent electrode 310 has a fishbone pattern.
  • the second block 3102 includes a surrounding frame 3102a, a central vertical extending trunk 3102b, a central horizontal extending trunk 3102c, and four sets of branch portions 3102d with an angle of ⁇ 45 degrees and ⁇ 135 degrees from the X axis.
  • the vertical trunk 3102b and the horizontal trunk 3102c divide an area of one pixel into four areas on an average, and each area consists of the diagonally extending branches 3102d.
  • the branch portion 3102d is generated because a plurality of hollow strip-shaped openings are respectively formed in the four areas of the second block 3102.
  • the X-axis included angle is ⁇ 45 degrees, ⁇ 135 degrees.
  • the third transparent electrode 311 is formed on the second side of the gate line 40. That is, the third transparent electrode 311 and the second block 3102 of the second transparent electrode 310 in FIG. 4a overlap each other.
  • a thin film transistor 46 is coupled to the gate line 40.
  • the thin film transistor 46 includes a first electrode 461 and a second electrode 462.
  • the second electrode 462 is electrically connected to the third transparent electrode 311 via the contact point 47.
  • the first data line 41 extends straight along the left side of the third transparent electrode 311.
  • the second data line 42 extends straight to the right of the third transparent electrode 311 and is connected to the first electrode 461 of the thin film transistor 46.
  • the second data signal on the second data line 42 is transmitted to the contact point 47 through the turned-on first pole 461 and the second pole 462, It is transferred to the third transparent electrode 311 via the contact point 47.
  • FIG. 5 is a method flowchart of a display method of a display panel according to the present application.
  • the display method of the display panel can be applied to the display panel 3 in FIG. 3, FIG. 4a, and FIG. 4b.
  • the display method of the display panel includes at least the following steps: Step S51: input a first data signal to the second transparent electrode 310 via the first data line 41.
  • step S52 a second data signal is input to the third transparent electrode 311 via the second data line 42.
  • Step S53 maintaining the state of the input first data signal and the input second data signal, and performing light treatment on the display panel 3, so that the photopolymerizable molecules 3210 in the liquid crystal layer 32 are in the first A first surface of a transparent electrode 300 and a second surface of the second transparent electrode 310 are polymerized.
  • step S54 when the polymerization of the photopolymerizable molecule 3210 is completed, the input of the first data signal and the second data signal are stopped.
  • the light used for the light treatment is ultraviolet light.
  • the photopolymerizable molecules 3210 are polymerized on the first surface of the first transparent electrode 300 and the second surface of the second transparent electrode 310, respectively, as shown in FIG. A first polymer layer 321 is formed on the first surface of the transparent electrode 300, and a second polymer layer 322 is formed on the second surface of the second transparent electrode 310.
  • the second transparent electrode 310 and the third transparent electrode 311 are respectively connected to two different data lines, that is, the first data line 41 and the second data line 42, when the display method of the display panel is performed, the first A data line 41 and a second data line 42 can respectively input a first data signal and a second data signal of the same voltage or different voltages.
  • the second block 3102 of the second transparent electrode 310 since the third transparent electrode 311 is provided on the first side thereof, the area electric field on the second side of the second block 3102 will be enhanced. As for the first block 3101 that does not overlap with the third transparent electrode 311, the area electric field on the second side is not enhanced.
  • two different electric fields are formed between the second transparent electrode 310 and the first transparent electrode 300, and different pretilt angles can be generated during the alignment process. That is, the liquid crystal molecules 3200 on the second side of the second block 3102 and the liquid crystal molecules 3200 on the second side of the first block 3101 have different pretilt angles.
  • the second data line 42 is no longer provided after the pretilt angle of the liquid crystal molecules is formed. Transmission of data signals. That is, when the display panel 3 is subsequently operated, only the first data line 41 will input a data signal to the second transparent electrode 310, so there is only one electric field acting between the second transparent electrode 310 and the first transparent electrode 300.
  • FIG. 6 is a method flowchart of a display method of a display panel provided in another embodiment of the present application.
  • the display method of the display panel is applicable to the display panel 3 shown in FIG. 3, FIG. 4a, and FIG. 4b, and includes at least the following steps.
  • step S61 is performed to provide a display panel 3 including a first substrate 30, a liquid crystal layer 32, and a second substrate 31.
  • the liquid crystal layer 32 is located on the first substrate 30 and the second substrate.
  • a first transparent electrode 300 is provided on a first side of the first substrate 30, a second transparent electrode 310 and a third transparent electrode 311 are provided on a second side of the second substrate 31, and the third transparent electrode 311 is located
  • the second transparent electrode 310 has a first side and overlaps a portion of the second transparent electrode 310.
  • step S62 is performed, and a first data signal is continuously input to the second transparent electrode 310 via the first data line 41.
  • Step S63 is further performed, and a second data signal is continuously input to the third transparent electrode 311 via the second data line 42.
  • step S64 is performed to perform light treatment on the display panel 3 to polymerize the photopolymerizable molecules 3210 in the liquid crystal layer 32.
  • step S65 is performed, and when the photopolymerization molecules 3210 are polymerized, the input of the first data signal and the second data signal are stopped.
  • an area where the second transparent electrode 310 and the third transparent electrode 311 overlap is larger than an area where the second transparent electrode 310 does not overlap with the third transparent electrode 311. Strong electric field. Since the second side of the second transparent electrode 310 generates two kinds of electric fields with different strengths, the liquid crystal molecules 3200 can have two different pretilt angles after the alignment process.
  • the present application proposes a new display panel and a display method for the display panel.
  • the polymer layer By generating two different electric fields between the pixel electrode and the common electrode, the polymer layer has different orientations in different regions, and forms different Pre-tilt angle. Therefore, the liquid crystal molecules in the liquid crystal layer can have two different pretilt angles at the same time due to the effect of the polymer layer, thereby improving the color shift generated by the display panel during display.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请揭露一种显示面板及其显示方法,显示面板的显示方法包含下列步骤。首先,提供一显示面板,显示面板包括第一基板、液晶层与第二基板。液晶层位于第一基板与第二基板间。第一基板第一侧具有第一透明电极,第二基板第二侧具有第二透明电极与第三透明电极。第三透明电极位于第二透明电极第一侧,并且与部份第二透明电极重叠。接着,经由第一数据线,持续输入第一数据信号至第二透明电极。并且,经由第二数据线,持续输入第二数据信号至第三透明电极。然后,对显示面板进行光照处理,使液晶层中的光致聚合分子发生聚合。当光致聚合分子聚合完毕,停止输入第一数据信号与第二数据信号。本申请可改善显示面板的色偏现象。

Description

显示面板及其显示方法 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板及其显示方法。
背景技术
薄膜晶体管液晶显示器(Thin Film Transistor-Liquid Crystal Display;TFT-LCD)由于色彩度高、体积小、功耗低等优势,在目前平板显示领域中仍占主流位置。就目前主流市场上的薄膜晶体管液晶显示器其显示面板而言,大致可分为三种类型,分别是扭曲向列(Twisted Nematic;TN)或超扭曲向列(Super Twisted Nematic;STN)型、平面转换(In-Plane Switching;IPS)型、以及垂直配向(Vertical Alignment;VA)型。其中垂直配向型液晶显示器相对其他种类的液晶显示器具有极高的对比度,在大尺寸显示,如电视等方面具有非常广的应用。
在垂直配向型液晶显示器的相关领域中,目前业界大量应用一种聚合物安定化垂直配向技术(Polymer Stabilized Vertical Alignment,PSVA)。此种技术将光致聚合分子掺杂与液晶中,并施与液晶层适当的电压,当施加电压使液晶分子排列稳定时候,使用紫外光照射或加热的方式让液晶中的光致聚合分子进行聚合反应,生成聚合物层使液晶有一个初始的预倾角(Pre-tilt Angle),从而达到聚合物安定化垂直配向的目的。由于在配向膜表面形成聚合物突起,使液晶分子具有预倾角,因此能够使液晶显示面板具有高对比度、宽视角、低功耗、响应快且穿透率高等益处。
然而,在从低灰阶到高灰阶转变过程中,液晶从竖直状态转向水平状态,会导致使用者在不同的视角下注视显示器面板时,光线会经过不同的相位差而直接影响显示器面板的视觉特性。为了增大视角减少色差,相关领域中通常使用多个液晶象限(Domain)进行补偿。
发明内容
本申请提出了一种显示面板及其显示方法。
本申请提出一种显示面板的显示方法,其中,包含步骤:提供一显示面板,所述显示面板包括第一基板、液晶层与第二基板,其中所述液晶层位于所述第一基板与所述第二基板间,所述第一基板第一侧具有第一透明电极,所述第二基板第二侧具有第二透明电极与第三透明电极,所述第三透明电极位于所述第二透明电极第一侧,并且与部份所述第二透明电极重叠;经由第一数据线,持续输入第一数据信号至所述第二透明电极;经由第二数据线,持续输入第二数据信号至所述第三透明电极;对所述显示面板进行光照处理,使所述液晶层中的光致聚合分子发生聚合;当所述光致聚合分子聚合完毕,停止输入所述第一数据信号与所述第二数据信号。
在本申请的一实施例中,所述第二透明电极与所述第三透明电极重叠的区域,相较于所述第二透明电极未与所述第三透明电极重叠的区域,具有较强的电场。
本申请并提出一种显示面板,其中,包含:第一基板;第一透明电极,位于所述第一基板第一表面;第二基板,位于所述第一基板第一侧,面对所述第一基板;第二透明电极,位于所述第二基板上,面对所述第一透明电极;第三透明电极,位于所述第二基板与所述第二透明电极间,面对所述第二透明电极,所述第三透明电极与部份所述第二透明电极重叠;绝缘层,位于所述第二透明电极与第三透明电极间;液晶层,填充于所述第一透明电极与第二透明电极间;第一数据线,耦接于所述第二透明电极;及第二数据线,耦接于所述第三透明电极。
在本申请的一实施例中,所述第二透明电极划分为第一区块与第二区块,所述第三透明电极位于所述第二区块第一侧,且仅与所述第二区块重叠。
在本申请的一实施例中,位于所述第二区块第二侧的液晶分子,与位于所述第一区块第二侧的液晶分子,具有相异的预倾角。
在本申请的一实施例中,所述的显示面板更包含:第一聚合物层,位于所述液晶层第二侧,且位于所述第一透明电极第一表面;以及第二聚合物层,位于所述液晶层第一侧,且位于所述第二透明电极第二表面。
在本申请的一实施例中,所述的显示面板更包含:第一配向膜,位于所述第一透明电极第一表面;以及第二配向膜,位于所述第二透明电极第二表面。
在本申请的一实施例中,所述第一透明电极为平板状的公共电极,所述 第二透明电极为具有鱼骨图案的像素电极。
本申请另外提出一种显示面板的显示方法,适用上述显示面板,其中,包含步骤:经由所述第一数据线,输入第一数据信号至所述第二透明电极;经由所述第二数据线,输入第二数据信号至所述第三透明电极;维持所述输入第一数据信号与所述输入第二数据信号的状态,对所述显示面板进行光照处理,使所述液晶层中的光致聚合分子,在所述第一透明电极第一表面以及所述第二透明电极第二表面发生聚合;当所述光致聚合分子聚合完毕,停止输入所述第一数据信号与所述第二数据信号。
在本申请的一实施例中,所述光照处理所用的光线为紫外光。
在本申请的一实施例中,当所述光致聚合分子聚合完毕,会在所述第一透明电极第一表面形成第一聚合物层,并且在所述第二透明电极第二表面形成第二聚合物层。
本申请提出一种新的显示面板和显示面板的显示方法,透过在像素电极与公共电极间产生两种不同的电场,使聚合物层在不同区域中具有不同的配向,而形成相异的预倾角。由此,液晶层中的液晶分子,由于聚合物层的作用,可以同时有两个相异的预倾角,从而使显示面板在显示时所产生的色偏得以改善。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其他目的、特征和优点能够更明显易懂,以下特举可选实施例,并配合附图,详细说明如下。
附图说明
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是一示例性的显示面板截面图。
图2是一示例性的像素电极俯视图。
图3是本申请一种显示面板截面图。
图4a是本申请一实施例中第二透明电极的俯视图。
图4b是本申请一实施例中第三透明电极的俯视图。
图5是本申请一种显示面板的显示方法的方法流程图。
图6是本申请另一实施例中一种显示面板的显示方法的方法流程图。
具体实施方式
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“直向”、“横向”、“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或组件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“配置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个组件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一条”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
图1是一示例性的显示面板截面图,显示施加电压于液晶层使液晶分子产生预倾角。如图1所示,显示面板1主要包括了第一基板10、液晶层12、 第二基板14。在第一基板10的第一表面具有一平坦分布的公共电极100,在公共电极100的第一表面具有一配向膜102。第二基板14,位于所述第一基板10第一侧,并面对所述第一基板10。在第二基板14的第二表面具有阵列分布的多个像素电极140,在像素电极140的第二表面,则具有一配向膜142。
液晶层12,填充于第一基板10与第二基板14间,亦即位于公共电极100与像素电极140间。液晶层12包括了液晶分子120与光致聚合分子122。在后续的配向制程中,可施与液晶层12适当的电压,当施加电压使液晶分子120排列稳定时候,使用紫外光照射或加热的方式让液晶层12中的光致聚合分子122进行聚合反应,生成聚合物层使液晶分子120有一个初始的预倾角(Pre-tilt Angle),从而达到配向的效果。
图2是一示例性的像素电极俯视图。为了增大视角减少色差,像素电极20制作为具有一具有鱼骨图案的像素电极。像素电极20包含环绕周围的边框200、中央垂直沿伸的主干(main trunk)201、中央水平沿伸的主干202、以及与X轴夹角为±45度,±135度的四组分支部203组成。垂直主干201和水平主干202将一像素的面积平均分成四个区域(domain),每个区域包括了斜向沿伸的分支部203平铺组成。分支部203的产生,是因为在像素电极20的四个区域中分别形成了多个镂空的长条形开口,这些长条形的开口沿伸的方向,随着区域的不同,分别与X轴夹角为±45度,±135度。如此,整个像素电极20在边框200中,会形成了上下和左右分别镜像对称的鱼骨图案结构。由于在像素电极20上的液晶分子会分别沿着四组分支部203的角度分布,因此在不同的方向上观看时,会有补偿色偏的作用。
图3是本申请一种显示面板截面图。如图3所示,显示面板3的主要组件包括了第一基板30、第二基板31、液晶层32、第一透明电极300、第二透明电极310、第三透明电极311以及绝缘层312。
第一透明电极300,位于第一基板30第一表面。在一实施例中,所述第一基板30为一玻璃基板,并且为一彩色滤光片基板。在另一实施例中,第一透明电极300的材料为氧化铟锡(ITO),并且所述第一透明电极300为平板状的公共电极。
第二基板31,位于所述第一基板30第一侧,面对第一基板30。第二透明电极310,位于所述第二基板31第二侧,面对所述第一透明电极300与第 一基板30。在一实施例中,所述第二基板31为一玻璃基板,并且为一像素阵列基板。在另一实施例中,第二透明电极310的材料为氧化铟锡(ITO),并且所述第二透明电极310为具有鱼骨图案的像素电极。
第三透明电极311,位于所述第二基板31与所述第二透明电极310间,面对所述第二透明电极310,所述第三透明电极311并与部份所述第二透明电极310重叠。如图中所示,第三透明电极311,形成于第二基板31的第二表面,且位于第二透明电极310的第一侧,与部份第二透明电极310发生重叠,但彼此间并无电性连结。在一实施例中,所述第三透明电极311的尺寸小于所述第二透明电极310的尺寸。在另一实施例中,所述第三透明电极311的材料为氧化铟锡(ITO)。
在一实施例中,所述第二透明电极310可划分为第一区块3101与第二区块3102,所述第三透明电极311位于所述第二区块3102第一侧,且仅与所述第二区块3102重叠。
绝缘层312,位于所述第二透明电极310与第三透明电极311间,将第二透明电极310与第三透明电极311彼此隔离开。亦即,绝缘层312形成于第三透明电极311的第二表面,并完全覆盖第三透明电极311,至于所述第二透明电极310则是形成于绝缘层312第二表面。
液晶层32,位于第一基板30与第二基板31间,且填充于所述第一透明电极300与第二透明电极310间。液晶层31中除了液晶分子3200外,并掺杂了光致聚合分子3210。在一实施例中,当配向制程完成后,光致聚合分子3210会聚合于液晶层32的第二侧和第一侧,而分别形成第一聚合物层321与第二聚合物层322。如图3所示,第一聚合物层321,位于所述液晶层32第二侧,且位于所述第一透明电极300的第一表面;第二聚合物层322,位于所述液晶层32第一侧,且位于所述第二透明电极310第二表面。至于,液晶分子3200则会排列于第一聚合物层321与第二聚合物层322间,构成一液晶分子层320。
在一实施例中,所述显示面板3,更包含第一配向膜302与第二配向膜313。第一配向膜302,位于所述第一透明电极300的第一表面。第二配向膜313,位于所述第二透明电极310的第二表面。
在另一实施例中,所述显示面板3,更包括第一数据线,耦接于所述第二透明电极310,以及第二数据线,耦接于所述第三透明电极311。有关第 一数据线与第二数据线的具体描述,请参见下述图4a与图4b的相关描述。
请参考图4a与图4b,图4a是本申请第二透明电极的俯视图;图4b是本申请第三透明电极的俯视图。
如图4a所示,第二透明电极310为一像素电极,可划分为第一侧的第一区块3101与第二侧的第二区块3102。一闸极线40横向跨过第二透明电极310,且位于第一区块3101与第二区块3102间。一薄膜晶体管43,耦接于闸极线40,位于第二透明电极310的中央,且位于第一区块3101与第二区块3102间。所述薄膜晶体管43包括第一极431与第二极432。其中,第二极432经由接触点44电性连接第二透明电极310的第二区块3102。此外,第二极432亦经由接触点45电性连接第二透明电极310的第一区块3101。第一数据线41直向沿伸于所述第二透明电极310的左侧,并连接于所述薄膜晶体管43的第一极431。第二数据线42则直向沿伸于第二透明电极310的右侧。
当闸极线40上的闸极信号导通所述薄膜晶体管43时,第一数据线41的第一数据信号,会经由导通的第一极431与第二极432,传送至接触点44,并经由接触点44传送至第二透明电极310的第二区块3102。此外,第一数据线41的第一数据信号,亦会经由导通的第一极431与第二极432,传送至接触点45,并经由接触点45传送至第二透明电极310的第一区块3101。
在一实施例中,第二透明电极310的第一区块3101具有鱼骨图案。第一区块3101包含环绕周围的边框3101a、中央垂直沿伸的主干3101b、中央水平沿伸的主干3101c、以及与X轴夹角为±45度,±135度的四组分支部3101d组成。垂直主干3101b和水平主干3101c将一像素的面积平均分成四个区域,每个区域包括了斜向沿伸的分支部3101d平铺组成。分支部3101d的产生,是因为在第一区块3101的四个区域中分别形成了多个镂空的长条形开口,这些长条形的开口沿伸的方向,随着区域的不同,分别与X轴夹角为±45度,±135度。如此,整个第一区块3101在边框3101a中,会形成了上下和左右分别镜像对称的鱼骨图案结构。由于在第一区块3101上的液晶分子会分别沿着四组分支部3101d的角度分布,因此在不同的方向上观看时,会有补偿色偏的作用。
在一实施例中,第二透明电极310的第二区块3102具有鱼骨图案。第二区块3102包含环绕周围的边框3102a、中央垂直沿伸的主干3102b、中央 水平沿伸的主干3102c、以及与X轴夹角为±45度,±135度的四组分支部3102d组成。垂直主干3102b和水平主干3102c将一像素的面积平均分成四个区域,每个区域包括了斜向沿伸的分支部3102d平铺组成。分支部3102d的产生,是因为在第二区块3102的四个区域中分别形成了多个镂空的长条形开口,这些长条形的开口沿伸的方向,随着区域的不同,分别与X轴夹角为±45度,±135度。如此,整个第二区块3102在边框3102a中,会形成了上下和左右分别镜像对称的鱼骨图案结构。由于在第二区块3102上的液晶分子会分别沿着四组分支部3102d的角度分布,因此在不同的方向上观看时,会有补偿色偏的作用。
如图4b所示,第三透明电极311制作于闸极线40的第二侧。亦即第三透明电极311会与图4a中第二透明电极310的第二区块3102彼此重叠。一薄膜晶体管46,耦接于闸极线40。所述薄膜晶体管46包括第一极461与第二极462。其中,第二极462经由接触点47电性连接第三透明电极311。第一数据线41直向沿伸于所述第三透明电极311的左侧。第二数据线42则直向沿伸于第三透明电极311的右侧,并连接于所述薄膜晶体管46的第一极461。
当闸极线40上的闸极信号导通所述薄膜晶体管46时,第二数据线42的第二数据信号会经由导通的第一极461与第二极462,传送至接触点47,并经由接触点47传送至第三透明电极311。
图5是本申请一种显示面板的显示方法的方法流程图。所述显示面板的显示方法,可适用于上述图3、图4a与图4b中的显示面板3。所述显示面板的显示方法至少包含下述步骤:步骤S51,经由所述第一数据线41,输入第一数据信号至所述第二透明电极310。步骤S52,经由所述第二数据线42,输入第二数据信号至所述第三透明电极311。步骤S53,维持所述输入第一数据信号与所述输入第二数据信号的状态,对所述显示面板3进行光照处理,使所述液晶层32中的光致聚合分子3210,在所述第一透明电极300第一表面以及所述第二透明电极310第二表面发生聚合。步骤S54,当所述光致聚合分子3210聚合完毕,停止输入所述第一数据信号与所述第二数据信号。
在一实施例中,所述光照处理所用的光线为紫外光。并且,由于光致聚合分子3210会在第一透明电极300第一表面以及第二透明电极310第二表面分别发生聚合,因此当光致聚合分子聚合完毕,如图3所示,会在第一透 明电极300第一表面形成第一聚合物层321,并且在第二透明电极310第二表面形成第二聚合物层322。
此外,由于第二透明电极310与第三透明电极311是分别连接至不同的两条数据线,即第一数据线41与第二数据线42,所以在进行上述显示面板的显示方法时,第一数据线41与第二数据线42可以分别输入相同电压或不同电压的第一数据信号与第二数据信号。对于第二透明电极310的第二区块3102而言,由于其第一侧有第三透明电极311,因此第二区块3102第二侧的区域电场将会增强。至于,未与第三透明电极311重叠的第一区块3101,其第二侧的区域电场则未增强。换言之,在第二透明电极310与第一透明电极300间会形成不同的两个电场,而可在配向过程中产生相异的预倾角。亦即,位于第二区块3102第二侧的液晶分子3200,与位于第一区块3101第二侧的液晶分子3200,会具有相异的预倾角。
在一实施例中,由于第三透明电极311与第二数据线42的设计,是要在配向过程中额外增强区域电场,因此在液晶分子预倾角形成后,便不再给第二数据线42传送数据信号。亦即,后续当显示面板3工作时,只有第一数据线41会输入数据信号至第二透明电极310,因此在第二透明电极310与第一透明电极300间只有一个电场作用。
图6是本申请另一实施例中所提供一种显示面板的显示方法的方法流程图。所述显示面板的显示方法,可适用于上述图3、图4a与图4b中的显示面板3,且至少包含下列步骤。首先,进行步骤S61,提供一显示面板3,所述显示面板3包括第一基板30、液晶层32与第二基板31,其中所述液晶层32位于所述第一基板30与所述第二基板31间,所述第一基板30第一侧具有第一透明电极300,所述第二基板31第二侧具有第二透明电极310与第三透明电极311,所述第三透明电极311位于所述第二透明电极310第一侧,并且与部份所述第二透明电极310重叠。接着,进行步骤S62,经由第一数据线41,持续输入第一数据信号至所述第二透明电极310。再进行步骤S63,经由第二数据线42,持续输入第二数据信号至所述第三透明电极311。随后,进行步骤S64,对所述显示面板3进行光照处理,使所述液晶层32中的光致聚合分子3210发生聚合。最,进行步骤S65,当所述光致聚合分子3210聚合完毕,停止输入所述第一数据信号与所述第二数据信号。
在一实施例中,所述第二透明电极310与所述第三透明电极311重叠的 区域,相较于所述第二透明电极310未与所述第三透明电极311重叠的区域,具有较强的电场。由于第二透明电极310第二侧会产生两种不同强度的电场,因此可使液晶分子3200在配向过程后,分别具有两种相异的预倾角。
本申请提出一种新的显示面板和显示面板的显示方法,透过在像素电极与公共电极间产生两种不同的电场,使聚合物层在不同区域中具有不同的配向,而形成相异的预倾角。由此,液晶层中的液晶分子,由于聚合物层的作用,可以同时有两个相异的预倾角,从而使显示面板在显示时所产生的色偏得以改善。
以上所述,仅是本申请的可选实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以可选实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的方法及技术内容作出些许的更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (20)

  1. 一种显示面板的显示方法,其中,包含步骤:
    提供一显示面板,所述显示面板包括第一基板、液晶层与第二基板,其中所述液晶层位于所述第一基板与所述第二基板间;
    所述第一基板第一侧包括第一透明电极,所述第二基板第二侧包括第二透明电极与第三透明电极;
    所述第三透明电极位于所述第二透明电极第一侧,并且与部份所述第二透明电极重叠;
    经由第一数据线,持续输入第一数据信号至所述第二透明电极;
    经由第二数据线,持续输入第二数据信号至所述第三透明电极;
    对所述显示面板进行光照处理,使所述液晶层中的光致聚合分子发生聚合;
    当所述光致聚合分子聚合完毕,停止输入所述第一数据信号与所述第二数据信号。
  2. 如权利要求1所述的显示面板的显示方法,其中,所述第二透明电极与所述第三透明电极重叠的区域,相较于所述第二透明电极未与所述第三透明电极重叠的区域,具有较强的电场。
  3. 如权利要求1所述的显示面板的显示方法,其中,所述第一基板为一彩色滤光片基板。
  4. 如权利要求1所述的显示面板的显示方法,其中,所述第一透明电极的材料为氧化铟锡(ITO),并且所述第一透明电极为平板状的公共电极。
  5. 如权利要求1所述的显示面板的显示方法,其中,所述第二基板为一像素阵列基板。
  6. 如权利要求1所述的显示面板的显示方法,其中,所述第二透明电极的材料为氧化铟锡,并且所述第二透明电极为具有鱼骨图案的像素电极。
  7. 如权利要求1所述的显示面板的显示方法,其中,所述第三透明电极的尺寸小于所述第二透明电极的尺寸。
  8. 如权利要求1所述的显示面板的显示方法,其中,所述第三透明电极的材料为氧化铟锡。
  9. 一种显示面板,其中,包含:
    第一基板;
    第一透明电极,位于所述第一基板第一表面;
    第二基板,位于所述第一基板第一侧,面对所述第一基板;
    第二透明电极,位于所述第二基板上,面对所述第一透明电极;
    第三透明电极,位于所述第二基板与所述第二透明电极间,面对所述第二透明电极,所述第三透明电极与部份所述第二透明电极重叠;
    绝缘层,位于所述第二透明电极与第三透明电极间;
    液晶层,填充于所述第一透明电极与第二透明电极间;
    第一数据线,耦接于所述第二透明电极;及
    第二数据线,耦接于所述第三透明电极。
  10. 如权利要求9所述的显示面板,其中,所述第二透明电极包括第一区块与第二区块,所述第三透明电极位于所述第二区块第一侧,且仅与所述第二区块重叠。
  11. 如权利要求9所述的显示面板,其中,位于所述第二区块第二侧的液晶分子,与位于所述第一区块第二侧的液晶分子,具有相异的预倾角。
  12. 如权利要求9所述的显示面板,其中,更包含:
    第一聚合物层,位于所述液晶层第二侧,且位于所述第一透明电极第一表面;以及
    第二聚合物层,位于所述液晶层第一侧,且位于所述第二透明电极第二表面。
  13. 如权利要求9所述的显示面板,其中,更包含:
    第一配向膜,位于所述第一透明电极第一表面;以及
    第二配向膜,位于所述第二透明电极第二表面。
  14. 如权利要求9所述的显示面板,其中,所述第一透明电极为平板状的公共电极,所述第二透明电极为包括鱼骨图案的像素电极。
  15. 如权利要求9所述的显示面板,其中,所述第一基板为一彩色滤光片基板,所述第二基板为一像素阵列基板。
  16. 如权利要求9所述的显示面板,其中,所述第三透明电极的尺寸小于所述第二透明电极的尺寸。
  17. 如权利要求9所述的显示面板,其中,所述第一透明电极,所述第二透明电极与所述第三透明电极的材料为氧化铟锡。
  18. 一种显示面板的显示方法,适用权利要求9所述的显示面板,其中, 包含步骤:
    经由所述第一数据线,输入第一数据信号至所述第二透明电极;
    经由所述第二数据线,输入第二数据信号至所述第三透明电极;
    维持所述输入第一数据信号与所述输入第二数据信号的状态,对所述显示面板进行光照处理,使所述液晶层中的光致聚合分子,在所述第一透明电极第一表面以及所述第二透明电极第二表面发生聚合;
    当所述光致聚合分子聚合完毕,停止输入所述第一数据信号与所述第二数据信号。
  19. 如权利要求18所述的显示面板的显示方法,其中,所述光照处理所用的光线为紫外光。
  20. 如权利要求18所述的显示面板的显示方法,其中,当所述光致聚合分子聚合完毕,会在所述第一透明电极第一表面形成第一聚合物层,并且在所述第二透明电极第二表面形成第二聚合物层。
PCT/CN2019/082294 2018-07-17 2019-04-11 显示面板及其显示方法 WO2020015400A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810785662.2 2018-07-17
CN201810785662.2A CN108845463B (zh) 2018-07-17 2018-07-17 显示面板及其显示方法

Publications (1)

Publication Number Publication Date
WO2020015400A1 true WO2020015400A1 (zh) 2020-01-23

Family

ID=64197427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082294 WO2020015400A1 (zh) 2018-07-17 2019-04-11 显示面板及其显示方法

Country Status (2)

Country Link
CN (1) CN108845463B (zh)
WO (1) WO2020015400A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845463B (zh) * 2018-07-17 2021-01-08 惠科股份有限公司 显示面板及其显示方法
CN113655664B (zh) * 2021-08-19 2022-09-27 深圳市华星光电半导体显示技术有限公司 液晶显示面板、液晶配向方法及移动终端
US12025888B2 (en) 2021-08-19 2024-07-02 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Liquid crystal display panel, liquid crystal alignment method, and mobile terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080062358A1 (en) * 2006-09-12 2008-03-13 Wintek Corporation Liquid crystal panel and liquid crystal display
CN101349841A (zh) * 2008-09-05 2009-01-21 友达光电股份有限公司 聚合物稳定配向液晶面板与对向电极阵列基板及其制法
CN102736331A (zh) * 2011-04-12 2012-10-17 凸版印刷株式会社 液晶显示装置及其制造方法
CN108845463A (zh) * 2018-07-17 2018-11-20 惠科股份有限公司 显示面板及其显示方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357851A (ja) * 2001-03-30 2002-12-13 Minolta Co Ltd 液晶表示装置
KR101003623B1 (ko) * 2004-12-31 2010-12-23 엘지디스플레이 주식회사 횡전계 모드 액정표시장치
CN101387781B (zh) * 2008-10-22 2010-09-22 友达光电股份有限公司 液晶显示面板及其制作方法
TW201341913A (zh) * 2012-04-06 2013-10-16 Au Optronics Corp 液晶顯示面板
US10739645B2 (en) * 2016-03-29 2020-08-11 Sharp Kabushiki Kaisha Liquid crystal display apparatus and manufacturing method of liquid crystal display apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080062358A1 (en) * 2006-09-12 2008-03-13 Wintek Corporation Liquid crystal panel and liquid crystal display
CN101349841A (zh) * 2008-09-05 2009-01-21 友达光电股份有限公司 聚合物稳定配向液晶面板与对向电极阵列基板及其制法
CN102736331A (zh) * 2011-04-12 2012-10-17 凸版印刷株式会社 液晶显示装置及其制造方法
CN108845463A (zh) * 2018-07-17 2018-11-20 惠科股份有限公司 显示面板及其显示方法

Also Published As

Publication number Publication date
CN108845463B (zh) 2021-01-08
CN108845463A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
US8558959B2 (en) Liquid crystal display device and method of fabricating the same
US7324175B2 (en) Liquid crystal display device and method of fabricating the same
US9063383B2 (en) Liquid crystal display device
US20120206683A1 (en) Pixel electrode and its associated lcd panel
JP2001242466A (ja) マルチドメイン液晶表示素子
JP2000010110A (ja) カラ―シフトの除去された高開口率及び高透過率液晶表示装置
WO2013137254A1 (ja) 液晶表示装置
WO2020015400A1 (zh) 显示面板及其显示方法
WO2020248646A1 (zh) 液晶面板的配向方法、液晶面板及显示装置
JP3684398B2 (ja) 光学的に補償されたスプレイモード液晶表示装置
JP2000193977A (ja) 液晶表示装置
JP4551230B2 (ja) 液晶表示装置の製造方法
US7342628B2 (en) Liquid crystal display device
US20150015817A1 (en) Liquid crystal display device
TWI384298B (zh) 液晶顯示面板及其製作方法
JP2013117700A (ja) 液晶表示装置
KR20160127856A (ko) 프린지 필드 스위칭 액정 표시장치 및 그 제조방법
JP4995942B2 (ja) 液晶表示装置
US7808593B1 (en) Multi-domain liquid crystal display
KR20010081454A (ko) 광시야각을 갖는 액정표시장치용 어레이기판 제조방법
CN102422211B (zh) 液晶显示装置
US7466386B2 (en) Multi-domain liquid crystal display device and manufacturing method thereof
JPH09230364A (ja) 液晶表示装置
KR100294687B1 (ko) 액정표시소자
US7956968B2 (en) Liquid crystal display device and fabrication method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19838153

Country of ref document: EP

Kind code of ref document: A1