WO2020008735A1 - Power generation system using hydrogen, and hydrogen generator - Google Patents

Power generation system using hydrogen, and hydrogen generator Download PDF

Info

Publication number
WO2020008735A1
WO2020008735A1 PCT/JP2019/019353 JP2019019353W WO2020008735A1 WO 2020008735 A1 WO2020008735 A1 WO 2020008735A1 JP 2019019353 W JP2019019353 W JP 2019019353W WO 2020008735 A1 WO2020008735 A1 WO 2020008735A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
hydrogen
raw material
unit
power generation
Prior art date
Application number
PCT/JP2019/019353
Other languages
French (fr)
Japanese (ja)
Inventor
力 滝沢
峯夫 森元
坂本 雄一
Original Assignee
株式会社エスイー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エスイー filed Critical 株式会社エスイー
Publication of WO2020008735A1 publication Critical patent/WO2020008735A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power generation system using hydrogen and a hydrogen generator.
  • Patent Literature 1 discloses a method for hydrogenation in order to cope with the problem that when the amount of hydrogen generated per unit time is not stable, when the generated hydrogen is supplied to a fuel cell to generate power, the power output becomes unstable.
  • a hydrogen generator for generating hydrogen by supplying water or an acidic solution to the reaction vessel the reactor has a height for loading magnesium hydride at the bottom of the reaction vessel.
  • a plurality of cylinders different from each other are provided upright, and further provided with a dropping section for dropping water or an acidic solution onto magnesium hydride loaded in the cylinder from above the highest cylinder.
  • a hydrogen generator is disclosed.
  • Patent Document 1 since water or an acidic solution is dropped into a cylinder having a high height, a hydrolysis reaction is started from magnesium hydride charged in the cylinder having the highest height, hydrogen is generated, and water or water is generated.
  • the acidic solution continues to be dropped, water or acidic solution overflows from the highest cylinder, and water or acidic solution is supplied to the next highest cylinder to generate hydrogen. It is described that it becomes possible to stably generate hydrogen while suppressing fluctuations in the generation amount.
  • magnesium hydroxide is generated as a by-product.
  • the present invention has been made in view of such circumstances, and it is easy to control the amount of generated hydrogen, and a hydrogen generator capable of efficiently generating hydrogen, and hydrogen generated by the hydrogen generator. It is an object of the present invention to provide a power generation system using the same.
  • a power generation system is a power generation system using hydrogen, the power generation system including: a power generation device; and a hydrogen generation device that generates the hydrogen supplied to the power generation device.
  • the generator is an aqueous solution storage unit that stores an aqueous solution, a raw material storage unit that stores a raw material containing magnesium in a state where the hydrogen can be generated by the reaction with the aqueous solution, and from the raw material storage unit to the aqueous solution storage unit.
  • a raw material supply mechanism for supplying the raw material to the raw material.
  • the aqueous solution storage unit includes an upper space above the aqueous solution, in which the aqueous solution does not exist, and the raw material supply mechanism moves the aqueous solution from the upper space side toward the aqueous solution. It is provided so as to supply a raw material, the hydrogen generator is a pressure measuring device that measures the pressure of the upper space, and based on the pressure measurement result of the pressure measuring device, drives the raw material supply mechanism And a control unit for controlling a supply amount of the raw material supplied toward the aqueous solution.
  • the aqueous solution storage unit includes a lower space in which the aqueous solution is located below the upper space, a partition unit for vertically partitioning the lower space, and a partition unit.
  • a drain port provided on the lower side for draining the aqueous solution, and a water supply port provided above the partition section and supplying the aqueous solution, are provided, and the partition section is formed by a reaction between the raw material and the aqueous solution.
  • a plurality of through-holes are provided so that generated by-products can be settled below the partition.
  • the hydrogen generator includes a drainage control valve that controls drainage of the aqueous solution from the drainage port, and a water supply control valve that controls water supply of the aqueous solution from the water supply port.
  • the control unit controls the drainage control valve and the water supply control valve based on a supply amount of the raw material supplied toward the aqueous solution.
  • the power generation system is provided between the aqueous solution storage section and the power generation device, and the hydrogen is generated in the aqueous solution storage section.
  • a buffer mechanism capable of storing the hydrogen.
  • the power generation system includes a purification mechanism provided between the aqueous solution storage unit and the power generation device and the buffer mechanism, wherein the purification mechanism includes: A first purifying unit having a first dehydrating unit and a first impurity gas removing unit, and a second purifying unit having a second dehydrating unit and a second impurity gas removing unit, and passing through the first purifying unit.
  • the second dehydration unit of the second purification unit can be dried, and the hydrogen is passed through the second purification unit and the hydrogen is supplied to the power generation device or the buffer unit.
  • the first dehydrating section of the first purifying section can be dried when supplying to the buffer mechanism.
  • the power generation system includes a purification mechanism provided between the aqueous solution storage unit and the power generation device, wherein the hydrogen is provided.
  • the purifying mechanism includes: a first purifying unit having a first dehydrating unit and a first impurity gas removing unit; and a second purifying unit having a second dehydrating unit and a second impurity gas removing unit.
  • the hydrogen generator according to the present invention includes an aqueous solution storage unit that stores an aqueous solution, a raw material storage unit that stores a raw material containing magnesium capable of generating hydrogen by reacting with the aqueous solution, and the raw material storage unit. And a raw material supply mechanism for supplying the raw material to the aqueous solution storage unit.
  • the aqueous solution storage unit includes an upper space above the aqueous solution where the aqueous solution does not exist, and the raw material supply mechanism moves the aqueous solution from the upper space side toward the aqueous solution. It is provided so as to supply a raw material, the hydrogen generator is a pressure measuring device that measures the pressure of the upper space, and based on the pressure measurement result of the pressure measuring device, drives the raw material supply mechanism And a control unit for controlling a supply amount of the raw material supplied toward the aqueous solution.
  • the aqueous solution storage unit includes a lower space in which the aqueous solution exists below the upper space, a partition unit that vertically partitions the lower space, and a partition unit.
  • a drain port provided on the lower side for draining the aqueous solution, and a water supply port provided above the partition section and supplying the aqueous solution, are provided, and the partition section is formed by a reaction between the raw material and the aqueous solution.
  • a plurality of through-holes are provided so that generated by-products can be settled below the partition.
  • the hydrogen generator includes a drainage control valve that controls a drainage amount of the aqueous solution that is drained from the drainage port, and controls a water supply amount of the aqueous solution that is supplied from the water supply port.
  • a water supply control valve for controlling the drainage control valve and the water supply control valve based on a supply amount of the raw material supplied toward the aqueous solution.
  • the present invention it is possible to provide a hydrogen generator capable of easily controlling the amount of generated hydrogen and efficiently generating hydrogen, and a power generation system using hydrogen generated by the hydrogen generator. .
  • FIG. 1 is a cross-sectional view illustrating a power generation system 1 according to a first embodiment of the present invention.
  • the description of the hydrogen generator 2 of the first embodiment according to the present invention is also provided.
  • the power generation system 1 includes a power generation device (not shown) and a hydrogen generation device 2 for generating hydrogen to be supplied to the power generation device, which will be described in detail hereinafter.
  • the power generation device is, for example, a general turbine generator that drives a turbine using hydrogen as a fuel in the present embodiment.
  • the power generation device may be a fuel cell.
  • the hydrogen generator 2 includes an aqueous solution storage unit 10 that stores an aqueous solution 11, a raw material storage unit 20 that stores a raw material 21 containing magnesium in a state where hydrogen can be generated by a reaction with the aqueous solution 11, and a raw material storage unit 20.
  • a raw material supply mechanism 30 that supplies the raw material 21 to the aqueous solution storage unit 10.
  • the aqueous solution 11 may be water, an alkaline aqueous solution containing ammonia or the like, or an acidic aqueous solution such as hydrochloric acid or nitric acid.
  • an acidic aqueous solution such as hydrochloric acid is more advantageous.
  • the raw material 21 is preferably in the form of particles having a small average particle diameter (in a state of microparticles or nanoparticles) in order to enhance the reactivity with the aqueous solution 11.
  • hydrogen can be generated by the reaction with the aqueous solution 11.
  • magnesium in a state include metallic magnesium and magnesium hydride.
  • the shape of the particles is spherical even if it is referred to as particles, and when the average outer diameter when averaging the maximum outer diameter of each particle is on the order of micrometer, it is a microparticle, and it is more than the micrometer order. If is also small (including submicron), it should be interpreted as a nanoparticle.
  • the raw material 21 may be a mixture of metallic magnesium and magnesium hydride.
  • the raw material 21 may include a material used for producing metallic magnesium or magnesium hydride, which is partially left as it is instead of metallic magnesium or magnesium hydride.
  • the aqueous solution storage unit 10 also functions as a reaction chamber in which the raw material 21 and the aqueous solution 11 react, and constitutes a container having a closed structure in which the aqueous solution 11 and hydrogen generated by the reaction do not leak to the outside.
  • the water supply of the aqueous solution 11 is performed so that the upper space US in which the aqueous solution 11 which is higher than the aqueous solution 11 does not exist is formed in the aqueous solution storage unit 10, so that the aqueous solution storage unit 10 is positioned above the aqueous solution 11.
  • An upper space US in which the aqueous solution 11 does not exist is provided.
  • the aqueous solution storage unit 10 is provided to determine the upper limit position of the water surface LSF of the aqueous solution 11, and the upper level sensor 12 for detecting the water surface LSF, and the aqueous solution 11 And a lower level sensor 13 for detecting the water surface LSF.
  • the aqueous solution storage unit 10 is provided with a lower space LS in which the aqueous solution 11 below the upper space US exists, a partition unit 14 for vertically partitioning the lower space LS, and a lower portion of the partition unit 14.
  • the partition 14 has a plurality of through-holes 14A through which the aqueous solution 11 can pass, while a drain port 15 for draining the aqueous solution 11 and a water supply port 16 provided above the partition 14 for supplying the aqueous solution 11 are provided. ing.
  • the hydrogen generator 2 is connected to a drain port 15 for draining the aqueous solution 11 in the aqueous solution storage unit 10 (also referred to as drain pipe) and a drain line 15A near the drain port 15.
  • a drain control valve 15B for controlling the drainage (whether or not there is drainage) of the aqueous solution 11 from the drain outlet 15.
  • the hydrogen generator 2 is connected to the water supply port 16, and supplies a new water solution 11 into the aqueous solution storage section 10 (also referred to as a water supply pipe), and a water supply line 16A near the water supply port 16.
  • a water supply control valve 16 ⁇ / b> B that is provided on the upper side and controls water supply (whether or not water is supplied) of the aqueous solution 11 from the water supply port 16.
  • a control unit (hereinafter, simply referred to as a control unit) of the hydrogen generator 2 (not shown) first opens the drainage control valve 15B to open the aqueous solution storage unit 10. After draining the aqueous solution 11 in the inside, the drainage control valve 15B is closed, and the water supply control valve 16B is opened to position the water surface LSF of the aqueous solution 11 between the upper level sensor 12 and the lower level sensor 13. Then, the aqueous solution 11 is supplied into the aqueous solution storage unit 10, and the water supply control valve 16B is closed again.
  • the aqueous solution 11 is drained to such an extent that the water level LSF of the aqueous solution 11 drops to the partition part 14 based on the detection of the water level LSF of the aqueous solution 11 by the lower level sensor 13.
  • the start point is determined when the lower level sensor 13 detects the water level LSF of the aqueous solution 11.
  • the drainage control valve 15B may be closed when the time required for draining the aqueous solution 11 of the amount required to lower the water surface LSF of the aqueous solution 11 to the partition 14 has elapsed.
  • the water supply of the aqueous solution 11 is started, and the water level LSF of the aqueous solution 11 is changed to the upper level sensor 12 based on the detection of the water level LSF of the aqueous solution 11 by the lower level sensor 13.
  • the water level is stopped between the upper level sensor 12 and the lower level sensor 13.
  • the amount of water supply per unit time when the water supply control valve 16B is opened can be checked in advance, it is determined that the lower level sensor 13 has detected the water level LSF of the aqueous solution 11 at the start point.
  • the water supply control valve 16B is closed when the time required for the supply of the aqueous solution 11 of the water supply amount necessary for the water level LSF of the aqueous solution 11 to be located between the upper level sensor 12 and the lower level sensor 13 has elapsed. do it.
  • the control unit (not shown) opens the drainage control valve 15B to raise the water level LSF of the aqueous solution 11 to the upper level. After draining the aqueous solution 11 to such an extent that it is located between the sensor 12 and the lower level sensor 13, the drain control valve 15B is closed.
  • the control unit (not shown) opens the water supply control valve 16B, and the water level LSF of the aqueous solution 11 becomes lower. After the water supply of the aqueous solution 11 is performed so as to be located between the upper level sensor 12 and the lower level sensor 13, the water supply control valve 16B is closed.
  • the inner diameter of the plurality of through-holes 14A of the partition 14 is set to a size that does not prevent the passage of by-products such as magnesium hydroxide generated by the reaction between the raw material 21 and the aqueous solution 11.
  • the partition section 14 is provided with a plurality of through holes 14A provided so that by-products generated by the reaction between the raw material 21 and the aqueous solution 11 can be settled below the partition section 14.
  • the aqueous solution 11 having a high concentration of by-products is drained from the drain port 15 provided below the partition section 14.
  • the inner diameter of the plurality of through-holes 14A of the partition 14 is such that when the raw material 21 precipitates below the partition 14 and hydrogen is generated below the partition 14, bubbles due to the hydrogen are generated.
  • the size is such that it can pass above the partition 14 without disturbing, or even if hydrogen accumulates temporarily on the lower surface of the partition 14, it naturally moves to the upper side of the partition 14. Has also become.
  • the hydrogen generator 2 includes a stirring mechanism 40 for stirring the aqueous solution 11 above the partition 14.
  • the stirring mechanism 40 includes a motor 41 provided outside the upper wall of the aqueous solution storage unit 10, and a propeller 42 disposed in the aqueous solution 11 above the partition 14 and agitating the aqueous solution 11. And a shaft 43 for transmitting the rotational force of the motor 41 to the propeller 42 and rotating the propeller 42 so as to agitate the aqueous solution 11.
  • the insertion portion into which the shaft 43 is inserted into the aqueous solution storage unit 10 has a confidential structure that does not hinder rotation and can maintain confidentiality.
  • the stirring mechanism 40 is provided to prevent the raw material 21 that has not reacted with the aqueous solution 11 from accumulating on the partition part 14. As described later, according to the configuration of the present invention, Since the reaction efficiency between the raw material 21 and the aqueous solution 11 is high, it is not always necessary.
  • the control unit (not shown) drives the stirring mechanism 40 periodically to promote the reaction between the raw material 21 and the aqueous solution 11.
  • the stirring mechanism 40 may be driven at all times. However, by driving the stirring mechanism 40 at regular intervals, the by-products can be easily precipitated below the partition 14, and the stirring mechanism 40 can be driven above the partition 14. The concentration of by-products in the aqueous solution 11 can be reduced, and the reaction efficiency between the raw material 21 and the aqueous solution 11 can be increased.
  • the stirring mechanism 40 when the stirring mechanism 40 is driven, by-products precipitated below the partition portion 14 are wound up, and the aqueous solution 11 above the partition portion 14 is removed. Since it is possible to suppress an increase in the concentration of the by-product, the driving efficiency of the stirring mechanism 40 can suppress a decrease in the reaction efficiency of the raw material 21 and the aqueous solution 11.
  • the hydrogen generator 2 has an emergency exhaust line 50 (also referred to as an emergency exhaust pipe) connected to the aqueous solution storage unit 10 so as to communicate with the upper space US, and a communication that communicates with the upper space US of the emergency exhaust line 50.
  • a solenoid valve 51 which is provided at a position close to the head and controls the presence or absence of emergency exhaust, and is connected to an emergency exhaust line 50 between the solenoid valve 51 and the aqueous solution storage unit 10 to measure the pressure in the upper space US
  • a pressure measuring device 52 for example, a digital Manostar gauge.
  • the control unit opens the solenoid valve 51 to open the upper space US. Pressure control is performed so that the internal pressure becomes a predetermined first pressure (a required primary pressure). When the predetermined first pressure (the required primary pressure) is reached, the control unit (not shown) closes the solenoid valve 51 again.
  • the raw material storage unit 20 has a work door 22 that is opened and closed at the time of filling work of the raw material 21 on the upper side.
  • a container having a closed structure is configured.
  • the raw material storage unit 20 includes a distance measuring device 24 (for example, a displacement sensor) that is provided on the upper side adjacent to the work door 22 and measures the distance to the surface of the stored raw material 21. By increasing the distance to the raw material 21 measured by the distance measuring device 24, it is possible to grasp the timing of adding the raw material 21.
  • a distance measuring device 24 for example, a displacement sensor
  • the whole raw material 21 is vibrated by the driving of the raw material supply mechanism 30 described later. Can be maintained, and the measurement result of the distance to the raw material 21 measured by the distance measuring device 24 can be used as one measure of the time when the raw material 21 is added.
  • the supply amount of the raw material 21 supplied to the aqueous solution 11 since the supply amount of the raw material 21 supplied to the aqueous solution 11 can be grasped, the supply amount of the raw material 21 supplied to the aqueous solution 11 is based on reaching a predetermined amount.
  • the raw material 21 may be added, and in this case, the distance measuring device 24 becomes unnecessary.
  • the raw material storage unit 20 is provided so that at least a part of the bottom wall part is in close contact with the outside of the upper wall part of the aqueous solution storage unit 10, and the bottom wall part of the closely contacted part is A raw material supply hole 23 for supplying the raw material 21 penetrating the bottom wall into the aqueous solution storage unit 10 is formed.
  • the aqueous solution storage unit 10 also has a raw material receiving hole 17 for receiving the raw material 21 penetrating the upper wall at a position corresponding to the raw material supply hole 23 of the raw material storage unit 20.
  • a raw material supply mechanism 30 is provided in the raw material storage unit 20.
  • the raw material supply mechanism 30 includes a motor 31 installed inside the upper wall of the raw material storage unit 20 and a motor 31 disposed adjacent to the inside of the bottom wall of the raw material storage unit 20. And a shaft 33 that transmits the rotational force of the motor 31 to the disk 32 and rotates the disk 32.
  • the raw material storage unit 20 is configured such that the bottom part and the upper part thereof are separable for the operation of incorporating the raw material supply mechanism 30, and are formed by integrating them. It has become.
  • the disk 32 faces the rotation center O and is located at a position substantially the same distance from the rotation center O.
  • a pair of through holes are formed.
  • the raw material storage unit 20 includes a concave portion that is recessed in a lateral direction for receiving a part of the disk 32, above a part corresponding to the raw material supply hole 23.
  • the inner surface of the concave portion is close to the upper opening of the through hole (see the through hole 32B) of the disk 32 located in the concave portion, so that the opening is almost closed.
  • the through-holes (through-holes 32A and 32B) of the disc 32 are located at positions other than the laterally concave recesses that receive a part of the disc 32 (for example, see the position of the through-hole 32A).
  • the raw material 21 enters the through-hole (see the through-hole 32A), and the disc 32 rotates to receive a part of the disc 32, and the through-hole (through-hole 32A,
  • the hole 32B comes to the position (see the position of the through hole 32B)
  • the raw material 21 filled in the through hole (the through hole 32A and the through hole 32B) passes through the raw material supply hole 23 and the raw material receiving hole 17. , From the upper space US side.
  • the hydrogen generator 2 includes a pressure measuring device 61 (for example, a digital manostar gauge) that measures the pressure in the upper space US1 where the raw material 21 above the raw material 21 in the raw material storage unit 20 does not exist.
  • a gas supply line 62 (also referred to as a gas supply pipe) for supplying a gas (for example, a low-activity gas such as nitrogen with a low dew point or an inert gas such as helium or argon with a low dew point) to the upper space US1;
  • a solenoid valve 63 provided on the line 62 for controlling whether or not gas is supplied to the upper space US1.
  • the control unit (not shown) adjusts the pressure in the upper space US1 to a predetermined pressure (for example, in the upper space US of the aqueous solution storage unit 10) based on the pressure measurement result measured by the pressure measuring device 61 in the upper space US1.
  • the opening / closing control of the electromagnetic valve 63 is performed so that the pressure becomes approximately equal to the pressure).
  • the hydrogen generator 2 includes a gas exhaust line (also referred to as a gas supply pipe) for exhausting the gas in the upper space US1 and a gas exhaust line in the upper space US1 through the gas exhaust line. It also has a solenoid valve that controls the presence or absence of exhaust.
  • control unit controls the above-described electromagnetic valve 63 and the electromagnetic valve that controls the presence or absence of gas exhaust so that the pressure in the upper space US1 becomes a predetermined pressure (for example, aqueous solution storage). (A pressure approximately equal to the pressure in the upper space US of the section 10).
  • the gas (mainly, hydrogen) in the upper space US can be further prevented from entering the raw material storage unit 20 side, and a part of the disk 32 is received.
  • the through holes (the through holes 32A and 32B) of the disk 32 are located at positions other than the recessed portions in the lateral direction (for example, see the position of the through hole 32A), the through holes (the through holes 32A and the through holes 32A).
  • the raw material 21 efficiently enters the holes 32B).
  • the through-holes (through-holes 32A and 32B) are located at the positions of the recesses that are recessed in the lateral direction for receiving a part of the disk 32
  • the through-holes (through-holes 32A and The raw material 21 filled in the hole 32B) is supplied to the aqueous solution 11 by dropping from the upper space US side toward the aqueous solution 11 through the raw material supply hole 23 and the raw material receiving hole 17 by its own weight.
  • the hydrogen generator 2 inserts the rod into the through holes (through holes 32A and 32B) located immediately above the raw material supply holes 23 and the raw material receiving holes 17, and the through holes (through holes 32A, through holes 32A).
  • a raw material extruding mechanism for forcibly extruding the raw material 21 in the hole 32B) may be provided, so that the raw material 21 can be reliably supplied to the aqueous solution 11.
  • the rotation of the disk 32 is stopped where the through holes (the through holes 32A and 32B) of the disk 32 are located immediately above the raw material supply holes 23 and the raw material receiving holes 17. Then, after inserting a rod into the through holes (through holes 32A and 32B) and supplying the raw material 21 toward the aqueous solution 11, the rod is removed from the through holes (through holes 32A and 32B). Then, the operation of rotating the disk 32 is repeated again.
  • a pair of through-holes (through-hole 32A and through-hole 32A) are opposed to each other with the rotation center O of the disc 32 interposed therebetween and at substantially the same distance from the rotation center O. 32B) is formed, but it is not necessary to be limited to this.
  • three through holes of the same size are provided at substantially the same distance from the rotation center O at equal intervals in the rotation direction of the disk 32 (in this case, between the adjacent through holes viewed in the circumferential direction of the disk 32). May be provided at an angle pitch of 120 °.
  • four through-holes in this case, the angular pitch between adjacent through-holes viewed in the circumferential direction of the disk 32) are equally spaced in the rotation direction. Is 90 ° pitch).
  • one through-hole is recessed in a lateral direction for receiving a part of the disk 32 and a position other than a concave part which is recessed in the horizontal direction for receiving a part of the disk 32.
  • the raw material 21 can be supplied to the aqueous solution 11 by controlling it so that it is located alternately with the position of the concave portion, so that there is no problem.
  • the number of through-holes is preferably four or less.
  • the size of the through-hole may be selected so that the raw material 21 can be supplied according to the amount of hydrogen to be generated.
  • the mass of the magnesium hydride (weight per 1 mol) is 26.32G
  • the density of the magnesium hydride is about 2.36 g / cm 3
  • a volume of about 11.2 cm 3 weak (about 1 mol)
  • the raw material 21 composed of magnesium hydride is charged into the aqueous solution 11, less than 45 liters (about 2 mol) of hydrogen is generated in a standard state.
  • the thickness of the disc 32 is about 10 cm
  • the diameter of the disc 32 is about 70 cm
  • the inner end of the through hole having a diameter of about 21 cm (center of the through hole) is located at about 10 cm offset from the rotation center O. (20.5 cm offset from the center of rotation O)
  • the volume of the through hole is less than about 3346 cm 3 .
  • the through hole is formed twice per rotation (the through hole 32A is Since the raw material 21 is supplied to the aqueous solution 11 from the hole 32B once), if the disk 32 is rotated once in 12 seconds (5 rotations in one minute), the disk 21 is directed to the aqueous solution 11 ten times per minute. As a result, the raw material 21 is supplied, and the raw material 21 that can generate enough hydrogen (about 134 m 3 ) more than 114 m 3 per minute can be supplied.
  • the volume of the through holes may be less than about 3346 cm 3. it is conceivable that.
  • the power generation amount of the power generation device increases, the supply amount of the necessary raw material 21 increases. Therefore, assuming a power generation device having a power generation amount of about 10 times, the volume of the through hole is approximately It is preferable to assume up to less than 33460 cm 3 .
  • the volume of the through-hole is preferably in a 35,000 3 order of 3000 cm 3.
  • the raw material supply mechanism 30 can supply the raw material 21 capable of generating about 100 m 3 to about 1000 m 3 of hydrogen per minute to the aqueous solution 11.
  • the above-described raw material supply mechanism 30 is merely an example, and the raw material supply mechanism 30 is provided so as to supply the raw material 21 from the upper space US toward the aqueous solution 11, and the raw material 21 is supplied from the upper space US side. What is necessary is just a structure which can be supplied toward the aqueous solution 11.
  • control unit (not shown) drives the motor 31 of the raw material supply mechanism 30 based on the pressure measurement result of the pressure measurement device 52 that measures the pressure of the upper space US of the aqueous solution storage unit 10, The supply amount of the raw material 21 supplied to the aqueous solution 11 is controlled so that the pressure in the upper space US becomes a predetermined first pressure (a required primary pressure).
  • the control unit grasps how much raw material 21 is supplied to the aqueous solution 11. It is possible to predict an increase in the concentration of by-products such as magnesium hydroxide in the aqueous solution 11 from the total supply amount of the raw material 21 supplied to the aqueous solution 11 (for example, data of the concentration change is experimentally obtained). It is possible to collect them and make predictions based on the data). Instead of such an experimental method, an increase in the concentration of by-products can be predicted by theoretical calculation.
  • control unit controls the drainage control valve 15B and the water supply control valve 16B based on the supply amount of the raw material 21 to be supplied to the aqueous solution 11, as described above. Management is performed so that the concentration of by-products in the aqueous solution 11 does not become too high so that the reaction efficiency of the raw material 21 and the aqueous solution 11 does not decrease.
  • the aqueous solution storage unit 10 includes a hydrogen discharge port 18 for discharging hydrogen in the upper space US toward a power generation device (not shown).
  • a hydrogen supply unit 70 (also referred to as a hydrogen supply main pipe) connected to the hydrogen discharge port 18 and supplying hydrogen generated in the aqueous solution storage unit 10 to a power generation device (not shown) is provided.
  • the power generation system 1 is provided at a position near the hydrogen discharge port 18 on the hydrogen supply unit 70, and controls an electromagnetic valve 71 that controls whether or not hydrogen is discharged from the hydrogen discharge port 18. It has a pressure reducing valve 72 provided on the hydrogen supply unit 70 remote from the outlet 18, and an electromagnetic valve 73 provided on the hydrogen supply unit 70 further away from the hydrogen discharge port 18 than the pressure reducing valve 72. .
  • the pressure reducing valve 72 changes the pressure of hydrogen from a predetermined first pressure (determined primary pressure) in the upper space US to a predetermined second pressure (determined secondary pressure) for supplying to a power generator (not shown). It is for reducing the pressure.
  • the power generation system 1 further includes a buffer mechanism 3 for storing hydrogen in a power generation device (not shown) so that the hydrogen can be supplied.
  • the buffer mechanism 3 is connected to the buffer tank 80 at one end at a position between the pressure reducing valve 72 and the solenoid valve 73 of the hydrogen supply unit 70 and at the other end to the buffer tank 80 to store hydrogen.
  • a drop branch line 81 (also referred to as a branch pipe) for drawing into the buffer tank 80, a booster 82 provided on the drop branch line 81, and a drop branch line 81 between the booster 82 and the buffer tank 80.
  • an electromagnetic valve 83 provided.
  • the buffer mechanism 3 has one end connected to the buffer tank 80 and the other end connected to the hydrogen supply unit 70 on the power generation device side (not shown) with respect to the solenoid valve 73, and supplies hydrogen from the buffer tank 80 to the hydrogen supply unit 70.
  • Return line 84 also referred to as a return pipe
  • an electromagnetic valve 85 provided on the return line 84
  • a pressure reducing valve provided on the return line 84 between the electromagnetic valve 85 and the hydrogen supply unit 70 86.
  • the pressure reducing valve 86 reduces the pressure of hydrogen to a predetermined second pressure (secondary pressure required) to be supplied to a power generator (not shown) from the pressure of the buffer tank 80 described later. It is for doing.
  • the buffer mechanism 3 is filled with hydrogen by using the case where there is no request for supplying hydrogen from a power generator (not shown).
  • a control unit (not shown) controls the solenoid valve 71 and the solenoid valve 83 to be opened, and the solenoid valve 73 and the solenoid valve 85 to be closed. Control is performed so that the device 2 generates hydrogen, and drive control of the booster 82 is performed.
  • the hydrogen generated by the hydrogen generator 2 is supplied to the intake branch line 81 at a predetermined second pressure (the required secondary pressure) by the pressure reducing valve 72, but the pressure is increased by the pressure increasing device 82. Therefore, the buffer is set so that the pressure in the buffer tank 80 becomes the same first pressure as the predetermined first pressure (the required primary pressure) in the upper space US or the predetermined third pressure higher than the first pressure.
  • the tank 80 can be filled with hydrogen.
  • the buffer mechanism 3 includes a pressure measuring device 87 (for example, a digital Manostar gauge) that measures the pressure in the buffer tank 80.
  • a pressure measuring device 87 for example, a digital Manostar gauge
  • the above-described process of filling the buffer tank 80 with hydrogen is performed by the pressure measuring device 87.
  • the pressure is adjusted to the first pressure or a predetermined third pressure higher than the first pressure, and when the target pressure is reached, hydrogen generation is performed.
  • the drive of the device 2 is stopped, and the solenoid valves 71 and 83 are closed.
  • the buffer mechanism 3 includes a connection line 88 (also referred to as a connection pipe) connecting the buffer tank 80 and the emergency exhaust line 50, an electromagnetic valve 89 provided on the connection line 88 and controlling the presence or absence of emergency exhaust, If the measurement result of the pressure in the buffer tank 80 measured by the pressure measuring device 87 indicates an abnormally high pressure, the control unit (not shown) opens the solenoid valve 89 to open the buffer tank. The step-down control is performed so that the pressure in 80 becomes the first pressure described above or a predetermined third pressure higher than the first pressure.
  • the buffer mechanism 3 is provided in a form branched from the hydrogen supply unit 70
  • the buffer mechanism 3 may be provided on the hydrogen supply unit 70.
  • the pressure reducing valve 72 is omitted, and the electromagnetic valve 71 is disposed on the hydrogen supply unit 70 between the electromagnetic valves 73 from the aqueous solution storage unit 10 toward the power generation device (not shown).
  • the pressure reducing valve 86 is provided on the hydrogen supply unit 70 which is closer to the power generator than the electromagnetic valve 73. Hydrogen will always be supplied to the power generator via the buffer mechanism 3.
  • the buffer mechanism 3 is provided between the aqueous solution storage unit 10 and the power generation device (not shown), and stores the hydrogen generated in the aqueous solution storage unit 10. Will be able to do it.
  • the buffer mechanism 3 connects the pressure measuring device 87 (for example, a digital manostar gauge) for measuring the pressure in the buffer tank 80 to the buffer tank 80 and the emergency exhaust line 50. And a solenoid valve 89 provided on the connection line 88 for controlling the presence or absence of emergency evacuation, and is provided on the hydrogen supply unit 70.
  • the pressure increasing device 82 may be provided on the hydrogen supply unit 70 between the electromagnetic valve 83 and the electromagnetic valve 71.
  • the hydrogen generator 2 includes the buffer mechanism 3 and the hydrogen generator 2 includes the buffer mechanism 3. May include the hydrogen supply unit 70 up to a required position.
  • the control unit of the hydrogen generator 2 checks the pressure in the upper space US of the aqueous solution storage unit 10, and checks the upper space US If the internal pressure is about the predetermined first pressure (the required primary pressure), the solenoid valves 71 and 73 are opened to start supplying hydrogen to the power generator, The driving of the raw material supply mechanism 30 is controlled such that the pressure in the upper space US of the aqueous solution storage unit 10 reduced by the supply of the water is maintained at a predetermined first pressure (a required primary pressure).
  • control unit of the hydrogen generator 2 confirms the pressure in the upper space US of the aqueous solution storage unit 10, and as a result, if the pressure in the upper space US is too low, opens the electromagnetic valve 85 to open the buffer tank 80.
  • the hydrogen is supplied to a power generator (not shown), and the driving of the raw material supply mechanism 30 is controlled such that the pressure in the upper space US of the aqueous solution storage unit 10 becomes a predetermined first pressure (a required primary pressure). I do.
  • the raw material 21 is supplied to the large amount of the aqueous solution 11 stored in the aqueous solution storage unit 10, a by-product such as magnesium hydroxide is generated by the reaction between the raw material 21 and the aqueous solution 11. Even so, the by-product quickly diffuses into the aqueous solution 11, so that the reaction proceeds efficiently and quickly without any hindrance. Therefore, the pressure in the upper space US of the aqueous solution storage unit 10 is reduced for a short time. Can be set to a predetermined first pressure (a required primary pressure).
  • the control unit of the hydrogen generator 2 opens the electromagnetic valves 71 and 73, The solenoid valve 85 is closed, and the supply of hydrogen to the power generator (not shown) is switched from the buffer tank 80 to the aqueous solution storage unit 10.
  • the raw material 21 is supplied to the sufficiently prepared aqueous solution 11, the high reaction efficiency can be continuously maintained.
  • the control unit of the hydrogen generator 2 supplies hydrogen from the aqueous solution storage unit 10 to the power generation device (not shown)
  • the pressure in the upper space US of the aqueous solution storage unit 10 becomes unsuitable for supplying hydrogen for some reason. If the pressure is likely to drop to an unsatisfactory level, the solenoid valve 71 is closed and the solenoid valve 85 is opened again to stop the supply of hydrogen to the power generation device without stopping the pressure in the upper space US of the aqueous solution storage unit 10. Perform recovery.
  • the controller checks the pressure in the buffer tank 80 before stopping the operation of the hydrogen generator 2. If the buffer tank 80 needs to be filled with hydrogen, a process for stopping the operation of the hydrogen generator 2 is performed after the filling. On the other hand, when it is not necessary to fill the buffer tank 80 with hydrogen, the control unit of the hydrogen generator 2 performs a process of stopping the operation of the hydrogen generator 2 without performing filling.
  • the provision of the buffer mechanism 3 further enhances the speed of hydrogen supply at the start of supply of hydrogen to the power generator (not shown) and the stability of the amount of hydrogen supply during hydrogen supply. Has become something.
  • the reaction efficiency between the raw material 21 and the aqueous solution 11 becomes high.
  • the power generator not shown
  • the required amount of hydrogen is easily generated quickly, and the controllability of the hydrogen supply during hydrogen supply is high.
  • the provision of the mechanism 3 is not an essential requirement, and the buffer mechanism 3 may be omitted.
  • the hydrogen generator 2 increases the temperature of the aqueous solution 11 by temperature control means (for example, the aqueous solution 11 within a temperature range where the aqueous solution 11 does not boil). (A temperature control means for heating).
  • FIG. 2 is a cross-sectional view illustrating a power generation system 1 according to a second embodiment of the present invention.
  • a power generator not shown is a general fuel cell, and a configuration suitable for using a fuel cell as the power generator is added to the configuration of the first embodiment. It has become.
  • the basic configuration of the power generation system 1 of the second embodiment is the same as that of the first embodiment, and therefore, different points will be mainly described below, and description of the same points may be omitted. .
  • the power generation system 1 includes an aqueous solution from the pressure reducing valve 72 to the buffer mechanism 3 (more specifically, the drop branch line 81).
  • a purification mechanism 4 for increasing the purity of hydrogen supplied from the storage unit 10 to the power generation device (and the buffer mechanism 3) (not shown) is provided.
  • the hydrogen generator 2 may include the purification mechanism 4.
  • the purifying mechanism 4 includes a first dehydrating unit 91A (for example, a molecular sieve) provided on the hydrogen supply unit 70 between the pressure reducing valve 72 and the incoming branch line 81, and a side closer to the incoming branch line 81 than the first dewatering unit 91A.
  • a first impurity gas removal unit 92A provided on the hydrogen supply unit 70 serving as a first supply unit
  • a first upstream electromagnetic valve 93A provided on the hydrogen supply unit 70 between the pressure reducing valve 72 and the first dehydration unit 91A
  • a first downstream solenoid valve 94A provided on the hydrogen supply unit 70 between the first impurity gas removal unit 92A and the incoming branch line 81;
  • the first dehydrating unit 91A and the first impurity gas removing unit 92A function as a first purifying unit of the purifying mechanism 4. Further, as mentioned in the first embodiment, the buffer mechanism 3 can be omitted, and in this case, the drop branch line 81 and the solenoid valve 73 are not required.
  • the purifying mechanism 4 includes the first dehydrating unit 91A provided on the hydrogen supply unit 70 between the pressure reducing valve 72 and the power generator (not shown) rather than the pressure reducing valve 72.
  • the first dehydrating unit 91A provided on the hydrogen supply unit 70 between the pressure reducing valve 72 and the power generator (not shown) rather than the pressure reducing valve 72.
  • a molecular sieve a first impurity gas removal unit 92A provided on the hydrogen supply unit 70 on the power generation device side (not shown) with respect to the first dehydration unit 91A, and between the pressure reducing valve 72 and the first dehydration unit 91A.
  • the first upstream solenoid valve 93A provided on the hydrogen supply unit 70 of the first embodiment, and the first downstream solenoid valve 94A provided on the hydrogen supply unit 70 between the first impurity gas removal unit 92A and the power generator (not shown)
  • the first upstream solenoid valve 93A provided on the hydrogen supply unit 70 of the first embodiment
  • a silica gel molecular sieve that can be dried by supplying a heated gas having a low dew point at a low temperature (for example, about 100 ° C. or less) to the first dehydrating unit 91A is used.
  • the purification mechanism 4 supplies the dry gas (for example, a low-activity gas such as nitrogen with a low dew point or an inert gas such as helium or argon with a low dew point) to the first dehydrating unit 91A.
  • a dry gas supply line 95 (including a dry gas supply pipe) having a first supply control solenoid valve 95A for controlling the presence / absence and connected to the hydrogen supply unit 70 between the first dehydration unit 91A and the first impurity gas removal unit 92A.
  • a first exhaust control solenoid valve 96A that is opened when the dry gas is exhausted, and is connected to the hydrogen supply unit 70 between the first upstream solenoid valve 93A and the first dehydration unit 91A.
  • a dry gas exhaust line 96 also referred to as a dry gas exhaust pipe.
  • the dry gas is slightly heated by a heating device (not shown) and supplied at a temperature higher than room temperature (for example, 25 ° C.) (for example, 50 ° C. or higher) and 100 ° C. or lower.
  • the raw material 21 is generated in an unreacted state when the raw material 21 is generated.
  • a chemical filter capable of removing impurity gas for example, chlorine gas, hydrochloric acid gas, etc.
  • a filter for removing chlorine gas and a filter for removing hydrochloric acid gas are arranged in series as the first impurity gas removing unit 92A.
  • the first impurity gas removing section 92A is intended to remove the impurity gas generated when hydrogen is generated in the aqueous solution storage section 10
  • the type of the chemical filter to be used depends on the raw material 21. And the aqueous solution 11 are selected.
  • one end of the purification mechanism 4 is connected to the hydrogen supply unit 70 between the pressure reducing valve 72 and the first upstream solenoid valve 93A, and the other end is connected to the first downstream solenoid valve 94A.
  • a bypass line 70A (also referred to as a bypass pipe) connected to the hydrogen supply unit 70 between the branch lines 81 is provided.
  • the buffer mechanism 3 can be omitted, in this case, the drop branch line 81 and the solenoid valve 73 are not required, so the other end of the bypass line 70A is connected to the first downstream side. It is connected to the hydrogen supply unit 70 on the power generation device side (not shown) with respect to the electromagnetic valve 94A.
  • the purifying mechanism 4 is provided on a second dehydrating unit 91B (for example, a molecular sieve) provided on the detour line 70A and on a detour line 70A on the power generation device side (not shown) with respect to the second dehydrating unit 91B.
  • the side solenoid valve 93B and the second impurity gas removal unit 92B are provided on the detour line 70A on the power generator side (not shown) (the second impurity gas removal unit 92B is provided on the bypass line 70A on the other end of the bypass line 70A).
  • a second downstream solenoid valve 94B is provided on the detour line 70A on the power generator side (not shown) (the second impurity gas removal unit 92B is provided on the bypass line 70A on the other end of the bypass line 70A).
  • the second dehydrating unit 91B and the second impurity gas removing unit 92B function as a second purifying unit of the purifying mechanism 4 that performs the same function as the first purifying unit. Similar to the part 91A, a silica gel molecular sieve that can be dried by supplying a heated gas having a low dew point at a low temperature (for example, about 100 ° C. or less) is used.
  • a chemical filter capable of removing chlorine gas, hydrochloric acid gas, etc. is used for the second impurity gas removing section 92B.
  • a filter for removing hydrochloric acid gas are arranged in series.
  • the dry gas supply line 95 is connected to the bypass line 70A between the second dehydrating section 91B and the second impurity gas removing section 92B, and the dry gas exhaust line 96 is connected to the second upstream solenoid valve 93B and the second dehydrating section 93B.
  • the purifying mechanism 4 is connected to the detour line 70A between the sections 91B, and is provided on the drying gas supply line 95 on the detour line 70A side from the first supply control solenoid valve 95A, and the drying gas (for example, nitrogen or the like having a low dew point) is provided.
  • the supply of the dry gas to the dry gas supply line 95 is performed at the position of the dry gas supply line 95 between the first supply control solenoid valve 95A and the second supply control solenoid valve 95B.
  • the exhaust of the dry gas from the gas exhaust line 96 is performed at a position of the dry gas exhaust line 96 between the first exhaust control electromagnetic valve 96A and the second exhaust control electromagnetic valve 96B.
  • the moisture absorbing performance can be regenerated by performing the drying process of the second dehydrating unit 91B.
  • the control unit of the hydrogen generator 2 opens the first upstream solenoid valve 93A and the first downstream solenoid valve 94A, and opens the second upstream solenoid valve 93B, the second downstream solenoid valve 94B, and the first supply control.
  • the solenoid valve 95A and the first exhaust control solenoid valve 96A are closed, and hydrogen passes through the first purifying section (first dehydrating section 91A and first impurity gas removing section 92A) of the purifying mechanism 4 to generate power (not shown). Is controlled to open the second supply control solenoid valve 95B and the second exhaust control solenoid valve 96B so that the dry gas passes through the second dehydration unit 91B. .
  • the drying process of the second dehydrating unit 91B is performed, and the performance of the second dehydrating unit 91B to absorb the moisture is reproduced.
  • the control unit of the hydrogen generator 2 opens the second upstream solenoid valve 93B and the second downstream solenoid valve 94B, and the first upstream
  • the side solenoid valve 93A, the first downstream side solenoid valve 94A, the second supply control solenoid valve 95B, and the second exhaust control solenoid valve 96B are closed, and the hydrogen is purified by the second purification section (second dehydration section 91B) of the purification mechanism 4.
  • the control is switched so that the dry gas passes through the first dehydration unit 91A through the first dehydration unit 91A.
  • the unit also performs control to open the first supply control solenoid valve 95A and the first exhaust control solenoid valve 96A.
  • the drying process of the first dehydrating unit 91A is performed, and the performance of the first dehydrating unit 91A to absorb moisture is regenerated.
  • the purifying mechanism 4 includes the first purifying unit (the first dehydrating unit 91A and the first impurity gas removing unit 92A) and the second purifying unit (the second dehydrating unit 91B and the second impurity gas removing unit 92B).
  • the second dehydrating section 91B of the second purifying section can be dried, and the second purifying section is provided.
  • the first dehydrating unit 91A of the first purification unit can be dried, so that hydrogen is supplied to the power generation device or the buffer tank 80 (not shown).
  • the regeneration processing of the first dewatering unit 91A and the second dewatering unit 91B can be performed without stopping the supply of the water.
  • the second impurity gas removing unit 92B of the second purifying unit is replaced when hydrogen is supplied to the power generator or the buffer tank 80 (not shown) through the first purifying unit, and the second purifying unit is replaced.
  • the hydrogen is supplied to the power generator or the buffer tank 80 (not shown) by passing through the first purifying section
  • the first impurity gas removing section 92A of the first purifying section can be exchanged, so that the first impurity gas removing section 92A
  • the replacement operation of the second impurity gas removing unit 92B can also be performed without stopping the supply of hydrogen to the power generation device or the buffer tank 80 (not shown).
  • the purifying mechanism 4 is provided between the aqueous solution storage unit 10 and the power generator and the buffer mechanism 3 (not shown), it is possible to supply high-purity hydrogen to the fuel cell as the power generator. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

In order to provide a hydrogen generator with which it is easy to control the amount of hydrogen generation and which is capable of efficiently generating hydrogen, and a power generation system using hydrogen generated by said hydrogen generator, this power generation system (1) using hydrogen is provided with a power generation device and a hydrogen generator (2) for generating hydrogen to be supplied to the power generation device. The hydrogen generator (2) is equipped with: an aqueous solution storage part (10) for storing an aqueous solution (11); a raw material storage part (20) for storing a raw material (21) including magnesium that is in a state of being capable of generating hydrogen through reaction with the aqueous solution (11); and a raw material supply mechanism (30) for supplying the raw material (21) from the raw material storage part (20) toward the aqueous solution storage part (10).

Description

水素を用いた発電システム、及び、水素発生装置Power generation system using hydrogen and hydrogen generator
 本発明は水素を用いた発電システム、及び、水素発生装置に関する。 The present invention relates to a power generation system using hydrogen and a hydrogen generator.
 特許文献1には、単位時間当たりの水素発生量が安定しないと、発生した水素を燃料電池に供給して発電するような場合、電力の出力が安定しなくなるという問題に対応して、水素化マグネシウムの加水分解反応が行われる反応容器を備え、該反応容器へ水又は酸性溶液を供給することによって、水素を発生させる水素発生装置において、反応容器の底部に、水素化マグネシウム装填用の高さが異なる複数の筒部が立設してあり、更に、最も高い筒部の上方から、該筒部に装填された水素化マグネシウムに水又は酸性溶液を滴下する滴下部を備えることを特徴とする水素発生装置が開示されている。 Patent Literature 1 discloses a method for hydrogenation in order to cope with the problem that when the amount of hydrogen generated per unit time is not stable, when the generated hydrogen is supplied to a fuel cell to generate power, the power output becomes unstable. In a hydrogen generator for generating hydrogen by supplying water or an acidic solution to the reaction vessel, the reactor has a height for loading magnesium hydride at the bottom of the reaction vessel. A plurality of cylinders different from each other are provided upright, and further provided with a dropping section for dropping water or an acidic solution onto magnesium hydride loaded in the cylinder from above the highest cylinder. A hydrogen generator is disclosed.
 そして、特許文献1では、高さが高い筒部に水又は酸性溶液が滴下されるため、最も高い筒部に装填された水素化マグネシウムから加水分解反応が開始され、水素を発生し、水又は酸性溶液の滴下が続くと、最も高い筒部から水又は酸性溶液が溢れて、次に高さが高い筒部へ水又は酸性溶液が供給され、水素を発生することで、単位時間当たりの水素発生量の変動を抑えて、水素を安定的に生成することが可能になることが説明されている。 And, in Patent Document 1, since water or an acidic solution is dropped into a cylinder having a high height, a hydrolysis reaction is started from magnesium hydride charged in the cylinder having the highest height, hydrogen is generated, and water or water is generated. When the acidic solution continues to be dropped, water or acidic solution overflows from the highest cylinder, and water or acidic solution is supplied to the next highest cylinder to generate hydrogen. It is described that it becomes possible to stably generate hydrogen while suppressing fluctuations in the generation amount.
特開2013-133232号公報JP 2013-133232 A
 ところで、例えば、水素化マグネシウムに水を滴下させ、加水分解反応で水素が発生すると、副生成物として水酸化マグネシウムが生成されることになる。 By the way, for example, when water is dropped into magnesium hydride and hydrogen is generated by a hydrolysis reaction, magnesium hydroxide is generated as a by-product.
 このため、水素化マグネシウムが装填された筒部に水を滴下させると、充填された水素化マグネシウムの表面上には、水の滴下によって生成された水酸化マグネシウムの層が形成される。 Therefore, when water is dropped on the cylindrical portion loaded with magnesium hydride, a layer of magnesium hydroxide generated by the dropping of water is formed on the surface of the filled magnesium hydride.
 そうすると、後続の水の滴下の際に、水素化マグネシウムの加水分解反応が阻害され、効率よく、水素を発生できないおそれがある。 Then, at the time of the subsequent dropping of water, the hydrolysis reaction of magnesium hydride is hindered, and there is a possibility that hydrogen cannot be generated efficiently.
 本発明は、このような事情に鑑みてなされたものであり、水素の発生量の制御が行いやすく、効率よく水素を発生させることが可能な水素発生装置、及び、水素発生装置で発生した水素を用いた発電システムを提供することを目的とする。 The present invention has been made in view of such circumstances, and it is easy to control the amount of generated hydrogen, and a hydrogen generator capable of efficiently generating hydrogen, and hydrogen generated by the hydrogen generator. It is an object of the present invention to provide a power generation system using the same.
 本発明は、上記目的を達成するために、以下の構成によって把握される。
(1)本発明の発電システムは、水素を用いた発電システムであって、前記発電システムは、発電装置と、前記発電装置に供給する前記水素を発生させる水素発生装置と、を備え、前記水素発生装置は、水溶液を貯蔵する水溶液貯蔵部と、前記水溶液との反応で前記水素の発生が可能な状態のマグネシウムを含む原料を貯蔵する原料貯蔵部と、前記原料貯蔵部から前記水溶液貯蔵部に向けて前記原料を供給する原料供給機構と、を備える。
The present invention is grasped by the following constitutions in order to achieve the above object.
(1) A power generation system according to the present invention is a power generation system using hydrogen, the power generation system including: a power generation device; and a hydrogen generation device that generates the hydrogen supplied to the power generation device. The generator is an aqueous solution storage unit that stores an aqueous solution, a raw material storage unit that stores a raw material containing magnesium in a state where the hydrogen can be generated by the reaction with the aqueous solution, and from the raw material storage unit to the aqueous solution storage unit. And a raw material supply mechanism for supplying the raw material to the raw material.
(2)上記(1)の構成において、前記水溶液貯蔵部は、前記水溶液より上側となる前記水溶液の存在しない上部空間を備え、前記原料供給機構は、前記上部空間側から前記水溶液に向けて前記原料を供給するように設けられており、前記水素発生装置は、前記上部空間の圧力を測定する圧力測定装置と、前記圧力測定装置の圧力の測定結果に基づいて、前記原料供給機構を駆動させ、前記水溶液に向けて供給する前記原料の供給量を制御する制御部と、を備える。 (2) In the configuration of (1), the aqueous solution storage unit includes an upper space above the aqueous solution, in which the aqueous solution does not exist, and the raw material supply mechanism moves the aqueous solution from the upper space side toward the aqueous solution. It is provided so as to supply a raw material, the hydrogen generator is a pressure measuring device that measures the pressure of the upper space, and based on the pressure measurement result of the pressure measuring device, drives the raw material supply mechanism And a control unit for controlling a supply amount of the raw material supplied toward the aqueous solution.
(3)上記(2)の構成において、前記水溶液貯蔵部は、前記上部空間の下側となる前記水溶液の存在する下部空間と、前記下部空間内を上下に仕切る仕切部と、前記仕切部より下側に設けられ、前記水溶液を排水する排水口と、前記仕切部より上側に設けられ、前記水溶液を供給する給水口と、を備え、前記仕切部は、前記原料と前記水溶液との反応で生成した副生成物が前記仕切部より下側に沈殿可能に設けられた複数の貫通孔を備える。 (3) In the configuration of (2), the aqueous solution storage unit includes a lower space in which the aqueous solution is located below the upper space, a partition unit for vertically partitioning the lower space, and a partition unit. A drain port provided on the lower side for draining the aqueous solution, and a water supply port provided above the partition section and supplying the aqueous solution, are provided, and the partition section is formed by a reaction between the raw material and the aqueous solution. A plurality of through-holes are provided so that generated by-products can be settled below the partition.
(4)上記(3)の構成において、前記水素発生装置は、前記排水口からの前記水溶液の排水を制御する排水制御弁と、前記給水口からの前記水溶液の給水を制御する給水制御弁と、を備え、前記制御部は、前記水溶液に向けて供給する前記原料の供給量に基づいて、前記排水制御弁、及び、前記給水制御弁を制御する。 (4) In the configuration of (3), the hydrogen generator includes a drainage control valve that controls drainage of the aqueous solution from the drainage port, and a water supply control valve that controls water supply of the aqueous solution from the water supply port. The control unit controls the drainage control valve and the water supply control valve based on a supply amount of the raw material supplied toward the aqueous solution.
(5)上記(1)から(4)のいずれか1つの構成において、前記発電システムは、前記水素が前記水溶液貯蔵部から前記発電装置に至るまでの間に設けられ、前記水溶液貯蔵部で発生した前記水素を貯蔵できるバッファ機構を備える。 (5) In any one of the above constitutions (1) to (4), the power generation system is provided between the aqueous solution storage section and the power generation device, and the hydrogen is generated in the aqueous solution storage section. A buffer mechanism capable of storing the hydrogen.
(6)上記(5)の構成において、前記発電システムは、前記水素が前記水溶液貯蔵部から前記発電装置及び前記バッファ機構に至るまでの間に設けられた純化機構を備え、前記純化機構は、第1脱水部及び第1不純物気体除去部を有する第1純化部と、第2脱水部及び第2不純物気体除去部を有する第2純化部と、を備え、前記第1純化部を通過させて前記水素を前記発電装置又は前記バッファ機構に供給するときに前記第2純化部の前記第2脱水部を乾燥処理可能とされ、前記第2純化部を通過させて前記水素を前記発電装置又は前記バッファ機構に供給するときに前記第1純化部の前記第1脱水部を乾燥処理可能とされている。 (6) In the configuration of the above (5), the power generation system includes a purification mechanism provided between the aqueous solution storage unit and the power generation device and the buffer mechanism, wherein the purification mechanism includes: A first purifying unit having a first dehydrating unit and a first impurity gas removing unit, and a second purifying unit having a second dehydrating unit and a second impurity gas removing unit, and passing through the first purifying unit. When supplying the hydrogen to the power generation device or the buffer mechanism, the second dehydration unit of the second purification unit can be dried, and the hydrogen is passed through the second purification unit and the hydrogen is supplied to the power generation device or the buffer unit. The first dehydrating section of the first purifying section can be dried when supplying to the buffer mechanism.
(7)上記(1)から(4)のいずれか1つの構成において、前記発電システムは、前記水素が前記水溶液貯蔵部から前記発電装置に至るまでの間に設けられた純化機構を備え、前記純化機構は、第1脱水部及び第1不純物気体除去部を有する第1純化部と、第2脱水部及び第2不純物気体除去部を有する第2純化部と、を備え、前記第1純化部を通過させて前記水素を前記発電装置に供給するときに前記第2純化部の前記第2脱水部が乾燥処理可能とされ、前記第2純化部を通過させて前記水素を前記発電装置に供給するときに前記第1純化部の前記第1脱水部が乾燥処理可能とされている。 (7) In the configuration according to any one of (1) to (4), the power generation system includes a purification mechanism provided between the aqueous solution storage unit and the power generation device, wherein the hydrogen is provided. The purifying mechanism includes: a first purifying unit having a first dehydrating unit and a first impurity gas removing unit; and a second purifying unit having a second dehydrating unit and a second impurity gas removing unit. When the hydrogen is supplied to the power generation device by passing through the second purification unit, the second dehydration unit of the second purification unit can be dried, and the hydrogen is supplied to the power generation device by passing through the second purification unit. Then, the first dehydrating section of the first purifying section can be dried.
(8)本発明の水素発生装置は、水溶液を貯蔵する水溶液貯蔵部と、前記水溶液との反応で水素の発生が可能な状態のマグネシウムを含む原料を貯蔵する原料貯蔵部と、前記原料貯蔵部から前記水溶液貯蔵部に向けて前記原料を供給する原料供給機構と、を備える。 (8) The hydrogen generator according to the present invention includes an aqueous solution storage unit that stores an aqueous solution, a raw material storage unit that stores a raw material containing magnesium capable of generating hydrogen by reacting with the aqueous solution, and the raw material storage unit. And a raw material supply mechanism for supplying the raw material to the aqueous solution storage unit.
(9)上記(8)の構成において、前記水溶液貯蔵部は、前記水溶液より上側となる前記水溶液の存在しない上部空間を備え、前記原料供給機構は、前記上部空間側から前記水溶液に向けて前記原料を供給するように設けられており、前記水素発生装置は、前記上部空間の圧力を測定する圧力測定装置と、前記圧力測定装置の圧力の測定結果に基づいて、前記原料供給機構を駆動させ、前記水溶液に向けて供給する前記原料の供給量を制御する制御部と、を備える。 (9) In the configuration of (8), the aqueous solution storage unit includes an upper space above the aqueous solution where the aqueous solution does not exist, and the raw material supply mechanism moves the aqueous solution from the upper space side toward the aqueous solution. It is provided so as to supply a raw material, the hydrogen generator is a pressure measuring device that measures the pressure of the upper space, and based on the pressure measurement result of the pressure measuring device, drives the raw material supply mechanism And a control unit for controlling a supply amount of the raw material supplied toward the aqueous solution.
(10)上記(9)の構成において、前記水溶液貯蔵部は、前記上部空間の下側となる前記水溶液の存在する下部空間と、前記下部空間内を上下に仕切る仕切部と、前記仕切部より下側に設けられ、前記水溶液を排水する排水口と、前記仕切部より上側に設けられ、前記水溶液を供給する給水口と、を備え、前記仕切部は、前記原料と前記水溶液との反応で生成した副生成物が前記仕切部より下側に沈殿可能に設けられた複数の貫通孔を備える。 (10) In the configuration of (9), the aqueous solution storage unit includes a lower space in which the aqueous solution exists below the upper space, a partition unit that vertically partitions the lower space, and a partition unit. A drain port provided on the lower side for draining the aqueous solution, and a water supply port provided above the partition section and supplying the aqueous solution, are provided, and the partition section is formed by a reaction between the raw material and the aqueous solution. A plurality of through-holes are provided so that generated by-products can be settled below the partition.
(11)上記(10)の構成において、前記水素発生装置は、前記排水口から排水される前記水溶液の排水量を制御する排水制御弁と、前記給水口から給水される前記水溶液の給水量を制御する給水制御弁と、を備え、前記制御部は、前記水溶液に向けて供給する前記原料の供給量に基づいて、前記排水制御弁、及び、前記給水制御弁を制御する。 (11) In the configuration of (10), the hydrogen generator includes a drainage control valve that controls a drainage amount of the aqueous solution that is drained from the drainage port, and controls a water supply amount of the aqueous solution that is supplied from the water supply port. A water supply control valve for controlling the drainage control valve and the water supply control valve based on a supply amount of the raw material supplied toward the aqueous solution.
 本発明によれば、水素の発生量の制御が行いやすく、効率よく水素を発生させることが可能な水素発生装置、及び、水素発生装置で発生した水素を用いた発電システムを提供することができる。 According to the present invention, it is possible to provide a hydrogen generator capable of easily controlling the amount of generated hydrogen and efficiently generating hydrogen, and a power generation system using hydrogen generated by the hydrogen generator. .
本発明に係る第1実施形態の発電システムを説明するための断面図である。It is a sectional view for explaining the power generation system of a 1st embodiment concerning the present invention. 本発明に係る第2実施形態の発電システムを説明するための断面図である。It is a sectional view for explaining the power generation system of the second embodiment according to the present invention.
 以下、添付図面を参照して、本発明を実施するための形態(以下、実施形態)について詳細に説明する。
 なお、実施形態の説明の全体を通して同じ要素には同じ番号を付している。
Hereinafter, embodiments for implementing the present invention (hereinafter, embodiments) will be described in detail with reference to the accompanying drawings.
Note that the same elements are denoted by the same reference numerals throughout the description of the embodiments.
(第1実施形態)
 図1は、本発明に係る第1実施形態の発電システム1を説明するための断面図である。
 なお、以下では、発電システム1の説明を行いながら、本発明に係る第1実施形態の水素発生装置2の説明も行う。
(1st Embodiment)
FIG. 1 is a cross-sectional view illustrating a power generation system 1 according to a first embodiment of the present invention.
In the following, while describing the power generation system 1, the description of the hydrogen generator 2 of the first embodiment according to the present invention is also provided.
 図1に示すように、発電システム1は、発電装置(図示せず)と、これから詳細に説明する、発電装置に供給する水素を発生させる水素発生装置2と、を備えている。 As shown in FIG. 1, the power generation system 1 includes a power generation device (not shown) and a hydrogen generation device 2 for generating hydrogen to be supplied to the power generation device, which will be described in detail hereinafter.
 図示しない発電装置は、例えば、本実施形態では、水素を燃料としてタービンを駆動させる一般的なタービン発電機を想定している。
 ただし、後述する別の実施形態のように、図示しない発電装置は燃料電池であってもよい。
The power generation device (not shown) is, for example, a general turbine generator that drives a turbine using hydrogen as a fuel in the present embodiment.
However, as in another embodiment described later, the power generation device (not shown) may be a fuel cell.
 水素発生装置2は、水溶液11を貯蔵する水溶液貯蔵部10と、水溶液11との反応で水素の発生が可能な状態のマグネシウムを含む原料21を貯蔵する原料貯蔵部20と、原料貯蔵部20から水溶液貯蔵部10に向けて原料21を供給する原料供給機構30と、を備えている。 The hydrogen generator 2 includes an aqueous solution storage unit 10 that stores an aqueous solution 11, a raw material storage unit 20 that stores a raw material 21 containing magnesium in a state where hydrogen can be generated by a reaction with the aqueous solution 11, and a raw material storage unit 20. A raw material supply mechanism 30 that supplies the raw material 21 to the aqueous solution storage unit 10.
 水溶液11は、水であってもよいし、アンモニア等を含有するアルカリ性の水溶液であってもよいし、塩酸や硝酸等の酸性の水溶液であってもよい。
 なお、発電システム1を稼働させるときのランニングコストの面では、水溶液11は水である方が有利であり、一方、原料21との反応性の面では、水溶液11はアンモニウムイオンを含むアルカリ性の水溶液、もしくは塩酸等の酸性の水溶液の方が有利である。
The aqueous solution 11 may be water, an alkaline aqueous solution containing ammonia or the like, or an acidic aqueous solution such as hydrochloric acid or nitric acid.
In terms of running cost when operating the power generation system 1, it is more advantageous that the aqueous solution 11 is water, while in terms of reactivity with the raw material 21, the aqueous solution 11 is an alkaline aqueous solution containing ammonium ions. Alternatively, an acidic aqueous solution such as hydrochloric acid is more advantageous.
 原料21は、水溶液11との反応性を高めるため、平均粒子径が小さい粒子状(マイクロ粒子やナノ粒子の状態)であることが好ましく、例えば、水溶液11との反応で水素の発生が可能な状態のマグネシウムとしては、金属マグネシウム、水素化マグネシウム等があげられる。 The raw material 21 is preferably in the form of particles having a small average particle diameter (in a state of microparticles or nanoparticles) in order to enhance the reactivity with the aqueous solution 11. For example, hydrogen can be generated by the reaction with the aqueous solution 11. Examples of magnesium in a state include metallic magnesium and magnesium hydride.
 ただし、粒子と言っても形状が球状であることを限定するものではなく、各粒子の最大外径を平均したときの平均外径がマイクロメータオーダーの場合はマイクロ粒子であり、マイクロメータオーダーよりも小さい場合(サブミクロン含む)はナノ粒子であるものと解されるべきである。 However, it does not mean that the shape of the particles is spherical even if it is referred to as particles, and when the average outer diameter when averaging the maximum outer diameter of each particle is on the order of micrometer, it is a microparticle, and it is more than the micrometer order. If is also small (including submicron), it should be interpreted as a nanoparticle.
 なお、原料21は金属マグネシウムと水素化マグネシウムの混合されたものであってもよい。
 また、原料21には、金属マグネシウムや水素化マグネシウムを生成するために用いた材料が金属マグネシウムや水素化マグネシウムにならずに残留して一部含まれているものであってもよい。
The raw material 21 may be a mixture of metallic magnesium and magnesium hydride.
In addition, the raw material 21 may include a material used for producing metallic magnesium or magnesium hydride, which is partially left as it is instead of metallic magnesium or magnesium hydride.
 水溶液貯蔵部10は、原料21と水溶液11が反応する反応室としても機能し、水溶液11及び反応で発生した水素等が外部に漏洩しない密閉構造の容器を構成するようになっている。 (4) The aqueous solution storage unit 10 also functions as a reaction chamber in which the raw material 21 and the aqueous solution 11 react, and constitutes a container having a closed structure in which the aqueous solution 11 and hydrogen generated by the reaction do not leak to the outside.
 水溶液貯蔵部10には、水溶液11より上側となる水溶液11の存在しない上部空間USが形成されるように、水溶液11の給水が行われることで、水溶液貯蔵部10は、水溶液11より上側となる水溶液11の存在しない上部空間USを備えるものになっている。 The water supply of the aqueous solution 11 is performed so that the upper space US in which the aqueous solution 11 which is higher than the aqueous solution 11 does not exist is formed in the aqueous solution storage unit 10, so that the aqueous solution storage unit 10 is positioned above the aqueous solution 11. An upper space US in which the aqueous solution 11 does not exist is provided.
 具体的に上部空間USを形成する構成について説明すると、まず、水溶液貯蔵部10は、水溶液11の水面LSFの上限位置を決めるために設けられ、水面LSFを検知する上側レベルセンサ12と、水溶液11の水面LSFの下限位置を決めるために設けられ、水面LSFを検知する下側レベルセンサ13と、を備えている。 Specifically, the configuration for forming the upper space US will be described. First, the aqueous solution storage unit 10 is provided to determine the upper limit position of the water surface LSF of the aqueous solution 11, and the upper level sensor 12 for detecting the water surface LSF, and the aqueous solution 11 And a lower level sensor 13 for detecting the water surface LSF.
 また、水溶液貯蔵部10は、上部空間USの下側となる水溶液11の存在する下部空間LSと、下部空間LS内を上下に仕切る仕切部14と、仕切部14より下側に設けられ、水溶液11を排水する排水口15と、仕切部14より上側に設けられ、水溶液11を供給する給水口16と、を備えるとともに、仕切部14は、水溶液11が通過可能な複数の貫通孔14Aを備えている。 Further, the aqueous solution storage unit 10 is provided with a lower space LS in which the aqueous solution 11 below the upper space US exists, a partition unit 14 for vertically partitioning the lower space LS, and a lower portion of the partition unit 14. The partition 14 has a plurality of through-holes 14A through which the aqueous solution 11 can pass, while a drain port 15 for draining the aqueous solution 11 and a water supply port 16 provided above the partition 14 for supplying the aqueous solution 11 are provided. ing.
 そして、水素発生装置2は、排水口15に接続され、水溶液貯蔵部10内の水溶液11を排水するための排水ライン15A(排水配管ともいう。)と、排水口15寄りの排水ライン15A上に設けられ、排水口15からの水溶液11の排水(排水の有無)を制御する排水制御弁15Bと、を備えている。 The hydrogen generator 2 is connected to a drain port 15 for draining the aqueous solution 11 in the aqueous solution storage unit 10 (also referred to as drain pipe) and a drain line 15A near the drain port 15. A drain control valve 15B for controlling the drainage (whether or not there is drainage) of the aqueous solution 11 from the drain outlet 15.
 同様に、水素発生装置2は、給水口16に接続され、水溶液貯蔵部10内に新しい水溶液11を供給するための給水ライン16A(給水配管ともいう。)と、給水口16寄りの給水ライン16A上に設けられ、給水口16からの水溶液11の給水(給水の有無)を制御する給水制御弁16Bと、を備えている。 Similarly, the hydrogen generator 2 is connected to the water supply port 16, and supplies a new water solution 11 into the aqueous solution storage section 10 (also referred to as a water supply pipe), and a water supply line 16A near the water supply port 16. A water supply control valve 16 </ b> B that is provided on the upper side and controls water supply (whether or not water is supplied) of the aqueous solution 11 from the water supply port 16.
 このため、後ほど説明する排給水する所定のタイミングになると、図示しない水素発生装置2の制御部(以下、単に制御部という。)が、まず、排水制御弁15Bを開にして、水溶液貯蔵部10内の水溶液11の排水を行った後、排水制御弁15Bを閉にするとともに、給水制御弁16Bを開にして水溶液11の水面LSFが上側レベルセンサ12と下側レベルセンサ13との間に位置するように、水溶液貯蔵部10内に水溶液11を給水して給水制御弁16Bを、再び、閉にする。 For this reason, at a predetermined timing for discharging and supplying water, which will be described later, a control unit (hereinafter, simply referred to as a control unit) of the hydrogen generator 2 (not shown) first opens the drainage control valve 15B to open the aqueous solution storage unit 10. After draining the aqueous solution 11 in the inside, the drainage control valve 15B is closed, and the water supply control valve 16B is opened to position the water surface LSF of the aqueous solution 11 between the upper level sensor 12 and the lower level sensor 13. Then, the aqueous solution 11 is supplied into the aqueous solution storage unit 10, and the water supply control valve 16B is closed again.
 例えば、排水時には、下側レベルセンサ13が水溶液11の水面LSFを検知したのを基準にして、仕切部14のところまで水溶液11の水面LSFが低下する程度の水溶液11の排水を行う。 For example, at the time of drainage, the aqueous solution 11 is drained to such an extent that the water level LSF of the aqueous solution 11 drops to the partition part 14 based on the detection of the water level LSF of the aqueous solution 11 by the lower level sensor 13.
 具体的には、排水制御弁15Bを開にしたときの単位時間当たりの排水量は、あらかじめ調べておくことができるため、下側レベルセンサ13が水溶液11の水面LSFを検知したのをスタート点に仕切部14のところまで水溶液11の水面LSFが低下するのに必要な排水量の水溶液11の排水に係る時間が経過したことをもって、排水制御弁15Bを閉にすればよい。 Specifically, since the drainage amount per unit time when the drainage control valve 15B is opened can be checked in advance, the start point is determined when the lower level sensor 13 detects the water level LSF of the aqueous solution 11. The drainage control valve 15B may be closed when the time required for draining the aqueous solution 11 of the amount required to lower the water surface LSF of the aqueous solution 11 to the partition 14 has elapsed.
 そして、その水溶液11の排水が終わった後、水溶液11の給水を開始し、下側レベルセンサ13が水溶液11の水面LSFを検知したのを基準にして、水溶液11の水面LSFが上側レベルセンサ12と下側レベルセンサ13との間に位置する程度の水溶液11の給水を行ったところで給水を終了するようにし、水溶液11の水面LSFが上側レベルセンサ12と下側レベルセンサ13との間に位置することで、水溶液貯蔵部10が水溶液11より上側となる水溶液11の存在しない上部空間USを備えるものとされている。 After the drainage of the aqueous solution 11 is completed, the water supply of the aqueous solution 11 is started, and the water level LSF of the aqueous solution 11 is changed to the upper level sensor 12 based on the detection of the water level LSF of the aqueous solution 11 by the lower level sensor 13. When the water supply of the aqueous solution 11 is performed so as to be positioned between the upper level sensor 13 and the lower level sensor 13, the water level is stopped between the upper level sensor 12 and the lower level sensor 13. By doing so, the aqueous solution storage unit 10 has an upper space US above the aqueous solution 11 where the aqueous solution 11 does not exist.
 具体的には、給水制御弁16Bを開にしたときの単位時間当たりの給水量は、あらかじめ調べておくことができるため、下側レベルセンサ13が水溶液11の水面LSFを検知したのをスタート点に水溶液11の水面LSFが上側レベルセンサ12と下側レベルセンサ13との間に位置するのに必要な給水量の水溶液11の給水に係る時間が経過したことをもって、給水制御弁16Bを閉にすればよい。 Specifically, since the amount of water supply per unit time when the water supply control valve 16B is opened can be checked in advance, it is determined that the lower level sensor 13 has detected the water level LSF of the aqueous solution 11 at the start point. The water supply control valve 16B is closed when the time required for the supply of the aqueous solution 11 of the water supply amount necessary for the water level LSF of the aqueous solution 11 to be located between the upper level sensor 12 and the lower level sensor 13 has elapsed. do it.
 なお、排給水する所定のタイミング以外のときに、上側レベルセンサ12が水溶液11の水面LSFを検知すると、図示しない制御部は、排水制御弁15Bを開にして、水溶液11の水面LSFが上側レベルセンサ12と下側レベルセンサ13との間に位置する程度の水溶液11の排水を行った後、排水制御弁15Bを閉にする。 When the upper level sensor 12 detects the water level LSF of the aqueous solution 11 at a time other than the predetermined timing of drainage, the control unit (not shown) opens the drainage control valve 15B to raise the water level LSF of the aqueous solution 11 to the upper level. After draining the aqueous solution 11 to such an extent that it is located between the sensor 12 and the lower level sensor 13, the drain control valve 15B is closed.
 逆に、排給水する所定のタイミング以外のときに、下側レベルセンサ13が水溶液11の水面LSFを検知すると、図示しない制御部は、給水制御弁16Bを開にして、水溶液11の水面LSFが上側レベルセンサ12と下側レベルセンサ13との間に位置する程度の水溶液11の給水を行った後、給水制御弁16Bを閉にする。 Conversely, when the lower level sensor 13 detects the water level LSF of the aqueous solution 11 at a time other than the predetermined timing of drainage, the control unit (not shown) opens the water supply control valve 16B, and the water level LSF of the aqueous solution 11 becomes lower. After the water supply of the aqueous solution 11 is performed so as to be located between the upper level sensor 12 and the lower level sensor 13, the water supply control valve 16B is closed.
 そして、上述した仕切部14の複数の貫通孔14Aの内径が原料21と水溶液11との反応で生成する水酸化マグネシウム等の副生成物の通過を妨げない大きさとされている。 The inner diameter of the plurality of through-holes 14A of the partition 14 is set to a size that does not prevent the passage of by-products such as magnesium hydroxide generated by the reaction between the raw material 21 and the aqueous solution 11.
 つまり、仕切部14は、原料21と水溶液11との反応で生成した副生成物が仕切部14より下側に沈殿可能に設けられた複数の貫通孔14Aを備えるものになっている。 That is, the partition section 14 is provided with a plurality of through holes 14A provided so that by-products generated by the reaction between the raw material 21 and the aqueous solution 11 can be settled below the partition section 14.
 このため、仕切部14より下側に設けられた排水口15からは、副生成物の含有濃度の高い水溶液11が排水される。 Therefore, the aqueous solution 11 having a high concentration of by-products is drained from the drain port 15 provided below the partition section 14.
 なお、仕切部14の複数の貫通孔14Aの内径は、仮に、原料21が仕切部14より下側に沈殿して、仕切部14より下側で水素が発生したときに、その水素による気泡が邪魔されずに仕切部14より上側に通過できる、又は、仕切部14の下面に一時的に水素溜まりができたとしても、自然と仕切部14の上側に移動することになる程度の大きさにもなっている。 The inner diameter of the plurality of through-holes 14A of the partition 14 is such that when the raw material 21 precipitates below the partition 14 and hydrogen is generated below the partition 14, bubbles due to the hydrogen are generated. The size is such that it can pass above the partition 14 without disturbing, or even if hydrogen accumulates temporarily on the lower surface of the partition 14, it naturally moves to the upper side of the partition 14. Has also become.
 一方、図1に示すように、水素発生装置2は、仕切部14より上側の水溶液11を攪拌する攪拌機構40を備えている。 On the other hand, as shown in FIG. 1, the hydrogen generator 2 includes a stirring mechanism 40 for stirring the aqueous solution 11 above the partition 14.
 具体的には、攪拌機構40は、水溶液貯蔵部10の上部の壁部の外側に設けられたモータ41と、仕切部14より上側の水溶液11内に配置され、水溶液11を攪拌するプロペラ42と、モータ41の回転力をプロペラ42に伝達し、水溶液11を攪拌するようにプロペラ42を回転させるシャフト43と、を備えている。
 なお、シャフト43が水溶液貯蔵部10内に挿入される挿入部は、回転を阻害せず、機密を維持可能な機密構造とされている。
Specifically, the stirring mechanism 40 includes a motor 41 provided outside the upper wall of the aqueous solution storage unit 10, and a propeller 42 disposed in the aqueous solution 11 above the partition 14 and agitating the aqueous solution 11. And a shaft 43 for transmitting the rotational force of the motor 41 to the propeller 42 and rotating the propeller 42 so as to agitate the aqueous solution 11.
The insertion portion into which the shaft 43 is inserted into the aqueous solution storage unit 10 has a confidential structure that does not hinder rotation and can maintain confidentiality.
 この攪拌機構40は、水溶液11と反応していない原料21が仕切部14上に溜まるのを抑制するために設けられているものであり、後ほど説明するように、本発明の構成によれば、原料21と水溶液11の反応効率が高いため、必ずしも必要というわけではない。 The stirring mechanism 40 is provided to prevent the raw material 21 that has not reacted with the aqueous solution 11 from accumulating on the partition part 14. As described later, according to the configuration of the present invention, Since the reaction efficiency between the raw material 21 and the aqueous solution 11 is high, it is not always necessary.
 そして、図示しない制御部は、定期的に攪拌機構40を駆動させ、原料21と水溶液11の反応を促進する。
 なお、攪拌機構40を、常時、駆動させるようにしてもよいが、定期的に駆動させることで、仕切部14より下側に副生成物が沈殿しやすくすることができ、仕切部14より上側の水溶液11中の副生成物の含有濃度を低下させ、原料21と水溶液11の反応効率を高めることができる。
The control unit (not shown) drives the stirring mechanism 40 periodically to promote the reaction between the raw material 21 and the aqueous solution 11.
The stirring mechanism 40 may be driven at all times. However, by driving the stirring mechanism 40 at regular intervals, the by-products can be easily precipitated below the partition 14, and the stirring mechanism 40 can be driven above the partition 14. The concentration of by-products in the aqueous solution 11 can be reduced, and the reaction efficiency between the raw material 21 and the aqueous solution 11 can be increased.
 また、仕切部14が設けられていることで、攪拌機構40を駆動させたときに、仕切部14よりも下側に沈殿した副生成物が巻き上げられて、仕切部14より上側の水溶液11中の副生成物の含有濃度が上昇することを抑制することができるため、攪拌機構40の駆動により、原料21と水溶液11の反応効率が低下するのを抑制することができる。 In addition, by providing the partition portion 14, when the stirring mechanism 40 is driven, by-products precipitated below the partition portion 14 are wound up, and the aqueous solution 11 above the partition portion 14 is removed. Since it is possible to suppress an increase in the concentration of the by-product, the driving efficiency of the stirring mechanism 40 can suppress a decrease in the reaction efficiency of the raw material 21 and the aqueous solution 11.
 一方、水素発生装置2は、上部空間USに連通するように水溶液貯蔵部10に接続された緊急排気ライン50(緊急排気配管ともいう。)と、緊急排気ライン50の上部空間USに連通する連通部寄りの位置に設けられ、緊急排気の有無を制御する電磁弁51と、電磁弁51から水溶液貯蔵部10に至るまでの間の緊急排気ライン50上に接続され、上部空間USの圧力を測定する圧力測定装置52(例えば、デジタルマノスターゲージ)と、を備えている。 On the other hand, the hydrogen generator 2 has an emergency exhaust line 50 (also referred to as an emergency exhaust pipe) connected to the aqueous solution storage unit 10 so as to communicate with the upper space US, and a communication that communicates with the upper space US of the emergency exhaust line 50. A solenoid valve 51 which is provided at a position close to the head and controls the presence or absence of emergency exhaust, and is connected to an emergency exhaust line 50 between the solenoid valve 51 and the aqueous solution storage unit 10 to measure the pressure in the upper space US And a pressure measuring device 52 (for example, a digital Manostar gauge).
 したがって、上部空間USの圧力を測定する圧力測定装置52の圧力測定の結果が、異常に高い圧力を示した場合には、図示しない制御部が、電磁弁51を開にすることで上部空間US内の圧力が所定の第1圧力(求められる一次圧)になるように降圧制御を行う。
 なお、所定の第1圧力(求められる一次圧)になれば、図示しない制御部は、再び、電磁弁51を閉の状態にする。
Therefore, when the result of the pressure measurement by the pressure measuring device 52 that measures the pressure in the upper space US indicates an abnormally high pressure, the control unit (not shown) opens the solenoid valve 51 to open the upper space US. Pressure control is performed so that the internal pressure becomes a predetermined first pressure (a required primary pressure).
When the predetermined first pressure (the required primary pressure) is reached, the control unit (not shown) closes the solenoid valve 51 again.
 原料貯蔵部20は、上側に原料21の充填作業のときに開閉される作業扉22を有しているが、この作業扉22を閉めると、密閉構造の容器を構成するようになっている。 (4) The raw material storage unit 20 has a work door 22 that is opened and closed at the time of filling work of the raw material 21 on the upper side. When the work door 22 is closed, a container having a closed structure is configured.
 また、原料貯蔵部20は、作業扉22に隣接して上側に設けられ、貯蔵している原料21の表面までの距離を測定する距離測定器24(例えば、変位センサ)を備えており、この距離測定器24が測定する原料21までの距離が長くなることで原料21を追加する時期の把握ができるようになっている。 In addition, the raw material storage unit 20 includes a distance measuring device 24 (for example, a displacement sensor) that is provided on the upper side adjacent to the work door 22 and measures the distance to the surface of the stored raw material 21. By increasing the distance to the raw material 21 measured by the distance measuring device 24, it is possible to grasp the timing of adding the raw material 21.
 なお、原料21は水溶液11のように表面が必ずしもフラットに近い状態になるとは言えないが、後述する原料供給機構30の駆動によって、原料21全体に振動等が発生するため、比較的フラットな状態を保つことができ、距離測定器24が測定する原料21までの距離の測定結果は、原料21を追加する時期の一つの目安とすることができる。 Although the surface of the raw material 21 is not necessarily almost flat like the aqueous solution 11, the whole raw material 21 is vibrated by the driving of the raw material supply mechanism 30 described later. Can be maintained, and the measurement result of the distance to the raw material 21 measured by the distance measuring device 24 can be used as one measure of the time when the raw material 21 is added.
 ただし、後述するように、本実施形態では、水溶液11に供給された原料21の供給量を把握できるため、水溶液11に供給された原料21の供給量が所定の分量に到達したことを基準として原料21を追加するようにしてもよく、この場合、距離測定器24は不要となる。 However, as will be described later, in the present embodiment, since the supply amount of the raw material 21 supplied to the aqueous solution 11 can be grasped, the supply amount of the raw material 21 supplied to the aqueous solution 11 is based on reaching a predetermined amount. The raw material 21 may be added, and in this case, the distance measuring device 24 becomes unnecessary.
 そして、原料貯蔵部20は、底部の壁部の少なくとも一部が、水溶液貯蔵部10の上部の壁部の外側と密着するように設けられ、その密着している箇所の底部の壁部には、底部の壁部を貫通する原料21を水溶液貯蔵部10内に供給するための原料供給孔23が形成されている。 The raw material storage unit 20 is provided so that at least a part of the bottom wall part is in close contact with the outside of the upper wall part of the aqueous solution storage unit 10, and the bottom wall part of the closely contacted part is A raw material supply hole 23 for supplying the raw material 21 penetrating the bottom wall into the aqueous solution storage unit 10 is formed.
 また、水溶液貯蔵部10も原料貯蔵部20の原料供給孔23に対応する位置に、上部の壁部を貫通する原料21を受け入れるための原料受入孔17が形成されている。 {Circle around (4)} The aqueous solution storage unit 10 also has a raw material receiving hole 17 for receiving the raw material 21 penetrating the upper wall at a position corresponding to the raw material supply hole 23 of the raw material storage unit 20.
 一方、原料貯蔵部20内には、原料供給機構30が設けられている。
 具体的には、原料供給機構30は、原料貯蔵部20の上部の壁部の内側に設置されたモータ31と、原料貯蔵部20の底部の壁部の内側に隣接して配置され、原料21を原料供給孔23の位置に運搬する円板32と、モータ31の回転力を円板32に伝達し、円板32を回転させるシャフト33と、を備えている。
On the other hand, a raw material supply mechanism 30 is provided in the raw material storage unit 20.
Specifically, the raw material supply mechanism 30 includes a motor 31 installed inside the upper wall of the raw material storage unit 20 and a motor 31 disposed adjacent to the inside of the bottom wall of the raw material storage unit 20. And a shaft 33 that transmits the rotational force of the motor 31 to the disk 32 and rotates the disk 32.
 なお、図示を省略しているが、原料貯蔵部20は、原料供給機構30を内蔵させる作業のために、底部とそれよりも上側の部分が分離可能に構成され、それらを一体化して形成されたものになっている。 Although not shown, the raw material storage unit 20 is configured such that the bottom part and the upper part thereof are separable for the operation of incorporating the raw material supply mechanism 30, and are formed by integrating them. It has become.
 そして、図1の左側に点線枠で囲んで示す円板32の斜視図のように、円板32は、回転中心Oを挟んで対向し、回転中心Oからほぼ同じ距離離れた位置に位置する、一対の貫通孔(貫通孔32Aと貫通孔32B)が形成されている。 Then, as shown in a perspective view of the disk 32 surrounded by a dotted frame on the left side of FIG. 1, the disk 32 faces the rotation center O and is located at a position substantially the same distance from the rotation center O. , A pair of through holes (a through hole 32A and a through hole 32B) are formed.
 ここで、図1を見るとわかるように、原料貯蔵部20は、原料供給孔23に対応する部分の上側に、円板32の一部を受け入れる横方向に窪んだ凹部を備えており、その凹部に位置する円板32の貫通孔(貫通孔32B参照)の上側の開口に凹部の内面が近接して開口をほぼ塞いだ状態となるようになっている。 Here, as can be seen from FIG. 1, the raw material storage unit 20 includes a concave portion that is recessed in a lateral direction for receiving a part of the disk 32, above a part corresponding to the raw material supply hole 23. The inner surface of the concave portion is close to the upper opening of the through hole (see the through hole 32B) of the disk 32 located in the concave portion, so that the opening is almost closed.
 このため、上部空間US内の気体(主に水素)が原料貯蔵部20側に侵入しようとしても原料供給孔23上に円板32の貫通孔(貫通孔32B参照)の開口が位置するときには、その開口がほぼ閉塞状態であるため、上部空間US内の気体(主に水素)が原料貯蔵部20側に侵入できないようになっている。 For this reason, even if the gas (mainly hydrogen) in the upper space US tries to enter the raw material storage unit 20 side, when the opening of the through-hole (see the through-hole 32B) of the disk 32 is located above the raw material supply hole 23, Since the opening is almost closed, the gas (mainly, hydrogen) in the upper space US cannot enter the raw material storage unit 20 side.
 そして、その円板32の一部を受け入れる横方向に窪んだ凹部以外の位置に円板32の貫通孔(貫通孔32A、貫通孔32B)が位置(例えば、貫通孔32Aの位置参照)するときに、この貫通孔(貫通孔32A参照)内に原料21が入り込み、円板32が回転して円板32の一部を受け入れる横方向に窪んだ凹部の位置に貫通孔(貫通孔32A、貫通孔32B)が位置(貫通孔32Bの位置参照)するようになると、貫通孔(貫通孔32A、貫通孔32B)内に充填された原料21が、原料供給孔23及び原料受入孔17を介して、上部空間US側から水溶液11に向けて供給されることになる。 When the through-holes (through- holes 32A and 32B) of the disc 32 are located at positions other than the laterally concave recesses that receive a part of the disc 32 (for example, see the position of the through-hole 32A). The raw material 21 enters the through-hole (see the through-hole 32A), and the disc 32 rotates to receive a part of the disc 32, and the through-hole (through-hole 32A, When the hole 32B comes to the position (see the position of the through hole 32B), the raw material 21 filled in the through hole (the through hole 32A and the through hole 32B) passes through the raw material supply hole 23 and the raw material receiving hole 17. , From the upper space US side.
 また、本実施形態では、水素発生装置2が、原料貯蔵部20の原料21より上側の原料21の存在しない上側空間US1の圧力を測定する圧力測定装置61(例えば、デジタルマノスターゲージ)と、上側空間US1に気体(例えば、露点の低い窒素等の活性の低いガスや露点の低いヘリウム、アルゴン等の不活性ガス)を供給する気体供給ライン62(気体供給配管ともいう。)と、気体供給ライン62上に設けられ、上側空間US1への気体の供給の有無を制御する電磁弁63と、を備えている。 Further, in the present embodiment, the hydrogen generator 2 includes a pressure measuring device 61 (for example, a digital manostar gauge) that measures the pressure in the upper space US1 where the raw material 21 above the raw material 21 in the raw material storage unit 20 does not exist. A gas supply line 62 (also referred to as a gas supply pipe) for supplying a gas (for example, a low-activity gas such as nitrogen with a low dew point or an inert gas such as helium or argon with a low dew point) to the upper space US1; And a solenoid valve 63 provided on the line 62 for controlling whether or not gas is supplied to the upper space US1.
 そして、図示しない制御部は、上側空間US1の圧力測定装置61が測定する圧力の測定結果に基づいて、上側空間US1内の圧力が所定の圧力(例えば、水溶液貯蔵部10の上部空間US内の圧力と同程度の圧力)となるように、電磁弁63の開閉制御を行う。 The control unit (not shown) adjusts the pressure in the upper space US1 to a predetermined pressure (for example, in the upper space US of the aqueous solution storage unit 10) based on the pressure measurement result measured by the pressure measuring device 61 in the upper space US1. The opening / closing control of the electromagnetic valve 63 is performed so that the pressure becomes approximately equal to the pressure).
 なお、図示は省略しているが、水素発生装置2は、上側空間US1内の気体を排気する気体排気ライン(気体供給配管ともいう。)と、その気体排気ラインを通じて上側空間US1内の気体の排気の有無を制御する電磁弁も有している。 Although not shown, the hydrogen generator 2 includes a gas exhaust line (also referred to as a gas supply pipe) for exhausting the gas in the upper space US1 and a gas exhaust line in the upper space US1 through the gas exhaust line. It also has a solenoid valve that controls the presence or absence of exhaust.
 したがって、より正確には、図示しない制御部が、上述した電磁弁63と気体の排気の有無を制御する電磁弁とを制御することで上側空間US1内の圧力が所定の圧力(例えば、水溶液貯蔵部10の上部空間US内の圧力と同程度の圧力)となるように制御される。 Therefore, more precisely, the control unit (not shown) controls the above-described electromagnetic valve 63 and the electromagnetic valve that controls the presence or absence of gas exhaust so that the pressure in the upper space US1 becomes a predetermined pressure (for example, aqueous solution storage). (A pressure approximately equal to the pressure in the upper space US of the section 10).
 そして、上側空間US1が昇圧されていることで、より一層、上部空間US内の気体(主に水素)が原料貯蔵部20側に侵入するのを抑制できるとともに、円板32の一部を受け入れる横方向に窪んだ凹部以外の位置に円板32の貫通孔(貫通孔32A、貫通孔32B)が位置(例えば、貫通孔32Aの位置参照)するときに、この貫通孔(貫通孔32A、貫通孔32B)内に原料21が効率的に入り込む。 Since the upper space US1 is pressurized, the gas (mainly, hydrogen) in the upper space US can be further prevented from entering the raw material storage unit 20 side, and a part of the disk 32 is received. When the through holes (the through holes 32A and 32B) of the disk 32 are located at positions other than the recessed portions in the lateral direction (for example, see the position of the through hole 32A), the through holes (the through holes 32A and the through holes 32A). The raw material 21 efficiently enters the holes 32B).
 なお、本実施形態では、円板32の一部を受け入れる横方向に窪んだ凹部の位置に貫通孔(貫通孔32A、貫通孔32B)が位置するようになると、貫通孔(貫通孔32A、貫通孔32B)内に充填された原料21が、自重で原料供給孔23及び原料受入孔17を介して、上部空間US側から水溶液11に向けて落下することで水溶液11に供給されるものとしている。 In the present embodiment, when the through-holes (through- holes 32A and 32B) are located at the positions of the recesses that are recessed in the lateral direction for receiving a part of the disk 32, the through-holes (through-holes 32A and The raw material 21 filled in the hole 32B) is supplied to the aqueous solution 11 by dropping from the upper space US side toward the aqueous solution 11 through the raw material supply hole 23 and the raw material receiving hole 17 by its own weight. .
 しかし、水素発生装置2が、原料供給孔23及び原料受入孔17の直上に位置する貫通孔(貫通孔32A、貫通孔32B)に対して棒状体を挿入し、貫通孔(貫通孔32A、貫通孔32B)内の原料21を強制的に押し出す原料押出機構を備えるものとしてもよく、そうすることで、確実に原料21を水溶液11に向けて供給することが可能となる。 However, the hydrogen generator 2 inserts the rod into the through holes (through holes 32A and 32B) located immediately above the raw material supply holes 23 and the raw material receiving holes 17, and the through holes (through holes 32A, through holes 32A). A raw material extruding mechanism for forcibly extruding the raw material 21 in the hole 32B) may be provided, so that the raw material 21 can be reliably supplied to the aqueous solution 11.
 このような原料押出機構を設ける場合には、円板32の貫通孔(貫通孔32A、貫通孔32B)が原料供給孔23及び原料受入孔17の直上に位置するところで円板32の回転を停止し、その貫通孔(貫通孔32A、貫通孔32B)に棒状体を挿入して原料21を水溶液11に向けて供給した後、その貫通孔(貫通孔32A、貫通孔32B)から棒状体を抜いて、再び、円板32を回転させるという動作を繰り返すことになる。 When such a raw material pushing mechanism is provided, the rotation of the disk 32 is stopped where the through holes (the through holes 32A and 32B) of the disk 32 are located immediately above the raw material supply holes 23 and the raw material receiving holes 17. Then, after inserting a rod into the through holes (through holes 32A and 32B) and supplying the raw material 21 toward the aqueous solution 11, the rod is removed from the through holes (through holes 32A and 32B). Then, the operation of rotating the disk 32 is repeated again.
 なお、本実施形態では、先に説明したように、円板32の回転中心Oを挟んで対向し、回転中心Oからほぼ同じ距離離れた位置に、一対の貫通孔(貫通孔32Aと貫通孔32B)が形成されたものとしたが、これに限定される必要はない。 In the present embodiment, as described above, a pair of through-holes (through-hole 32A and through-hole 32A) are opposed to each other with the rotation center O of the disc 32 interposed therebetween and at substantially the same distance from the rotation center O. 32B) is formed, but it is not necessary to be limited to this.
 例えば、回転中心Oからほぼ同じ距離離れた位置に、同じサイズの貫通孔が円板32の回転方向に均等間隔で3つ(この場合、円板32の周方向で見た隣接する貫通孔間の角度ピッチは120°ピッチとなる。)を設けるようにしてもよく、回転方向に均等間隔で4つの貫通孔(この場合、円板32の周方向で見た隣接する貫通孔間の角度ピッチは90°ピッチとなる。)を設けるようにしてもよい。 For example, three through holes of the same size are provided at substantially the same distance from the rotation center O at equal intervals in the rotation direction of the disk 32 (in this case, between the adjacent through holes viewed in the circumferential direction of the disk 32). May be provided at an angle pitch of 120 °. In this case, four through-holes (in this case, the angular pitch between adjacent through-holes viewed in the circumferential direction of the disk 32) are equally spaced in the rotation direction. Is 90 ° pitch).
 また、貫通孔が1つであったとしても、その1つの貫通孔が円板32の一部を受け入れる横方向に窪んだ凹部以外の位置と、円板32の一部を受け入れる横方向に窪んだ凹部の位置と、に交互に位置するように制御すれば原料21を水溶液11に供給することが可能であるため問題はない。 Even if there is one through-hole, one through-hole is recessed in a lateral direction for receiving a part of the disk 32 and a position other than a concave part which is recessed in the horizontal direction for receiving a part of the disk 32. The raw material 21 can be supplied to the aqueous solution 11 by controlling it so that it is located alternately with the position of the concave portion, so that there is no problem.
 ただし、貫通孔の数が多くなると、円板32の一部を受け入れる横方向に窪んだ凹部が形成し難くなるので、貫通孔の数は4つ以下であることが好ましい。 However, if the number of through-holes increases, it becomes difficult to form a recess that is recessed in the lateral direction for receiving a part of the disk 32. Therefore, the number of through-holes is preferably four or less.
 また、貫通孔のサイズは、発生させる水素量に応じた原料21を供給できるサイズが選択されればよい。
 例えば、水素化マグネシウムの質量(1mol当たりの重さ)は26.32gであり、水素化マグネシウムの密度は2.36g/cm程度であるので、体積約11.2cm弱(約1mol)の水素化マグネシウムからなる原料21を水溶液11に投入すれば、標準状態で45リットル弱(約2mol)の水素が発生する。
The size of the through-hole may be selected so that the raw material 21 can be supplied according to the amount of hydrogen to be generated.
For example, the mass of the magnesium hydride (weight per 1 mol) is 26.32G, the density of the magnesium hydride is about 2.36 g / cm 3, a volume of about 11.2 cm 3 weak (about 1 mol) When the raw material 21 composed of magnesium hydride is charged into the aqueous solution 11, less than 45 liters (about 2 mol) of hydrogen is generated in a standard state.
 そして、10MW程度の発電を行う水素ガスタービン型の発電装置で約0.6憶m/年の水素を使用すると考えると、1分当たり約114mの水素が必要になり、これに対応する貫通孔を一例として考えれば、以下のようになる。 Then, assuming that about 0.6 billion m 3 / year of hydrogen is used in a hydrogen gas turbine type power generation apparatus that generates about 10 MW of power, about 114 m 3 of hydrogen is required per minute. Taking a through-hole as an example, it is as follows.
 例えば、円板32の厚さを約10cmとし、円板32の直径を約70cmとして、回転中心Oから約10cmオフセットした位置に、直径が約21cmの貫通孔の内側の端(貫通孔の中心は回転中心Oから約20.5cmオフセット)が位置するディメンジョンを考えれば、その貫通孔の容積は約3346cm弱となる。 For example, the thickness of the disc 32 is about 10 cm, the diameter of the disc 32 is about 70 cm, and the inner end of the through hole having a diameter of about 21 cm (center of the through hole) is located at about 10 cm offset from the rotation center O. (20.5 cm offset from the center of rotation O), the volume of the through hole is less than about 3346 cm 3 .
 このため、上記のようなディメンジョンの貫通孔には、約300mol(=3346[cm]/11.2[cm])程度の原料21が充填できることになり、この分量の水素化マグネシウムからなる原料21を水溶液11に投入したとすれば、約600mol(約13.4m)の水素が発生することになる。 For this reason, about 300 mol (= 3346 [cm 3 ] /11.2 [cm 3 ]) of the raw material 21 can be filled in the through-holes of the above dimensions, and this amount of magnesium hydride is used. Assuming that the raw material 21 is charged into the aqueous solution 11, about 600 mol (about 13.4 m 3 ) of hydrogen is generated.
 そうすると、本実施形態の貫通孔32A、貫通孔32Bのように、円板32に貫通孔を2つ設けた場合を考えれば、1回転当たりに2回貫通孔(貫通孔32Aが1回、貫通孔32Bが1回)から原料21が水溶液11に供給されることになるので、円板32を12秒で1回転(1分間5回転)させると、1分間当たりでは、10回水溶液11に向けて原料21が供給されることになり、十分に1分当たり114mを超える水素(約134m)を発生させるだけの原料21を供給することができる。 Then, considering the case where two through holes are provided in the disc 32 like the through hole 32A and the through hole 32B of the present embodiment, the through hole is formed twice per rotation (the through hole 32A is Since the raw material 21 is supplied to the aqueous solution 11 from the hole 32B once), if the disk 32 is rotated once in 12 seconds (5 rotations in one minute), the disk 21 is directed to the aqueous solution 11 ten times per minute. As a result, the raw material 21 is supplied, and the raw material 21 that can generate enough hydrogen (about 134 m 3 ) more than 114 m 3 per minute can be supplied.
 したがって、小型(約1万KW)の水素ガスタービン型の発電装置を想定する場合、円板32に2つの貫通孔を設けるようにすれば、その貫通孔の容積は、約3346cm弱でよいと考えられる。 Therefore, when assuming a small-sized (about 10,000 KW) hydrogen gas turbine type power generator, if the disk 32 is provided with two through holes, the volume of the through holes may be less than about 3346 cm 3. it is conceivable that.
 ただし、発電装置の発電量が大きくなれば、必要な原料21の供給量が増加することになるため、発電量が10倍程度の発電装置までを想定するとすれば、貫通孔の容積は、約33460cm弱までを想定しておくことが好ましい。 However, if the power generation amount of the power generation device increases, the supply amount of the necessary raw material 21 increases. Therefore, assuming a power generation device having a power generation amount of about 10 times, the volume of the through hole is approximately It is preferable to assume up to less than 33460 cm 3 .
 したがって、貫通孔の容積は、3000cmから35000cm程度とすることが好ましい。
 なお、このことを考えれば、原料供給機構30は、1分当たり、100mから1000m程度の水素を発生させることができる原料21を水溶液11に供給できることが好ましい。
Accordingly, the volume of the through-hole is preferably in a 35,000 3 order of 3000 cm 3.
Considering this, it is preferable that the raw material supply mechanism 30 can supply the raw material 21 capable of generating about 100 m 3 to about 1000 m 3 of hydrogen per minute to the aqueous solution 11.
 なお、上述した原料供給機構30は、あくまでも一例であって、原料供給機構30は、上部空間US側から水溶液11に向けて原料21を供給するように設けられ、原料21が上部空間US側から水溶液11に向けて供給できるような構成であればよい。 The above-described raw material supply mechanism 30 is merely an example, and the raw material supply mechanism 30 is provided so as to supply the raw material 21 from the upper space US toward the aqueous solution 11, and the raw material 21 is supplied from the upper space US side. What is necessary is just a structure which can be supplied toward the aqueous solution 11.
 一方、本実施形態では、図示しない制御部が、水溶液貯蔵部10の上部空間USの圧力を測定する圧力測定装置52の圧力の測定結果に基づいて、原料供給機構30のモータ31を駆動させ、上部空間US内の圧力が所定の第1圧力(求められる一次圧)となるように、水溶液11に向けて供給する原料21の供給量を制御するものになっている。 On the other hand, in the present embodiment, the control unit (not shown) drives the motor 31 of the raw material supply mechanism 30 based on the pressure measurement result of the pressure measurement device 52 that measures the pressure of the upper space US of the aqueous solution storage unit 10, The supply amount of the raw material 21 supplied to the aqueous solution 11 is controlled so that the pressure in the upper space US becomes a predetermined first pressure (a required primary pressure).
 このように、図示しない制御部が、水溶液11に向けて供給する原料21の供給量を制御しているため、図示しない制御部は、どれだけの原料21が水溶液11に供給されたのかを把握することが可能であり、水溶液11に供給されたトータルの原料21の供給量から水溶液11中の水酸化マグネシウム等の副生成物の含有濃度の増加を予想(例えば実験的に濃度変化のデータを採取しておき、そのデータに基づいて予想)することが可能である。
 なお、このような実験的な手法に代えて、副生成物の含有濃度の増加予想を理論計算で行うこともできる。
As described above, since the control unit (not shown) controls the supply amount of the raw material 21 supplied to the aqueous solution 11, the control unit (not shown) grasps how much raw material 21 is supplied to the aqueous solution 11. It is possible to predict an increase in the concentration of by-products such as magnesium hydroxide in the aqueous solution 11 from the total supply amount of the raw material 21 supplied to the aqueous solution 11 (for example, data of the concentration change is experimentally obtained). It is possible to collect them and make predictions based on the data).
Instead of such an experimental method, an increase in the concentration of by-products can be predicted by theoretical calculation.
 そこで、図示しない制御部は、水溶液11に向けて供給する原料21の供給量に基づいて、先ほど説明したように、排水制御弁15B、及び、給水制御弁16Bを制御し、本実施形態では、原料21と水溶液11の反応効率が低下しないように、水溶液11中の副生成物の含有濃度が高くなり過ぎないようにする管理を行っている。 Therefore, the control unit (not shown) controls the drainage control valve 15B and the water supply control valve 16B based on the supply amount of the raw material 21 to be supplied to the aqueous solution 11, as described above. Management is performed so that the concentration of by-products in the aqueous solution 11 does not become too high so that the reaction efficiency of the raw material 21 and the aqueous solution 11 does not decrease.
 一方、図1に示すように、水溶液貯蔵部10は、上部空間US内の水素を発電装置(図示せず)に向けて排出するための水素排出口18を備えており、発電システム1は、水素排出口18に接続され、水溶液貯蔵部10で発生した水素を発電装置(図示せず)に供給する水素供給部70(水素供給主配管ともいう。)を備えている。 On the other hand, as shown in FIG. 1, the aqueous solution storage unit 10 includes a hydrogen discharge port 18 for discharging hydrogen in the upper space US toward a power generation device (not shown). A hydrogen supply unit 70 (also referred to as a hydrogen supply main pipe) connected to the hydrogen discharge port 18 and supplying hydrogen generated in the aqueous solution storage unit 10 to a power generation device (not shown) is provided.
 また、発電システム1は、水素供給部70上の水素排出口18寄りの位置に設けられ、水素排出口18からの水素の排出の有無を制御する電磁弁71と、電磁弁71よりも水素排出口18から離れた水素供給部70上に設けられた減圧弁72と、減圧弁72よりも更に水素排出口18から離れた水素供給部70上に設けられた電磁弁73と、を備えている。 The power generation system 1 is provided at a position near the hydrogen discharge port 18 on the hydrogen supply unit 70, and controls an electromagnetic valve 71 that controls whether or not hydrogen is discharged from the hydrogen discharge port 18. It has a pressure reducing valve 72 provided on the hydrogen supply unit 70 remote from the outlet 18, and an electromagnetic valve 73 provided on the hydrogen supply unit 70 further away from the hydrogen discharge port 18 than the pressure reducing valve 72. .
 なお、減圧弁72は、上部空間US内の所定の第1圧力(求められる一次圧)から図示しない発電装置に供給するための所定の第2圧力(求められる二次圧)に水素の圧力を減圧するためのものである。 The pressure reducing valve 72 changes the pressure of hydrogen from a predetermined first pressure (determined primary pressure) in the upper space US to a predetermined second pressure (determined secondary pressure) for supplying to a power generator (not shown). It is for reducing the pressure.
 さらに、発電システム1は、図示しない発電装置に水素を供給可能に貯蔵するバッファ機構3を備えている。 (4) The power generation system 1 further includes a buffer mechanism 3 for storing hydrogen in a power generation device (not shown) so that the hydrogen can be supplied.
 具体的には、バッファ機構3は、バッファタンク80と、一端が水素供給部70の減圧弁72と電磁弁73の間の位置に接続されるとともに他端がバッファタンク80に接続され、水素をバッファタンク80に引き込むための引込分岐ライン81(分岐配管ともいう。)と、引込分岐ライン81上に設けられた昇圧装置82と、昇圧装置82とバッファタンク80の間の引込分岐ライン81上に設けられた電磁弁83と、を備えている。 More specifically, the buffer mechanism 3 is connected to the buffer tank 80 at one end at a position between the pressure reducing valve 72 and the solenoid valve 73 of the hydrogen supply unit 70 and at the other end to the buffer tank 80 to store hydrogen. A drop branch line 81 (also referred to as a branch pipe) for drawing into the buffer tank 80, a booster 82 provided on the drop branch line 81, and a drop branch line 81 between the booster 82 and the buffer tank 80. And an electromagnetic valve 83 provided.
 また、バッファ機構3は、一端がバッファタンク80に接続されるとともに他端が電磁弁73よりも図示しない発電装置側となる水素供給部70に接続され、水素をバッファタンク80から水素供給部70に戻すための返送ライン84(返送配管ともいう。)と、返送ライン84上に設けられた電磁弁85と、電磁弁85と水素供給部70の間の返送ライン84上に設けられた減圧弁86と、を備えている。 The buffer mechanism 3 has one end connected to the buffer tank 80 and the other end connected to the hydrogen supply unit 70 on the power generation device side (not shown) with respect to the solenoid valve 73, and supplies hydrogen from the buffer tank 80 to the hydrogen supply unit 70. Return line 84 (also referred to as a return pipe) for returning to the above, an electromagnetic valve 85 provided on the return line 84, and a pressure reducing valve provided on the return line 84 between the electromagnetic valve 85 and the hydrogen supply unit 70 86.
 なお、減圧弁86も先ほどの減圧弁72と同様に、バッファタンク80の後述する圧力から図示しない発電装置に供給するための所定の第2圧力(求められる二次圧)に水素の圧力を減圧するためのものである。 Similarly to the pressure reducing valve 72, the pressure reducing valve 86 reduces the pressure of hydrogen to a predetermined second pressure (secondary pressure required) to be supplied to a power generator (not shown) from the pressure of the buffer tank 80 described later. It is for doing.
 そして、バッファ機構3には、図示しない発電装置からの水素の供給要求がないときを利用して水素の充填処理が行われる。 {Circle around (2)} The buffer mechanism 3 is filled with hydrogen by using the case where there is no request for supplying hydrogen from a power generator (not shown).
 具体的には、図示しない制御部によって、電磁弁71及び電磁弁83が開とされるとともに、電磁弁73及び電磁弁85が閉とされる制御が行われ、更に、制御部によって、水素発生装置2が水素を発生させるように制御が行われるとともに、昇圧装置82の駆動制御が行われる。 Specifically, a control unit (not shown) controls the solenoid valve 71 and the solenoid valve 83 to be opened, and the solenoid valve 73 and the solenoid valve 85 to be closed. Control is performed so that the device 2 generates hydrogen, and drive control of the booster 82 is performed.
 このため、水素発生装置2で発生した水素は、減圧弁72によって所定の第2圧力(求められる二次圧)の状態で引込分岐ライン81に供給されるが、昇圧装置82によって昇圧が行われるので、バッファタンク80内の圧力が上部空間US内の所定の第1圧力(求められる一次圧)と同様の第1圧力又は第1圧力よりも高めの所定の第3圧力となるように、バッファタンク80に水素を充填することができる。 Therefore, the hydrogen generated by the hydrogen generator 2 is supplied to the intake branch line 81 at a predetermined second pressure (the required secondary pressure) by the pressure reducing valve 72, but the pressure is increased by the pressure increasing device 82. Therefore, the buffer is set so that the pressure in the buffer tank 80 becomes the same first pressure as the predetermined first pressure (the required primary pressure) in the upper space US or the predetermined third pressure higher than the first pressure. The tank 80 can be filled with hydrogen.
 なお、バッファ機構3は、バッファタンク80内の圧力を測定する圧力測定装置87(例えば、デジタルマノスターゲージ)を備えており、上述したバッファタンク80への水素の充填処理は、この圧力測定装置87が測定するバッファタンク80内の圧力の測定結果に基づいて、第1圧力又は第1圧力よりも高めの所定の第3圧力となるように、行われ、目標の圧力になれば、水素発生装置2の駆動が停止されるとともに、電磁弁71及び電磁弁83が閉とされる。 The buffer mechanism 3 includes a pressure measuring device 87 (for example, a digital Manostar gauge) that measures the pressure in the buffer tank 80. The above-described process of filling the buffer tank 80 with hydrogen is performed by the pressure measuring device 87. Based on the measurement result of the pressure in the buffer tank 80 measured by 87, the pressure is adjusted to the first pressure or a predetermined third pressure higher than the first pressure, and when the target pressure is reached, hydrogen generation is performed. The drive of the device 2 is stopped, and the solenoid valves 71 and 83 are closed.
 また、バッファ機構3は、バッファタンク80と緊急排気ライン50を接続する接続ライン88(接続配管ともいう。)と、接続ライン88上に設けられ、緊急排気の有無を制御する電磁弁89と、を備えており、圧力測定装置87が測定するバッファタンク80内の圧力の測定結果が異常に高い圧力を示した場合には、図示しない制御部が、電磁弁89を開にすることでバッファタンク80内の圧力が、先に説明した第1圧力又は第1圧力よりも高めの所定の第3圧力になるように降圧制御を行う。 The buffer mechanism 3 includes a connection line 88 (also referred to as a connection pipe) connecting the buffer tank 80 and the emergency exhaust line 50, an electromagnetic valve 89 provided on the connection line 88 and controlling the presence or absence of emergency exhaust, If the measurement result of the pressure in the buffer tank 80 measured by the pressure measuring device 87 indicates an abnormally high pressure, the control unit (not shown) opens the solenoid valve 89 to open the buffer tank. The step-down control is performed so that the pressure in 80 becomes the first pressure described above or a predetermined third pressure higher than the first pressure.
 ただし、本実施形態では、水素供給部70から分岐する形態でバッファ機構3を設ける場合について示したが、バッファ機構3は、水素供給部70上に設けられるものとしてもよい。 However, in the present embodiment, the case where the buffer mechanism 3 is provided in a form branched from the hydrogen supply unit 70 has been described, but the buffer mechanism 3 may be provided on the hydrogen supply unit 70.
 例えば、バッファ機構3の変形例としては、減圧弁72を省略し、電磁弁71と電磁弁73の間の水素供給部70上に水溶液貯蔵部10側から図示しない発電装置側に向けて、電磁弁83、バッファタンク80を設けるとともに、電磁弁73よりも発電装置側となる水素供給部70上に減圧弁86を設けるような構成が考えられ、この場合には、水溶液貯蔵部10で発生した水素が、必ず、バッファ機構3を介して発電装置に供給されることになる。 For example, as a modified example of the buffer mechanism 3, the pressure reducing valve 72 is omitted, and the electromagnetic valve 71 is disposed on the hydrogen supply unit 70 between the electromagnetic valves 73 from the aqueous solution storage unit 10 toward the power generation device (not shown). In addition to providing the valve 83 and the buffer tank 80, a configuration is conceivable in which the pressure reducing valve 86 is provided on the hydrogen supply unit 70 which is closer to the power generator than the electromagnetic valve 73. Hydrogen will always be supplied to the power generator via the buffer mechanism 3.
 そして、バッファ機構3は、本実施形態、及び、変形例のどちらにおいても、水素が水溶液貯蔵部10から図示しない発電装置に至るまでの間に設けられ、水溶液貯蔵部10で発生した水素を貯蔵できるようにされることになる。 In both the present embodiment and the modification, the buffer mechanism 3 is provided between the aqueous solution storage unit 10 and the power generation device (not shown), and stores the hydrogen generated in the aqueous solution storage unit 10. Will be able to do it.
 なお、このバッファ機構3の変形例の場合でも、バッファ機構3がバッファタンク80内の圧力を測定する圧力測定装置87(例えば、デジタルマノスターゲージ)と、バッファタンク80と緊急排気ライン50を接続する接続ライン88(接続配管ともいう。)と、接続ライン88上に設けられ、緊急排気の有無を制御する電磁弁89と、を備えるものとすることが好ましく、水素供給部70上に設けられることになる電磁弁83と電磁弁71の間の水素供給部70上に昇圧装置82を設けるようにしてもよい。 Even in the case of the modified example of the buffer mechanism 3, the buffer mechanism 3 connects the pressure measuring device 87 (for example, a digital manostar gauge) for measuring the pressure in the buffer tank 80 to the buffer tank 80 and the emergency exhaust line 50. And a solenoid valve 89 provided on the connection line 88 for controlling the presence or absence of emergency evacuation, and is provided on the hydrogen supply unit 70. The pressure increasing device 82 may be provided on the hydrogen supply unit 70 between the electromagnetic valve 83 and the electromagnetic valve 71.
 また、バッファ機構3の制御は、水素発生装置2の制御部が行う方がシンプルなものとなると考えられるため、水素発生装置2がバッファ機構3を含むとともに、水素発生装置2がそのバッファ機構3との関連で必要な位置までの水素供給部70を含むものであってもよい。 Since the control of the buffer mechanism 3 is considered to be simpler by the control unit of the hydrogen generator 2, the hydrogen generator 2 includes the buffer mechanism 3 and the hydrogen generator 2 includes the buffer mechanism 3. May include the hydrogen supply unit 70 up to a required position.
 次に、以上のような構成からなる発電システム1の動作等について説明する。
 ただし、これまでの説明で細部の動作については十分に理解が得られる説明を行っているため、主要な動作についてだけ説明するものとする。
 また、以下では、既にバッファタンク80に水素が充填されているものとして説明する。
Next, the operation and the like of the power generation system 1 configured as described above will be described.
However, in the description so far, the detailed operation has been described so that a sufficient understanding can be obtained, and therefore only the main operation will be described.
In the following, a description will be given assuming that the buffer tank 80 has already been filled with hydrogen.
 例えば、図示しない発電装置から水素発生装置2に水素供給の要求(指令)が届くと、水素発生装置2の制御部は、水溶液貯蔵部10の上部空間US内の圧力を確認し、上部空間US内の圧力が所定の第1圧力(求められる一次圧)前後の圧力になっていれば、電磁弁71及び電磁弁73を開にして、発電装置への水素の供給を開始するとともに、その水素の供給によって減少する水溶液貯蔵部10の上部空間US内の圧力を所定の第1圧力(求められる一次圧)に保つように原料供給機構30の駆動を制御する。 For example, when a hydrogen supply request (command) arrives at the hydrogen generator 2 from a power generator (not shown), the control unit of the hydrogen generator 2 checks the pressure in the upper space US of the aqueous solution storage unit 10, and checks the upper space US If the internal pressure is about the predetermined first pressure (the required primary pressure), the solenoid valves 71 and 73 are opened to start supplying hydrogen to the power generator, The driving of the raw material supply mechanism 30 is controlled such that the pressure in the upper space US of the aqueous solution storage unit 10 reduced by the supply of the water is maintained at a predetermined first pressure (a required primary pressure).
 一方、水素発生装置2の制御部は、水溶液貯蔵部10の上部空間US内の圧力を確認した結果、上部空間US内の圧力が低すぎる場合、電磁弁85を開にしてバッファタンク80内の水素が図示しない発電装置に供給されるようにするとともに、水溶液貯蔵部10の上部空間US内の圧力が所定の第1圧力(求められる一次圧)になるように原料供給機構30の駆動を制御する。 On the other hand, the control unit of the hydrogen generator 2 confirms the pressure in the upper space US of the aqueous solution storage unit 10, and as a result, if the pressure in the upper space US is too low, opens the electromagnetic valve 85 to open the buffer tank 80. The hydrogen is supplied to a power generator (not shown), and the driving of the raw material supply mechanism 30 is controlled such that the pressure in the upper space US of the aqueous solution storage unit 10 becomes a predetermined first pressure (a required primary pressure). I do.
 本実施形態の場合、水溶液貯蔵部10に貯められた大量の水溶液11に向けて原料21を供給することになるため、原料21と水溶液11の反応で水酸化マグネシウム等の副生成物が生成したとしても、その副生成物は、水溶液11内に速やかに拡散するため、反応が阻害されることなく、効率よく速やかに反応が進むため、水溶液貯蔵部10の上部空間US内の圧力を短時間で所定の第1圧力(求められる一次圧)にすることができる。 In the case of the present embodiment, since the raw material 21 is supplied to the large amount of the aqueous solution 11 stored in the aqueous solution storage unit 10, a by-product such as magnesium hydroxide is generated by the reaction between the raw material 21 and the aqueous solution 11. Even so, the by-product quickly diffuses into the aqueous solution 11, so that the reaction proceeds efficiently and quickly without any hindrance. Therefore, the pressure in the upper space US of the aqueous solution storage unit 10 is reduced for a short time. Can be set to a predetermined first pressure (a required primary pressure).
 そして、水素発生装置2の制御部は、水溶液貯蔵部10の上部空間US内の圧力が所定の第1圧力(求められる一次圧)になると、電磁弁71及び電磁弁73を開にするとともに、電磁弁85を閉にして、図示しない発電装置への水素の供給をバッファタンク80から水溶液貯蔵部10に切り替える。 When the pressure in the upper space US of the aqueous solution storage unit 10 reaches a predetermined first pressure (the required primary pressure), the control unit of the hydrogen generator 2 opens the electromagnetic valves 71 and 73, The solenoid valve 85 is closed, and the supply of hydrogen to the power generator (not shown) is switched from the buffer tank 80 to the aqueous solution storage unit 10.
 なお、上述のように、本実施形態では、原料21と水溶液11の反応効率が良いため、図示しない発電装置に水素を供給することに伴う水溶液貯蔵部10の上部空間US内の圧力の低下を抑制するための制御も行いやすい。 As described above, in the present embodiment, since the reaction efficiency between the raw material 21 and the aqueous solution 11 is high, the decrease in the pressure in the upper space US of the aqueous solution storage unit 10 due to the supply of hydrogen to the power generation device (not shown) is prevented. Control for suppression is also easy to perform.
 また、十分に用意された水溶液11に向けて原料21を供給する形態であるため、その高い反応効率を持続的に維持することが可能である。 In addition, since the raw material 21 is supplied to the sufficiently prepared aqueous solution 11, the high reaction efficiency can be continuously maintained.
 一方、水素発生装置2の制御部は、水溶液貯蔵部10から図示しない発電装置に水素を供給する状態のときに、何らかの原因で水溶液貯蔵部10の上部空間US内の圧力が水素の供給に適さない圧力まで低下しそうな場合、再び、電磁弁71を閉にするとともに電磁弁85を開にして、発電装置への水素の供給を停止させることなく、水溶液貯蔵部10の上部空間US内の圧力の復旧を行う。 On the other hand, when the control unit of the hydrogen generator 2 supplies hydrogen from the aqueous solution storage unit 10 to the power generation device (not shown), the pressure in the upper space US of the aqueous solution storage unit 10 becomes unsuitable for supplying hydrogen for some reason. If the pressure is likely to drop to an unsatisfactory level, the solenoid valve 71 is closed and the solenoid valve 85 is opened again to stop the supply of hydrogen to the power generation device without stopping the pressure in the upper space US of the aqueous solution storage unit 10. Perform recovery.
 そして、水素発生装置2の制御部は、図示しない発電装置から水素の供給停止の要求(指令)を受けると、水素発生装置2の動作を停止させる前に、バッファタンク80内の圧力を確認し、バッファタンク80に水素の充填が必要であれば、その充填を行ってから水素発生装置2の動作を停止させる処理を行う。
 一方、水素発生装置2の制御部は、バッファタンク80に水素の充填が必要ない場合には、充填を行わずに水素発生装置2の動作を停止させる処理を行う。
When the control unit of the hydrogen generator 2 receives a request (command) for stopping the supply of hydrogen from a power generator (not shown), the controller checks the pressure in the buffer tank 80 before stopping the operation of the hydrogen generator 2. If the buffer tank 80 needs to be filled with hydrogen, a process for stopping the operation of the hydrogen generator 2 is performed after the filling.
On the other hand, when it is not necessary to fill the buffer tank 80 with hydrogen, the control unit of the hydrogen generator 2 performs a process of stopping the operation of the hydrogen generator 2 without performing filling.
 なお、本実施形態では、バッファ機構3を設けることで、図示しない発電装置への水素の供給開始時の水素供給の迅速性、及び、水素供給中の水素供給量安定性を、一層、高めたものになっている。 In the present embodiment, the provision of the buffer mechanism 3 further enhances the speed of hydrogen supply at the start of supply of hydrogen to the power generator (not shown) and the stability of the amount of hydrogen supply during hydrogen supply. Has become something.
 しかしながら、先に説明したように、本実施形態では、水溶液貯蔵部10に貯められた大量の水溶液11に向けて原料21を供給することで、原料21と水溶液11の反応効率が高いものとなっており、図示しない発電装置への水素の供給開始時において、速やかに必要な量の水素を発生させやすく、また、水素供給中の水素供給量の制御性も高いものとなっているため、バッファ機構3を設けることが必須の要件というわけではなく、バッファ機構3を省略してもよい。
 なお、さらに、原料21と水溶液11の反応効率が高いものとするために、水素発生装置2が水溶液11の温度を高める温調手段(例えば、水溶液11が沸騰しない程度の温度範囲内で水溶液11を加熱する温調手段)を備えていてもよい。
However, as described above, in the present embodiment, by supplying the raw material 21 toward the large amount of the aqueous solution 11 stored in the aqueous solution storage unit 10, the reaction efficiency between the raw material 21 and the aqueous solution 11 becomes high. At the start of the supply of hydrogen to the power generator (not shown), the required amount of hydrogen is easily generated quickly, and the controllability of the hydrogen supply during hydrogen supply is high. The provision of the mechanism 3 is not an essential requirement, and the buffer mechanism 3 may be omitted.
Furthermore, in order to increase the reaction efficiency between the raw material 21 and the aqueous solution 11, the hydrogen generator 2 increases the temperature of the aqueous solution 11 by temperature control means (for example, the aqueous solution 11 within a temperature range where the aqueous solution 11 does not boil). (A temperature control means for heating).
(第2実施形態)
 次に図2を参照しながら第2実施形態の発電システム1について説明する。
 図2は、本発明に係る第2実施形態の発電システム1を説明するための断面図である。
(2nd Embodiment)
Next, a power generation system 1 according to a second embodiment will be described with reference to FIG.
FIG. 2 is a cross-sectional view illustrating a power generation system 1 according to a second embodiment of the present invention.
 第1実施形態では、図示しない発電装置が水素を燃料としてタービンを駆動させるタービン発電機を想定していた。 In the first embodiment, a turbine generator in which a power generator (not shown) drives a turbine using hydrogen as fuel was assumed.
 一方、第2実施形態では、図示しない発電装置が一般的な燃料電池である場合を想定しており、第1実施形態の構成に対して、発電装置に燃料電池を用いる場合に適する構成を付加したものになっている。 On the other hand, in the second embodiment, it is assumed that a power generator not shown is a general fuel cell, and a configuration suitable for using a fuel cell as the power generator is added to the configuration of the first embodiment. It has become.
 このため第2実施形態の発電システム1も基本的な構成は、第1実施形態と同様であるため、以下では、主に異なる点について説明し、同様の点については説明を省略する場合がある。 For this reason, the basic configuration of the power generation system 1 of the second embodiment is the same as that of the first embodiment, and therefore, different points will be mainly described below, and description of the same points may be omitted. .
 図2に示すように、第2実施形態の発電システム1は、第1実施形態の構成に加え、減圧弁72からバッファ機構3(より具体的には、引込分岐ライン81)に至るまでに水溶液貯蔵部10から図示しない発電装置(及びバッファ機構3)に向かって供給される水素の純度を高める純化機構4を備えている。 As shown in FIG. 2, in addition to the configuration of the first embodiment, the power generation system 1 according to the second embodiment includes an aqueous solution from the pressure reducing valve 72 to the buffer mechanism 3 (more specifically, the drop branch line 81). A purification mechanism 4 for increasing the purity of hydrogen supplied from the storage unit 10 to the power generation device (and the buffer mechanism 3) (not shown) is provided.
 なお、純化機構4の制御は、水素発生装置2の制御部が行う方がシンプルなものとなると考えられるため、水素発生装置2が純化機構4を含むものであってもよい。 Note that the control of the purification mechanism 4 is considered to be simpler by the control unit of the hydrogen generator 2. Therefore, the hydrogen generator 2 may include the purification mechanism 4.
 純化機構4は、減圧弁72と引込分岐ライン81の間の水素供給部70上に設けられた第1脱水部91A(例えば、モレキュラーシーブ)と、第1脱水部91Aよりも引込分岐ライン81側となる水素供給部70上に設けられた第1不純物気体除去部92Aと、減圧弁72と第1脱水部91Aの間の水素供給部70上に設けられた第1上流側電磁弁93Aと、第1不純物気体除去部92Aと引込分岐ライン81の間の水素供給部70上に設けられた第1下流側電磁弁94Aと、を備えている。 The purifying mechanism 4 includes a first dehydrating unit 91A (for example, a molecular sieve) provided on the hydrogen supply unit 70 between the pressure reducing valve 72 and the incoming branch line 81, and a side closer to the incoming branch line 81 than the first dewatering unit 91A. A first impurity gas removal unit 92A provided on the hydrogen supply unit 70 serving as a first supply unit, a first upstream electromagnetic valve 93A provided on the hydrogen supply unit 70 between the pressure reducing valve 72 and the first dehydration unit 91A, A first downstream solenoid valve 94A provided on the hydrogen supply unit 70 between the first impurity gas removal unit 92A and the incoming branch line 81;
 なお、第1脱水部91Aと第1不純物気体除去部92Aとが純化機構4の第1純化部として機能する。
 また、第1実施形態で触れたように、バッファ機構3は省略可能であるため、この場合には、引込分岐ライン81や電磁弁73は不要となる。
The first dehydrating unit 91A and the first impurity gas removing unit 92A function as a first purifying unit of the purifying mechanism 4.
Further, as mentioned in the first embodiment, the buffer mechanism 3 can be omitted, and in this case, the drop branch line 81 and the solenoid valve 73 are not required.
 このため、バッファ機構3が省略される場合には、純化機構4は、減圧弁72と減圧弁72よりも図示しない発電装置の間の水素供給部70上に設けられた第1脱水部91A(例えば、モレキュラーシーブ)と、第1脱水部91Aよりも図示しない発電装置側となる水素供給部70上に設けられた第1不純物気体除去部92Aと、減圧弁72と第1脱水部91Aの間の水素供給部70上に設けられた第1上流側電磁弁93Aと、第1不純物気体除去部92Aと図示しない発電装置の間の水素供給部70上に設けられた第1下流側電磁弁94Aと、を備えるものとなる。 For this reason, when the buffer mechanism 3 is omitted, the purifying mechanism 4 includes the first dehydrating unit 91A provided on the hydrogen supply unit 70 between the pressure reducing valve 72 and the power generator (not shown) rather than the pressure reducing valve 72. For example, a molecular sieve), a first impurity gas removal unit 92A provided on the hydrogen supply unit 70 on the power generation device side (not shown) with respect to the first dehydration unit 91A, and between the pressure reducing valve 72 and the first dehydration unit 91A. The first upstream solenoid valve 93A provided on the hydrogen supply unit 70 of the first embodiment, and the first downstream solenoid valve 94A provided on the hydrogen supply unit 70 between the first impurity gas removal unit 92A and the power generator (not shown) And
 例えば、本実施形態では、第1脱水部91Aに低温(例えば100℃以下程度)で露点の低い加熱気体を供給することで乾燥処理が可能なシリカゲル系のモレキュラーシーブを用いている。 For example, in this embodiment, a silica gel molecular sieve that can be dried by supplying a heated gas having a low dew point at a low temperature (for example, about 100 ° C. or less) to the first dehydrating unit 91A is used.
 このため、本実施形態では、純化機構4が、乾燥気体(例えば露点の低い窒素等の活性の低いガスや露点の低いヘリウム、アルゴン等の不活性ガス)の第1脱水部91Aへの供給の有無を制御する第1供給制御電磁弁95Aを有し、第1脱水部91Aと第1不純物気体除去部92Aの間の水素供給部70に接続された乾燥気体供給ライン95(乾燥気体供給配管ともいう。)と、乾燥気体を排気するときに開とされる第1排気制御電磁弁96Aを有し、第1上流側電磁弁93Aと第1脱水部91Aの間の水素供給部70に接続された乾燥気体排気ライン96(乾燥気体排気配管ともいう。)と、を備え、後ほど説明するように、一旦、第1脱水部91Aが水分を吸収しても、第1脱水部91Aの乾燥処理を行うことで水分の吸収性能を再生できるようになっている。
 なお、乾燥気体は図示しない加熱装置で若干加熱され、室温(例えば25℃)より高い温度(例えば、50℃以上)であって100℃以下の温度の状態で供給される。
For this reason, in this embodiment, the purification mechanism 4 supplies the dry gas (for example, a low-activity gas such as nitrogen with a low dew point or an inert gas such as helium or argon with a low dew point) to the first dehydrating unit 91A. A dry gas supply line 95 (including a dry gas supply pipe) having a first supply control solenoid valve 95A for controlling the presence / absence and connected to the hydrogen supply unit 70 between the first dehydration unit 91A and the first impurity gas removal unit 92A. ) And a first exhaust control solenoid valve 96A that is opened when the dry gas is exhausted, and is connected to the hydrogen supply unit 70 between the first upstream solenoid valve 93A and the first dehydration unit 91A. And a dry gas exhaust line 96 (also referred to as a dry gas exhaust pipe). As described later, even if the first dehydrating unit 91A absorbs moisture, the drying process of the first dehydrating unit 91A is performed. By regenerating moisture absorption performance by doing It has become to so that.
The dry gas is slightly heated by a heating device (not shown) and supplied at a temperature higher than room temperature (for example, 25 ° C.) (for example, 50 ° C. or higher) and 100 ° C. or lower.
 また、本実施形態では、第1不純物気体除去部92Aに、例えば、原料21を生成するための材料に塩化マグネシウムが用いられている場合、原料21を生成するときに、未反応の状態で原料21内に残留している塩化マグネシウム中の塩素に関連して発生する不純物気体(例えば、塩素ガス、塩酸ガス等)を除去できるケミカルフィルタを用いている。
 なお、本実施形態では、第1不純物気体除去部92Aとして、塩素ガスを除去するフィルタと塩酸ガスを除去するフィルタを直列で並べるようにしている。
Further, in the present embodiment, for example, when magnesium chloride is used as a material for generating the raw material 21 in the first impurity gas removing unit 92A, the raw material 21 is generated in an unreacted state when the raw material 21 is generated. A chemical filter capable of removing impurity gas (for example, chlorine gas, hydrochloric acid gas, etc.) generated in association with chlorine in magnesium chloride remaining in 21 is used.
In the present embodiment, a filter for removing chlorine gas and a filter for removing hydrochloric acid gas are arranged in series as the first impurity gas removing unit 92A.
 ただし、第1不純物気体除去部92Aは、水溶液貯蔵部10で水素を発生させたときに、発生する不純物気体を除去することを目的としているので、どのようなケミカルフィルタを用いるかは、原料21や水溶液11に合わせて選択される。 However, since the first impurity gas removing section 92A is intended to remove the impurity gas generated when hydrogen is generated in the aqueous solution storage section 10, the type of the chemical filter to be used depends on the raw material 21. And the aqueous solution 11 are selected.
 一方、本実施形態では、純化機構4は、一端が減圧弁72と第1上流側電磁弁93Aの間の水素供給部70に接続されるとともに、他端が第1下流側電磁弁94Aと引込分岐ライン81の間の水素供給部70に接続された迂回ライン70A(迂回配管ともいう。)を備えている。 On the other hand, in the present embodiment, one end of the purification mechanism 4 is connected to the hydrogen supply unit 70 between the pressure reducing valve 72 and the first upstream solenoid valve 93A, and the other end is connected to the first downstream solenoid valve 94A. A bypass line 70A (also referred to as a bypass pipe) connected to the hydrogen supply unit 70 between the branch lines 81 is provided.
 なお、先に触れたように、バッファ機構3は省略可能であるため、この場合には、引込分岐ライン81や電磁弁73は不要となるため、迂回ライン70Aの他端は、第1下流側電磁弁94Aよりも図示しない発電装置側の水素供給部70に接続されたものとなる。 As mentioned above, since the buffer mechanism 3 can be omitted, in this case, the drop branch line 81 and the solenoid valve 73 are not required, so the other end of the bypass line 70A is connected to the first downstream side. It is connected to the hydrogen supply unit 70 on the power generation device side (not shown) with respect to the electromagnetic valve 94A.
 そして、純化機構4は、迂回ライン70A上に設けられた第2脱水部91B(例えば、モレキュラーシーブ)と、第2脱水部91Bよりも図示しない発電装置側となる迂回ライン70A上に設けられた第2不純物気体除去部92Bと、第2脱水部91Bより減圧弁72側の迂回ライン70A上(第2脱水部91Bより迂回ライン70Aの一端側の迂回ライン70A上)に設けられた第2上流側電磁弁93Bと、第2不純物気体除去部92Bより図示しない発電装置側の迂回ライン70A上(第2不純物気体除去部92Bより迂回ライン70Aの他端側の迂回ライン70A上)に設けられた第2下流側電磁弁94Bと、を備えている。 The purifying mechanism 4 is provided on a second dehydrating unit 91B (for example, a molecular sieve) provided on the detour line 70A and on a detour line 70A on the power generation device side (not shown) with respect to the second dehydrating unit 91B. The second impurity gas removing unit 92B and the second upstream provided on the bypass line 70A on the pressure reducing valve 72 side from the second dehydrating unit 91B (on the bypass line 70A on one end side of the bypass line 70A from the second dehydrating unit 91B). The side solenoid valve 93B and the second impurity gas removal unit 92B are provided on the detour line 70A on the power generator side (not shown) (the second impurity gas removal unit 92B is provided on the bypass line 70A on the other end of the bypass line 70A). A second downstream solenoid valve 94B.
 なお、第2脱水部91Bと第2不純物気体除去部92Bとが第1純化部と同様の役目を果たす純化機構4の第2純化部として機能し、第2脱水部91Bには、第1脱水部91Aと同様に、低温(例えば100℃以下程度)で露点の低い加熱気体を供給することで乾燥処理が可能なシリカゲル系のモレキュラーシーブが用いられている。 Note that the second dehydrating unit 91B and the second impurity gas removing unit 92B function as a second purifying unit of the purifying mechanism 4 that performs the same function as the first purifying unit. Similar to the part 91A, a silica gel molecular sieve that can be dried by supplying a heated gas having a low dew point at a low temperature (for example, about 100 ° C. or less) is used.
 また、第2不純物気体除去部92Bにも第1不純物気体除去部92Aと同様に、塩素ガス、塩酸ガス等を除去できるケミカルフィルタが用いられ、具体的な構成においても、塩素ガスを除去するフィルタと塩酸ガスを除去するフィルタを直列で並べるものとしている。 Similarly to the first impurity gas removing section 92A, a chemical filter capable of removing chlorine gas, hydrochloric acid gas, etc. is used for the second impurity gas removing section 92B. And a filter for removing hydrochloric acid gas are arranged in series.
 そして、乾燥気体供給ライン95が第2脱水部91Bと第2不純物気体除去部92Bの間の迂回ライン70Aに接続されるとともに、乾燥気体排気ライン96が第2上流側電磁弁93Bと第2脱水部91Bの間の迂回ライン70Aに接続され、純化機構4が、第1供給制御電磁弁95Aより迂回ライン70A側の乾燥気体供給ライン95上に設けられ、乾燥気体(例えば露点の低い窒素等の活性の低いガスや露点の低いヘリウム、アルゴン等の不活性ガス)の第2脱水部91Bへの供給の有無を制御する第2供給制御電磁弁95Bと、乾燥気体排気ライン96の第1排気制御電磁弁96Aより迂回ライン70A側の乾燥気体排気ライン96上に設けられ、乾燥気体を排気するときに開とされる第2排気制御電磁弁96Bと、を備えるものになっている。 The dry gas supply line 95 is connected to the bypass line 70A between the second dehydrating section 91B and the second impurity gas removing section 92B, and the dry gas exhaust line 96 is connected to the second upstream solenoid valve 93B and the second dehydrating section 93B. The purifying mechanism 4 is connected to the detour line 70A between the sections 91B, and is provided on the drying gas supply line 95 on the detour line 70A side from the first supply control solenoid valve 95A, and the drying gas (for example, nitrogen or the like having a low dew point) is provided. A second supply control solenoid valve 95B for controlling whether or not a low-activity gas or an inert gas having a low dew point, such as helium or argon, is supplied to the second dehydrating section 91B, and a first exhaust control of the dry gas exhaust line 96. A second exhaust control electromagnetic valve 96B provided on the dry gas exhaust line 96 on the bypass line 70A side from the electromagnetic valve 96A and opened when exhausting the dry gas. You have me.
 なお、乾燥気体供給ライン95への乾燥気体の供給は、第1供給制御電磁弁95Aと第2供給制御電磁弁95Bの間の乾燥気体供給ライン95の位置で行われるようになっており、乾燥気体排気ライン96からの乾燥気体の排気は、第1排気制御電磁弁96Aと第2排気制御電磁弁96Bの間の乾燥気体排気ライン96の位置で行われるようになっている。 The supply of the dry gas to the dry gas supply line 95 is performed at the position of the dry gas supply line 95 between the first supply control solenoid valve 95A and the second supply control solenoid valve 95B. The exhaust of the dry gas from the gas exhaust line 96 is performed at a position of the dry gas exhaust line 96 between the first exhaust control electromagnetic valve 96A and the second exhaust control electromagnetic valve 96B.
 したがって、第2脱水部91Bにおいても、一旦、第2脱水部91Bが水分を吸収しても、第2脱水部91Bの乾燥処理を行うことで水分の吸収性能を再生できるようになっている。 Therefore, even in the second dehydrating unit 91B, even if the second dehydrating unit 91B once absorbs moisture, the moisture absorbing performance can be regenerated by performing the drying process of the second dehydrating unit 91B.
 次に、純化機構4の動作について説明する。
 なお、この動作の説明は、水素が水溶液貯蔵部10から図示しない発電装置又はバッファタンク80に向けて供給されている状態であることを前提として行い、第1実施形態で説明した水素の供給開始時等の説明は省略するものとする。
Next, the operation of the purification mechanism 4 will be described.
Note that this operation is described on the assumption that hydrogen is being supplied from the aqueous solution storage unit 10 to the power generation device or the buffer tank 80 (not shown), and the supply of hydrogen described in the first embodiment is started. Description of time and the like is omitted.
 例えば、水素発生装置2の制御部は、第1上流側電磁弁93A及び第1下流側電磁弁94Aを開とし、第2上流側電磁弁93B、第2下流側電磁弁94B、第1供給制御電磁弁95A、及び、第1排気制御電磁弁96Aを閉として、水素が純化機構4の第1純化部(第1脱水部91A及び第1不純物気体除去部92A)を通過して図示しない発電装置に供給されるように制御しているときには、乾燥気体が第2脱水部91Bを通過するように、第2供給制御電磁弁95B、及び、第2排気制御電磁弁96Bを開とする制御も行う。 For example, the control unit of the hydrogen generator 2 opens the first upstream solenoid valve 93A and the first downstream solenoid valve 94A, and opens the second upstream solenoid valve 93B, the second downstream solenoid valve 94B, and the first supply control. The solenoid valve 95A and the first exhaust control solenoid valve 96A are closed, and hydrogen passes through the first purifying section (first dehydrating section 91A and first impurity gas removing section 92A) of the purifying mechanism 4 to generate power (not shown). Is controlled to open the second supply control solenoid valve 95B and the second exhaust control solenoid valve 96B so that the dry gas passes through the second dehydration unit 91B. .
 したがって、第1脱水部91Aが水素中の水分を吸収するように動作している間に、第2脱水部91Bの乾燥処理が行われ、第2脱水部91Bの水分を吸収する性能が再生される。 Therefore, while the first dehydrating unit 91A operates to absorb the moisture in the hydrogen, the drying process of the second dehydrating unit 91B is performed, and the performance of the second dehydrating unit 91B to absorb the moisture is reproduced. You.
 一方、水素発生装置2の制御部は、所定の量の水素が第1脱水部91Aを通過すると、第2上流側電磁弁93B、及び、第2下流側電磁弁94Bを開とし、第1上流側電磁弁93A、第1下流側電磁弁94A、第2供給制御電磁弁95B、及び、第2排気制御電磁弁96Bを閉として、水素が純化機構4の第2純化部(第2脱水部91B及び第2不純物気体除去部92B)を通過して図示しない発電装置に供給されるように制御を切り替え、このときには、乾燥気体が第1脱水部91Aを通過するように、水素発生装置2の制御部は、第1供給制御電磁弁95A、及び、第1排気制御電磁弁96Aを開とする制御も行う。 On the other hand, when a predetermined amount of hydrogen has passed through the first dehydration unit 91A, the control unit of the hydrogen generator 2 opens the second upstream solenoid valve 93B and the second downstream solenoid valve 94B, and the first upstream The side solenoid valve 93A, the first downstream side solenoid valve 94A, the second supply control solenoid valve 95B, and the second exhaust control solenoid valve 96B are closed, and the hydrogen is purified by the second purification section (second dehydration section 91B) of the purification mechanism 4. And the control is switched so that the dry gas passes through the first dehydration unit 91A through the first dehydration unit 91A. The unit also performs control to open the first supply control solenoid valve 95A and the first exhaust control solenoid valve 96A.
 したがって、第2脱水部91Bが水素中の水分を吸収するように動作している間に、第1脱水部91Aの乾燥処理が行われ、第1脱水部91Aの水分を吸収する性能が再生される。 Therefore, while the second dehydrating unit 91B operates to absorb moisture in hydrogen, the drying process of the first dehydrating unit 91A is performed, and the performance of the first dehydrating unit 91A to absorb moisture is regenerated. You.
 このように、純化機構4が、第1純化部(第1脱水部91A及び第1不純物気体除去部92A)と、第2純化部(第2脱水部91B及び第2不純物気体除去部92B)と、を備えるものとし、第1純化部を通過させて水素を図示しない発電装置又はバッファタンク80に供給するときに第2純化部の第2脱水部91Bが乾燥処理可能とされ、第2純化部を通過させて水素を図示しない発電装置又はバッファタンク80に供給するときに第1純化部の第1脱水部91Aが乾燥処理可能とされているので、水素の図示しない発電装置又はバッファタンク80への供給を停止させることなく、第1脱水部91A、及び、第2脱水部91Bの再生処理を行うことができるようになっている。 As described above, the purifying mechanism 4 includes the first purifying unit (the first dehydrating unit 91A and the first impurity gas removing unit 92A) and the second purifying unit (the second dehydrating unit 91B and the second impurity gas removing unit 92B). When hydrogen is supplied to the power generator or the buffer tank 80 (not shown) through the first purifying section, the second dehydrating section 91B of the second purifying section can be dried, and the second purifying section is provided. When the hydrogen is supplied to the power generation device or the buffer tank 80 (not shown), the first dehydrating unit 91A of the first purification unit can be dried, so that hydrogen is supplied to the power generation device or the buffer tank 80 (not shown). The regeneration processing of the first dewatering unit 91A and the second dewatering unit 91B can be performed without stopping the supply of the water.
 また、必要に応じて、第1純化部を通過させて水素を図示しない発電装置又はバッファタンク80に供給するときに第2純化部の第2不純物気体除去部92Bを交換し、第2純化部を通過させて水素を図示しない発電装置又はバッファタンク80に供給するときに第1純化部の第1不純物気体除去部92Aを交換することも可能なため、第1不純物気体除去部92A、及び、第2不純物気体除去部92Bの交換作業も水素の図示しない発電装置又はバッファタンク80への供給を停止させることなく行うことができる。 Further, if necessary, the second impurity gas removing unit 92B of the second purifying unit is replaced when hydrogen is supplied to the power generator or the buffer tank 80 (not shown) through the first purifying unit, and the second purifying unit is replaced. When the hydrogen is supplied to the power generator or the buffer tank 80 (not shown) by passing through the first purifying section, the first impurity gas removing section 92A of the first purifying section can be exchanged, so that the first impurity gas removing section 92A, The replacement operation of the second impurity gas removing unit 92B can also be performed without stopping the supply of hydrogen to the power generation device or the buffer tank 80 (not shown).
 そして、水素が水溶液貯蔵部10から図示しない発電装置及びバッファ機構3に至るまでの間に、純化機構4が設けられているため、発電装置である燃料電池に純度の高い水素を供給することができる。 Since the purifying mechanism 4 is provided between the aqueous solution storage unit 10 and the power generator and the buffer mechanism 3 (not shown), it is possible to supply high-purity hydrogen to the fuel cell as the power generator. it can.
 以上、具体的な実施形態に基づいて、本発明について説明してきたが、本発明は、上記の具体的な実施形態に限定されるものではなく、適宜、変形や改良を施したものも本発明の技術的範囲に含まれるものであり、そのことは、当業者にとって特許請求の範囲の記載から明らかである。 As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described specific embodiments. It is obvious to those skilled in the art from the description of the claims.
1 発電システム
2 水素発生装置
3 バッファ機構
4 純化機構
10 水溶液貯蔵部
11 水溶液
12 上側レベルセンサ
13 下側レベルセンサ
14 仕切部
14A 貫通孔
15 排水口
15A 排水ライン
15B 排水制御弁
16 給水口
16A 給水ライン
16B 給水制御弁
17 原料受入孔
18 水素排出口
20 原料貯蔵部
21 原料
22 作業扉
23 原料供給孔
24 距離測定器
30 原料供給機構
31 モータ
32 円板
32A、32B 貫通孔
33 シャフト
40 攪拌機構
41 モータ
42 プロペラ
43 シャフト
50 緊急排気ライン
51 電磁弁
52 圧力測定装置
61 圧力測定装置
62 気体供給ライン
63 電磁弁
70 水素供給部
70A 迂回ライン
71 電磁弁
72 減圧弁
73 電磁弁
80 バッファタンク
81 引込分岐ライン
82 昇圧装置
83 電磁弁
84 返送ライン
85 電磁弁
86 減圧弁
87 圧力測定装置
88 接続ライン
89 電磁弁
91A 第1脱水部
91B 第2脱水部
92A 第1不純物気体除去部
92B 第2不純物気体除去部
93A 第1上流側電磁弁
93B 第2上流側電磁弁
94A 第1下流側電磁弁
94B 第2下流側電磁弁
95 乾燥気体供給ライン
95A 第1供給制御電磁弁
95B 第2供給制御電磁弁
96 乾燥気体排気ライン
96A 第1排気制御電磁弁
96B 第2排気制御電磁弁
LS 下部空間
LSF 水面
O 回転中心
US 上部空間
US1 上側空間
DESCRIPTION OF SYMBOLS 1 Power generation system 2 Hydrogen generator 3 Buffer mechanism 4 Purification mechanism 10 Aqueous solution storage part 11 Aqueous solution 12 Upper level sensor 13 Lower level sensor 14 Partition part 14A Through hole 15 Drainage port 15A Drainage line 15B Drainage control valve 16 Water supply port 16A Water supply line 16B Water supply control valve 17 Raw material receiving hole 18 Hydrogen outlet 20 Raw material storage unit 21 Raw material 22 Work door 23 Raw material supply hole 24 Distance measuring device 30 Raw material supply mechanism 31 Motor 32 Disk 32A, 32B Through hole 33 Shaft 40 Stirring mechanism 41 Motor 42 Propeller 43 Shaft 50 Emergency exhaust line 51 Solenoid valve 52 Pressure measuring device 61 Pressure measuring device 62 Gas supply line 63 Solenoid valve 70 Hydrogen supply unit 70A Detour line 71 Solenoid valve 72 Pressure reducing valve 73 Solenoid valve 80 Buffer tank 81 Retraction branch line 82 Booster device 83 Solenoid valve 84 Transmission line 85 Solenoid valve 86 Pressure reducing valve 87 Pressure measuring device 88 Connection line 89 Solenoid valve 91A First dewatering unit 91B Second dewatering unit 92A First impurity gas removing unit 92B Second impurity gas removing unit 93A First upstream electromagnetic valve 93B Second upstream solenoid valve 94A First downstream solenoid valve 94B Second downstream solenoid valve 95 Dry gas supply line 95A First supply control solenoid valve 95B Second supply control solenoid valve 96 Dry gas exhaust line 96A First exhaust control solenoid Valve 96B Second exhaust control solenoid valve LS Lower space LSF Water surface O Center of rotation US Upper space US1 Upper space

Claims (11)

  1.  水素を用いた発電システムであって、
     前記発電システムは、
     発電装置と、
     前記発電装置に供給する前記水素を発生させる水素発生装置と、を備え、
     前記水素発生装置は、
     水溶液を貯蔵する水溶液貯蔵部と、
     前記水溶液との反応で前記水素の発生が可能な状態のマグネシウムを含む原料を貯蔵する原料貯蔵部と、
     前記原料貯蔵部から前記水溶液貯蔵部に向けて前記原料を供給する原料供給機構と、を備えることを特徴とする発電システム。
    A power generation system using hydrogen,
    The power generation system,
    A generator set,
    A hydrogen generator that generates the hydrogen to be supplied to the power generator,
    The hydrogen generator,
    An aqueous solution storage unit for storing an aqueous solution;
    A raw material storage unit that stores a raw material containing magnesium in a state in which the hydrogen can be generated by the reaction with the aqueous solution,
    A power supply system for supplying the raw material from the raw material storage toward the aqueous solution storage.
  2.  前記水溶液貯蔵部は、前記水溶液より上側となる前記水溶液の存在しない上部空間を備え、
     前記原料供給機構は、前記上部空間側から前記水溶液に向けて前記原料を供給するように設けられており、
     前記水素発生装置は、
     前記上部空間の圧力を測定する圧力測定装置と、
     前記圧力測定装置の圧力の測定結果に基づいて、前記原料供給機構を駆動させ、前記水溶液に向けて供給する前記原料の供給量を制御する制御部と、を備えることを特徴とする請求項1に記載の発電システム。
    The aqueous solution storage unit includes an upper space where the aqueous solution does not exist above the aqueous solution,
    The raw material supply mechanism is provided to supply the raw material toward the aqueous solution from the upper space side,
    The hydrogen generator,
    A pressure measuring device for measuring the pressure of the upper space,
    A control unit that drives the raw material supply mechanism based on a pressure measurement result of the pressure measuring device and controls a supply amount of the raw material supplied toward the aqueous solution. A power generation system according to claim 1.
  3.  前記水溶液貯蔵部は、
     前記上部空間の下側となる前記水溶液の存在する下部空間と、
     前記下部空間内を上下に仕切る仕切部と、
     前記仕切部より下側に設けられ、前記水溶液を排水する排水口と、
     前記仕切部より上側に設けられ、前記水溶液を供給する給水口と、を備え、
     前記仕切部は、前記原料と前記水溶液との反応で生成した副生成物が前記仕切部より下側に沈殿可能に設けられた複数の貫通孔を備えることを特徴とする請求項2に記載の発電システム。
    The aqueous solution storage unit,
    A lower space in which the aqueous solution exists below the upper space,
    A partition part for vertically dividing the lower space,
    A drain port provided below the partition portion to drain the aqueous solution,
    A water supply port provided above the partition portion to supply the aqueous solution,
    The partition according to claim 2, wherein the partition has a plurality of through holes provided so that a by-product generated by a reaction between the raw material and the aqueous solution can precipitate below the partition. Power generation system.
  4.  前記水素発生装置は、
     前記排水口からの前記水溶液の排水を制御する排水制御弁と、
     前記給水口からの前記水溶液の給水を制御する給水制御弁と、を備え、
     前記制御部は、前記水溶液に向けて供給する前記原料の供給量に基づいて、前記排水制御弁、及び、前記給水制御弁を制御することを特徴とする請求項3に記載の発電システム。
    The hydrogen generator,
    A drainage control valve that controls drainage of the aqueous solution from the drainage port,
    A water supply control valve for controlling water supply of the aqueous solution from the water supply port,
    The power generation system according to claim 3, wherein the control unit controls the drainage control valve and the water supply control valve based on a supply amount of the raw material supplied toward the aqueous solution.
  5.  前記発電システムは、前記水素が前記水溶液貯蔵部から前記発電装置に至るまでの間に設けられ、前記水溶液貯蔵部で発生した前記水素を貯蔵できるバッファ機構を備えることを特徴とする請求項1から請求項4のいずれか1項に記載の発電システム。 The power generation system according to claim 1, wherein the hydrogen is provided between the aqueous solution storage unit and the power generation device, and further includes a buffer mechanism that can store the hydrogen generated in the aqueous solution storage unit. The power generation system according to claim 4.
  6.  前記発電システムは、前記水素が前記水溶液貯蔵部から前記発電装置及び前記バッファ機構に至るまでの間に設けられた純化機構を備え、
     前記純化機構は、
     第1脱水部及び第1不純物気体除去部を有する第1純化部と、
     第2脱水部及び第2不純物気体除去部を有する第2純化部と、を備え、
     前記第1純化部を通過させて前記水素を前記発電装置又は前記バッファ機構に供給するときに前記第2純化部の前記第2脱水部を乾燥処理可能とされ、前記第2純化部を通過させて前記水素を前記発電装置又は前記バッファ機構に供給するときに前記第1純化部の前記第1脱水部を乾燥処理可能とされていることを特徴とする請求項5に記載の発電システム。
    The power generation system further includes a purification mechanism provided between the aqueous solution storage unit and the power generation device and the buffer mechanism,
    The purification mechanism,
    A first purification unit having a first dehydration unit and a first impurity gas removal unit;
    A second dehydration unit and a second purification unit having a second impurity gas removal unit.
    When the hydrogen is supplied to the power generation device or the buffer mechanism by passing through the first purifying section, the second dehydrating section of the second purifying section can be dried and passed through the second purifying section. The power generation system according to claim 5, wherein the first dehydration unit of the first purification unit can be dried when supplying the hydrogen to the power generation device or the buffer mechanism.
  7.  前記発電システムは、前記水素が前記水溶液貯蔵部から前記発電装置に至るまでの間に設けられた純化機構を備え、
     前記純化機構は、
     第1脱水部及び第1不純物気体除去部を有する第1純化部と、
     第2脱水部及び第2不純物気体除去部を有する第2純化部と、を備え、
     前記第1純化部を通過させて前記水素を前記発電装置に供給するときに前記第2純化部の前記第2脱水部が乾燥処理可能とされ、前記第2純化部を通過させて前記水素を前記発電装置に供給するときに前記第1純化部の前記第1脱水部が乾燥処理可能とされていることを特徴とする請求項1から請求項4のいずれか1項に記載の発電システム。
    The power generation system includes a purification mechanism provided between the aqueous solution storage unit and the hydrogen to the power generation device,
    The purification mechanism,
    A first purification unit having a first dehydration unit and a first impurity gas removal unit;
    A second dehydration unit and a second purification unit having a second impurity gas removal unit.
    When the hydrogen is supplied to the power generation device through the first purification unit, the second dehydration unit of the second purification unit can be dried, and the hydrogen is passed through the second purification unit to remove the hydrogen. The power generation system according to any one of claims 1 to 4, wherein the first dehydration unit of the first purification unit can be dried when supplying the power to the power generation device.
  8.  水素発生装置であって、
     前記水素発生装置は、
     水溶液を貯蔵する水溶液貯蔵部と、
     前記水溶液との反応で水素の発生が可能な状態のマグネシウムを含む原料を貯蔵する原料貯蔵部と、
     前記原料貯蔵部から前記水溶液貯蔵部に向けて前記原料を供給する原料供給機構と、を備えることを特徴とする水素発生装置。
    A hydrogen generator,
    The hydrogen generator,
    An aqueous solution storage unit for storing an aqueous solution;
    A raw material storage unit for storing a raw material containing magnesium capable of generating hydrogen by reaction with the aqueous solution,
    A hydrogen supply device for supplying the raw material from the raw material storage unit to the aqueous solution storage unit.
  9.  前記水溶液貯蔵部は、前記水溶液より上側となる前記水溶液の存在しない上部空間を備え、
     前記原料供給機構は、前記上部空間側から前記水溶液に向けて前記原料を供給するように設けられており、
     前記水素発生装置は、
     前記上部空間の圧力を測定する圧力測定装置と、
     前記圧力測定装置の圧力の測定結果に基づいて、前記原料供給機構を駆動させ、前記水溶液に向けて供給する前記原料の供給量を制御する制御部と、を備えることを特徴とする請求項8に記載の水素発生装置。
    The aqueous solution storage unit includes an upper space where the aqueous solution does not exist above the aqueous solution,
    The raw material supply mechanism is provided to supply the raw material toward the aqueous solution from the upper space side,
    The hydrogen generator,
    A pressure measuring device for measuring the pressure of the upper space,
    9. A control unit for driving the raw material supply mechanism based on a pressure measurement result of the pressure measuring device to control a supply amount of the raw material supplied toward the aqueous solution. The hydrogen generator according to item 1.
  10.  前記水溶液貯蔵部は、
     前記上部空間の下側となる前記水溶液の存在する下部空間と、
     前記下部空間内を上下に仕切る仕切部と、
     前記仕切部より下側に設けられ、前記水溶液を排水する排水口と、
     前記仕切部より上側に設けられ、前記水溶液を供給する給水口と、を備え、
     前記仕切部は、前記原料と前記水溶液との反応で生成した副生成物が前記仕切部より下側に沈殿可能に設けられた複数の貫通孔を備えることを特徴とする請求項9に記載の水素発生装置。
    The aqueous solution storage unit,
    A lower space in which the aqueous solution exists below the upper space,
    A partition part for vertically dividing the lower space,
    A drain port provided below the partition portion to drain the aqueous solution,
    A water supply port provided above the partition portion to supply the aqueous solution,
    10. The partition according to claim 9, wherein the partition has a plurality of through-holes provided so that a by-product generated by a reaction between the raw material and the aqueous solution can precipitate below the partition. Hydrogen generator.
  11.  前記水素発生装置は、
     前記排水口から排水される前記水溶液の排水量を制御する排水制御弁と、
     前記給水口から給水される前記水溶液の給水量を制御する給水制御弁と、を備え、
     前記制御部は、前記水溶液に向けて供給する前記原料の供給量に基づいて、前記排水制御弁、及び、前記給水制御弁を制御することを特徴とする請求項10に記載の発電システム。
    The hydrogen generator,
    A drainage control valve for controlling a drainage amount of the aqueous solution drained from the drainage port,
    A water supply control valve that controls a water supply amount of the aqueous solution supplied from the water supply port,
    The power generation system according to claim 10, wherein the control unit controls the drainage control valve and the water supply control valve based on a supply amount of the raw material supplied toward the aqueous solution.
PCT/JP2019/019353 2018-07-04 2019-05-15 Power generation system using hydrogen, and hydrogen generator WO2020008735A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-127443 2018-07-04
JP2018127443A JP6855657B2 (en) 2018-07-04 2018-07-04 Power generation system using hydrogen and hydrogen generator

Publications (1)

Publication Number Publication Date
WO2020008735A1 true WO2020008735A1 (en) 2020-01-09

Family

ID=69059571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019353 WO2020008735A1 (en) 2018-07-04 2019-05-15 Power generation system using hydrogen, and hydrogen generator

Country Status (2)

Country Link
JP (1) JP6855657B2 (en)
WO (1) WO2020008735A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969559A (en) * 1972-09-13 1974-07-05
JP2002154803A (en) * 2000-11-15 2002-05-28 Toyota Motor Corp Gaseous hydrogen producing device
JP2003221202A (en) * 2002-01-30 2003-08-05 Honda Motor Co Ltd Hydrogen generating device
JP2008063152A (en) * 2006-09-04 2008-03-21 Kobe Steel Ltd Psa apparatus for producing high purity hydrogen gas
US20110150756A1 (en) * 2009-12-17 2011-06-23 Idatech, Llc Systems and methods for initiating operation of pressure swing adsorption systems and hydrogen-producing fuel processing systems incorporating the same
CN104555916A (en) * 2015-01-09 2015-04-29 南京工业大学 Device for continuously and controllably producing hydrogen by virtue of hydrolysis of magnesium hydride and method for producing hydrogen by device
WO2017025591A1 (en) * 2015-08-12 2017-02-16 Ihod Limited An apparatus for generating hydrogen
JP2017206421A (en) * 2016-05-20 2017-11-24 株式会社神戸製鋼所 Method and apparatus for producing hydrogen gas
JP2017226577A (en) * 2016-06-23 2017-12-28 アクアフェアリー株式会社 Hydrogen generator and power generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3909001B2 (en) * 2002-01-24 2007-04-25 株式会社荏原製作所 Fuel cell power generation system receiving hydrogen gas from hypochlorite generator
JP2004210591A (en) * 2002-12-27 2004-07-29 Itec Co Ltd Apparatus and method of producing gaseous hydrogen
EP3984949A1 (en) * 2009-01-27 2022-04-20 H2Fuel-Systems B.V. Fuel for hydrogen generation
JP5497543B2 (en) * 2010-06-09 2014-05-21 愛三工業株式会社 Hydrogen generator
US9884760B2 (en) * 2012-06-19 2018-02-06 Bio Coke Lab. Co., Ltd. Hydrogen generation apparatus
EP2865786B1 (en) * 2012-06-25 2017-03-29 Nissan Motor Co., Ltd. Water electrolysis system
JP2017534435A (en) * 2014-08-29 2017-11-24 ヌヴェラ・フュエル・セルズ,エルエルシー Method of operating a pressure swing adsorption purifier using an electrochemical hydrogen compressor
KR102579658B1 (en) * 2016-09-09 2023-09-15 한화오션 주식회사 Metallic fuel hydrogen generation system of underwater moving body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969559A (en) * 1972-09-13 1974-07-05
JP2002154803A (en) * 2000-11-15 2002-05-28 Toyota Motor Corp Gaseous hydrogen producing device
JP2003221202A (en) * 2002-01-30 2003-08-05 Honda Motor Co Ltd Hydrogen generating device
JP2008063152A (en) * 2006-09-04 2008-03-21 Kobe Steel Ltd Psa apparatus for producing high purity hydrogen gas
US20110150756A1 (en) * 2009-12-17 2011-06-23 Idatech, Llc Systems and methods for initiating operation of pressure swing adsorption systems and hydrogen-producing fuel processing systems incorporating the same
CN104555916A (en) * 2015-01-09 2015-04-29 南京工业大学 Device for continuously and controllably producing hydrogen by virtue of hydrolysis of magnesium hydride and method for producing hydrogen by device
WO2017025591A1 (en) * 2015-08-12 2017-02-16 Ihod Limited An apparatus for generating hydrogen
JP2017206421A (en) * 2016-05-20 2017-11-24 株式会社神戸製鋼所 Method and apparatus for producing hydrogen gas
JP2017226577A (en) * 2016-06-23 2017-12-28 アクアフェアリー株式会社 Hydrogen generator and power generator

Also Published As

Publication number Publication date
JP2020007173A (en) 2020-01-16
JP6855657B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
EP2181963A1 (en) Release of stored ammonia at start-up
EP0970916B1 (en) Ozone storage system
WO2020008735A1 (en) Power generation system using hydrogen, and hydrogen generator
WO2011088061A2 (en) Ventilation gas management systems and processes
WO2016108924A1 (en) Method and system for high reliability oxygen supply from multiple units
WO2010032313A1 (en) Secondary-battery mounted mobile unit
JP7260927B2 (en) Battery pack charging system and charging method
JP2004116544A (en) Hydrogen supplying station and its control method
US20160053651A1 (en) Ammonia storage structure and associated systems
CN214378733U (en) Battery pack box and battery pack
WO2016104007A1 (en) Hydrogen production device and hydrogen generation vessel
WO2007044452A1 (en) Solid fuel packging system and method of hydrogen generation
US20030192779A1 (en) Device for charging and activating hydrogen storage canister
KR101291259B1 (en) Apparatus using sodium for vessel propulsion and reduction of harmful substance in exhaust gas
CN110772985A (en) Catalyst loader and denitration reaction equipment with same
JPH11270794A (en) Hydrocarbon gas storage system
JP2004068896A (en) Hydrogen storing/supplying system
CN211612256U (en) Catalyst loader and denitration reaction equipment with same
JP5084166B2 (en) Hydrogen production equipment
JP5982314B2 (en) Hydrogen oxygen generator and operation method of hydrogen oxygen generator
JPH02283602A (en) Storage tank of reversible solute and its use
CN106195626B (en) Ammonia storage material force control method, container design and manufacturing method and application
KR102614408B1 (en) Hydrogen generate apparatus for submarine
JP2006004904A (en) Fuel cell system and method of controlling thereof
RU2376522C1 (en) Hydrogen accumulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830733

Country of ref document: EP

Kind code of ref document: A1