WO2020010782A1 - 高氮奥氏体不锈钢和无磁钻铤的轴向摩擦焊接工艺方法 - Google Patents

高氮奥氏体不锈钢和无磁钻铤的轴向摩擦焊接工艺方法 Download PDF

Info

Publication number
WO2020010782A1
WO2020010782A1 PCT/CN2018/117508 CN2018117508W WO2020010782A1 WO 2020010782 A1 WO2020010782 A1 WO 2020010782A1 CN 2018117508 W CN2018117508 W CN 2018117508W WO 2020010782 A1 WO2020010782 A1 WO 2020010782A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
magnetic drill
drill collar
friction
pressure
Prior art date
Application number
PCT/CN2018/117508
Other languages
English (en)
French (fr)
Inventor
秦国梁
杨帆
李长安
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2020010782A1 publication Critical patent/WO2020010782A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1225Particular aspects of welding with a non-consumable tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention belongs to the application field of the axial friction welding process, and particularly relates to a non-magnetic drill for high-nitrogen austenitic stainless steel welding, oil and gas resource exploration and development, and geological exploration using continuous driving axial friction welding process and inertial axial friction welding process. Welding and repair methods.
  • the non-magnetic drill collar is the most important part of the drill string. It is located below the drill string and has the ability to provide drilling pressure to the drill bit, improve the stiffness of the drill string, and ensure the measurement accuracy of the measurement-while-drilling device. Role (as shown in Figure 1 of the description).
  • oil and gas wells with deeper depths are equipped with a measurement-while-drilling device.
  • the verticality of the well is corrected by sensing the geomagnetic field in the borehole to ensure the vertical drilling process.
  • Directional accuracy is the verticality of the well is corrected by sensing the geomagnetic field in the borehole to ensure the vertical drilling process.
  • the measurement-while-drilling device must work in a non-magnetic environment to prevent the magnetic field other than the geomagnetic field from interfering with the measurement-while-drilling device during the drilling process. Therefore, the drill collar connected under the drill string must have a low magnetic permeability. Higher strength and corrosion resistance.
  • non-magnetic drill collars have undergone three stages of AISI-300 series stainless steel, corrosion resistant alloys, and nitrogen alloyed stainless steel.
  • the original was AISI-300 series stainless steel.
  • Such materials are easy to prepare and have low cost.
  • the requirements can still be met, but with the large-scale development of China's high-sulfur exploration wells and the increase in drilling and production depth, its corrosion resistance and mechanical properties have been unable to meet the requirements.
  • the non-magnetic drill collar made of beryllium copper alloy and Monel alloy can basically meet its performance requirements, but due to its high price, it has been replaced by high nitrogen austenitic stainless steel.
  • SMAW manual arc welding
  • GTAW tungsten argon arc welding
  • GMAW molten electrode gas shielded welding
  • laser welding and other methods to weld this type of stainless steel.
  • SMAW manual arc welding
  • GTAW tungsten argon arc welding
  • GMAW molten electrode gas shielded welding
  • laser welding and other methods to weld this type of stainless steel.
  • Tungsten arc welding has low welding efficiency, too high welding cost, and is prone to tungsten clamping.
  • GMAW is prone to defects such as porosity and spatter during the welding process.
  • the cost of laser welding is high, and it requires high accuracy of welding assembly.
  • the above welding methods are all welding processes.
  • the heat input of welding is large, and the phase change is easy to occur during the solidification of the material, so that the welding joints are The magnetic permeability changes; the nitrogen in the weld is easy to lose, and the nitrogen hole is easy to be produced in the fusion zone; the carbides and nitrides are easy to precipitate, which reduces the corrosion resistance of the welded joint; and it is easy to cause welding thermal cracks and other problems.
  • the main processing methods of non-magnetic drill collars are hot rolling and integral machining, which can make the non-magnetic drill collars have the same mechanical properties and corrosion resistance as the base material, and the material does not undergo phase changes during processing.
  • Its magnetic permeability has always kept a low level, especially for the manufacture of non-magnetic drill collars with different diameters, the overall cutting process wastes a lot of materials, the material utilization rate and production efficiency are low, and the manufacturing cost of non-magnetic drill collars Increased significantly, and when the non-magnetic drill collar breaks, it can only be scrapped and cannot be repaired.
  • the present invention aims to provide an axial friction welding process for welding high nitrogen austenitic stainless steel and welding manufacturing and repair of non-magnetic drill collars made of high nitrogen austenitic stainless steel.
  • the invention proposes a method for processing and repairing a non-magnetic drill collar by using an axial friction welding process and an inertial axial friction welding process to improve the problems of material waste, higher cost, and lower production efficiency of the existing processing methods, and It overcomes the problem that the failed drill collar is difficult to repair.
  • the invention proposes for the first time to produce and repair non-magnetic drill collars by means of axial friction welding. It is also the first time that this process is used to weld high nitrogen austenitic stainless steel, and the mechanical properties of the prepared non-magnetic drill collars fully meet the American petroleum Association (API) requirements.
  • API American petroleum Association
  • One of the objectives of the present invention is to provide the application of a continuous drive axial friction welding process in a high nitrogen austenitic stainless steel.
  • Another object of the present invention is to provide an application of an inertia axial friction welding process in a high nitrogen austenitic stainless steel.
  • a third object of the present invention is to provide an application of a continuous drive axial friction welding process in the preparation of a non-magnetic drill collar.
  • a fourth object of the present invention is to provide an application of an inertial axial friction welding process in the preparation of a non-magnetic drill collar.
  • a fifth object of the present invention is to provide a non-magnetic drill collar prepared by a continuous drive axial friction welding process.
  • a sixth object of the present invention is to provide a non-magnetic drill collar prepared by an inertial axial friction welding process.
  • a seventh object of the present invention is to provide a method for repairing a non-magnetic drill collar that is broken or worn out.
  • the eighth object of the present invention is to provide a method for preparing a non-magnetic drill collar by continuously driving the axial friction welding and inertial axial friction welding processes, and a method for preparing the non-magnetic drill collar, and a method for repairing the non-magnetic drill collar which is broken and worn out. application.
  • the invention discloses the application of a continuous drive axial friction welding process in a high nitrogen austenitic stainless steel.
  • the application is: a method of welding a high nitrogen austenitic stainless steel by a continuous driving axial friction welding process: clamping the high nitrogen austenitic stainless steel into a fixture of a continuous driving axial friction welding machine, and The friction caused by the relative rotation between the nitrogen austenitic stainless steels and the upset pressure applied to the high nitrogen austenitic stainless steels are welded.
  • the method for welding the high nitrogen austenitic stainless steel by the continuous driving axial friction welding process includes the following steps:
  • Welding interface treatment cleaning the oxide scale and oil on the interface of high nitrogen austenitic stainless steel workpieces to be welded;
  • step (2) Weldment clamping: The workpiece in step (1) is clamped into the fixture of the friction welding machine, one workpiece is clamped in each of the rotating end clamp and the moving end clamp, and the workpiece, the rotating end and the moving end clamp are held. Coaxial
  • Welding Weld the workpieces in step (2) after setting the parameters of spindle speed, friction pressure, friction deformation, upset pressure, and dwell time.
  • the moving workpiece moves to the rotating workpiece, and the spindle Drive the rotating end workpiece to open and rotate.
  • the frictional heat starts to be generated by the friction pressure.
  • the joint deforms and deforms, and the deformation reaches the set value.
  • the drive is stopped, and the workpiece is moved along the axis of the workpiece. Apply upset pressure and maintain pressure, and then remove the workpiece after unloading the upset pressure.
  • the present invention discloses the application of the continuous drive axial friction welding process in the preparation of a non-magnetic drill collar; preferably, the application is: a method of continuously driving the axial friction welding to prepare a non-magnetic drill collar: The non-magnetic drill collar workpiece is clamped into the fixture of a continuously driven axial friction welder, and the welding is performed by the friction generated by the relative rotation between the non-magnetic drill collar workpiece to be welded and the upset pressure applied by the non-magnetic drill collar workpiece to be welded. , That is, a non-magnetic drill collar.
  • the present invention discloses a method for preparing a high-nitrogen austenitic stainless steel non-magnetic drill collar by continuously driving an axial friction welding process, including the following steps:
  • Welding interface treatment Prepare high-nitrogen austenitic stainless steel to be welded workpieces that meet the shape and specifications of non-magnetic drill collars, and clean oxide scale and oil on the workpieces to be welded interface;
  • step (1) The workpiece in step (1) is clamped into a friction welding machine, one workpiece is clamped in each of the rotating end clamp and the moving end clamp, and the workpiece, the rotating end and the moving end clamp are kept coaxial. ;
  • step (1) the method for processing the welding interface is: cleaning the oxide scale on the workpiece to be welded with sandpaper, and simultaneously removing the oil stain on the interface to be welded with alcohol and acetone.
  • step (3) the rotation speed of the main shaft is 300-2500 rad / min, and preferably 2200 rad / min.
  • step (3) the friction pressure is 50-500 MPa.
  • step (3) the amount of frictional deformation is 3-8 mm, preferably 5 mm.
  • step (3) the upset pressure is 60-600Mpa.
  • step (3) the dwell time is 5-20 s, preferably 10 s.
  • the present invention learns from the range analysis and variance analysis of the orthogonal test that the upset pressure has a greater influence on the continuous drive of the axial friction welded joint of high nitrogen austenitic stainless steel for non-magnetic drill collars.
  • the workpiece near the interface to be welded is in a thermoplastic state under the action of frictional heat generation. Under a large upset pressure, the thermoplastic interface to be welded can undergo strong dynamic recrystallization, which will significantly refine the grains and form Dynamic recrystallization zone.
  • the Hall-Patch formula it can be known that the smaller the grain size, the higher the yield strength, and because the grains are under a large deformation pressure during the dynamic recrystallization process, the dislocation density will be high in the weld zone.
  • the present invention chooses to weld the high-nitrogen austenitic stainless steel for the non-magnetic drill collar under a forging pressure in the range of 60-600 MPa. .
  • the present invention discloses the application of the inertia axial friction welding process in a high nitrogen austenitic stainless steel; preferably, the application is: a method for preparing a non-magnetic drill collar by an inertia axial friction welding process: The non-magnetic drill collar workpiece is clamped into the fixture of the friction welding machine, the flywheel is driven to a predetermined speed and then stopped. The friction caused by the relative rotation between the workpieces caused by the inertia of the flywheel and the applied upset pressure are treated. Non-magnetic drill collars are welded to obtain non-magnetic drill collars.
  • the present invention discloses a method for welding high nitrogen austenitic stainless steel by inertia axial friction welding process, which includes the following steps:
  • Welding interface treatment Prepare high-nitrogen austenitic stainless steel to be welded workpieces that meet the shape and specifications of non-magnetic drill collars, and clean oxide scale and oil on the workpieces to be welded interface;
  • step (2) Weldment clamping: The workpiece in step (1) is clamped into the fixture of the friction welding machine, one workpiece is clamped in each of the rotating end clamp and the moving end clamp, and the workpiece, the rotating end and the moving end clamp are held. Coaxial
  • step (2) After setting the initial speed of the flywheel and its moment of inertia, friction pressure, upset pressure, and holding time, weld the workpiece in step (2).
  • the flywheel and the rotating end workpiece Simultaneously rotate, when the speed reaches the initial speed of the flywheel, the drive motor stops driving, and the moving end workpiece moves toward the rotating end.
  • the frictional heat is generated under the action of the friction pressure, and the friction interface and the nearby metal reach a high-temperature plastic state. And plastic deformation occurs.
  • upset pressure is applied to the workpiece along the axial direction of the workpiece and the pressure is maintained. After the unloading pressure is unloaded, the workpiece is removed to obtain a non-magnetic drill collar.
  • step (1) the method for processing the welding interface is: cleaning the oxide scale on the workpiece to be welded with sandpaper, and simultaneously removing the oil stain on the interface to be welded with alcohol and acetone.
  • step (3) the initial speed of the flywheel is 200-2500 rad / min.
  • step (3) the moment of inertia is 100-1000 kg ⁇ m 2 .
  • step (3) the friction pressure is 50-300 MPa.
  • step (3) the rotation speed during upset is 50 rad / min.
  • step (3) the upset pressure is 60-600 MPa.
  • step (3) the dwell time is 5-20 s, preferably 10 s.
  • the present invention discloses a non-magnetic drill collar prepared by using a continuous drive axial friction welding process and an inertial axial friction welding process.
  • the material of the non-magnetic drill collar is high nitrogen austenitic stainless steel.
  • the material of the non-magnetic drill collar is: mass percentage, 18.61% Mn, 17.47% Cr, 1.161% Cu, 0.8531% Mo, 0.625% N, 0.5065% Ni, 0.1339% C, 0.07% V, 0.3847% Si, 0.012% Al, Fe balance, the specification of the non-magnetic drill collar is the outer diameter
  • the wall thickness is 20-80mm
  • the tensile strength at the welded joint is 850MPa or more
  • the yield strength is 770MPa or more
  • the elongation after breaking is 25% or more.
  • the present invention also discloses a method for repairing a non-magnetic drill collar that is broken or worn out, and includes the following steps:
  • the fractured and damaged non-magnetic drill collar is processed into a flat shape to obtain a non-magnetic drill collar workpiece to be welded;
  • step (1) The workpiece in step (1) is clamped into a fixture that continuously drives the axial friction welding machine, and the friction generated by the relative rotation between the non-magnetic drill collar workpieces to be welded and the non-magnetic drill collar workpieces to be welded are applied. Upsetting pressure for welding;
  • the workpiece in step (1) is clamped into a fixture of an inertia axial friction welding machine, the workpiece is driven to a predetermined speed and stopped driving, and the friction between the workpiece and the relative rotation caused by the inertia of the flywheel is used. Welding the upset pressure applied to the non-magnetic drill collar workpiece to be repaired can repair the non-magnetic drill collar which is broken or worn out.
  • the repair principle of the non-magnetic drill collar with fracture and wear failure is as follows: after processing the port of the non-magnetic drill collar damaged and broken into a flat shape, it can be used as a new workpiece to be welded.
  • the subsequent repair method is consistent with the method of preparing a non-magnetic drill collar by continuously driving the axial friction welding process and the inertial axial friction welding process.
  • the invention also discloses a method for preparing a non-magnetic drill collar by continuously driving the axial friction welding and inertial axial friction welding processes, and a method for preparing the non-magnetic drill collar and a method for repairing the fracture and wear failure of the non-magnetic drill collar. And deep gas drilling applications.
  • the present invention utilizes the tubular characteristics of a non-magnetic drill collar and the continuous drive of the axial friction welding process and the inertial axial friction welding process to precisely enable the non-magnetic drill collar of a tubular material to continuously perform axial rotation.
  • Welding of non-magnetic drill collar at the same time, due to the low heat input during the welding process, no phase change will occur at the weld joint, which effectively avoids the effect of the phase change on the magnetic permeability and enables the magnetic permeability at the weld joint Keeping it at a low level effectively guarantees that drill collars need to work in low magnetic environments.
  • the continuous drive axial friction welding process and inertial axial friction welding process adopted by the present invention can repair the non-magnetic drill collars that are broken or worn out, thereby realizing the reuse of the non-magnetic drill collars that should be scrapped. Significantly reduces the use cost of non-magnetic drill collars.
  • the welding joints of the non-magnetic drill collar prepared by using the continuous driving axial friction welding process and the inertial axial friction welding process are fine equiaxed austenite grains, and the welding quality at the welding joint is stable. Excellent mechanical properties, which can fully meet the requirements of the American Petroleum Institute (API) for non-magnetic drill collars.
  • API American Petroleum Institute
  • the continuous driving axial friction welding process and inertial axial friction welding process adopted in the present invention do not need to add filler metal at the welding joint during the welding process, which can greatly improve production efficiency;
  • the overall cutting of the workpiece can greatly save material and reduce the manufacturing cost of the non-magnetic drill collar.
  • FIG. 1 is a schematic structural diagram of a drilling tool according to the background art of the present invention.
  • FIG. 2 is a schematic structural diagram of a continuously driven axial friction welding welder in Embodiment 1 of the present invention.
  • Embodiment 3 is a schematic structural diagram of an inertia axial friction welding welder in Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a process for preparing a non-magnetic drill collar by axial friction welding according to Embodiment 1 of the present invention.
  • FIG. 5 is an X-ray diffraction pattern at an interface of a non-magnetic drill collar welded joint prepared in Examples 1 and 2 of the present invention; wherein FIG. 5 (a) is Example 1, and FIG. 5 (b) is Example 2.
  • FIG. 5 (a) is Example 1
  • FIG. 5 (b) is Example 2.
  • FIG. 6 is a metallographic microstructure at the interface of a non-magnetic drill collar welded joint prepared in Examples 1 and 2 of the present invention;
  • FIG. 6 (a) is Example 1
  • FIG. 6 (b) is Example 2.
  • FIG. 6 (a) is Example 1
  • FIG. 6 (b) is Example 2.
  • the existing methods of manual arc welding, tungsten-argon arc welding, gas-shielded arc welding, and laser welding of high-nitrogen austenitic stainless steels are still not suitable for directly preparing non-magnetic drill collars, but
  • the method for preparing non-magnetic drill collars by hot rolling and integral machining cutting also has problems such as low utilization rate, low production efficiency, high preparation cost, and difficult to repair failed drill collars. Therefore, the present invention proposes an axial friction welding preparation The method for a non-magnetic drill collar is further described below with reference to the accompanying drawings and specific embodiments.
  • both the continuous driving axial friction welding process and the inertial axial friction welding process can be realized by the equipment shown in Figure 2 of the specification.
  • the difference is that when the inertial axial friction welding process is used, the flywheel and the rotation are driven by the driving device. After the workpiece at the end reaches the predetermined speed, the driving of the flywheel and the workpiece at the rotating end is stopped, and then the friction inertia of the workpiece at the flywheel and the rotating end is used to realize friction welding.
  • a method for preparing a non-magnetic drill collar by continuously driving the axial friction welding process includes the following steps:
  • Welding interface treatment High nitrogen austenitic stainless steel (composition shown in Table 1) is made into a workpiece with an outer diameter of ⁇ 104.8mm, a wall thickness of 20mm, and a length of 300mm. Use sandpaper to clean the oxidation of the workpiece to be welded. Skin, while using alcohol and acetone to remove oil stains on the interface to be welded;
  • a method for preparing a non-magnetic drill collar by an inertial axial friction welding process includes the following steps:
  • Welding interface treatment high nitrogen austenitic stainless steel (composition shown in Table 1) is made into an outer diameter For workpieces with a wall thickness of 80mm and a length of 300mm, use sandpaper to clean the oxide scale on the interface to be welded, and use alcohol and acetone to remove the oil on the interface to be welded, etc .;
  • the preparation method is the same as in Example 1, except that the spindle speed is 2500 rad / min, the friction pressure is 50 MPa, the upset pressure is 600 MPa, the friction deformation is 3 mm, and the dwell time is 15 s.
  • the preparation method is the same as in Example 1, except that the spindle speed is 300 rad / min, the friction pressure is 300 MPa, the upset pressure is 60 MPa, the friction deformation is 8 mm, and the dwell time is 5 s.
  • the preparation method is the same as in Example 1, except that the spindle speed is 1000 rad / min, the friction pressure is 500 MPa, the upset pressure is 300 MPa, the friction deformation is 5 mm, and the dwell time is 20 s.
  • the preparation method is the same as in Example 2, except that the initial speed of the flywheel is 200 rad / min, the moment of inertia is 1000 kg ⁇ m 2 , the friction pressure is 300 MPa, the upset speed is 50 rad / min, the upset pressure is 600 MPa, and the holding time is 5s.
  • the preparation method is the same as in Example 2, except that the initial speed of the flywheel is 2500 rad / min, the moment of inertia is 100 kg ⁇ m 2 , the friction pressure is 50 MPa, the upset speed is 50 rad / min, the upset pressure is 60 MPa, and the holding time is 20s.
  • the preparation method is the same as that in Example 2, except that the initial speed of the flywheel is 600 rad / min, the moment of inertia is 400 kg ⁇ m 2 , the friction pressure is 150 MPa, the up-forging speed is 50 rad / min, the up-forging pressure is 300 MPa, and the holding time is 15s.
  • the non-magnetic drill collars prepared in Examples 1 and 2 were subjected to XRD test and microstructure observation, and the results are shown in FIGS. 5 and 6. It can be seen from FIG. 5 that the welding joint interface of the non-magnetic drill collar prepared by continuous driving axial friction welding is a single austenite structure, and no phase transformation occurs. It can be seen from FIG. 6 that, due to strong dynamic recrystallization near the interface of the welded joint, there are fine equiaxed austenite grains near the interface.
  • the non-magnetic drill collars prepared in Examples 1 and 2 were subjected to a tensile test using a WAW-300C universal tensile tester.
  • the non-magnetic drill collars of Example 1 were fractured from the base material, and the tensile strength of the welded joint was 982 MPa, which reached 98.7% of the base material, yield strength of 780 MPa, reached 94.5% of the base material, and the elongation after breaking was 40%.
  • the non-magnetic drill collar of Example 2 also broke from the base material.
  • the tensile strength of the welded joint was 990 MPa, which reached 99.6% of the base material, the yield strength was 776 MPa, which reached 94.0% of the base material, and the elongation after breaking was 36. %.
  • the mechanical properties of the welded joints of the non-magnetic drill collars prepared in the above two embodiments meet the mechanical performance requirements of the American Petroleum Institute (API) for the non-magnetic drill collars (as shown in Table 2).
  • Table 1 Composition of high nitrogen austenitic stainless steel for non-magnetic drill collars of Examples 1-4 (Wt.%)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

轴向摩擦焊接工艺制备高氮奥氏体不锈钢和无磁钻铤(3)的方法以及轴向摩擦焊接工艺在高氮奥氏体不锈钢和无磁钻铤(3)中的应用,无磁钻铤(3)及轴向摩擦焊接工艺修复无磁钻铤(3)的方法,以及上述方法和无磁钻铤(3)在石油和天然气深度钻采中的应用。

Description

高氮奥氏体不锈钢和无磁钻铤的轴向摩擦焊接工艺方法 技术领域
本发明属于轴向摩擦焊接工艺的应用领域,具体涉及利用连续驱动轴向摩擦焊接工艺和惯性轴向摩擦焊接工艺实现高氮奥氏体不锈钢焊接和油气资源勘探开发及地质勘探用的无磁钻铤的焊接和修复方法。
背景技术
在石油和天然气深度钻采过程中,无磁钻铤是钻柱最重要组成部分,其位于钻柱下方,具有向钻头提供钻进压力、提高钻柱刚度和确保随钻测量装置的测量精度等作用(如说明书附图1所示)。深度较大的油气井在钻探过程中为确保钻***度,都配备了随钻测量装置,其在钻探过程中通过感应井眼中的大地磁场,来对其垂直度进行修正,确保竖井钻探过程中方向的准确性。随钻测量装置必须在无磁的环境下工作以防止钻探过程中除地磁场外的其他磁场对随钻测量装置的干扰,因此钻柱下所连接的钻铤需具有较低的磁导率,较高的强度及耐蚀性。
无磁钻铤所用材料经历了AISI-300系不锈钢、耐蚀合金、氮合金化不锈钢三个阶段,最初为AISI-300系不锈钢,这类材料易制备且成本较低,在服役条件良好的情况下,尚可满足要求,但随着我国高含硫探井的大量开发及钻采深度的增加,其耐腐蚀性能、力学性能等已无法满足要求。采用铍铜合金及Monel合金制造的无磁钻铤基本可以满足其性能要求,但由于价格昂贵,现已被高氮奥氏体不锈钢所替代。目前,研究人员主要采用手工电弧焊(SMAW)、钨极氩弧焊(GTAW)、熔化极气体保护焊(GMAW)、激光焊等方法对这类不锈钢进行焊接。但采用手工电弧焊时,由于高氮奥氏体不锈钢的热导率较小,线膨胀系数较大,焊后易产生较大变形。钨极氩弧焊的焊接效率较低,焊接成本太高,而且易产生夹钨现象。熔化极气体保护焊(GMAW)在焊接的过程中易产生气孔及飞溅等缺陷。激光焊接的成本较高,且要求焊件装配精度较高。以上焊接方法均属熔焊工艺,使用熔焊工艺焊接高氮奥氏体不锈钢时通常存在以下问题:熔焊的热输入较大,在材料凝固的过程中易发生相变,从而使焊接接头处的磁导率发生变化;焊缝氮元素易流失,熔合区易产生氮气孔;碳化物、氮化物易析出,降低了焊接接头的耐蚀性;且易产生焊接热裂纹等问题。
目前,无磁钻铤的主要加工方式为热轧和整体机加工,该加工方式可使无磁钻铤具有与母材相同的力学性能及耐腐蚀性能,同时加工过程中材料不发生相变,其磁导率始终保持较 低水平,特别是对于一些不等直径的无磁钻铤制造来说,整体切削加工浪费大量材料,材料的利用率及生产效率较低,无磁钻铤的制造成本大幅增加,且当无磁钻铤断裂失效时,只能进行报废,无法修复。
可以看出,现有的高氮奥氏体不锈钢焊接工艺如手工电弧焊、钨极氩弧焊、熔化极气体保护焊、激光焊等方法在制造和修复无磁钻铤应用中仍然存在很大的问题,甚至不宜直接用来制备无磁钻铤,但整体切削制备无磁钻铤的方法也存在利用率低、生产效率较低、制备成本高、失效钻铤难以修复等问题,因此,有必要研究一种新的不等直径无磁钻铤的制备及修复方法。
发明内容
针对上述现有技术中存在的问题,本发明旨在提供轴向摩擦焊接工艺实现高氮奥氏体不锈钢的焊接及实现高氮奥氏体不锈钢材质的无磁钻铤的焊接制造和修复。本发明提出以轴向摩擦焊接工艺和惯性轴向摩擦焊接工艺对无磁钻铤进行加工及修复的方法,以改善现有加工方法的材料浪费、成本较高、生产效率较低的问题,并克服了失效钻铤难以修复的问题。本发明首次提出采用轴向摩擦焊接的方式生产及修复无磁钻铤,同时也是首次采用该工艺方法对高氮奥氏体不锈钢进行焊接,并且制备的无磁钻铤的力学性能完全满足美国石油协会(API)的要求。
本发明的目的之一是提供连续驱动轴向摩擦焊接工艺在高氮奥氏体不锈钢中的应用。
本发明的目的之二是提供惯性轴向摩擦焊接工艺在高氮奥氏体不锈钢中的应用。
本发明的目的之三是提供连续驱动轴向摩擦焊接工艺在无磁钻铤制备中的应用。
本发明的目的之四是提供惯性轴向摩擦焊接工艺在无磁钻铤制备中的应用。
本发明的目的之五是提供连续驱动轴向摩擦焊接工艺制备的无磁钻铤。
本发明的目的之六是提供惯性轴向摩擦焊接工艺制备的无磁钻铤。
本发明的目的之七是提供修复断裂、磨损失效的无磁钻铤的方法。
本发明的目的之八是提供连续驱动轴向摩擦焊接、惯性轴向摩擦焊接工艺制备无磁钻铤的方法及其制备的无磁钻铤,修复断裂、磨损失效的无磁钻铤的方法的应用。
为实现上述发明目的,具体的,本发明公开了下述技术方案:
首先,本发明公开了连续驱动轴向摩擦焊接工艺在高氮奥氏体不锈钢中的应用。
优选的,所述应用为:一种连续驱动轴向摩擦焊接工艺焊接高氮奥氏体不锈钢的方法:将高氮奥氏体不锈钢夹装到连续驱动轴向摩擦焊机的夹具中,通过高氮奥氏体不锈钢之间的 相对转动产生的摩擦和对高氮奥氏体不锈钢施加的顶锻压力进行焊接。
具体的,所述连续驱动轴向摩擦焊接工艺焊接高氮奥氏体不锈钢的方法包括如下步骤:
(1)焊接界面处理:清理高氮奥氏体不锈钢工件待焊界面的氧化皮、油污;
(2)焊件装夹:将步骤(1)中的工件夹装到摩擦焊机的夹具中,旋转端夹具和移动端夹具中各夹装一工件,且工件、旋转端和移动端夹具保持同轴;
(3)焊接:设置主轴转速、摩擦压力、摩擦变形量、顶锻压力、保压时间参数后对步骤(2)中的工件进行焊接,焊接开始时,移动端的工件向旋转端的工件移动,主轴带动旋转端工件开旋转,旋转端工件与移动端工件接触后在摩擦压力的作用下开始摩擦产热,接头处摩擦变形,变形量达到设定值,停止驱动,沿着工件的轴向对工件施加顶锻压力并保压,卸载顶锻压力后取出工件即可。
其次,本发明公开了连续驱动轴向摩擦焊接工艺在无磁钻铤制备中的应用;优选的,所述应用为:一种连续驱动轴向摩擦焊接制备无磁钻铤的方法:将待焊无磁钻铤工件夹装到连续驱动轴向摩擦焊机的夹具中,通过待焊无磁钻铤工件之间的相对转动产生的摩擦和对待焊无磁钻铤工件施加的顶锻压力进行焊接,即得无磁钻铤。
具体的,本发明公开一种连续驱动轴向摩擦焊接工艺制备高氮奥氏体不锈钢无磁钻铤的方法,包括如下步骤:
(1)焊接界面处理:将高氮奥氏体不锈钢制备成满足无磁钻铤形状和规格的待焊工件,清理工件待焊界面的氧化皮、油污;
(2)焊件装夹:将步骤(1)中的工件夹装到摩擦焊机中,旋转端夹具和移动端夹具中各夹装一工件,且工件、旋转端和移动端夹具保持同轴;
(3)焊接:设置主轴转速、摩擦压力、摩擦变形量、顶锻压力、保压时间参数后对步骤(2)中的工件进行焊接,焊接开始时,移动端的工件向旋转端的工件移动,主轴带动旋转端工件开旋转,,两者接触后在摩擦压力的作用下开始摩擦产热,接头处摩擦变形,变形量达到设定值,旋转停止,顶锻开始,沿着工件的轴向对工件施加顶锻压力并保压,卸载顶锻压力后取出工件,即得高氮奥氏体不锈钢无磁钻铤。
步骤(1)中,所述焊接界面处理的方法为:用砂纸清理工件待焊界面的氧化皮,同时用酒精和丙酮去除待焊界面的油污等。
步骤(3)中,所述主轴转速为300-2500rad/min,优选为2200rad/min。
步骤(3)中,所述摩擦压力为50-500MPa。
步骤(3)中,所述摩擦变形量为3-8mm,优选为5mm。
步骤(3)中,所述顶锻压力为60-600Mpa。
步骤(3)中,所述保压时间为5-20s,优选为10s。
需要说明的是,本发明通过正交试验的极差分析和方差分析获知:顶锻压力对无磁钻铤用高氮奥氏体不锈钢连续驱动轴向摩擦焊接接头的影响较大,同时,由于待焊界面附近的工件在摩擦产热的作用下处于热塑性态,在较大的顶锻压力下,处于热塑性态的待焊界面能够发生强烈的动态再结晶,会使晶粒明显细化,形成动态再结晶区,根据Hall-Patch公式可知,晶粒尺寸越小,屈服强度越高,并且由于动态再结晶的过程中晶粒处于大变形压力下,会使焊接区产生高的位错密度,且位错发生缠结,能够有效改善得到的无磁钻铤的力学性能,因此本发明选择在60-600MPa这一范围的顶锻压力下对无磁钻铤用高氮奥氏体不锈钢进行焊接。
再次,本发明公开了惯性轴向摩擦焊接工艺在高氮奥氏体不锈钢中的应用;优选的,所述应用为:一种惯性轴向摩擦焊接工艺制备无磁钻铤的方法:将待焊无磁钻铤工件夹装到摩擦焊机的夹具中,将飞轮驱动到预定的转速后停止驱动,利用飞轮的惯性所带来的工件之间的相对转动产生的摩擦和施加的顶锻压力对待焊无磁钻铤工件进行焊接,即得无磁钻铤。
具体的,本发明公开一种惯性轴向摩擦焊接工艺焊接高氮奥氏体不锈钢的方法,包括如下步骤:
(1)焊接界面处理:将高氮奥氏体不锈钢制备成满足无磁钻铤形状和规格的待焊工件,清理工件待焊界面的氧化皮、油污;
(2)焊件装夹:将步骤(1)中的工件夹装到摩擦焊机的夹具中,旋转端夹具和移动端夹具中各夹装一工件,且工件、旋转端和移动端夹具保持同轴;
(3)设置飞轮初始转速及其转动惯量、摩擦压力、顶锻压力、保压时间后,对步骤(2)中的工件进行焊接,焊接开始时,在驱动电机驱动下,飞轮及旋转端工件同时转动,当转速达到飞轮初始转速时,驱动电机停止驱动,同时移动端工件朝旋转端方向移动,两者接触后在摩擦压力的作用下摩擦产热,摩擦界面及其附近金属达到高温塑性状态并发生塑性变形,当飞轮转速下降为预定值时,沿着工件的轴向对工件施加顶锻压力并保压,卸载顶锻压力后取出工件,即得无磁钻铤。
步骤(1)中,所述焊接界面处理的方法为:用砂纸清理工件待焊界面的氧化皮,同时用酒精和丙酮去除待焊界面的油污等。
步骤(3)中,所述飞轮起始转速为200-2500rad/min。
步骤(3)中,所述转动惯量为100-1000kg·m 2
步骤(3)中,所述摩擦压力为50-300MPa。
步骤(3)中,所述顶锻时的转速为50rad/min。
步骤(3)中,所述顶锻压力为60-600MPa。
步骤(3)中,所述保压时间为5-20s,优选为10s。
再其次,本发明公开了利用连续驱动轴向摩擦焊接工艺和惯性轴向摩擦焊接工艺制备的无磁钻铤,所述无磁钻铤的材质为高氮奥氏体不锈钢。
优选的,所述无磁钻铤的材质为:质量百分数,18.61%Mn、17.47%Cr、1.161%Cu、0.8531%Mo、0.625%N、0.5065%Ni、0.1339%C、0.07%V、0.3847%Si、0.012%Al,Fe余量,所述无磁钻铤的规格为外径
Figure PCTCN2018117508-appb-000001
壁厚20-80mm,其焊接接头处的抗拉强度为850MPa以上,屈服强度为770MPa以上,断后伸长率为25%以上。
另外,本发明还公开了修复断裂、磨损失效的无磁钻铤的方法,包括如下步骤:
(1)将断裂损坏的无磁钻铤的端口加工成平面状,得待焊无磁钻铤工件;
(2)将步骤(1)中工件夹装到连续驱动轴向摩擦焊机的夹具中,通过待焊无磁钻铤工件之间的相对转动产生的摩擦和对待焊无磁钻铤工件施加的顶锻压力进行焊接;
或者,将步骤(1)中工件夹装到惯性轴向摩擦焊机的夹具中,将工件驱动到预定的转速后停止驱动,利用飞轮的惯性带来的工件之间的相对转动产生的摩擦和对待焊无磁钻铤工件施加的顶锻压力进行焊接,即可修复断裂、磨损失效的无磁钻铤。
需要说明的是,所述断裂、磨损失效的无磁钻铤的修复原理为:只需要将断裂损坏的无磁钻铤的端口加工成平面状后,就可以将其作为新的待焊接的工件,后续的修复方法和通过连续驱动轴向摩擦焊接工艺和惯性轴向摩擦焊接工艺制备无磁钻铤的方法一致。
最后,本发明还公开了连续驱动轴向摩擦焊接、惯性轴向摩擦焊接工艺制备无磁钻铤的方法及其制备的无磁钻铤、修复断裂、磨损失效的无磁钻铤的方法在石油和天然气深度钻采中的应用。
与现有技术相比,本发明取得的有益效果是:
(1)本发明利用无磁钻铤的管状特点以及连续驱动轴向摩擦焊接工艺和惯性轴向摩擦焊接工艺正好可以使管状材的无磁钻铤连续进行轴向旋转的特点,巧妙地实现了对无磁钻铤的焊接;同时,由于焊接过程中热输入较低,不会导致焊接接头处发生相变,有效避免了相变 对磁导率的影响,使焊接接头处的磁导率能够保持在较低水平,有效保证了钻铤需要在低磁环境下工作的要求。
(2)本发明采用的连续驱动轴向摩擦焊接工艺和惯性轴向摩擦焊接工艺能够修复断裂、磨损失效的无磁钻铤,从而实现了将本应报废的无磁钻铤修复后再次利用,大幅降低了无磁钻铤的使用成本。
(3)本发明利用连续驱动轴向摩擦焊接工艺和惯性轴向摩擦焊接工艺所制备的无磁钻铤的焊接接头处为细小等轴状的奥氏体晶粒,焊接接头处的焊接质量稳定、力学性能优良,能完全满足美国石油协会(API)对无磁钻铤的力学性能要求。
(4)利用本发明的采用的连续驱动轴向摩擦焊接工艺和惯性轴向摩擦焊接工艺在焊接过程中不需要在焊接接头处添加填充金属,可大幅度提高生产效率;同时,由于不需要对工件进行整体切削加工,可以大幅度节约材料,降低无磁钻铤的制造成本。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明背景技术所述的钻具结构示意图。
图2为本发明实施例1中连续驱动轴向摩擦焊接焊机的结构示意图。
图3为本发明实施例2中惯性轴向摩擦焊接焊机的结构示意图。
图4为本发明实施例1轴向摩擦焊接制备无磁钻铤过程示意图。
图5为本发明实施例1和2制备的无磁钻铤焊接接头界面处的X射线衍射图谱;其中,图5(a)为实施例1,图5(b)为实施例2。
图6为本发明实施例1和2制备的无磁钻铤焊接接头界面处的金相显微组织图;其中,图6(a)为实施例1,图6(b)为实施例2。
附图中标记分别代表:1-钻杆、2-加重钻杆、3-无磁钻铤、4-钻头、5-驱动电机、6-离合器、7-制动器、8-旋转端工件、9-移动端工件、10-导轨、11-液压***、12-飞轮、13-移动端夹具、14-旋转端夹具。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有的焊接高氮奥氏体不锈钢的手工电弧焊、钨极氩弧焊、熔化极气体保护焊、激光焊等方法仍然不宜直接用来制备无磁钻铤,但热轧及整体机加工切削制备无磁钻铤的方法也存在利用率低、生产效率较低、制备成本高、失效钻铤难以修复等问题,因此,本发明提出了一种轴向摩擦焊接制备无磁钻铤的方法,下面结合附图和具体实施方式对本发明做进一步的说明。
需要说明的是:连续驱动轴向摩擦焊接工艺和惯性轴向摩擦焊接工艺均可通过说明书附图2所示的设备实现,区别在于采用惯性轴向摩擦焊接工艺时,在驱动装置使飞轮及旋转端的工件达到预定的转速后,停止对飞轮、旋转端的工件驱动,然后利用飞轮和旋转端的工件的惯性实现摩擦焊接。
实施例1
如图2-4所示,一种连续驱动轴向摩擦焊接工艺制备无磁钻铤的方法,包括如下步骤:
(1)焊接界面处理:将高氮奥氏体不锈钢(成分如表1所示)制成规格为外径φ104.8mm,壁厚20mm,长300mm的工件,用砂纸清理工件待焊界面的氧化皮,同时用酒精和丙酮去除待焊界面的油污等;
(2)焊件装夹:将步骤(1)中的工件夹装到HSMZ-130型轴向摩擦焊机中,在移动端夹具13和焊机的旋转端夹具14中各夹装一工件(旋转端工件8、移动端工件9),且保证工件8和9与旋转端夹具、移动端夹具保持同轴;通过HSMZ-130焊机的控制***设置主轴转速为2200rad/min,摩擦压力为80MPa,顶锻压力为500MPa,摩擦变形量为5mm;
(4)焊接:启动驱动电机5和离合器6,对步骤(2)中旋转端工件8、移动端工件9进行焊接,焊接开始时,移动端工件9通过导轨10向旋转端工件8移动,此时主轴带动旋转端工件8开始旋转,旋转端工件8与移动端工件9接触后在摩擦压力的作用下开始摩擦产热,当摩擦变形量达到设定值时,通过制动器7使旋转端工件8停止旋转,开始顶锻,通过液压***11对沿着工件的轴向对工件施加顶锻压力并保压10s,保压完成后通过卸载顶锻压力后取出工件,即得高氮奥氏体不锈钢无磁钻铤。
实施例2
如图2-4所示,一种惯性轴向摩擦焊接工艺制备无磁钻铤的方法,包括如下步骤:
(1)焊接界面处理:将高氮奥氏体不锈钢(成分如表1所示)制成规格为外径
Figure PCTCN2018117508-appb-000002
壁厚80mm,长300mm的工件,用砂纸清理工件待焊界面的氧化皮,同时用酒精和丙酮去除待焊界面的油污等;
(2)焊件装夹:将步骤(1)中的工件夹装到HSMZ-130型轴向摩擦焊机中,在焊机的移动端夹具13和旋转端夹具14中各夹装一工件(旋转端工件8、移动端工件9),且保证工件8和9与旋转端夹具、移动端夹具保持同轴;通过HSMZ-130焊机的控制***设置飞轮起始转速为2000rad/min,飞轮转动惯量为600kg·m 2,摩擦压力为200MPa,顶锻时的转速为50rad/min,顶锻压力为500MPa;
(4)焊接:启动驱动电机5和离合器6,对步骤(2)中旋转端工件8、移动端工件9进行焊接,焊接开始时,在驱动电机5的驱动下,飞轮12及旋转端工件8同时转动,当转速达到飞轮初始转速时,驱动电机5停止驱动,移动端工件9通过导轨10向旋转端工件8移动,此时旋转端工件8开始旋转,旋转端工件8与移动端工件9接触后在摩擦压力的作用下开始摩擦产热,摩擦界面及其附近金属达到高温塑性状态并发生塑性变形,当飞轮12转速达到顶锻所需的转速时,开始顶锻,通过液压***11沿着工件的轴向对工件施加顶锻压力并保压10s,保压完成后通过卸载顶锻压力后取出工件,即得高氮奥氏体不锈钢无磁钻铤。
实施例3
制备方法同实施例1,区别在于:主轴转速为2500rad/min,摩擦压力为50MPa,顶锻压力为600MPa,摩擦变形量为3mm;保压时间为15s。
实施例4
制备方法同实施例1,区别在于:主轴转速为300rad/min,摩擦压力为300MPa,顶锻压力为60MPa,摩擦变形量为8mm,保压时间为5s。
实施例5
制备方法同实施例1,区别在于:主轴转速为1000rad/min,摩擦压力为500MPa,顶锻压力为300MPa,摩擦变形量为5mm,保压时间为20s。
实施例6
制备方法同实施例2,区别在于:飞轮起始转速为200rad/min,转动惯量为1000kg·m 2,摩擦压力为300MPa,顶锻转速为50rad/min,顶锻压力为600MPa,保压时间为5s。
实施例7
制备方法同实施例2,区别在于:飞轮起始转速为2500rad/min,转动惯量为100kg·m 2,摩擦压力为50MPa,顶锻转速为50rad/min,顶锻压力为60MPa,保压时间为20s。
实施例8
制备方法同实施例2,区别在于:飞轮起始转速为600rad/min,转动惯量为400kg·m 2,摩擦压力为150MPa,顶锻转速为50rad/min,顶锻压力为300MPa,保压时间为15s。
性能测试:
对实施例1和实施例2制备的无磁钻铤进行XRD测试、显微组织观察,结果如图5和6所示。从图5可以看出,采用连续驱动轴向摩擦焊接制备的无磁钻铤的焊接接头界面处为单一的奥氏体组织,均未发生相变。从图6可以看出,由于焊接接头界面附近产生了强烈的动态再结晶,因此界面附近为细小等轴状的奥氏体晶粒。
对实施例1和实施例2制备的无磁钻铤使用WAW-300C万能拉伸试验机进行拉伸实验,其中,实施例1的无磁钻铤断裂于母材,焊接接头的抗拉强度为982MPa,达到了母材的98.7%,屈服强度为780MPa,达到了母材的94.5%,断后伸长率为40%。实施例2的无磁钻铤也断裂于母材,焊接接头的抗拉强度为990MPa,达到了母材的99.6%,屈服强度为776MPa,达到了母材的94.0%,断后伸长率为36%。上述两个实施例制备的无磁钻铤的焊接接头的力学性能均满足美国石油协会(API)对于无磁钻铤的力学性能要求(如表2所示)。
表1实施例1-4无磁钻铤所用的高氮奥氏体不锈钢成分(Wt.%)
Figure PCTCN2018117508-appb-000003
表2 API对无磁钻铤的力学性能要求
Figure PCTCN2018117508-appb-000004
以上所述仅为本申请的优选实施例,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 连续驱动轴向摩擦焊接工艺在高氮奥氏体不锈钢中的应用;或,惯性轴向摩擦焊接工艺在高氮奥氏体不锈钢中的应用。
  2. 连续驱动轴向摩擦焊接工艺在无磁钻铤制备中的应用;或,惯性轴向摩擦焊接工艺在无磁钻铤制备中的应用。
  3. 一种连续驱动轴向摩擦焊接工艺焊接高氮奥氏体不锈钢的方法,其特征在于:将高氮奥氏体不锈钢夹装到连续驱动轴向摩擦焊机的夹具中,通过高氮奥氏体不锈钢之间的相对转动产生的摩擦和对高氮奥氏体不锈钢施加的顶锻压力进行焊接;
    优选的,所述方法具体包括如下步骤:
    (1)焊接界面处理:清理高氮奥氏体不锈钢工件待焊界面的氧化皮、油污;
    (2)焊件装夹:将步骤(1)中的工件夹装到摩擦焊机的夹具中,旋转端夹具和移动端夹具中各夹装一工件,且工件、旋转端和移动端夹具保持同轴;
    (3)焊接:设置主轴转速、摩擦压力、摩擦变形量、顶锻压力、保压时间参数后对步骤(2)中的工件进行焊接,焊接开始时,移动端的工件向旋转端的工件移动,主轴带动旋转端工件开旋转,旋转端工件与移动端工件接触后在摩擦压力的作用下开始摩擦产热,接头处摩擦变形,变形量达到设定值,旋转停止,顶锻开始,沿着工件的轴向对工件施加顶锻压力并保压,卸载顶锻压力后取出工件即可。
  4. 一种连续驱动轴向摩擦焊接工艺制备无磁钻铤的方法,其特征在于:将待焊无磁钻铤工件夹装到续驱动轴向摩擦焊机的夹具中,通过待焊无磁钻铤工件之间的相对转动产生的摩擦和对待焊无磁钻铤工件施加的顶锻压力进行焊接,即得无磁钻铤。
  5. 一种连续驱动轴向摩擦焊接工艺制备高氮奥氏体不锈钢无磁钻铤的方法,其特征在于:所述方法包括如下步骤:
    (1)焊接界面处理:将高氮奥氏体不锈钢制备成满足无磁钻铤形状和规格的待焊工件,清理工件待焊界面的氧化皮、油污;
    (2)焊件装夹:将步骤(1)中的工件夹装到摩擦焊机中,旋转端夹具和移动端夹具中各夹装一工件,且工件、旋转端和移动端夹具保持同轴;
    (3)焊接:设置主轴转速、摩擦压力、摩擦变形量、顶锻压力、保压时间参数后对步骤(2)中的工件进行焊接,焊接开始时,移动端的工件向旋转端的工件移动,主轴带动旋转端工件开旋转,旋转端工件与移动端工件接触后在摩擦压力的作用下开始摩擦产热,接头处摩擦变形,变形量达到设定值,旋转停止,顶锻开始,沿着工件的轴向对工件施加顶锻压力并 保压,卸载顶锻压力后取出工件,即得高氮奥氏体不锈钢无磁钻铤;
    优选的,步骤(3)中,所述主轴转速为300-2500rad/min,优选为2200rad/min;
    或,所述摩擦压力为50-500MPa;
    或,所述摩擦变形量为3-8mm,进一步优选为5mm;
    或,所述顶锻压力为60-600Mpa;
    或,所述保压时间为5-20s,进一步优选为10s。
  6. 一种惯性轴向摩擦焊接工艺制备无磁钻铤的方法,其特征在于:将待焊无磁钻铤工件夹装到摩擦焊机的夹具中,将飞轮及工件驱动到预定的转速后停止驱动,利用飞轮及工件的惯性带来的工件之间的相对转动所产生的摩擦和施加的顶锻压力对待焊无磁钻铤工件进行焊接,即得无磁钻铤。
  7. 一种惯性轴向摩擦焊接工艺制备无磁钻铤的方法,其特征在于:所述方法具体包括如下步骤:
    (1)焊接界面处理:将高氮奥氏体不锈钢制备成满足无磁钻铤形状和规格的待焊工件,清理工件待焊界面的氧化皮、油污;
    (2)焊件装夹:将步骤(1)中的工件夹装到摩擦焊机的夹具中,旋转端夹具和移动端夹具中各夹装一工件,且工件、旋转端和移动端夹具保持同轴;
    (3)设置飞轮初始转速及其转动惯量、摩擦压力、顶锻压力、保压时间,对步骤(2)中的工件进行焊接,焊接开始时,在驱动电机驱动下,飞轮及旋转端工件同时转动,当转速达到飞轮初始转速时,驱动电机停止驱动,同时移动端工件朝旋转端方向移动,两者接触后在摩擦压力的作用下摩擦产热,当飞轮转速下降为预定值时,沿着工件的轴向对工件施加顶锻压力并保压,卸载顶锻压力后取出工件,即得无磁钻铤;
    优选的,步骤(3)中,所述飞轮起始转速为200-2500rad/min;
    或,步骤(3)中,所述转动惯量为100-1000kg·m 2
    或,步骤(3)中,所述摩擦压力为50-300MPa;
    或,步骤(3)中,所述顶锻时的转速为50rad/min;
    或,步骤(3)中,所述顶锻压力为60-600MPa;
    或,步骤(3)中,所述保压时间为5-20s,优选为10s。
  8. 如权利要求4-7任一项所述的方法制备的无磁钻铤,其特征在于:所述无磁钻铤的材质为:以质量百分数计:18.61%Mn、17.47%Cr、1.161%Cu、0.8531%Mo、0.625%N、0.5065% Ni、0.1339%C、0.07%V、0.3847%Si、0.012%Al,Fe余量,所述无磁钻铤的规格为外径φ104.8-φ228.6,壁厚20-80mm;优选的,其焊接接头处的抗拉强度为850MPa以上,屈服强度为770MPa以上,断后伸长率为25%以上。
  9. 修复断裂、磨损失效的无磁钻铤的方法,其特征在于:所述方法包括如下步骤:
    (1)将断裂损坏的无磁钻铤的端口加工成平面状,得待焊无磁钻铤工件;
    (2)将步骤(1)中工件夹装到连续驱动轴向摩擦焊机的夹具中,通过待焊无磁钻铤工件之间的相对转动产生的摩擦和对待焊无磁钻铤工件施加的顶锻压力进行焊接;
    或者,将步骤(1)中工件夹装到摩擦焊机的夹具中,将飞轮及工件驱动到预定的转速后停止驱动,利用飞轮及工件的惯性带来的工件之间的相对转动摩擦所产生的热量和对待焊无磁钻铤工件施加的顶锻压力进行焊接,即可修复断裂、磨损失效的无磁钻铤。
  10. 权利要求4所述的连续驱动轴向摩擦焊接工艺制备无磁钻铤的方法和/或权利要求5所述的连续驱动轴向摩擦焊接工艺制备高氮奥氏体不锈钢无磁钻铤的方法和/或权利要求6所述的惯性轴向摩擦焊接工艺制备无磁钻铤的方法和/或权利要求7所述的惯性轴向摩擦焊接工艺制备高氮奥氏体不锈钢无磁钻铤的方法和/或权利要求8所述的无磁钻铤和/或权利要求9所述的方法在石油和天然气深度钻采中的应用。
PCT/CN2018/117508 2018-07-09 2018-11-26 高氮奥氏体不锈钢和无磁钻铤的轴向摩擦焊接工艺方法 WO2020010782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810746344.5A CN108907447A (zh) 2018-07-09 2018-07-09 高氮奥氏体不锈钢和无磁钻铤的轴向摩擦焊接工艺方法
CN201810746344.5 2018-07-09

Publications (1)

Publication Number Publication Date
WO2020010782A1 true WO2020010782A1 (zh) 2020-01-16

Family

ID=64410648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117508 WO2020010782A1 (zh) 2018-07-09 2018-11-26 高氮奥氏体不锈钢和无磁钻铤的轴向摩擦焊接工艺方法

Country Status (2)

Country Link
CN (1) CN108907447A (zh)
WO (1) WO2020010782A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230130962A1 (en) * 2021-10-22 2023-04-27 Halliburton Energy Services, Inc. Processing route to design and manufacture highly configurable non-magnetic down-hole sensor collars

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109590598B (zh) * 2018-12-13 2020-05-01 山东大学 一种摩擦预热的惯性摩擦焊接工艺方法
CN110014218A (zh) * 2019-04-26 2019-07-16 嘉兴三和精密科技有限公司 摩擦焊接装置及其摩擦焊接工艺
CN110440963B (zh) 2019-08-02 2020-07-10 山东大学 一种惯性摩擦焊机能量转化效率检测***及方法
CN111113055B (zh) * 2019-12-05 2021-10-22 中煤科工集团西安研究院有限公司 用于煤矿坑道定向钻进用无磁钻杆的制备方法
CN114055073A (zh) * 2020-07-30 2022-02-18 江西理工大学 永磁体的加工方法和加工装置
CN112171199A (zh) * 2020-09-25 2021-01-05 无锡金羊管件有限公司 一种用于不锈钢管件的焊接工艺
CN113161839A (zh) * 2021-04-20 2021-07-23 国网河南省电力公司电力科学研究院 一种电力电缆中间接头导体的摩擦焊接工艺
CN114346403A (zh) * 2021-12-16 2022-04-15 中煤科工集团西安研究院有限公司 一种无磁钢电场复合连续驱动摩擦焊无磁钻杆的制备方法
CN114833438A (zh) * 2022-05-16 2022-08-02 福州大学 双相不锈钢与奥氏体不锈钢惯性摩擦焊接方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1069695A (en) * 1963-07-10 1967-05-24 American Mach & Foundry Friction welding
CN201620773U (zh) * 2010-02-25 2010-11-03 中国石油天然气集团公司 一种新型焊接式钻铤
CN203175417U (zh) * 2013-03-29 2013-09-04 山东明珠石油装备制造有限公司 一种焊接钻铤
CN106702290A (zh) * 2016-12-29 2017-05-24 钢铁研究总院 无磁钻铤用新型高氮奥氏体不锈钢及其制造方法
CN108817646A (zh) * 2018-07-09 2018-11-16 山东大学 一种利用线性摩擦焊接工艺焊接奥氏体合金钢和制备无磁钻铤的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002178166A (ja) * 2000-12-07 2002-06-25 National Institute For Materials Science 高窒素ステンレス鋼の接合方法
CN101597721A (zh) * 2009-07-08 2009-12-09 中原特钢股份有限公司 无磁钻具用钢及其生产方法
CN102199738A (zh) * 2010-03-23 2011-09-28 重庆仪表材料研究所 一种低碳节镍型高强高韧耐蚀无磁奥氏体不锈钢
CN102211248A (zh) * 2011-05-05 2011-10-12 衡阳鸿锦石油钻具有限公司 一种石油钻杆接头、钻杆及惯性摩擦焊接工艺和工装
CN104014928A (zh) * 2014-06-19 2014-09-03 西安特种设备检验检测院 一种马氏体耐热钢和奥氏体耐热钢的异种钢的焊接方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1069695A (en) * 1963-07-10 1967-05-24 American Mach & Foundry Friction welding
CN201620773U (zh) * 2010-02-25 2010-11-03 中国石油天然气集团公司 一种新型焊接式钻铤
CN203175417U (zh) * 2013-03-29 2013-09-04 山东明珠石油装备制造有限公司 一种焊接钻铤
CN106702290A (zh) * 2016-12-29 2017-05-24 钢铁研究总院 无磁钻铤用新型高氮奥氏体不锈钢及其制造方法
CN108817646A (zh) * 2018-07-09 2018-11-16 山东大学 一种利用线性摩擦焊接工艺焊接奥氏体合金钢和制备无磁钻铤的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAZRA, M. ET AL.: "Friction Welding of a Nickel Free High Nitrogen Steel: Influence of Forge Force on Microstructure, Mechanical Properties and Pitting Corrosion Resistance", JOURNAL OF MATERIALS RESEARCH & TECHNOLOGY, vol. 3, no. 1, 12 February 2014 (2014-02-12), pages 90 - 100, XP055680992 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230130962A1 (en) * 2021-10-22 2023-04-27 Halliburton Energy Services, Inc. Processing route to design and manufacture highly configurable non-magnetic down-hole sensor collars
US11654506B2 (en) * 2021-10-22 2023-05-23 Halliburton Energy Services, Inc. Processing route to design and manufacture highly configurable non-magnetic down-hole sensor collars

Also Published As

Publication number Publication date
CN108907447A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
WO2020010782A1 (zh) 高氮奥氏体不锈钢和无磁钻铤的轴向摩擦焊接工艺方法
CN108907446A (zh) 一种用于连接奥氏体合金钢和无磁钻铤的径向摩擦焊接工艺方法
CN108817646A (zh) 一种利用线性摩擦焊接工艺焊接奥氏体合金钢和制备无磁钻铤的方法
JP6730927B2 (ja) 段付き設計の溶接継手用作製物
EP3328581B1 (en) Repair of pipeline welds using friction stir processing
CN111331310B (zh) 筒壁上具有大开口的薄壁筒体钛合金铸件的缺陷修复方法
CN207464750U (zh) 一种钢管加工夹紧装置
JPWO2018070317A1 (ja) 摩擦撹拌接合方法および装置
CN110524105B (zh) 一种用于摩擦焊的旋转焊具及焊接方法
JP6240209B2 (ja) 管の製造方法、段差のある管およびテーパ状の管
CN105127583B (zh) 一种铝合金厚板搅拌摩擦焊方法
WO2017169992A1 (ja) 構造用鋼の摩擦撹拌接合方法及び装置
Kumaran et al. Effect of projection on joint properties of friction welding of tube-to-tube plate using an external tool
JP2007516351A (ja) 配管システムに使用されるステンレス鋼管の製造方法
JPH03243286A (ja) クラッド管の接合方法
CN211305187U (zh) 一种用于摩擦焊的旋转焊具
JP5538079B2 (ja) クラッド鋼材の接合方法及び接合構造
Shuaib et al. Friction stir seal welding (FSSW) tube-tubesheet joints made of steel
JP6493564B2 (ja) 摩擦撹拌接合方法および装置
CN107538142A (zh) 一种直缝焊管的焊接工艺
Zhang et al. Friction stir welding
CN101988370A (zh) 一种短流程柔性化钻杆生产设备及其生产工艺
Packer et al. Friction stir welding equipment and method for joining X65 pipe
CN108994419B (zh) 一种穿孔针复合堆焊制造方法
JP2008105061A (ja) 溶接部特性に優れた電縫管製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925808

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18925808

Country of ref document: EP

Kind code of ref document: A1