WO2020009262A1 - 반도체 발광소자를 이용한 디스플레이 장치 - Google Patents

반도체 발광소자를 이용한 디스플레이 장치 Download PDF

Info

Publication number
WO2020009262A1
WO2020009262A1 PCT/KR2018/007833 KR2018007833W WO2020009262A1 WO 2020009262 A1 WO2020009262 A1 WO 2020009262A1 KR 2018007833 W KR2018007833 W KR 2018007833W WO 2020009262 A1 WO2020009262 A1 WO 2020009262A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
semiconductor light
emitting device
conductive
Prior art date
Application number
PCT/KR2018/007833
Other languages
English (en)
French (fr)
Inventor
김정섭
장영학
김명수
정연홍
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/257,190 priority Critical patent/US20210159269A1/en
Priority to EP18925222.4A priority patent/EP3819941B1/en
Publication of WO2020009262A1 publication Critical patent/WO2020009262A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the present invention relates to a display device and a method for manufacturing the same, and more particularly, to an apparatus for a flexible display using a semiconductor light emitting device.
  • LCD Liguid Crystal Display
  • AMOLED Active Matrix Organic Light Emitting Diodes
  • LEDs Light Emitting Diodes
  • red LEDs using GaAsP compound semiconductors were commercialized, along with GaP: N series green LEDs. It has been used as a light source for display images of electronic devices including communication devices. Accordingly, a method of solving the above problems by implementing a display using the semiconductor light emitting device may be proposed.
  • the present invention provides a display device structure in which light extraction efficiency of the display device is improved and leakage current of the semiconductor light emitting device is improved.
  • An object of the present invention is to provide a display device that can prevent damage to the semiconductor light emitting device by heat or chemicals in the process of separating the semiconductor light emitting device from the growth substrate, and reduce the manufacturing cost.
  • Another object of the present invention is to provide a display device having a semiconductor light emitting device having increased light extraction efficiency.
  • Another object of the present invention is to provide a display device having a semiconductor light emitting device having a reduced surface leakage current.
  • a display device includes a plurality of semiconductor light emitting devices, and at least one of the semiconductor light emitting devices includes: a first conductive electrode and a second conductive electrode; A first conductive semiconductor layer on which the first conductive electrode is disposed; A second conductive semiconductor layer overlapping the first conductive semiconductor layer and on which the second conductive electrode is disposed; An active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer; An intermediate layer disposed on the second conductive semiconductor layer; A protrusion formed of a porous material capable of electropolishing on the intermediate layer; And an undoped semiconductor layer disposed between the intermediate layer and the protrusion.
  • the intermediate layer may include a first layer including a second conductive impurity; And a second layer having a second conductivity type impurity concentration higher than that of the first layer, wherein the first layer and the second layer are sequentially repeated and stacked.
  • the first layer may have a thickness greater than or equal to that of the second layer.
  • the thickness of the second layer may be within an error range of ⁇ 20% based on an integer multiple of 1/2 of the wavelength of the light emitted from the semiconductor light emitting device.
  • the first layer may be laminated on the second layer and protrude laterally by a predetermined length.
  • the predetermined length may be within an error range of ⁇ 20% based on an integer multiple of 1/2 of a wavelength of light emitted from the semiconductor light emitting device.
  • the porosity of the first layer is smaller than the porosity of the second layer.
  • the protrusion may be formed of a second conductive semiconductor and have a higher impurity concentration than the second layer.
  • the semiconductor device may further include a third layer between the intermediate layer and the undoped semiconductor layer, wherein the third layer may include a second conductive impurity and have a lower impurity concentration than the first layer.
  • the semiconductor device may include a passivation layer surrounding side surfaces of the first conductive semiconductor layer, the second conductive semiconductor layer, and the active layer.
  • the passivation layer is formed to extend to surround at least a portion of the side of the intermediate layer.
  • the display device when a layer of a porous material capable of electropolishing is disposed and the semiconductor light emitting device is separated from the growth substrate, it is separated by a mechanical lift-off method to heat or chemical. It is possible to prevent damage to the semiconductor light emitting device.
  • the display device can be provided by reducing the manufacturing cost by reducing the process cost.
  • the intermediate layer including the second conductive type impurity and formed of the first layer and the second layer may reduce reflection on the side surface of the semiconductor light emitting device.
  • the ratio of light emitted to the side of the semiconductor light emitting device is increased to improve the light extraction effect.
  • the second layer of the intermediate layer has a higher porosity than the first layer and has a high resistance.
  • the semiconductor light emitting device of the present invention may include a high resistance layer, thereby reducing the current leakage to the surface of the semiconductor light emitting device, thereby increasing the light emitting efficiency of the semiconductor light emitting device.
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using the semiconductor light emitting device of the present invention.
  • FIG. 2 is an enlarged view of a portion A of FIG. 1, and FIGS. 3A and 3B are cross-sectional views taken along the lines B-B and C-C of FIG. 2.
  • FIG. 4 is a conceptual diagram illustrating a flip chip type semiconductor light emitting device of FIG. 3.
  • 5A to 5C are conceptual views illustrating various forms of implementing colors in connection with a flip chip type semiconductor light emitting device.
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • FIG. 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the invention.
  • FIG. 8 is a cross-sectional view taken along the line D-D of FIG. 7.
  • FIG. 9 is a conceptual diagram illustrating the vertical semiconductor light emitting device of FIG. 8.
  • FIG. 10 is an enlarged view of portion A of FIG. 1 for explaining another embodiment of the present invention to which a display apparatus having a new structure is applied.
  • FIG. 11 is a cross-sectional view taken along line E-E of FIG. 10.
  • FIG. 13A is a conceptual diagram illustrating the vertical semiconductor light emitting device of FIG. 11.
  • FIG. 13B is a perspective view illustrating the vertical semiconductor light emitting device of FIG. 11.
  • 14A and 14B are cross-sectional views illustrating a method of manufacturing the vertical semiconductor light emitting device of FIG. 11.
  • 15 to 17 are conceptual views of another vertical semiconductor light emitting device of the display device having a new structure according to the present invention.
  • FIG. 18 is an enlarged view of portion A of FIG. 1 for explaining another embodiment of the present invention to which a display apparatus having a new structure is applied.
  • 19 is a cross-sectional view taken along the line G-G of FIG.
  • FIG. 20 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 18.
  • the display device described herein includes a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), navigation, and a slate PC. , Tablet PC, Ultra Book, digital TV, desktop computer.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • slate PC slate PC
  • Tablet PC Ultra Book
  • digital TV desktop computer
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using the semiconductor light emitting device of the present invention.
  • the information processed by the controller of the display apparatus 100 may be displayed using a flexible display.
  • the flexible display includes a display that can be bent, bent, twisted, foldable, or rollable by external force.
  • a flexible display can be a display fabricated on a thin, flexible substrate that can be bent, bent, folded, or rolled like a paper while maintaining the display characteristics of a conventional flat panel display.
  • the display area of the flexible display becomes flat.
  • the display area may be a curved surface in a state in which the first state is bent by an external force (for example, a state having a finite radius of curvature, hereinafter referred to as a second state).
  • the information displayed in the second state may be visual information output on a curved surface.
  • Such visual information is implemented by independently controlling light emission of a sub-pixel disposed in a matrix form.
  • the unit pixel refers to a minimum unit for implementing one color.
  • the unit pixel of the flexible display may be implemented by a semiconductor light emitting device.
  • the present invention exemplifies a light emitting diode (LED) as one type of semiconductor light emitting device for converting current into light.
  • the light emitting diode is formed to have a small size, thereby enabling it to serve as a unit pixel even in the second state.
  • FIG. 2 is a partially enlarged view of a portion A of FIG. 1
  • FIGS. 3A and 3B are cross-sectional views taken along the lines BB and CC of FIG. 2
  • FIG. 4 is a conceptual diagram illustrating a flip chip type semiconductor light emitting device of FIG. 3A.
  • 5A to 5C are conceptual views illustrating various forms of implementing colors in connection with a flip chip type semiconductor light emitting device.
  • a display device 100 using a passive matrix (PM) type semiconductor light emitting device is illustrated as a display device 100 using a semiconductor light emitting device.
  • PM passive matrix
  • AM active matrix
  • the display apparatus 100 includes a substrate 110, a first electrode 120, a conductive adhesive layer 130, a second electrode 140, and a plurality of semiconductor light emitting devices 150.
  • the substrate 110 may be a flexible substrate.
  • the substrate 110 may include glass or polyimide (PI).
  • PI polyimide
  • any material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET) may be used as long as it is an insulating and flexible material.
  • the substrate 110 may be either a transparent material or an opaque material.
  • the substrate 110 may be a wiring board on which the first electrode 120 is disposed, and thus the first electrode 120 may be positioned on the substrate 110.
  • the insulating layer 160 may be disposed on the substrate 110 on which the first electrode 120 is disposed, and the auxiliary electrode 170 may be positioned on the insulating layer 160.
  • a state in which the insulating layer 160 is stacked on the substrate 110 may be one wiring board.
  • the insulating layer 160 is made of an insulating and flexible material such as polyimide (PI, Polyimide), PET, and PEN, and can be formed integrally with the substrate 110 to form one substrate.
  • the auxiliary electrode 170 is an electrode that electrically connects the first electrode 120 and the semiconductor light emitting device 150.
  • the auxiliary electrode 170 is disposed on the insulating layer 160 and disposed to correspond to the position of the first electrode 120.
  • the auxiliary electrode 170 may have a dot shape and may be electrically connected to the first electrode 120 by an electrode hole 171 passing through the insulating layer 160.
  • the electrode hole 171 may be formed by filling a via material with a conductive material.
  • the conductive adhesive layer 130 is formed on one surface of the insulating layer 160, but the present invention is not necessarily limited thereto.
  • a layer is formed between the insulating layer 160 and the conductive adhesive layer 130 or a structure in which the conductive adhesive layer 130 is disposed on the substrate 110 without the insulating layer 160. It is also possible.
  • the conductive adhesive layer 130 may serve as an insulating layer.
  • the conductive adhesive layer 130 may be a layer having adhesiveness and conductivity.
  • the conductive adhesive layer 130 may be mixed with a conductive material and an adhesive material.
  • the conductive adhesive layer 130 is flexible, thereby enabling a flexible function in the display device.
  • the conductive adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, or the like.
  • ACF anisotropic conductive film
  • the conductive adhesive layer 130 allows electrical interconnection in the Z direction through the thickness, but may be configured as a layer having electrical insulation in the horizontal X-Y direction. Therefore, the conductive adhesive layer 130 may be referred to as a Z-axis conductive layer (however, hereinafter referred to as a 'conductive adhesive layer').
  • the anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member. When the heat and pressure are applied, only the specific portion is conductive by the anisotropic conductive medium.
  • the heat and pressure is applied to the anisotropic conductive film, other methods are possible in order for the anisotropic conductive film to be partially conductive. Such a method can be, for example, only one of the heat and pressure applied or UV curing or the like.
  • the anisotropic conductive medium may be, for example, conductive balls or conductive particles.
  • the anisotropic conductive film in this example is a film in which the conductive ball is mixed with the insulating base member, and only a specific portion of the conductive ball is conductive when heat and pressure are applied.
  • the anisotropic conductive film may be in a state in which a core of a conductive material contains a plurality of particles covered by an insulating film made of a polymer material, and in this case, a portion subjected to heat and pressure becomes conductive by the core as the insulating film is destroyed. .
  • the shape of the core may be deformed to form a layer in contact with each other in the thickness direction of the film.
  • heat and pressure are applied to the anisotropic conductive film as a whole, and the electrical connection in the Z-axis direction is partially formed by the height difference of the counterpart bonded by the anisotropic conductive film.
  • the anisotropic conductive film may be in a state containing a plurality of particles coated with a conductive material on the insulating core.
  • the portion to which the heat and pressure are applied is deformed (pressed) to have conductivity in the thickness direction of the film.
  • the conductive material may penetrate the insulating base member in the Z-axis direction and have conductivity in the thickness direction of the film. In this case, the conductive material may have a pointed end.
  • the anisotropic conductive film may be a fixed array anisotropic conductive film (fixed array ACF) consisting of a conductive ball inserted into one surface of the insulating base member.
  • the insulating base member is formed of an adhesive material, and the conductive ball is concentrated on the bottom portion of the insulating base member, and deforms with the conductive ball when heat and pressure are applied to the base member. Therefore, it has conductivity in the vertical direction.
  • the present invention is not necessarily limited thereto, and the anisotropic conductive film has a form in which conductive balls are randomly mixed in an insulating base member or a plurality of layers, in which a conductive ball is disposed in one layer (double- ACF) etc. are all possible.
  • the anisotropic conductive paste is a combination of a paste and a conductive ball, and may be a paste in which conductive balls are mixed with an insulating and adhesive base material.
  • solutions containing conductive particles can be solutions in the form of conductive particles or nanoparticles.
  • the second electrode 140 is positioned on the insulating layer 160 spaced apart from the auxiliary electrode 170. That is, the conductive adhesive layer 130 is disposed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the semiconductor light emitting device 150 is connected in a flip chip form by applying heat and pressure. In this case, the semiconductor light emitting device 150 is electrically connected to the first electrode 120 and the second electrode 140.
  • the semiconductor light emitting device may be a flip chip type light emitting device.
  • the semiconductor light emitting device may include a p-type electrode 156, a p-type semiconductor layer 155 on which the p-type electrode 156 is formed, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer ( The n-type semiconductor layer 153 formed on the 154 and the n-type electrode 152 disposed horizontally spaced apart from the p-type electrode 156 on the n-type semiconductor layer 153.
  • the p-type electrode 156 may be electrically connected to the auxiliary electrode 170 by the conductive adhesive layer 130, and the n-type electrode 152 may be electrically connected to the second electrode 140.
  • the auxiliary electrode 170 may be formed to be long in one direction, and one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
  • the p-type electrodes of the left and right semiconductor light emitting devices around the auxiliary electrode may be electrically connected to one auxiliary electrode.
  • the semiconductor light emitting device 150 is press-fitted into the conductive adhesive layer 130 by heat and pressure, through which the p-type electrode 156 and the auxiliary electrode 170 of the semiconductor light emitting device 150 are pressed. Only the portion and the portion between the n-type electrode 152 and the second electrode 140 of the semiconductor light emitting device 150 have conductivity, and the rest of the semiconductor light emitting device does not have a conductivity because there is no indentation. As such, the conductive adhesive layer 130 not only couples the semiconductor light emitting device 150 and the auxiliary electrode 170 and between the semiconductor light emitting device 150 and the second electrode 140 but also forms an electrical connection.
  • the plurality of semiconductor light emitting devices 150 constitute an array of light emitting devices, and a phosphor layer 180 is formed on the light emitting device array.
  • the light emitting device array may include a plurality of semiconductor light emitting devices having different luminance values.
  • Each semiconductor light emitting device 150 constitutes a unit pixel and is electrically connected to the first electrode 120.
  • a plurality of first electrodes 120 may be provided, the semiconductor light emitting devices may be arranged in a few rows, and the semiconductor light emitting devices may be electrically connected to any one of the plurality of first electrodes.
  • semiconductor light emitting devices are connected in a flip chip form, semiconductor light emitting devices grown on a transparent dielectric substrate may be used.
  • the semiconductor light emitting devices may be, for example, nitride semiconductor light emitting devices. Since the semiconductor light emitting device 150 has excellent brightness, individual unit pixels may be configured with a small size.
  • the partition wall 190 may be formed between the semiconductor light emitting devices 150.
  • the partition wall 190 may serve to separate the individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 130.
  • the base member of the anisotropic conductive film may form the partition wall.
  • the partition 190 may have reflective properties and contrast may be increased.
  • a reflective partition may be separately provided as the partition 190.
  • the partition 190 may include a black or white insulator according to the purpose of the display device.
  • the partition wall of the white insulator is used, the reflectivity may be improved, and when the partition wall of the black insulator is used, the contrast may be increased at the same time.
  • the phosphor layer 180 may be located on the outer surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and the phosphor layer 180 performs a function of converting the blue (B) light into the color of a unit pixel.
  • the phosphor layer 180 may be a red phosphor 181 or a green phosphor 182 constituting individual pixels.
  • a red phosphor 181 capable of converting blue light into red (R) light may be stacked on the blue semiconductor light emitting device 151 at a position forming a red unit pixel, and a position forming a green unit pixel.
  • a green phosphor 182 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 151.
  • only the blue semiconductor light emitting device 151 may be used alone in a portion of the blue unit pixel.
  • the unit pixels of red (R), green (G), and blue (B) may form one pixel. More specifically, phosphors of one color may be stacked along each line of the first electrode 120. Therefore, one line in the first electrode 120 may be an electrode for controlling one color. That is, red (R), green (G), and blue (B) may be sequentially disposed along the second electrode 140, and thus, a unit pixel may be implemented.
  • the present invention is not limited thereto, and instead of the phosphor, the semiconductor light emitting device 150 and the quantum dot QD may be combined to implement unit pixels of red (R), green (G), and blue (B). have.
  • a black matrix 191 may be disposed between the respective phosphor layers in order to improve contrast. That is, the black matrix 191 may improve contrast of the contrast.
  • the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green may be applied.
  • each semiconductor light emitting device 150 is mainly made of gallium nitride (GaN), and indium (In) and / or aluminum (Al) is added together to emit high light including blue. It can be implemented as an element.
  • the semiconductor light emitting devices 150 may be red, green, and blue semiconductor light emitting devices, respectively, to form a sub-pixel.
  • red, green, and blue semiconductor light emitting devices R, G, and B are alternately disposed, and red, green, and blue unit pixels are formed by red, green, and blue semiconductor light emitting devices. These pixels constitute one pixel, and thus, a full color display may be implemented.
  • the semiconductor light emitting device may include a white light emitting device W having a yellow phosphor layer for each individual device.
  • a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the white light emitting device W.
  • a unit pixel may be formed on the white light emitting device W by using a color filter in which red, green, and blue are repeated.
  • a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the ultraviolet light emitting device UV.
  • the semiconductor light emitting device can be used not only for visible light but also for ultraviolet light (UV) in all areas, and can be extended to a type of semiconductor light emitting device in which ultraviolet light (UV) can be used as an excitation source of the upper phosphor. .
  • the semiconductor light emitting device 150 is positioned on the conductive adhesive layer 130 to constitute a unit pixel in the display device. Since the semiconductor light emitting device 150 has excellent brightness, individual unit pixels may be configured with a small size.
  • the size of the individual semiconductor light emitting device 150 may be 80 ⁇ m or less in length of one side, and may be a rectangular or square device. In the case of a rectangle, the size may be 20 ⁇ 80 ⁇ m or less.
  • a square semiconductor light emitting device 150 having a side length of 10 ⁇ m is used as a unit pixel, sufficient brightness for forming a display device appears. Therefore, for example, when the size of the unit pixel is a rectangular pixel in which one side is 600 ⁇ m and the other side is 300 ⁇ m, the distance of the semiconductor light emitting device is relatively large. Therefore, in this case, it is possible to implement a flexible display device having an HD image quality.
  • the display device using the semiconductor light emitting device described above may be manufactured by a new type of manufacturing method. Hereinafter, the manufacturing method will be described with reference to FIG. 6.
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • the conductive adhesive layer 130 is formed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the insulating layer 160 is stacked on the first substrate 110 to form a single substrate (or a wiring substrate), and the first electrode 120, the auxiliary electrode 170, and the second electrode 140 are formed on the wiring substrate. Is placed.
  • the first electrode 120 and the second electrode 140 may be disposed in a direction perpendicular to each other.
  • the first substrate 110 and the insulating layer 160 may each include glass or polyimide (PI).
  • the conductive adhesive layer 130 may be implemented by, for example, an anisotropic conductive film.
  • an anisotropic conductive film may be applied to a substrate on which the insulating layer 160 is located.
  • the semiconductor light emitting device 150 may include a second substrate 112 corresponding to the positions of the auxiliary electrodes 170 and the second electrodes 140 and on which the plurality of semiconductor light emitting devices 150 constituting individual pixels are located. ) Is disposed to face the auxiliary electrode 170 and the second electrode 140.
  • the second substrate 112 may be a growth substrate for growing the semiconductor light emitting device 150, and may be a sapphire substrate or a silicon substrate.
  • the semiconductor light emitting device When the semiconductor light emitting device is formed in a wafer unit, the semiconductor light emitting device may be effectively used in the display device by having a gap and a size capable of forming the display device.
  • the wiring board and the second board 112 are thermocompressed.
  • the wiring board and the second substrate 112 may be thermocompressed by applying an ACF press head.
  • the thermocompression bonding the wiring substrate and the second substrate 112 are bonded. Only the portion between the semiconductor light emitting device 150, the auxiliary electrode 170, and the second electrode 140 has conductivity due to the property of the conductive anisotropic conductive film by thermocompression bonding.
  • the device 150 may be electrically connected.
  • the semiconductor light emitting device 150 is inserted into the anisotropic conductive film, through which a partition wall may be formed between the semiconductor light emitting device 150.
  • the second substrate 112 is removed.
  • the second substrate 112 may be removed using a laser lift-off (LLO) or chemical lift-off (CLO).
  • LLO laser lift-off
  • CLO chemical lift-off
  • a transparent insulating layer (not shown) may be formed by coating silicon oxide (SiOx) on the wiring board to which the semiconductor light emitting device 150 is coupled.
  • the method may further include forming a phosphor layer on one surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and a red phosphor or a green phosphor for converting the blue (B) light into the color of a unit pixel emits the blue semiconductor light.
  • a layer may be formed on one surface of the device.
  • the manufacturing method or structure of the display device using the semiconductor light emitting device described above may be modified in various forms.
  • a vertical semiconductor light emitting device may also be applied to the display device described above.
  • a vertical structure will be described with reference to FIGS. 5 and 6.
  • FIG. 7 is a perspective view illustrating another embodiment of a display device using the semiconductor light emitting device of the present invention
  • FIG. 8 is a cross-sectional view taken along the line DD of FIG. 7
  • FIG. 9 is a conceptual view illustrating the vertical semiconductor light emitting device of FIG. 8. to be.
  • the display device may be a display device using a passive semiconductor light emitting device of a passive matrix (PM) type.
  • PM passive matrix
  • the display device includes a substrate 210, a first electrode 220, a conductive adhesive layer 230, a second electrode 240, and a plurality of semiconductor light emitting devices 250.
  • the substrate 210 is a wiring substrate on which the first electrode 220 is disposed, and may include polyimide (PI) in order to implement a flexible display device.
  • PI polyimide
  • any material that is insulating and flexible may be used.
  • the first electrode 220 is positioned on the substrate 210 and may be formed as an electrode having a bar shape that is long in one direction.
  • the first electrode 220 may be formed to serve as a data electrode.
  • the conductive adhesive layer 230 is formed on the substrate 210 on which the first electrode 220 is located. Like the display device to which the flip chip type light emitting device is applied, the conductive adhesive layer 230 is a solution containing an anisotropic conductive film (ACF), anisotropic conductive paste, and conductive particles. ), Etc. However, this embodiment also illustrates a case where the conductive adhesive layer 230 is implemented by the anisotropic conductive film.
  • ACF anisotropic conductive film
  • Etc Etc
  • the semiconductor light emitting device 250 After placing the anisotropic conductive film in a state where the first electrode 220 is positioned on the substrate 210, the semiconductor light emitting device 250 is connected to the semiconductor light emitting device 250 by applying heat and pressure. It is electrically connected to the electrode 220. In this case, the semiconductor light emitting device 250 may be disposed on the first electrode 220.
  • the electrical connection is created because, as described above, in the anisotropic conductive film is partially conductive in the thickness direction when heat and pressure are applied. Therefore, in the anisotropic conductive film is divided into a portion 231 having conductivity and a portion 232 having no conductivity in the thickness direction.
  • the conductive adhesive layer 230 implements not only electrical connection but also mechanical coupling between the semiconductor light emitting device 250 and the first electrode 220.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby forming individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent brightness, individual unit pixels may be configured with a small size.
  • the size of the individual semiconductor light emitting device 250 may be 80 ⁇ m or less in length of one side, and may be a rectangular or square element. In the case of a rectangle, the size may be 20 ⁇ 80 ⁇ m or less.
  • the semiconductor light emitting device 250 may have a vertical structure.
  • a plurality of second electrodes 240 disposed in a direction crossing the length direction of the first electrode 220 and electrically connected to the vertical semiconductor light emitting device 250 are positioned.
  • the vertical semiconductor light emitting device includes a p-type electrode 256, a p-type semiconductor layer 255 formed on the p-type electrode 256, and an active layer 254 formed on the p-type semiconductor layer 255. ), An n-type semiconductor layer 253 formed on the active layer 254, and an n-type electrode 252 formed on the n-type semiconductor layer 253.
  • the lower p-type electrode 256 may be electrically connected by the first electrode 220 and the conductive adhesive layer 230, and the upper n-type electrode 252 may be the second electrode 240 described later.
  • a phosphor layer 280 may be formed on one surface of the semiconductor light emitting device 250.
  • the semiconductor light emitting device 250 is a blue semiconductor light emitting device 251 that emits blue (B) light
  • the phosphor layer 280 is provided to convert the blue (B) light into the color of a unit pixel.
  • the phosphor layer 280 may be a red phosphor 281 and a green phosphor 282 constituting individual pixels.
  • a red phosphor 281 capable of converting the blue light into the red (R) light may be stacked on the blue semiconductor light emitting element 251, and the position forming the green unit pixel.
  • a green phosphor 282 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 251.
  • only the blue semiconductor light emitting device 251 may be used alone in a portion of the blue unit pixel. In this case, the unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • the present invention is not limited thereto, and as described above in the display device to which the flip chip type light emitting device is applied, other structures for implementing blue, red, and green may be applied.
  • the second electrode 240 is positioned between the semiconductor light emitting devices 250 and is electrically connected to the semiconductor light emitting devices 250.
  • the semiconductor light emitting devices 250 may be arranged in a plurality of rows, and the second electrode 240 may be positioned between the columns of the semiconductor light emitting devices 250.
  • the second electrode 240 may be positioned between the semiconductor light emitting devices 250.
  • the second electrode 240 may be formed as an electrode having a bar shape that is long in one direction, and may be disposed in a direction perpendicular to the first electrode.
  • the second electrode 240 and the semiconductor light emitting device 250 may be electrically connected by a connection electrode protruding from the second electrode 240.
  • the connection electrode may be an n-type electrode of the semiconductor light emitting device 250.
  • the n-type electrode is formed of an ohmic electrode for ohmic contact, and the second electrode covers at least a portion of the ohmic electrode by printing or deposition.
  • the second electrode 240 and the n-type electrode of the semiconductor light emitting device 250 may be electrically connected to each other.
  • the second electrode 240 may be located on the conductive adhesive layer 230.
  • a transparent insulating layer (not shown) including silicon oxide (SiOx) may be formed on the substrate 210 on which the semiconductor light emitting device 250 is formed.
  • SiOx silicon oxide
  • the second electrode 240 is positioned after the transparent insulating layer is formed, the second electrode 240 is positioned on the transparent insulating layer.
  • the second electrode 240 may be formed to be spaced apart from the conductive adhesive layer 230 or the transparent insulating layer.
  • the present invention has the advantage of not having to use a transparent electrode such as ITO by placing the second electrode 240 between the semiconductor light emitting devices 250. Therefore, the light extraction efficiency can be improved by using a conductive material having good adhesion with the n-type semiconductor layer as a horizontal electrode without being limited to the selection of a transparent material.
  • a transparent electrode such as indium tin oxide (ITO)
  • the partition wall 290 may be located between the semiconductor light emitting devices 250. That is, the partition wall 290 may be disposed between the vertical semiconductor light emitting devices 250 to isolate the semiconductor light emitting devices 250 forming individual pixels. In this case, the partition wall 290 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 230. For example, as the semiconductor light emitting device 250 is inserted into the anisotropic conductive film, the base member of the anisotropic conductive film may form the partition wall.
  • the partition wall 290 may have reflective properties and contrast may be increased.
  • a reflective partition may be separately provided.
  • the partition wall 290 may include a black or white insulator according to the purpose of the display device.
  • the partition wall 290 is disposed between the vertical semiconductor light emitting device 250 and the second electrode 240. It can be located in between. Accordingly, the individual unit pixels may be configured even with a small size by using the semiconductor light emitting device 250, and the distance between the semiconductor light emitting devices 250 is relatively large enough so that the second electrode 240 is connected to the semiconductor light emitting device 250. ), And a flexible display device having HD image quality can be implemented.
  • a black matrix 291 may be disposed between the respective phosphors in order to improve contrast. That is, this black matrix 291 can improve contrast of the contrast.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby forming individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent brightness, individual unit pixels may be configured with a small size. Accordingly, a full color display in which the unit pixels of red (R), green (G), and blue (B) form one pixel may be implemented by the semiconductor light emitting device.
  • a laser lift-off (LLO) method or a chemical lift-off method (CLO) is used in order to separate the semiconductor light emitting device from the growth substrate. Can be separated using.
  • LLO laser lift-off
  • CLO chemical lift-off method
  • damage to the semiconductor light emitting device may occur due to heat or chemicals caused by the laser.
  • the manufacturing cost is high due to the high process cost and high equipment cost. Accordingly, the present invention will be described with a display device having a new structure that can solve such a problem.
  • the semiconductor light emitting device when the semiconductor light emitting device is separated from the growth substrate, it is possible to prevent damage caused by heat or chemicals by the laser of the semiconductor light emitting device and to reduce manufacturing costs.
  • the intermediate layer including the second conductive impurity and formed of the first layer and the second layer reflection on the side surface of the semiconductor light emitting device can be reduced.
  • the ratio of light emitted to the side of the semiconductor light emitting device is increased to improve the light extraction effect.
  • the second layer has a higher porosity than the first layer and thus has a high resistance.
  • a high resistance layer is formed in the intermediate layer, so that the current leaking to the surface of the semiconductor light emitting device is reduced, thereby increasing the light emitting efficiency of the semiconductor light emitting device.
  • FIG. 10 is an enlarged view of portion A of FIG. 1 for explaining another embodiment of the present invention of a display device having a new structure.
  • FIG. 11 is a cross-sectional view taken along the line E-E of FIG. 10
  • FIG. 12 is a cross-sectional view taken along the line F-F of FIG. 10.
  • the display apparatus 1000 or the active matrix AM using a passive matrix (PM) type semiconductor light emitting element as the display apparatus 1000 using the semiconductor light emitting element.
  • PM passive matrix
  • the display apparatus 1000 includes a substrate 1010, a first electrode 1020, an insulating member 1030, a second electrode 1040, and a plurality of semiconductor light emitting devices 1050.
  • the first electrode 1020 may be disposed on the substrate 1010 and formed in a line.
  • the substrate 1010 is a wiring board on which the first electrode 1020 is disposed, and may include polyimide (PI) to implement a flexible display device.
  • PI polyimide
  • the substrate 1010 is insulating, but may be formed of a material that is not flexible.
  • the substrate 1010 may be either a transparent material or an opaque material.
  • the insulating member 1030 may be formed to surround the semiconductor light emitting devices 1050.
  • the insulating member 1030 may include polydimethylsiloxane (PDMS) or polymethylphenylsiloxane (PMPS) as a polymer material, surrounds the semiconductor light emitting device 1050, and has a variety of insulating properties It may include a material.
  • the first conductive electrode 1156 and the second conductive electrode 1152 of the semiconductor light emitting devices 1050 may be electrically coupled to correspond to the first electrode 1020 and the second electrode 1040, respectively.
  • the display apparatus 1000 may further include a phosphor layer 1080 formed on one surface of the plurality of semiconductor light emitting devices 1050.
  • the semiconductor light emitting device 1050 is a blue semiconductor light emitting device that emits blue (B) light
  • the phosphor layer 1080 performs a function of converting the blue (B) light into the color of a unit pixel.
  • the phosphor layer 1080 may be a red phosphor 1081 or a green phosphor 1082 constituting individual pixels.
  • a red phosphor 1081 capable of converting the blue light into the red (R) light may be stacked on the blue semiconductor light emitting device 1051a, and the position forming the green unit pixel.
  • a green phosphor 1082 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 1051b.
  • only the blue semiconductor light emitting device 1051c may be used alone in a portion of the blue unit pixel.
  • the unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • the semiconductor light emitting device 1050 and the quantum dot QD may be combined to implement a unit pixel that emits red (R), green (G), and blue (B) light.
  • the display device may further include a black matrix 1091 disposed between the respective phosphors.
  • the black matrix 1091 may form a gap between phosphor dots, and a black material may be formed to fill the gap. As a result, the black matrix 1091 may absorb the external light reflection and improve contrast of the contrast.
  • FIG. 13A is a conceptual diagram illustrating the flip chip type semiconductor light emitting device 1050 of FIG. 11, and FIG. 13B is a perspective view illustrating the flip chip type semiconductor light emitting device 1050 of FIG. 11.
  • the display apparatus 1000 of the present invention may include a semiconductor light emitting device 1050 including an intermediate layer 1158 to reduce reflection on the side surface of the semiconductor light emitting device.
  • the ratio of light emitted to the side of the semiconductor light emitting device is increased to improve the light extraction effect.
  • the semiconductor light emitting device 1050 of the display apparatus 1000 may include a first conductive semiconductor layer 1155, an active layer 1154, a second conductive semiconductor layer 1153, a first conductive electrode 1156, and a second conductive layer. And a type electrode 1152, a passivation layer 1157, an intermediate layer 1158, an undoped semiconductor layer 1159, and a protrusion 1160.
  • the first conductive semiconductor layer 1155, the active layer 1154, and the second conductive semiconductor layer 1153 overlap each other and are sequentially stacked, and the first conductive electrode 1156 is disposed on the first conductive semiconductor layer 1155.
  • an intermediate layer 1158 may be disposed on the second conductive semiconductor layer 1153.
  • an undoped semiconductor layer 1159 may be disposed on the intermediate layer 1158.
  • a protrusion 1160 formed of a porous material capable of electropolishing may be disposed on the undoped semiconductor layer 1159.
  • the first conductive semiconductor layer 1155, the active layer 1154, the second conductive semiconductor layer 1153, the intermediate layer 1158, the undoped semiconductor layer 1159 and the protrusion 1160 are gallium nitride. It may be formed of a semiconductor formed of (GaN). In detail, the first conductive semiconductor layer 1155 may be formed of p-GaN implanted with p-type impurities. The second conductive semiconductor layer 1153, the intermediate layer 1158, and the protrusion 1160 may be formed of n-GaN implanted with n-type impurities. Furthermore, the n-type impurity may be silicon (Si).
  • the intermediate layer 1158 may include a first layer 1158a and a second layer 1158b including a second conductive impurity.
  • the intermediate layer 1158 may be formed of a stacked layer in which the first layer 1158a and the second layer 1158b are sequentially repeated.
  • the first layer 1158a may be formed of a layer having the same constituents and the same doping concentration as the second conductive semiconductor layer 1153. Specifically, the impurity concentration of the first layer 1158a may be formed to be greater than or equal to 10 18 / cm 3 . On the other hand, the second layer 1158b may have a higher concentration of the second conductivity type impurity than the first layer 1158a.
  • the thickness t1 of the first layer may be formed to be equal to or thicker than the thickness t2 of the second layer.
  • the thickness t2 of the second layer may have a thickness equal to an integer multiple of 1/2 of a wavelength of light emitted from the semiconductor light emitting device 1050.
  • the thickness of the second layer 1158b is emitted from the semiconductor light emitting device 1050 in consideration of the light emission waveform half width (about 5%) and measurement error (about 10%) of the light emitted from the semiconductor light emitting device 1050.
  • the light may be formed within an error range of ⁇ 20% based on an integer multiple of 1/2 of the wavelength of light.
  • the light emitted from the semiconductor light emitting device 1050 when the light emitted from the semiconductor light emitting device 1050 is blue light, the light has a wavelength of about 400 nm.
  • the semiconductor light emitting device 1050 when the semiconductor light emitting device 1050 emits blue light having a wavelength of 440 nm, half of the emitted light may be 220 nm, which may be the thickness t2 of the second layer. Further, the thickness t2 of the second layer may be formed by an integer multiple of 220 nm, such as 440 nm and 660 nm.
  • a standing wave may be formed at an integer multiple of 1/2 of the wavelength. Accordingly, in the stacking of the first layer 1158a and the second layer 1158b, which may have different doping concentrations and different refractive indices, the second layer 1158b having an integer thickness of 1/2 of the wavelength. ) Can be introduced to maximize the reflection and refraction of the light emitted.
  • the first layer 1158a may be stacked on the second layer 1158b and protrude laterally by a predetermined length w.
  • the predetermined length w is the wavelength of the light emitted from the semiconductor light emitting device 1050 in order to maximize the reflection and refraction of the light emitted from the semiconductor light emitting device 1050, similar to the thickness t2 of the second layer described above. It may have a predetermined length w by an integer multiple of 1/2. In this case, the predetermined length w is determined by the light emitted from the semiconductor light emitting device 1050 in consideration of the light emission waveform half width (about 5%) and the measurement error (about 10%) of the light emitted from the semiconductor light emitting device 1050. It can be formed within the error range ⁇ 20% based on an integer multiple of 1/2 of the wavelength.
  • the reflection of light from the side surface of the semiconductor light emitting device 1050 may be reduced by the first layer 1158a protruding by the length of the predetermined length w.
  • the ratio of light emitted to the side surface of the semiconductor light emitting device 1050 may be increased to improve the light extraction effect.
  • an undoped semiconductor layer 1159 formed on the intermediate layer 1158 may be formed.
  • the undoped semiconductor layer 1159 may be formed to overlap at least a portion of the intermediate layer 1158, and the second conductive electrode 1152 may be formed at a portion where the intermediate layer 1158 is exposed to the outermost portion.
  • a first region 1159a and a second region 1159b may be provided on the surface of the undoped semiconductor layer 1159.
  • the first region 1159a has a larger surface roughness than the second region 1158b, and a plurality of protrusions 1160 are disposed in the first region 1158a.
  • the protrusion 1160 may include a second conductive impurity, and the protrusion 1160 may have a higher impurity concentration than the second layer 1158b.
  • the impurity concentration of the protrusion 1160 may be formed to be 10 19 / cm 3 or more.
  • the protrusion 1160 may be a porous structure having pores therein. Thus, even when the protrusion 1160 is formed at the outermost portion of the semiconductor light emitting device 1050, the light emitted from the semiconductor light emitting device 1050 does not interfere, and the loss of the emitted light may be minimized. A plurality of light may be emitted to the light emitting surface of the).
  • the upper surface of the protrusions 1160 may be formed as a flat cut surface.
  • some of the protrusions 1160 may have a cylindrical shape.
  • other portions of the protrusions 1160 may have a conical shape.
  • the protrusions 1160 may include different heights. Specifically, the protrusions 1160 may have a height of less than 2 ⁇ m, and may preferably include different heights of less than 1 ⁇ m.
  • the semiconductor light emitting device 1050 may include a passivation layer 1157 formed to cover outer surfaces of the first conductive semiconductor layer 1155 and the second conductive semiconductor layer 1153.
  • the passivation layer 1157 may be formed to surround side surfaces and lower surfaces of the first conductive semiconductor layer 1155 and the second conductive semiconductor layer 1153.
  • the passivation layer 1157 is formed to surround side surfaces of the semiconductor light emitting device to stabilize the characteristics of the semiconductor light emitting device 1050 and is formed of an insulating material.
  • the passivation layer 1157 may be an insulating thin film made of a silicon composite or an oxide. More specifically, the passivation layer 1157 may be formed of any one or more of AlxOy, SixOy, SixNy, SnxOy, TixOy, CrOx, and ZrOx.
  • the passivation layer 1157 may be electrically disconnected between the first conductive semiconductor layer 1155 and the second conductive semiconductor layer 1153 to insulate each other.
  • the passivation layer 1157 may include a plurality of passivation layers having different refractive indices so as to reflect light emitted to side surfaces of the first conductive semiconductor layer 1155 and the second conductive semiconductor layer 1153. It may be provided. However, the present invention is not necessarily limited thereto, and the passivation layer 1157 may be formed as a single layer. The plurality of passivation layers may be laminated with a material having a relatively high refractive index and a low material.
  • 14A to 14B are cross-sectional views illustrating a method of manufacturing the display apparatus 1000 according to another exemplary embodiment of the present invention.
  • the same or similar reference numerals are assigned to the same or similar components as the foregoing embodiments, and the description is replaced with the first description.
  • the electrolytic polishing may be performed by immersing the growth substrate W on which the semiconductor light emitting device 1050a is formed on an electrolyte and applying a current flow.
  • the growth substrate W may be made of a sapphire substrate or a silicon substrate.
  • the growth substrate W may be formed of a plurality of layers including an undoped semiconductor layer and a doped semiconductor layer.
  • the first sacrificial layer 1170 and the second sacrificial layer 1160 ′′ including the second conductive impurity are stacked on the growth substrate W.
  • the second sacrificial layer 1160 ′′ is formed of the first sacrificial layer.
  • the concentration of the second conductive impurity is higher than that of 1170.
  • the undoped semiconductor layer 1159, the intermediate layer 1158 ′, the second conductive semiconductor layer 1153, the active layer 1154, the first conductive semiconductor layer 1155, and the first conductive electrode 1156 are sequentially formed. Are stacked, and a passivation layer 1157 is formed.
  • the first sacrificial layer 1170, the second sacrificial layer 1160 ′′, the undoped semiconductor layer 1159, the intermediate layer 1158 ′, the second conductive semiconductor layer 1153, and the active layer 1154 are etched through etching. A portion of the first conductive semiconductor layer 1155 and the passivation layer 1157 may be etched to form an isolated semiconductor light emitting device 1050a.
  • the growth substrate W on which the semiconductor light emitting device 1050a is formed is immersed on the electrolyte to perform electrolytic polishing.
  • a semiconductor light emitting device 1050b may be formed on the growth substrate W by electrolytic etching.
  • the first sacrificial layer 1170 and the second sacrificial layer 1160 are each electrolytically etched to form the first porous layer 1170 'and the second porous layer 1160'.
  • the concentration of the second conductive impurity may be etched at a higher speed than the first sacrificial layer 1170 to form a second porous layer 1160 ′ having a higher porosity than the first porous layer 1170 ′. have.
  • an undoped semiconductor layer 1159 is disposed between the semiconductor light emitting device 1050a and the second sacrificial layer 1160 "to which a current is applied, and thus the intermediate layer 1158 'of the semiconductor light emitting device 1050a and the electrolytic etching process.
  • the second conductive semiconductor layer 1153 may be prevented from being etched.
  • the edge surface of the second porous layer 1160 ' is rapidly etched to form a relatively flat second region 1159b.
  • the first region 1159a is surrounded by the second region 1159b and includes a porous structure.
  • the semiconductor light emitting device 1050b may be bonded to the substrate 1010 described above, and may be separated from the growth substrate W to manufacture the display apparatus 1000. As the semiconductor light emitting device 1050b is separated from the growth substrate W, the second porous layer 1160 ′ may be cut and the above-described protrusion 1160 may be formed.
  • the second porous layer 1160 ′ may be cut by physical energy to form protrusions 1160 having different heights.
  • the upper surfaces of the protrusions 1160 may be formed as flat cut surfaces.
  • some of the protrusions 1160 may be in the form of a truncated cylinder.
  • other portions of the protrusions 1160 may have a truncated cone shape.
  • the protrusions 1160 may include different heights. Specifically, the protrusions 1160 may have a height of less than 2 ⁇ m, and may preferably include different heights of less than 1 ⁇ m.
  • the second layer 1158b of the intermediate layer 1158 ′ may be etched in the electrolyte to form the intermediate layer 1158. Accordingly, the first layer 1158a may protrude laterally by a predetermined length w than the second layer 1158b.
  • the predetermined length w at which the second layer 1158b is etched may be adjusted according to the type and concentration of the electrolyte.
  • an etching process for etching the second layer 1158b with a separate etching solution may be added.
  • the display device 1000 of the present invention is manufactured by a mechanical lift-off method, thereby generating a semiconductor light emitting device that is separated by a laser lift-off method or a chemical lift-off method. Damage to the semiconductor light emitting device may be minimized by heat or chemicals caused by a laser. In addition, since the semiconductor light emitting device can be separated by physical energy without a separate facility, the process cost can be reduced. Thus, the manufacturing cost can be reduced.
  • the thickness of the semiconductor light emitting devices may be less than 10 ⁇ m. This thickness may be 50% or more in thickness reduction compared to a semiconductor light emitting device manufactured by the laser lift-off method or the chemical lift-off method. That is, the semiconductor light emitting device of the display device manufactured by the mechanical lift-off method has an advantage that the thickness can be reduced. Thus, as the thickness of the semiconductor light emitting device becomes thin, the light efficiency emitted by the light emitted from the inside of the semiconductor light emitting device is reduced, thereby increasing the light efficiency.
  • the semiconductor light emitting device applied to the display device described above may be modified in various forms. Such modifications will be described in the following description.
  • 15 to 17 are conceptual views of still another vertical semiconductor light emitting device 2050, 3050, 4050 of the display device of the new structure of the present invention.
  • the first layer 2158a and the second layer 2158b of the intermediate layer 2158 may have different porosities.
  • the second layer 2158b may have a larger porosity than the first layer 2158a.
  • the porosity of the second layer 2158b may be adjusted by treatment of an electrolyte solution or an etching solution in the process of manufacturing the semiconductor light emitting device 2050.
  • the undoped semiconductor layer 2159 may also have a porosity in the treatment of the electrolyte solution or the etching solution in the manufacturing process.
  • the second layer 2158b may have a higher porosity than the first layer 2158b to have a high resistance.
  • a high resistance layer is formed in the intermediate layer 2158 of the semiconductor light emitting device 2050, thereby reducing the current leakage to the surface of the semiconductor light emitting device 2050, thereby increasing the light emitting efficiency of the semiconductor light emitting device 2050.
  • the passivation layer 3057 may extend to cover at least a portion of the side surface of the intermediate layer 3158.
  • a third layer 4180 may be further provided between the intermediate layer 4158 and the undoped semiconductor layer 4159.
  • the third layer 4180 may include a second conductive impurity and have a lower impurity concentration than the first layer 4158a.
  • the impurity concentration of the third layer 4180 may range from 10 17 / cm 3 to 10 18 / cm 3 . That is, the impurity concentration of the layer including the second conductive impurities of the semiconductor light emitting device 4050 may be increased in order of the third layer 4180, the first layer 4158a, and the second layer 4158b.
  • the semiconductor light emitting device 4050 having the third layer 4180 may have an undoped semiconductor layer 4159 formed thinner than the above-described semiconductor light emitting device, and in this case, the above-described second conductive electrode is formed. Even if the etching process of the undoped semiconductor layer 4159 is considered, the second conductive electrode on the undoped semiconductor layer 4159 may form an ohmic contact with the intermediate layer 4158. Specifically, the thickness of the undoped semiconductor layer 4139 of the semiconductor light emitting device 4050 may be formed to be 200 nm or less.
  • FIG. 18 is an enlarged view of portion A of FIG. 1 for explaining another embodiment of the present invention to which the display apparatus 5000 having a new structure is applied.
  • 19 is a cross-sectional view taken along line G-G of FIG. 18, and
  • FIG. 20 is a conceptual diagram of the flip chip type semiconductor light emitting device 5050 of FIG. 18.
  • the semiconductor light emitting device 5050 of the display apparatus 5000 of the present invention may be formed in a flip chip shape and assembled to the substrate 5010.
  • the flip chip type semiconductor light emitting device 5050 may form the second conductive electrode 5152 on the second layer 5158b disposed between the second conductive semiconductor layer 5503 and the first layer 5158a. Can be.
  • first conductive electrode 5156 and the second conductive electrode 5502 may be electrically connected to the first electrode 5020 and the second electrode 5040 respectively disposed on the substrate 5010.
  • the display device using the semiconductor light emitting device described above is not limited to the configuration and method of the embodiments described above, but the embodiments may be configured by selectively combining all or part of the embodiments so that various modifications can be made. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명에 따른 디스플레이 장치는 복수의 반도체 발광소자들을 구비하고, 상기 반도체 발광소자들 중 적어도 하나는, 제1도전형 전극 및 제2도전형 전극; 상기 제1도전형 전극이 배치되는 제1도전형 반도체층; 상기 제1도전형 반도체층과 오버랩되며, 상기 제2도전형 전극이 배치되는 제2도전형 반도체층; 상기 제1도전형 반도체층과 상기 제2도전형 반도체층 사이에 배치되는 활성층; 상기 제2도전형 반도체층 상에 배치되는 중간층; 상기 중간층 상에 전해연마(Electro polishing)가 가능한 다공성 재질로 형성된 돌기; 및 상기 중간층과 상기 돌기 사이에 배치되는 언도프드(undoped) 반도체층을 포함한다. 나아가, 상기 중간층은, 제2도전형 불순물을 포함하는 제1레이어; 및 상기 제1레이어보다 제2도전형 불순물 농도가 높게 형성되는 제2레이어를 포함하고, 상기 제1레이어 및 제2레이어는 순차적으로 반복되며 적층되는 것을 특징으로 한다.

Description

반도체 발광소자를 이용한 디스플레이 장치
본 발명은 디스플레이 장치 및 이의 제조방법에 관한 것으로 특히, 반도체 발광소자를 이용한 플렉서블 디스플레이에 장치에 관한 것이다.
최근에는 디스플레이 기술분야에서 박형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liguid Crystal Display)와 AMOLED(Active Matrix Organic Light Emitting Diodes)로 대표되고 있다.
그러나, LCD의 경우에 빠르지 않은 반응 시간과, 플렉서블의 구현이 어렵다는 문제점이 존재하고, AMOLED의 경우에 수명이 짧고, 양산 수율이 좋지 않다는 취약점이 존재한다.
한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 잘 알려진 반도체 발광소자로서, 1962년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다. 따라서, 상기 반도체 발광소자를 이용하여 디스플레이를 구현하여, 상기의 문제점을 해결하는 방안이 제시될 수 있다.
이와 같이, 반도체 발광소자를 이용한 디스플레이의 경우에 광추출 효율을 향상시키고, 반도체 발광소자의 누설전류를 개선하여 디스플레이 장치의 성능을 향상시킬 필요성이 있다.
이에 본 발명에서 디스플레이 장치의 광추출 효율이 향상되고, 반도체 발광소자의 누설전류가 개선된 디스플레이 장치 구조에 대하여 제시한다.
본 발명의 일 목적은 성장기판에서 반도체 발광소자를 분리하는 과정에서 열 또는 화학약품에 의한 반도체 발광소자의 손상을 방지하고, 제조원가를 절감할 수 있는 디스플레이 장치를 제공하기 위한 것이다.
본 발명의 다른 목적은 광추출 효율이 증대된 반도체 발광소자를 구비하는 디스플레이 장치를 제공하기 위한 것이다.
본 발명의 또 다른 일 목적은 표면 누설전류가 감소된 반도체 발광소자를 구비하는 디스플레이 장치를 제공하기 위한 것이다.
본 발명에 따른 디스플레이 장치는 복수의 반도체 발광소자들을 구비하고, 상기 반도체 발광소자들 중 적어도 하나는, 제1도전형 전극 및 제2도전형 전극; 상기 제1도전형 전극이 배치되는 제1도전형 반도체층; 상기 제1도전형 반도체층과 오버랩되며, 상기 제2도전형 전극이 배치되는 제2도전형 반도체층; 상기 제1도전형 반도체층과 상기 제2도전형 반도체층 사이에 배치되는 활성층; 상기 제2도전형 반도체층 상에 배치되는 중간층; 상기 중간층 상에 전해연마(Electro polishing)가 가능한 다공성 재질로 형성된 돌기; 및 상기 중간층과 상기 돌기 사이에 배치되는 언도프드(undoped) 반도체층을 포함한다. 나아가, 상기 중간층은, 제2도전형 불순물을 포함하는 제1레이어; 및 상기 제1레이어보다 제2도전형 불순물 농도가 높게 형성되는 제2레이어를 포함하고, 상기 제1레이어 및 제2레이어는 순차적으로 반복되며 적층되는 것을 특징으로 한다.
실시예에 있어서, 상기 제1레이어의 두께는 상기 제2레이어의 두께 이상으로 형성되는 것을 특징으로 한다.
실시예에 있어서, 상기 제2레이어의 두께는 상기 반도체 발광소자에서 방출되는 광이 가지는 파장의 1/2의 정수배를 기준으로 하여 오차범위 ±20% 이내인 것을 특징으로 한다.
실시예에 있어서, 상기 제1레이어는 상기 제2레이어에 적층되어 소정길이 만큼 측방향으로 돌출되는 것을 특징으로 한다.
실시예에 있어서, 상기 소정길이는 상기 반도체 발광소자에서 방출되는 광이 가지는 파장의 1/2의 정수배를 기준으로 하여 오차범위 ±20% 이내인 것을 특징으로 한다.
실시예에 있어서, 상기 제1레이어의 기공률은 상기 제2레이어의 기공률보다 작은 것을 특징으로 한다.
실시예에 있어서, 상기 돌기는 제2도전형 반도체로 형성되고, 상기 제2레이어보다 불순물 농도가 더 높은 것을 특징으로 한다.
실시예에 있어서, 상기 중간층과 상기 언도프드 반도체층 사이에 제3레이어를 더 구비하고, 상기 제3레이어는 제2도전형 불순물을 포함하고 상기 제1레이어보다 불순물 농도가 낮은 것을 특징으로 한다.
실시예에 있어서, 상기 제1도전형 반도체층, 상기 제2도전형 반도체층 및 상기 활성층의 측면을 감싸는 패시베이션 층을 포함하는 것을 특징으로 한다.
실시예에 있어서, 상기 패시베이션 층은 상기 중간층 측면의 적어도 일부를 감싸도록 연장 형성되는 것을 특징으로 한다.
본 발명에 따른 디스플레이 장치에서는, 전해연마(Electro Polishing)가 가능한 다공성 재질의 레이어가 배치되어 성장기판에서 반도체 발광소자가 분리될 때 기계적 리프트 오프(mechanical lift-off) 방법으로 분리되어 열 또는 화학약품에 의한 반도체 발광소자의 손상을 방지할 수 있다. 또한, 공정비용을 절감하여 제조원가가 절감된 디스플레이 장치가 제공될 수 있다.
또한, 제2도전형 불순물을 포함하고, 제1레이어 및 제2레이어로 형성되는 중간층으로 반도체 발광소자의 측면에서의 반사를 줄일 수 있다. 이에, 반도체 발광소자 측면으로 방출되는 광의 비율이 증가되어 광추출 효과가 개선될 수 있다.
또한, 중간층의 제2레이어는 제1레이어보다 기공률이 크게 형성되어 고저항을 가진다. 이에, 본 발명의 반도체 발광소자는 고저항층을 포함하여 반도체 발광소자의 표면으로 누설되는 전류가 감소하여 반도체 발광소자의 발광 효율이 증대될 수 있다.
도 1은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 실시예를 나타내는 개념도이다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 6은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 7은 발명의 반도체 발광소자를 이용한 디스플레이 장치의 다른 실시예를 나타내는 사시도이다.
도 8은 도 7의 라인 D-D를 따라 취한 단면도이다.
도 9는 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
도 10은 새로운 구조의 디스플레이 장치가 적용된 본 발명의 다른 실시 예를 설명하기 위한, 도 1의 A부분 확대도이다.
도 11은 도 10의 E-E를 따라 취한 단면도이다.
도 12은 도 10의 F-F를 따라 취한 단면도이다.
도 13a는 도 11의 수직형 반도체 발광소자를 나타내는 개념도이다.
도 13b는 도 11의 수직형 반도체 발광소자를 나타내는 사시도이다.
도 14a 및 도 14b는 도 11의 수직형 반도체 발광소자의 제조방법을 나타낸 단면도이다.
도 15 내지 도 17은 본 발명의 새로운 구조의 디스플레이 장치의 또 다른 수직형 반도체 발광소자의 개념도들이다.
도 18은 새로운 구조의 디스플레이 장치가 적용된 본 발명의 또 다른 실시예를 설명하기 위한, 도 1의 A부분 확대도이다.
도 19는 도 18의 G-G를 따라 취한 단면도이다.
도 20은 도 18의 플립 칩 타입 반도체 발광소자를 나타내는 개념도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 데스크탑 컴퓨터 등이 포함될 수 있다. 그러나, 본 명세서에 기재된 실시 예에 따른 구성은 추후 개발되는 새로운 제품형태이라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술분야의 당업자라면 쉽게 알 수 있을 것이다.
도 1은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도시에 의하면, 디스플레이 장치(100)의 제어부에서 처리되는 정보는 플렉서블 디스플레이(flexible display)를 이용하여 표시될 수 있다.
플렉서블 디스플레이는 외력에 의하여 휘어질 수 있는, 구부러질 수 있는, 비틀어질 수 있는, 접힐 수 있는, 말려질 수 있는 디스플레이를 포함한다. 예를 들어, 플렉서블 디스플레이는 기존의 평판 디스플레이의 디스플레이 특성을 유지하면서, 종이와 같이 휘어지거나, 구부리거나, 접을 수 있거나 말 수 있는 얇고 유연한 기판 위에 제작되는 디스플레이가 될 수 있다.
상기 플렉서블 디스플레이가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 상기 플렉서블 디스플레이의 디스플레이 영역이 평면이 된다. 상기 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률반경을 가지는 상태, 이하, 제2상태라 한다)에서는 상기 디스플레이 영역이 곡면이 될 수 있다. 도시와 같이, 상기 제2상태에서 표시되는 정보는 곡면상에 출력되는 시각 정보가 될 수 있다. 이러한 시각 정보는 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 독자적으로 제어됨에 의하여 구현된다. 상기 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미한다.
상기 플렉서블 디스플레이의 단위 화소는 반도체 발광소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광소자의 일 종류로서 발광 다이오드(Light Emitting Diode: LED)를 예시한다. 상기 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 단위 화소의 역할을 할 수 있게 된다.
이하, 상기 발광 다이오드를 이용하여 구현된 플렉서블 디스플레이에 대하여 도면을 참조하여 보다 상세히 설명한다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이며, 도 4는 도 3a의 플립 칩 타입 반도체 발광소자를 나타내는 개념도이고, 도 5a 내지 도 5c는 플립 칩 타입 반도체 발광소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 2, 도 3a 및 도 3b의 도시에 의하면, 반도체 발광소자를 이용한 디스플레이 장치(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광소자를 이용한 디스플레이 장치(100)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광소자에도 적용 가능하다.
상기 디스플레이 장치(100)는 기판(110), 제1전극(120), 전도성 접착층(130), 제2전극(140) 및 복수의 반도체 발광소자(150)를 포함한다.
기판(110)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판(110)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 상기 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
상기 기판(110)은 제1전극(120)이 배치되는 배선기판이 될 수 있으며, 따라서 상기 제1전극(120)은 기판(110) 상에 위치할 수 있다.
도시에 의하면, 절연층(160)은 제1전극(120)이 위치한 기판(110) 상에 배치될 수 있으며, 상기 절연층(160)에는 보조전극(170)이 위치할 수 있다. 이 경우에, 상기 기판(110)에 절연층(160)이 적층된 상태가 하나의 배선기판이 될 수 있다. 보다 구체적으로, 절연층(160)은 폴리이미드(PI, Polyimide), PET, PEN 등과 같이 절연성이 있고, 유연성 있는 재질로, 상기 기판(110)과 일체로 이루어져 하나의 기판을 형성할 수 있다.
보조전극(170)은 제1전극(120)과 반도체 발광소자(150)를 전기적으로 연결하는 전극으로서, 절연층(160) 상에 위치하고, 제1전극(120)의 위치에 대응하여 배치된다. 예를 들어, 보조전극(170)은 닷(dot) 형태이며, 절연층(160)을 관통하는 전극홀(171)에 의하여 제1전극(120)과 전기적으로 연결될 수 있다. 상기 전극홀(171)은 비아 홀에 도전물질이 채워짐에 의하여 형성될 수 있다.
본 도면들을 참조하면, 절연층(160)의 일면에는 전도성 접착층(130)이 형성되나, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 절연층(160)과 전도성 접착층(130)의 사이에 특정 기능을 수행하는 레이어가 형성되거나, 절연층(160)이 없이 전도성 접착층(130)이 기판(110)상에 배치되는 구조도 가능하다. 전도성 접착층(130)이 기판(110)상에 배치되는 구조에서는 전도성 접착층(130)이 절연층의 역할을 할 수 있다.
상기 전도성 접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 상기 전도성 접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 또한 전도성 접착층(130)은 연성을 가지며, 이를 통하여 디스플레이 장치에서 플렉서블 기능을 가능하게 한다.
이러한 예로서, 전도성 접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 상기 전도성 접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기절연성을 가지는 레이어로서 구성될 수 있다. 따라서 상기 전도성 접착층(130)은 Z축 전도층으로 명명될 수 있다(다만, 이하 '전도성 접착층'이라 한다).
상기 이방성 전도성 필름은 이방성 전도매질(anisotropic conductive medium)이 절연성 베이스부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 이방성 전도매질에 의하여 전도성을 가지게 된다. 이하, 상기 이방성 전도성 필름에는 열 및 압력이 가해지는 것으로 설명하나, 상기 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법도 가능하다. 이러한 방법은, 예를 들어 상기 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.
또한, 상기 이방성 전도매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 도시에 의하면, 본 예시에서 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.
도시에 의하면, 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)가 될 수 있다. 보다 구체적으로, 절연성 베이스부재는 접착성을 가지는 물질로 형성되며, 도전볼은 상기 절연성 베이스부재의 바닥부분에 집중적으로 배치되며, 상기 베이스부재에서 열 및 압력이 가해지면 상기 도전볼과 함께 변형됨에 따라 수직방향으로 전도성을 가지게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 이방성 전도성 필름은 절연성 베이스부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.
이방성 전도 페이스트는 페이스트와 도전볼의 결합형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 particle 혹은 nano 입자를 함유한 형태의 솔루션이 될 수 있다.
다시 도면을 참조하면, 제2전극(140)은 보조전극(170)과 이격하여 절연층(160)에 위치한다. 즉, 상기 전도성 접착층(130)은 보조전극(170) 및 제2전극(140)이 위치하는 절연층(160) 상에 배치된다.
절연층(160)에 보조전극(170)과 제2전극(140)이 위치된 상태에서 전도성 접착층(130)을 형성한 후에, 반도체 발광소자(150)를 열 및 압력을 가하여 플립 칩 형태로 접속시키면, 상기 반도체 발광소자(150)는 제1전극(120) 및 제2전극(140)과 전기적으로 연결된다.
도 4를 참조하면, 상기 반도체 발광소자는 플립 칩 타입(flip chip type)의 발광소자가 될 수 있다.
예를 들어, 상기 반도체 발광소자는 p형 전극(156), p형 전극(156)이 형성되는 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154) 상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에서 p형 전극(156)과 수평방향으로 이격 배치되는 n형 전극(152)을 포함한다. 이 경우, p형 전극(156)은 보조전극(170)과 전도성 접착층(130)에 의하여 전기적으로 연결될 수 있고, n형 전극(152)은 제2전극(140)과 전기적으로 연결될 수 있다.
다시 도 2, 도 3a 및 도 3b를 참조하면, 보조전극(170)은 일방향으로 길게 형성되어, 하나의 보조전극이 복수의 반도체 발광소자(150)에 전기적으로 연결될 수 있다. 예를 들어, 보조전극을 중심으로 좌우의 반도체 발광소자들의 p형 전극들이 하나의 보조전극에 전기적으로 연결될 수 있다.
보다 구체적으로, 열 및 압력에 의하여 전도성 접착층(130)의 내부로 반도체 발광소자(150)가 압입되며, 이를 통하여 반도체 발광소자(150)의 p형 전극(156)과 보조전극(170) 사이의 부분과, 반도체 발광소자(150)의 n형 전극(152)과 제2전극(140) 사이의 부분에서만 전도성을 가지게 되고, 나머지 부분에서는 반도체 발광소자의 압입이 없어 전도성을 가지지 않게 된다. 이와 같이, 전도성 접착층(130)은 반도체 발광소자(150)와 보조전극(170) 사이 및 반도체 발광소자(150)와 제2전극(140) 사이를 상호 결합시켜줄 뿐만 아니라 전기적 연결까지 형성시킨다.
또한, 복수의 반도체 발광소자(150)는 발광소자 어레이(array)를 구성하며, 발광소자 어레이에는 형광체층(180)이 형성된다.
발광소자 어레이는 자체 휘도값이 상이한 복수의 반도체 발광소자들을 포함할 수 있다. 각각의 반도체 발광소자(150)는 단위 화소를 구성하며, 제1전극(120)에 전기적으로 연결된다. 예를 들어, 제1전극(120)은 복수 개일 수 있고, 반도체 발광소자들은 예컨대 수 열로 배치되며, 각 열의 반도체 발광소자들은 상기 복수 개의 제1전극 중 어느 하나에 전기적으로 연결될 수 있다.
또한, 반도체 발광소자들이 플립 칩 형태로 접속되므로, 투명 유전체 기판에 성장시킨 반도체 발광소자들을 이용할 수 있다. 또한, 상기 반도체 발광소자들은 예컨대 질화물 반도체 발광소자일 수 있다. 반도체 발광소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다.
도시에 의하면, 반도체 발광소자(150)의 사이에 격벽(190)이 형성될 수 있다. 이 경우, 격벽(190)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(130)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광소자(150)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(190)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로 반사성 격벽이 별도로 구비될 수 있다. 이 경우에, 상기 격벽(190)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다. 화이트 절연체의 격벽을 이용할 경우 반사성을 높이는 효과가 있을 수 있고, 블랙 절연체의 격벽을 이용할 경우, 반사 특성을 가지는 동시에 대비비(contrast)를 증가시킬 수 있다.
형광체층(180)은 반도체 발광소자(150)의 외면에 위치할 수 있다. 예를 들어, 반도체 발광소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광소자이고, 형광체층(180)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(180)은 개별 화소를 구성하는 적색 형광체(181) 또는 녹색 형광체(182)가 될 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광소자(151) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(181)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광소자(151) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(182)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광소자(151)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(120)의 각 라인을 따라 하나의 색상의 형광체가 적층될 수 있다. 따라서, 제1전극(120)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(140)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광소자(150)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)의 단위 화소들을 구현할 수 있다.
또한, 대비비(contrast) 향상을 위하여 각각의 형광체층들의 사이에는 블랙 매트릭스(191)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(191)는 명암의 대조를 향상시킬 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
도 5a를 참조하면, 각각의 반도체 발광소자(150)는 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광소자로 구현될 수 있다.
이 경우, 반도체 발광소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색, 녹색 및 청색 반도체 발광소자일 수 있다. 예컨대, 적색, 녹색 및 청색 반도체 발광소자(R, G, B)가 교대로 배치되고, 적색, 녹색 및 청색 반도체 발광소자에 의하여 적색(Red), 녹색(Green) 및 청색(Blue)의 단위 화소들이 하나의 화소(pixel)를 이루며, 이를 통하여 풀 칼라 디스플레이가 구현될 수 있다.
도 5b를 참조하면, 반도체 발광소자는 황색 형광체층이 개별 소자마다 구비된 백색 발광소자(W)를 구비할 수 있다. 이 경우에는, 단위 화소를 이루기 위하여, 백색 발광소자(W) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비될 수 있다. 또한, 이러한 백색 발광소자(W) 상에 적색, 녹색, 및 청색이 반복되는 컬러 필터를 이용하여 단위 화소를 이룰 수 있다.
도 5c를 참조하면, 자외선 발광소자(UV) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비되는 구조도 가능하다. 이와 같이, 반도체 발광소자는 가시광선뿐만 아니라 자외선(UV)까지 전영역에 사용가능하며, 자외선(UV)이 상부 형광체의 여기원(excitation source)으로 사용가능한 반도체 발광소자의 형태로 확장될 수 있다.
본 예시를 다시 살펴보면, 반도체 발광소자(150)는 전도성 접착층(130) 상에 위치되어, 디스플레이 장치에서 단위 화소를 구성한다. 반도체 발광소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다. 이와 같은 개별 반도체 발광소자(150)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
또한, 한 변의 길이가 10㎛인 정사각형의 반도체 발광소자(150)를 단위 화소로 이용하여도 디스플레이 장치를 이루기 위한 충분한 밝기가 나타난다. 따라서, 단위 화소의 크기가 한 변이 600㎛, 나머지 한변이 300㎛인 직사각형 화소인 경우를 예로 들면, 반도체 발광소자의 거리가 상대적으로 충분히 크게 된다. 따라서, 이러한 경우, HD화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있게 된다.
상기에서 설명된 반도체 발광소자를 이용한 디스플레이 장치는 새로운 형태의 제조방법에 의하여 제조될 수 있다. 이하, 도 6을 참조하여 상기 제조방법에 대하여 설명한다.
도 6은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
본 도면을 참조하면, 먼저, 보조전극(170) 및 제2전극(140)이 위치된 절연층(160) 상에 전도성 접착층(130)을 형성한다. 제1기판(110)에 절연층(160)이 적층되어 하나의 기판(또는 배선기판)을 형성하며, 상기 배선기판에는 제1전극(120), 보조전극(170) 및 제2전극(140)이 배치된다. 이 경우에, 제1전극(120)과 제2전극(140)은 상호 직교 방향으로 배치될 수 있다. 또한, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 제1기판(110) 및 절연층(160)은 각각 유리 또는 폴리이미드(PI)를 포함할 수 있다.
상기 전도성 접착층(130)은 예를 들어, 이방성 전도성 필름에 의하여 구현될 수 있으며, 이를 위하여 절연층(160)이 위치된 기판에 이방성 전도성 필름이 도포될 수 있다.
다음에, 보조전극(170) 및 제2전극(140)들의 위치에 대응하고, 개별 화소를 구성하는 복수의 반도체 발광소자(150)가 위치된 제2기판(112)을 상기 반도체 발광소자(150)가 보조전극(170) 및 제2전극(140)와 대향하도록 배치한다.
이 경우에, 제2기판(112)은 반도체 발광소자(150)를 성장시키는 성장 기판으로서, 사파이어(spire) 기판 또는 실리콘(silicon) 기판이 될 수 있다.
상기 반도체 발광소자는 웨이퍼(wafer) 단위로 형성될 때, 디스플레이 장치를 이룰 수 있는 간격 및 크기를 가지도록 함으로써, 디스플레이 장치에 효과적으로 이용될 수 있다.
그 다음에, 배선기판과 제2기판(112)을 열압착한다. 예를 들어, 배선기판과 제2기판(112)은 ACF press head 를 적용하여 열압착될 수 있다. 상기 열압착에 의하여 배선기판과 제2기판(112)은 본딩(bonding)된다. 열압착에 의하여 전도성을 갖는 이방성 전도성 필름의 특성에 의해 반도체 발광소자(150)와 보조전극(170) 및 제2전극(140)의 사이의 부분만 전도성을 가지게 되며, 이를 통하여 전극들과 반도체 발광소자(150)는 전기적으로 연결될 수 있다. 이 때에, 반도체 발광소자(150)가 상기 이방성 전도성 필름의 내부로 삽입되며, 이를 통하여 반도체 발광소자(150) 사이에 격벽이 형성될 수 있다.
그 다음에, 상기 제2기판(112)을 제거한다. 예를 들어, 제2기판(112)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다.
마지막으로, 상기 제2기판(112)을 제거하여 반도체 발광소자들(150)을 외부로 노출시킨다. 필요에 따라, 반도체 발광소자(150)가 결합된 배선기판 상을 실리콘 옥사이드(SiOx) 등을 코팅하여 투명 절연층(미도시)을 형성할 수 있다.
또한, 상기 반도체 발광소자(150)의 일면에 형광체층을 형성하는 단계를 더 포함할 수 있다. 예를 들어, 반도체 발광소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광소자이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 적색 형광체 또는 녹색 형광체가 상기 청색 반도체 발광소자의 일면에 레이어를 형성할 수 있다.
이상에서 설명된 반도체 발광소자를 이용한 디스플레이 장치의 제조방법이나 구조는 여러가지 형태로 변형될 수 있다. 그 예로서, 상기에서 설명된 디스플레이 장치에는 수직형 반도체 발광소자도 적용될 수 있다. 이하, 도 5 및 도 6을 참조하여 수직형 구조에 대하여 설명한다.
또한, 이하 설명되는 변형예 또는 실시예에서는 앞선 예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 7은 발명의 반도체 발광소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이고, 도 8은 도 7의 라인 D-D를 따라 취한 단면도이며, 도 9은 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
본 도면들을 참조하면, 디스플레이 장치는 패시브 매트릭스(Passive Matrix, PM) 방식의 수직형 반도체 발광소자를 이용한 디스플레이 장치가 될 수 있다.
상기 디스플레이 장치는 기판(210), 제1전극(220), 전도성 접착층(230), 제2전극(240) 및 복수의 반도체 발광소자(250)를 포함한다.
기판(210)은 제1전극(220)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
제1전극(220)은 기판(210) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1전극(220)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
전도성 접착층(230)은 제1전극(220)이 위치하는 기판(210)상에 형성된다. 플립 칩 타입(flip chip type)의 발광소자가 적용된 디스플레이 장치와 같이, 전도성 접착층(230)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 다만, 본 실시예에서도 이방성 전도성 필름에 의하여 전도성 접착층(230)이 구현되는 경우를 예시한다.
기판(210) 상에 제1전극(220)이 위치하는 상태에서 이방성 전도성 필름을 위치시킨 후에, 반도체 발광소자(250)를 열 및 압력을 가하여 접속시키면, 상기 반도체 발광소자(250)가 제1전극(220)과 전기적으로 연결된다. 이 때, 상기 반도체 발광소자(250)는 제1전극(220) 상에 위치되도록 배치되는 것이 바람직하다.
상기 전기적 연결은 전술한 바와 같이, 이방성 전도성 필름에서 열 및 압력이 가해지면 부분적으로 두께방향으로 전도성을 가지기 때문에 생성된다. 따라서, 이방성 전도성 필름에서는 두께방향으로 전도성을 가지는 부분(231)과 전도성을 가지지 않는 부분(232)으로 구획된다.
또한, 이방성 전도성 필름은 접착 성분을 함유하기 때문에, 전도성 접착층(230)은 반도체 발광소자(250)와 제1전극(220) 사이에서 전기적 연결뿐만 아니라 기계적 결합까지 구현한다.
이와 같이, 반도체 발광소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 이와 같은 개별 반도체 발광소자(250)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
상기 반도체 발광소자(250)는 수직형 구조가 될 수 있다.
수직형 반도체 발광소자들의 사이에는, 제1전극(220)의 길이 방향과 교차하는 방향으로 배치되고, 수직형 반도체 발광소자(250)와 전기적으로 연결된 복수의 제2전극(240)이 위치한다.
도 9를 참조하면, 이러한 수직형 반도체 발광소자는 p형 전극(256), p형 전극(256) 상에 형성된 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층(254), 활성층(254)상에 형성된 n형 반도체층(253) 및 n형 반도체층(253) 상에 형성된 n형 전극(252)을 포함한다. 이 경우, 하부에 위치한 p형 전극(256)은 제1전극(220)과 전도성 접착층(230)에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(252)은 후술하는 제2전극(240)과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광소자(250)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다시 도 8을 참조하면, 상기 반도체 발광소자(250)의 일면에는 형광체층(280)이 형성될 수 있다. 예를 들어, 반도체 발광소자(250)는 청색(B) 광을 발광하는 청색 반도체 발광소자(251)이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 형광체층(280)이 구비될 수 있다. 이 경우에, 형광체층(280)은 개별 화소를 구성하는 적색 형광체(281) 및 녹색 형광체(282) 일 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광소자(251) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(281)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광소자(251) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(282)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광소자(251)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 플립 칩 타입(flip chip type)의 발광소자가 적용된 디스플레이 장치에서 전술한 바와 같이, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
다시 본 실시예를 살펴보면, 제2전극(240)은 반도체 발광소자들(250) 사이에 위치하고, 반도체 발광소자들(250)과 전기적으로 연결된다. 예를 들어, 반도체 발광소자들(250)은 복수의 열로 배치되고, 제2전극(240)은 반도체 발광소자들(250)의 열들 사이에 위치할 수 있다.
개별 화소를 이루는 반도체 발광소자(250) 사이의 거리가 충분히 크기 때문에 제2전극(240)은 반도체 발광소자들(250) 사이에 위치될 수 있다.
제2전극(240)은 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있으며, 제1전극과 상호 수직한 방향으로 배치될 수 있다.
또한, 제2전극(240)과 반도체 발광소자(250)는 제2전극(240)에서 돌출된 연결 전극에 의해 전기적으로 연결될 수 있다. 보다 구체적으로, 상기 연결 전극이 반도체 발광소자(250)의 n형 전극이 될 수 있다. 예를 들어, n형 전극은 오믹(ohmic) 접촉을 위한 오믹 전극으로 형성되며, 상기 제2전극은 인쇄 또는 증착에 의하여 오믹 전극의 적어도 일부를 덮게 된다. 이를 통하여 제2전극(240)과 반도체 발광소자(250)의 n형 전극이 전기적으로 연결될 수 있다.
도시에 의하면, 상기 제2전극(240)은 전도성 접착층(230) 상에 위치될 수 있다. 경우에 따라, 반도체 발광소자(250)가 형성된 기판(210) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(240)을 위치시킬 경우, 상기 제2전극(240)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(240)은 전도성 접착층(230) 또는 투명 절연층에 이격되어 형성될 수도 있다.
만약 반도체 발광소자(250) 상에 제2전극(240)을 위치시키기 위하여는 ITO(Indium Tin Oxide)와 같은 투명 전극을 사용한다면, ITO 물질은 n형 반도체층과는 접착성이 좋지 않은 문제가 있다. 따라서, 본 발명은 반도체 발광소자(250) 사이에 제2전극(240)을 위치시킴으로써, ITO와 같은 투명 전극을 사용하지 않아도 되는 이점이 있다. 따라서, 투명한 재료 선택에 구속되지 않고, n형 반도체층과 접착성이 좋은 전도성 물질을 수평 전극으로 사용하여 광추출 효율을 향상시킬 수 있다.
도시에 의하면, 반도체 발광소자(250) 사이에는 격벽(290)이 위치할 수 있다. 즉, 개별 화소를 이루는 반도체 발광소자(250)를 격리시키기 위하여 수직형 반도체 발광소자(250) 사이에는 격벽(290)이 배치될 수 있다. 이 경우, 격벽(290)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 상기 전도성 접착층(230)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광소자(250)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(290)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로서, 반사성 격벽이 별도로 구비될 수 있다. 격벽(290)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다.
만일 제2전극(240)이 반도체 발광소자(250) 사이의 전도성 접착층(230) 상에 바로 위치된 경우, 격벽(290)은 수직형 반도체 발광소자(250) 및 제2전극(240)의 사이사이에 위치될 수 있다. 따라서, 반도체 발광소자(250)를 이용하여 작은 크기로도 개별 단위 픽셀을 구성할 수 있고, 반도체 발광소자(250)의 거리가 상대적으로 충분히 크게 되어 제2전극(240)을 반도체 발광소자(250) 사이에 위치시킬 수 있고, HD 화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있는 효과가 있게 된다.
또한, 도시에 의하면, 대비비(contrast) 향상을 위하여 각각의 형광체 사이에는 블랙 매트릭스(291)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(291)는 명암의 대조를 향상시킬 수 있다.
상기 설명과 같이, 반도체 발광소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 따라서, 반도체 발광소자에 의하여 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이루는 풀 칼라 디스플레이가 구현될 수 있다.
상기에서 설명된 본 발명의 반도체 발광소자를 이용한 디스플레이 장치에는 성장기판에서 반도체 발광소자를 분리하기 위해서는 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 분리할 수 있다. 레이저 리프트 오프법 또는 화학적 리프트 오프법을 이용하여 반도체 발광소자가 분리될 경우에는 레이저에 의한 열 또는 화학약품에 의하여 반도체 발광소자의 손상이 발생될 수 있다. 또한, 높은 설비 비용으로 공정비용이 높아져서 제조비가 높아지는 문제점이 있다. 이에 본 발명에서는 이러한 문제를 해결할 수 있는 새로운 구조의 디스플레이 장치에 대하여 설명한다.
즉, 본 발명에 의하면 성장기판에서 반도체 발광소자를 분리할 때, 반도체 발광소자의 레이저에 의한 열 또는 화학약품에 의한 손상을 방지하고, 제작 비용을 절감할 수 있다.
나아가, 제2도전형 불순물을 포함하고, 제1레이어 및 제2레이어로 형성되는 중간층에서 반도체 발광소자의 측면에서의 반사를 줄일 수 있다. 이에, 반도체 발광소자 측면으로 방출되는 광의 비율이 증가되어 광추출 효과가 개선될 수 있다.
또한, 제2레이어는 제1레이어보다 기공률이 크게 형성되어 고저항을 가진다. 이에, 본 발명의 반도체 발광소자는 중간층에서 고저항층이 형성되어 반도체 발광소자의 표면으로 누설되는 전류가 감소하여 반도체 발광소자의 발광 효율이 증대될 수 있다.
도 10은 새로운 구조의 디스플레이 장치의 본 발명의 다른 실시예를 설명하기 위한, 도 1의 A부분 확대도이다. 도 11은 도 10의 E-E를 따라 취한 단면도이고, 도 12는 도 10의 F-F를 따라 취한 단면도이다.
도 10 내지 도 12의 도시에 의하면, 반도체 발광소자를 이용한 디스플레이 장치(1000)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광소자를 이용한 디스플레이 장치(1000) 또는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광소자에도 적용 가능하다.
디스플레이 장치(1000)는 기판(1010), 제1전극(1020), 절연부재(1030), 제2전극(1040) 및 복수의 반도체 발광소자(1050)를 포함한다. 여기에서, 제1전극(1020)은 기판(1010) 상에 배치되고 라인으로 형성될 수 있다.
기판(1010)은 제1전극(1020)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 또한, 경우에 상기 기판(1010)은 절연성은 있으나, 플렉서블이 아닌 재질로 형성될 수 있다. 또한, 상기 기판(1010)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
도시에 의하면, 절연부재(1030)는 반도체 발광소자(1050)들을 감싸도록 형성될 수 있다. 일 실시예에서, 절연부재(1030)는 고분자 소재로 폴리디메틸실록산(Polydimethylsiloxane, PDMS) 또는 폴리메틸페닐실록산(polymethylphenylsiloxane, PMPS)을 포함할 수 있으며, 반도체 발광소자(1050)를 감싸며, 절연성을 가지는 다양한 소재를 포함할 수 있다. 반도체 발광소자(1050)들의 제1도전형 전극(1156) 및 제2도전형 전극(1152)은 각각 제1전극(1020) 및 제2전극(1040)에 대응되어 전기적으로 결합될 수 있다.
나아가, 디스플레이 장치(1000)는, 복수의 반도체 발광소자(1050)의 일면에 형성되는 형광체층(1080)을 더 구비할 수 있다. 예를 들어, 반도체 발광소자(1050)는 청색(B) 광을 발광하는 청색 반도체 발광소자이고, 형광체층(1080)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(1080)은 개별 화소를 구성하는 적색 형광체(1081) 또는 녹색 형광체(1082)가 될 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광소자(1051a) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(1081)가 적층 될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광소자(1051b) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(1082)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광소자(1051c)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 형광체 대신에 반도체 발광소자(1050)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)을 발광하는 단위 화소를 구현할 수 있다.
또한, 형광체층(1080)의 대비비(Contrast) 향상을 위하여 디스플레이 장치는 각각의 형광체들의 사이에 배치되는 블랙 매트릭스(1091)를 더 포함할 수 있다. 상기 블랙 매트릭스(1091)는 형광체 도트 사이에 갭을 만들고, 흑색 물질이 상기 갭을 채우는 형태로 형성될 수 있다. 이를 통하여 블랙 매트릭스(1091)는 외광반사를 흡수함과 동시에 명암의 대조를 향상시킬 수 있다.
한편, 도 13a는 도 11의 플립 칩 타입 반도체 발광소자(1050)를 나타내는 개념도이고, 도 13b는 도 11의 플립 칩 타입 반도체 발광소자(1050)를 나타내는 사시도이다.
도 13a 및 도 13b를 참조하면, 본 발명의 디스플레이 장치(1000)는 중간층(1158)을 포함하는 반도체 발광소자(1050)를 포함하여 상기 반도체 발광소자 측면에서의 반사를 줄일 수 있다. 이에, 반도체 발광소자 측면으로 방출되는 광의 비율이 증가되어 광추출 효과가 개선될 수 있다.
디스플레이 장치(1000)의 반도체 발광소자(1050)는 제1도전형 반도체층(1155), 활성층(1154), 제2도전형 반도체층(1153), 제1도전형 전극(1156), 제2도전형 전극(1152), 패시베이션층(1157), 중간층(1158), 언도프드(undoped) 반도체층(1159) 및 돌기(1160)를 포함한다.
제1도전형 반도체층(1155), 활성층(1154), 제2도전형 반도체층(1153)은 오버랩되며 순차적으로 적층되고, 제1도전형 반도체층(1155) 상에 제1도전형 전극(1156)이 형성될 수 있다. 또한, 제2도전형 반도체층(1153) 상에 중간층(1158)이 배치될 수 있다. 나아가, 중간층(1158) 상에는 언도프드(undoped) 반도체층(1159)이 배치될 수 있다. 또한, 언도프드 반도체층(1159) 상에는 전해연마(Electro polishing)가 가능한 다공성 재질로 형성된 돌기(1160)가 배치될 수 있다.
일 실시예에서, 제1도전형 반도체층(1155), 활성층(1154), 제2도전형 반도체층(1153), 중간층(1158), 언도프드 반도체층(1159) 및 돌기(1160)는 질화갈륨(GaN)으로 형성된 반도체로 형성될 수 있다. 상세하게, 제1도전형 반도체층(1155)은 p형 불순물이 주입된 p-GaN으로 형성될 수 있다. 한편, 제2도전형 반도체층(1153), 중간층(1158) 및 돌기(1160)는 n형 불순물이 주입된 n-GaN으로 형성될 수 있다. 나아가, n형 불순물은 실리콘(Si)일 수 있다.
중간층(1158)은 제2도전형 불순물을 포함하는 제1레이어(1158a) 및 제2레이어(1158b)를 포함할 수 있다. 나아가, 중간층(1158)은 제1레이어(1158a) 및 제2레이어(1158b)가 순차적으로 반복되며 적층된 층으로 형성될 수 있다.
상세하게, 제1레이어(1158a)는 제2도전형 반도체층(1153)과 동일한 구성 성분 및 동일한 도핑농도를 가지는 층으로 형성될 수 있다. 구체적으로, 제1레이어(1158a)의 불순물 농도는 1018/cm3 이상으로 형성될 수 있다. 한편, 제2레이어(1158b)는 제1레이어(1158a)보다 제2도전형 불순물 농도가 높게 형성될 수 있다.
제1레이어의 두께(t1)는 제2레이어의 두께(t2)와 같거나 더 두껍게 형성될 수 있다. 덧붙여 제2레이어의 두께(t2)는 반도체 발광소자(1050)에서 방출되는 광이 가지는 파장의 1/2의 정수배만큼의 두께를 가질 수 있다. 이때, 제2레이어(1158b)의 두께는 반도체 발광소자(1050)에서 방출되는 광의 발광파형 반가폭(약 5%)와 측정 오차(약 10 %)를 고려하여 반도체 발광소자(1050)에서 방출되는 광이 가지는 파장의 1/2의 정수배를 기준으로 하여 오차범위 ±20% 이내로 형성될 수 있다.
상세하게, 반도체 발광소자(1050)에서 방출되는 광이 청색광일 경우 약 400 nm의 파장을 가진다. 일 실시예에서 반도체 발광소자(1050)에서 파장이 440 nm의 청색광을 방출할 경우, 방출하는 광의 1/2 파장은 220 nm일 수 있으며 이는 제2레이어의 두께(t2)가 될 수 있다. 나아가, 제2레이어의 두께(t2)는 440 nm, 660 nm와 같이 220 nm의 정수배로 형성될 수도 있다.
반도체 발광소자(1050)에서 방출되는 광을 양 끝이 고정된 파장으로 가정하면, 파장의 1/2의 정수배의 길이에서 정상파가 형성될 수 있다. 이에, 도핑의 농도가 서로 상이하고 서로 상이한 굴절율을 가질 수 있는 제1레이어(1158a)와 제2레이어(1158b)의 적층에 있어서, 파장의 1/2의 정수배의 두께를 가지는 제2레이어(1158b)가 도입되어 발광되는 빛의 반사 및 굴절이 극대화될 수 있다.
나아가, 제1레이어(1158a)는 제2레이어(1158b)에 적층되어 소정길이(w) 만큼 측방향으로 돌출될 수 있다. 소정길이(w)는 전술된 제2레이어의 두께(t2)와 마찬가지로 반도체 발광소자(1050)에서 발광되는 빛의 반사 및 굴절을 극대화하기 위해서 반도체 발광소자(1050)에서 방출되는 광이 가지는 파장의 1/2의 정수배만큼의 소정길이(w)를 가질 수 있다. 이때, 소정길이(w)는 반도체 발광소자(1050)에서 방출되는 광의 발광파형 반가폭(약 5%)와 측정 오차(약 10 %)를 고려하여 반도체 발광소자(1050)에서 방출되는 광이 가지는 파장의 1/2의 정수배를 기준으로 하여 오차범위 ±20% 이내로 형성될 수 있다.
나아가, 소정길이(w)의 길이만큼 돌출된 제1레이어(1158a)에 의하여 반도체 발광소자(1050)의 측면에서의 광의 반사를 줄일 수 있다. 이에, 반도체 발광소자(1050) 측면으로 방출되는 광의 비율이 증가되어 광추출 효과가 개선될 수 있다.
한편, 중간층(1158) 상에 형성된 언도프드 반도체층(1159)이 형성될 수 있다. 나아가, 언도프드 반도체층(1159)은 중간층(1158)의 적어도 일부만 오버랩되도록 형성될 수 있고, 중간층(1158)이 최외곽으로 드러난 부분에는 제2도전형 전극(1152)이 형성될 수 있다. 또한, 언도프드 반도체층(1159)의 표면에는 제1영역(1159a) 및 제2영역(1159b)이 구비될 수 있다. 상세하게, 제1영역(1159a)은 제2영역(1158b)보다 표면 거칠기가 크고, 제1영역(1158a)에는 복수의 돌기(1160)들이 배치된다.
실시예에 있어서, 돌기(1160)는 제2도전형 불순물을 포함할 수 있으며, 돌기(1160)는 제2레이어(1158b)보다 불순물 농도가 더 높게 형성될 수 있다. 구체적으로 돌기(1160)의 불순물 농도는 1019/cm3 이상으로 형성될 수 있다.
나아가, 돌기(1160)는 내부에 기공이 형성된 다공성 구조물 일 수 있다. 이에, 돌기(1160)가 반도체 발광소자(1050)의 최외곽에 형성됨에도 반도체 발광소자(1050)에서 방출되는 빛을 방해하지 않으며, 방출되는 빛의 손실이 최소화될 수 있고, 반도체 발광소자(1050)의 발광면으로 다수의 빛이 방출될 수 있다.
또한, 돌기(1160)들의 상부면은 평평한 절단면으로 형성될 수 있다. 덧붙여 돌기(1160)들 중 일부는 원기둥 형태일 수 있다. 또한, 돌기(1160)들 중 다른 일부는 원뿔 형태를 가질 수 있다.
또한, 돌기(1160)들은 서로 다른 높이를 포함할 수 있다. 구체적으로 돌기(1160)들은 2 μm 미만의 높이를 가질 수 있으며, 바람직하게는 1 μm 미만의 서로 다른 높이를 포함할 수 있다.
또한, 반도체 발광소자(1050)는 제1도전형 반도체층(1155)과 제2도전형 반도체층(1153)의 외면들을 덮도록 형성되는 패시베이션층(1157)을 포함한다. 예를 들어, 패시베이션층(1157)은 제1도전형 반도체층(1155)과 제2도전형 반도체층(1153)의 측면들과 하면들을 감싸도록 형성될 수 있다.
상세하게, 패시베이션층(1157)은 상기 반도체 발광소자의 측면을 감싸서, 반도체 발광소자(1050) 특성의 안정화를 기하도록 이루어지며, 절연 재질로 형성된다. 이러한 예로서, 패시베이션층(1157)은 실리콘 합성물 또는 산화물로 이루어지는 절연 박막이 될 수 있다. 보다 구체적으로, 상기 패시베이션층(1157)은 AlxOy, SixOy, SixNy, SnxOy, TixOy, CrOx, ZrOx 중 어느 하나 이상의 재질로 형성될 수 있다.
이와 같이, 패시베이션층(1157)에 의해 제1도전형 반도체층(1155)과 제2도전형 반도체층(1153)의 사이가 전기적으로 단절되어 서로 절연될 수 있다.
이 경우에, 패시베이션층(1157)은 제1도전형 반도체층(1155)과 상기 제2도전형 반도체층(1153)의 측면들로 방출되는 빛을 반사하도록, 서로 다른 굴절률을 가지는 복수의 패시베이션 레이어를 구비할 수도 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 패시베이션층(1157)은 단일 레이어로 형성될 수 있다. 상기 복수의 패시베이션 레이어는 상대적으로 굴절률이 높은 물질과 낮은 물질이 반복되며 적층될 수 있다.
도 14a 내지 도 14b는 본 발명의 다른 실시예의 디스플레이 장치(1000)의 제조 방법을 나타낸 단면도들이다. 이하 설명되는 디스플레이 장치(1000)의 제조 방법에서는 앞선 실시예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 14a를 참조하면, 반도체 발광소자(1050a)가 형성된 성장기판(W)을 전해액 상에 침지시키고 전류의 흐름을 가하여 전해연마를 수행할 수 있다.
구체적으로, 성장기판(W)은 사파이어(spire) 기판 또는 실리콘(silicon) 기판으로 이루어질 수 있다. 또한, 성장기판(W)은 언도프드 반도체층 및 도핑된 반도체층을 포함하는 복수의 레이어로 형성될 수 있다. 성장기판(W) 상에 제2도전형 불순물을 포함하는 제1희생층(1170) 및 제2희생층(1160")을 적층한다. 이때, 제2희생층(1160")은 제1희생층(1170)보다 제2도전형 불순물의 농도가 높다.
이어서 순차적으로 언도프드 반도체층(1159), 중간층(1158'), 제2도전형 반도체층(1153), 활성층(1154), 제1도전형 반도체층(1155) 및 제1도전형 전극(1156)을 적층시키고, 패시베이션층(1157)을 형성한다. 이어서, 식각을 통하여 제1희생층(1170), 제2희생층(1160"), 언도프드 반도체층(1159), 중간층(1158'), 제2도전형 반도체층(1153), 활성층(1154), 제1도전형 반도체층(1155)과 패시베이션층(1157)의 일부가 식각되어 아이솔레이션된 반도체 발광소자(1050a)가 형성될 수 있다.
다음으로, 반도체 발광소자(1050a)가 형성된 성장기판(W)을 전해액 상에 침지시켜 전해연마를 수행한다.
도 14b를 참조하면, 전해식각으로 성장기판(W) 상에 반도체 발광소자(1050b)가 형성될 수 있다.
제1희생층(1170) 및 제2희생층(1160")은 각각 전해식각되어 제1다공층(1170') 및 제2다공층(1160')을 형성한다. 특히 제2도전형 불순물의 농도가 높은 제2희생층(1160")이 제1희생층(1170)보다 빠른 속도로 식각되어, 제1다공층(1170')보다 기공률이 더 높은 제2다공층(1160')이 형성될 수 있다.
한편, 언도프드 반도체층(1159)이 반도체 발광소자(1050a)와 전류가 가해지는 제2희생층(1160") 사이에 배치되어 전해식각공정 중에 반도체 발광소자(1050a)의 중간층(1158') 및 제2도전형 반도체층(1153)이 식각되는 것을 방지할 수 있다.
또한, 전해연마가 반도체 발광소자(1050a)의 가장자리로부터 내부로 진행됨에 따라, 제2다공층(1160')의 가장자리 표면에는 식각이 빠르게 진행되어 상대적으로 평평하게 형성된 제2영역(1159b)이 형성될 수 있다. 한편, 내부에는 제2영역(1159b)으로 둘러쌓이고 다공성 구조물을 포함하는 제1영역(1159a)이 구비된다.
반도체 발광소자(1050b)는 전술된 기판(1010)에 접합되고, 성장기판(W)에서 분리되어 디스플레이 장치(1000)가 제조될 수 있다. 반도체 발광소자(1050b)가 성장기판(W)에서 분리되면서, 제2다공층(1160')이 절단되며 전술된 돌기(1160)가 형성될 수 있다.
제2다공층(1160')은 물리적인 에너지에 의하여 절단되어, 서로 다른 높이를 가지는 돌기(1160)를 형성할 수 있다. 이에, 돌기(1160)들의 상부면은 평평한 절단면으로 형성될 수 있다. 덧붙여 돌기(1160)들 중 일부는 절단된 원기둥 형태일 수 있다. 또한, 돌기(1160)들 중 다른 일부는 절단된 원뿔 형태를 가질 수 있다.
나아가, 돌기(1160)들은 서로 다른 높이를 포함할 수 있다. 구체적으로 돌기(1160)들은 2 μm 미만의 높이를 가질 수 있으며, 바람직하게는 1 μm 미만의 서로 다른 높이를 포함할 수 있다.
한편, 전해액에서 중간층(1158')의 제2레이어(1158b)가 식각되어 중간층(1158)을 형성할 수 있다. 이에, 제1레이어(1158a)는 제2레이어(1158b) 보다 소정길이(w) 만큼 측방향으로 돌출될 수 있다. 제2레이어(1158b)가 식각되는 소정길이(w)는 전해액의 종류, 농도에 따라 조절될 수 있다. 덧붙어 별도의 식각액으로 제2레이어(1158b)를 식각하기 위한 식각공정이 추가될 수도 있다.
전술된 도 14a 내지 도 14b에서 도시된 것과 같이 본 발명의 디스플레이 장치(1000)를 기계적 리프트 오프 방식으로 제조함으로써, 레이저 리프트 오프법 또는 화학적 리프트 오프법을 이용하여 반도체 발광소자가 분리될 경우 발생되는 레이저에 의한 열 또는 화학약품에 의하여 반도체 발광소자의 손상을 최소화할 수 있다. 또한, 별도의 설비 없이 물리적 에너지에 의하여 반도체 발광소자를 분리할 수 있기 때문에 공정비용이 감소될 수 있다. 이에, 제조비가 절감될 수 있다.
또한, 물리적 에너지에 의하여 반도체 발광소자를 분리하는 방식으로 상기 디스플레이 장치를 제조하는 경우에는 반도체 발광소자의 두께는 10 μm 미만으로 형성될 수 있다. 이는 레이저 리프트 오프법 또는 화학적 리프트 오프법으로 제조된 반도체 발광소자에 비하여 두께가 50%이상 감소된 두께일 수 있다. 즉, 기계적 리프트 오프 방식으로 제조된 디스플레이 장치의 반도체 발광소자는 두께를 줄일 수 있다는 장점이 있다. 이에, 상기 반도체 발광소자의 두께가 얇아짐에 따라 반도체 발광소자 내부에서 발광되어 방출되는 빛의 손실이 줄어들어 광효율이 증가될 수 있다.
한편, 이상에서 설명한 디스플레이 장치에 적용된 반도체 발광소자는 여러가지 형태로 변형될 수 있다. 이러한 변형예들에 대하여 후술되는 내용에서 설명한다.
도 15 내지 도 17은 본 발명의 새로운 구조의 디스플레이 장치의 또 다른 수직형 반도체 발광소자(2050, 3050, 4050)의 개념도들이다.
도 15를 참조하면, 중간층(2158)의 제1레이어(2158a)와 제2레이어(2158b)는 서로 상이한 기공률을 가질 수 있다. 제2레이어(2158b)는 제1레이어(2158a)보다 기공률이 크게 형성될 수 있다. 제2레이어(2158b)의 기공률은 반도체 발광소자(2050)의 제조과정에서 전해액 또는 식각액의 처리에 의하여 조절될 수 있다. 나아가, 언도프드 반도체층(2159) 또한 제조과정에서 전해액 또는 식각액의 처리에 다공성을 가질 수도 있다.
일 실시예에서, 제2레이어(2158b)는 제1레이어(2158b)보다 기공률이 크게 형성되어 고저항을 가질 수 있다. 이에, 반도체 발광소자(2050)의 중간층(2158)은 고저항층이 형성되어 반도체 발광소자(2050)의 표면으로 누설되는 전류가 감소하여 반도체 발광소자(2050)의 발광 효율이 증대될 수 있다.
도 16을 참조하면, 패시베이션층(3057)은 중간층(3158)의 측면의 적어도 일부를 감싸도록 연장 형성될 수도 있다.
도 17을 참조하면, 중간층(4158)과 언도프드 반도체층(4159) 사이에 제3레이어(4180)를 더 구비할 수 있다. 제3레이어(4180)는 제2도전형 불순물을 포함하고 제1레이어(4158a)보다 불순물 농도가 낮을 수 있다. 제3레이어(4180)의 불순물 농도는 1017/cm3 내지 1018/cm3 범위일 수 있다. 즉, 반도체 발광소자(4050)의 제2도전형 불순물을 포함하는 층은 제3레이어(4180), 제1레이어(4158a), 제2레이어(4158b) 순으로 불순물 농도가 높아질 수 있다.
제3레이어(4180)를 구비하는 반도체 발광소자(4050)는 전술된 반도체 발광소자에 비하여 두께가 얇게 형성된 언도프드 반도체층(4159)을 가질 수 있으며, 이때, 전술된 제2도전형 전극을 형성하기 위한 언도프드 반도체층(4159)의 식각공정을 생각하여도 언도프드 반도체층(4159) 상의 상기 제2도전형 전극은 중간층(4158)과 오믹접촉을 형성할 수도 있다. 구체적으로 반도체 발광소자(4050)의 언도프드 반도체층(4159)의 두께는 200nm 이하로 형성될 수 있다.
도 18은 새로운 구조의 디스플레이 장치(5000)가 적용된 본 발명의 또 다른 실시예를 설명하기 위한, 도 1의 A부분 확대도이다. 도 19는 도 18의 G-G를 따라 취한 단면도이고, 도 20는 도 18의 플립 칩 타입 반도체 발광소자(5050)의 개념도이다.
도 18 내지 도 20을 참조하면, 본 발명의 디스플레이 장치(5000)의 반도체 발광소자(5050)은 플립 칩 형태로 형성되어 기판(5010)에 조립될 수도 있다. 플립 칩 형태의 반도체 발광소자(5050)는 제2도전형 반도체층(5153)과 제1레이어(5158a) 사이에 배치된 제2레이어(5158b) 상에 제2도전형 전극(5152)을 형성할 수 있다.
따라서, 제1도전형 전극(5156) 및 제2도전형 전극(5152)은 각각 기판(5010) 상에 배치된 제1전극(5020) 및 제2전극(5040)과 전기적으로 연결될 수 있다.
이상에서 설명한 반도체 발광소자를 이용한 디스플레이 장치는 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (10)

  1. 복수의 반도체 발광소자들을 구비하는 디스플레이 장치에 있어서,
    상기 반도체 발광소자들 중 적어도 하나는,
    제1도전형 전극 및 제2도전형 전극;
    상기 제1도전형 전극이 배치되는 제1도전형 반도체층;
    상기 제1도전형 반도체층과 오버랩되며, 상기 제2도전형 전극이 배치되는 제2도전형 반도체층;
    상기 제1도전형 반도체층과 상기 제2도전형 반도체층 사이에 배치되는 활성층;
    상기 제2도전형 반도체층 상에 배치되는 중간층;
    상기 중간층 상에 전해연마(Electro polishing)가 가능한 다공성 재질로 형성된 돌기; 및
    상기 중간층과 상기 돌기 사이에 배치되는 언도프드(undoped) 반도체층을 포함하고,
    상기 중간층은,
    제2도전형 불순물을 포함하는 제1레이어; 및
    상기 제1레이어보다 제2도전형 불순물 농도가 높게 형성되는 제2레이어를 포함하고,
    상기 제1레이어 및 제2레이어는 순차적으로 반복되며 적층되는 것을 특징으로 하는 디스플레이 장치.
  2. 제1항에 있어서,
    상기 제1레이어의 두께는 상기 제2레이어의 두께 이상으로 형성되는 것을 특징으로 하는 디스플레이 장치.
  3. 제1항에 있어서,
    상기 제2레이어의 두께는 상기 반도체 발광소자에서 방출되는 광이 가지는 파장의 1/2의 정수배를 기준으로 하여 오차범위 ±20% 이내인 것을 특징으로 하는 디스플레이 장치.
  4. 제1항에 있어서,
    상기 제1레이어는 상기 제2레이어에 적층되어 소정길이 만큼 측방향으로 돌출되는 것을 특징으로 하는 디스플레이 장치.
  5. 제4항에 있어서,
    상기 소정길이는 상기 반도체 발광소자에서 방출되는 광이 가지는 파장의 1/2의 정수배를 기준으로 하여 오차범위 ±20% 이내인 것을 특징으로 하는 디스플레이 장치.
  6. 제1항에 있어서,
    상기 제1레이어의 기공률은 상기 제2레이어의 기공률보다 작은 것을 특징으로 하는 디스플레이 장치.
  7. 제1항에 있어서,
    상기 돌기는 제2도전형 반도체로 형성되고, 상기 제2레이어보다 불순물 농도가 더 높은 것을 특징으로 하는 디스플레이 장치.
  8. 제1항에 있어서,
    상기 중간층과 상기 언도프드 반도체층 사이에 제3레이어를 더 구비하고,
    상기 제3레이어는 제2도전형 불순물을 포함하고 상기 제1레이어보다 불순물 농도가 낮은 것을 특징으로 하는 디스플레이 장치.
  9. 제1항에 있어서,
    상기 제1도전형 반도체층, 상기 제2도전형 반도체층 및 상기 활성층의 측면을 감싸는 패시베이션 층을 포함하는 것을 특징으로 하는 디스플레이 장치.
  10. 제9항에 있어서,
    상기 패시베이션 층은 상기 중간층 측면의 적어도 일부를 감싸도록 연장 형성되는 것을 특징으로 하는 디스플레이 장치.
PCT/KR2018/007833 2018-07-04 2018-07-11 반도체 발광소자를 이용한 디스플레이 장치 WO2020009262A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/257,190 US20210159269A1 (en) 2018-07-04 2018-07-11 Display apparatus using semiconductor light-emitting device
EP18925222.4A EP3819941B1 (en) 2018-07-04 2018-07-11 Display apparatus using semiconductor light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0077924 2018-07-04
KR1020180077924A KR102110871B1 (ko) 2018-07-04 2018-07-04 반도체 발광소자를 이용한 디스플레이 장치

Publications (1)

Publication Number Publication Date
WO2020009262A1 true WO2020009262A1 (ko) 2020-01-09

Family

ID=69059745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007833 WO2020009262A1 (ko) 2018-07-04 2018-07-11 반도체 발광소자를 이용한 디스플레이 장치

Country Status (4)

Country Link
US (1) US20210159269A1 (ko)
EP (1) EP3819941B1 (ko)
KR (1) KR102110871B1 (ko)
WO (1) WO2020009262A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105996A4 (en) * 2020-02-13 2024-04-17 LG Electronics, Inc. DISPLAY DEVICE USING SEMICONDUCTOR ELECTROLUMINESCENT ELEMENT, AND METHOD FOR MANUFACTURING SAME

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018110344A1 (de) * 2018-04-30 2019-10-31 Osram Opto Semiconductors Gmbh Bauteil, bauteilverbund und verfahren zur herstellung eines bauteils oder bauteilverbunds
KR20240093711A (ko) * 2022-01-10 2024-06-24 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060069375A (ko) * 2006-04-24 2006-06-21 에피밸리 주식회사 반도체 엘이디 소자 및 그 제조 방법
JP2008108981A (ja) * 2006-10-26 2008-05-08 Toyoda Gosei Co Ltd 発光装置
KR101001782B1 (ko) * 2010-10-13 2010-12-15 전남대학교산학협력단 반도체소자를 기판으로부터 분리하는 방법
KR20120075070A (ko) * 2010-12-28 2012-07-06 서울반도체 주식회사 질화물계 반도체 소자의 기판 분리 방법
KR20130107541A (ko) * 2012-03-22 2013-10-02 삼성전자주식회사 질화물계 반도체 전방향 리플렉터를 구비한 발광소자

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724300B1 (en) * 1990-11-02 2001-10-10 Norikatsu Yamauchi Semiconductor device having reflecting layer
JP2002176226A (ja) * 2000-09-22 2002-06-21 Toshiba Corp 光素子およびその製造方法
CN100373642C (zh) * 2004-12-13 2008-03-05 新世纪光电股份有限公司 用于制造发光装置的方法
KR100887111B1 (ko) * 2007-05-07 2009-03-04 삼성전기주식회사 수직구조 반도체 발광소자 제조방법
KR101081062B1 (ko) * 2010-03-09 2011-11-07 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR20110107618A (ko) * 2010-03-25 2011-10-04 삼성엘이디 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR20120079393A (ko) * 2011-01-04 2012-07-12 (주)세미머티리얼즈 반도체 발광소자의 제조방법
KR102413330B1 (ko) * 2017-09-12 2022-06-27 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060069375A (ko) * 2006-04-24 2006-06-21 에피밸리 주식회사 반도체 엘이디 소자 및 그 제조 방법
JP2008108981A (ja) * 2006-10-26 2008-05-08 Toyoda Gosei Co Ltd 発光装置
KR101001782B1 (ko) * 2010-10-13 2010-12-15 전남대학교산학협력단 반도체소자를 기판으로부터 분리하는 방법
KR20120075070A (ko) * 2010-12-28 2012-07-06 서울반도체 주식회사 질화물계 반도체 소자의 기판 분리 방법
KR20130107541A (ko) * 2012-03-22 2013-10-02 삼성전자주식회사 질화물계 반도체 전방향 리플렉터를 구비한 발광소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105996A4 (en) * 2020-02-13 2024-04-17 LG Electronics, Inc. DISPLAY DEVICE USING SEMICONDUCTOR ELECTROLUMINESCENT ELEMENT, AND METHOD FOR MANUFACTURING SAME

Also Published As

Publication number Publication date
EP3819941A1 (en) 2021-05-12
EP3819941A4 (en) 2022-04-06
US20210159269A1 (en) 2021-05-27
KR20200004713A (ko) 2020-01-14
KR102110871B1 (ko) 2020-05-14
EP3819941B1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2018097447A1 (en) Display device using semiconductor light emitting device and fabrication method thereof
WO2017142315A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2017126762A1 (en) Display device using semiconductor light emitting device
WO2014163325A1 (en) Display device using semiconductor light emitting device
WO2021117979A1 (ko) 마이크로 led와 관련된 디스플레이 장치 및 이의 제조 방법
WO2017007215A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2018048019A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2018135704A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2019004508A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2019151550A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2015060506A1 (en) Display device using semiconductor light emitting device
WO2015133709A1 (en) Display device using semiconductor light emitting device
WO2016068418A1 (en) Display device using semiconductor light emitting device and method of fabricating the same
WO2015060507A1 (en) Display device using semiconductor light emitting device
WO2017073865A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2016122125A1 (en) Display device using semiconductor light emitting devices and method for manufacturing the same
WO2020166777A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
WO2018105810A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2019135441A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2020179989A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2016186376A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2020159046A1 (en) Semiconductor light emitting element, manufacturing method thereof, and display device including the same
WO2020009262A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2020032313A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2020085640A1 (ko) 반도체 발광 소자, 이의 제조 방법, 및 이를 포함하는 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018925222

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018925222

Country of ref document: EP

Effective date: 20210204