WO2020012871A1 - Machine tool - Google Patents

Machine tool Download PDF

Info

Publication number
WO2020012871A1
WO2020012871A1 PCT/JP2019/023656 JP2019023656W WO2020012871A1 WO 2020012871 A1 WO2020012871 A1 WO 2020012871A1 JP 2019023656 W JP2019023656 W JP 2019023656W WO 2020012871 A1 WO2020012871 A1 WO 2020012871A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging device
tool
axis
main shaft
spindle
Prior art date
Application number
PCT/JP2019/023656
Other languages
French (fr)
Japanese (ja)
Inventor
山田 智明
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Publication of WO2020012871A1 publication Critical patent/WO2020012871A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes

Definitions

  • the present invention relates to a machine tool.
  • Patent Document 1 discloses a conventional machine tool that can move in three directions of an X-axis, a Y-axis, and a Z-axis, and turns around a B-axis (around the Y-axis).
  • a measuring device for a machine tool comprising a tool rest having a possible rotary tool axis, a touch probe mounted on the tool rest, a reference sphere fixed to the head rest, and a controller is disclosed.
  • the controller measures the reference sphere from five directions using the touch probe, specifies the center coordinates of the reference sphere, and calculates the mechanical error of the B-axis turning of the tool post from the center coordinates.
  • an object of the present invention is to solve the above-described problems, and to provide a machine tool capable of easily executing various accompanying operations for appropriately performing work processing.
  • a machine tool has a main spindle movable in a processing area, an automatic tool changer capable of exchanging a tool mounted on the main spindle, a base member provided in the processing area, and a main spindle mounted in the processing area.
  • An imaging device and a control device for controlling a machine tool are provided.
  • the control device controls the automatic tool changer so that the automatic tool changer mounts the imaging device on the main shaft, and controls the main shaft so that the imaging device mounted on the main shaft is arranged on the base member.
  • the automatic tool changing device controls the automatic tool changing device so that the object to be imaged is mounted on the main shaft, and the imaging device disposed on the base member is mounted on the main shaft.
  • the imaging device is controlled so as to image the object.
  • FIG. 1 is a front view showing a machine tool according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view illustrating a state in which the imaging device in FIG. 1 is connected to a holder unit. It is a flowchart figure which shows the flow which measures the shift of the C-axis rotation center of a table.
  • FIG. 9 is a front view showing a first step of measuring a shift of the C-axis rotation center of the table.
  • FIG. 13 is a front view showing a second step of measuring the shift of the C-axis rotation center of the table.
  • FIG. 13 is a front view showing a third step of measuring a shift of the C-axis rotation center of the table.
  • FIG. 9 is a front view showing a first step of measuring a shift of the C-axis rotation center of the table.
  • FIG. 13 is a front view showing a second step of measuring the shift of the C-axis rotation center of the table.
  • FIG. 13 is a front
  • FIG. 14 is a front view showing a fourth step of measuring the shift of the C-axis rotation center of the table. It is a front view which shows the 5th step which measures the shift of the C-axis rotation center of a table.
  • FIG. 15 is a front view showing a sixth step of measuring the displacement of the C-axis rotation center of the table. It is a flowchart figure which shows the modification of the flow which measures the shift of the C-axis rotation center of a table.
  • FIG. 13 is a front view showing a step of measuring a shift of a C-axis rotation center of a table in the machine tool according to Embodiment 2 of the present invention.
  • FIG. 13 is a front view showing a step of measuring a shift of a C-axis rotation center of a table in the machine tool according to Embodiment 2 of the present invention.
  • FIG. 12 is a top view showing a step of measuring a shift of a C-axis rotation center of the table in FIG. 11.
  • FIG. 14 is a side view showing a step of inspecting a shape of a tool in a machine tool according to Embodiment 3 of the present invention. It is a perspective view which shows the imaging device in FIG.
  • FIG. 14 is a diagram illustrating a tip of a tool whose diameter is measured in a machine tool according to Embodiment 4 of the present invention.
  • FIG. 1 is a front view showing a machine tool according to Embodiment 1 of the present invention.
  • a machine tool 10 is a vertical machining center.
  • the machine tool 10 is an NC (Numerically Control) machine tool in which various operations for machining a workpiece are automated by numerical control by a computer.
  • NC Genetic Control
  • the machine tool 10 includes a bed 12, a column 13, a spindle 41, a table 16, a tool magazine 21, an automatic tool changer (ATC: Automatic Tool Changer) 31, and a controller 51.
  • ATC Automatic Tool Changer
  • the bed 12 is a base on which the column 13, the main shaft 41, the table 16 and the like are mounted, and is installed on an installation surface such as a factory.
  • a column 13 is provided upright on the bed 12.
  • a main shaft 41 is attached to the column 13.
  • the main shaft 41 is provided movably in the processing area 50.
  • the main shaft 41 is provided so as to be slidable along a Z-axis direction parallel to the vertical direction.
  • the column 13 and the main shaft 41 are appropriately provided with a feed mechanism, a guide mechanism, and a servomotor as a drive source for enabling the main shaft 41 to slide in the Z-axis direction.
  • the main shaft 41 rotates around a central axis 101 parallel to the Z axis by driving a motor.
  • a tool for processing a work to be processed is mounted on the main shaft 41.
  • the table 16 is a device for fixing a work.
  • the table 16 is provided in the processing area 50.
  • the table 16 is parallel to the horizontal direction, the X-axis direction (left-right direction) orthogonal to the Z-axis, and the Y-axis direction (front-rear direction) parallel to the horizontal direction and orthogonal to the X-axis direction and the Z-axis direction.
  • XY plane a plane including.
  • the table 16 is attached to the bed 12 via a saddle (not shown).
  • the saddle is provided slidably with respect to the bed 12 in the Y-axis direction.
  • the table 16 is provided slidably with respect to the saddle in the X-axis direction.
  • the bed 12, the saddle, and the table 16 include a feed mechanism, a guide mechanism, and a drive source for enabling the saddle to slide in the Y-axis direction and the table 16 to slide in the X-axis direction.
  • Servo motors and the like are provided as appropriate.
  • the table 16 is provided rotatable about a central axis 103 parallel to the Z axis (C axis rotation).
  • the table 16 is connected to a rotation mechanism 17 for enabling the table 16 to rotate in the C-axis.
  • the rotation mechanism 17 includes a servomotor as a drive source.
  • the tool magazine 21 is a device that stores a plurality of tools in order to sequentially supply the tools to the processing area 50 according to the processing purpose.
  • the tool magazine 21 stores tools such as a drill, an end mill, and a milling tool.
  • the tool magazine 21 has a plurality of tool pots 22, a support plate 23, and a cover 24.
  • a tool 200 is detachably held in each of the plurality of tool pots 22.
  • the support plate 23 supports the plurality of tool pots 22 at regular intervals along an annular transport path.
  • the cover body 24 is provided so as to surround the plurality of tool pots 22 and the support plate 23.
  • An opening 25 is provided in the cover body 24.
  • the automatic tool changer 31 is configured to be able to change tools mounted on the main shaft 41.
  • the automatic tool changer 31 exchanges tools between the spindle 41 and the tool magazine 21 (tool pot 22).
  • the automatic tool changer 31 has a tool change arm 32, a servomotor 33 for advance and retreat, and a servomotor 34 for rotation.
  • the forward / backward servo motor 33 and the rotation servo motor 34 are devices for driving the tool changing arm 32.
  • the output shaft of the servomotor 33 is connected to the tool changing arm 32 via a motion conversion mechanism (not shown) for converting a rotary motion into a linear motion.
  • a motion conversion mechanism (not shown) for converting a rotary motion into a linear motion.
  • the output shaft of the rotation servomotor 34 is connected to the tool changing arm 32 via a power transmission mechanism (not shown).
  • the power from the rotation servomotor 34 is transmitted to the tool change arm 32, the tool change arm 32 rotates around the central axis 102.
  • the tool change arm 32 has a grip 32p and a grip 32q as its constituent parts.
  • the grip portion 32p and the grip portion 32q are provided symmetrically with respect to the central axis 102.
  • the tool change arm 32 has a shape extending in an arm shape between the grip part 32p and the grip part 32q.
  • Each of the grip part 32p and the grip part 32q is configured to be able to grip the tool 200.
  • the tool changing arm 32 is a double arm type that can hold two tools at the same time.
  • the tool held by the tool change arm 32 is pulled out from the main shaft 41 and the tool pot 22 by lowering the tool change arm 32.
  • the position of the tool held by the holding portion 32p of the tool changing arm 32 and the position of the tool held by the holding portion 32q of the tool changing arm 32 are switched.
  • the tool change arm 32 is raised, the tool held by the tool change arm 32 is inserted into the main shaft 41 and the tool pot 22.
  • the configuration of the automatic tool changer 31 described above is an example, and the configuration is not particularly limited as long as the tool mounted on the main shaft 41 can be changed.
  • the control device 51 controls the machine tool 10.
  • the control device 51 is a control panel that is provided in the machine tool and controls various operations in the machine tool.
  • the control device 51 controls operations of the spindle 41, the saddle, the table 16, the tool magazine 21, and the automatic tool changer 31 described above.
  • the control device 51 further controls an imaging operation of an imaging device 61 described later.
  • the machine tool 10 further includes an imaging device 61.
  • the imaging device 61 is a device that can image an object to be imaged.
  • the imaging device 61 includes an imaging element (not shown) and a lens 62.
  • the image sensor is, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the imaging device 61 condenses light from the object through the lens 62 and forms an image on the image sensor to image the object.
  • the imaging device 61 executes an imaging operation in response to a command from the control device 51 wirelessly or the like.
  • FIG. 2 is a side view showing a state in which the imaging device in FIG. 1 is connected to the holder unit.
  • the imaging device 61 is configured to be mountable on the main shaft 41.
  • the machine tool 10 further has a holder 71.
  • the imaging device 61 is mounted on the main shaft 41 while being connected to the holder 71.
  • the holder 71 is clamped to the main shaft 41.
  • the holder part 71 has a tapered shank part 72, a pull bolt 73, and a female screw part 74.
  • the pull bolt 73 is provided at the rear end of the tapered shank 72.
  • the pull bolt 73 is pulled in the axial direction of the central axis 101 of the main shaft 41 by a clamp mechanism built in the main shaft 41.
  • the taper shank portion 72 is surface-constrained by the main shaft 41.
  • the female screw portion 74 is provided at the front end of the tapered shank portion 72.
  • the female screw portion 74 is provided with a female screw centered on the central axis 101.
  • the imaging device 61 further has a male screw portion 64.
  • the male screw portion 64 is provided on the outer periphery of the lens 62.
  • the male screw portion 64 is provided with a male screw centered on the optical axis of the lens 62.
  • the male screw part 64 and the female screw part 74 constitute a connecting mechanism part 70 for detachably connecting the imaging device 61 to the holder part 71.
  • the image pickup device 61 is connected to the holder 71 by rotating the male screw portion 64 and the female screw portion 74 in one direction about the central axis 101.
  • the lens 62 is housed in a closed space surrounded by the connection mechanism 70.
  • the connection of the imaging device 61 to the holder part 71 is released.
  • the power of the imaging device 61 may be turned on in conjunction with the disconnection, or the image processing process of the imaging device 61 may be activated.
  • the connecting mechanism for detachably connecting the imaging device to the holder is not limited to the screw structure of the female screw portion 74 and the male screw portion 64 described above. And a bayonet type that obtains the engagement state of the claw with the groove by rotating each other.
  • the imaging device 61 further includes a magnet unit 63.
  • the magnet section 63 is formed of a permanent magnet.
  • the magnet unit 63 is provided on a side surface different from the side surface of the imaging device 61 provided with the lens 62. In the example illustrated in FIG. 2, the magnet unit 63 is provided on the side surface on the back side of the side surface of the imaging device 61 provided with the lens 62. Further, it is also possible to link the turning on of the power supply of the imaging device 61 with the turning on of a seating switch provided on the same side surface of the imaging device 61 as the side surface on which the magnet unit 63 is provided.
  • FIG. 3 is a flowchart showing the flow of measuring the deviation of the center of rotation of the C-axis of the table.
  • 4 to 9 are front views showing the steps for measuring the shift of the C-axis rotation center of the table.
  • the imaging device 61 is housed in the tool magazine 21 while being connected to the holder unit 71.
  • the table 16 is arranged at a position directly below the main shaft 41 in the XY plane.
  • the center axis 103 which is the center of rotation of the C-axis of the table 16, and the center axis 101, which is the center of rotation of the main shaft 41, extend in a straight line along the Z-axis direction.
  • control device 51 controls the automatic tool changing device 31 so that the automatic tool changing device 31 mounts the imaging device 61 on the main shaft 41.
  • the imaging device 61 is mounted on the main shaft 41 (S101).
  • step S101 the imaging device 61 is moved to a tool change position in the tool magazine 21 provided with the opening 25.
  • the imaging device 61 is processed from the tool change position in the tool magazine 21 by the rotation of the tool change arm 32 about the center axis 102 and the slide movement of the tool change arm 32 in the axial direction of the center axis 102 described above. It is moved into the area 50 and mounted on the main shaft 41.
  • a relatively heavy process such as an image processing process or a measurement process is not resident in the control device 51.
  • a specific tool name or the like is used as a trigger or in a known manner. Can also be activated.
  • control device 51 controls main shaft 41 such that imaging device 61 mounted on main shaft 41 is arranged on table 16. At this time, the control device 51 controls the main shaft 41 so that the main shaft 41 rotates about the central axis 101 in the loosening direction of the screw structure formed by the male screw portion 64 and the female screw portion 74. Thereby, the imaging device 61 is arranged on the table 16 (S102).
  • step S ⁇ b> 102 the main shaft 41 is lowered along the Z-axis direction, and moved to a position where the imaging device 61 contacts the table 16. At this time, the imaging device 61 is fixed to the table 16 by the magnetic force of the magnet unit 63 provided in the imaging device 61. By rotating the main shaft 41 about the center shaft 101, the screwing of the female screw portion 74 and the male screw portion 64 is released, and the imaging device 61 is separated from the holder portion 71 on the main shaft 41 side.
  • the imaging device 61 is arranged at a position overlapping the C-axis rotation center (the center axis 103) of the table 16 with the lens 62 facing upward.
  • the tool 200 has been moved to the tool change position in the tool magazine 21 provided with the opening 25 so far.
  • the type of the tool 200 is not particularly limited as long as the tool center can be specified when viewed from the axial direction of the central axis 101.
  • Tool 200 is typically a drill.
  • control device 51 controls automatic tool changing device 31 such that automatic tool changing device 31 mounts tool 200 on main shaft 41.
  • the tool 200 is mounted on the main shaft 41 (S103).
  • the tool 200 is moved to the tool changing position in the tool magazine 21 by the rotation of the tool changing arm 32 about the center axis 102 and the sliding movement of the tool changing arm 32 in the axial direction of the center axis 102.
  • the holder 71 is returned to the tool change position in the tool magazine 21.
  • control device 51 controls main shaft 41 such that tool 200 mounted on main shaft 41 faces imaging device 61 arranged on table 16. As a result, the tool 200 is arranged to face the imaging device 61 (S104).
  • the main shaft 41 is lowered along the Z-axis direction, and the tool 200 mounted on the main shaft 41 faces the imaging device 61 (lens 62) disposed on the table 16 in the Z-axis direction. Move up to
  • the control device 51 controls the imaging device 61 so that the imaging device 61 arranged on the table 16 captures an image of the tool 200 mounted on the main shaft 41. At this time, the control device 51 controls the table 16 and the imaging device 61 such that the imaging device 61 captures an image of the tool 200 while the table 16 rotates about the central axis 103. Thus, the tool 200 is imaged by the imaging device 61 while rotating the table 16 along the C axis (S105).
  • the image of the tool 200 captured by the imaging device 61 may be a moving image or a still image. If the image is a still image, the tool 200 is continuously imaged.
  • control device 51 specifies the displacement of the center of rotation between center axis 101 and center axis 102 based on the image of tool 200 imaged by imaging device 61.
  • the deviation of the C-axis rotation center of the table 16 from the rotation center of the main shaft 41 is specified (S106).
  • the coordinates on the XY plane where the center of rotation of the C axis of the table 16 is present are the same as the coordinates on the XY plane where the center of rotation of the main shaft 41 is present.
  • an error may occur in the linear axis and the rotation axis of the machine tool 10 due to thermal displacement due to a temperature change, influence of gravity, and the like.
  • the deviation of the rotation center of the C-axis of the table 16 from the rotation center of the main shaft 41 thus generated is specified.
  • the cutting edge position of the tool 200 imaged by the imaging device 61 is displaced in the circumferential direction.
  • the control device 51 specifies the deviation of the C-axis rotation center of the table 16 from the rotation center of the main shaft 41 based on the displacement amount of the cutting edge position of the tool 200.
  • the controller 51 corrects the coordinate shift between the rotation center of the main shaft 41 and the C-axis rotation center of the table 16 based on the measurement result of the shift of the C-axis rotation center of the table 16.
  • the tool 200 and the imaging device 61 are stored in the tool magazine 21 again by operating the spindle 41 and the automatic tool changer 31.
  • the shift of the C-axis rotation center of the table 16 is measured by imaging the tool 200 mounted on the main shaft 41 by the imaging device 61 arranged on the table 16.
  • the imaging device 61 is automatically arranged on the table 16 by the automatic tool changing device 31 and the main shaft 41, and the tool 200 is automatically mounted on the main shaft 41 by the automatic tool changing device 31.
  • the displacement of the C-axis rotation center can be easily measured.
  • FIG. 10 is a flowchart showing a modification of the flow for measuring the displacement of the C-axis rotation center of the table.
  • control device 51 controls main shaft 41 and imaging so that imaging device 61 images tool 200 while main shaft 41 rotates around center axis 101.
  • the device 61 is controlled.
  • the tool 200 is imaged by the imaging device 61 while rotating the main shaft 41 (S111).
  • the image of the tool 200 captured by the imaging device 61 may be a moving image or a still image. If the image is a still image, the tool 200 is continuously imaged.
  • the control device 51 Based on the image of the tool 200 captured by the imaging device 61, the control device 51 specifies a deviation between the center axis 101, which is the rotation center of the main shaft 41, and the imaging center of the tool 200. Thereby, the deviation of the cutting edge of the tool 200 from the rotation center of the main shaft 41 is specified (S112).
  • the blade edge of the tool 200 may be shifted from the center axis 101 due to an error or the like that occurs when the tool 200 is clamped on the main shaft 41.
  • the displacement of the cutting edge of the tool 200 with respect to the rotation center of the main shaft 41 thus specified is specified.
  • the cutting edge position of the tool 200 imaged by the imaging device 61 is displaced in the circumferential direction.
  • the control device 51 specifies the displacement of the cutting edge of the tool 200 with respect to the rotation center of the main shaft 41 based on the displacement of the cutting edge position of the tool 200.
  • step S106 in FIG. 3 based on the image of the tool 200 captured by the imaging device 61, while taking into consideration the shift of the cutting edge of the tool 200 with respect to the rotation center of the spindle 41 specified in step S112.
  • the deviation of the rotation center of the C-axis of the table 16 from the rotation center of the main shaft 41 is specified.
  • the machine tool 10 according to the present embodiment is mounted on the main shaft 41 movable in the processing area 50 and the main shaft 41.
  • An automatic tool changer 31 capable of exchanging tools
  • a table 16 as a base member provided in the processing area 50
  • an imaging device 61 mountable on the main shaft 41
  • a controller 51 for controlling the machine tool 10.
  • the control device 51 controls the automatic tool changing device 31 so that the automatic tool changing device 31 mounts the imaging device 61 on the main shaft 41, and arranges the imaging device 61 mounted on the main shaft 41 on the table 16.
  • the automatic tool changing device 31 controls the automatic tool changing device 31 so that the tool 200 as an object to be imaged is mounted on the spindle 41.
  • the imaging device 61 arranged on the table 16 controls the imaging device 61 so as to image the tool 200 mounted on the main shaft 41.
  • a vertical machining center is assumed as a machine tool, but the invention is not limited to this.
  • a horizontal machining center may be used, or a multi-tasking machine having a turning function and a milling function may be used. Is also good.
  • FIG. 11 is a front view showing a step of measuring a shift of the C-axis rotation center of the table in the machine tool according to Embodiment 2 of the present invention.
  • FIG. 12 is a top view showing the step of measuring the shift of the C-axis rotation center of the table in FIG.
  • the machine tool according to the present embodiment has basically the same structure (step) as machine tool 10 according to the first embodiment.
  • step description of overlapping structures (steps) will not be repeated.
  • imaging device 61 is arranged on table 16 in a step corresponding to S102 in FIG. At this time, the imaging device 61 is arranged at a position away from the center of rotation of the C-axis (the center axis 103) of the table 16 in the radial direction with the lens 62 facing in the horizontal direction.
  • an imaging jig 75 is mounted on the main shaft 41 instead of the tool 200 in the first embodiment.
  • the imaging jig 75 has an imaged portion 76 formed of a sphere.
  • the main shaft 41 is lowered along the Z-axis direction, and the portion to be imaged 76 of the imaging jig 75 mounted on the main shaft 41 is moved in the horizontal direction to the imaging device 61 (lens). 62).
  • the imaging device 61 captures an image of the portion to be imaged 76 while rotating the table 16 along the C axis.
  • the imaging device 61 moves in the circumferential direction around the central axis 103 with the rotation of the table 16 along the C axis.
  • FIG. 12 shows imaging devices 61A, 61B, 61C, and 61D that move at 90 ° positions about the center axis 103.
  • control device 51 specifies a shift of the C-axis rotation center of the table 16 with respect to the rotation center of the main shaft 41 based on the image of the portion to be imaged 76 captured by the imaging device 61. I do.
  • a displacement amount in the Z-axis direction may occur between the images of the portion to be imaged 76 captured by the imaging devices 61A, 61B, 61C, and 61D. Thereby, it is possible to specify the shift of the C-axis rotation center of the table 16 on the XYZ coordinates.
  • FIG. 13 is a side view showing the step of inspecting the shape of the tool in the machine tool according to Embodiment 3 of the present invention.
  • FIG. 14 is a perspective view showing the imaging device in FIG.
  • the machine tool according to the present embodiment has basically the same structure (step) as machine tool 10 according to the first embodiment.
  • step description of overlapping structures (steps) will not be repeated.
  • a mirror 87 is provided on a side wall 86 that partitions a machining area of a machine tool.
  • the imaging device 61 is arranged on the table 16. At this time, the imaging device 61 is arranged at a position facing the mirror 87 with a distance between the lens 62 and the lens 62 in the horizontal direction.
  • the imaging device 61 has the light source 81.
  • the light source 81 is, for example, an LED.
  • the light source 81 is provided on the outer circumference of the lens 62.
  • the light source 81 has a ring shape surrounding the outer periphery of the lens 62.
  • the imaging device 61 images the shadow of the tool 200 formed by the reflected light from the mirror 87. Thereby, it is possible to confirm whether the cutting edge of the tool 200 has an abnormality such as a defect.
  • FIG. 15 shows a tip of a tool whose diameter is measured in the machine tool according to Embodiment 4 of the present invention.
  • the machine tool according to the present embodiment has basically the same structure (step) as machine tool 10 according to the first embodiment.
  • step description of overlapping structures (steps) will not be repeated.
  • the diameter of tool 210 is measured.
  • the tool 210 is a tool for milling.
  • a tool 210 is mounted on the main shaft 41 instead of the tool 200 in the first embodiment.
  • the tool 210 has a shaft portion 211 and a plurality of blade portions 212.
  • the shaft portion 211 extends axially along the central axis 101.
  • the plurality of blades 212 are indexable inserts, and are attached to the tip of the shaft 211.
  • the plurality of blade portions 212 are provided at an interval in the circumferential direction around the central axis 101.
  • the plurality of blade portions 212 are provided so as to protrude radially outward from the outer peripheral surface of the shaft portion 211.
  • the control device 51 causes the imaging device 61 to image the tool 210 from a position facing the central axis 101 in the axial direction while the main shaft 41 rotates around the central axis 101.
  • the main shaft 41 and the imaging device 61 are controlled.
  • the imaging device 61 images the tool 210 from its axial direction.
  • the imaging timing can be associated with the operation of each axis (in the present embodiment, the main axis 41) by a known method, or can be determined by the measurement process monitoring the state of the control device 51. Further, it is also possible to always execute imaging, and thereafter select only an image in an appropriate state of the control device 51.
  • the control device 51 specifies the diameter of the tool 210 based on the image of the tool 210 captured by the imaging device 61.
  • the diameter of the tool 210 in which the throw-away tips are arranged at intervals in the circumferential direction can be easily measured.
  • a machine tool has a main spindle movable in a processing area, an automatic tool changer capable of exchanging a tool mounted on the main spindle, a base member provided in the processing area, and a main spindle mounted in the processing area.
  • An imaging device and a control device for controlling a machine tool are provided.
  • the control device controls the automatic tool changer so that the automatic tool changer mounts the imaging device on the main shaft, and controls the main shaft so that the imaging device mounted on the main shaft is arranged on the base member.
  • the automatic tool changing device controls the automatic tool changing device so that the object to be imaged is mounted on the main shaft, and the imaging device disposed on the base member is mounted on the main shaft.
  • the imaging device is controlled so as to image the object.
  • the imaging device arranged on the base member captures an image of the object mounted on the main shaft, thereby performing various operations accompanying proper work processing.
  • the imaging device is automatically arranged on the babe member by the automatic tool changing device and the main shaft, and the object to be imaged is automatically mounted on the main shaft by the automatic tool changing device. Can be easily executed.
  • the main shaft is configured to be rotatable about the first shaft.
  • the base member is configured to be rotatable about a second axis parallel to the first axis.
  • the control device controls the base member and the imaging device so that the imaging device captures an image of the object while the base member rotates about the second axis, and controls the image of the object captured by the imaging device. Based on this, the deviation of the center of rotation between the first axis and the second axis is specified.
  • the deviation between the rotation center of the main shaft and the rotation center of the base member can be easily measured.
  • control device controls the main shaft and the imaging device so that the imaging device captures an image of the object while the main shaft rotates about the first axis, and controls the imaging device to capture the image of the object captured by the imaging device. Based on the image, a deviation between the first axis and the imaging center of the object is specified.
  • the object to be imaged is a tool or an imaging jig having an imaged portion made of a sphere.
  • the object to be imaged is a tool.
  • the imaging device has a light source.
  • the machine tool further includes a mirror provided in the processing area for reflecting light from the light source.
  • the operation for checking the tool shape can be easily performed.
  • the main shaft is configured to be rotatable about the first shaft.
  • the object to be imaged is a tool.
  • the control device controls the main shaft and the imaging device such that the imaging device takes an image of the tool from a position opposed in the axial direction of the first axis while the main shaft rotates about the first axis.
  • the tool diameter is specified based on the image of the tool thus obtained.
  • the diameter of the tool can be easily measured.
  • the main shaft is configured to be rotatable about the first shaft.
  • the machine tool includes a holder to which the imaging device is connected and which is clamped to the main shaft.
  • the image pickup apparatus and the holder section rotate in one direction about the first axis, thereby connecting the image pickup apparatus to the holder section, and rotate in the opposite directions about the first axis.
  • the control device controls the main shaft such that the main shaft rotates in the opposite direction about the first axis when the imaging device is arranged on the base member.
  • the imaging device can be easily arranged on the base member by the spindle.
  • the present invention is applied to, for example, a machining center or a multi-tasking machine.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A machine tool (10) is provided with a main spindle (41), an automatic tool changing device (31), a table (16), an image capturing device (61) capable of being fitted to the main spindle (41), and a control device (51). The control device (51): controls the automatic tool changing device (31) in such a way that the automatic tool changing device (31) fits the image capturing device (61) to the main spindle (41); controls the main spindle (41) in such a way as to dispose the image capturing device (61), which has been fitted to the main spindle (41), on the table (16); controls the automatic tool changing device (31) in such a way that, after the main spindle (41) has disposed the image capturing device (61) on the table (16), the automatic tool changing device (31) fits a tool (200) to the main spindle (41); and controls the image capturing device (61) in such a way that the image capturing device (61), which has been disposed on the table (16), captures an image of the tool (200) that has been fitted to the main spindle (41).

Description

工作機械Machine Tools
 この発明は、工作機械に関する。 The present invention relates to a machine tool.
 従来の工作機械に関して、たとえば、特開2017-159376号公報(特許文献1)には、X軸、Y軸およびZ軸の3軸方向に移動可能で、かつ、B軸(Y軸周り)旋回可能な回転工具軸を有する刃物台と、刃物台に装着されるタッチプローブと、主軸台に固定される基準球と、制御器とを備える工作機械における測定装置が開示されている。制御器は、タッチプローブにより基準球を5方向から計測して基準球の中心座標を特定し、その中心座標から刃物台のB軸旋回の機械誤差を算出する。 For example, Japanese Unexamined Patent Application Publication No. 2017-159376 (Patent Document 1) discloses a conventional machine tool that can move in three directions of an X-axis, a Y-axis, and a Z-axis, and turns around a B-axis (around the Y-axis). A measuring device for a machine tool comprising a tool rest having a possible rotary tool axis, a touch probe mounted on the tool rest, a reference sphere fixed to the head rest, and a controller is disclosed. The controller measures the reference sphere from five directions using the touch probe, specifies the center coordinates of the reference sphere, and calculates the mechanical error of the B-axis turning of the tool post from the center coordinates.
特開2017-159376号公報JP 2017-159376 A
 上述の特許文献1に開示されるように、加工精度を向上させることを目的に、工作機械上の直線軸や回転軸の相互の機械的誤差を測定することが行なわれている。また、工具を用いてワークを加工する工作機械においては、工具の刃先に欠損がないかを事前にチェックしたり、工具の直径や長さを測定したりする場合がある。ワーク加工を適切に行なうために付随するこれら作業は、簡易に実行されることが求められる。 開 示 As disclosed in Patent Document 1 described above, in order to improve machining accuracy, mutual mechanical errors of linear axes and rotary axes on a machine tool are measured. Further, in a machine tool that processes a workpiece using a tool, there is a case where a blade edge of the tool is checked in advance for any chipping, and a diameter and a length of the tool are measured. In order to carry out the work processing properly, it is required that these accompanying works be easily executed.
 そこでこの発明の目的は、上記の課題を解決することであり、ワーク加工を適切に行なうために付随する各種作業を、簡易に実行することが可能な工作機械を提供することである。 Therefore, an object of the present invention is to solve the above-described problems, and to provide a machine tool capable of easily executing various accompanying operations for appropriately performing work processing.
 この発明に従った工作機械は、加工エリア内で移動可能な主軸と、主軸に装着される工具を交換可能な自動工具交換装置と、加工エリア内に設けられるベース部材と、主軸に装着可能な撮像装置と、工作機械を制御するための制御装置とを備える。制御装置は、自動工具交換装置が撮像装置を主軸に装着するように、自動工具交換装置を制御し、主軸に装着された撮像装置をベース部材に配置するように、主軸を制御し、主軸が撮像装置をベース部材に配置した後、自動工具交換装置が被撮像物を主軸に装着するように、自動工具交換装置を制御し、ベース部材に配置された撮像装置が、主軸に装着された被撮像物を撮像するように、撮像装置を制御する。 A machine tool according to the present invention has a main spindle movable in a processing area, an automatic tool changer capable of exchanging a tool mounted on the main spindle, a base member provided in the processing area, and a main spindle mounted in the processing area. An imaging device and a control device for controlling a machine tool are provided. The control device controls the automatic tool changer so that the automatic tool changer mounts the imaging device on the main shaft, and controls the main shaft so that the imaging device mounted on the main shaft is arranged on the base member. After disposing the imaging device on the base member, the automatic tool changing device controls the automatic tool changing device so that the object to be imaged is mounted on the main shaft, and the imaging device disposed on the base member is mounted on the main shaft. The imaging device is controlled so as to image the object.
 この発明に従えば、ワーク加工を適切に行なうために付随する各種作業を、簡易に実行することが可能な工作機械を提供することができる。 According to the present invention, it is possible to provide a machine tool capable of easily executing various operations accompanying proper work processing.
この発明の実施の形態1における工作機械を示す正面図である。FIG. 1 is a front view showing a machine tool according to Embodiment 1 of the present invention. 図1中の撮像装置がホルダ部に連結された状態を示す側面図である。FIG. 2 is a side view illustrating a state in which the imaging device in FIG. 1 is connected to a holder unit. テーブルのC軸回転中心のずれを測定する流れを示すフローチャート図である。It is a flowchart figure which shows the flow which measures the shift of the C-axis rotation center of a table. テーブルのC軸回転中心のずれを測定する第1ステップを示す正面図である。FIG. 9 is a front view showing a first step of measuring a shift of the C-axis rotation center of the table. テーブルのC軸回転中心のずれを測定する第2ステップを示す正面図である。FIG. 13 is a front view showing a second step of measuring the shift of the C-axis rotation center of the table. テーブルのC軸回転中心のずれを測定する第3ステップを示す正面図である。FIG. 13 is a front view showing a third step of measuring a shift of the C-axis rotation center of the table. テーブルのC軸回転中心のずれを測定する第4ステップを示す正面図である。FIG. 14 is a front view showing a fourth step of measuring the shift of the C-axis rotation center of the table. テーブルのC軸回転中心のずれを測定する第5ステップを示す正面図である。It is a front view which shows the 5th step which measures the shift of the C-axis rotation center of a table. テーブルのC軸回転中心のずれを測定する第6ステップを示す正面図である。FIG. 15 is a front view showing a sixth step of measuring the displacement of the C-axis rotation center of the table. テーブルのC軸回転中心のずれを測定する流れの変形例を示すフローチャート図である。It is a flowchart figure which shows the modification of the flow which measures the shift of the C-axis rotation center of a table. この発明の実施の形態2における工作機械において、テーブルのC軸回転中心のずれを測定するステップを示す正面図である。FIG. 13 is a front view showing a step of measuring a shift of a C-axis rotation center of a table in the machine tool according to Embodiment 2 of the present invention. 図11中のテーブルのC軸回転中心のずれを測定するステップを示す上面図である。FIG. 12 is a top view showing a step of measuring a shift of a C-axis rotation center of the table in FIG. 11. この発明の実施の形態3における工作機械において、工具の形状を検査するステップを示す側面図である。FIG. 14 is a side view showing a step of inspecting a shape of a tool in a machine tool according to Embodiment 3 of the present invention. 図13中の撮像装置を示す斜視図である。It is a perspective view which shows the imaging device in FIG. この発明の実施の形態4における工作機械において、直径が測定される工具の先端を示す図である。FIG. 14 is a diagram illustrating a tip of a tool whose diameter is measured in a machine tool according to Embodiment 4 of the present invention.
 この発明の実施の形態について、図面を参照して説明する。なお、以下で参照する図面では、同一またはそれに相当する部材には、同じ番号が付されている。 An embodiment of the present invention will be described with reference to the drawings. In the drawings referred to below, the same or corresponding members have the same reference characters allotted.
 (実施の形態1)
 図1は、この発明の実施の形態1における工作機械を示す正面図である。図1を参照して、工作機械10は、立形マシニングセンタである。工作機械10は、コンピュータによる数値制御によって、ワーク加工のための各種動作が自動化されたNC(Numerically Control)工作機械である。
(Embodiment 1)
FIG. 1 is a front view showing a machine tool according to Embodiment 1 of the present invention. Referring to FIG. 1, a machine tool 10 is a vertical machining center. The machine tool 10 is an NC (Numerically Control) machine tool in which various operations for machining a workpiece are automated by numerical control by a computer.
 工作機械10は、ベッド12と、コラム13と、主軸41と、テーブル16と、工具マガジン21と、自動工具交換装置(ATC:Automatic Tool Changer)31と、制御装置51とを有する。 The machine tool 10 includes a bed 12, a column 13, a spindle 41, a table 16, a tool magazine 21, an automatic tool changer (ATC: Automatic Tool Changer) 31, and a controller 51.
 ベッド12は、コラム13、主軸41およびテーブル16等を搭載するための土台であり、工場などの据え付け面に設置されている。 The bed 12 is a base on which the column 13, the main shaft 41, the table 16 and the like are mounted, and is installed on an installation surface such as a factory.
 ベッド12には、コラム13が立設されている。コラム13には、主軸41が取り付けられている。主軸41は、加工エリア50内で移動可能に設けられている。主軸41は、鉛直方向に平行なZ軸方向に沿ってスライド移動可能に設けられている。コラム13および主軸41には、主軸41のZ軸方向へのスライド移動を可能とするための送り機構、案内機構、および、駆動源としてのサーボモータなどが適宜、設けられている。 コ ラ ム A column 13 is provided upright on the bed 12. A main shaft 41 is attached to the column 13. The main shaft 41 is provided movably in the processing area 50. The main shaft 41 is provided so as to be slidable along a Z-axis direction parallel to the vertical direction. The column 13 and the main shaft 41 are appropriately provided with a feed mechanism, a guide mechanism, and a servomotor as a drive source for enabling the main shaft 41 to slide in the Z-axis direction.
 主軸41は、モータ駆動により、Z軸に平行な中心軸101を中心に回転する。主軸41には、加工対象であるワークを加工するための工具が装着される。 The main shaft 41 rotates around a central axis 101 parallel to the Z axis by driving a motor. A tool for processing a work to be processed is mounted on the main shaft 41.
 テーブル16は、ワークを固定するための装置である。テーブル16は、加工エリア50内に設けられている。テーブル16は、水平方向に平行であり、Z軸に直交するX軸方向(左右方向)と、水平方向に平行であり、X軸方向およびZ軸方向に直交するY軸方向(前後方向)とを含む平面(X-Y平面)内で移動可能に設けられている。 The table 16 is a device for fixing a work. The table 16 is provided in the processing area 50. The table 16 is parallel to the horizontal direction, the X-axis direction (left-right direction) orthogonal to the Z-axis, and the Y-axis direction (front-rear direction) parallel to the horizontal direction and orthogonal to the X-axis direction and the Z-axis direction. Are provided so as to be movable in a plane (XY plane) including.
 より具体的には、テーブル16は、サドル(不図示)を介して、ベッド12に取り付けられている。サドルは、ベッド12に対して、Y軸方向にスライド移動可能に設けられている。テーブル16は、サドルに対して、X軸方向にスライド移動可能に設けられている。ベッド12、サドルおよびテーブル16には、サドルのY軸方向へのスライド移動、および、テーブル16のX軸方向へのスライド移動を可能とするための送り機構、案内機構、および、駆動源としてのサーボモータなどが適宜、設けられている。 More specifically, the table 16 is attached to the bed 12 via a saddle (not shown). The saddle is provided slidably with respect to the bed 12 in the Y-axis direction. The table 16 is provided slidably with respect to the saddle in the X-axis direction. The bed 12, the saddle, and the table 16 include a feed mechanism, a guide mechanism, and a drive source for enabling the saddle to slide in the Y-axis direction and the table 16 to slide in the X-axis direction. Servo motors and the like are provided as appropriate.
 テーブル16は、Z軸に平行な中心軸103を中心に回転可能に設けられている(C軸回転)。テーブル16には、テーブル16のC軸回転を可能とするための回転機構部17が接続されている。回転機構部17は、駆動源としてのサーボモータを含む。 The table 16 is provided rotatable about a central axis 103 parallel to the Z axis (C axis rotation). The table 16 is connected to a rotation mechanism 17 for enabling the table 16 to rotate in the C-axis. The rotation mechanism 17 includes a servomotor as a drive source.
 工具マガジン21は、加工目的に応じて工具を順次、加工エリア50に供給するため、複数の工具を格納する装置である。工具マガジン21には、ドリルやエンドミル、フライス等の工具が格納されている。 The tool magazine 21 is a device that stores a plurality of tools in order to sequentially supply the tools to the processing area 50 according to the processing purpose. The tool magazine 21 stores tools such as a drill, an end mill, and a milling tool.
 工具マガジン21は、複数の工具ポット22と、支持プレート23と、カバー体24とを有する。 The tool magazine 21 has a plurality of tool pots 22, a support plate 23, and a cover 24.
 複数の工具ポット22の各々には、工具200が着脱可能に保持されている。支持プレート23は、複数の工具ポット22を、環状の搬送経路に沿って一定間隔で支持している。カバー体24は、複数の工具ポット22と、支持プレート23とを取り囲むように設けられている。カバー体24には、開口部25が設けられている。支持プレート23が回転移動することにより、工具ポット22が周方向に搬送される。 工具 A tool 200 is detachably held in each of the plurality of tool pots 22. The support plate 23 supports the plurality of tool pots 22 at regular intervals along an annular transport path. The cover body 24 is provided so as to surround the plurality of tool pots 22 and the support plate 23. An opening 25 is provided in the cover body 24. By rotating the support plate 23, the tool pot 22 is transported in the circumferential direction.
 自動工具交換装置31は、主軸41に装着される工具を交換可能なように構成されている。自動工具交換装置31は、主軸41と、工具マガジン21(工具ポット22)との間で工具を交換する。 The automatic tool changer 31 is configured to be able to change tools mounted on the main shaft 41. The automatic tool changer 31 exchanges tools between the spindle 41 and the tool magazine 21 (tool pot 22).
 自動工具交換装置31は、工具交換アーム32と、進退用サーボモータ33と、回転用サーボモータ34とを有する。 The automatic tool changer 31 has a tool change arm 32, a servomotor 33 for advance and retreat, and a servomotor 34 for rotation.
 進退用サーボモータ33および回転用サーボモータ34は、工具交換アーム32を駆動させるための装置である。進退用サーボモータ33の出力軸は、回転運動を直線運動に変換する運動変換機構(不図示)を介して、工具交換アーム32に接続されている。進退用サーボモータ33からの動力が工具交換アーム32に伝達されることにより、工具交換アーム32は、Z軸に平行な中心軸102に沿ってスライド移動する(上昇、下降する)。回転用サーボモータ34の出力軸は、動力伝達機構(不図示)を介して工具交換アーム32に接続されている。回転用サーボモータ34からの動力が工具交換アーム32に伝達されることにより、工具交換アーム32は、中心軸102を中心に回転する。 The forward / backward servo motor 33 and the rotation servo motor 34 are devices for driving the tool changing arm 32. The output shaft of the servomotor 33 is connected to the tool changing arm 32 via a motion conversion mechanism (not shown) for converting a rotary motion into a linear motion. When the power from the servomotor 33 is transmitted to the tool change arm 32, the tool change arm 32 slides (moves up and down) along the central axis 102 parallel to the Z axis. The output shaft of the rotation servomotor 34 is connected to the tool changing arm 32 via a power transmission mechanism (not shown). When the power from the rotation servomotor 34 is transmitted to the tool change arm 32, the tool change arm 32 rotates around the central axis 102.
 工具交換アーム32は、その構成部位として、把持部32pおよび把持部32qを有する。把持部32pおよび把持部32qは、中心軸102を挟んで対称に設けられている。工具交換アーム32は、把持部32pおよび把持部32qの間でアーム状に延びる形状を有する。把持部32pおよび把持部32qの各々は、工具200を把持可能に構成されている。工具交換アーム32は、2本の工具を同時に把持することが可能なダブルアームタイプである。 The tool change arm 32 has a grip 32p and a grip 32q as its constituent parts. The grip portion 32p and the grip portion 32q are provided symmetrically with respect to the central axis 102. The tool change arm 32 has a shape extending in an arm shape between the grip part 32p and the grip part 32q. Each of the grip part 32p and the grip part 32q is configured to be able to grip the tool 200. The tool changing arm 32 is a double arm type that can hold two tools at the same time.
 自動工具交換時、工具交換アーム32が下降することにより、工具交換アーム32に把持された工具が、主軸41および工具ポット22から抜き出される。工具交換アーム32が180°回転することにより、工具交換アーム32の把持部32pに把持された工具の位置と、工具交換アーム32の把持部32qに把持された工具の位置とが、入れ替わる。工具交換アーム32が上昇することにより、工具交換アーム32に把持された工具が、主軸41および工具ポット22に挿入される。 At the time of automatic tool change, the tool held by the tool change arm 32 is pulled out from the main shaft 41 and the tool pot 22 by lowering the tool change arm 32. As the tool change arm 32 rotates by 180 °, the position of the tool held by the holding portion 32p of the tool changing arm 32 and the position of the tool held by the holding portion 32q of the tool changing arm 32 are switched. When the tool change arm 32 is raised, the tool held by the tool change arm 32 is inserted into the main shaft 41 and the tool pot 22.
 なお、以上に説明した自動工具交換装置31の構成は、一例であり、主軸41に装着される工具を交換可能な構成であれば特に限定されない。 The configuration of the automatic tool changer 31 described above is an example, and the configuration is not particularly limited as long as the tool mounted on the main shaft 41 can be changed.
 制御装置51は、工作機械10を制御する。制御装置51は、工作機械に備え付けられ、工作機械における各種動作を制御するための制御盤である。 The control device 51 controls the machine tool 10. The control device 51 is a control panel that is provided in the machine tool and controls various operations in the machine tool.
 制御装置51は、上述の主軸41、サドル、テーブル16、工具マガジン21および自動工具交換装置31の動作を制御する。制御装置51は、さらに、後述する撮像装置61の撮像動作を制御する。 The control device 51 controls operations of the spindle 41, the saddle, the table 16, the tool magazine 21, and the automatic tool changer 31 described above. The control device 51 further controls an imaging operation of an imaging device 61 described later.
 工作機械10は、撮像装置61をさらに有する。撮像装置61は、被撮像物を撮像可能な装置である。 The machine tool 10 further includes an imaging device 61. The imaging device 61 is a device that can image an object to be imaged.
 撮像装置61は、撮像素子(不図示)と、レンズ62とを有する。撮像素子は、たとえば、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)などのイメージセンサである。 The imaging device 61 includes an imaging element (not shown) and a lens 62. The image sensor is, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
 撮像装置61は、被撮像物からの光をレンズ62を通じて集光し、撮像素子に結像することによって被撮像物を撮像する。撮像装置61は、無線等により制御装置51からの指令を受けて、撮像動作を実行する。 (4) The imaging device 61 condenses light from the object through the lens 62 and forms an image on the image sensor to image the object. The imaging device 61 executes an imaging operation in response to a command from the control device 51 wirelessly or the like.
 図2は、図1中の撮像装置がホルダ部に連結された状態を示す側面図である。図1および図2を参照して、撮像装置61は、主軸41に装着可能なように構成されている。 FIG. 2 is a side view showing a state in which the imaging device in FIG. 1 is connected to the holder unit. Referring to FIGS. 1 and 2, the imaging device 61 is configured to be mountable on the main shaft 41.
 より具体的には、工作機械10は、ホルダ部71をさらに有する。撮像装置61は、ホルダ部71に連結された状態で主軸41に装着される。 More specifically, the machine tool 10 further has a holder 71. The imaging device 61 is mounted on the main shaft 41 while being connected to the holder 71.
 ホルダ部71は、主軸41にクランプされる。ホルダ部71は、テーパシャンク部72と、プルボルト73と、雌ねじ部74とを有する。プルボルト73は、テーパシャンク部72の後端に設けられている。プルボルト73は、主軸41に内蔵されたクランプ機構によって、主軸41の中心軸101の軸方向に引き込まれる。テーパシャンク部72は、主軸41により面拘束される。 The holder 71 is clamped to the main shaft 41. The holder part 71 has a tapered shank part 72, a pull bolt 73, and a female screw part 74. The pull bolt 73 is provided at the rear end of the tapered shank 72. The pull bolt 73 is pulled in the axial direction of the central axis 101 of the main shaft 41 by a clamp mechanism built in the main shaft 41. The taper shank portion 72 is surface-constrained by the main shaft 41.
 雌ねじ部74は、テーパシャンク部72の前端に設けられている。雌ねじ部74には、中心軸101を中心とする雌ねじが設けられている。 The female screw portion 74 is provided at the front end of the tapered shank portion 72. The female screw portion 74 is provided with a female screw centered on the central axis 101.
 撮像装置61は、雄ねじ部64をさらに有する。雄ねじ部64は、レンズ62の外周上に設けられている。雄ねじ部64には、レンズ62の光軸を中心とする雄ねじが設けられている。雄ねじ部64および雌ねじ部74は、ホルダ部71に対して撮像装置61を着脱可能に連結する連結機構部70を構成している。 The imaging device 61 further has a male screw portion 64. The male screw portion 64 is provided on the outer periphery of the lens 62. The male screw portion 64 is provided with a male screw centered on the optical axis of the lens 62. The male screw part 64 and the female screw part 74 constitute a connecting mechanism part 70 for detachably connecting the imaging device 61 to the holder part 71.
 雄ねじ部64および雌ねじ部74が相互に中心軸101を中心に一方向に回転することによって、撮像装置61がホルダ部71に連結される。撮像装置61がホルダ部71に連結された状態において、レンズ62は、連結機構部70によって取り囲まれた密閉空間に収容されている。 撮 像 The image pickup device 61 is connected to the holder 71 by rotating the male screw portion 64 and the female screw portion 74 in one direction about the central axis 101. When the imaging device 61 is connected to the holder 71, the lens 62 is housed in a closed space surrounded by the connection mechanism 70.
 雄ねじ部64および雌ねじ部74が相互に中心軸101を中心に逆方向に回転することによって、ホルダ部71に対する撮像装置61の連結が解除される。なお、かかる連結解除と連動して撮像装置61の電源がオンする、または、撮像装置61の画像処理プロセスが起動するように構成してもよい。 連結 When the male screw part 64 and the female screw part 74 rotate in opposite directions about the central axis 101, the connection of the imaging device 61 to the holder part 71 is released. Note that the power of the imaging device 61 may be turned on in conjunction with the disconnection, or the image processing process of the imaging device 61 may be activated.
 なお、ホルダ部に対して撮像装置を着脱自在に連結する連結機構部は、上記の雌ねじ部74および雄ねじ部64によるねじ構造に限られず、たとえば、周方向に延びる溝に対して爪を軸方向から挿入し、相互を回転移動させることによって、溝に対する爪の係合状態を得るバヨネット式を利用したものであってもよい。 The connecting mechanism for detachably connecting the imaging device to the holder is not limited to the screw structure of the female screw portion 74 and the male screw portion 64 described above. And a bayonet type that obtains the engagement state of the claw with the groove by rotating each other.
 撮像装置61は、磁石部63をさらに有する。磁石部63は、永久磁石から構成されている。磁石部63は、レンズ62が設けられた撮像装置61の側面とは異なる側面に設けられている。図2中に示す例では、磁石部63が、レンズ62が設けられた撮像装置61の側面の裏側の側面に設けられている。また、前述の撮像装置61の電源のオンを、磁石部63が設けられた側面と同じ撮像装置61の側面に設けられた着座スイッチのオンと連動させることも可能である。 The imaging device 61 further includes a magnet unit 63. The magnet section 63 is formed of a permanent magnet. The magnet unit 63 is provided on a side surface different from the side surface of the imaging device 61 provided with the lens 62. In the example illustrated in FIG. 2, the magnet unit 63 is provided on the side surface on the back side of the side surface of the imaging device 61 provided with the lens 62. Further, it is also possible to link the turning on of the power supply of the imaging device 61 with the turning on of a seating switch provided on the same side surface of the imaging device 61 as the side surface on which the magnet unit 63 is provided.
 工作機械10においては、撮像装置61を用いて、ワーク加工を適切に行なうために付随する各種作業を行なう。本実施の形態では、そのような作業の一例として、テーブル16のC軸回転中心(中心軸103)のずれを測定する場合を説明する。 (4) In the machine tool 10, various operations are performed using the imaging device 61 in order to appropriately perform work processing. In the present embodiment, as an example of such an operation, a case will be described in which the shift of the C-axis rotation center (center axis 103) of the table 16 is measured.
 図3は、テーブルのC軸回転中心のずれを測定する流れを示すフローチャート図である。図4から図9は、テーブルのC軸回転中心のずれを測定する各ステップを示す正面図である。 FIG. 3 is a flowchart showing the flow of measuring the deviation of the center of rotation of the C-axis of the table. 4 to 9 are front views showing the steps for measuring the shift of the C-axis rotation center of the table.
 図3、図4および図5を参照して、テーブル16のC軸回転中心のずれの測定は、予め制御装置51に入力された測定プログラムに基づいて、自動的に実行される。 、 Referring to FIGS. 3, 4 and 5, the measurement of the deviation of the C-axis rotation center of table 16 is automatically executed based on a measurement program previously input to control device 51.
 S101のステップの前に、撮像装置61は、ホルダ部71に連結された状態で、工具マガジン21内に収納されている。テーブル16は、X-Y平面内において、主軸41の直下の位置に配置されている。テーブル16のC軸回転中心である中心軸103と、主軸41の回転中心である中心軸101とが、Z軸方向に沿って一直線に延びる関係にある。 撮 像 Before step S101, the imaging device 61 is housed in the tool magazine 21 while being connected to the holder unit 71. The table 16 is arranged at a position directly below the main shaft 41 in the XY plane. The center axis 103, which is the center of rotation of the C-axis of the table 16, and the center axis 101, which is the center of rotation of the main shaft 41, extend in a straight line along the Z-axis direction.
 まず、制御装置51は、自動工具交換装置31が撮像装置61を主軸41に装着するように、自動工具交換装置31を制御する。これにより、撮像装置61を主軸41に装着する(S101)。 First, the control device 51 controls the automatic tool changing device 31 so that the automatic tool changing device 31 mounts the imaging device 61 on the main shaft 41. Thus, the imaging device 61 is mounted on the main shaft 41 (S101).
 S101のステップにおいては、撮像装置61を、開口部25が設けられた工具マガジン21内の工具交換位置に移動させる。既に説明した中心軸102を中心とする工具交換アーム32の回転と、中心軸102の軸方向における工具交換アーム32のスライド移動とによって、撮像装置61を、工具マガジン21内の工具交換位置から加工エリア50内に移動させ、主軸41に装着する。 In step S101, the imaging device 61 is moved to a tool change position in the tool magazine 21 provided with the opening 25. The imaging device 61 is processed from the tool change position in the tool magazine 21 by the rotation of the tool change arm 32 about the center axis 102 and the slide movement of the tool change arm 32 in the axial direction of the center axis 102 described above. It is moved into the area 50 and mounted on the main shaft 41.
 制御装置51には、画像処理プロセスまたは測定プロセスのように比較的重いプロセスを、常駐させず、たとえば、S101のステップにおいて、特定の工具名などをトリガーとして、または、既知の手法で、かかるプロセスを起動させることもできる。 A relatively heavy process such as an image processing process or a measurement process is not resident in the control device 51. For example, in step S101, a specific tool name or the like is used as a trigger or in a known manner. Can also be activated.
 図3、図6および図7を参照して、制御装置51は、主軸41に装着された撮像装置61をテーブル16に配置するように、主軸41を制御する。この際、制御装置51は、主軸41が、中心軸101を中心にして、雄ねじ部64および雌ねじ部74によるねじ構造の緩み方向に回転するように、主軸41を制御する。これにより、撮像装置61をテーブル16に配置する(S102)。 制 御 Referring to FIGS. 3, 6, and 7, control device 51 controls main shaft 41 such that imaging device 61 mounted on main shaft 41 is arranged on table 16. At this time, the control device 51 controls the main shaft 41 so that the main shaft 41 rotates about the central axis 101 in the loosening direction of the screw structure formed by the male screw portion 64 and the female screw portion 74. Thereby, the imaging device 61 is arranged on the table 16 (S102).
 S102のステップにおいては、主軸41を、Z軸方向に沿って下降させ、撮像装置61がテーブル16と接触する位置まで移動させる。このとき、撮像装置61に設けられた磁石部63の磁力によって、撮像装置61がテーブル16に固定される。主軸41を中心軸101を中心に回転させることによって、雌ねじ部74および雄ねじ部64の螺合が解除され、撮像装置61が、主軸41側のホルダ部71から分離される。撮像装置61は、レンズ62が上を向いた姿勢で、テーブル16のC軸回転中心(中心軸103)と重なる位置に配置される。 In step S <b> 102, the main shaft 41 is lowered along the Z-axis direction, and moved to a position where the imaging device 61 contacts the table 16. At this time, the imaging device 61 is fixed to the table 16 by the magnetic force of the magnet unit 63 provided in the imaging device 61. By rotating the main shaft 41 about the center shaft 101, the screwing of the female screw portion 74 and the male screw portion 64 is released, and the imaging device 61 is separated from the holder portion 71 on the main shaft 41 side. The imaging device 61 is arranged at a position overlapping the C-axis rotation center (the center axis 103) of the table 16 with the lens 62 facing upward.
 ホルダ部71が装着されたままの主軸41をZ軸方向に沿って上昇させ、ホルダ部71を加工エリア50内の工具交換位置まで移動させる。 (4) The spindle 41 with the holder 71 mounted is raised along the Z-axis direction, and the holder 71 is moved to a tool change position in the processing area 50.
 これまでに、工具200を、開口部25が設けられた工具マガジン21内の工具交換位置に移動させておく。工具200の種類は、中心軸101の軸方向から見た時に工具中心を特定することが可能なものであれば、特に限定されない。工具200は、代表的には、ドリルである。 工具 The tool 200 has been moved to the tool change position in the tool magazine 21 provided with the opening 25 so far. The type of the tool 200 is not particularly limited as long as the tool center can be specified when viewed from the axial direction of the central axis 101. Tool 200 is typically a drill.
 図3および図8を参照して、制御装置51は、自動工具交換装置31が工具200を主軸41に装着するように、自動工具交換装置31を制御する。これにより、工具200を主軸41に装着する(S103)。 お よ び Referring to FIGS. 3 and 8, control device 51 controls automatic tool changing device 31 such that automatic tool changing device 31 mounts tool 200 on main shaft 41. Thus, the tool 200 is mounted on the main shaft 41 (S103).
 S103のステップにおいては、中心軸102を中心とする工具交換アーム32の回転と、中心軸102の軸方向における工具交換アーム32のスライド移動とによって、工具200を、工具マガジン21内の工具交換位置から加工エリア50内に移動させ、主軸41に装着する。ホルダ部71を、工具マガジン21内の工具交換位置に戻す。 In the step of S103, the tool 200 is moved to the tool changing position in the tool magazine 21 by the rotation of the tool changing arm 32 about the center axis 102 and the sliding movement of the tool changing arm 32 in the axial direction of the center axis 102. To the machining area 50 and mounted on the main shaft 41. The holder 71 is returned to the tool change position in the tool magazine 21.
 図3および図9を参照して、制御装置51は、主軸41に装着された工具200が、テーブル16に配置された撮像装置61と対向するように、主軸41を制御する。これにより、工具200を撮像装置61に対して対向配置する(S104)。 With reference to FIGS. 3 and 9, control device 51 controls main shaft 41 such that tool 200 mounted on main shaft 41 faces imaging device 61 arranged on table 16. As a result, the tool 200 is arranged to face the imaging device 61 (S104).
 S104のステップにおいては、主軸41をZ軸方向に沿って下降させ、主軸41に装着された工具200が、Z軸方向において、テーブル16に配置された撮像装置61(レンズ62)と対向する位置まで移動させる。 In the step of S104, the main shaft 41 is lowered along the Z-axis direction, and the tool 200 mounted on the main shaft 41 faces the imaging device 61 (lens 62) disposed on the table 16 in the Z-axis direction. Move up to
 制御装置51は、テーブル16に配置された撮像装置61が、主軸41に装着された工具200を撮像するように、撮像装置61を制御する。この際、制御装置51は、テーブル16が中心軸103を中心に回転しつつ、撮像装置61が工具200を撮像するように、テーブル16および撮像装置61を制御する。これにより、テーブル16をC軸回転させつつ、撮像装置61により工具200を撮像する(S105)。 The control device 51 controls the imaging device 61 so that the imaging device 61 arranged on the table 16 captures an image of the tool 200 mounted on the main shaft 41. At this time, the control device 51 controls the table 16 and the imaging device 61 such that the imaging device 61 captures an image of the tool 200 while the table 16 rotates about the central axis 103. Thus, the tool 200 is imaged by the imaging device 61 while rotating the table 16 along the C axis (S105).
 S105のステップにおいて、撮像装置61により撮像される工具200の画像は、動画であってもよいし、静止画であってもよい。静止画である場合、工具200は、連続撮像される。 In step S105, the image of the tool 200 captured by the imaging device 61 may be a moving image or a still image. If the image is a still image, the tool 200 is continuously imaged.
 図3を参照して、制御装置51は、撮像装置61により撮像された工具200の画像に基づいて、中心軸101および中心軸102の相互の回転中心のずれを特定する。これにより、主軸41の回転中心に対するテーブル16のC軸回転中心のずれを特定する(S106)。 制 御 Referring to FIG. 3, control device 51 specifies the displacement of the center of rotation between center axis 101 and center axis 102 based on the image of tool 200 imaged by imaging device 61. Thus, the deviation of the C-axis rotation center of the table 16 from the rotation center of the main shaft 41 is specified (S106).
 制御装置51において、現状、テーブル16のC軸回転中心があるX-Y平面上の座標は、主軸41の回転中心があるX-Y平面上の座標と同じである。しかしながら、工作機械10における直線軸や回転軸は、温度変化による熱変位や、重力などの影響によって誤差が生じる場合がある。S106のステップにおいては、このように生じた主軸41の回転中心に対するテーブル16のC軸回転中心のずれを特定する。 In the control device 51, the coordinates on the XY plane where the center of rotation of the C axis of the table 16 is present are the same as the coordinates on the XY plane where the center of rotation of the main shaft 41 is present. However, an error may occur in the linear axis and the rotation axis of the machine tool 10 due to thermal displacement due to a temperature change, influence of gravity, and the like. In the step of S106, the deviation of the rotation center of the C-axis of the table 16 from the rotation center of the main shaft 41 thus generated is specified.
 具体的には、テーブル16のC軸回転に伴って、撮像装置61により撮像された工具200の刃先位置が周方向に変位する。制御装置51は、その工具200の刃先位置の変位量に基づいて、主軸41の回転中心に対するテーブル16のC軸回転中心のずれを特定する。 Specifically, as the table 16 rotates in the C-axis, the cutting edge position of the tool 200 imaged by the imaging device 61 is displaced in the circumferential direction. The control device 51 specifies the deviation of the C-axis rotation center of the table 16 from the rotation center of the main shaft 41 based on the displacement amount of the cutting edge position of the tool 200.
 制御装置51は、テーブル16のC軸回転中心のずれの測定結果に基づいて、主軸41の回転中心と、テーブル16のC軸回転中心との間の座標のずれを補正する。S105のステップのあと、主軸41および自動工具交換装置31を動作させることによって、工具200および撮像装置61を再び工具マガジン21内に収納する。 The controller 51 corrects the coordinate shift between the rotation center of the main shaft 41 and the C-axis rotation center of the table 16 based on the measurement result of the shift of the C-axis rotation center of the table 16. After the step of S105, the tool 200 and the imaging device 61 are stored in the tool magazine 21 again by operating the spindle 41 and the automatic tool changer 31.
 このように本実施の形態では、テーブル16に配置された撮像装置61により、主軸41に装着された工具200を撮像することによって、テーブル16のC軸回転中心のずれを測定する。この際、撮像装置61は、自動工具交換装置31および主軸41によってテーブル16に自動的に配置され、工具200は、自動工具交換装置31によって主軸41に自動的に装着されるため、テーブル16のC軸回転中心のずれを簡易に測定することができる。 As described above, in the present embodiment, the shift of the C-axis rotation center of the table 16 is measured by imaging the tool 200 mounted on the main shaft 41 by the imaging device 61 arranged on the table 16. At this time, the imaging device 61 is automatically arranged on the table 16 by the automatic tool changing device 31 and the main shaft 41, and the tool 200 is automatically mounted on the main shaft 41 by the automatic tool changing device 31. The displacement of the C-axis rotation center can be easily measured.
 図10は、テーブルのC軸回転中心のずれを測定する流れの変形例を示すフローチャート図である。 FIG. 10 is a flowchart showing a modification of the flow for measuring the displacement of the C-axis rotation center of the table.
 図10を参照して、本変形例では、工具200を撮像装置61に対して対向配置するS104のステップと、テーブル16をC軸回転させつつ、撮像装置61により工具200を撮像するS105のステップとの間に、以下に説明するS111のステップと、S112のステップとを実行する。 Referring to FIG. 10, in this modification, a step of S104 in which tool 200 is arranged to face imaging device 61 and a step of S105 in which imaging device 61 images tool 200 while rotating table 16 along the C-axis. In between, steps S111 and S112 described below are executed.
 図9および図10を参照して、S104のステップの後、制御装置51は、主軸41が中心軸101を中心に回転しつつ、撮像装置61が工具200を撮像するように、主軸41および撮像装置61を制御する。これにより、主軸41を回転させつつ、撮像装置61により工具200を撮像する(S111)。 Referring to FIGS. 9 and 10, after step S104, control device 51 controls main shaft 41 and imaging so that imaging device 61 images tool 200 while main shaft 41 rotates around center axis 101. The device 61 is controlled. Thus, the tool 200 is imaged by the imaging device 61 while rotating the main shaft 41 (S111).
 S111のステップにおいて、撮像装置61により撮像される工具200の画像は、動画であってもよいし、静止画であってもよい。静止画である場合、工具200は、連続撮像される。 In step S111, the image of the tool 200 captured by the imaging device 61 may be a moving image or a still image. If the image is a still image, the tool 200 is continuously imaged.
 制御装置51は、撮像装置61により撮像された工具200の画像に基づいて、主軸41の回転中心である中心軸101と、工具200の撮像中心とのずれを特定する。これにより、主軸41の回転中心に対する工具200の刃先のずれを特定する(S112)。 Based on the image of the tool 200 captured by the imaging device 61, the control device 51 specifies a deviation between the center axis 101, which is the rotation center of the main shaft 41, and the imaging center of the tool 200. Thereby, the deviation of the cutting edge of the tool 200 from the rotation center of the main shaft 41 is specified (S112).
 主軸41における工具200のクランプ時に生じる誤差等を理由にして、工具200の刃先が、中心軸101の軸上からずれる場合がある。S112のステップにおいては、このように生じた主軸41の回転中心に対する工具200の刃先のずれを特定する。 刃 The blade edge of the tool 200 may be shifted from the center axis 101 due to an error or the like that occurs when the tool 200 is clamped on the main shaft 41. In the step of S112, the displacement of the cutting edge of the tool 200 with respect to the rotation center of the main shaft 41 thus specified is specified.
 具体的には、主軸41の回転に伴って、撮像装置61により撮像された工具200の刃先位置が周方向に変位する。制御装置51は、その工具200の刃先位置の変位量に基づいて、主軸41の回転中心に対する工具200の刃先のずれを特定する。 Specifically, as the main shaft 41 rotates, the cutting edge position of the tool 200 imaged by the imaging device 61 is displaced in the circumferential direction. The control device 51 specifies the displacement of the cutting edge of the tool 200 with respect to the rotation center of the main shaft 41 based on the displacement of the cutting edge position of the tool 200.
 その後、図3中のS106のステップにおいて、S112のステップで特定された主軸41の回転中心に対する工具200の刃先のずれを考慮しつつ、撮像装置61により撮像された工具200の画像に基づいて、主軸41の回転中心に対するテーブル16のC軸回転中心のずれを特定する。 Then, in step S106 in FIG. 3, based on the image of the tool 200 captured by the imaging device 61, while taking into consideration the shift of the cutting edge of the tool 200 with respect to the rotation center of the spindle 41 specified in step S112. The deviation of the rotation center of the C-axis of the table 16 from the rotation center of the main shaft 41 is specified.
 以上に説明した、この発明の実施の形態1における工作機械10の構造についてまとめると、本実施の形態における工作機械10は、加工エリア50内で移動可能な主軸41と、主軸41に装着される工具を交換可能な自動工具交換装置31と、加工エリア50内に設けられるベース部材としてのテーブル16と、主軸41に装着可能な撮像装置61と、工作機械10を制御するための制御装置51とを備える。制御装置51は、自動工具交換装置31が撮像装置61を主軸41に装着するように、自動工具交換装置31を制御し、主軸41に装着された撮像装置61をテーブル16に配置するように、主軸41を制御し、主軸41が撮像装置61をテーブル16に配置した後、自動工具交換装置31が被撮像物としての工具200を主軸41に装着するように、自動工具交換装置31を制御し、テーブル16に配置された撮像装置61が、主軸41に装着された工具200を撮像するように、撮像装置61を制御する。 To summarize the structure of the machine tool 10 according to the first embodiment of the present invention described above, the machine tool 10 according to the present embodiment is mounted on the main shaft 41 movable in the processing area 50 and the main shaft 41. An automatic tool changer 31 capable of exchanging tools, a table 16 as a base member provided in the processing area 50, an imaging device 61 mountable on the main shaft 41, and a controller 51 for controlling the machine tool 10. Is provided. The control device 51 controls the automatic tool changing device 31 so that the automatic tool changing device 31 mounts the imaging device 61 on the main shaft 41, and arranges the imaging device 61 mounted on the main shaft 41 on the table 16. After controlling the spindle 41 and the spindle 41 disposing the imaging device 61 on the table 16, the automatic tool changing device 31 controls the automatic tool changing device 31 so that the tool 200 as an object to be imaged is mounted on the spindle 41. The imaging device 61 arranged on the table 16 controls the imaging device 61 so as to image the tool 200 mounted on the main shaft 41.
 このように構成された、この発明の実施の形態1における工作機械10によれば、ワーク加工を適切に行なうために付随する各種作業(具体的には、テーブル16のC軸回転中心のずれの測定)を、簡易に実行することができる。 According to the machine tool 10 according to the first embodiment of the present invention configured as described above, various operations (specifically, deviations of the center of rotation of the C-axis of the table 16) accompanying proper work processing are performed. Measurement) can be easily performed.
 なお、図1中では、工作機械として立形マシニングセンタが想定されているが、これに限られず、たとえば、横形マシニングセンタであってもよいし、旋削機能とミーリング機能とを有する複合加工機であってもよい。 In FIG. 1, a vertical machining center is assumed as a machine tool, but the invention is not limited to this. For example, a horizontal machining center may be used, or a multi-tasking machine having a turning function and a milling function may be used. Is also good.
 (実施の形態2)
 図11は、この発明の実施の形態2における工作機械において、テーブルのC軸回転中心のずれを測定するステップを示す正面図である。図12は、図11中のテーブルのC軸回転中心のずれを測定するステップを示す上面図である。
(Embodiment 2)
FIG. 11 is a front view showing a step of measuring a shift of the C-axis rotation center of the table in the machine tool according to Embodiment 2 of the present invention. FIG. 12 is a top view showing the step of measuring the shift of the C-axis rotation center of the table in FIG.
 本実施の形態における工作機械は、実施の形態1における工作機械10と比較して、基本的には同様の構造(ステップ)を備える。以下、重複する構造(ステップ)については、その説明を繰り返さない。 工作 The machine tool according to the present embodiment has basically the same structure (step) as machine tool 10 according to the first embodiment. Hereinafter, description of overlapping structures (steps) will not be repeated.
 図11および図12を参照して、本実施の形態では、図3中のS102に対応するステップにおいて、撮像装置61をテーブル16に配置する。この際、撮像装置61は、レンズ62が水平方向を向いた姿勢で、テーブル16のC軸回転中心(中心軸103)からその半径方向に離れた位置に配置される。 お よ び Referring to FIGS. 11 and 12, in the present embodiment, imaging device 61 is arranged on table 16 in a step corresponding to S102 in FIG. At this time, the imaging device 61 is arranged at a position away from the center of rotation of the C-axis (the center axis 103) of the table 16 in the radial direction with the lens 62 facing in the horizontal direction.
 図3中のS103に対応するステップにおいて、実施の形態1における工具200に替わって、撮像用治具75を主軸41に装着する。撮像用治具75は、球体からなる被撮像部分76を有する。 ス テ ッ プ At a step corresponding to S103 in FIG. 3, an imaging jig 75 is mounted on the main shaft 41 instead of the tool 200 in the first embodiment. The imaging jig 75 has an imaged portion 76 formed of a sphere.
 図3中のS104に対応するステップにおいて、主軸41をZ軸方向に沿って下降させ、主軸41に装着された撮像用治具75の被撮像部分76が、水平方向において、撮像装置61(レンズ62)と対向する位置まで移動させる。 In a step corresponding to S104 in FIG. 3, the main shaft 41 is lowered along the Z-axis direction, and the portion to be imaged 76 of the imaging jig 75 mounted on the main shaft 41 is moved in the horizontal direction to the imaging device 61 (lens). 62).
 図3中のS105に対応するステップにおいて、テーブル16をC軸回転させつつ、撮像装置61により被撮像部分76を撮像する。撮像装置61は、テーブル16のC軸回転に伴って、中心軸103を中心とする周方向に移動する。図12中には、中心軸103を中心に90°ごとの位置を移動する撮像装置61A,61B,61C,61Dが示されている。 (3) In the step corresponding to S105 in FIG. 3, the imaging device 61 captures an image of the portion to be imaged 76 while rotating the table 16 along the C axis. The imaging device 61 moves in the circumferential direction around the central axis 103 with the rotation of the table 16 along the C axis. FIG. 12 shows imaging devices 61A, 61B, 61C, and 61D that move at 90 ° positions about the center axis 103.
 図3中のS106に対応するステップにおいて、制御装置51が、撮像装置61により撮像された被撮像部分76の画像に基づいて、主軸41の回転中心に対するテーブル16のC軸回転中心のずれを特定する。 In a step corresponding to S106 in FIG. 3, the control device 51 specifies a shift of the C-axis rotation center of the table 16 with respect to the rotation center of the main shaft 41 based on the image of the portion to be imaged 76 captured by the imaging device 61. I do.
 この際、本実施の形態では、撮像装置61A,61B,61C,61Dの各撮像装置61により撮像された被撮像部分76の画像の間に、Z軸方向における変位量が生じる場合がある。これにより、X-Y-Z座標上におけるテーブル16のC軸回転中心のずれを特定することが可能である。 At this time, in this embodiment, a displacement amount in the Z-axis direction may occur between the images of the portion to be imaged 76 captured by the imaging devices 61A, 61B, 61C, and 61D. Thereby, it is possible to specify the shift of the C-axis rotation center of the table 16 on the XYZ coordinates.
 このように構成された、この発明の実施の形態2における工作機械によれば、実施の形態1に記載の効果を同様に奏することができる。 According to the machine tool according to the second embodiment of the present invention configured as described above, the effects described in the first embodiment can be similarly obtained.
 (実施の形態3)
 図13は、この発明の実施の形態3における工作機械において、工具の形状を検査するステップを示す側面図である。図14は、図13中の撮像装置を示す斜視図である。
(Embodiment 3)
FIG. 13 is a side view showing the step of inspecting the shape of the tool in the machine tool according to Embodiment 3 of the present invention. FIG. 14 is a perspective view showing the imaging device in FIG.
 本実施の形態における工作機械は、実施の形態1における工作機械10と比較して、基本的には同様の構造(ステップ)を備える。以下、重複する構造(ステップ)については、その説明を繰り返さない。 工作 The machine tool according to the present embodiment has basically the same structure (step) as machine tool 10 according to the first embodiment. Hereinafter, description of overlapping structures (steps) will not be repeated.
 図13および図14を参照して、本実施の形態では、工作機械の加工エリアを区画する側壁86に、ミラー87が設けられている。図3中のS102に対応するステップにおいて、撮像装置61をテーブル16に配置する。この際、撮像装置61は、レンズ62が水平方向を向いた姿勢で、ミラー87と距離を設けて対向する位置に配置される。 With reference to FIGS. 13 and 14, in the present embodiment, a mirror 87 is provided on a side wall 86 that partitions a machining area of a machine tool. In a step corresponding to S102 in FIG. 3, the imaging device 61 is arranged on the table 16. At this time, the imaging device 61 is arranged at a position facing the mirror 87 with a distance between the lens 62 and the lens 62 in the horizontal direction.
 撮像装置61は、光源81を有する。光源81は、たとえば、LEDからなる。光源81は、レンズ62の外周上に設けられている。光源81は、レンズ62の外周上を取り囲むリング形状を有する。 The imaging device 61 has the light source 81. The light source 81 is, for example, an LED. The light source 81 is provided on the outer circumference of the lens 62. The light source 81 has a ring shape surrounding the outer periphery of the lens 62.
 図3中のS104に対応するステップにおいて、主軸41をZ軸方向に沿って下降させ、主軸41に装着された工具200が撮像装置61およびミラー87の間に配置される位置まで移動させる。この際、光源81からの光は、工具200越しにミラー87に向かい、ミラー87によって反射される。 (3) In a step corresponding to S104 in FIG. 3, the main shaft 41 is lowered along the Z-axis direction, and the tool 200 mounted on the main shaft 41 is moved to a position arranged between the imaging device 61 and the mirror 87. At this time, the light from the light source 81 goes to the mirror 87 through the tool 200 and is reflected by the mirror 87.
 図3中のS105に対応するステップにおいて、撮像装置61により、ミラー87からの反射光により形成された工具200の影を撮像する。これにより、工具200の刃先に欠損等の異常がないかを確認することができる。 In the step corresponding to S105 in FIG. 3, the imaging device 61 images the shadow of the tool 200 formed by the reflected light from the mirror 87. Thereby, it is possible to confirm whether the cutting edge of the tool 200 has an abnormality such as a defect.
 以上に説明した、この発明の実施の形態3における工作機械によれば、ワーク加工を適切に行なうために付随する各種作業(具体的には、工具200の形状の検査)を、簡易に実行することができる。 According to the machine tool according to the third embodiment of the present invention described above, various operations (specifically, inspection of the shape of the tool 200) accompanying proper work processing are easily executed. be able to.
 (実施の形態4)
 図15は、この発明の実施の形態4における工作機械において、直径が測定される工具の先端を示す図である。
(Embodiment 4)
FIG. 15 shows a tip of a tool whose diameter is measured in the machine tool according to Embodiment 4 of the present invention.
 本実施の形態における工作機械は、実施の形態1における工作機械10と比較して、基本的には同様の構造(ステップ)を備える。以下、重複する構造(ステップ)については、その説明を繰り返さない。 工作 The machine tool according to the present embodiment has basically the same structure (step) as machine tool 10 according to the first embodiment. Hereinafter, description of overlapping structures (steps) will not be repeated.
 図15を参照して、本実施の形態では、工具210の直径を測定する。工具210は、フライス加工用の工具である。 Referring to FIG. 15, in the present embodiment, the diameter of tool 210 is measured. The tool 210 is a tool for milling.
 図3中のS103に対応するステップにおいて、実施の形態1における工具200に替わって、工具210を主軸41に装着する。 At a step corresponding to S103 in FIG. 3, a tool 210 is mounted on the main shaft 41 instead of the tool 200 in the first embodiment.
 工具210は、軸部211と、複数の刃部212とを有する。軸部211は、中心軸101に沿って軸状に延びている。複数の刃部212は、スローアウェイチップであり、軸部211の先端に取り付けられている。複数の刃部212は、中心軸101を中心とする周方向において、互いに間隔を隔てて設けられている。複数の刃部212は、軸部211の外周面から半径方向外側に突出するように設けられている。 The tool 210 has a shaft portion 211 and a plurality of blade portions 212. The shaft portion 211 extends axially along the central axis 101. The plurality of blades 212 are indexable inserts, and are attached to the tip of the shaft 211. The plurality of blade portions 212 are provided at an interval in the circumferential direction around the central axis 101. The plurality of blade portions 212 are provided so as to protrude radially outward from the outer peripheral surface of the shaft portion 211.
 図3中のS105に対応するステップにおいて、制御装置51は、主軸41が中心軸101を中心に回転しつつ、撮像装置61が、中心軸101の軸方向に対向する位置から工具210を撮像するように、主軸41および撮像装置61を制御する。これにより、主軸41に装着された工具210を回転させつつ、撮像装置61により、工具210をその軸方向から撮像する。 In a step corresponding to S105 in FIG. 3, the control device 51 causes the imaging device 61 to image the tool 210 from a position facing the central axis 101 in the axial direction while the main shaft 41 rotates around the central axis 101. Thus, the main shaft 41 and the imaging device 61 are controlled. Thereby, while rotating the tool 210 mounted on the main shaft 41, the imaging device 61 images the tool 210 from its axial direction.
 撮像のタイミングは、既知の手法により各軸(本実施の形態では、主軸41)の動作に関連付けることもできるし、測定プロセスが制御装置51の状態をモニターすることにより決定することもできる。また、撮像は、常時実行し、そのあとに適切な制御装置51の状態の画像のみを選択することもできる。 The imaging timing can be associated with the operation of each axis (in the present embodiment, the main axis 41) by a known method, or can be determined by the measurement process monitoring the state of the control device 51. Further, it is also possible to always execute imaging, and thereafter select only an image in an appropriate state of the control device 51.
 図3中のS106に対応するステップにおいて、制御装置51は、撮像装置61により撮像された工具210の画像に基づいて、工具210の直径を特定する。これにより、スローアウェイチップが周方向に間隔を隔てて配列された工具210であっても、その直径を容易に測定することができる。 制 御 In a step corresponding to S106 in FIG. 3, the control device 51 specifies the diameter of the tool 210 based on the image of the tool 210 captured by the imaging device 61. Thus, the diameter of the tool 210 in which the throw-away tips are arranged at intervals in the circumferential direction can be easily measured.
 このように構成された、この発明の実施の形態4における工作機械によれば、ワーク加工を適切に行なうために付随する各種作業(具体的には、工具210の直径の測定)を、簡易に実行することができる。 According to the machine tool according to Embodiment 4 of the present invention configured as described above, various operations (specifically, measurement of diameter of tool 210) accompanying proper work processing can be easily performed. Can be performed.
 以下、本発明をまとめて説明する。この発明に従った工作機械は、加工エリア内で移動可能な主軸と、主軸に装着される工具を交換可能な自動工具交換装置と、加工エリア内に設けられるベース部材と、主軸に装着可能な撮像装置と、工作機械を制御するための制御装置とを備える。制御装置は、自動工具交換装置が撮像装置を主軸に装着するように、自動工具交換装置を制御し、主軸に装着された撮像装置をベース部材に配置するように、主軸を制御し、主軸が撮像装置をベース部材に配置した後、自動工具交換装置が被撮像物を主軸に装着するように、自動工具交換装置を制御し、ベース部材に配置された撮像装置が、主軸に装着された被撮像物を撮像するように、撮像装置を制御する。 Hereinafter, the present invention will be described collectively. A machine tool according to the present invention has a main spindle movable in a processing area, an automatic tool changer capable of exchanging a tool mounted on the main spindle, a base member provided in the processing area, and a main spindle mounted in the processing area. An imaging device and a control device for controlling a machine tool are provided. The control device controls the automatic tool changer so that the automatic tool changer mounts the imaging device on the main shaft, and controls the main shaft so that the imaging device mounted on the main shaft is arranged on the base member. After disposing the imaging device on the base member, the automatic tool changing device controls the automatic tool changing device so that the object to be imaged is mounted on the main shaft, and the imaging device disposed on the base member is mounted on the main shaft. The imaging device is controlled so as to image the object.
 このように構成された工作機械によれば、ベース部材に配置された撮像装置により、主軸に装着された被撮像物を撮像することによって、ワーク加工を適切に行なうために付随する各種作業を行なう。この際、撮像装置は、自動工具交換装置および主軸によってベーブ部材に自動的に配置され、被撮像物は、自動工具交換装置によって主軸に自動的に装着されるため、ワーク加工を適切に行なうために付随する各種作業を簡易に実行することができる。 According to the machine tool configured as described above, the imaging device arranged on the base member captures an image of the object mounted on the main shaft, thereby performing various operations accompanying proper work processing. . At this time, the imaging device is automatically arranged on the babe member by the automatic tool changing device and the main shaft, and the object to be imaged is automatically mounted on the main shaft by the automatic tool changing device. Can be easily executed.
 また好ましくは、主軸は、第1軸を中心に回転可能に構成される。ベース部材は、第1軸と平行な第2軸を中心に回転可能に構成される。制御装置は、ベース部材が第2軸を中心に回転しつつ、撮像装置が被撮像物を撮像するように、ベース部材および撮像装置を制御し、撮像装置により撮像された被撮像物の画像に基づいて、第1軸および第2軸の相互の回転中心のずれを特定する。 Also preferably, the main shaft is configured to be rotatable about the first shaft. The base member is configured to be rotatable about a second axis parallel to the first axis. The control device controls the base member and the imaging device so that the imaging device captures an image of the object while the base member rotates about the second axis, and controls the image of the object captured by the imaging device. Based on this, the deviation of the center of rotation between the first axis and the second axis is specified.
 このように構成された工作機械によれば、主軸の回転中心と、ベース部材の回転中心とのずれを簡易に測定することができる。 According to the machine tool configured as described above, the deviation between the rotation center of the main shaft and the rotation center of the base member can be easily measured.
 また好ましくは、制御装置は、主軸が第1軸を中心に回転しつつ、撮像装置が被撮像物を撮像するように、主軸および撮像装置を制御し、撮像装置により撮像された被撮像物の画像に基づいて、第1軸と、被撮像物の撮像中心とのずれを特定する。 Also preferably, the control device controls the main shaft and the imaging device so that the imaging device captures an image of the object while the main shaft rotates about the first axis, and controls the imaging device to capture the image of the object captured by the imaging device. Based on the image, a deviation between the first axis and the imaging center of the object is specified.
 このように構成された工作機械によれば、主軸の回転中心と、被撮像物の撮像中心とのずれを簡易に測定することができる。 According to the machine tool configured as described above, it is possible to easily measure the deviation between the rotation center of the spindle and the imaging center of the object.
 また好ましくは、被撮像物は、工具、または、球体からなる被撮像部分を有する撮像用治具である。 Also preferably, the object to be imaged is a tool or an imaging jig having an imaged portion made of a sphere.
 このように構成された工作機械によれば、工具、または、球体からなる被撮像部分を有する撮像用治具を用いて、ワーク加工を適切に行なうために付随する各種作業を簡易に実行することができる。 According to the machine tool having the above-described configuration, it is possible to easily execute various operations associated with appropriately performing work processing using a tool or an imaging jig having an imaged portion formed of a sphere. Can be.
 また好ましくは、被撮像物は、工具である。撮像装置は、光源を有する。工作機械は、加工エリア内に設けられ、光源からの光を反射するためのミラーをさらに備える。制御装置は、自動工具交換装置が被撮像物を主軸に装着した後であって、撮像装置が被撮像物を撮像する前に、主軸に装着された工具が撮像装置およびミラーの間の位置まで移動するように、主軸を制御する。撮像装置は、ミラーからの反射光により形成された工具の影を撮像する。 Also preferably, the object to be imaged is a tool. The imaging device has a light source. The machine tool further includes a mirror provided in the processing area for reflecting light from the light source. After the automatic tool changer mounts the object to be picked up on the main spindle, and before the image pickup apparatus picks up the image of the object to be picked up, the control device moves the tool mounted on the main spindle to a position between the image pickup apparatus and the mirror. Control the spindle to move. The imaging device captures an image of a tool shadow formed by light reflected from the mirror.
 このように構成された工作機械によれば、工具形状をチェックするための作業を簡易に行なうことができる。 According to the machine tool configured as described above, the operation for checking the tool shape can be easily performed.
 また好ましくは、主軸は、第1軸を中心に回転可能に構成される。被撮像物は、工具である。制御装置は、主軸が第1軸を中心に回転しつつ、撮像装置が、第1軸の軸方向に対向する位置から工具を撮像するように、主軸および撮像装置を制御し、撮像装置により撮像された工具の画像に基づいて、工具の直径を特定する。 Also preferably, the main shaft is configured to be rotatable about the first shaft. The object to be imaged is a tool. The control device controls the main shaft and the imaging device such that the imaging device takes an image of the tool from a position opposed in the axial direction of the first axis while the main shaft rotates about the first axis. The tool diameter is specified based on the image of the tool thus obtained.
 このように構成された工作機械によれば、工具の直径を簡易に測定することができる。
 また好ましくは、主軸は、第1軸を中心に回転可能に構成される。工作機械は、撮像装置が連結され、主軸にクランプされるホルダ部を備える。撮像装置およびホルダ部は、第1軸を中心とする一方向に相互に回転することによって、ホルダ部に対して撮像装置を連結し、第1軸を中心とする逆方向に相互に回転することによって、ホルダ部に対する撮像装置の連結を解除する連結機構部を有する。制御装置は、撮像装置をベース部材に配置する際に、主軸が第1軸を中心とする逆方向に回転するように、主軸を制御する。
According to the machine tool configured as described above, the diameter of the tool can be easily measured.
Preferably, the main shaft is configured to be rotatable about the first shaft. The machine tool includes a holder to which the imaging device is connected and which is clamped to the main shaft. The image pickup apparatus and the holder section rotate in one direction about the first axis, thereby connecting the image pickup apparatus to the holder section, and rotate in the opposite directions about the first axis. A connection mechanism for releasing the connection of the imaging device to the holder. The control device controls the main shaft such that the main shaft rotates in the opposite direction about the first axis when the imaging device is arranged on the base member.
 このように構成された工作機械によれば、主軸により、撮像装置をベース部材に簡易に配置することができる。 According to the machine tool configured as described above, the imaging device can be easily arranged on the base member by the spindle.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 この発明は、たとえば、マシニングセンタや複合加工機などに適用される。 The present invention is applied to, for example, a machining center or a multi-tasking machine.
 10 工作機械、12 ベッド、13 コラム、16 テーブル、17 回転機構部、21 工具マガジン、22 工具ポット、23 支持プレート、24 カバー体、25 開口部、31 自動工具交換装置、32 工具交換アーム、32p,32q 把持部、33 進退用サーボモータ、34 回転用サーボモータ、41 主軸、50 加工エリア、51 制御装置、61,61A,61B,61C,61D 撮像装置、62 レンズ、63 磁石部、64 雄ねじ部、70 連結機構部、71 ホルダ部、72 テーパシャンク部、73 プルボルト、74 雌ねじ部、75 撮像用治具、76 被撮像部分、81 光源、86 側壁、87 ミラー、101,102,103 中心軸、200,210 工具、211 軸部、212 刃部。 10 machine tool, 12 bed, 13 column, 16 table, 17 rotary mechanism, 21 tool magazine, 22 tool pot, 23 support plate, 24 cover body, 25 opening, 31 automatic tool changer, 32 tool change arm, 32p , 32q grip, 33 ° forward / backward servo motor, 34 ° rotation servomotor, 41 ° spindle, 50 ° machining area, 51 ° control device, 61, 61A, 61B, 61C, 61D image pickup device, 62 ° lens, 63 ° magnet portion, 64 ° male screw portion , 70 coupling mechanism, 71 holder, 72 taper shank, 73 pull bolt, 74 female screw, 75 imaging jig, 76 imaging part, 81 light source, 86 side wall, 87 mirror, 101, 102, 103 central axis, 200, 210 tool, 211 shaft, 21 The blade section.

Claims (7)

  1.  工作機械であって、
     加工エリア内で移動可能な主軸と、
     前記主軸に装着される工具を交換可能な自動工具交換装置と、
     前記加工エリア内に設けられるベース部材と、
     前記主軸に装着可能な撮像装置と、
     前記工作機械を制御するための制御装置とを備え、
     前記制御装置は、
     前記自動工具交換装置が前記撮像装置を前記主軸に装着するように、前記自動工具交換装置を制御し、
     前記主軸に装着された前記撮像装置を前記ベース部材に配置するように、前記主軸を制御し、
     前記主軸が前記撮像装置を前記ベース部材に配置した後、前記自動工具交換装置が被撮像物を前記主軸に装着するように、前記自動工具交換装置を制御し、
     前記ベース部材に配置された前記撮像装置が、前記主軸に装着された前記被撮像物を撮像するように、前記撮像装置を制御する、工作機械。
    A machine tool,
    A spindle that can move within the machining area;
    An automatic tool changer capable of changing a tool mounted on the spindle,
    A base member provided in the processing area,
    An imaging device attachable to the spindle;
    A control device for controlling the machine tool,
    The control device includes:
    The automatic tool changer controls the automatic tool changer so that the imaging device is mounted on the spindle.
    Controlling the spindle so that the imaging device mounted on the spindle is arranged on the base member;
    After the spindle arranges the imaging device on the base member, the automatic tool changer controls the automatic tool changer so that the object to be imaged is mounted on the spindle,
    A machine tool that controls the imaging device so that the imaging device arranged on the base member captures an image of the object mounted on the spindle.
  2.  前記主軸は、第1軸を中心に回転可能に構成され、
     前記ベース部材は、前記第1軸と平行な第2軸を中心に回転可能に構成され、
     前記制御装置は、
     前記ベース部材が前記第2軸を中心に回転しつつ、前記撮像装置が前記被撮像物を撮像するように、前記ベース部材および前記撮像装置を制御し、
     前記撮像装置により撮像された前記被撮像物の画像に基づいて、前記第1軸および前記第2軸の相互の回転中心のずれを特定する、請求項1に記載の工作機械。
    The main shaft is configured to be rotatable about a first shaft,
    The base member is configured to be rotatable around a second axis parallel to the first axis,
    The control device includes:
    The base member and the imaging device are controlled such that the imaging device images the object while the base member rotates about the second axis,
    2. The machine tool according to claim 1, wherein a displacement of the center of rotation between the first axis and the second axis is specified based on an image of the object captured by the imaging device.
  3.  前記制御装置は、
     前記主軸が前記第1軸を中心に回転しつつ、前記撮像装置が前記被撮像物を撮像するように、前記主軸および前記撮像装置を制御し、
     前記撮像装置により撮像された前記被撮像物の画像に基づいて、前記第1軸と、前記被撮像物の撮像中心とのずれを特定する、請求項2に記載の工作機械。
    The control device includes:
    Controlling the spindle and the imaging device so that the imaging device captures the image of the object while the main shaft rotates about the first axis;
    The machine tool according to claim 2, wherein a deviation between the first axis and an imaging center of the imaging target is specified based on an image of the imaging target captured by the imaging device.
  4.  前記被撮像物は、工具、または、球体からなる被撮像部分を有する撮像用治具である、請求項2または3に記載の工作機械。 4. The machine tool according to claim 2, wherein the object to be imaged is a tool or an imaging jig having an imaged portion made of a sphere. 5.
  5.  前記被撮像物は、工具であり、
     前記撮像装置は、光源を有し、さらに、
     前記加工エリア内に設けられ、前記光源からの光を反射するためのミラーを備え、
     前記制御装置は、
     前記自動工具交換装置が前記被撮像物を前記主軸に装着した後であって、前記撮像装置が前記被撮像物を撮像する前に、前記主軸に装着された前記工具が前記撮像装置および前記ミラーの間の位置まで移動するように、前記主軸を制御し、
     前記撮像装置は、前記ミラーからの反射光により形成された前記工具の影を撮像する、請求項1に記載の工作機械。
    The object to be imaged is a tool,
    The imaging device has a light source,
    A mirror provided in the processing area, for reflecting light from the light source,
    The control device includes:
    After the automatic tool changer mounts the object on the spindle, and before the imaging device images the object, the tool mounted on the spindle is the imaging device and the mirror Controlling the spindle to move to a position between
    The machine tool according to claim 1, wherein the imaging device images a shadow of the tool formed by light reflected from the mirror.
  6.  前記主軸は、第1軸を中心に回転可能に構成され、
     前記被撮像物は、工具であり、
     前記制御装置は、
     前記主軸が前記第1軸を中心に回転しつつ、前記撮像装置が、前記第1軸の軸方向に対向する位置から前記工具を撮像するように、前記主軸および前記撮像装置を制御し、
     前記撮像装置により撮像された前記工具の画像に基づいて、前記工具の直径を特定する、請求項1に記載の工作機械。
    The main shaft is configured to be rotatable about a first shaft,
    The object to be imaged is a tool,
    The control device includes:
    While the main shaft rotates about the first axis, the imaging device controls the main shaft and the imaging device so that the imaging device takes an image of the tool from a position facing the first axis in the axial direction.
    The machine tool according to claim 1, wherein a diameter of the tool is specified based on an image of the tool captured by the imaging device.
  7.  前記主軸は、第1軸を中心に回転可能に構成され、さらに、
     前記撮像装置が連結され、前記主軸にクランプされるホルダ部を備え、
     前記撮像装置および前記ホルダ部は、前記第1軸を中心とする一方向に相互に回転することによって、前記ホルダ部に対して前記撮像装置を連結し、前記第1軸を中心とする逆方向に相互に回転することによって、前記ホルダ部に対する前記撮像装置の連結を解除する連結機構部を有し、
     前記制御装置は、前記撮像装置を前記ベース部材に配置する際に、前記主軸が前記第1軸を中心とする逆方向に回転するように、前記主軸を制御する、請求項1から6のいずれか1項に記載の工作機械。
    The main shaft is configured to be rotatable about a first shaft, and further,
    The imaging device is connected, comprising a holder portion clamped to the main shaft,
    The imaging device and the holder unit are connected to the imaging device with respect to the holder unit by mutually rotating in one direction about the first axis, and the opposite direction about the first axis. Having a connection mechanism for releasing the connection of the imaging device to the holder by rotating each other,
    7. The control device according to claim 1, wherein the control device controls the main shaft such that the main shaft rotates in a reverse direction about the first axis when the imaging device is arranged on the base member. 8. 2. The machine tool according to claim 1.
PCT/JP2019/023656 2018-07-12 2019-06-14 Machine tool WO2020012871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018132225A JP6608006B1 (en) 2018-07-12 2018-07-12 Machine Tools
JP2018-132225 2018-07-12

Publications (1)

Publication Number Publication Date
WO2020012871A1 true WO2020012871A1 (en) 2020-01-16

Family

ID=68613361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023656 WO2020012871A1 (en) 2018-07-12 2019-06-14 Machine tool

Country Status (2)

Country Link
JP (1) JP6608006B1 (en)
WO (1) WO2020012871A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6991382B1 (en) 2021-06-07 2022-01-12 Dmg森精機株式会社 Machine Tools

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7132349B2 (en) * 2018-10-30 2022-09-06 芝浦機械株式会社 Tool shape measuring device and tool shape measuring method
JP7244555B2 (en) * 2021-02-22 2023-03-22 Dmg森精機株式会社 Tool diagnosis system and machine tool equipped with the same
JP7169478B1 (en) 2022-04-06 2022-11-10 Dmg森精機株式会社 MACHINE TOOL, MACHINE TOOL, CONTROL METHOD, AND CONTROL PROGRAM

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245708A (en) * 1992-03-02 1993-09-24 Hitachi Ltd Chuck and rotary working device using the same
JP2003117778A (en) * 2001-10-15 2003-04-23 Mori Seiki Co Ltd Precision measurement device for machine tool
JP2004202634A (en) * 2002-12-25 2004-07-22 Nikon Corp Centering device
JP2011041985A (en) * 2009-08-19 2011-03-03 Mitsubishi Heavy Ind Ltd Tool rotating-direction positioning method
JP2012093262A (en) * 2010-10-27 2012-05-17 Makino Milling Mach Co Ltd Method and device for measuring tool dimensions, and machine tool
JP2015202556A (en) * 2014-04-16 2015-11-16 株式会社オーエム製作所 Main spindle positioning method in machine tool
JP2018087749A (en) * 2016-11-29 2018-06-07 ヘキサゴン・メトロジー株式会社 Three-dimensional measuring device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766759B2 (en) * 1992-12-17 1998-06-18 株式会社ミツトヨ Drilling equipment for fiber spinneret
JPH081450A (en) * 1994-06-14 1996-01-09 Tekuseru:Kk Positioning confirming device and assembling device using it
JPH0985583A (en) * 1995-09-20 1997-03-31 Toshiba Mach Co Ltd Confirming method and device for tool used in program controller
JP2001259966A (en) * 2000-03-15 2001-09-25 Toyoda Mach Works Ltd Method and device for correction of tool position
JP2008305237A (en) * 2007-06-08 2008-12-18 Jtekt Corp Machining device
JP5022924B2 (en) * 2008-01-23 2012-09-12 株式会社森精機製作所 Interference confirmation device
JP2015131357A (en) * 2014-01-10 2015-07-23 三菱重工業株式会社 Tool breakage detector for machine tool
JP2016206120A (en) * 2015-04-28 2016-12-08 コニカミノルタ株式会社 On-machine measurement method for tool
JP7306986B2 (en) * 2016-08-19 2023-07-11 シェイパー ツールズ,インク. Systems, methods and apparatus for sharing toolmaking and design data

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245708A (en) * 1992-03-02 1993-09-24 Hitachi Ltd Chuck and rotary working device using the same
JP2003117778A (en) * 2001-10-15 2003-04-23 Mori Seiki Co Ltd Precision measurement device for machine tool
JP2004202634A (en) * 2002-12-25 2004-07-22 Nikon Corp Centering device
JP2011041985A (en) * 2009-08-19 2011-03-03 Mitsubishi Heavy Ind Ltd Tool rotating-direction positioning method
JP2012093262A (en) * 2010-10-27 2012-05-17 Makino Milling Mach Co Ltd Method and device for measuring tool dimensions, and machine tool
JP2015202556A (en) * 2014-04-16 2015-11-16 株式会社オーエム製作所 Main spindle positioning method in machine tool
JP2018087749A (en) * 2016-11-29 2018-06-07 ヘキサゴン・メトロジー株式会社 Three-dimensional measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6991382B1 (en) 2021-06-07 2022-01-12 Dmg森精機株式会社 Machine Tools
WO2022259814A1 (en) * 2021-06-07 2022-12-15 Dmg森精機株式会社 Machine tool
JP2022187130A (en) * 2021-06-07 2022-12-19 Dmg森精機株式会社 Machine tool

Also Published As

Publication number Publication date
JP6608006B1 (en) 2019-11-20
JP2020006496A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2020012871A1 (en) Machine tool
US10773313B2 (en) Turret tool rest and machine tool
JP4298823B2 (en) Compound machine tool
KR102391258B1 (en) Machine tool
JP5174155B2 (en) Machine Tools
JP6255181B2 (en) Axle fixing device for axially fixing a tool or a workpiece, and operation method of the axis fixing device
US9975180B2 (en) Machine tool
KR102091917B1 (en) Gear mechanism assembly and assembly method
JP5342371B2 (en) Tool rotation direction positioning method
JP5497582B2 (en) Horizontal machining center
JP2017213658A (en) Machine tool
JP2012213840A (en) Machine tool
US20180290250A1 (en) Automatic tool head placement and assembly apparatus for a boring machine
JP5385432B2 (en) Tool delivery system
JP3333681B2 (en) Cutting edge position measuring device
JP2017209770A (en) Workpiece machining method, spindle angle correcting device, and composite lathe
KR101397721B1 (en) Tool pre-setter for automatic tool changer
US20240165755A1 (en) Machine tool with removable workpiece support
JP6155902B2 (en) Machine Tools
EP3613525B1 (en) Cutting apparatus
JP2012125901A (en) Tool setter and method for aligning tool cutting edge
JP6861796B2 (en) Machine Tools
JP5531640B2 (en) Feed control device for machine tools
JP7373422B2 (en) Measuring device
JP7446745B2 (en) Processing method of screw shaft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833561

Country of ref document: EP

Kind code of ref document: A1