WO2020008902A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2020008902A1
WO2020008902A1 PCT/JP2019/024576 JP2019024576W WO2020008902A1 WO 2020008902 A1 WO2020008902 A1 WO 2020008902A1 JP 2019024576 W JP2019024576 W JP 2019024576W WO 2020008902 A1 WO2020008902 A1 WO 2020008902A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
compression
chamber
path
compression chamber
Prior art date
Application number
PCT/JP2019/024576
Other languages
English (en)
French (fr)
Inventor
裕文 吉田
啓晶 中井
護 西部
淳 作田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020008902A1 publication Critical patent/WO2020008902A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure relates to a scroll compressor used for an air conditioner, a refrigerator, a blower, a water heater, and the like.
  • a scroll compressor used in a refrigeration cycle of a conventional air conditioner or the like has, for example, a configuration shown in FIG.
  • the sealed container 101 serving as the outer casing of the compressor has both ends closed.
  • An electric motor 102 and a compression mechanism 103 are built in the sealed container 101.
  • the compression mechanism 103 mainly includes the crankshaft 104, the main bearing 105, and the compression element 106.
  • the electric motor 102 includes a stator 102a fixed to the inner wall surface side of the closed casing 101, and a rotor 102b rotatably supported inside the stator 102a.
  • the crankshaft 104 is connected to the rotor 102b in a penetrating state.
  • the oil stored in the lower part of the closed casing 101 is supplied to each sliding part of the compression mechanism 103.
  • the oil rides on the flow of the gas compressed in the compression element 106 and is separated into gas and liquid before flowing out of the compressor from a discharge pipe 107 provided at the upper portion of the closed vessel 101.
  • the oil is then recirculated to the lower oil sump.
  • a plurality of compression chambers 110 are formed by engaging the fixed scroll 108 and the orbiting scroll 109 on which the spiral wraps 108a and 109a are respectively formed.
  • the orbiting scroll 109 is connected to the crankshaft 104 having the eccentric part, and the orbiting scroll 109 is caused to orbit using the Oldham ring 112 while preventing rotation.
  • the gas is compressed while reducing the volume of the compression chamber 110 toward the center.
  • the compressed gas is discharged to the outside of the compression mechanism 103 through a main discharge port 113 provided at the center of the fixed scroll 108 and a bypass discharge port 114 opened to the compression chamber 110 during compression. .
  • the back pressure adjusting valve 115 has a function of holding the orbiting scroll 109 against the fixed scroll 108 while maintaining an intermediate pressure higher than the suction pressure.
  • the back pressure adjusting valve 115 prevents compression leakage caused by separation between the orbiting scroll 109 and the fixed scroll 108, that is, a so-called overturn phenomenon.
  • Such a scroll compressor is configured to appropriately maintain the pressure in the back pressure chamber (for example, see Patent Literature 1 and Patent Literature 2).
  • FIG. 10 shows a scroll compressor of Patent Document 1.
  • a high-pressure area 202 and a back pressure chamber 203 are formed on the back surface of the orbiting scroll 201.
  • a first path 204 that intermittently communicates the high-pressure region 202 with the back pressure chamber 203 and a second path 206 that intermittently communicates the back pressure chamber 203 with the compression chamber 205 are provided.
  • An appropriate amount of oil can be supplied to both the first compression chamber 205a on the wrap outer wall side and the second compression chamber 205b on the wrap inner wall side of the orbiting scroll 201, so that high efficiency and high reliability will be realized.
  • the scroll compressor disclosed in Patent Document 2 has a configuration in which the second path 206 and the bypass discharge port 207 are intermittently communicated. This suppresses over-compression, particularly during low-speed, low-compression-ratio operation, suppresses an excessive rise in the pressure of the back pressure chamber 203, and reduces sliding loss in the thrust bearing.
  • the present disclosure has been made in view of such a point, and provides a scroll compressor that exhibits high efficiency by preventing the back pressure chamber from being in an excessive gas state.
  • a scroll compressor includes a head plate, a fixed scroll having a spiral wrap rising from the head plate, an orbiting scroll, a compression chamber formed between the fixed scroll and the orbiting scroll by meshing the fixed scroll and the orbiting scroll. And a high-pressure area and a back-pressure chamber formed on the back surface of the orbiting scroll.
  • the orbiting scroll orbits with a predetermined orbital radius along a circular orbit under the control of the rotation restricting mechanism. Due to the turning of the orbiting scroll, the compression chamber moves toward the center while changing the volume.
  • the scroll compressor performs a series of operations of suction, compression, and discharge.
  • the scroll compressor has a main discharge port provided at a central portion of the fixed scroll, a bypass discharge port provided to communicate with the compression scroll and the compression chamber in the middle of the fixed scroll, and a first communication port connecting the high pressure region and the back pressure chamber. And a second path intermittently connecting the back pressure chamber and the compression chamber. The communication of the second path is finished before the communication between the bypass discharge port and the compression chamber is established by the turning of the orbiting scroll.
  • bypass discharge port and the second path are designed to have a timing that simultaneously communicates with the compression chamber, the discharged gas that has flowed back through the bypass discharge port reaches the back pressure chamber through the second path. Then, the back pressure chamber becomes in an excessive gas state, which causes a decrease in the amount of oil supplied to the compression chamber.
  • the discharged gas that has flowed back through the bypass discharge port does not reach the back pressure chamber. Therefore, it is possible to prevent the back pressure chamber from being in an excessive gas state.
  • FIG. 1 is a cross-sectional view of the scroll compressor according to the first embodiment of the present disclosure as viewed from a side.
  • FIG. 2 is an enlarged cross-sectional view of a main part of the scroll compressor as viewed from the side.
  • FIG. 3 is a diagram showing a cross-sectional configuration of a main part in the cross section aa of FIG.
  • FIG. 4 is a diagram showing a cross-sectional configuration of main components in the cross section aa of FIG.
  • FIG. 5 is a diagram showing a cross-sectional configuration of main components in a bb cross-section of FIG.
  • FIG. 6 is a diagram showing a cross-sectional configuration of main components in a bb cross-section of FIG.
  • FIG. 1 is a cross-sectional view of the scroll compressor according to the first embodiment of the present disclosure as viewed from a side.
  • FIG. 2 is an enlarged cross-sectional view of a main part of the scroll compressor as viewed from the side.
  • FIG. 7 is a diagram showing a cross-sectional configuration of main components in a bb cross-section of FIG.
  • FIG. 8 is a diagram showing a cross-sectional configuration of a main part in a bb cross section of FIG.
  • FIG. 9 is a diagram showing a cross-sectional configuration of a conventional scroll compressor as viewed from the side.
  • FIG. 10 is a cross-sectional view of a compression mechanism in a scroll compressor described in Patent Document 1.
  • a scroll compressor includes a fixed scroll having a head plate and a spiral wrap rising from the head plate, an orbiting scroll, and a fixed scroll and an orbiting scroll that are formed between the fixed scroll and the orbiting scroll. And a high-pressure area and a back-pressure chamber formed on the back of the orbiting scroll.
  • the orbiting scroll orbits with a predetermined orbital radius along a circular orbit under the control of the rotation restricting mechanism. Due to the turning of the orbiting scroll, the compression chamber moves toward the center while changing the volume.
  • the scroll compressor performs a series of operations of suction, compression, and discharge.
  • the scroll compressor communicates the main discharge port provided at the center of the fixed scroll, the fixed scroll with the compression chamber, a bypass discharge port provided so as to communicate with the middle of compression, and the high pressure region and the back pressure chamber.
  • a first path and a second path intermittently connecting the back pressure chamber and the compression chamber are provided. The communication of the second path is finished before the communication between the bypass discharge port and the compression chamber is established by the turning of the orbiting scroll.
  • the first path intermittently communicates the high-pressure region with the back pressure chamber, the communication timing between the first path and the back pressure chamber, and the communication between the second path and the back pressure chamber.
  • the configuration may be different from the timing.
  • the first path and the second path do not communicate simultaneously with the back pressure chamber. Therefore, the oil flowing into the back pressure chamber from the first path does not cause a pressure increase in the compression chamber due to flowing into the compression chamber through the second path while the pressure is insufficiently reduced. It is possible to prevent a rise in power and maintain high efficiency.
  • the oil flowing into the compression chamber and supplied to the lubrication may be compatible with the working fluid at a temperature of 50 ° C. or higher.
  • the bypass discharge port and the second path do not communicate with the compression chamber at the same time.
  • an excessive gas state due to foaming of the oil in the back pressure chamber can be prevented, and the oil supply to the compression chamber can be ensured. Therefore, it is possible to realize low friction sliding of the thrust bearing and the scroll lap sliding portion in a good lubricating state, and to reduce the compression loss by reliably sealing the compression chamber.
  • FIG. 1 is a cross-sectional view of a scroll compressor 50 according to a first embodiment of the present disclosure as viewed from the side, and FIG. It is sectional drawing seen.
  • the scroll compressor 50 includes a closed container 1 and a discharge pipe 2.
  • the entire interior of the sealed container 1 is in a discharge pressure atmosphere communicating with the discharge pipe 2.
  • the electric motor 3 is arranged at the center of the sealed container 1 and the compression mechanism is arranged at the upper part.
  • a main body frame 5 of a compression mechanism that supports one end of a crankshaft 4 fixed to a rotor 3 a of the electric motor 3 is fixed to the closed casing 1.
  • a fixed scroll 6 is attached to the main body frame 5.
  • the main shaft direction oil passage 7 provided in the crankshaft 4 has one end communicating with the oil supply pump device 8 and the other end finally communicating with the eccentric bearing 10 of the orbiting scroll 9.
  • the orbiting scroll 9 meshes with the fixed scroll 6 to form the compression chamber 11.
  • the orbiting scroll 9 has a spiral orbiting scroll wrap 9a and a orbiting end plate 9b on which the orbiting scroll wrap 9a and the eccentric bearing 10 stand upright.
  • the orbiting scroll 9 is arranged between the fixed scroll 6 and the main body frame 5.
  • the fixed scroll 6 includes a fixed end plate 6a and a spiral fixed scroll wrap 6b.
  • a main discharge port 12 and a bypass discharge port 13 including a plurality of holes for discharging gas in the compression chamber 11 when the inside reaches a required discharge pressure during compression are arranged.
  • a suction port 14 and a suction chamber 15 which is a fluid passage until compression is started are arranged on an outer peripheral portion of the fixed scroll wrap 6b.
  • An eccentric shaft 17 eccentric from the main shaft 16 of the crankshaft 4 and arranged at the upper end of the crankshaft 4 is configured to engage and slide with the eccentric bearing 10 of the orbiting scroll 9.
  • the main shaft 16 engages and slides with the main bearing 18 of the main body frame 5.
  • An annular seal member 19 concentric with the main bearing 18 is mounted on the main body frame 5 in a loose state.
  • the annular seal member 19 divides a rear chamber 20 inside, which is generally at a discharge pressure atmosphere, and a back pressure chamber 21 outside, which is at an intermediate pressure atmosphere.
  • the oil sucked up by the oil supply pump device 8 is oil that is compatible with the working fluid at a temperature of 50 ° C. or higher.
  • the oil passes through the oil passage 7 of the crankshaft 4 and is guided to an internal space 22 formed between the orbiting scroll 9 and the eccentric shaft 17.
  • One of the oils passes through a first path 23 provided on the back surface of the orbiting scroll 9b of the orbiting scroll 9 to a back pressure chamber 21 formed by being surrounded by the fixed scroll 6 and the main body frame 5. .
  • the oil is guided to the compression chamber 11 through the second path 24 provided in the orbiting scroll 9 and the counterbore 25 provided on the bottom surface 6c of the fixed scroll wrap 6b.
  • the back pressure chamber 21 is maintained at the pressure of the compression chamber 11 during compression, which communicates with the second path 24, and presses the orbiting scroll 9 against the fixed scroll 6.
  • the orbiting end plate 9b, the upper surface 6d of the fixed scroll wrap 6b and the fixed end plate 6a form the thrust bearing 26.
  • the other part of the oil is discharged to the outside of the compression mechanism through the eccentric bearing 10, the back chamber 20, and the main bearing 18.
  • the check valve device 27 that opens and closes the outlet side of the main discharge port 12 is mounted on a plane of the fixed scroll 6 opposite to the lap side of the fixed end plate 6a.
  • the check valve device 27 includes a reed valve 27a made of a thin steel plate and a valve retainer 27b.
  • the lower end of the crankshaft 4 is supported by the auxiliary bearing 28 fixed by welding or shrink fitting in the closed container 1, and the crankshaft 4 rotates stably.
  • the auxiliary bearing 28 has a journal bearing configuration, and part of the oil sucked up by the oil supply pump device 8 is supplied to the auxiliary bearing 28.
  • the gas immediately after being compressed by the compression mechanism and discharged from the main discharge port 12 and the gas immediately before being discharged from the discharge pipe 2 to the outside of the closed container 1 are separated by the muffler 29.
  • the gas in the discharge chamber 30 inside the muffler 29 passes through a downward gas flow path 31 provided near the outer periphery of the compression mechanism, and is guided to the upper part of the rotor 3a as shown by a dotted arrow in the figure.
  • the gas merges with the oil discharged after lubricating the main bearing 18 and the like, and reaches the lower part of the rotor 3a through a rotor passage 3b provided inside the rotor 3a.
  • the mixed flow of gas and oil collides with the lower coil end of the stator 3c by centrifugal force, and is separated into gas and liquid.
  • the gas after the gas-liquid separation is guided to the space above the stator 3c through the stator passage 3d provided on the outer periphery of the stator 3c.
  • This space is a space separated from the space above the rotor 3a by the partition member 32.
  • the gas passes through an upward gas flow path (not shown) provided in the compression mechanism, reaches a space above the compression mechanism, and is discharged from the discharge pipe 2 to the outside of the closed container 1.
  • FIGS. 3 and 4 are views showing the configuration of main parts in the cross section aa in FIG.
  • the trajectory in which the first path 23 provided in the orbiting scroll 9 makes the orbital movement along with the rotation of the crankshaft 4 is indicated by a chain line.
  • FIGS. 5 to 8 are views showing the configuration of the main parts in the bb cross section in FIG. 1, and show how the orbiting scroll 9 performs the orbiting motion.
  • the trajectory along which the second path 24 provided in the orbiting scroll 9 orbits along with the rotation of the crankshaft 4 is indicated by a chain line.
  • the main discharge port 12, the bypass discharge port 13, and the bottom counterbore 25 provided on the bottom surface 6c of the fixed scroll wrap are indicated by two-dot chain lines.
  • Each of the compression chambers (the first compression chamber 11a and the second compression chamber 11b) performs a compression operation independently, and the compressed gas / liquid is discharged from the main discharge port 12 after merging at the center.
  • the compressed gas / liquid is supplied to the first bypass discharge port 13a provided in the middle of the compression of the first compression chamber 11a, and provided in the middle of the compression of the second compression chamber 11b.
  • the second bypass discharge port 13b is also discharged.
  • the first path 23 pivots over the annular seal member 19 shown by the dotted line. At the crank angle shown in FIG. 3, the first path 23 opens into the back chamber 20 at the discharge pressure.
  • the internal space 22 on the upstream side of the first path 23 and the rear chamber 20 on the downstream side of the first path 23 are both in a discharge pressure atmosphere. Therefore, there is no oil flow in the first path 23.
  • the first path 23 opens to the back pressure chamber 21 at the intermediate pressure. Due to the pressure difference between the internal space 22 at the discharge pressure and the back pressure chamber 21 at the intermediate pressure, oil flows into the back pressure chamber 21 from the first path 23.
  • the amount of oil supplied to the back pressure chamber 21 is controlled to an appropriate amount.
  • the first bottom counterbore 25a of the two bottom counterbores 25 and the second path 24 overlap.
  • the back pressure chamber 21 communicates with the first compression chamber 11a, and the oil in the back pressure chamber 21 flows into the first compression chamber 11a and is provided for lubrication and sealing.
  • the respective compression chambers (the first compression chamber 11a and the second compression chamber 11b) are not simultaneously opened to the second path 24 and the respective bypass discharge ports 13a and 13b. Therefore, the discharged gas that has flowed back through the bypass discharge port 13 from the discharge chamber 30 in the atmosphere with the highest pressure immediately after compression does not reach the back pressure chamber 21 through the second path 24. . Thereby, it is possible to prevent the shortage of the refueling amount due to the excessive gas state of the back pressure chamber 21 that occurs when the gas reaches the back pressure chamber 21.
  • the lubrication of the thrust bearing 26 and the sliding portions of the fixed scroll wrap 6b and the orbiting scroll wrap 9a can be realized by a good lubrication state, and the compression chamber can be reliably supplied with lubrication to the compression chamber 11. 11 can reduce the compression loss by the reliable seal.
  • the first path 23 intermittently connects the internal space 22 and the back pressure chamber 21.
  • the communication timing between the first path 23 and the back pressure chamber 21 and the communication timing between the second path 24 and the back pressure chamber 21 are shifted so that the first path 23 and the second path 24 Are not configured to communicate at the same time.
  • the oil that has flowed into the back pressure chamber 21 from the first path 23 flows into the compression chamber 11 through the second path 24 with insufficient pressure reduction, causing an increase in the pressure of the compression chamber 11. None. Therefore, it is possible to prevent a rise in compression power and maintain high efficiency.
  • the oil used for lubrication is compatible with the working fluid at a temperature of 50 ° C or higher. Therefore, it is possible to prevent the excessive gas state due to the foaming of the oil in the back pressure chamber 21 which is seen in the conventional configuration, to prevent the depletion of the oil in the compressor, and to surely supply the oil to the compression chamber.
  • oil that is compatible with the working fluid at a temperature of 50 ° C. or higher is discharged together with the discharge gas for some reason, even if a large amount of oil flows from the compressor to the refrigeration cycle. Easy to return to the compressor. For this reason, oil depletion of the compressor can be prevented.
  • the compatible oil has a property of foaming due to reduced pressure
  • the bypass discharge port 13 is The high-temperature discharged gas that has flowed back reaches the back pressure chamber 21 through the second path 24.
  • the temperature of the oil filled in the back pressure chamber 21 rises and foams, resulting in a further gas excess state.
  • the bypass discharge port 13 and the second path 24 do not communicate with the compression chamber 11 at the same time. For this reason, an excessive gas state due to foaming of the oil in the back pressure chamber 21 can be prevented. Therefore, the lubrication of the thrust bearing 26 and the sliding portions of the fixed scroll wrap 6b and the orbiting scroll wrap 9a can be realized by a good lubrication state, and the compression chamber can be reliably supplied with lubrication to the compression chamber 11. 11 can reduce the compression loss by the reliable seal.
  • Vb The volume of the compression chamber 11 at the time when the communication with the bypass discharge port 13 starts is defined as Va, and the volume of the compression chamber 11 at the time when the communication with the second path 24 ends with respect to this volume Va is defined as Vb. I do. These ratios Vb / Va should preferably be in the range of approximately 1 to 1.2.
  • the configuration is such that the bypass discharge port 13 and the second path 24 are brought as close as possible within a range where they do not communicate with the compression chamber 11 at the same time.
  • the pressure in the compression chamber 11 increases due to the oil supplied from the back pressure chamber 21 through the second path 24, and even if the compression chamber 11 is in an over-compressed state, the communication between the second path 24 and the compression chamber 11 is established.
  • the oil can be discharged from the bypass discharge port 13. For this reason, overcompression of the compression chamber 11 can be minimized, and a decrease in compressor efficiency can be suppressed.
  • Vb / Va exceeds 1.2, the effect of avoiding excessive compression by the bypass discharge port 13 under the low compression ratio operating condition is reduced, so that the compression power is increased and the efficiency of the compressor is likely to be reduced.
  • low-viscosity oil for example, low-viscosity oil such as viscosity grade 32
  • the sealing performance of the thrust bearing 26 cannot be maintained. Refrigerant leakage from the back pressure chamber 21 to the compression chamber 11 may occur, causing a decrease in performance. Therefore, when using a low-viscosity oil, the configuration of the present disclosure exerts more effects.
  • the two bottom counterbore 25 (the first bottom counterbore 25a and the second bottom counterbore 25b) are provided so as to communicate with the first compression chamber 11a and the second compression chamber 11b, respectively.
  • the same effect can be obtained even if only one bottom counterbore 25 is provided so as to communicate with one of the first compression chamber 11a and the second compression chamber 11b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

スクロール圧縮機であって、固定スクロール(6)、旋回スクロール(9)、固定スクロールと旋回スクロールとを噛み合わせて形成された圧縮室(11)、および、旋回スクロール(9)の背面に形成された、高圧領域および背圧室、を備えている。旋回スクロール(9)の旋回により、圧縮室(11)は、容積を変えながら中心に向かって移動する。スクロール圧縮機は、固定スクロール(6)の中心部に設けられた主吐出ポート(12)、固定スクロール(6)に、圧縮室(11)と、圧縮途中に連通するように設けられたバイパス吐出ポート(13)、高圧領域と背圧室とを連通する第一の経路(23)、および、背圧室と圧縮室とを間欠的に連通する第二の経路(24)、をさらに備えている。旋回スクロール(9)の旋回により、バイパス吐出ポート(13)と圧縮室(11)とが連通する前に、第二の経路(24)の連通が終了するように構成されている。

Description

スクロール圧縮機
 本開示は、空調機、冷凍機、ブロワ、および、給湯機等に使用されるスクロール圧縮機に関する。
 従来の空気調和装置等の冷凍サイクルに使用されるスクロール圧縮機は、例えば、図9に示す構成を有している。
 すなわち、圧縮機の外筐となる密閉容器101は、その両端が閉鎖されている。密閉容器101の内部には、電動機102と圧縮機構部103とが内蔵されている。
 圧縮機構部103は、主に、クランク軸104、主軸受105および圧縮要素106で構成されている。
 電動機102は、密閉容器101の内壁面側に固定された固定子102aと、固定子102aの内側に回転自在に支持された回転子102bとからなる。回転子102bには、クランク軸104が貫通状態で結合されている。
 密閉容器101下部に収容されたオイルは、圧縮機構部103の各摺動部に供給される。オイルは、圧縮要素106において圧縮されたガスの流れに乗り、密閉容器101上部に設けられた吐出管107から圧縮機外部へ流出するまでの間に、気液分離される。そして、オイルは、下部オイル溜まりへと再循環される。
 圧縮機構部103について説明する。渦巻きラップ108a,109aがそれぞれ形成された固定スクロール108,旋回スクロール109をかみ合わせて、複数の圧縮室110が形成される。旋回スクロール109背面に形成された背圧室111に一定圧を印加することで、固定スクロールラップ上面108bと旋回スクロール底面109bとがスラスト摺動する。旋回スクロール109に偏心部を有するクランク軸104を連結させ、オルダムリング112を用いて、旋回スクロール109に、自転を防止させながら旋回運動をさせる。これにより、中心に向かって圧縮室110の容積を減少させながらガスを圧縮させる。
 圧縮されたガスは、固定スクロール108の中心部に設けられた主吐出ポート113、および、圧縮途中の圧縮室110に開口するバイパス吐出ポート114を通って、圧縮機構部103の外へ吐出される。
 オイル溜りから、クランク軸104の内部通路104aを経由して、背圧室111へ供給されたオイルは、背圧調整弁115を通って、圧縮室110へと導かれる。背圧調整弁115は、吸入圧力よりも高めの中間圧力を維持して、旋回スクロール109を固定スクロール108に押さえつける機能を有する。背圧調整弁115は、旋回スクロール109と固定スクロール108との離反、いわゆる転覆現象によって生じる、圧縮漏れを防止している。
 一方、背圧室111の圧力が高くなりすぎると、旋回スクロール109を固定スクロール108に押さえつける力が過剰になり、旋回スクロール109と固定スクロール108とで形成されるスラスト軸受での摺動損失が増大する。このため、背圧室111の圧力を適正に維持する必要がある。
 したがって、このようなスクロール圧縮機は、背圧室の圧力を適正に維持するように構成されている(例えば、特許文献1および特許文献2参照)。
 図10は、特許文献1のスクロール圧縮機を示す。
 特許文献1のスクロール圧縮機では、旋回スクロール201の背面に、高圧領域202と背圧室203とが形成される。高圧領域202と背圧室203とを間欠的に連通する第一の経路204、および、背圧室203と圧縮室205とを間欠的に連通する第二の経路206が設けられる。これにより、背圧室203の圧力を適正に保って、転覆による圧縮漏れ、および、過剰押付力によるスラスト軸受での摺動損失の増加が抑制されている。
 旋回スクロール201のラップ外壁側の第一圧縮室205a、および、ラップ内壁側の第二圧縮室205bの両方には、適量のオイル供給が可能であり、高効率化および高信頼性が実現されようとしている。
 また、特許文献2のスクロール圧縮機は、第二の経路206とバイパス吐出ポート207とを間欠的に連通させる構成を有している。これにより、特に低速、低圧縮比運転時に、過圧縮を抑制し、背圧室203の圧力が過度に上昇することを抑え、スラスト軸受での摺動損失を低減させている。
国際公開第2009/130878号 特開2000-329082号公報
 しかしながら、従来の構成では、主吐出ポートおよびバイパス吐出ポートから圧縮室へと逆流した吐出ガスが、第二の経路を通って背圧室まで到達するリスクについては検討されていない。すなわち、背圧室に吐出ガスが到達して、背圧室がガス過多状態になり、その結果、スラスト軸受での摺動損失が増加するというリスクに関する検討、および、その対策についても開示されていないので、スクロール圧縮機の高効率化については、未だ改善の余地が残る。
 本開示はこのような点に鑑みてなされたものであり、背圧室がガス過多状態になるのを防止して、高い効率を発揮するスクロール圧縮機を提供する。
 本開示のスクロール圧縮機は、鏡板、および、鏡板から立ち上がる渦巻き状のラップを有する固定スクロール、旋回スクロール、固定スクロールと旋回スクロールとを噛み合わせて、固定スクロールおよび旋回スクロール間に形成された圧縮室、ならびに、旋回スクロールの背面に形成された、高圧領域および背圧室、を備えている。旋回スクロールは、自転拘束機構による規制により、円軌道に沿って、所定の旋回半径で旋回する。旋回スクロールの旋回により、圧縮室は、容積を変えながら中心に向かって移動する。スクロール圧縮機は、吸入、圧縮、および、吐出の一連の動作を行う。スクロール圧縮機は、固定スクロールの中心部に設けられた主吐出ポート、固定スクロールに圧縮室と圧縮途中に連通するように設けられたバイパス吐出ポート、高圧領域と背圧室とを連通する第一の経路、および、背圧室と圧縮室とを間欠的に連通する第二の経路、を備えている。旋回スクロールの旋回により、バイパス吐出ポートと圧縮室とが連通する前に、第二の経路の連通が終了するように構成されている。
 これにより、背圧室がガス過多状態になるのを防止して、高い効率を実現することができる。バイパス吐出ポートと第二の経路とが、同時に圧縮室と連通するタイミングを有する設計がなされた場合、バイパス吐出ポートを逆流した吐出済みガスが、第二の経路を通って背圧室まで到達し、背圧室がガス過多状態となり、圧縮室への給油量低下を惹き起こす。これに対して、上述の構成によれば、バイパス吐出ポートを逆流した吐出済みガスが、背圧室まで到達することがなくなる。このため、背圧室がガス過多状態になるのを防止できる。
 このため、背圧室のガス過多状態に伴う、圧縮室への給油量低下を防止できる。よって、スラスト軸受およびスクロールラップ摺動部の、良好な潤滑状態を実現するとともに、圧縮室の確実なシールにより、高い効率を実現することが可能となる。
 本開示によれば、吐出ガスの逆流による摺動損失の増加、および、給油量低下のリスクを防止し、高効率なスクロール圧縮機を実現できる。
図1は、本開示の第1の実施の形態におけるスクロール圧縮機の側方から見た断面図である。 図2は、同スクロール圧縮機の要部を拡大して示す、側方から見た断面図である。 図3は、図1のa-a断面における主要部品の断面構成を示す図である。 図4は、図1のa-a断面における主要部品の断面構成を示す図である。 図5は、図1のb-b断面における主要部品の断面構成を示す図である。 図6は、図1のb-b断面における主要部品の断面構成を示す図である。 図7は、図1のb-b断面における主要部品の断面構成を示す図である。 図8は、図1のb-b断面における主要部品の断面構成を示す図である。 図9は、従来のスクロール圧縮機の側方から見た断面構成を示す図である。 図10は、特許文献1に記載のスクロール圧縮機における圧縮機構部の断面図である。
 本開示の一態様のスクロール圧縮機は、鏡板、および、鏡板から立ち上がる渦巻き状のラップを有する固定スクロール、旋回スクロール、固定スクロールと旋回スクロールとを噛み合わせて、固定スクロールおよび旋回スクロール間に形成された圧縮室、ならびに、旋回スクロールの背面に形成された、高圧領域および背圧室、を備えている。旋回スクロールは、自転拘束機構による規制により、円軌道に沿って、所定の旋回半径で旋回する。旋回スクロールの旋回により、圧縮室は、容積を変えながら中心に向かって移動する。スクロール圧縮機は、吸入、圧縮、および、吐出の一連の動作を行う。スクロール圧縮機は、固定スクロールの中心部に設けられた主吐出ポート、固定スクロールに、圧縮室と、圧縮途中に連通するように設けられたバイパス吐出ポート、高圧領域と背圧室とを連通する第一の経路、および、背圧室と圧縮室とを間欠的に連通する第二の経路、を備えている。旋回スクロールの旋回により、バイパス吐出ポートと圧縮室とが連通する前に、第二の経路の連通が終了するように構成されている。
 これにより、背圧室がガス過多状態になるのを防止して、高い効率を実現することができる。すなわち、バイパス吐出ポートと第二の経路とが同時に圧縮室に連通することがないため、バイパス吐出ポートを逆流した吐出済みガスが、第二の経路を通って背圧室まで到達することで生じる背圧室のガス過多状態を防止できる。よって、圧縮室への給油を確実なものとして、スラスト軸受およびスクロールラップ摺動部の良好な潤滑状態による低摩擦摺動の実現と、圧縮室の確実なシールによる圧縮損失の低減とを図ることができる。よって、高い効率を発揮することができる。
 また、好ましくは、第一の経路は、高圧領域と背圧室とを間欠的に連通し、第一の経路と背圧室との連通タイミングと、第二の経路と背圧室との連通タイミングとが異なる構成であってもよい。
 これにより、第一の経路と第二の経路とが、背圧室と同時に連通することがない。よって、第一の経路から背圧室に流入したオイルが、減圧不十分なまま、第二の経路を通って圧縮室に流入することによる、圧縮室の圧力上昇を惹き起こすことがなく、圧縮動力の上昇を防止して、高い効率を維持することが可能となる。
 また、好ましくは、圧縮室に流入し、潤滑に供給されるオイルが、50℃以上の状態で作動流体に対して相溶性を持つ構成であってもよい。
 これにより、何らかの理由で、吐出ガスとともに、圧縮機から冷凍サイクルへと大量のオイルが流出しても、オイルは、吐出ガスとともに圧縮機に戻りやすい。このため、圧縮機のオイル枯渇を防止できる。一方で、相溶性を持つオイルは、減圧によって発泡する性質を有する。バイパス吐出ポートと第二の経路とが同時に圧縮室に連通する構成の場合には、バイパス吐出ポートを逆流した高温の吐出済みガスが、第二の経路を通って背圧室まで到達する。これにより、背圧室に満たされたオイルの温度が上昇して発泡し、より一層ガス過多状態となってしまう。これに対して、本開示では、バイパス吐出ポートと第二の経路とが同時に圧縮室に連通することがない。これにより、背圧室のオイルの発泡によるガス過多状態を防止し、圧縮室への給油を確実なものにできる。よって、スラスト軸受およびスクロールラップ摺動部の、良好な潤滑状態による低摩擦摺動の実現と、圧縮室の確実なシールによる圧縮損失の低減とを図ることができる。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、これらの実施の形態によって、本開示が限定されるものではない。
 (第1の実施の形態)
 図1は、本開示の第1の実施の形態におけるスクロール圧縮機50の側方から見た断面図であり、図2は、同スクロール圧縮機50の要部を拡大して示す、側方から見た断面図である。
 図1において、スクロール圧縮機50は、密閉容器1および吐出管2を備えている。密閉容器1の内部全体は、吐出管2に連通する吐出圧力雰囲気となる。
 密閉容器1の中央部には電動機3が、上部には圧縮機構が、それぞれ配置されている。電動機3の回転子3aに固定されたクランク軸4の一端を支承する、圧縮機構の本体フレーム5が、密閉容器1に固定されている。本体フレーム5には、固定スクロール6が取り付けられている。
 クランク軸4に設けられた、主軸方向の油通路7は、その一端が給油ポンプ装置8に通じ、他端が、最終的に旋回スクロール9の偏心軸受10に通じている。
 旋回スクロール9は、固定スクロール6と噛み合って圧縮室11を形成する。旋回スクロール9は、渦巻き状の旋回スクロールラップ9a、および、旋回スクロールラップ9aと偏心軸受10とが直立する旋回鏡板9bを有している。旋回スクロール9は、固定スクロール6と本体フレーム5との間に配置されている。
 固定スクロール6は、固定鏡板6aと、渦巻き状の固定スクロールラップ6bとを備える。固定スクロール6の中央部には、主吐出ポート12、および、圧縮途中に内部が必要吐出圧力に到達した場合に、圧縮室11のガスを吐出させる複数の穴からなるバイパス吐出ポート13が配置されている。固定スクロールラップ6bの外周部には、吸入ポート14、および、圧縮が開始されるまでの流体通路である吸入室15が配置されている。
 クランク軸4の主軸16から偏心し、クランク軸4の上端部に配置された偏心軸17は、旋回スクロール9の偏心軸受10と係合摺動するように構成されている。
 主軸16は、本体フレーム5の主軸受18と係合摺動する。本体フレーム5には、主軸受18と同心の環状シール部材19が、遊合状態で装着されている。環状シール部材19は、その内側の、概ね吐出圧力雰囲気の背面室20と、外側の、中間圧力雰囲気の背圧室21とを仕切っている。
 給油ポンプ装置8によって吸い上げられるオイルは、50℃以上の状態で、作動流体に対して相溶性を持つオイルである。オイルは、クランク軸4の油通路7を通り、旋回スクロール9と偏心軸17との間に形成された内部空間22へ導かれる。オイルの一方は、旋回スクロール9の旋回鏡板9bの背面に設けられた第一の経路23を経由して、固定スクロール6と本体フレーム5とによって囲まれて形成された背圧室21へと通じる。そして、オイルは、旋回スクロール9に設けられた第二の経路24と、固定スクロールラップ6bの底面6cに設けられた底面ザグリ25とを通って、圧縮室11へと導かれる。
 背圧室21は、第二の経路24と連通する、圧縮途中の圧縮室11の圧力に維持され、旋回スクロール9を固定スクロール6に押さえつける。これにより、旋回鏡板9bと、固定スクロールラップ6bの上面6dおよび固定鏡板6aとでスラスト軸受26が形成される。オイルのもう一方は、偏心軸受10、背面室20、および、主軸受18を通って、圧縮機構外部へ排出される。
 主吐出ポート12の出口側を開閉する逆止弁装置27は、固定スクロール6の固定鏡板6aの反ラップ側平面上に取り付けられている。逆止弁装置27は、薄鋼板製のリード弁27aと弁押さえ27bとからなる。
 クランク軸4の下端は、密閉容器1内に、溶接または焼き嵌めにより固定された副軸受28により軸受けされ、クランク軸4は安定に回転する。副軸受28は、ジャーナル軸受構成となっており、給油ポンプ装置8によって吸い上げられたオイルの一部は、副軸受28へと供給される。
 圧縮機構において圧縮され、主吐出ポート12から吐出された直後のガスと、吐出管2から密閉容器1外へ吐出される直前のガスとは、マフラー29によって仕切られる。マフラー29内部の吐出室30のガスは、圧縮機構の外周部付近に設けられた下向きガス流路31を通り、図示された点線矢印のように、回転子3a上部へと導かれる。ここで、ガスは、主軸受18などを潤滑後に排出されたオイルと合流し、回転子3a内部に設けられた回転子通路3bを通って、回転子3a下部へと到達する。その後、ガスとオイルとの混合流が、遠心力によって固定子3cの下部コイルエンドに衝突し、気液分離される。
 気液分離後のガスは、固定子3c外周に設けられた固定子通路3dを通って、固定子3c上部の空間へと導かれる。この空間は、仕切部材32によって、回転子3a上部の空間と仕切られた空間である。ガスは、圧縮機構に設けられた、図示されていない上向きガス流路を通って、圧縮機構の上側空間へ到達後、吐出管2から密閉容器1外部へと吐出される。
 図3および図4は、図1におけるa-a断面での主要部品の構成を示す図である。旋回スクロール9に設けられた第一の経路23が、クランク軸4の回転とともに旋回運動を行う軌跡が、一点鎖線で示されている。
 図5から図8は、図1におけるb-b断面での主要部品の構成を示す図であり、旋回スクロール9が旋回運動を行う様子が示されている。
 旋回スクロール9に設けられた第二の経路24が、クランク軸4の回転とともに旋回運動を行う軌跡が一点鎖線で示されている。主吐出ポート12、バイパス吐出ポート13、および固定スクロールラップの底面6cに設けられた底面ザグリ25が二点鎖線で示されている。
 圧縮室11は、旋回スクロールラップ9aの外壁と固定スクロールラップ6bの内壁とで形成される第一圧縮室11a、および、旋回スクロールラップ9aの内壁と固定スクロールラップ6bの外壁とで形成される第二圧縮室11bからなる。各圧縮室(第一圧縮室11a,第二圧縮室11b)は、独立して圧縮動作を行い、圧縮された気体・液体は、中心部で合流後、主吐出ポート12から吐出される。圧縮途中で必要吐出圧力に到達した場合、圧縮された気体・液体は、第一圧縮室11aの圧縮途中に設けられた第一バイパス吐出ポート13a、および、第二圧縮室11bの圧縮途中に設けられた第二バイパス吐出ポート13bからも吐出される。
 以上のように構成されたスクロール圧縮機50について、以下、その動作、および作用を説明する。
 図3および図4に示したように、第一の経路23は、点線で示された環状シール部材19を跨いで旋回運動する。図3のクランク角では、第一の経路23が、吐出圧力の背面室20に開口している。第一の経路23の上流側の内部空間22、および、第一の経路23の下流側の背面室20は、ともに吐出圧力雰囲気である。このため、第一の経路23でのオイルの流れはない。
 一方、図4のクランク角では、第一の経路23が、中間圧力の背圧室21に開口している。吐出圧力の内部空間22と中間圧力の背圧室21との圧力差によって、第一の経路23から背圧室21にオイルが流入する。クランク軸4の一回転中の、図3の状態と図4の状態との比率を調整することで、背圧室21へのオイル供給量が適正量にコントロールされる。
 図5に示すクランク角では、二つの底面ザグリ25のうちの第一底面ザグリ25aと第二の経路24とが重なり合う。このクランク角の間は、背圧室21と第一圧縮室11aとが連通し、背圧室21のオイルが第一圧縮室11aに流入して潤滑およびシールに供される。
 図6に示すクランク角では、背圧室21と第一圧縮室11aとの連通が終了し、第一圧縮室11aへのオイル流入はない。このとき、第一圧縮室11aは、未だ第一バイパス吐出ポート13aに開口していない。
 さらにクランク角が進んだ図7では、第二底面ザグリ25bと第二の経路24とが重なり合う。このクランク角の間は、背圧室21と第二圧縮室11bとが連通し、背圧室21のオイルが第二圧縮室11bに流入して、潤滑およびシールに供される。
 図8の状態では、背圧室21と第二圧縮室11bとの連通が終了し、第二圧縮室11bへのオイル流入はない。この瞬間、第二圧縮室11bは、第二バイパス吐出ポート13bに開口し始めているが、第二の経路24と第二バイパス吐出ポート13bとが、同時に第二圧縮室11bに開口することはない。
 このように、各圧縮室(第一圧縮室11a,第二圧縮室11b)が、第二の経路24と各バイパス吐出ポート13a,13bとに、同時に開口しない構成となっている。したがって、圧縮直後の、最も圧力の高い雰囲気にある吐出室30から、バイパス吐出ポート13を通って逆流した吐出済みガスが、第二の経路24を通って背圧室21まで到達することがない。これにより、ガスが背圧室21まで到達した場合に生じる、背圧室21のガス過多状態に伴う給油量不足を防止できる。よって、圧縮室11への給油を確実なものとして、スラスト軸受26、ならびに、固定スクロールラップ6bおよび旋回スクロールラップ9aの摺動部の、良好な潤滑状態による低摩擦摺動の実現と、圧縮室11の確実なシールによる圧縮損失の低減とを図ることができる。
 また、前述のとおり、第一の経路23は、内部空間22と背圧室21とを間欠的に連通させている。第一の経路23と背圧室21との連通タイミングと、第二の経路24と背圧室21との連通タイミングをずらし、第一の経路23と第二の経路24とが背圧室21に同時に連通しないように構成している。これにより、第一の経路23から背圧室21に流入したオイルが、減圧不十分なまま第二の経路24を通って圧縮室11に流入することによる、圧縮室11の圧力上昇を惹き起こすことがない。よって、圧縮動力の上昇を防止して、高い効率を維持することが可能である。
 また、潤滑に供されるオイルは、50℃以上の状態で、作動流体に対して相溶性を有する。よって、従来構成にみられる、背圧室21のオイルの発泡によるガス過多状態を防止し、圧縮機のオイル枯渇を防止できるとともに、圧縮室への給油を確実なものとすることができる。
 詳述すると、50℃以上の状態で、作動流体に対して相溶性を持つオイルは、何らかの理由で、吐出ガスとともに、圧縮機から冷凍サイクルへと大量のオイルが流出しても、吐出ガスとともに圧縮機に戻りやすい。このため、圧縮機のオイル枯渇を防止できる。
 一方で、相溶性を持つオイルは、減圧によって発泡する性質を持ち、バイパス吐出ポート13と第二の経路24とが同時に圧縮室11に連通する従来の構成の場合には、バイパス吐出ポート13を逆流した高温の吐出済みガスが、第二の経路24を通って背圧室21まで到達する。これにより、背圧室21に満たされたオイルの温度が上昇して発泡し、より一層ガス過多状態となってしまう。
 しかしながら、本開示では、バイパス吐出ポート13と第二の経路24とが同時に圧縮室11に連通することがない。このため、背圧室21のオイルの発泡によるガス過多状態を防止できる。よって、圧縮室11への給油を確実なものとして、スラスト軸受26、ならびに、固定スクロールラップ6bおよび旋回スクロールラップ9aの摺動部の、良好な潤滑状態による低摩擦摺動の実現と、圧縮室11の確実なシールによる圧縮損失の低減とを図ることができる。
 なお、バイパス吐出ポート13との連通が開始する時点における、圧縮室11の容積をVaとし、この容積Vaに対する、第二の経路24との連通が終了する時点における圧縮室11の容積をVbとする。これらの比Vb/Vaを、概ね、1から1.2の範囲とするとよい。
 Vb/Vaが1に近いほど、バイパス吐出ポート13と第二の経路24とが同時に圧縮室11に連通しない範囲で、それぞれを可能な限り近付ける構成となる。これにより、背圧室21から第二の経路24を通って供給されたオイルによって圧縮室11の圧力が上昇し、過圧縮状態となっても、第二の経路24と圧縮室11との連通が終了後、すぐにバイパス吐出ポート13からオイルを吐出させることができる。このため、圧縮室11の過圧縮を最小限に抑え、圧縮機の効率低下を抑制することが可能である。
 一方、Vb/Vaが1.2を超えると、圧縮比の低い運転条件におけるバイパス吐出ポート13による過圧縮回避効果が小さくなるため、圧縮動力が増大して、圧縮機の効率低下を招きやすい。
 また、低粘度のオイル、例えば粘度グレード32などの低粘度のオイルを使用する場合には、背圧室21がガス過多状態になると、スラスト軸受26のシール性を維持できない。背圧室21から圧縮室11への冷媒漏れが発生し、性能低下を引き起こす虞がある。そのため、低粘度オイルを使用する際には、本開示の構成が、より効果を発揮する。
 また、本実施の形態では、第一圧縮室11aおよび第二圧縮室11bそれぞれに連通するように、二つの底面ザグリ25(第一底面ザグリ25a,第二底面ザグリ25b)を設けているが、第一圧縮室11aおよび第二圧縮室11bのうち、いずれか一方に連通するように、底面ザグリ25を一つだけ設けても同様の効果が得られる。
 以上のように、本開示によれば、背圧室のガス過多状態に伴う圧縮室への給油量低下を防止でき、スラスト軸受およびスクロールラップ摺動部の、良好な潤滑状態の実現、ならびに、圧縮室の確実なシールによる高い効率を発揮することが可能である。よって、HFC系冷媒、HCFC系冷媒、HC系冷媒およびHFO系冷媒等の冷媒を用いたエアーコンディショナー、ならびに、ヒートポンプ式給湯機に加えて、自然冷媒の二酸化炭素を用いたエアーコンディショナー、および、ヒートポンプ式給湯機等の用途にも幅広く適用でき、有用である。
 1  密閉容器
 2  吐出管
 3  電動機
 3a  回転子
 3b  回転子通路
 3c  固定子
 3d  固定子通路
 4  クランク軸
 5  本体フレーム
 6  固定スクロール
 6a  固定鏡板
 6b  固定スクロールラップ
 6c  底面
 6d  上面
 7  油通路
 8  給油ポンプ装置
 9  旋回スクロール
 9a  旋回スクロールラップ
 9b  旋回鏡板
 10  偏心軸受
 11  圧縮室
 11a  第一圧縮室
 11b  第二圧縮室
 12  主吐出ポート
 13  バイパス吐出ポート
 13a  第一バイパス吐出ポート
 13b  第二バイパス吐出ポート
 14  吸入ポート
 15  吸入室
 16  主軸
 17  偏心軸
 18  主軸受
 19  環状シール部材
 20  背面室
 21  背圧室
 22  内部空間
 23  第一の経路
 24  第二の経路
 25  底面ザグリ
 25a  第一底面ザグリ
 25b  第二底面ザグリ
 26  スラスト軸受
 27  逆止弁装置
 27a  リード弁
 27b  弁押さえ
 28  副軸受
 29  マフラー
 30  吐出室
 31  下向きガス流路
 32  仕切部材
 50  スクロール圧縮機

Claims (3)

  1. 鏡板、および、前記鏡板から立ち上がる渦巻き状のラップを有する固定スクロールと、
    旋回スクロールと、
    前記固定スクロールと前記旋回スクロールとを噛み合わせて、前記固定スクロールおよび前記旋回スクロール間に形成された圧縮室と、
    前記旋回スクロールの背面に形成された、高圧領域および背圧室とを備え、
    前記旋回スクロールは、自転拘束機構による規制により、円軌道に沿って、所定の旋回半径で旋回し、
    前記旋回スクロールの旋回により、前記圧縮室は、容積を変えながら中心に向かって移動し、
    吸入、圧縮、および、吐出の一連の動作を行うスクロール圧縮機であって、
    前記固定スクロールの中心部に設けられた主吐出ポートと、
    前記固定スクロールに、前記圧縮室と、圧縮途中に連通するように設けられたバイパス吐出ポートと、
    前記高圧領域と前記背圧室とを連通する第一の経路と、
    前記背圧室と前記圧縮室とを間欠的に連通する第二の経路と、
    をさらに備え、
    前記旋回スクロールの旋回により、前記バイパス吐出ポートと前記圧縮室とが連通する前に、前記第二の経路の連通が終了するように構成された
    スクロール圧縮機。
  2. 前記第一の経路は、前記高圧領域と前記背圧室とを間欠的に連通し、
    前記第一の経路と前記背圧室との連通タイミングと、前記第二の経路と前記背圧室との連通タイミングとが異なるように構成された
    請求項1に記載のスクロール圧縮機。
  3. 前記圧縮室に流入し、潤滑に供されるオイルが、50℃以上の状態で、作動流体に対して相溶性を有する
    請求項1または請求項2に記載のスクロール圧縮機。
PCT/JP2019/024576 2018-07-06 2019-06-20 スクロール圧縮機 WO2020008902A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018128651 2018-07-06
JP2018-128651 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020008902A1 true WO2020008902A1 (ja) 2020-01-09

Family

ID=69060229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024576 WO2020008902A1 (ja) 2018-07-06 2019-06-20 スクロール圧縮機

Country Status (1)

Country Link
WO (1) WO2020008902A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027076A (ja) * 2009-07-29 2011-02-10 Panasonic Corp スクロール圧縮機
JP2011102579A (ja) * 2009-10-14 2011-05-26 Panasonic Corp スクロール圧縮機
JP2011256819A (ja) * 2010-06-11 2011-12-22 Panasonic Corp スクロール圧縮機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027076A (ja) * 2009-07-29 2011-02-10 Panasonic Corp スクロール圧縮機
JP2011102579A (ja) * 2009-10-14 2011-05-26 Panasonic Corp スクロール圧縮機
JP2011256819A (ja) * 2010-06-11 2011-12-22 Panasonic Corp スクロール圧縮機

Similar Documents

Publication Publication Date Title
KR950000262B1 (ko) 스크로울 압축기
US9267501B2 (en) Compressor including biasing passage located relative to bypass porting
KR102408562B1 (ko) 스크롤 압축기
JP2010106780A (ja) スクロール圧縮機
JPWO2005038254A1 (ja) スクロール圧縮機
WO2016052503A1 (ja) スクロール圧縮機及びこれを用いた冷凍サイクル装置
CN109996961B (zh) 涡旋式压缩机
JP5433604B2 (ja) スクロール圧縮機
JP5022291B2 (ja) スクロール圧縮機
JP5428522B2 (ja) スクロール圧縮機
EP3779195B1 (en) Scroll compressor
JP4604968B2 (ja) スクロール圧縮機
WO2020008902A1 (ja) スクロール圧縮機
JP2005002886A (ja) スクロール圧縮機
JP5168191B2 (ja) スクロール圧縮機
JP5786130B2 (ja) スクロール圧縮機
JPH11303776A (ja) スクロール圧縮機およびそれを用いた冷凍サイクル
JP2006307753A (ja) スクロール膨張機
JP2010261353A (ja) スクロール圧縮機
JP5114708B2 (ja) 密閉形スクロール圧縮機
CN112567136A (zh) 涡旋式压缩机
JP2006009640A (ja) スクロール圧縮機
JP2019019768A (ja) スクロール圧縮機
JP2012052494A (ja) 密閉型圧縮機
JP2018031292A (ja) スクロール圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP