WO2020008825A1 - 基板検査装置および基板検査方法 - Google Patents

基板検査装置および基板検査方法 Download PDF

Info

Publication number
WO2020008825A1
WO2020008825A1 PCT/JP2019/023300 JP2019023300W WO2020008825A1 WO 2020008825 A1 WO2020008825 A1 WO 2020008825A1 JP 2019023300 W JP2019023300 W JP 2019023300W WO 2020008825 A1 WO2020008825 A1 WO 2020008825A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
light
ceramic substrate
defect
irradiation
Prior art date
Application number
PCT/JP2019/023300
Other languages
English (en)
French (fr)
Inventor
誠明 窪田
智之 中川
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2020008825A1 publication Critical patent/WO2020008825A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present invention relates to a substrate inspection apparatus and a substrate inspection method, and more particularly, to a substrate inspection apparatus and a substrate inspection method for inspecting a defect of a divided ceramic substrate.
  • a light emitting diode generates heat when it emits light by passing an electric current, and causes a problem such as a change in emission wavelength due to a rise in temperature and a decrease in luminous efficiency. Further, if the temperature of the LED chip rises excessively, there is a possibility that surrounding wiring patterns, metal wires, solder, sealing resin and the like are adversely affected, and defects such as disconnection may occur.
  • the LED chip is mounted on a substrate with good thermal conductivity, and the heat is transmitted well from the LED chip to a radiation member such as a radiation fin. It has also been proposed to suppress the temperature rise.
  • a material of the substrate having good thermal conductivity a metal material such as copper can be cited, and a material using a ceramic material from the viewpoint of securing insulation and reducing the weight has been proposed.
  • a ceramic material When a ceramic material is used as a substrate, it is common to sinter a green sheet to obtain a large-sized substrate and then divide it into a desired size.
  • a method of forming a division starting point such as a groove with a dicing blade or a laser processing machine on a large-sized substrate and applying stress to divide the substrate along the division starting point is used.
  • defects such as chipping and cracks may occur in the peripheral portion and the back surface of the substrate during the division.
  • FIG. 6 is a schematic diagram illustrating an outline of a conventional board inspection apparatus and board inspection method.
  • the conventional board inspection apparatus includes a camera unit 1 and an illumination unit 2.
  • the illumination unit 2 irradiates light from the surface of the ceramic substrate 3 on which electronic components are mounted, and the camera unit 1 illuminates the surface of the ceramic substrate 3. Take an image.
  • the surface image of the ceramic substrate 3 is image-recognized to determine an electronic component and a wiring pattern, and to determine a defect occurring in the ceramic substrate 3.
  • the substrate When the ceramic substrate 3 is mounted on a heat-dissipating member such as a heat sink, the substrate is subjected to a step of pressing the substrate by contacting with an adhesive or the like. As a result, defects such as breakage of the ceramic substrate 3 and disconnection of the wiring pattern occur.
  • the above-described conventional board inspection apparatus and board inspection method are suitable for determining a defect on the surface of the ceramic substrate 3 on which the electronic components are mounted, but are capable of satisfactorily preventing cracks generated on the back side or the peripheral portion. It was difficult to determine.
  • the present invention has been made in view of the above-described conventional problems, and has as its object to provide a board inspection apparatus and a board inspection method that can satisfactorily determine a chip or a crack generated when a ceramic substrate is divided. I do.
  • a substrate inspection apparatus of the present invention is an inspection apparatus for inspecting a defect of a divided ceramic substrate, wherein the substrate inspection apparatus is disposed on a first surface side of the ceramic substrate and has a first surface.
  • a camera unit that captures light, a first irradiation unit that is disposed on the first surface side and irradiates light to the first surface, and a first irradiation unit that is disposed on the second surface side opposite to the first surface.
  • the first irradiating unit and the second irradiating unit are arranged on the first surface side and the second surface side of the ceramic substrate, respectively, and the camera unit emits light from both surfaces of the ceramic substrate. Since the first surface is imaged and the presence or absence of a defect is determined by image recognition, chipping or cracking that occurs when the ceramic substrate is divided can be satisfactorily determined.
  • light emitted from the first irradiating unit and the second irradiating unit is included in a period in which the camera unit captures an image of the first surface.
  • light irradiated from the first irradiation unit to the first surface and light irradiated from the second irradiation unit to the second surface have different irradiation conditions. .
  • the area of the first surface and S 1 when the area of the light emitting portion for emitting light and S 2 in the second irradiation unit, the S 2 ⁇ S 1 ⁇ 0.2 Satisfy the relationship.
  • a substrate inspection method for inspecting a defect of a divided ceramic substrate comprising: a first irradiation unit disposed on a first surface side of the ceramic substrate; A first irradiating step of irradiating the first surface with light, and a second irradiating unit arranged on the second surface side opposite to the first surface, and irradiating the second surface with light.
  • a defect recognition step comprising: a first irradiation unit disposed on a first surface side of the ceramic substrate; A first irradiating step of irradiating the first surface with light, and a second irradiating unit arranged on the second surface side opposite to the first surface, and irradiating the second surface with light.
  • the present invention it is possible to provide a substrate inspection apparatus and a substrate inspection method that can satisfactorily determine a chip or a crack generated when a ceramic substrate is divided.
  • FIG. 1 is a schematic diagram illustrating an outline of a board inspection device according to a first embodiment of the present invention.
  • FIG. 2A is a schematic view showing a defect 15 generated at a peripheral portion of the ceramic substrate 13
  • FIG. 2A is a schematic perspective view
  • FIG. 2B is a partially enlarged cross-sectional view.
  • It is a block diagram explaining the outline of a substrate inspection device. It is a flowchart which shows the process of a board
  • FIG. 5A is a timing chart showing a light emission period in the first irradiation unit and the second irradiation unit and an imaging period in the camera unit.
  • FIG. 5A shows simultaneous irradiation
  • FIG. 5B shows irradiation at different timings. Is shown.
  • It is a mimetic diagram explaining an outline of a conventional board inspection device and a board inspection method.
  • FIG. 1 is a schematic diagram illustrating an outline of a substrate inspection apparatus according to a first embodiment of the present invention.
  • the board inspection apparatus includes a camera unit 11, a first irradiation unit 12, and a second irradiation unit 14, and between the first irradiation unit 12 and the second irradiation unit 14.
  • the placed ceramic substrate 13 is inspected.
  • the ceramic substrate 13 has a first surface 13a (front surface) and a second surface 13b (back surface).
  • the camera unit 11 and the first irradiation unit 12 are disposed on the first surface 13a side, and the second surface 13b side.
  • the second irradiating unit 14 is disposed at the second position.
  • the camera unit 11 is a device that captures an image.
  • the camera unit 11 includes an imaging element such as a CCD (Charged-coupled devices) or a CMOS (Complementary metal-oxide-semiconductor) and an optical system such as a lens. To the control unit described later.
  • the first irradiating unit 12 is provided near the camera unit 11 and illuminates the first surface 13a of the ceramic substrate 13 with light.
  • the first irradiating unit 12 may use LED illumination.
  • the light emitted from the first irradiating unit 12 is not limited, and may be in a wavelength range that can be imaged by the camera unit 11. In the wavelength range of visible light (about 380 nm to about 810 nm), both single color and mixed color are white. May be.
  • the shape and position of the first irradiating unit 12 are not particularly limited. However, while irradiating the first surface 13a of the ceramic substrate 13 with light satisfactorily, the position and shape where light does not directly enter the camera unit 11 are preferable. It is preferable to use coaxial light from the lens, ring illumination surrounding the lens, surface illumination, or the like.
  • Ceramic substrate 13 is a substantially flat member of the area S 1 composed of a ceramic material, the area of the first surface 13a and the second surface 13b are equivalent.
  • the first surface 13a of the ceramic substrate 13 is provided with a wiring pattern and electronic components. Defects may be determined by the board inspection apparatus before the wiring pattern is formed. It may be after mounting. However, when a defect such as a crack or a chip is present in the ceramic substrate 13, a stress may be applied in a process of forming a wiring pattern or mounting an electronic component, and the defect may progress. Inspection is preferably performed after component mounting.
  • the second irradiator 14 is a lighting device that is arranged on the second surface 13b side of the ceramic substrate 13 and irradiates the second surface 13b with light, and for example, LED lighting or the like can be used.
  • the light emitted from the second irradiation unit 14 is not limited, and may be in a wavelength range in which the camera unit 11 can capture an image. May be.
  • Shape of the second radiation portion 14, particularly limited not ring lighting or illumination line, may be used a surface illumination, it is preferable to have a planar light emitting region having an area S 2. Further, by using a point light source and a light diffusing member and the light reflecting member, the area of the region for light emission may be S 2.
  • FIG. 2 is a schematic view showing a defect 15 generated at the peripheral portion of the ceramic substrate 13
  • FIG. 2 (a) is a schematic perspective view
  • FIG. 2 (b) is a partially enlarged sectional view.
  • a defect 15 such as a crack or a chip generated at the time of division may exist in the peripheral portion of the ceramic substrate 13.
  • the defect 15 exists on the side surface of the ceramic substrate 13 as shown in FIGS. 2A and 2B, it is difficult to identify the defect 15 only by irradiating light from the first surface 13a side. It is. Further, even when the defect 15 exists on the second surface 13b side of the ceramic substrate 13, it is difficult to identify the defect 15 only by irradiating light from the first surface 13a side.
  • the first irradiating unit 12 irradiates the first surface 13a with light
  • the second irradiating unit 14 irradiates light to the second surface 13b.
  • the image of the ceramic substrate 13 is taken by the unit 11.
  • the light from the second irradiating section 14 is sufficiently irradiated on the second surface 13b, which is the back surface of the ceramic substrate 13, and on the peripheral portion, which is near the side surface of the ceramic substrate 13, so that the defect 15 is sharpened. It becomes identifiable.
  • FIG. 3 is a block diagram illustrating an outline of the board inspection apparatus.
  • the board inspection apparatus includes a transport unit 16 and a control unit 17 in addition to the camera unit 11, the first irradiation unit 12, and the second irradiation unit 14. Further, the control unit 17 includes a defect recognition unit 18.
  • the transport unit 16 is a device that supplies the ceramic substrate 13 to the inspection position and transports the ceramic substrate 13 to a predetermined position after the inspection, and can use a known technique such as a robot arm.
  • the transfer unit 16 may be configured to be able to change the transfer destination of the ceramic substrate 13 to be inspected according to the result of the discrimination between the non-defective product and the defective product performed by the control unit 17.
  • the control unit 17 is an information processing unit (computer) including various arithmetic devices, an internal storage device, an external storage device, an information communication unit, and the like.
  • the control unit 17 may be configured as information processing means provided inside the camera unit 11 or may be provided outside.
  • the program stored in the control unit 17 forms the defect recognition unit 18.
  • the defect recognition unit 18 recognizes the image of the ceramic substrate 13 captured by the camera unit 11 and determines whether or not a defect 15 such as a crack or a chip exists.
  • a specific image recognition technique in the defect recognition unit 18 is not particularly limited, and a known image recognition technique can be used.
  • FIG. 4 is a flowchart showing the steps of the substrate inspection method.
  • the control unit 17 controls the transfer unit 16 according to a program stored in advance to transfer the ceramic substrate 13 to the inspection position.
  • the control unit 17 controls the first irradiation unit 12 to irradiate the first surface 13a of the ceramic substrate 13 with light.
  • the light irradiation in the first irradiation step is continued over a predetermined timing and period.
  • the control unit 17 controls the second irradiation unit 14 to irradiate the second surface 13b of the ceramic substrate 13 with light.
  • the light irradiation in the second irradiation step is continued for a predetermined timing and period.
  • control unit 17 controls the camera unit 11 to image the first surface 13a side of the ceramic substrate 13, and inputs data of the imaged image to the defect recognition unit 18.
  • control unit 17 executes the image recognition processing of the defect recognition unit 18, determines the presence or absence of the defect 15 from the image of the ceramic substrate 13 obtained in the imaging step, and stores the determination result.
  • control unit 17 controls the transporting unit 16 based on the determination result obtained in the defect recognizing process, and transports the ceramic substrate 13 to a subsequent process as a non-defective product when no defect 15 exists.
  • the ceramic substrate 13 is transported to a disposal position as a defective product.
  • the first irradiation step of step 2, the second irradiation step of step 3, and the imaging step of step 4 are shown as separate steps, but a plurality of steps may be executed simultaneously.
  • the defect 15 is sharpened by the light irradiation from the first irradiation unit 12 and the second irradiation unit 14, and the chip or crack generated when the ceramic substrate is divided is generated. Can be determined well.
  • the light irradiated from the first irradiation unit 12 to the first surface 13a of the ceramic substrate 13 and the light irradiated from the second irradiation unit 14 to the second surface 13b of the ceramic substrate 13 are irradiated. Make the conditions different.
  • the different irradiation conditions of the first irradiator 12 and the second irradiator 14 include, for example, different light amounts, different emission wavelengths, and different light irradiation timings.
  • the two may have different shapes, the two may have different areas, the distance to the ceramic substrate 13 may be different, and the optical axis of the light applied to the ceramic substrate 13 may be different.
  • the irradiation conditions of the first irradiation unit 12 and the second irradiation unit 14 are made different from each other, so that the second irradiation unit for clarifying the defects 15 existing on the back surface, inside, and the peripheral portion of the ceramic substrate 13.
  • the light from 14 can be optimized. This makes it possible to further clarify the defect 15 by the light irradiation from the second irradiation unit 14 and satisfactorily determine a chip or a crack generated when the ceramic substrate is divided.
  • the relationship of S 2 ⁇ S 1 ⁇ 0.2 is satisfied. It is preferable to secure the area of the second irradiation unit 14. Accordingly, light can be satisfactorily radiated from the second surface 13b side of the ceramic substrate 13 to the peripheral portion. It is possible to make a better determination.
  • FIG. 5 is a timing chart showing a light emission period in the first irradiation unit and the second irradiation unit and an imaging period in the camera unit.
  • FIG. 5A shows simultaneous irradiation
  • FIG. Indicate the irradiation at.
  • the timing of light irradiation from the first irradiation unit 12 and the light irradiation from the second irradiation unit 14 coincide with the duration.
  • the imaging timing of the camera unit 11 is a period during which light irradiation from the first irradiation unit 12 and the second irradiation unit 14 is being performed. Therefore, light emitted from the first irradiating unit 12 and the second irradiating unit 14 is included in a period in which the camera unit captures an image of the first surface 13a. In other words, the camera unit 11 performs imaging at a timing at which both the light emitted by the first irradiation unit 12 and the light emitted by the second irradiation unit 14 are captured.
  • the first surface 13a of the first irradiating unit 12 is captured by one image capturing. Inspection and the defect 15 determination in the second irradiation unit 14 can be performed simultaneously, and the inspection speed can be improved. In addition, by imaging at the timing of irradiating light to both surfaces of the ceramic substrate 13, the defect 15 can be further sharpened.
  • the timings of light irradiation from the first irradiation unit 12 and the second irradiation unit 14 are different, and the camera unit 11 performs imaging during a period in which both light irradiations overlap. . Even if the light emission timings of the first irradiating unit 12 and the second irradiating unit 14 are made different from each other as described above, the light from the first irradiating unit 12 and the second irradiating unit 14 is not changed during the period in which the camera unit images the first surface 13a. Since the light emission is included, the defect 15 is sharpened, and a chip or a crack generated when the ceramic substrate is divided can be satisfactorily determined.
  • FIGS. 5A and 5B show an example in which the imaging is ended within a period in which the timings of light irradiation from the first irradiation unit 12 and the second irradiation unit 14 overlap. It may be longer. Also in this case, it is preferable that the period in which the first irradiation unit 12 and the second irradiation unit 14 emit light at the same time is included in the imaging period of the camera unit 11.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

セラミック基板の分割時に生じた欠けやクラックを良好に判別することができる基板検査装置および基板検査方法を提供する。分割されたセラミック基板(13)の欠陥を検査する基板検査装置であって、セラミック基板(13)の第1面(13a)側に配置されて、第1面(13a)を撮像するカメラ部(11)と、第1面(13a)側に配置されて、第1面(13a)に対して光を照射する第1照射部(12)と、第1面(13a)と反対側の第2面(13b)側に配置されて、第2面(13b)に対して光を照射する第2照射部(14)と、カメラ部(11)で撮像された画像を画像認識して欠陥の有無を判断する欠陥認識部を備える。

Description

基板検査装置および基板検査方法
 本発明は、基板検査装置および基板検査方法に関し、特に分割されたセラミック基板の欠陥を検査する基板検査装置および基板検査方法に関する。
 車両用灯具などの技術分野では、光源として発光ダイオード(LED:Light Emitting Diode)を用いるものが普及し始めている。発光ダイオードは、電流を流して発光させると発熱し、温度上昇により発光波長が変化することや発光効率が低下することなどの問題が生じる。また、LEDチップの温度が上昇しすぎると、周囲の配線パターンや金属ワイヤ、ハンダ、封止樹脂等にも悪影響がおよび断線などの不良が発生するおそれもあった。
 そこで、LEDチップからの熱を良好に放熱するために、熱伝導性が良好な基板上にLEDチップを搭載し、LEDチップから放熱フィンなどの放熱部材に良好に熱を伝えて、LEDチップ周囲の温度上昇を抑制することも提案されている。熱伝導性が良好な基板の材料としては、銅などの金属材料が挙げられるが、絶縁性の確保や軽量化の観点からセラミック材料を用いるものも提案されている。
 セラミック材料を基板として用いる場合には、グリーンシートを焼成して大きいサイズの基板を得た後に、所望のサイズに分割することが一般的である。セラミック基板の分割では、大きなサイズの基板にダイシングブレードやレーザ加工機で溝等の分割起点を形成し、応力を加えることで分割起点に沿って基板を分割する方法が用いられる。しかし、このように分割されたセラミック基板では、分割時に基板周縁部や裏面などに欠けやクラックなどの不良が生じてしまう可能性がある。
 このような不良が生じた基板を選別するために、従来から、配線パターンを形成してLEDチップ等の電子部品を搭載した後に、セラミック基板の表面をカメラ等で撮像して、画像認識により不良を判別する基板検査装置と基板検査方法が提案されている(例えば、特許文献1等を参照)。
 図6は、従来技術の基板検査装置および基板検査方法の概要を説明する模式図である。従来の基板検査装置は、カメラ部1と照明部2を備えており、セラミック基板3の電子部品を搭載した面側から照明部2で光を照射し、カメラ部1でセラミック基板3の表面を撮像する。また、撮像したセラミック基板3の表面画像を画像認識させて、電子部品と配線パターンを判別するとともにセラミック基板3に生じた不良を判別する。
特開2016-197702号公報
 セラミック基板3は、ヒートシンク等の放熱部材上に搭載する際に、基板を接着剤等に接触させて加圧する工程を経るため、欠けやクラックが存在すると加圧時の応力で欠けやクラックが進行して、セラミック基板3が破損することや配線パターンが断線する等の不良が生じてしまう。
 しかし、上述した従来の基板検査装置および基板検査方法では、セラミック基板3の電子部品を搭載した面側における不良を判別するには適しているが、裏面側や周縁部に生じたクラックを良好に判別するのは困難であった。
 そこで本発明は、上記従来の問題点に鑑みなされたものであり、セラミック基板の分割時に生じた欠けやクラックを良好に判別することができる基板検査装置および基板検査方法を提供することを目的とする。
 上記課題を解決するために、本発明の基板検査装置は、分割されたセラミック基板の欠陥を検査する基板検査装置であって、前記セラミック基板の第1面側に配置されて、前記第1面を撮像するカメラ部と、前記第1面側に配置されて、前記第1面に対して光を照射する第1照射部と、前記第1面と反対側の第2面側に配置されて、前記第2面に対して光を照射する第2照射部と、前記カメラ部で撮像された画像を画像認識して欠陥の有無を判断する欠陥認識部を備えることを特徴とする。
 このような本発明の基板検査装置では、セラミック基板の第1面側と第2面側にそれぞれ第1照射部と第2照射部を配置し、セラミック基板の両面から光を照射してカメラ部で第1面を撮像し画像認識で欠陥の有無を判断するため、セラミック基板の分割時に生じた欠けやクラックを良好に判別することができる。
 また本発明の一態様では、前記カメラ部によって前記第1面を撮像する期間内に、前記第1照射部および前記第2照射部からの発光が含まれる。
 また本発明の一態様では、前記第1照射部から前記第1面に対して照射する光と、前記第2照射部から前記第2面に対して照射する光は、照射条件が異なっている。
 また本発明の一態様では、前記第1面の面積をSとし、前記第2照射部において光を出射する光出射部の面積をSとすると、S≧S×0.2の関係を満たす。
 また上記課題を解決するために、本発明の基板検査方法は、分割されたセラミック基板の欠陥を検査する基板検査方法であって、前記セラミック基板の第1面側に配置された第1照射部で、前記第1面に対して光を照射する第1照射工程と、前記第1面と反対側の第2面側に配置された第2照射部で、前記第2面に対して光を照射する第2照射工程と、前記第1面側に配置されたカメラ部で、前記第1面を撮像する撮像工程と、前記撮像工程で撮像された画像を画像認識して欠陥の有無を判断する欠陥認識工程を備えることを特徴とする。
 本発明では、セラミック基板の分割時に生じた欠けやクラックを良好に判別することができる基板検査装置および基板検査方法を提供することができる。
本発明の第1実施形態における基板検査装置の概要を説明する模式図である。 セラミック基板13の周縁部に生じた欠陥15を示す模式図であり、図2(a)は模式斜視図であり、図2(b)は部分拡大断面図である。 基板検査装置の概要を説明するブロック図である。 基板検査方法の工程を示すフローチャートである。 第1照射部と第2照射部での発光期間とカメラ部での撮像期間を示すタイミングチャートであり、図5(a)は同時照射を示し、図5(b)は異なるタイミングでの照射を示している。 従来技術の基板検査装置および基板検査方法の概要を説明する模式図である。
 (第1実施形態)
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本発明の第1実施形態における基板検査装置の概要を説明する模式図である。
 図1に示すように本実施形態の基板検査装置は、カメラ部11と、第1照射部12と、第2照射部14を備え、第1照射部12と第2照射部14との間に配置したセラミック基板13を検査する。セラミック基板13は、第1面13a(表面)と第2面13b(裏面)を有しており、第1面13a側にカメラ部11および第1照射部12が配置され、第2面13b側に第2照射部14が配置されている。
 カメラ部11は、画像を撮像する装置であり、CCD(Charged-coupled devices)や CMOS(Complementary metal-oxide-semiconductor)等の撮像素子とレンズ等の光学系を備えて、撮像した画像を電子データとして後述する制御部に伝達する。
 第1照射部12は、カメラ部11の近傍に設けられて、セラミック基板13の第1面13aに対して光を照射する照明装置であり、例えばLED照明などを用いることができる。第1照射部12から照射される光は限定されず、カメラ部11で撮像可能な波長範囲であればよく、可視光(約380nm~約810nm)の波長域であれば、単色も混色も白色でもよい。第1照射部12の形状や位置は特に限定されないが、セラミック基板13の第1面13aに良好に光を照射しつつ、カメラ部11に光が直接入射しない位置と形状が好ましく、カメラ部11からの同軸光やレンズ周囲を囲むリング照明、面照明などを用いることが好ましい。
 セラミック基板13は、セラミック材料で構成された面積Sの略平板状の部材であり、第1面13aと第2面13bの面積は同等である。セラミック基板13の第1面13aには配線パターンや電子部品が設けられるが、基板検査装置で欠陥の判別を行うのは、配線パターンを形成する前であってもよく、配線パターン形成と電子部品搭載を行った後であってもよい。しかし、セラミック基板13にクラックや欠け等の不良が存在する場合には、配線パターン形成や電子部品搭載の工程で応力が加わって欠陥が進行している可能性があるため、配線パターン形成と電子部品搭載を行った後に検査を行うことが好ましい。
 第2照射部14は、セラミック基板13の第2面13b側に配置されて、第2面13bに対して光を照射する照明装置であり、例えばLED照明などを用いることができる。第2照射部14から照射される光は限定されず、カメラ部11で撮像可能な波長範囲であればよく、可視光(約380nm~約810nm)の波長域であれば、単色も混色も白色でもよい。第2照射部14の形状は、特に限定されずリング照明や線照明、面照明を用いることができるが、面積Sを有する面状の発光領域を有することが好ましい。また、点光源と光拡散部材や光反射部材を用いて、光が出射する領域の面積をSとしてもよい。
 図2は、セラミック基板13の周縁部に生じた欠陥15を示す模式図であり、図2(a)は模式斜視図であり、図2(b)は部分拡大断面図である。図2に示すように、セラミック基板13の周縁部には、分割時に生じたクラックや欠けなどの欠陥15が存在する場合がある。特に、図2(a)(b)に示したようなセラミック基板13の側面に欠陥15が存在する場合には、第1面13a側から光を照射しただけでは欠陥15を識別することは困難である。また、セラミック基板13の第2面13b側に欠陥15が存在する場合も第1面13a側から光を照射しただけでは欠陥15を識別することは困難である。
 そこで本実施形態では、図1に示したように第1照射部12から第1面13aに対して光を照射し、第2照射部14から第2面13bに対して光を照射し、カメラ部11でセラミック基板13を撮像する。これにより、セラミック基板13の裏面である第2面13bや、セラミック基板13の側面近傍である周縁部にも第2照射部14からの光が十分に照射され、欠陥15を鮮明化して良好に識別可能となる。
 図3は、基板検査装置の概要を説明するブロック図である。基板検査装置は、カメラ部11、第1照射部12、第2照射部14に加えて、搬送部16と制御部17を備えている。また、制御部17には欠陥認識部18が含まれている。
 搬送部16は、セラミック基板13を検査位置に供給し、検査後に所定位置に搬送する装置であり、ロボットアーム等の公知の技術を用いることができる。また搬送部16は、制御部17での良品と不良品の判別結果に応じて、検査対象であるセラミック基板13の搬送先を変更できるとしてもよい。
 制御部17は、各種演算装置や内部記憶装置、外部記憶装置、情報通信手段等を備えた情報処理手段(コンピュータ)である。制御部17は、カメラ部11の内部に備えた情報処理手段として構成してもよく、外部に設けるとしてもよい。情報処理手段である制御部17は、各種演算装置や内部記憶装置、外部記憶装置、情報通信手段等を用いてプログラムを実行し、カメラ部11、第1照射部12、第2照射部14、搬送部16の動作を制御する。また、制御部17に保存されたプログラムによって、欠陥認識部18が構成される。
 欠陥認識部18は、カメラ部11で撮像されたセラミック基板13の画像を画像認識して、クラックや欠け等の欠陥15が存在するか判別する。欠陥認識部18での具体的な画像認識の手法は特に限定されず、公知の画像認識技術を用いることができる。
 図4は、基板検査方法の工程を示すフローチャートである。ステップ1の基板搬送工程では、制御部17が予め記憶されたプログラムに従って、搬送部16を制御してセラミック基板13を検査位置に搬送する。
 ステップ2の第1照射工程では、制御部17は第1照射部12を制御して、セラミック基板13の第1面13aに対して光を照射する。第1照射工程での光の照射は、所定のタイミングおよび期間にわたって継続される。
 ステップ3の第2照射工程では、制御部17は第2照射部14を制御して、セラミック基板13の第2面13bに対して光を照射する。第2照射工程での光の照射は、所定のタイミングおよび期間にわたって継続される。
 ステップ4の撮像工程では、制御部17はカメラ部11を制御して、セラミック基板13の第1面13a側を撮像し、撮像した画像のデータを欠陥認識部18に入力する。
 ステップ5の欠陥認識工程では、制御部17は欠陥認識部18の画像認識処理を実行し、撮像工程で取得したセラミック基板13の画像から欠陥15の有無を判別し、判別結果を保存する。
 ステップ6の選別工程では、制御部17は欠陥認識工程で得た判別結果に基づいて搬送部16を制御し、欠陥15が存在しない場合には良品として後工程にセラミック基板13を搬送する。欠陥15が存在する場合には、不良品としてセラミック基板13を廃棄位置に搬送する。
 図4では、ステップ2の第1照射工程、ステップ3の第2照射工程およびステップ4の撮像工程を別工程として示しているが、複数のステップを同時に実行するとしてよい。以上の工程により、本実施形態の基板検査装置および基板検査方法では、第1照射部12と第2照射部14からの光照射で欠陥15を鮮明化し、セラミック基板の分割時に生じた欠けやクラックを良好に判別することができる。
 (第2実施形態)
 次に、本発明の第2実施形態について説明する。本実施形態では、第1照射部12からセラミック基板13の第1面13aに対して照射する光と、第2照射部14からセラミック基板13の第2面13bに対して照射する光において、照射条件を異ならせる。
 第1照射部12と第2照射部14の照射条件が異なるとは、例えば、両者の光量が異なることや、発光波長が異なること、光を照射するタイミングが異なることが挙げられる。また、両者の形状が異なること、両者の面積が異なること、セラミック基板13との距離が異なること、セラミック基板13に照射する光の光軸が異なるとしてもよい。
 本実施形態では、第1照射部12と第2照射部14の照射条件を異ならせることで、セラミック基板13の裏面や内部、周縁部に存在する欠陥15を鮮明化するための第2照射部14からの光を最適化することができる。これにより、第2照射部14からの光照射でさらに欠陥15を鮮明化し、セラミック基板の分割時に生じた欠けやクラックを良好に判別することができる。
 特に、セラミック基板13の面積をSとし、第2照射部14において光を出射する光出射部の面積をSとしたときに、S≧S×0.2の関係を満たすように第2照射部14の面積を確保することが好ましい。これにより、セラミック基板13の第2面13b側から周縁部にかけて良好に光を照射することができ、第2照射部14からの光照射でさらに欠陥15を鮮明化し、周縁部での欠陥15をさらに良好に判別することができる。
 (第3実施形態)
 次に、本発明の第3実施形態について説明する。図5は、第1照射部と第2照射部での発光期間とカメラ部での撮像期間を示すタイミングチャートであり、図5(a)は同時照射を示し、図5(b)は異なるタイミングでの照射を示している。
 図5(a)に示した例では、第1照射部12と第2照射部14からの光照射のタイミングと継続時間が一致している。また、カメラ部11での撮像タイミングは、第1照射部12と第2照射部14からの光照射が実施されている期間である。したがって、カメラ部によって第1面13aを撮像する期間内に、第1照射部12および第2照射部14からの発光が含まれている。換言すると、カメラ部11は、第1照射部12と第2照射部14が発光する光を双方ともに取り込むタイミングで撮像を行っている。
 カメラ部11によって第1面13aを撮像する期間内に、第1照射部12および第2照射部14からの発光が含まれることで、一度の撮像によって第1照射部12での第1面13aの検査と、第2照射部14での欠陥15判別を同時に実施することができ、検査速度の向上を図ることができる。また、セラミック基板13の両面に対して光を照射したタイミングで撮像することで、欠陥15をさらに鮮明化することもできる。
 図5(b)に示した例では、第1照射部12と第2照射部14からの光照射のタイミングが異なっており、両者の光照射が重なる期間にカメラ部11は撮像を行っている。このように第1照射部12と第2照射部14の発光タイミングを異ならせても、カメラ部によって第1面13aを撮像する期間内に、第1照射部12および第2照射部14からの発光が含まれていることで、欠陥15を鮮明化してセラミック基板の分割時に生じた欠けやクラックを良好に判別することができる。
 図5(a)(b)では、第1照射部12と第2照射部14からの光照射のタイミングが重なる期間内で撮像を終了する例を示したが、カメラ部11での撮像期間を長期間化してもよい。その場合にも、カメラ部11での撮像期間内に、第1照射部12と第2照射部14が同時に発光する期間が含まれることが好ましい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本国際出願は、2018年7月2日に出願された日本国特許出願である特願2018-126145号に基づく優先権を主張するものであり、当該日本国特許出願である特願2018-126145号の全内容は、本国際出願に参照することにより援用される。
 本発明の特定の実施の形態についての上記説明は、例示を目的として提示したものである。それらは、網羅的であったり、記載した形態そのままに本発明を制限したりすることを意図したものではない。数多くの変形や変更が、上記の記載内容に照らして可能であることは当業者に自明である。
11…カメラ部
12…第1照射部
13…セラミック基板
13a…第1面
13b…第2面
14…第2照射部
15…欠陥
16…搬送部
17…制御部
18…欠陥認識部

Claims (5)

  1.  分割されたセラミック基板の欠陥を検査する基板検査装置であって、
     前記セラミック基板の第1面側に配置されて、前記第1面を撮像するカメラ部と、
     前記第1面側に配置されて、前記第1面に対して光を照射する第1照射部と、
     前記第1面と反対側の第2面側に配置されて、前記第2面に対して光を照射する第2照射部と、
     前記カメラ部で撮像された画像を画像認識して欠陥の有無を判断する欠陥認識部を備えることを特徴とする基板検査装置。
  2.  請求項1に記載の基板検査装置であって、
     前記カメラ部によって前記第1面を撮像する期間内に、前記第1照射部および前記第2照射部からの発光が含まれることを特徴とする基板検査装置。
  3.  請求項1または2に記載の基板検査装置であって、
     前記第1照射部から前記第1面に対して照射する光と、
     前記第2照射部から前記第2面に対して照射する光は、照射条件が異なっていることを特徴とする基板検査装置。
  4.  請求項3に記載の基板検査装置であって、
     前記第1面の面積をSとし、
     前記第2照射部において光を出射する光出射部の面積をSとすると、
     S≧S×0.2の関係を満たすことを特徴とする基板検査装置。
  5.  分割されたセラミック基板の欠陥を検査する基板検査方法であって、前記セラミック基板の第1面側に配置された第1照射部で、前記第1面に対して光を照射する第1照射工程と、
     前記第1面と反対側の第2面側に配置された第2照射部で、前記第2面に対して光を照射する第2照射工程と、
     前記第1面側に配置されたカメラ部で、前記第1面を撮像する撮像工程と、
     前記撮像工程で撮像された画像を画像認識して欠陥の有無を判断する欠陥認識工程を備えることを特徴とする基板検査方法。
PCT/JP2019/023300 2018-07-02 2019-06-12 基板検査装置および基板検査方法 WO2020008825A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-126145 2018-07-02
JP2018126145A JP2020003461A (ja) 2018-07-02 2018-07-02 基板検査装置および基板検査方法

Publications (1)

Publication Number Publication Date
WO2020008825A1 true WO2020008825A1 (ja) 2020-01-09

Family

ID=69060659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023300 WO2020008825A1 (ja) 2018-07-02 2019-06-12 基板検査装置および基板検査方法

Country Status (2)

Country Link
JP (1) JP2020003461A (ja)
WO (1) WO2020008825A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587546A (ja) * 1990-04-28 1993-04-06 Seiwa Sangyo Kk 外観検査方法およびその装置
JPH10303007A (ja) * 1998-05-01 1998-11-13 Aoi Denshi Kk 電子部品の端子電極欠損有無検出装置
JP2003046220A (ja) * 2001-07-31 2003-02-14 Ngk Spark Plug Co Ltd 基板の検査方法及び検査装置並びに製造方法
JP2005303199A (ja) * 2004-04-15 2005-10-27 Kamaya Denki Kk 電子部品用集合基板及び電子部品の製造方法
JP2011154000A (ja) * 2010-01-28 2011-08-11 Sanken Electric Co Ltd セラミック基板の探傷液塗布装置
JP2011220738A (ja) * 2010-04-06 2011-11-04 Sumitomo Metal Electronics Devices Inc 外観検査装置および外観検査方法
US20140132750A1 (en) * 2012-11-13 2014-05-15 Advanced Technology Inc. Lighting apparatus for measuring electronic material-processed part and test apparatus using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587546A (ja) * 1990-04-28 1993-04-06 Seiwa Sangyo Kk 外観検査方法およびその装置
JPH10303007A (ja) * 1998-05-01 1998-11-13 Aoi Denshi Kk 電子部品の端子電極欠損有無検出装置
JP2003046220A (ja) * 2001-07-31 2003-02-14 Ngk Spark Plug Co Ltd 基板の検査方法及び検査装置並びに製造方法
JP2005303199A (ja) * 2004-04-15 2005-10-27 Kamaya Denki Kk 電子部品用集合基板及び電子部品の製造方法
JP2011154000A (ja) * 2010-01-28 2011-08-11 Sanken Electric Co Ltd セラミック基板の探傷液塗布装置
JP2011220738A (ja) * 2010-04-06 2011-11-04 Sumitomo Metal Electronics Devices Inc 外観検査装置および外観検査方法
US20140132750A1 (en) * 2012-11-13 2014-05-15 Advanced Technology Inc. Lighting apparatus for measuring electronic material-processed part and test apparatus using the same

Also Published As

Publication number Publication date
JP2020003461A (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6042402B2 (ja) 照明モジュール及びこれを用いる外観検査システム
US20190103736A1 (en) Wire, stripping method and light strip
US20080225283A1 (en) Imaging system with high-spectrum resolution and imaging method for the same
KR20180103701A (ko) 다이 본딩 장치 및 반도체 장치의 제조 방법
WO2014119295A1 (ja) 発光装置の製造方法、および製造装置
JP5830229B2 (ja) ウエハ欠陥検査装置
JP2000065758A (ja) 印刷回路基板のクリ―ムソルダ検査装置及び検査方法
JP5944349B2 (ja) 発光ダイオードの蛍光***置把握装置、発光ダイオードの蛍光***置把握装置を備える部品実装器、発光ダイオードの蛍光***置把握方法及びレンズ取り付け方法
CN111164741A (zh) 一种检测处理方法、***及存储介质
CN1576831A (zh) 布线图形检查装置
KR102558296B1 (ko) 전자 장치, 마이크로 led 모듈 제조 방법 및 컴퓨터 판독가능 기록 매체
WO2020008825A1 (ja) 基板検査装置および基板検査方法
US20160266050A1 (en) Method of manufacturing printed circuit board and method of inspecting printed circuit board
JP2007294576A (ja) 検査装置及び検査方法
KR101215306B1 (ko) 전자 부품 검사 장치 및 방법
WO2018105051A1 (ja) 表面実装機、部品認識装置、部品認識方法
JP2021089159A (ja) 検査装置及び検査方法
JP4506823B2 (ja) 画像読取装置
JP3505655B2 (ja) ガラス容器検査装置
JP2019168328A (ja) 半導体装置の検査方法及び半導体装置の製造方法
JPH07174539A (ja) 画像処理装置
US20240071795A1 (en) Semiconductor inspection apparatus and semiconductor manufacturing apparatus
WO2022219851A1 (ja) 樹脂成形装置、及び、樹脂成形品の製造方法
JP6273173B2 (ja) 樹脂成形品の外観検査方法および樹脂成形品の製造方法
JP2006080216A (ja) 基板の品質評価方法および検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831455

Country of ref document: EP

Kind code of ref document: A1