WO2020009169A1 - ペリクル枠 - Google Patents

ペリクル枠 Download PDF

Info

Publication number
WO2020009169A1
WO2020009169A1 PCT/JP2019/026529 JP2019026529W WO2020009169A1 WO 2020009169 A1 WO2020009169 A1 WO 2020009169A1 JP 2019026529 W JP2019026529 W JP 2019026529W WO 2020009169 A1 WO2020009169 A1 WO 2020009169A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellicle frame
filter
hole
peripheral surface
pellicle
Prior art date
Application number
PCT/JP2019/026529
Other languages
English (en)
French (fr)
Inventor
木村 幸広
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP2020529041A priority Critical patent/JPWO2020009169A1/ja
Publication of WO2020009169A1 publication Critical patent/WO2020009169A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • G03F1/64Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof characterised by the frames, e.g. structure or material, including bonding means therefor

Definitions

  • the present disclosure relates to a pellicle frame.
  • a photomask is used in an exposure step of forming a wiring pattern on a semiconductor wafer.
  • foreign matter particles or the like
  • a pellicle provided with a transparent thin film (pellicle film) covering the surface of the photomask is used to prevent dust.
  • a rectangular frame called a pellicle frame is used.
  • a member constituting the frame a member having a small diameter such as a prism having a length of 3 mm and a width of 2 mm is used.
  • the pellicle frame is provided with a small-diameter through-hole (that is, a vent) communicating the inside and the outside of the pellicle, and dust or the like enters the inside of the pellicle at an open end outside the vent. To prevent this, a filter is placed.
  • a small-diameter through-hole that is, a vent
  • the pellicle is mounted on a photomask in the atmosphere and is used in a vacuum in the exposure apparatus, so that the pellicle is evacuated in the exposure apparatus. Further, in a process after the evacuation, release to the atmosphere is performed (see Patent Document 1).
  • Patent Document 1 discloses a technique in which a member communicating with a ventilation hole is provided so as to protrude inside or outside a pellicle frame, and a filter is arranged in the protruding portion in parallel with the pellicle film. I have.
  • a pellicle frame that can be quickly evacuated or released to the atmosphere, has a simple configuration, and has sufficient strength.
  • the pellicle frame in one aspect of the present disclosure has a rectangular shape in a plan view, includes four sides corresponding to each side of the rectangular shape, and has a first surface provided on both sides in the thickness direction.
  • the present invention relates to a pellicle frame including a second surface, and an inner peripheral surface and an outer peripheral surface connected to the first surface and the second surface.
  • the pellicle frame has one or more recesses on its outer peripheral surface, and the one or more recesses are provided on one or more sides of the four sides.
  • the one or more recesses include a through hole that penetrates through the side provided with the recess and opens to the inside and the inner peripheral surface of the recess. Further, at least one of the one or more recesses has a plurality of through holes.
  • the ventilation area (S1) which is the area of the opening end on the outer peripheral surface side of the concave portion, is the minimum cutoff of the gas flow path formed by the through hole. It is larger than the minimum sectional area (S2) which is the area.
  • This pellicle frame is used as a frame constituting the pellicle.
  • the pellicle frame has, for example, a pellicle film stretched on the second surface side, and a filter on the outer peripheral surface side of the concave portion in which the through hole (that is, the ventilation hole) is opened so that dust and the like do not enter the inside of the pellicle. (That is, the first filter).
  • the pellicle frame has a ventilation area (S1) larger than the above-described minimum cross-sectional area (S2). More specifically, in the pellicle frame, the area of the opening end on the outer peripheral surface side of the concave portion, that is, the ventilation area (S1) which is the area of the portion where the concave portion opens on the outer peripheral surface (that is, the area of the opening portion), The area of the filter that covers the entire open end (so-called effective ventilation area) is larger than the minimum cross-sectional area (S2) that is the minimum cross-sectional area of the gas flow path formed by the through hole.
  • the filter when the filter is arranged so as to cover the opening end of the concave portion and, for example, the inside of the pellicle is evacuated (that is, when evacuating), evacuation can be performed in a short time.
  • the filter is arranged so as to cover the opening end of the concave portion having the ventilation area (S1) larger than the minimum cross-sectional area (S2) of the through-hole. Since the cross-sectional area is larger than the hole, the evacuation can be performed in a shorter time than when the opening end of the through-hole is directly covered with the filter.
  • the inner space of the pellicle does not become small unlike the related art, so that the exposure range does not become small.
  • the concave portion can be easily provided even in a pellicle frame having a small diameter. Further, since it is not necessary to provide many ventilation holes, it is possible to suppress a decrease in the strength of the pellicle frame due to the provision of many ventilation holes.
  • the thickness direction is a direction in a plan view, that is, a direction from the first surface to the second surface.
  • the minimum cross-sectional area of the gas flow path is the minimum cross-sectional area of the cross-sectional area perpendicular to the direction in which the gas flows in the gas flow path (that is, the direction of the flow path).
  • the minimum cross-sectional area (S2) is the minimum cross-sectional area of the gas flow path formed by one through-hole when the number of through-holes is one. Is the sum of the respective minimum cross-sectional areas of the respective gas flow paths formed by the respective through holes.
  • the ratio (opening area) of the total area (Smm 2 ) of the open ends of all the concave portions to the volume of the inner space (internal volume: Vmm 3 ) surrounded by the inner peripheral surface of the pellicle frame. (Ratio: S / V) may be not less than 0.002 mm ⁇ 1 and not more than 0.025 mm ⁇ 1 .
  • This pellicle frame the ratio (S / V) is, in each case 0.002 mm -1 or 0.025 mm -1 or less, it is possible to perform evacuation and air released in a short time.
  • the pellicle frame described above may include a first filter that covers an opening end on the outer peripheral surface side of the concave portion.
  • This pellicle frame is an example of a pellicle frame provided with a filter (that is, a first filter).
  • a filter that is, a first filter.
  • At least one of the inner surface of the concave portion and the inner surface of the through hole may be provided with an adhesive layer.
  • the surface inside the concave portion may have irregularities.
  • the first filter may be provided with a ventilation suppressing portion that suppresses ventilation of the first filter in a region facing the opening of the through hole.
  • a second filter having higher air permeability than the first filter and covering the opening of the through hole is provided inside the recess, and the second filter is provided with an adhesive layer around its own gas flow path. May be provided.
  • the foreign matter in the air can be collected not only by the first filter but also by the second filter (particularly, the adhesive layer), so that there is an advantage that the efficiency of collecting foreign matter is improved. .
  • the corners of the inner surface of the concave portion may be chamfered.
  • the pellicle frame may be made of a ceramic sintered body having conductivity.
  • the pellicle frame can be easily processed by electric discharge machining.
  • the pellicle frame may have a Young's modulus of 300 GPa or more and a strength of 500 MPa or more.
  • the pellicle frame has sufficient rigidity and strength, so that deformation and breakage hardly occur, which is preferable.
  • the pellicle frame may be made of a ceramic sintered body having a thermal conductivity of 15 W / mK or more.
  • the pellicle frame since the pellicle frame has high heat conductivity, the pellicle frame efficiently diffuses the heat generated in the pellicle film during exposure, and can prevent the pellicle film from being damaged by the heat.
  • the pellicle frame may be made of a ceramic sintered body having a coefficient of thermal expansion of 10 ppm / ° C. or less.
  • the deformation of the pellicle frame due to a rise in temperature during exposure can be suitably suppressed.
  • the coefficient of thermal expansion is a coefficient of linear thermal expansion in a temperature range from room temperature (25 ° C.) to 600 ° C.
  • a conductive or non-conductive material can be adopted.
  • a material for forming the pellicle frame a material mainly composed of ceramics can be adopted.
  • the main component indicates the largest component amount (for example, weight%).
  • alumina / titanium carbide alumina / titanium carbide / titanium nitride, zirconia / titanium carbide, carbide, cermet, etc.
  • a metal e.g., an alloy
  • duralumin a metal such as duralumin
  • the outer shape of the pellicle frame, the concave portion, the through hole, and the like are formed by electric discharge machining (for example, wire electric discharge machining, fine hole electric discharge machining, die sink electric discharge machining, etc.). It can be easily processed into a desired shape.
  • non-conductive material for example, ceramics such as alumina, silicon nitride, and zirconia can be adopted.
  • both the width and the thickness of the frame portion can be, for example, in the range of 2.0 mm to 5.0 mm.
  • the size of the opening (central through hole) for example, a range of 120 mm to 150 mm in length and 150 mm to 120 mm in width can be adopted.
  • FIG. 2 is a perspective view illustrating a pellicle frame according to the first embodiment.
  • 2A is a front view showing a fourth side of the pellicle frame of the first embodiment
  • FIG. 2B is a cross-sectional view showing a IIB-IIB cross section of FIG. 2A
  • FIG. 2C is a cross-sectional view showing a IIC-IIC cross section of FIG. 2A. is there.
  • FIG. 2 is a perspective view showing a pellicle of the first embodiment.
  • 4A is a front view showing a fourth side of the pellicle of the first embodiment
  • FIG. 4B is a cross-sectional view showing a IVB-IVB cross section of FIG. 4A
  • FIG. 4C is a cross-sectional view showing a IVC-IVC cross section of FIG. 4A.
  • FIG. 4 is a process chart illustrating a method for manufacturing the pellicle frame of the first embodiment.
  • FIG. 11 is a cross-sectional view illustrating a cross section (a cross section parallel to the XY plane) of a main part including a concave portion and a ventilation hole of the pellicle frame of the second embodiment.
  • FIG. 7A is a plan view showing a main part including a concave portion and a ventilation hole of the pellicle frame of the third embodiment
  • FIG. 7B is a cross-sectional view showing a cross section taken along line VIIB-VIIB of FIG. 7A.
  • FIG. 8A is a plan view showing a main part including a concave portion and a vent of the pellicle frame of the first modification
  • FIG. 8B is a plan view showing a main portion including a concave portion and a vent of the pellicle frame of the second modification
  • 9A is a plan view showing a main part including a concave portion and a ventilation hole of the pellicle frame of the fourth embodiment
  • FIG. 9B is a cross-sectional view showing a cross section taken along line IXB-IXB of FIG. 9A. It is sectional drawing which shows the cross section (cross section parallel to XY plane) of the principal part containing the recessed part and the ventilation hole of the pellicle frame of 5th Embodiment.
  • FIG. 11A is a plan view showing a main part including a concave portion and a ventilation hole of the pellicle frame of the sixth embodiment
  • FIG. 11B is a cross-sectional view showing a cross section taken along line XIB-XIB of FIG. 11A.
  • the pellicle frame 1 is a member in which the pellicle film 3 (see FIG. 4A) is stretched on one side (above FIG. 4A).
  • the pellicle frame 1 is made of a material mainly composed of ceramic (for example, a conductive ceramic mainly composed of alumina and containing titanium carbide).
  • the pellicle frame 1 is, for example, a conductive ceramic sintered body mainly composed of alumina.
  • FIGS. 1 and 2 show the pellicle frame 1 itself, and FIGS. 3 and 4 show a pellicle 7 having the pellicle film 3 and a filter 5 to be described later.
  • the inner surface surrounded by the pellicle frame 1 itself is referred to as an inner peripheral surface 11, and the outer surface opposite to the inner surface is referred to as an outer peripheral surface 13.
  • the side on which the pellicle film 3 is stretched is the upper surface (for example, the second surface) 15, and the opposite surface is the photomask (not shown). It is referred to as a lower surface (for example, a first surface) 17 to be attached.
  • the pellicle frame 1 is a rectangular frame (that is, an annular member) having a rectangular shape in plan view when viewed from the Z direction. ), And has a central through hole 19 in the center which is rectangular in plan view.
  • the pellicle frame 1 is composed of long frame portions arranged on the same plane in four directions, up, down, left, and right in a plan view. More specifically, the pellicle frame 1 includes a first side 21a and a second side 21b arranged parallel to the X axis, and a third side 21c and a fourth side 21d arranged parallel to the Y axis. It is configured. The first side 21a and the second side 21b are shorter in dimension than the third side 21c and the fourth side 21d. The first to fourth sides 21a to 21d are collectively referred to as sides 21.
  • the outer dimensions of the pellicle frame 1 are, for example, 149 mm in length (Y direction) ⁇ 120 mm in width (X direction) ⁇ 1.8 mm in thickness (Z direction).
  • Each side 21 of the pellicle frame 1 is a quadrangular prism, and its width dimension (width dimension viewed from the Z direction: frame width) is the same (for example, 2 mm).
  • the pellicle frame 1 has a Young's modulus of 300 GPa or more and a strength (three-point bending strength specified in JIS R1601: 2008) of 500 MPa or more. Further, the pellicle frame 1 has a thermal conductivity of 15 W / mK or more and a thermal expansion coefficient of 10 ppm / ° C. or less in a temperature range from room temperature (25 ° C.) to 600 ° C. The flatness on the second surface 15 and the first surface 17 of the pellicle frame 1 is 10 ⁇ m or less.
  • the pellicle frame 1 has two portions (total) on the outer peripheral surface 13 side of both frame portions (ie, the long side third side portion 21c and the fourth side portion 21d) in the X direction. At four locations), bottomed holes 23 are formed.
  • the bottomed hole 23 is a bottomed round hole having a diameter of 1.5 mm and a depth of 1.2 mm, for example, and has a bottom formed in a conical shape.
  • the bottomed hole 23 is used for a positioning part when manufacturing the pellicle 7 and for attaching the pellicle 7 to a photomask thereafter, and a gripping part at the time of transportation.
  • groove-shaped concave portions 25 are formed on the outer peripheral surface 13 of all the side portions 21 of the pellicle frame 1.
  • the concave portion 25 will be described by taking the concave portion 25 provided on the fourth side portion 21d as an example, but the concave portions 25 of the first to third side portions 21a to 21c have the same shape. Description is omitted. Specifically, the recess 25 of the first side 21a and the recess 25 of the second side 21b have the same shape, and the recess 25 of the third side 21c and the fourth side 21d have the same shape.
  • the concave portions 25 of the third side portion 21c and the fourth side portion 21d have a longer dimension in the longitudinal direction than the concave portions 25 of the first side portion 21a and the second side portion 21b. It is the same as the part 21a and the second side part 21b.
  • the concave portions 25 are formed on the outer peripheral surface 13 of all the side portions 21 of the pellicle frame 1, but at least one of the side portions 21 has the concave portion 25. 25 may be provided. Further, the concave portion 25 provided in one side portion 21 may be a plurality of concave portions 25 divided into a plurality. That is, a plurality of concave portions 25 may be provided in one side portion 21.
  • the concave portion 25 is a groove formed along the longitudinal direction (Y direction) of the fourth side 21d.
  • the shape of the space in the groove is a rectangular parallelepiped.
  • the dimension L1 in the Y direction of the concave portion 25 is, for example, 139 mm, and is provided so as not to reach both ends of the fourth side 21d in the Y direction.
  • the thickness W1 of the fourth side portion 21d (that is, the dimension in the Z direction) is, for example, 1.8 mm
  • the dimension W2 of the concave portion 25 in the Z direction is shorter, for example, 1.2 mm.
  • the side surface 25a which is the inner peripheral surface on the second surface 15 side of the concave portion 25, and the second surface 15 of the fourth side portion 21d
  • there is a gap W4 between the side surface 25b which is the inner peripheral surface on the first surface 17 side of the concave portion 25, and the first surface 17 of the fourth side 21d.
  • the dimensions of the gaps W3 and W4 are the same (they may be different), and are preferably 0.2 mm or more (for example, 0.2 mm to 0 mm) in order to securely attach the filter 5. .3 mm).
  • the width D1 of the fourth side 21d (that is, the dimension in the X direction) D1 is, for example, 2 mm
  • the dimension D2 of the depth (X direction) of the concave portion 25 is, for example, 20% of D1.
  • the fourth side 21d is provided with a plurality of ventilation holes 27.
  • the rectangular bottom portion 25c of the concave portion 25 of the fourth side portion 21d (the bottom portion 25c is parallel to the inner peripheral surface 11) penetrates the fourth side portion 21d in the X-axis direction to form the concave portion.
  • the pellicle frame 1 has two vent holes 27 which are open to the bottom 25c inside the pellicle frame 25 and the inner peripheral surface 11 side of the pellicle frame 1.
  • the ventilation hole 27 is a cylindrical through hole having a diameter of, for example, ⁇ 0.5 mm.
  • two vent holes 27 are provided in the fourth side 21d, but three or more vent holes 27 may be provided, for example.
  • a plurality of (for example, two) ventilation holes 27 are provided in all four sides 21 (accordingly, all four recesses 25), but at least one recess 21 is provided. Any structure may be used as long as the structure has a plurality of ventilation holes 27 in 25.
  • the number of air holes 27 provided in one recess 25 may be two or three or more. In addition, since it is sufficient that at least one recess 25 has a plurality of ventilation holes 27, one ventilation hole 27 may be provided in another recess 25.
  • the “vent area S1” is larger than the “minimum sectional area S2”.
  • the ventilation area S1 is the opening end of the recess 25 of the fourth side portion 21d on the outer peripheral surface 13 side (that is, the portion that opens on the same surface as the outer peripheral surface 13). Indicates the area.
  • the minimum cross-sectional area S2 indicates the sum of the minimum cross-sectional areas of the two ventilation holes 27 in the recess 25 of the fourth side 21d. Specifically, the minimum cross-sectional area S2 is obtained by obtaining a cross-sectional area perpendicular to the axial direction (that is, a cross-sectional area of a vertical surface) in each of the ventilation holes 27, and obtaining a total of those cross-sectional areas. Since the cross-sectional area of each ventilation hole 27 is the same in the axial direction, the minimum cross-sectional area of each ventilation hole 27 is the same at any position in the axial direction.
  • the sectional area perpendicular to the axial direction of each of the ventilation holes 27 is the minimum sectional area S2.
  • the cross-sectional area perpendicular to the axial direction of the ventilation hole 27 is the flow path (that is, the cross-sectional area of the gas flow path) formed by the ventilation hole 27 which is a through hole. That is, the cross-sectional area is perpendicular to the direction in which the gas flows.
  • the plane perpendicular to the axial direction of each ventilation hole 27 is a plane parallel to the outer peripheral surface 13 in the fourth side 21d (that is, a YZ plane).
  • each vent hole 27 the cross-sectional area perpendicular to the axial direction of each vent hole 27 is the same regardless of the cross-section at any position in the axial direction. However, if the cross-sectional area differs at each location in each vent hole 27, A minimum cross-sectional area is obtained as a cross-sectional area of each of the ventilation holes 27, and the total is defined as a minimum cross-sectional area S2.
  • the ventilation area S1 and the minimum cross-sectional area S2 satisfy the following relational expression.
  • vent area S1 50 ⁇ minimum sectional area S2 ⁇ vent area S1 (A)
  • the ventilation area S1 50 times or more the minimum sectional area S2, the evacuation or the like can be performed in a shorter time.
  • the concave portion 25 of the fourth side portion 21d is taken as an example.
  • the concave portions 25 of the other first to third side portions 21a to 21c are similarly set to satisfy the condition of “vent area S1> minimum sectional area S2”.
  • the condition of “50 ⁇ minimum cross-sectional area S2 ⁇ vent area S1” is satisfied.
  • the minimum cross-sectional area S2 may be obtained by multiplying the cross-sectional area of one ventilation hole 27 by the number of the ventilation holes 27 as described above.
  • the filter (that is, the first filter) 5 is a well-known filter that prevents foreign substances such as dust from flowing into the pellicle 7 fixed to the photomask, and prevents foreign substances from flowing. It is formed of a possible well-known material.
  • a filter suitable for the purpose may be used as appropriate.
  • an ULPA filter (Ultra Low Low Penetration Air Filter) can be used.
  • the ULPA filter is an air filter that has a particle collection rate of 99.9995% or more with respect to particles having a rated air volume of 0.15 ⁇ m and an initial pressure loss of 245 Pa or less.
  • a HEPA filter High Efficiency Particulate Air Filter
  • the HEPA filter is an air filter that has a particle collection rate of 99.97% or more for particles having a particle size of 0.3 ⁇ m at a rated air flow rate, and has an initial pressure loss of 245 Pa or less.
  • the filter 5 when viewed from the outer peripheral surface 13 side, the filter 5 has a rectangular shape, covers all the rectangular opening ends of the concave portion 25, and covers the entire circumference of the opening end with a predetermined width. It covers like a frame.
  • the filter 5 is attached to the outer peripheral surface 13 of the fourth side portion 21d, specifically, around the opening end of the concave portion 25, for example, by an adhesive.
  • the portion of the filter 5 that covers the periphery of the opening end of the concave portion 25 is a so-called glue allowance, and the width thereof can be, for example, in the range of 0.2 mm to 0.3 mm.
  • (Opening area ratio: S / V) is 0.002 mm -1 or more and 0.025 mm -1 or less.
  • the powder is a substance that is a source of a sintered body constituting the pellicle frame 1, and after appropriately adding a sintering aid and the like to raw material powder such as alumina or a conductive material, and wet-spraying, spray-drying. It is produced into granules of 50 ⁇ m to 100 ⁇ m by the method.
  • the particle size of the raw material powder was measured by a laser diffraction / scattering method, it may be measured by a dynamic light scattering method or a sedimentation method.
  • the composite ceramic base powder is formed into a frame shape having an outer dimension of about 182 mm (length) ⁇ 147 mm (width) ⁇ 6 mm (thickness) and a frame width of about 5 mm by a die pressing method, and a prototype (powder molded body) of the pellicle frame 1 is formed. Produced.
  • the pellicle frame 1 is formed larger in advance than the pellicle frame 1 after firing.
  • the pellicle frame 1 can have various sizes according to the size of an exposure mask in a semiconductor exposure apparatus. (3rd process P3)
  • a third step (firing step) P3 after molding the powder, the powder was fired at a predetermined temperature.
  • the powder compact was debindered, held at 1700 ° C. for 3 hours in an inert gas, and fired to obtain a dense ceramic sintered body having conductivity.
  • the firing temperature depends on the composition of the powder, but is generally 1500 ° C. or higher. By firing, a sintered body having high Young's modulus and strength is obtained.
  • the dimensions of the sintered body were about 151 mm long ⁇ 122 mm wide ⁇ 5 mm thick and about 4 mm in frame width. In addition, there was a distortion of about 0.3 mm.
  • a thickness processing (specifically, a grinding processing) for adjusting the thickness was performed on the sintered body.
  • the upper and lower surfaces (both surfaces in the thickness direction) of the sintered body were ground by a surface grinder by substantially the same amount to be processed to a thickness of 2.1 mm.
  • the flatness after the surface grinding was 20 ⁇ m to 40 ⁇ m.
  • the thicknesses were made uniform except for the grinding allowance (for example, 0.05 mm to 0.10 mm) of the precision plane processing (tenth step P10) described later.
  • the inner shape / outer shape processing was performed on the sintered body after the thickness processing.
  • the inner shape and outer shape of the sintered body were processed to 149 mm long ⁇ 120 mm wide and 2 mm in frame width by wire electric discharge machining.
  • the outer peripheral surface of the sintered body is gripped by a holding jig (not shown), the inner peripheral surface and the outer peripheral surface of the sintered body are subjected to wire electric discharge machining, and the inner shape and outer shape are measured.
  • the ridge (corner) may be rounded.
  • two bottomed holes 23 were formed on the opposing long sides of the sintered body by die sinking electrical discharge machining.
  • a hole with a bottom having a diameter of 1.6 mm and a depth of 1.2 mm is formed in a portion corresponding to the outer peripheral surface 13 of the third side portion 21c and the fourth side portion 21d of the pellicle frame 1 with respect to the sintered body. 23 was formed.
  • a seventh step (grooving step) P6 the shape of the groove is formed in a portion corresponding to the outer peripheral surface 13 of each side portion 21 of the pellicle frame 1 with respect to the sintered body by the sinking electric discharge machining. was formed.
  • a sinking discharge machining was performed using an electrode having an inverted shape of the groove shape.
  • a ventilation hole 27 which is a through hole for adjusting air pressure, was formed in the bottom 25c of the recess 25 using a small hole electrical discharge machine (not shown).
  • the heat affected layer generated by electric discharge machining was removed by sandblasting.
  • silicon carbide abrasive grains having a particle size of # 600 (average particle size of about 30 ⁇ m) were used.
  • the thickness of the removed layer was about 5 ⁇ m.
  • a tenth step (precision plane processing step) P10 the sintered body after the sand blast processing was subjected to precision plane processing.
  • the sintered body was polished by 25 ⁇ m to 50 ⁇ m on each side using a diamond grindstone to a thickness of 2.0 mm and a flatness of less than 10 ⁇ m.
  • this pellicle frame 1 When the Young's modulus and strength of this pellicle frame 1 were measured, it was 420 GPa and 690 MPa in strength.
  • the edge of the formed pellicle frame 1 may be subjected to brush polishing and chamfering with an R radius of 0.03 mm to 0.05 mm.
  • the filters 5 were attached to the pellicle frame 1 using a well-known adhesive so as to cover all the opening ends opened to the outer peripheral surface 13 of each recess 25. That is, the outer edge portion of the filter 5 was attached around the opening end of the recess 25.
  • the pellicle film 3 is disposed on the second surface 15 side of the pellicle frame 1 so as to cover the entire surface of the central through hole 19 of the pellicle frame 1, and the pellicle film 3 is formed on the pellicle frame 1 using a well-known adhesive. It was stuck on the second surface 15. That is, the outer edge portion of the pellicle film 3 was attached to the second surface 15 of the pellicle frame 1.
  • the ventilation area (S 1) of the opening end of each recess 25, that is, the effective ventilation area (S 1) of the filter 5, is two Since it is larger than the sum of the cross-sectional areas of the air holes 27, that is, the minimum cross-sectional area (S2) of the air holes 27, when the pellicle 7 is evacuated through the filter 5 or opened to the atmosphere, a short time is required. Can be evacuated or released to the atmosphere.
  • a preferable shape of the pellicle frame 1 can be easily realized. That is, it is possible to prevent the pellicle frame 1 from increasing in size without reducing the exposure area, and to prevent the configuration from becoming complicated.
  • the concave portion 25 can be easily provided.
  • a decrease in the strength of the pellicle frame 1 when a large number of vents 27 are provided can be suppressed.
  • the ratio (S / V) of the total area (Smm 2 ) of the open ends of all the concave portions 25 to the volume (Vmm 3 ) of the inner space of the pellicle frame 1 is 0.002 mm. -1 or more and 0.025 mm -1 or less. Even in such a case, evacuation and release to the atmosphere can be performed in a short time.
  • the pellicle frame 1 is made of a ceramic sintered body having conductivity, the pellicle frame 1 can be easily processed by electric discharge machining.
  • the pellicle frame 1 since the pellicle frame 1 has a Young's modulus of 300 GPa or more and a strength of 500 MPa or more, the pellicle frame 1 has sufficient rigidity and strength.
  • the pellicle frame 1 is made of a ceramic sintered body having a thermal conductivity of 15 W / mK or more, the pellicle frame 1 efficiently dissipates heat generated in the pellicle film 3 during exposure.
  • the pellicle film 3 is well diffused and can be prevented from being damaged by heat.
  • the pellicle frame 1 is made of a ceramic sintered body having a coefficient of thermal expansion of 10 ppm / ° C. or less. It can be suppressed suitably.
  • Pellicle frame 1 first filter 5, inner peripheral surface 11, outer peripheral surface 13, second surface 15, first surface 17, side portion 21, concave portion 25, vent hole 27, opening 27a, adhesive material of the first embodiment.
  • the layer 33, the ventilation suppressing portion 73, and the second filter 83 respectively, the pellicle frame, the first filter, the inner peripheral surface, the outer peripheral surface, the second surface, the first surface, the side portion, the concave portion, the through hole, and the opening of the present disclosure.
  • An adhesive layer, a ventilation suppressing section, and a second filter are examples of the present disclosure.
  • the pellicle frame 31 according to the second embodiment can adhere and collect foreign matter such as dust in the air over the entire surface (that is, the inner peripheral surface) of the concave portion 25 and the ventilation hole 27.
  • the soft adhesive layer 33 is formed.
  • FIG. 6 shows an example in which one vent hole 27 is provided in one concave portion 25 in one side portion 21, but each concave portion 25 in the other three side portions 21 is provided with one vent hole 27. Among them, at least one recess 25 is provided with a plurality of ventilation holes 27 (not shown).
  • a material of the adhesive layer 33 for example, a material such as a silicone adhesive described in JP-A-2011-107519 can be adopted.
  • the adhesive layer 33 may be formed on at least a part of the recess 25 and the ventilation hole 27.
  • the second embodiment has the same effects as the first embodiment. Further, in the second embodiment, since the pressure-sensitive adhesive layer 33 is provided, there is an advantage that the ability to collect foreign substances is superior to that of the first embodiment.
  • the pellicle frame 41 of the third embodiment is provided with a concavo-convex portion 43 in which a large number of band-shaped concavities and convexities are arranged in parallel at the bottom 25 c of the concave portion 25. That is, as shown in FIG. 7B, the concave and convex portions 43 in which the concave and convex portions are repeatedly arranged are provided so that the bottom portion 25 c has a wavy (ie, sine curve) shape.
  • the pellicle frame 41 of the third embodiment adheres and traps foreign matter such as dust in the air over the entire surface (that is, the inner peripheral surface) of the concave portion 25 and the ventilation hole 27 as in the second embodiment.
  • a collectable adhesive layer (not shown) is formed.
  • the third embodiment has the same effects as the first embodiment. Further, in the third embodiment, since the uneven portion 43 is provided on the bottom 25c of the concave portion 25, there is an advantage that the foreign matter collecting ability is superior to that of the second embodiment.
  • FIG. 7 shows an example in which two air holes 27 are provided in one recess 25, but the present invention is not limited to this. That is, as long as a plurality of ventilation holes 27 are provided in at least one recess 25, the number of ventilation holes 27 provided in other recesses 25 is not particularly limited (the same applies hereinafter).
  • FIG. 8A shows the pellicle frame 51 of the first modification.
  • the uneven portion 53 having the same shape as the above-described uneven portion 43 is formed on the inner peripheral surface of the concave portion 25 on both sides in the Z direction. Are formed on the side surfaces 25a and 25b.
  • the first modification has the same advantages as the third embodiment.
  • the concave and convex portions 43 and 53 may be provided on both the bottom 25c of the concave portion 25 and both side surfaces 25a and 25b.
  • FIG. 8B shows a pellicle frame 61 according to a second modification.
  • a plurality of hemispherical projections 63 are formed on the bottom 25 c of the recess 25. Note that a plurality of hemispherical concave portions (dimples) may be provided.
  • the filter 5 is attached to the pellicle frame 71 of the fourth embodiment so as to cover the entire open end of the recess 25.
  • the ventilation suppressing portion 73 may be provided for each ventilation hole 27.
  • the ventilation suppressing portion 73 can be formed, for example, by applying an adhesive to the upper surface of the filter 5 and solidifying the same.
  • the pellicle frame 71 of the fourth embodiment adheres and traps foreign matter such as dust in the air over the entire surface (that is, the inner peripheral surface) of the concave portion 25 and the ventilation hole 27 as in the second embodiment.
  • a collectable adhesive layer (not shown) is formed.
  • the ventilation suppressing section 73 completely inhibits the ventilation
  • a ventilation member having a higher ability to regulate the ventilation than the filter 5 may be used.
  • the fourth embodiment has the same effect as the first embodiment. Further, in the fourth embodiment, since the airflow suppressing portion 73 is provided, the air introduced into the concave portion 25 from the outside is obstructed by the airflow suppressing portion 73 and goes straight from the filter 5 (that is, the air flows into the concave portion 25). It does not flow into the ventilation hole 27 as it is (flowing perpendicularly to it). That is, since the air introduced from the outside into the concave portion 25 advances while the flow passage is bent by the ventilation suppressing portion 73, the flow passage in the concave portion 25 becomes longer, and the foreign matter collecting ability is higher than in the second embodiment. It has the advantage of being superior.
  • a filter (first filter) 5 is attached to the pellicle frame 81 of the fifth embodiment so as to cover the entire opening end of the recess 25.
  • Two second filters 83 having higher air permeability than the first filter 5 are arranged inside the recess 25.
  • the two second filters 83 are arranged for each of the openings 27a so as to cover the entire surface of each of the openings 27a of the two ventilation holes 27.
  • two second filters 83 are arranged so as to individually cover the openings 27a of the two ventilation holes 27.
  • the present invention is not limited to this. It may be provided so as to cover each opening 27a of the ventilation holes 27.
  • a porous body made of sintered metal or ceramic can be used as the second filter 83.
  • the second filter 83 has the adhesive layer 33 (not shown in FIG. 10) around its own gas flow path.
  • the adhesive layer 33 the above-mentioned silicone adhesive can be used. Since the adhesive layer 33 is formed on the wall surface constituting the flow path (for example, in the case of a mesh, the surface of the wire constituting the mesh), air can enter and exit through the second filter 83.
  • the fifth embodiment has the same advantages as the first embodiment. Further, in the fifth embodiment, since the second filter 83 having the adhesive layer 33 is provided, there is an advantage that the foreign matter collecting ability is superior to that of the first embodiment.
  • the corners (that is, the portions where the planes intersect perpendicularly) of the inner surface (inner peripheral surface) of the recess 25 are chamfered. That is, the inner corner of the concave portion 25, that is, the corner of the outer peripheral portion of the bottom 25c, and the corner where the adjacent side surfaces 25a, 25b, 25e, and 25f of the four side surfaces 25a, 25b, 25e, and 25f intersect, Since the R chamfered portion 93 is formed, the corner is smoothly curved.
  • the recess 25 is provided with three ventilation holes 27.
  • the sixth embodiment has the same effects as the first embodiment. Further, in the sixth embodiment, since the R chamfered portion 93 is provided inside the concave portion 25, the flow of the air becomes a flow along the inner peripheral surface of the concave portion 25, and the collection of foreign substances is smaller than in the first embodiment. There is an advantage that the ability is excellent. Further, there is an advantage that the pellicle frame 1 is hardly damaged by the R chamfered portion 93.
  • the outer dimensions of the pellicle frame are 149 mm long ⁇ 115 mm wide, the thickness W1 is 1.8 mm, and the width D1 is 2 mm.
  • the inner diameter of the pellicle frame is 145 mm in length ⁇ 111 mm in width ⁇ 1.8 mm in thickness.
  • LL1 side length-10 mm
  • W2 W1-0.4 mm.
  • the total opening area Smax which is the sum of the opening areas of all the grooves, can be calculated by the following equation (1) (the unit of the numerical value is mm).
  • the maximum of the opening area ratio (Smax / V) is 0.023 mm -1 .
  • a filter that satisfies the ULPA standard is used as the filter (first filter).
  • This ULPA standard is a filter having a particle collection rate of 99.9995% or more for particles having a rated air flow and a particle size of 0.15 ⁇ m, and having an initial pressure loss of 245 Pa or less. .
  • T (Internal volume of pellicle frame / Rated air volume) x (100000 [Pa] / Allowable pressure difference) ... (3)
  • the time T can be obtained from the following equation (4). The calculation is performed on the assumption that the allowable pressure difference is 245 [Pa] for convenience.
  • the minimum value of the opening area of the concave portion (groove) can be obtained by the following procedure.
  • an opening area of S 223000/3600 ⁇ 62 [mm 2 ] or more is required. That is, the minimum value of the opening area of the concave portion (groove) is 62 [mm 2 ].
  • the evacuation time is about 332 [sec] (about 5.5 minutes) from the following equation (6).
  • the scope of the opening area ratio (S / V), in the conditions described above is considered to 0.002 mm -1 or 0.023 mm -1 or less.
  • the pressure loss is as small as 190 [Pa] or less, and the evacuation time can be reduced.
  • the cover layer was ⁇ 10 [Pa]
  • the pre-collection layer was ⁇ 80 [Pa]
  • the main collection layer was ⁇ 100 [Pa].
  • conductive ceramics described in Table 1 below can be employed as a material forming the frame of the pellicle frame.
  • non-conductive ceramics described in Table 2 below can be employed.
  • composition composition of the conductive ceramic
  • composition shown in Table 3 the composition shown in Table 3 below can be adopted.
  • composition of the conductive material other than the ceramics the composition shown in Table 4 below can be employed.
  • composition of the non-conductive ceramic the composition shown in Table 5 below can be adopted.
  • Nos. 1 to 3 in Table 1 and Nos. 10 to 12 in Table 3 are made of the same material.
  • Nos. 4 to 6 in Table 1 and Nos. 13 to 15 in Table 4 are the same material.
  • Nos. 7 to 9 in Table 2 and Nos. 16 to 18 in Table 5 are the same material.
  • the ceramic material for forming the pellicle frame various materials such as silicon nitride, zirconia, and a composite ceramic of alumina and titanium carbide as disclosed in Japanese Patent Application Laid-Open No. 2016-122091 are used. it can.
  • one or a plurality of concave portions may be provided on at least one of the four sides.
  • each of the above embodiments may be shared between a plurality of components, or the functions of a plurality of components may be exhibited by one component. Further, a part of the configuration of each of the above embodiments may be omitted. Further, at least a part of the configuration of each of the above embodiments may be added to or replaced with the configuration of another embodiment. Note that all aspects included in the technical idea specified by the language described in the claims are embodiments of the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本開示の一つの局面におけるペリクル枠(1)は、平面視で矩形形状であり、ペリクル枠(1)の外周面(13)には、1又は複数の凹部(25)を備えるとともに、その1又は複数の凹部(25)は、4つの辺部のうち、1又は複数の辺部に設けられている。1又は複数の凹部(25)は、その凹部(25)が設けられた辺部を貫通して当該凹部(25)の内側と内周面(11)とに開口する貫通孔(27)を備えている。1又は複数の凹部(25)のうち、少なくとも一つの凹部(25)は、貫通孔(27)を複数備えている。さらに、貫通孔(27)が少なくとも一つ設けられた凹部(25)では、当該凹部(25)の外周面(13)側の開口端の面積である通気面積S1が、貫通孔(27)のなす気体流路の最小の断面積である最小断面積S2より大である。

Description

ペリクル枠 関連出願の相互参照
 本国際出願は、2018年7月4日に日本国特許庁に出願された日本国特許出願第2018-127636号に基づく優先権を主張するものであり、日本国特許出願第2018-127636号の全内容を参照により本国際出願に援用する。
 本開示は、ペリクル枠に関する。
 半導体製造において、半導体ウェハに配線パターンを形成する露光工程ではフォトマスクが用いられるが、このフォトマスクに異物(パーティクル等)が付着すると配線パターンの欠陥が生じる。
 この対策として、即ち防塵するために、フォトマスクの表面を覆うような透明な薄い膜(ペリクル膜)が張設されたペリクルが用いられる。
 また、ペリクル膜をフォトマスクから所定距離離して配置するために、ペリクル枠という長方形の枠体が用いられる。この枠体を構成する部材としては、例えば縦3mm×横2mmの角柱のような細径の部材が用いられる。
 さらに、ペリクル枠には、ペリクルの内部と外部とを連通する細径の貫通孔(即ち通気孔)が設けられており、この通気孔の外側の開口端には、塵等がペリクル内部に侵入することを防ぐために、フィルタが配置されている。
 また、近年では、配線パターン等の微細化が進んでおり、それにともなって、露光光線の短波長化が進んでいる。例えば、主波長13.5nmのEUV(Extreme Ultra Violet)光を使用するEUV露光が検討されている。
 このEUV露光では、ペリクルは大気下でフォトマスクに装着され、露光装置内では真空下で使用されるので、露光装置内などで真空引きが行われる。また、真空引きの後の工程では、大気解放等が行われる(特許文献1参照)。
特開2016-191902号公報
 ところで、従来では、通気孔の開口端を直接に覆うようにフィルタが配置されているので、短時間で真空引き又は大気解放を行うことは容易ではないという問題があった。つまり、上述した真空引き等を行う場合には、空気がフィルタを通過できるのは、通気孔の断面積分の領域でのみである。そして、通気孔に比べてフィルタの圧損は非常に大きいので、空気は通気孔に比べてフィルタを通過し難い。そのため、短時間で真空引き等を行うことは容易ではない。
 この対策として、前記特許文献1には、通気孔に連通する部材をペリクル枠の内部や外部に張り出すように設け、その張り出し部分に、ペリクル膜と平行にフィルタを配置する技術が開示されている。
 しかしながら、この従来技術では、ペリクルの内部空間が小さくなって、露光範囲が小さくなるという問題がある。或いは、ペリクルの外形寸法が大きくなって、ペリクルが大型化するという問題がある。しかも、ペリクル枠の構造が非常に複雑化するので、細径の枠体であるペリクル枠に、そのような構造を設けることは容易ではない。
 また、この対策とは別に、ペリクル枠に多数の通気孔を設けることが考えられるが、この場合には、ペリクル枠の材質によっては、ペリクル枠の強度が低下する恐れがある。
 本開示の一側面においては、速やかに真空引きや大気解放を行うことができ、しかも、簡易な構成であって、十分な強度を有するペリクル枠を提供することが望ましい。
 (1)本開示の一つの局面におけるペリクル枠は、平面視で矩形形状であり、矩形形状の各辺に対応する4つの辺部を備えるとともに、厚み方向の両側に設けられた第1面及び第2面と、第1面及び第2面に連接された内周面及び外周面と、を備えるペリクル枠に関するものである。
 このペリクル枠は、その外周面には、1又は複数の凹部を備えるとともに、1又は複数の凹部は、4つの辺部のうち、1又は複数の辺部に設けられている。1又は複数の凹部は、当該凹部が設けられた辺部を貫通して当該凹部の内側と内周面とに開口する貫通孔を備えている。さらに、1又は複数の凹部のうち、少なくとも一つの凹部は、貫通孔を複数備えている。
 しかも、このペリクル枠は、貫通孔が少なくとも一つ設けられた凹部では、当該凹部の外周面側の開口端の面積である通気面積(S1)が、貫通孔のなす気体流路の最小の断面積である最小断面積(S2)より大である。
 このペリクル枠は、ペリクルを構成する枠体として用いられる。このペリクル枠には、例えば第2面側にペリクル膜が張設され、貫通孔(即ち通気孔)が開口する凹部の外周面側には、塵等がペリクルの内部に侵入しないように、フィルタ(即ち第1フィルタ)が配置される。
 特に、このペリクル枠は、通気面積(S1)が上述した最小断面積(S2)より大である。詳しくは、ペリクル枠では、凹部の外周面側の開口端の面積、即ち凹部が外周面にて開口する部分の面積(即ち開口部分の面積)である通気面積(S1)、従って開口端に面して開口端の全体を覆うフィルタの面積(いわゆる通気有効面積)は、貫通孔のなす気体流路の最小の断面積である最小断面積(S2)より大である。
 そのため、凹部の開口端を覆うようにフィルタを配置して、例えばペリクル内を真空にする場合(即ち真空引きする場合)等には、短時間で真空引きを行うことができる。
 つまり、貫通孔よりフィルタの圧損は大きいので、単に貫通孔の開口端をフィルタで覆った場合には、フィルタによって空気の流れが規制されて、真空引きの時間が長くなる。それに対して、このペリクル枠では、フィルタは、貫通孔の最小断面積(S2)よりも大きな通気面積(S1)を有する凹部の開口端を覆うように配置されるので、即ちフィルタの面積は貫通孔の断面積よりも大きいので、貫通孔の開口端が直接にフィルタで覆われている場合に比べて、短時間で真空引きを行うことができる。
 なお、ペリクルの外部からペリクルの内部に大気を導入する大気解放の場合も同様であり、短時間で大気開放を行うことができる。
 また、このペリクル枠では、従来のように、ペリクルの内部空間が小さくならないので、露光範囲が小さくなることがない。或いは、ペリクルの外形寸法が大きくなって、ペリクルが大型化するという問題もない。
 しかも、ペリクル枠の構造が、従来のように複雑化しないので、細径の枠体であるペリクル枠でも、前記凹部を容易に設けることができる。また、通気孔を多く設ける必要がないので、通気孔を多数設けることによる、ペリクル枠の強度の低下を抑制できる。
 なお、前記厚み方向とは、平面視の方向、即ち、第1面から第2面に到る方向である。また、気体流路の最小の断面積とは、気体流路において気体の流れる方向(即ち流路の方向)に対して垂直の断面積のうち最小の断面積である。
 (2)上述したペリクル枠では、最小断面積(S2)は、貫通孔が1つの場合には当該貫通孔のなす気体流路の最小の断面積であり、また、貫通孔が複数の場合には当該各貫通孔のなす各気体流路の各最小の断面積の合計である。
  (3)上述したペリクル枠では、全ての凹部の開口端の総面積(Smm)とペリクル枠の内周面で囲まれた内側空間の体積(内容積:Vmm)との比(開口面積比:S/V)は、0.002mm-1以上0.025mm-1以下であってもよい。
 このペリクル枠では、前記比(S/V)が、0.002mm-1以上0.025mm-1以下の場合においても、短時間で真空引きや大気解放を行うことができる。
 (4)上述したペリクル枠では、凹部の外周面側の開口端を覆う第1フィルタを備えていてもよい。
 このペリクル枠は、フィルタ(即ち第1フィルタ)を備えたペリクル枠を例示している。このような構成の場合には、例えば外部から凹部や貫通孔を介してペリクル枠の内周側に空気が導入されるときには、空気中の塵等の異物を第1フィルタによって捕集することができる。
 (5)上述したペリクル枠では、凹部の内側の表面及び貫通孔の内側の表面の少なくとも一方に、粘着材層を備えていてもよい。
 このような構成の場合には、空気が例えば第1フィルタから凹部及び貫通孔を介してペリクル枠の内周面側に至る間に、粘着材層が設けられているので、空気中の異物が粘着材層によって捕集され易い。よって、異物の捕集効率が高いという利点がある。
 (6)上述したペリクル枠では、凹部の内側の表面は、凹凸を備えていてもよい。
 このような構成の場合には、空気が例えば第1フィルタから貫通孔に至る間に、凹凸があるので、異物が凹部の凹凸によって捕集されやすい。よって、異物の捕集効率が向上するという利点がある。
 (7)上述したペリクル枠では、第1フィルタにおいて、貫通孔の開口に対向する対向領域に、第1フィルタの通気を抑制する通気抑制部を備えていてもよい。
 このような構成の場合には、空気が例えば第1フィルタから貫通孔に至るときに、第1フィルタから直接に(即ち最短距離で)貫通孔に至るのではなく、通気が抑制された通気抑制部を介して又は通気抑制部を避けるようにして貫通孔に至る。そのため、空気中の異物を捕集する効率が向上するという効果がある。
 例えば通気抑制部が、通気を完全に遮断するものである場合には、空気は通気抑制部を回避して移動するので、その流路が長くなり、よって、異物が直接に貫通孔に入り難いという利点がある。
 (8)上述したペリクル枠では、凹部の内部に、第1フィルタより通気性が高く貫通孔の開口を覆う第2フィルタを備えるとともに、第2フィルタは自身の気体流路の周囲に粘着材層を備えていてもよい。
 このような構成の場合には、第1フィルタだけでなく第2フィルタ(特にその粘着材層)によっても、空気中の異物を捕集できるので、異物の捕集効率が向上するという利点がある。
 (9)上述したペリクル枠では、凹部の内側の表面の角部は、R面取りされていてもよい。
 このような構成の場合には、凹部の内周面に沿った大気の流れが生じ易いので、異物の捕集効率が向上する。しかも、ペリクル枠の強度が向上するという利点がある。
 (10)上述したペリクル枠では、ペリクル枠は、導電性を有するセラミック焼結体からなっていてもよい。
 このような構成の場合には、放電加工によって、容易にペリクル枠の加工を行うことができる。
 (11)上述したペリクル枠では、ペリクル枠は、ヤング率が300GPa以上、強度が500MPa以上であってもよい。
 このような構成の場合には、ペリクル枠は、十分な剛性や強度を有するので、変形や破損が生じにくく、好適である。
 ここで、強度とは、JIS R1601:2008で規定するL=30mmでの3点曲げ強度を示している。
 (12)上述したペリクル枠では、ペリクル枠は、熱伝導率が15W/mK以上のセラミック焼結体からなっていてもよい。
 このような構成の場合には、ペリクル枠の伝熱性が高いので、ペリクル枠により、露光の際にペリクル膜に発生した熱を効率良く拡散し、ペリクル膜が熱により破損することを抑制できる。
 (13)上述したペリクル枠では、ペリクル枠は、熱膨張率が10ppm/℃以下であるセラミック焼結体からなっていてもよい。
 このような構成の場合には、ペリクル枠が、露光の際の温度上昇によって変形することを、好適に抑制できる。
 なお、この熱膨張率は、常温(25℃)~600℃の温度範囲における線熱膨張率である。
 (14)上述したペリクル枠では、以下の関係式を満たしていてもよい。
   50×最小断面積(S2)≦通気面積(S1)
 この構成である場合には、より短時間で真空引き等を行うことができる。
 <以下、本開示の構成について説明する>
 ペリクル枠の材料としては、導電性又は非導電性の材料を採用できる。例えばペリクル枠を構成する材料として、セラミックスを主成分とする材料を採用できる。なお、主成分とは、最も多い成分量(例えば重量%)を示している。
 例えば、導電性の材料としては、アルミナ・炭化チタン、アルミナ・炭化チタン・窒化チタン、ジルコニア・炭化チタン、超硬、サーメット等を採用できる。また、ジュラルミン等の金属(例えば合金)を採用できる。
 ペリクル枠を構成する材料が、導電性の材料である場合には、放電加工(例えばワイヤー放電加工、細穴放電加工、形彫放電加工など)によって、ペリクル枠の外形や凹部や貫通孔等を容易に所望の形状に加工できる。
 また、非導電性の材料としては、例えば、アルミナ、窒化ケイ素、ジルコニア等のセラミックスなどを採用できる。
 ペリクル枠の寸法としては、枠部分の幅、厚さとも、例えば2.0mm~5.0mmの範囲を採用できる。開口部(中央貫通孔)の寸法としては、例えば縦120mm~150mm、横150mm~120mmの範囲を採用できる。
第1実施形態のペリクル枠を示す斜視図である。 図2Aは第1実施形態のペリクル枠の第4辺部を示す正面図、図2Bは図2AのIIB-IIB断面を示す断面図、図2Cは図2AのIIC-IIC断面を示す断面図である。 第1実施形態のペリクルを示す斜視図である。 図4Aは第1実施形態のペリクルの第4辺部を示す正面図、図4Bは図4AのIVB-IVB断面を示す断面図、図4Cは図4AのIVC-IVC断面を示す断面図である。 第1実施形態のペリクル枠の製造方法を示す工程図である。 第2実施形態のペリクル枠の凹部や通気孔を含む要部の断面(XY平面に平行な断面)を示す断面図である。 図7Aは第3実施形態のペリクル枠の凹部や通気孔を含む要部を示す平面図、図7Bは図7AのVIIB-VIIB断面を示す断面図である。 図8Aは変形例1のペリクル枠の凹部や通気孔を含む要部を示す平面図、図8Bは変形例2のペリクル枠の凹部や通気孔を含む要部を示す平面図である。 図9Aは第4実施形態のペリクル枠の凹部や通気孔を含む要部を示す平面図、図9Bは図9AのIXB-IXB断面を示す断面図である。 第5実施形態のペリクル枠の凹部や通気孔を含む要部の断面(XY平面に平行な断面)を示す断面図である。 図11Aは第6実施形態のペリクル枠の凹部や通気孔を含む要部を示す平面図、図11Bは図11AのXIB-XIB断面を示す断面図である。
 1、31、41、51、61、71、81、91…ペリクル枠
 5…第1フィルタ
 11…内周面
 13…外周面
 15…第2面
 17…第1面
 21…辺部
 25…凹部
 27…通気孔
 27a…開口
 33…粘着材層
 73…通気抑制部
 83…第2フィルタ
 以下、本開示のペリクル枠の実施形態について、図面を用いて説明する。
 [1.第1実施形態]
 [1-1.全体構成]
 まず、第1実施形態のペリクル枠の全体構成について説明する。
 図1~図4に模式的に示すように、ペリクル枠1は、自身の片面(図4Aの上方)にペリクル膜3(図4A参照)が張設される部材である。このペリクル枠1は、セラミックを主成分とする材料(例えばアルミナを主成分とし、炭化チタンを含有する導電性セラミックス)から構成されている。つまり、ペリクル枠1は、例えばアルミナを主成分とする導電性を有するセラミック焼結体である。
 なお、図1及び図2では、ペリクル枠1自体を示し、図3及び図4では、ペリクル枠1にペリクル膜3と後述するフィルタ5とを備えたペリクル7を示している。
 また、以下では、ペリクル枠1の全ての面のうち、ペリクル枠1自身で囲まれた内側の面を内周面11、内側と反対側の外側の面を外周面13と呼ぶ。また、内周面11と外周面13とに連接された面のうち、ペリクル膜3が張設される側を上面(例えば第2面)15、反対の面をフォトマスク(図示せず)に貼り付けられる下面(例えば第1面)17と呼ぶ。
 図1に示すように、直交するX軸、Y軸、Z軸の座標系において、ペリクル枠1は、Z方向から見た平面視で、矩形形状である長方形状の枠体(即ち環状の部材)であり、中央には平面視で長方形の中央貫通孔19を有している。
 つまり、ペリクル枠1は、同一平面上にて、平面視で、上下左右の四方に配置された長尺の枠部からなる。詳しくは、ペリクル枠1は、X軸に平行に配置された第1辺部21a及び第2辺部21bと、Y軸に平行に配置された第3辺部21c及び第4辺部21dとによって構成されている。この第1辺部21a及び第2辺部21bは、第3辺部21c及び第4辺部21dよりも寸法が短い。なお、第1~第4辺部21a~21dを辺部21と総称する。
 このペリクル枠1の外形の寸法は、例えば、縦(Y方向)149mm×横(X方向)120mm×厚み(Z方向)1.8mmである。また、ペリクル枠1の各辺部21は四角柱であり、その幅の寸法(Z方向から見た幅の寸法:枠幅)は、同一(例えば2mm)である。
 また、このペリクル枠1は、ヤング率が300GPa以上であり、強度(JIS R1601:2008にて規定される3点曲げ強度)が500MPa以上である。さらに、ペリクル枠1は、熱伝導率が15W/mK以上であり、常温(25℃)~600℃の温度範囲における熱膨張率が10ppm/℃以下である。なお、ペリクル枠1の第2面15及び第1面17おける平面度は10μm以下である。
 さらに、ペリクル枠1には、図1に示すように、X方向における両枠部(即ち長辺の第3辺部21c及び第4辺部21d)の外周面13側において、それぞれ2箇所(合計4個所)に、有底孔23が形成されている。
 この有底孔23は、例えばφ1.5mm、深さ1.2mmの有底の丸穴であり、底部は円錐形状に整えられている。なお、有底孔23は、ペリクル7の製造およびその後のフォトマスクに取り付ける際の位置決めや搬送の際の把持部等に用いられる。
 [1-2.要部の構成]
 次に、第1実施形態のペリクル枠1の要部について説明する。
 図1に示すように、ペリクル枠1の全ての辺部21の外周面13には、それぞれ溝形状の凹部25が形成されている。
 以下では、この凹部25について、第4辺部21dに設けられた凹部25を例に挙げて説明するが、第1~第3辺部21a~21cの凹部25も同様な形状であるので、その説明は省略する。詳しくは、第1辺部21aの凹部25と第2辺部21bの凹部25とは同じ形状であり、第3辺部21cと第4辺部21dの凹部25とは、同じ形状である。また、第3辺部21c及び第4辺部21dの凹部25は、第1辺部21a及び第2辺部21bの凹部25よりも長手方向の寸法が長いが、その他の寸法は、第1辺部21a及び第2辺部21bと同じである。
 なお、本第1実施形態では、ペリクル枠1の全ての辺部21の外周面13には、凹部25が形成されているが、全ての辺部21うち、少なくとも1つの辺部21に、凹部25を設けてもよい。また、1つの辺部21に設けられた凹部25は、複数に分割された複数個の凹部25としてもよい。つまり、1つの辺部21に複数個の凹部25を設けてもよい。
 図2に示すように、凹部25は、第4辺部21dの長手方向(Y方向)に沿って形成された溝である。なお、溝内の空間の形状は直方体状である。
 詳しくは、図2Aに示すように、凹部25のY方向の寸法L1は例えば139mmであり、第4辺部21dのY方向の両端に至らない範囲で設けられている。
 第4辺部21dの厚み(即ちZ方向の寸法)W1は例えば1.8mmであるので、凹部25のZ方向の寸法W2はそれより短い例えば1.2mmである。つまり、凹部25の第2面15側の内周面である側面25aから第4辺部21dの第2面15に至る間には、フィルタ5を貼り付けるための余地である間隙W3があり、同様に、凹部25の第1面17側の内周面である側面25bから第4辺部21dの第1面17に至る間には、間隙W4がある。
 なお、ここでは、両間隙W3、W4の寸法は同じであり(異なっていてもよい)、フィルタ5を確実に貼り付けるためには、0.2mm以上あることが好ましい(例えば0.2mm~0.3mmである)。
 また、図2Bに示すように、第4辺部21dの幅(即ちX方向の寸法)D1は例えば2mmであるので、凹部25の深さ(X方向)の寸法D2は、例えばD1の20%~50%の範囲の例えば0.5mmである。
 さらに、第4辺部21dは、複数の通気孔27を備えている。詳しくは、第4辺部21dの凹部25の矩形状の底部25c(なお、底部25cは内周面11と平行である)には、第4辺部21dをX軸方向に貫通して、凹部25の内側の底部25cとペリクル枠1の内周面11側とに開口する2個の通気孔27を備えている。この通気孔27は、直径が例えばφ0.5mmの円柱状の貫通孔である。なお、ここでは、通気孔27は、第4辺部21dに2個設けられているが、例えば3個以上でもよい。
 また、ここでは、4個の全ての辺部21(従って4個所の全ての凹部25)に、それぞれ複数(例えば2個)の通気孔27を設けた例を挙げているが、少なくとも一つの凹部25に、通気孔27を複数備えた構成であれば良い。
 なお、一つの凹部25に設ける通気孔27の数は、2個でもよく又は3個以上であってもよい。また、少なくとも一つの凹部25に、通気孔27を複数備えた構成であれば良いので、他の凹部25には一つの通気孔27を設けるようにしてもよい。
 特に、本第1実施形態では、「通気面積S1」は「最小断面積S2」より大である。
 ここで、第4辺部21dを例に挙げると、通気面積S1とは、第4辺部21dの凹部25の外周面13側の開口端(即ち外周面13と同じ面にて開口する部分)の面積を示している。
  また、最小断面積S2とは、第4辺部21dの凹部25の2つの通気孔27において、各通気孔27のそれぞれの最小の断面積の合計を示している。詳しくは、最小の断面積S2とは、各通気孔27において、それぞれ軸線方向と垂直な断面積(即ち垂直な面の断面積)を求め、それらの断面積の合計を求めたものである。なお、各通気孔27の断面積は、軸線方向において同じであるので、各通気孔27において最小の断面積は、軸線方向のどの位置でも同じとなる。
 なお、通気孔27が一つの場合には、一つ各通気孔27の軸線方向と垂直な断面積が、最小断面積S2である。
 また、通気孔27の軸線方向と垂直な断面積とは、ここでは、貫通孔である通気孔27のなす流路(即ち気体流路の断面積)である。つまり、気体が流れる方向に対して垂直の断面積である。なお、各通気孔27の軸線方向に垂直な面とは、第4辺部21dにおける外周面13と平行な面(即ちYZ平面)である。
 なお、ここでは、各通気孔27の軸線方向と垂直な断面積は、軸線方向においてどの位置の断面をとっても同じであるが、仮に、各通気孔27において場所によって断面積が異なる場合には、各通気孔27のそれぞれの断面積として最小の断面積を求め、その合計を最小断面積S2とする。
 具体的には、第4辺部21dの凹部25の通気面積S1は、L1×W2であるので、例えば139mm×1.2mm=166.8mmである。また、その凹部25における2つの通気孔27の断面積の合計である最小断面積S2は、例えば(0.25mm×0.25mm×π)×2=約0.39mmである。よって、第4辺部21dの凹部25においては、「通気面積S1>最小断面積S2」の条件を満たしている。
 さらに、第4辺部21dの凹部25において、通気面積S1と最小断面積S2とは、以下の関係式を満たしている。
    50×最小断面積S2≦通気面積S1・・・(A)
 このように、通気面積S1を最小断面積S2の50倍以上とすることで、より短時間で真空引き等を行うことができる。
 ここでは、第4辺部21dの凹部25を例に挙げたが、他の第1~第3辺部21a~21cの凹部25についても、同様に、「通気面積S1>最小断面積S2」の条件や、「50×最小断面積S2≦通気面積S1」の条件を満たしている。
 なお、各通気孔27が同一の開口径である場合には、最小断面積S2は、上述のように、1つの通気孔27の断面積を、通気孔27の個数の数だけ掛ければよい。
 図3及び図4に示すように、フィルタ(即ち第1フィルタ)5は、フォトマスクヘ固定したペリクル7内への塵等の異物の流入を防止する周知のフィルタであり、異物の流入を防止可能な周知の材料で形成されている。
 このフィルタ5としては、目的に応じたフィルタを適宜用いればよい。
 例えば、ULPAフィルタ(Ultra Low Penetration Air Filter)を用いることができる。ULPAフィルタは、定格風量で粒径が0.15μmの粒子に対して99.9995%以上の粒子捕集率をもち、且つ、初期圧力損失が245Pa以下の性能を持つエアフィルタである。
 また、フィルタ5として、HEPAフィルタ(High Efficiency Particulate Air Filter)を用いてもよい。HEPAフィルタは、定格風量で粒径が0.3μmの粒子に対して99.97%以上の粒子捕集率をもち、且つ、初期圧力損失が245Pa以下の性能を持つエアフィルタである。
 図4Aに示すように、フィルタ5は、外周面13側から見た場合、その形状は矩形状であり、凹部25の矩形状の開口端を全て覆うとともに、開口端の全周を所定幅で枠状に覆っている。
 前記フィルタ5は、例えば接着剤によって、第4辺部21dの外周面13、詳しくは、凹部25の開口端の周囲に貼り付けられている。なお、フィルタ5のうち、凹部25の開口端の周囲を覆う部分は、いわゆる糊代であり、その幅としては例えば0.2mm~0.3mmの範囲を採用できる。
 なお、本第1実施形態では、全ての(即ち4箇所の)凹部25の開口端の総面積(Smm)とペリクル枠1の内周面11で囲まれた内側空間の体積(Vmm)との比(開口面積比:S/V)は、0.002mm-1以上0.025mm-1以下である。
 [1ー3.ペリクル枠の製造方法]
 次に、ペリクル枠1の製造方法について説明する。なお、各部の寸法は例示である。
(第1工程P1)
 図5に示すように、まず、第1工程(素地の作製工程)P1では、ペリクル枠1の原料である粉体(即ち素地粉末)を作製した。
 ここで粉体とは、ペリクル枠1を構成する焼結体の元になる物質であり、アルミナや導電性材料などの原料粉末に、焼結助剤などを適宜加え湿式混合した後、噴霧乾燥法によって50μm~100μmの顆粒に作製したものである。なお、原料粉末の粒径の測定は、レーザー回折・散乱法により行なったが、動的光散乱法や沈降法により行なってもよい。
 詳しくは、この素地の作製工程では、平均粒径0.5μmのα-アルミナ粉末63体積%、平均粒径1.0μmの炭化チタン10体積%、平均粒径1.0μmの窒化チタン25体積%、残部をMgO:Y=1:1の焼結助剤からなる複合材料を調製した。
 そして、この複合材料を湿式混合し、成形用有機バインダを加えた後、通常の噴霧乾燥法により、アルミナ・炭化チタン・窒化チタンの複合セラミックス素地粉末を作製した。(第2工程P2)
 次に、第2工程(成形工程)P2では、この粉体を成形し、ペリクル枠1の原形を形成した。
 詳しくは、複合セラミックス素地粉末を、金型プレス法により、外形寸法を縦182mm×横147mm×厚さ6mm、枠幅5mm程度の枠形状に成形し、ペリクル枠1の原型(粉末成形体)を作製した。
 ここでは、後述する焼成工程により、ペリクル枠1の外形は、20~30%程度縮むため、予め、焼成後のペリクル枠1より大きく成形する。なお、ペリクル枠1は、半導体露光装置における露光用マスクの大きさに合わせて種々の大きさが可能である。
(第3工程P3)
 次に、第3工程(焼成工程)P3では、前記粉体の成形後、これを所定温度で焼成した。
 詳しくは、粉末成形体を脱バインダし、不活性ガス中にて1700℃で3時間保持して焼成し、導電性を有する緻密なセラミックス焼結体を得た。
 なお、焼成温度は、粉体の組成によるが、一般に1500℃以上である。焼成することにより、高いヤング率と強度とを持つ焼結体が得られる。
 この焼結体の寸法は、縦151mm×横122mm×厚さ5mm、枠幅4mm程度であった。なお、0.3mm程度の歪みがあった。
(第4工程P4)
 次に、第4工程(厚さ加工工程)P4では、焼結体に対して、その厚さを調節する厚さ加工(具体的には研削加工)を行った。
 詳しくは、焼結体の上下面(厚さ方向の両面)を、平面研削盤にてほぼ同量研削し、厚さ2.1mmに加工した。なお、平面研削後の平面度は、20μm~40μmであった。
 なお、ここでは、後述する精密平面加工(第10工程P10)の研削代(例えば0.05mm~0.10mm)を残して厚さを揃えた。
(第5工程P5)
 次に、第5工程(内形・外形加工工程)P5では、厚さ加工後の焼結体に対して、内形・外形加工を行った。
 詳しくは、ワイヤー放電加工により、焼結体の内形及び外形を、縦149mm×横120mm、枠幅2mmに加工した。つまり、保持治具(図示せず)で焼結体の外周面を把持し、焼結体の内周面と外周面とに対してワイヤー放電加工を行い、内形や外形を目的とする寸法に加工した。なお、この際に、稜部(コーナー部)のR加工を行ってもよい。
(第6工程P6)
 次に、第6工程(穴開け加工工程)P6では、形彫放電加工にて、焼結体の対向する長辺に、有底孔23をそれぞれ2個形成した。
 詳しくは、焼結体に対して、ペリクル枠1の第3辺部21c及び第4辺部21dの外周面13に対応する部分に、例えば直径φ1.6mm×深さ1.2mmの有底孔23を形成した。
(第7工程P7)
 次に、第7工程(溝加工工程)P6では、形彫放電加工にて、焼結体に対して、ペリクル枠1の各辺部21の外周面13に対応する部分に、それぞれ溝の形状の凹部25を形成した。
 詳しくは、溝の形状の反転形状の持つ電極を用いて、形彫放電加工を行った。
(第8工程P8)
 次に、第8工程(貫通穴開け加工工程)P8では、細穴放電加工機(図示せず)によって、凹部25の底部25cに、気圧調整用の貫通孔である通気孔27を形成した。
 なお、通気孔27は、各凹部25に2個ずつ形成した。
(第9工程P9)
 次に、第9工程(放電加工面の表面処理工程)P9では、上述した第5~第8工程P5~P8において放電加工を行った表面(即ち放電加工面)の表面処理を行った。
 詳しくは、サンドブラスト処理により、放電加工によって生じた熱変質層を除去した。なお、サンドブラスト処理では、粒度#600(平均粒径約30μm)の炭化ケイ素砥粒を使用した。除去した層の厚みは、5μm程度であった。
(第10工程P10)
 次に、第10工程(精密平面加工工程)P10では、サンドブラスト処理後の焼結体に対して、精密平面加工を行った。
 この精密平面加工では、ダイアモンド砥石を用いて、焼結体の片面25μm~50μmずつ研磨加工を行い、厚さ2.0mm、平面度を10μm未満に加工した。
 以上の処理により、アルミナを主成分とするペリクル枠1を得た。
 このペリクル枠1のヤング率と強度とを計測したところ、ヤング率420GPa、強度690MPaであった。
 なお、形成されたペリクル枠1の稜部に対して、ブラシ研磨加工を行い、R半径が0.03mm~0.05mmの面取り加工を行ってもよい。
 その後、前記ペリクル枠1に対して、各凹部25の外周面13に開口する開口端を全て覆うように、周知の接着剤を用いて、それぞれフィルタ5を貼り付けた。つまり、フィルタ5の外縁部分を凹部25の開口端の周囲に貼り付けた。
 そして、ペリクル枠1の中央貫通孔19の全面を覆うように、ペリクル膜3をペリクル枠1の第2面15側に配置し、周知の接着剤を用いて、ペリクル膜3をペリクル枠1の第2面15に貼り付けた。つまり、ペリクル膜3の外縁部分を、ペリクル枠1の第2面15に貼り付けた。
 このようにして、ペリクル7を製造することができた。
 [1-4.効果]
 (1)本第1実施形態では、各辺部21において、各凹部25の開口端の通気面積(S1)、即ちフィルタ5の通気有効面積(S1)は、当該凹部25に開口する2個の通気孔27の断面積の合計、即ち通気孔27の最小断面積(S2)より大であるので、ペリクル7に対して、フィルタ5を介して真空引きする場合や大気解放する場合に、短時間で真空引きや大気解放を行うことができる。
 また、従来のように、ペリクル枠1の内部や外部に特別な構造を設ける必要がないので、ペリクル枠1の好ましい形状を容易に実現できる。つまり、露光領域を低減することなく、また、ペリクル枠1が大型化することなく、しかも、構成が複雑化することを抑制できる。
 さらに、細径の枠体であるペリクル枠1でも、前記凹部25を容易に設けることができる。しかも、通気孔27を多く設ける必要がないので、通気孔27を多数設けた場合の、ペリクル枠1の強度の低下を抑制できる。
 (2)本第1実施形態では、全ての凹部25の開口端の総面積(Smm)とペリクル枠1の内側空間の体積(Vmm)との比(S/V)は、0.002mm-1以上0.025mm-1以下である。このような場合でも、短時間で真空引きや大気解放を行うことができる。
 (3)本第1実施形態では、ペリクル枠1は、導電性を有するセラミック焼結体からなるので、ペリクル枠1を、放電加工によって容易に加工することができる。
 (4)本第1実施形態では、ペリクル枠1は、ヤング率が300GPa以上、強度が500MPa以上であるので、ペリクル枠1は、十分な剛性や強度を有する。
 (5)本第1実施形態では、ペリクル枠1は、熱伝導率が15W/mK以上のセラミック焼結体からなるので、ペリクル枠1により、露光の際にペリクル膜3に発生した熱を効率良く拡散し、ペリクル膜3が熱により破損することを抑制できる。
 (6)本第1実施形態では、ペリクル枠1は、熱膨張率が10ppm/℃以下であるセラミック焼結体からなるので、ペリクル枠1が、露光の際の温度上昇によって変形することを、好適に抑制できる。
 [1-5.文言の対応関係]
 第1実施形態の、ペリクル枠1、第1フィルタ5、内周面11、外周面13、第2面15、第1面17、辺部21、凹部25、通気孔27、開口27a、粘着材層33、通気抑制部73、第2フィルタ83、それぞれ、本開示の、ペリクル枠、第1フィルタ、内周面、外周面、第2面、第1面、辺部、凹部、貫通孔、開口、粘着材層、通気抑制部、第2フィルタの一例に相当する。
 [2.第2実施形態]
 次に、第2実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同様な構成については、同様な番号を付す。
 図6に示すように、本第2実施形態のペリクル枠31は、凹部25及び通気孔27の表面(即ち内周面)の全体にわたって、空気中の塵等の異物を接着して捕集可能な粘着材層33が形成されている。
 なお、図6では、1個の辺部21における1個の凹部25に1個の通気孔27が設けられている例を示しているが、他の3個の辺部21の各凹部25のうち、少なくとも1個の凹部25には、複数の通気孔27が設けられている(図示せず)。
 この粘着材層33の材料としては、例えば特開2011-107519号公報に記載のシリコーン粘着剤等の材料を採用できる。
 なお、粘着材層33は、凹部25及び通気孔27のうち、少なくとも一部に形成されていてもよい。
 本第2実施形態は、第1実施形態と同様な効果を奏する。また、本第2実施形態では、粘着材層33を備えているので、第1実施形態よりも異物の捕集能力が優れているという利点がある。
 [3.第3実施形態]
 次に、第3実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同様な構成については、同様な番号を付す。
 図7に示すように、本第3実施形態のペリクル枠41は、凹部25の底部25cに、多数の帯状の凹凸が平行に配列された凹凸部43が設けてある。つまり、図7Bに示すように、底部25cが、波状(即ちサインカーブ状)の形状となるように、凹凸が繰り返して配列された凹凸部43が設けてある。
 また、本第3実施形態のペリクル枠41は、第2実施形態と同様に凹部25及び通気孔27の表面(即ち内周面)の全体にわたって、空気中の塵等の異物を接着して捕集可能な粘着材層(図示せず)が形成されている。
 本第3実施形態は、第1実施形態と同様な効果を奏する。また、本第3実施形態では、凹部25の底部25cに凹凸部43を設けてあるので、第2実施形態よりも異物の捕集能力が優れているという利点がある。
 なお、図7では、1個の凹部25に2個の通気孔27が設けられている例を挙げているが、それに限定されるものではない。つまり、少なくとも1個の凹部25に複数の通気孔27が設けてあれば、他の凹部25に設けられている通気孔27の数に特に限定はない(以下同様)。
 また、図8Aに変形例1のペリクル枠51を示すが、本変形例1では、上述した凹凸部43と同様な形状の凹凸部53が、凹部25の内周面のうち、Z方向の両側の側面25a、25bに形成してある。
 本変形例1では、前記第3実施形態と同様な効果を奏する。なお、凹部25の底部25cと両側面25a、25bとの両方に、前記凹凸部43、53を設けてよい。
 さらに、図8Bに変形例2のペリクル枠61を示すが、本変形例2では、凹部25の底部25cに、半球形状の凸部63が複数形成してある。なお、半球形状の凹部(ディンプル)を複数設けてもよい。
 本変形例1、および変形例2では、第3実施形態と同様な効果を奏する。
 [4.第4実施形態]
 次に、第4実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同様な構成については、同様な番号を付す。
 図9に示すように、本第4実施形態のペリクル枠71は、凹部25の開口端の全体を覆うようにフィルタ5が貼り付けられている。
 また、フィルタ5の外周面13側(図9Bの上方)には、2個の通気孔27の外周面13側の真上(図9Bの上方)に、通気を抑制するシート状の通気抑制部73が貼り付けられている。つまり、2個の通気孔27の開口27aに対向する対向領域の全体を覆うように、両開口27aより広い面積の一つの通気抑制部73が配置されている。
 なお、通気抑制部73は、各通気孔27毎にそれぞれ設けてもよい。
 この通気抑制部73は、例えばフィルタ5の上面に接着剤を塗布し、固化させることによって形成することができる。
 また、本第4実施形態のペリクル枠71は、第2実施形態と同様に凹部25及び通気孔27の表面(即ち内周面)の全体にわたって、空気中の塵等の異物を接着して捕集可能な粘着材層(図示せず)が形成されている。
 なお、ここでは、通気抑制部73は、通気を完全に禁止するが、フィルタ5よりも通気を規制する能力が高い通気可能な部材を用いてもよい。
 本第4実施形態は、第1実施形態と同様な効果を奏する。また、本第4実施形態では、通気抑制部73を備えているので、外部から凹部25に導入される空気は、通気抑制部73に邪魔されて、フィルタ5から直進して(即ちフィルタ5に対して垂直に流れて)そのまま通気孔27に導入されることがない。つまり、外部から凹部25に導入される空気は、通気抑制部73にて流路を曲げられて進むので、凹部25内における流路が長くなり、第2実施形態よりも異物の捕集能力が優れているという利点がある。
 [5.第5実施形態]
 次に、第5実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同様な構成については、同様な番号を付す。
 図10に示すように、本第5実施形態のペリクル枠81は、凹部25の開口端の全体を覆うようにフィルタ(第1フィルタ)5が貼り付けられている。
 また、凹部25の内部には、第1フィルタ5より通気性が高い2個の第2フィルタ83が配置されている。この2個の第2フィルタ83は、2個の通気孔27の各開口27aの全面を覆うように、各開口27a毎にそれぞれ配置されている。
 この第2フィルタ83は、上記実施形態では、2個の通気孔27の各開口27aを個別に覆うように2個配置されているが、これに限らず、一つの第2フィルタ83により、2個の通気孔27の各開口27aを覆うように設けてもよい。なお、第2フィルタ83としては、焼結金属もしくはセラミックからなる多孔体を用いることができる。
 さらに、第2フィルタ83は自身の気体流路の周囲に、前記粘着材層33(図10には示せず)を有している。なお、この粘着材層33としては、上述のようなシリコーン粘着剤を使用できる。なお、粘着材層33は流路を構成する壁面(例えばメッシュの場合には網を構成する線材の表面)に形成されているので、第2フィルタ83を介して空気の出入りは可能である。
 本第5実施形態は、第1実施形態と同様な効果を奏する。また、本第5実施形態では、粘着材層33を備えた第2フィルタ83を備えているので、第1実施形態よりも異物の捕集能力が優れているという利点がある。
 [6.第6実施形態]
 次に、第6実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同様な構成については、同様な番号を付す。
 図11に示すように、本第6実施形態のペリクル枠91では、凹部25の内側の表面(内周面)の角部(即ち平面が垂直に交わる部分)は、R面取りされている。つまり、凹部25の内側の角部、即ち底部25cの外周部分の角部や、4つの側面25a、25b、25e、25fのうち隣接する側面25a、25b、25e、25fが交わる角部には、R面取り部93が形成されているので、角部は滑らかに湾曲している。
 なお、凹部25には、3個の通気孔27が設けられている。
 本第6実施形態は、第1実施形態と同様な効果を奏する。また、本第6実施形態では、凹部25の内側にR面取り部93を備えているので、空気の流れが凹部25の内周面に沿った流れとなり、第1実施形態よりも異物の捕集能力が優れているという利点がある。また、R面取り部93によって、ペリクル枠1が破損し難いという利点がある。
 [7.実験例]
 次に、演算等による実験例について説明する。
 <実験例1>
 本実験例1は、ペリクル枠の各部の寸法を規定して、開口面積比(S/V)を求めたものである。なお、凹部が複数ある場合には、全ての凹部の開口面積の合計を全開口面積Smaxと記すこともある。
 ここでは、ペリクル枠の外形寸法を、縦149mm×横115mm、厚さW1を1.8mm、幅D1を2mmとする。また、ペリクル枠の内径寸法を、縦145mm×横111mm×厚さ1.8mmとする。
 また、溝(即ち凹部)については、溝長さL1、溝幅W2、溝深さD2とすると、溝1個当たりの開口面積Sは、S=L1×W2である。
 なお、L1=辺部の長さー10mm、W2=W1-0.4mmとする。
 従って、全ての溝の開口面積の合計である全開口面積Smaxは、下記式(1)により算出できる(数値の単位はmm)。
 Smax={(149-10)×2+(115-10)×2}×(1.8-0.4)=683mm  ・・・(1)
 一方、対向する2辺には、φ1.5mmの有底孔をそれぞれ2箇所に設けるので、有底孔の近傍の2mmは溝形成ができない。よって、この有底孔のロス分を、2×(1.8-0.4)×4(箇所)=11mmとする(「箇所」以外の数値の単位はmm)。
 従って、ロス分を考慮した正確な全開口面積(Smax[mm])は、683mm-11mm=672mmとなる。
 ここで、ペリクル枠の内周面で囲まれた内側空間の体積(内容積:V[mm])は、145mm×111mm×1.8mm=28971mmである。
 従って、前記全開口面積Smax[mm]と前記ペリクル枠の内容積V[mm]との比(開口面積比:Smax/V)は、672mm÷28971mm=約0.023mm-1となる。
 つまり、上述した条件では、開口面積比(Smax/V)の最大は、0.023mm-1となる。
 <実験例2>
 本実験例2は、ペリクル枠の各部の寸法等を規定して、真空引きや大気解放に要する時間を求めたものである。
 フィルター(第1フィルタ)としては、ULPA規格を満足するものを用いる。
 このULPA規格とは、定格風量で粒径が、0.15μmの粒子に対して99.9995%以上の粒子捕集率をもち、且つ、初期圧力損失が、245Pa以下の性能を有するフィルタである。
 試験方法としては、JIS B 9927 クリーンルーム用エアフィルタ性能試験方法の規定(試験風速=5.3[cm/sec])を基準とし、下記式(2)により、ペリクル枠の定格風量を求めることができる。なお、ここでは、全開口面積を単に開口面積Sとしている。
  ペリクル枠の定格風量=風速(53[mm/sec])×開口面積(S[mm])
            =53S[mm/sec]   ・・(2)
 また、1気圧(100000[Pa])の気圧差を、真空引きまたは大気解放する時間Tは、下記式(3)から求めることができる。
  T=(ペリクル枠の内容積÷定格風量)×(100000[Pa]÷許容圧力差)・・(3)
 ここで、ペリクル膜が変形・破損しない許容圧力差を245[Pa]とすると、下記式(4)から時間Tを求めることができる。なお、上記許容圧力差は、便宜的に245[Pa]であるものとして計算を行う。
  T={(145*111*1.8)/(53*S)}*(100000/245)≒223000/S [sec]・・(4)
 さらに、下記の手順で、凹部(溝)の開口面積の最小値を求めることができる。
 即ち、真空引きの時間T=1時間(3600[sec])以内と仮定すると、S=223000/3600≒62[mm]以上の開口面積が必要となる。つまり、凹部(溝)の開口面積の最小値は、62[mm]である。
 また、開口面積比(S/V)の必要最小値は、下記式(5)から求めることができる。
  開口面積比[mm-1]=62[mm]÷内容積V(28971[mm])=0.002[mm-1] ・・(5)
 また、溝面積を最大にとった場合(即ちS=672[mm]の場合)には、真空引き時間は、下記式(6)から、約332[sec](約5.5分)となる。
  T=223000/672=約332[sec] ・・(6)
 一方、開口面積比(S/V)の最大値は、前記実験例1から0.023mm-1とされている。
 従って、開口面積比(S/V)の範囲は、上述した条件では、0.002mm-1以上0.023mm-1以下と考えられる。
 なお、第1フィルタとして、例えば特開2013-52320号公報に記載の濾材を用いる場合には、圧力損失は190[Pa]以下と小さく、真空引き時間を短縮できる。なお、カバー層<10[Pa]、プレ捕集層<80[Pa]、主捕集層<100[Pa]である。
 また、主捕集層<100[Pa]のみを用いれば、さらに圧損が半減し、真空引き時間の短時間化が可能である。
 [8.その他の実施形態]
 尚、本開示は、前記実施形態等に何ら限定されるものではなく、本開示の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
 (1)例えば、ペリクル枠の枠体を構成する材料としては、例えば下記表1に記載の導電性セラミックスなどを採用できる。また、例えば下記表2に記載の非導電性セラミックスを採用できる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 また、導電性セラミックスの組成(配合組成)としては、下記表3の組成を採用できる。また、セラミックス以外の導電性材料の組成としては、下記表4の組成を採用できる。さらに、非導電性セラミックスの組成としては、下記表5の組成を採用できる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 なお、表1のNo.1~3と表3のNo.10~12は同じ材料である。表1のNo.4~6と表4のNo.13~15は同じ材料である。表2のNo.7~9と表5のNo.16~18は同じ材料である。
 (2)また、ペリクル枠を形成するセラミックス材料としては、例えば特開2016-122091号公報に開示されているような、窒化ケイ素、ジルコニア、アルミナと炭化チタンの複合セラミックス等、各種の材料を採用できる。
 (3)さらに、4つの辺部のうち、少なくとも1つの辺部に、1又は複数の凹部が設けられていてもよい。
 (4)なお、上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を、省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
 

Claims (14)

  1.  平面視で矩形形状であり、当該矩形形状の各辺に対応する4つの辺部を備えるとともに、厚み方向の両側に設けられた第1面及び第2面と、前記第1面及び前記第2面に連接された内周面及び外周面と、を備えるペリクル枠において、
     前記外周面には、1又は複数の凹部を備えるとともに、当該1又は複数の凹部は、前記4つの辺部のうち、1又は複数の辺部に設けられており、
     前記1又は複数の凹部は、当該凹部が設けられた前記辺部を貫通して当該凹部の内側と前記内周面とに開口する貫通孔を備え、
     前記1又は複数の凹部のうち、少なくとも一つの凹部は、前記貫通孔を複数備え、
     前記貫通孔が少なくとも一つ設けられた前記凹部では、当該凹部の前記外周面側の開口端の面積である通気面積(S1)が、前記貫通孔のなす気体流路の最小の断面積である最小断面積(S2)より大である、
     ペリクル枠。
  2.  前記最小断面積(S2)は、前記貫通孔が1つの場合には当該貫通孔のなす気体流路の最小の断面積であり、また、前記貫通孔が複数の場合には当該各貫通孔のなす各気体流路の各最小の断面積の合計である、
     請求項1に記載のペリクル枠。
  3.  全ての前記凹部の前記開口端の総面積(Smm)と前記ペリクル枠の前記内周面で囲まれた内側空間の体積(Vmm)との比(S/V)は、0.002mm-1~0.025mm-1である、
     請求項1又は2に記載のペリクル枠。
  4.  前記凹部の前記外周面側の前記開口端を覆う第1フィルタを備えた、
     請求項1~3のいずれか1項に記載のペリクル枠。
  5.  前記凹部の内側の表面及び前記貫通孔の内側の表面の少なくとも一方に、粘着材層を備えた、
     請求項4に記載のペリクル枠。
  6.  前記凹部の内側の表面は、凹凸を備えた、
     請求項4又は5に記載のペリクル枠。
  7.  前記第1フィルタにおいて、前記貫通孔の開口に対向する対向領域に、前記第1フィルタの通気を抑制する通気抑制部を備えた、
     請求項4~6のいずれか1項に記載のペリクル枠。
  8.  前記凹部の内部に、前記第1フィルタより通気性が高く前記貫通孔の開口を覆う第2フィルタを備えるとともに、該第2フィルタは自身の気体流路の周囲に粘着材層を備えた、
     請求項4~7のいずれか1項に記載のペリクル枠。
  9.  前記凹部の内側の表面の角部は、R面取りされている、
     請求項1~8のいずれか1項に記載のペリクル枠。
  10.  前記ペリクル枠は、導電性を有するセラミック焼結体からなる、
     請求項1~9のいずれか1項に記載のペリクル枠。
  11.  前記ペリクル枠は、ヤング率が300GPa以上、強度が500MPa以上であるセラミック焼結体からなる、
     請求項1~10のいずれか1項に記載のペリクル枠。
  12.  前記ペリクル枠は、熱伝導率が15W/mK以上のセラミック焼結体からなる、
     請求項1~11のいずれか1項に記載のペリクル枠。
  13.  前記ペリクル枠は、熱膨張率が10ppm/℃以下であるセラミック焼結体からなる、
     請求項1~12のいずれか1項に記載のペリクル枠。
  14.  前記ペリクル枠は、以下の関係式を満たす、
     請求項1~13のいずれか1項に記載のペリクル枠。
       50×最小断面積(S2)≦通気面積(S1)
     
PCT/JP2019/026529 2018-07-04 2019-07-03 ペリクル枠 WO2020009169A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020529041A JPWO2020009169A1 (ja) 2018-07-04 2019-07-03 ペリクル枠

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018127636 2018-07-04
JP2018-127636 2018-07-04

Publications (1)

Publication Number Publication Date
WO2020009169A1 true WO2020009169A1 (ja) 2020-01-09

Family

ID=69060837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026529 WO2020009169A1 (ja) 2018-07-04 2019-07-03 ペリクル枠

Country Status (2)

Country Link
JP (1) JPWO2020009169A1 (ja)
WO (1) WO2020009169A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106156A (ja) * 1994-08-11 1996-04-23 Mitsui Petrochem Ind Ltd マスク保護装置
JP2005250188A (ja) * 2004-03-05 2005-09-15 Asahi Glass Co Ltd ペリクル
JP2010175618A (ja) * 2009-01-27 2010-08-12 Shin-Etsu Chemical Co Ltd リソグラフィー用ペリクル
JP2011002680A (ja) * 2009-06-19 2011-01-06 Shin-Etsu Chemical Co Ltd ペリクル
JP2011008082A (ja) * 2009-06-26 2011-01-13 Shin-Etsu Chemical Co Ltd ペリクル
JP2011118117A (ja) * 2009-12-02 2011-06-16 Asahi Kasei E-Materials Corp ペリクル及びその取付方法
JP2011227287A (ja) * 2010-04-20 2011-11-10 Shin Etsu Chem Co Ltd ペリクルフレームの通気孔内壁に粘着剤を塗布する方法
JP2012037800A (ja) * 2010-08-10 2012-02-23 Renesas Electronics Corp フォトマスク、ペリクルフレーム、および、半導体装置の製造方法
WO2016043292A1 (ja) * 2014-09-19 2016-03-24 三井化学株式会社 ペリクル、その製造方法及び露光方法
JP2017083791A (ja) * 2015-10-30 2017-05-18 三井化学株式会社 ペリクル、ペリクルの製造方法及びペリクルを用いた露光方法
JP2017161749A (ja) * 2016-03-10 2017-09-14 日本特殊陶業株式会社 ペリクル枠およびペリクル枠の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106156A (ja) * 1994-08-11 1996-04-23 Mitsui Petrochem Ind Ltd マスク保護装置
JP2005250188A (ja) * 2004-03-05 2005-09-15 Asahi Glass Co Ltd ペリクル
JP2010175618A (ja) * 2009-01-27 2010-08-12 Shin-Etsu Chemical Co Ltd リソグラフィー用ペリクル
JP2011002680A (ja) * 2009-06-19 2011-01-06 Shin-Etsu Chemical Co Ltd ペリクル
JP2011008082A (ja) * 2009-06-26 2011-01-13 Shin-Etsu Chemical Co Ltd ペリクル
JP2011118117A (ja) * 2009-12-02 2011-06-16 Asahi Kasei E-Materials Corp ペリクル及びその取付方法
JP2011227287A (ja) * 2010-04-20 2011-11-10 Shin Etsu Chem Co Ltd ペリクルフレームの通気孔内壁に粘着剤を塗布する方法
JP2012037800A (ja) * 2010-08-10 2012-02-23 Renesas Electronics Corp フォトマスク、ペリクルフレーム、および、半導体装置の製造方法
WO2016043292A1 (ja) * 2014-09-19 2016-03-24 三井化学株式会社 ペリクル、その製造方法及び露光方法
JP2017083791A (ja) * 2015-10-30 2017-05-18 三井化学株式会社 ペリクル、ペリクルの製造方法及びペリクルを用いた露光方法
JP2017161749A (ja) * 2016-03-10 2017-09-14 日本特殊陶業株式会社 ペリクル枠およびペリクル枠の製造方法

Also Published As

Publication number Publication date
JPWO2020009169A1 (ja) 2021-08-02

Similar Documents

Publication Publication Date Title
JP6708460B2 (ja) 接合体の製造方法
WO2017170738A1 (ja) 吸着部材
JP4908263B2 (ja) 真空吸着装置およびその製造方法
JP6085152B2 (ja) 真空チャック
JP5597524B2 (ja) 載置用部材およびその製造方法
JP3121886B2 (ja) 真空吸着装置
JP7111566B2 (ja) ペリクル枠及びペリクル
KR101166430B1 (ko) 반도체 웨이퍼 진공 고정용 포러스 척
WO2020009169A1 (ja) ペリクル枠
JP7096031B2 (ja) 基板保持部材
KR101282839B1 (ko) 진공흡입력이 개선된 포러스 척
JP4266136B2 (ja) 真空チャック
JP7186468B2 (ja) 砥石
JP5388700B2 (ja) 真空吸着部材及び真空吸着部材の製造方法
JP2004283936A (ja) 真空吸着装置
JP2009107880A (ja) 接合体、吸着部材、吸着装置および加工装置
JP2018200380A (ja) ペリクル枠及びその製造方法
JP4948920B2 (ja) 真空チャック及びこれを用いた真空吸着装置
JP2007180102A (ja) 吸着体の製造方法及び吸着体
JP2000021959A (ja) 真空吸着盤
CN113205991A (zh) 一种聚焦环
WO2024117149A1 (ja) 真空チャックおよびその製造方法
US11101161B2 (en) Substrate holding member
JP7439239B2 (ja) 流路部材およびその製造方法
JP2019191488A (ja) ペリクル枠及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19829886

Country of ref document: EP

Kind code of ref document: A1