WO2020008561A1 - Porous material and heat insulation material - Google Patents

Porous material and heat insulation material Download PDF

Info

Publication number
WO2020008561A1
WO2020008561A1 PCT/JP2018/025358 JP2018025358W WO2020008561A1 WO 2020008561 A1 WO2020008561 A1 WO 2020008561A1 JP 2018025358 W JP2018025358 W JP 2018025358W WO 2020008561 A1 WO2020008561 A1 WO 2020008561A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous material
particles
zirconia
heat insulating
pore diameter
Prior art date
Application number
PCT/JP2018/025358
Other languages
French (fr)
Japanese (ja)
Inventor
晃暢 織部
崇弘 冨田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2018/025358 priority Critical patent/WO2020008561A1/en
Publication of WO2020008561A1 publication Critical patent/WO2020008561A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Definitions

  • the present invention relates to a porous material and a heat insulating material.
  • Insulation materials are required to have low thermal conductivity. Also, depending on the use of the heat insulating material, the heat insulating material may be required to have a low heat capacity.
  • the heat insulating film described in Patent Document 1 includes a porous material (paragraph 0064).
  • the porous material has a skeleton (paragraph 0024). A plurality of pores are formed in the porous material (paragraph 0024).
  • the skeleton is composed of ZrO 2 particles (paragraph 0022).
  • the porous material preferably has an average pore size of 0.5-500 nm (paragraph 0026). Further, the porous material preferably has a thermal conductivity of 1.5 W / mK or less, and preferably has a heat capacity of 1500 kJ / m 3 K or less (paragraphs 0069-0070).
  • the present invention has been made in view of this problem.
  • the problem to be solved by the present invention is to provide a porous material having low thermal conductivity and low heat capacity.
  • the porous material has a skeleton including a plurality of zirconia particles made of zirconia. A plurality of pores are formed in the porous material.
  • the plurality of pores are such that when the pore diameter becomes the first pore diameter, the log differential pore volume reaches the first peak value, and the pore diameter becomes the second pore diameter larger than the first pore diameter.
  • the plurality of pores formed in the porous material include many small pores having a pore diameter close to the first pore diameter of 0.05 ⁇ m or more and 2 ⁇ m or less, and are larger than the first pore diameter. Many pores having a pore diameter close to the second pore diameter of 0.2 ⁇ m or more and 50 ⁇ m or less are included. Small pores contribute to lowering the thermal conductivity of the porous material. In addition, the pores contribute to lowering the heat capacity of the porous material. Thereby, a porous material having low heat conductivity and low heat capacity can be provided.
  • FIG. 1 It is a perspective view which illustrates typically the heat insulating material with a sheet
  • FIG. 4 is a graph showing a pore size distribution of a plurality of pores formed in the porous material according to the first embodiment. It is a figure which shows the TEM image obtained by observing the 1st trial product of the porous material of 1st Embodiment with a transmission electron microscope (TEM).
  • FIG. 8 is a diagram showing a binarized image obtained by binarizing the TEM image shown in FIG. 7.
  • FIG. 4 is a graph showing a pore size distribution of a plurality of pores formed in a second prototype of the porous material of the first embodiment. It is a figure showing the SEM picture obtained by observing the 2nd trial product of the porous material of a 1st embodiment with a scanning electron microscope (SEM). It is a figure showing the graph showing the pore diameter distribution of a plurality of pores formed in the 3rd prototype of the porous material of a 1st embodiment.
  • SEM scanning electron microscope
  • the porous material of the first embodiment can constitute a heat insulating material, can constitute a material other than the heat insulating material, and can also constitute a material that also functions as a heat insulating material and a material other than the heat insulating material. .
  • a case where the porous material of the first embodiment forms a heat insulating material will be exemplified.
  • FIG. 1 is a perspective view schematically showing a heat insulation material with a sheet including the heat insulation material of the first embodiment.
  • the heat insulating material with a sheet 100 shown in FIG. 1 includes a plurality of heat insulating materials 110 and sheets 112.
  • the plurality of heat insulating materials 110 are made of ceramics and have heat insulating properties.
  • Each heat insulating material 110 included in the plurality of heat insulating materials 110 has a plate-like shape.
  • Each heat insulating material 110 has an irregular planar shape.
  • the heat insulator 110 having the irregular planar shape may be replaced with a heat insulator having a planar shape different from the irregular planar shape.
  • the heat insulating material 110 having an irregular planar shape may be replaced with a heat insulating material having a square planar shape.
  • the plane size of each heat insulating material 110 is not limited, but is desirably 500 ⁇ m square or less.
  • each heat insulating material 110 is not limited, but is preferably 100 ⁇ m or less, and more preferably 80 ⁇ m or less.
  • the plurality of heat insulating materials 110 are arranged on a plane. Each heat insulator 110 has a gap 120 between itself and the heat insulator 110 adjacent to each heat insulator 110.
  • the sheet 112 is made of resin and has flexibility.
  • the sheet 112 made of resin may be replaced with a sheet made of a different material from resin.
  • the sheet 112 made of resin may be replaced with a sheet made of paper, metal foil, or the like.
  • One main surface of the sheet 112 has adhesiveness.
  • a plurality of heat insulating materials 110 are fixed to one main surface of the sheet 112.
  • FIG. 2 is a perspective view schematically illustrating a procedure of forming a heat insulating film provided with the heat insulating material of the first embodiment on the surface of the substrate.
  • the above-described heat insulating material with sheet 100 is prepared, and the base material 202 is prepared.
  • the substrate 202 is an object to be thermally insulated. Further, an adhesive is applied to the surface of the base material 202. As a result, the adhesive layer 204 before curing is formed on the surface of the substrate 202.
  • the base 202 is an engine or the like.
  • the surface of the base member 202 is an inner surface or the like surrounding the combustion chamber of the engine.
  • the plurality of heat insulating materials 110 are pressed against the adhesive layer 204 before curing, and the adhesive layer 204 before curing is cured and changed to the adhesive layer 206 as shown in FIG. Then, the sheet 112 is peeled from the plurality of heat insulating materials 110. As a result, the plurality of heat insulating materials 110 are transferred from one main surface of the sheet 112 to the surface of the substrate 202, and the heat insulating film 200 including the plurality of heat insulating materials 110 is formed.
  • a heat insulating structure 210 including the material 202 is manufactured. In the heat insulating structure 210, the heat insulating film 200 is bonded to the surface of the base 202 via the adhesive layer 206.
  • Each heat insulator 110 has a gap 120 between the heat insulator 110 and the heat insulator 110 adjacent to each heat insulator 110. Further, the sheet 112 has flexibility. For this reason, the heat insulating film 200 can be formed on a curved surface. Further, the plurality of heat insulating materials 110 have a certain thickness. Therefore, the surface of the heat insulating film 200 has only small irregularities.
  • the heat insulating film described in Patent Literature 1 has a problem that it is difficult to uniformly disperse a porous material in a matrix, so that there is a limit in reducing thermal conductivity. 200 can solve this problem.
  • the plurality of heat insulating materials 110 may be directly bonded to the surface of the base 202 without passing through one main surface of the sheet 112. Further, only one heat insulating material 110 may be bonded to the surface of the base 202. Further, a heat insulating material having a shape different from the plate shape may be bonded to the surface of the base 202. For example, a heat insulating material having a block shape may be adhered to the surface of the base 202. A heat insulating film including a plurality of heat insulating materials 110 and a matrix and in which the plurality of heat insulating materials 110 are dispersed in the matrix may be bonded to the surface of the base 202.
  • FIG. 3 is a cross-sectional view schematically illustrating a thermal insulation structure including the thermal insulation according to the first embodiment.
  • the heat insulating structure 210 includes the above-described heat insulating film 200, the adhesive layer 206, and the base material 202.
  • the heat insulating film 200 includes the plurality of heat insulating materials 110 described above.
  • Each heat insulator 110 includes a porous material 300 and a dense layer 302.
  • the dense layer 302 can prevent gas, liquid, or solid from entering the porous material 300.
  • the dense layer 302 prevents the combustion gas, fuel droplets, fuel cinders, and the like from entering the porous material 300. can do. If there is no possibility that a gas, liquid or solid enters the porous material 300, the dense layer 302 may be omitted.
  • FIG. 4 is a diagram schematically illustrating a first microstructure example of the porous material according to the first embodiment.
  • FIG. 5 is a diagram schematically illustrating a second microstructure example of the porous material according to the first embodiment.
  • the porous material 300 includes the skeleton 400.
  • the skeleton 400 includes a plurality of particles and has a three-dimensional network structure. In the porous material 300, spaces other than the space occupied by the skeleton 400 are voids. For this reason, a plurality of pores 402 that form voids are formed in the porous material 300.
  • the skeleton 400 includes a plurality of zirconia particles 410.
  • the skeleton 400 further includes a plurality of dissimilar material particles 412.
  • the plurality of zirconia particles 410 are made of zirconia.
  • the plurality of different material particles 412 are made of a different material different from zirconia.
  • Each zirconia particle 410 included in the plurality of zirconia particles 410 may be a single crystal particle composed of one crystal grain, or may be a polycrystalline particle composed of two or more crystal grains.
  • Each of the different material particles 412 included in the plurality of different material particles 412 may be a single crystal particle composed of one crystal grain, or may be a polycrystalline particle composed of two or more crystal grains.
  • the skeleton 400 may include particles different from the plurality of zirconia particles 410 and the plurality of dissimilar material particles 412.
  • the content ratio of the zirconia particles 410 and the foreign material particles 412 indicating the ratio of the volume occupied by the plurality of zirconia particles 410 and the plurality of different material particles 412 to the volume occupied by the plurality of particles provided in the skeleton 400 is desirably 90. % Or more. Thereby, high heat resistance and high strength inherent to zirconia can be exhibited.
  • each dissimilar material particle 412 included in the plurality of dissimilar material particles 412 is at least included in the plurality of zirconia particles 410. It contacts the surface of one zirconia particle 410. Therefore, phonons are scattered at a grain boundary between each of the different material particles 412 and at least one zirconia particle 410 in contact with each of the different material particles 412. Thereby, the thermal conductivity of the porous material 300 can be reduced.
  • the contact between the foreign material particles 412 and the surface of the at least one zirconia particle 410 may be caused by the contact between the foreign material particles 412 and the surface of the two zirconia particles 410 sandwiching the foreign material particle 412 as shown in FIG. Including doing.
  • phonon scattering increases, and the thermal conductivity of the porous material 300 can be further reduced.
  • the fact that the foreign material particles 412 contact the surface of at least one zirconia particle 410 means that the foreign material particles 412 contact the surface of only one zirconia particle 410, Contacting the surface of the neck with which it contacts.
  • the zirconia constituting the plurality of zirconia particles 410 is selected from the group consisting of oxides of Zr (ZrO 2 ) and composite oxides of two or more elements including Zr. At least one oxide. Among two or more elements including Zr, Zr is a main component.
  • the at least one element other than Zr included in the two or more elements including Zr may be Mg, Ca, Y or the like that forms stabilized zirconia or partially stabilized zirconia, or a different material described below. Or at least one element similar to at least one element selected from the group consisting of Si, Ti, La, Al, Sr, Gd, Nb and Y. .
  • At least one element other than Zr enters the Zr site of zirconia. Whether at least one element other than Zr is present in the Zr site of zirconia can be confirmed by performing elemental analysis by TEM and crystal structure analysis by X-ray diffraction.
  • the heterogeneous material constituting the plurality of heterogeneous material particles 412 is an oxide of an element other than Zr, a composite oxide of two or more elements other than Zr, and At least one oxide selected from the group consisting of composite oxides of two or more elements containing Zr.
  • the heterogeneous material constituting the plurality of heterogeneous material particles 412 is an oxide of an element other than Zr, a composite oxide of two or more elements other than Zr, and At least one oxide selected from the group consisting of composite oxides of two or more elements containing Zr.
  • at least one element other than Zr is a main component.
  • Elements other than Zr are Si, Ti, La, Al, Sr, Gd, Nb or Y.
  • the two or more elements other than Zr are two or more elements selected from the group consisting of Si, Ti, La, Al, Sr, Gd, Nb, and Y.
  • At least one element other than Zr included in the two or more elements including Zr is at least
  • the dissimilar material desirably includes two or more oxides. Accordingly, phonon scattering increases, and the thermal conductivity of the porous material 300 can be further reduced.
  • the volume ratio indicating the ratio of the volume occupied by the second oxide to the volume occupied by the first oxide is: , Preferably 1/9 or more and 9 or less.
  • the thermal conductivity of the porous material 300 can be further reduced.
  • the volume ratio is out of this range, it tends to be difficult to further reduce the thermal conductivity of the porous material 300.
  • the content ratio of the different material particles 412 indicating the ratio of the volume occupied by the plurality of different material particles 412 to the volume occupied by the plurality of zirconia particles 410 and the plurality of different material particles 412 is preferably 0.1% by volume or more and 30% by volume or less. And more preferably 0.5% by volume or more and 20% by volume or less, particularly preferably 1% by volume or more and 18% by volume or less.
  • the thermal conductivity of the porous material 300 can be further reduced. Further, high heat resistance and high strength inherently possessed by zirconia can be exhibited.
  • the content ratio of the heterogeneous material particles 412 is smaller than these ranges, it tends to be difficult to further reduce the thermal conductivity of the porous material 300.
  • the content ratio of the different kind of material particles 412 is larger than these ranges, it tends to be difficult to develop the inherently high heat resistance and high strength of zirconia.
  • the presence or absence of the zirconia particles 410 and the foreign material particles 412, the elements contained in the zirconia particles 410 and the foreign material particles 412, and the content ratio of the foreign material particles 412 are determined by a transmission electron microscope (TEM), a scanning electron microscope (SEM), or The porous material 300 is observed using a field emission scanning electron microscope (FE-SEM), and a field emission electron beam microanalyzer (FE-EPMA), energy dispersive X-ray spectroscopy (TEM-EDX), or the like is used. It is confirmed by performing elemental analysis using the same.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • FE-EPMA field emission electron beam microanalyzer
  • TEM-EDX energy dispersive X-ray spectroscopy
  • FIG. 6 is a graph showing a pore size distribution of a plurality of pores formed in the porous material of the first embodiment.
  • the pore size distribution of the plurality of pores 402 shown in FIG. 6 indicates a change in log differential pore volume depending on the pore size.
  • the horizontal axis represents the pore diameter
  • the vertical axis represents the log differential pore volume.
  • the horizontal axis is a logarithmic axis
  • the vertical axis is a linear axis.
  • the plurality of pores 402 have a bimodal pore diameter distribution. Therefore, when the pore diameter becomes the first pore diameter P1, the log differential pore volume of the plurality of pores 402 reaches the first peak value V1, and the pore diameter of the second pores 402 is larger than the first pore diameter P1. Has a pore diameter distribution in which the log differential pore volume reaches the second peak value V2 when the pore diameter becomes P2.
  • the first pore diameter P1 is 0.05 ⁇ m or more and 2 ⁇ m or less.
  • the second pore diameter P2 is 0.2 ⁇ m or more and 50 ⁇ m or less.
  • the plurality of pores 402 include many small pores having a pore diameter close to the first pore diameter P1 of 0.05 ⁇ m or more and 2 ⁇ m or less, and 0.2 ⁇ m or more and 50 ⁇ m or less. Many pores having pore diameters close to the following second pore diameter P2 are included.
  • the small pores contribute to lowering the thermal conductivity of the porous material 300.
  • the air holes contribute to lowering the heat capacity of the porous material 300. Thereby, the porous material 300 having low heat conductivity and low heat capacity can be provided.
  • the pore size distribution of the plurality of pores 402 is measured by a mercury porosimetry using a mercury porosimeter.
  • a mercury porosimeter AutoPore IV 9520 manufactured by Micromeritics Instrument Corporation is preferably used. This is the same for the mercury porosimeter described below.
  • the porosity of the porous material 300 is desirably from 20% to 80%, more desirably from 20% to 70%, and desirably from 40% to 70%. It is particularly preferably 50% or more and 70% or less. When the porosity of the porous material 300 is within these ranges, the thermal conductivity of the porous material 300 can be further reduced. Further, the strength of the porous material 300 can be increased. However, when the porosity of the porous material 300 is smaller than these ranges, it tends to be difficult to further reduce the thermal conductivity of the porous material 300. If the porosity of the porous material 300 is larger than these ranges, it tends to be difficult to increase the strength of the porous material 300.
  • the porosity of the porous material 300 is measured by a mercury porosimetry using a mercury porosimeter.
  • the average particle size of the plurality of zirconia particles 410 is desirably 70 nm or less. When the average particle size of the plurality of zirconia particles 410 is within this range, the thermal conductivity of the porous material 300 can be further reduced.
  • the minimum particle size of the plurality of zirconia particles 410 is desirably about 10 nm.
  • the maximum particle size of the plurality of zirconia particles 410 is desirably about 100 nm.
  • the plurality of zirconia particles 410 may slightly include large particles having a particle size of several hundred nm or more. Large particles are scattered throughout the porous material 300.
  • a flaky sample is prepared from the porous material 300.
  • the prepared sample is observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • a TEM image including images of the plurality of zirconia particles 410 is obtained.
  • the field of view and observation conditions are selected so that each zirconia particle 410 and each pore 402 can be clearly identified.
  • the obtained TEM image is subjected to image processing using a personal computer (PC). Thereby, the area occupied by the image of each zirconia particle 410 in the obtained TEM image is calculated. Further, the particle size of each zirconia particle 410 is calculated from the calculated area.
  • the calculated particle size is the diameter of a sphere that forms an image that occupies the same area as the image of each zirconia particle 410. This calculation is performed because each zirconia particle 410 has a spherical shape.
  • the average particle size of the plurality of zirconia particles 410 is an average value of the particle sizes of the plurality of zirconia particles 410.
  • the minimum particle size and the maximum particle size of the plurality of zirconia particles 410 are the minimum value and the maximum value of the particle size of the plurality of zirconia particles 410, respectively.
  • the average particle size of the plurality of different material particles 412 is preferably 0.1 nm or more and 300 nm or less, more preferably 0.1 nm or more and 100 nm or less, and particularly preferably 0.1 nm or more and 50 nm or less. It is as follows. When the average particle size of the plurality of different material particles 412 is within these ranges, the porous material 300 can be manufactured at low cost. Further, high heat resistance and high strength inherently possessed by zirconia can be exhibited. However, when the average particle size of the plurality of different material particles 412 is smaller than these ranges, it tends to be difficult to produce the porous material 300 at low cost. When the average particle size of the plurality of different material particles 412 is larger than these ranges, it tends to be difficult to develop the inherent high heat resistance and high strength of zirconia.
  • the average particle size of the plurality of different material particles 412 is smaller than the average particle size of the plurality of zirconia particles 410. Thereby, high heat resistance and high strength inherent to zirconia can be exhibited.
  • Measurement of the particle size of the plurality of different material particles 412 can be performed in the same manner as measurement of the particle size of the plurality of zirconia particles 410.
  • Thermal conductivity and heat capacity of porous material The thermal conductivity of the porous material 300 is desirably 1.5 W / mk or less, more desirably 1 W / mK or less, particularly desirably 0.3 W / mK. is there.
  • the heat capacity of the porous material 300 is preferably 2000 kJ / m 3 K, and more preferably 1500 kJ / m 3 K or less.
  • the thermal conductivity of the porous material 300 is a product of the density, specific heat and thermal diffusivity of the porous material 300. Density is measured using a mercury porosimeter. Specific heat is measured by differential scanning calorimetry (DSC). The thermal diffusivity is measured by an optical alternating current method.
  • the heat insulating material with a sheet 100 may be manufactured by a procedure different from the procedure described below.
  • the zirconia powder, at least one kind of dissimilar material powder, the pore former, the binder, the plasticizer are used when the molding slurry is prepared. And the dispersion medium are mixed with each other. Thereby, the zirconia powder, at least one kind of different material powder, a pore former, a binder, a plasticizer and a dispersion medium are included, and the zirconia powder, at least one kind of different material powder, the pore former, the binder and the plasticizer are dispersed medium.
  • a slurry for molding is prepared.
  • the molding slurry may contain components other than zirconia powder, at least one kind of different material powder, a pore former, a binder, a plasticizer, and a dispersion medium.
  • the molding slurry may include a dispersant or the like.
  • the zirconia powder, the pore former, the binder, the plasticizer, and the dispersion medium are mixed with each other when the molding slurry is prepared.
  • a molding slurry containing the zirconia powder, the pore former, the binder, the plasticizer, and the dispersion medium, and the zirconia powder, the pore former, the binder, and the plasticizer dispersed in the dispersion medium is prepared.
  • the molding slurry may contain components other than the zirconia powder, the pore former, the binder, the plasticizer, and the dispersion medium.
  • the molding slurry may include a dispersant or the like.
  • At least one heterologous material powder is at least selected from the group consisting of SiO 2, TiO 2, La 2 O 3, Al 2 O 3, SrO, Gd 2 O 3, Nb 2 O 5 and Y 2 O 3 1 Seed oxide powder.
  • the powder of each oxide included in the powder of at least one oxide may be replaced with a powder of a precursor that changes to a powder of each oxide when the molded body is fired.
  • the powder of each oxide may be replaced with a powder of carbonate, hydroxide, oxalate, or the like.
  • the pore former is made of a material that disappears when the molded body is fired.
  • the pore-forming material is made of carbon black, latex particles, melamine resin particles, polymethyl methacrylate (PMMA) particles, polyethylene particles, polystyrene particles, a foamed resin, a water-absorbing resin, and preferably carbon black. It is desirable that the pore former is made of carbon black because the carbon black has a small particle diameter, so that when the pore former is made of carbon black, a plurality of pores 402 having a small pore diameter are formed in the porous material 300. This is because you can do it.
  • the binder is made of polyvinyl butyral resin (PVB), polyvinyl alcohol resin, polyvinyl acetate resin, polyacryl resin, or the like.
  • PVB polyvinyl butyral resin
  • polyvinyl alcohol resin polyvinyl alcohol resin
  • polyvinyl acetate resin polyvinyl acetate resin
  • polyacryl resin or the like.
  • Plasticizer is composed of dibutyl phthalate (DBP), dioctyl phthalate (DOP) and the like.
  • the dispersion medium is made of xylene, 1-butanol, or the like.
  • the content ratio of the zirconia powder in the molding slurry is desirably 5% by volume or more and 20% by volume or less.
  • the content ratio of at least one kind of different material powder in the molding slurry is 0.1% by volume or more and 5% by volume or less.
  • the content ratio of the pore-forming material in the molding slurry is desirably from 0% by volume to 20% by volume.
  • the content ratio of the remaining components for the molding slurry is desirably 70% by volume to 90% by volume.
  • the particle size distribution and other properties of the pore former affect the pore size distribution of the plurality of pores 402 formed in the porous material 300. For this reason, the particle size distribution and other properties of the pore former are selected so that the plurality of pores 402 having the pore size distribution described above are formed in the porous material 300.
  • the viscosity of the molding slurry whose viscosity has been adjusted is desirably from 0.1 Pa ⁇ s to 10 Pa ⁇ s.
  • the molded body is produced by tape molding.
  • the obtained viscosity-adjusted molding slurry is applied to the main surface of the polyester film.
  • a coating film made of the viscosity-adjusted molding slurry is formed on the main surface of the polyester film.
  • the thickness of the coating film is adjusted by a doctor blade or the like. The thickness of the coating film is adjusted so that a sintered body having a thickness corresponding to the thickness of the porous material 300 described above is manufactured. Volatile components, such as a dispersion medium, volatilize from the formed coating film.
  • a molded body made of a solid content composed of zirconia powder, at least one kind of different material powder, a pore former, a binder, and the like is formed on the main surface of the polyester film.
  • the formed body is a sheet-shaped body.
  • the formed molded body is peeled from the polyester film.
  • the polyester film made of polyester may be replaced with a film made of a material different from polyester.
  • a molded article may be produced by a molding method different from tape molding.
  • a molded body may be produced by extrusion molding, press molding, injection molding, cast molding, or the like.
  • a molding slurry, a clay, or the like suitable for the molding method is prepared instead of the molding slurry described above.
  • the exfoliated molded body is fired.
  • a sintered body is manufactured.
  • the produced sintered body is a plate-shaped sintered body.
  • the molded body is preferably fired at a firing temperature of 800 ° C. or more and 2000 ° C. or less for 0.5 hours or more and 20 hours or less, more preferably at a firing temperature of 800 ° C. or more and 1800 ° C. or less and 0.5 hours or more.
  • the firing is performed for a time of 15 hours or less, particularly preferably at a firing temperature of 800 ° C. to 1300 ° C. for a time of 0.5 to 10 hours.
  • the pore former disappears when the molded body is fired. Thereby, a plurality of pores 402 are formed in the manufactured sintered body.
  • a plurality of zirconia particles 410 are generated from the zirconia powder, and a plurality of different material particles 412 are generated from at least one kind of different material powder.
  • at least one kind of different material powder contains two or more kinds of oxide powders that react with each other when the molded body is fired, the composite oxide is formed from the two or more kinds of oxide powders when the molded body is fired. Particles are generated, and the plurality of different material particles 412 include the generated composite oxide particles.
  • the at least one heterogeneous material powder includes at least one oxide powder that reacts with the zirconia powder when the molded body is fired, at least one oxide powder when the molded body is fired; From the zirconia powder, particles of the complex oxide containing a large amount of Zr and particles of the complex oxide containing a large amount of elements other than Zr are generated, and the plurality of zirconia particles 410 contain the generated particles of the complex oxide containing a large amount of Zr.
  • the plurality of different material particles 412 include particles of the generated composite oxide particles containing a large amount of elements other than Zr.
  • the powder of the composite oxide may be included in at least one kind of different material powder included in the slurry for molding.
  • the dense layer contains an oxide of at least one element selected from the group consisting of a metal element and Si, and desirably contains an oxide of Si as a main component.
  • the oxide contained in the dense layer may be the same oxide as the oxide constituting the porous material, or may be an oxide different from the oxide constituting the porous material.
  • a dense layer When a dense layer is produced, a raw material liquid for the dense layer is applied to one main surface of the produced sintered body. Thereby, a coating film made of the raw material liquid for the dense layer is formed on one main surface of the sintered body.
  • the raw material liquid for the dense layer is applied by dipping, spraying, spin coating, roll coating, or the like.
  • the formed coating film is fired or the like. Thereby, cross-linking, sintering, polymerization, etc. in the coating film proceed, a dense layer is formed on one main surface of the sintered body, and the sintered body and the dense layer are provided with the sintered body and the dense layer.
  • a laminated body is produced.
  • the sintered body and the dense layer may be produced in parallel.
  • the laminate provided in the manufactured laminate with the sheet is divided into a plurality of heat-insulating materials 110.
  • the division of the laminated body into the plurality of heat insulating materials 110 may be performed by cutting the laminated body, or forming a groove on at least one main surface of the laminated body, and dividing the laminated body having the groove into a groove. May be performed by dividing along.
  • division may not be necessary in some cases.
  • FIG. 7 is a diagram showing a TEM image obtained by observing a first prototype of the porous material of the first embodiment by TEM.
  • FIG. 8 is a diagram showing a binarized image obtained by binarizing the TEM image shown in FIG. The binarized image shown in FIG. 8 is provided in case the TEM image shown in FIG. 7 cannot be clearly seen due to the restriction of the viewing environment.
  • the porous material 300 has a skeleton 400 as shown in FIG.
  • the skeleton 400 includes a plurality of particles and has a three-dimensional network structure.
  • spaces other than the space occupied by the skeleton 400 are voids. For this reason, a plurality of pores 402 that form voids are formed in the porous material 300.
  • FIG. 9 is a graph showing a pore size distribution of a plurality of pores formed in a second prototype of the porous material of the first embodiment.
  • FIG. 10 is a diagram showing an SEM image obtained by observing a second prototype of the porous material of the first embodiment by SEM.
  • FIG. 11 is a diagram illustrating a graph showing the pore size distribution of a plurality of pores formed in a third prototype of the porous material of the first embodiment.
  • the plurality of pores 402 have a bimodal pore diameter distribution.
  • the plurality of pores 402 have a first pore diameter P1 having a pore diameter of 0.05 ⁇ m or more and 2 ⁇ m or less, the log differential pore volume reaches the first peak value V1, and the pore diameter becomes the first peak value V1.
  • the second pore diameter P2 is larger than the pore diameter P1 and is not less than 0.2 ⁇ m and not more than 50 ⁇ m, the log differential pore volume has a pore diameter distribution reaching the second peak value V2.
  • the plurality of particles include large particles having a particle diameter of several hundred nm or more.
  • REFERENCE SIGNS LIST 100 heat insulating material with sheet 110 heat insulating material 112 sheet 200 heat insulating film 202 base material 204 adhesive layer before curing 206 adhesive layer 210 heat insulating structure 300 porous material 302 dense layer 400 skeleton 402 plural pores 410 zirconia particles 412 heterogeneous material particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Provided is a porous material having low thermal conductivity and low thermal capacity. The porous material is equipped with a skeleton provided with a plurality of zirconia particles comprising zirconia. A plurality of pores are formed in the porous material. The plurality of pores have a pore size distribution in which the log differential pore volume reaches a first peak value when the pore size is a first pore size, the log differential pore volume reaches a second peak value when the pore size is a second pore size larger than the first pore size, the first pore size is 0.05-2 µm, and the second pore size is 0.2-50 µm.

Description

多孔質材料及び断熱材Porous materials and insulation
 本発明は、多孔質材料及び断熱材に関する。 The present invention relates to a porous material and a heat insulating material.
 断熱材には、低い熱伝導率を有することが求められる。また、断熱材の用途によっては、低い熱容量を有することが断熱材に求められる場合がある。 Insulation materials are required to have low thermal conductivity. Also, depending on the use of the heat insulating material, the heat insulating material may be required to have a low heat capacity.
 特許文献1に記載された断熱膜は、多孔質材料を含む(段落0064)。多孔質材料は、骨格を有する(段落0024)。多孔質材料には、複数の細孔が形成される(段落0024)。骨格は、ZrO粒子により構成される(段落0022)。多孔質材料は、好ましくは0.5-500nmの平均気孔径を有する(段落0026)。また、多孔質材料は、好ましくは1.5W/mK以下の熱伝導率を有し、好ましくは1500kJ/mK以下の熱容量を有する(段落0069-0070)。多孔質材料がこのような低い熱容量を有する場合は、エンジン燃焼室に断熱膜が形成されたときに、排気後にエンジン燃焼室内のガス温度が低下し易くなり、異常燃焼等の問題を抑制することができる(段落0069)。 The heat insulating film described in Patent Document 1 includes a porous material (paragraph 0064). The porous material has a skeleton (paragraph 0024). A plurality of pores are formed in the porous material (paragraph 0024). The skeleton is composed of ZrO 2 particles (paragraph 0022). The porous material preferably has an average pore size of 0.5-500 nm (paragraph 0026). Further, the porous material preferably has a thermal conductivity of 1.5 W / mK or less, and preferably has a heat capacity of 1500 kJ / m 3 K or less (paragraphs 0069-0070). When the porous material has such a low heat capacity, when a heat insulating film is formed in the engine combustion chamber, the temperature of the gas in the engine combustion chamber tends to decrease after exhaust, thereby suppressing problems such as abnormal combustion. (Paragraph 0069).
 特許文献1に記載された断熱膜においては、多孔質材料がマトリックスに分散している(段落0065)。しかし、多孔質材料をマトリックスに均一に分散させることは困難である。このため、特許文献1に記載された断熱膜においては、多孔質材料の熱伝導率より高い熱伝導率を有するマトリックスのみが集まった領域をなくすことが困難である。したがって、特許文献1に記載された断熱膜の熱伝導率を低くすることには、限界がある。 に お い て In the heat insulating film described in Patent Document 1, the porous material is dispersed in the matrix (paragraph 0065). However, it is difficult to uniformly disperse the porous material in the matrix. For this reason, in the heat insulating film described in Patent Literature 1, it is difficult to eliminate a region where only a matrix having a higher thermal conductivity than the porous material has gathered. Therefore, there is a limit to reducing the thermal conductivity of the heat insulating film described in Patent Document 1.
国際公開第2015/080065号WO 2015/080065
 特許文献1に記載された多孔質材料に代表される従来の多孔質材料においては、低い熱伝導率及び低い熱容量を両立することが困難であった。 従 来 In a conventional porous material typified by the porous material described in Patent Document 1, it is difficult to achieve both low thermal conductivity and low heat capacity.
 本発明は、この問題に鑑みてなされた。本発明が解決しようとする課題は、低い熱伝導率及び低い熱容量を有する多孔質材料を提供することである。 The present invention has been made in view of this problem. The problem to be solved by the present invention is to provide a porous material having low thermal conductivity and low heat capacity.
 多孔質材料は、ジルコニアからなる複数のジルコニア粒子を備える骨格を備える。多孔質材料には、複数の気孔が形成される。 The porous material has a skeleton including a plurality of zirconia particles made of zirconia. A plurality of pores are formed in the porous material.
 複数の気孔は、気孔径が第1の気孔径となった場合にlog微分気孔容積が第1のピーク値に達し、気孔径が第1の気孔径より大きい第2の気孔径となった場合にlog微分気孔容積が第2のピーク値に達し、第1の気孔径が0.05μm以上2μm以下であり、第2の気孔径が0.2μm以上50μm以下である気孔径分布を有する。 The plurality of pores are such that when the pore diameter becomes the first pore diameter, the log differential pore volume reaches the first peak value, and the pore diameter becomes the second pore diameter larger than the first pore diameter. Has a pore diameter distribution in which the log differential pore volume reaches a second peak value, the first pore diameter is 0.05 μm or more and 2 μm or less, and the second pore diameter is 0.2 μm or more and 50 μm or less.
 本発明によれば、多孔質材料に形成される複数の気孔が、0.05μm以上2μm以下である第1の気孔径に近い気孔径を有する小気孔を多く含み、第1の気孔径より大きく0.2μm以上50μm以下である第2の気孔径に近い気孔径を有する大気孔を多く含む。小気孔は、多孔質材料の熱伝導率を低くすることに寄与する。また、大気孔は、多孔質材料の熱容量を低くすることに寄与する。これにより、低い熱伝導率及び低い熱容量を有する多孔質材料を提供することができる。 According to the present invention, the plurality of pores formed in the porous material include many small pores having a pore diameter close to the first pore diameter of 0.05 μm or more and 2 μm or less, and are larger than the first pore diameter. Many pores having a pore diameter close to the second pore diameter of 0.2 μm or more and 50 μm or less are included. Small pores contribute to lowering the thermal conductivity of the porous material. In addition, the pores contribute to lowering the heat capacity of the porous material. Thereby, a porous material having low heat conductivity and low heat capacity can be provided.
 この発明の目的、特徴、局面及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
第1実施形態の断熱材を備えるシート付き断熱材を模式的に図示する斜視図である。It is a perspective view which illustrates typically the heat insulating material with a sheet | seat provided with the heat insulating material of 1st Embodiment. 第1実施形態の断熱材を備える断熱膜の基材の表面への成膜の手順を模式的に図示する斜視図である。It is a perspective view which illustrates typically the procedure of the film-forming on the surface of the base material of the heat insulation film provided with the heat insulating material of 1st Embodiment. 第1実施形態の断熱材を備える断熱構造を模式的に図示する断面図である。It is sectional drawing which illustrates typically the heat insulation structure provided with the heat insulating material of 1st Embodiment. 第1実施形態の多孔質材料の第1の微構造例を模式的に図示する図である。It is a figure which illustrates typically the 1st microstructure example of the porous material of 1st Embodiment. 第1実施形態の多孔質材料の第2の微構造例を模式的に図示する図である。It is a figure which illustrates typically the 2nd microstructure example of the porous material of 1st Embodiment. 第1実施形態の多孔質材料に形成される複数の気孔の気孔径分布をあらわすグラフを示す図である。FIG. 4 is a graph showing a pore size distribution of a plurality of pores formed in the porous material according to the first embodiment. 第1実施形態の多孔質材料の第1の試作品を透過型電子顕微鏡(TEM)により観察することにより得られたTEM画像を示す図である。It is a figure which shows the TEM image obtained by observing the 1st trial product of the porous material of 1st Embodiment with a transmission electron microscope (TEM). 図7に示されるTEM画像を二値化することにより得られた二値化画像を示す図である。FIG. 8 is a diagram showing a binarized image obtained by binarizing the TEM image shown in FIG. 7. 第1実施形態の多孔質材料の第2の試作品に形成された複数の気孔の気孔径分布をあらわすグラフを示す図である。FIG. 4 is a graph showing a pore size distribution of a plurality of pores formed in a second prototype of the porous material of the first embodiment. 第1実施形態の多孔質材料の第2の試作品を走査型電子顕微鏡(SEM)により観察することにより得られたSEM画像を示す図である。It is a figure showing the SEM picture obtained by observing the 2nd trial product of the porous material of a 1st embodiment with a scanning electron microscope (SEM). 第1実施形態の多孔質材料の第3の試作品に形成された複数の気孔の気孔径分布をあらわすグラフを図示する図である。It is a figure showing the graph showing the pore diameter distribution of a plurality of pores formed in the 3rd prototype of the porous material of a 1st embodiment.
 1 序
 第1実施形態の多孔質材料は、断熱材を構成することができ、断熱材以外のものを構成することもでき、断熱材と断熱材以外のものを兼ねるものを構成することもできる。以下では、第1実施形態の多孔質材料が断熱材を構成する場合を例示する。
1 Introduction The porous material of the first embodiment can constitute a heat insulating material, can constitute a material other than the heat insulating material, and can also constitute a material that also functions as a heat insulating material and a material other than the heat insulating material. . Hereinafter, a case where the porous material of the first embodiment forms a heat insulating material will be exemplified.
 2 シート付き断熱材
 図1は、第1実施形態の断熱材を備えるシート付き断熱材を模式的に図示する斜視図である。
2 Heat Insulation Material with Sheet FIG. 1 is a perspective view schematically showing a heat insulation material with a sheet including the heat insulation material of the first embodiment.
 図1に図示されるシート付き断熱材100は、複数の断熱材110及びシート112を備える。 シ ー ト The heat insulating material with a sheet 100 shown in FIG. 1 includes a plurality of heat insulating materials 110 and sheets 112.
 複数の断熱材110は、セラミックスからなり、断熱性を有する。 The plurality of heat insulating materials 110 are made of ceramics and have heat insulating properties.
 複数の断熱材110に含まれる各断熱材110は、板状の形状を有する。 各 Each heat insulating material 110 included in the plurality of heat insulating materials 110 has a plate-like shape.
 各断熱材110は、不定形状の平面形状を有する。不定形状の平面形状を有する断熱材110が、不定形状の平面形状とは異なる平面形状を有する断熱材に置き換えられてもよい。例えば、不定形状の平面形状を有する断熱材110が、正方形状の平面形状を有する断熱材に置き換えられてもよい。各断熱材110の平面サイズは、制限されないが、望ましくは500μm角以下である。 Each heat insulating material 110 has an irregular planar shape. The heat insulator 110 having the irregular planar shape may be replaced with a heat insulator having a planar shape different from the irregular planar shape. For example, the heat insulating material 110 having an irregular planar shape may be replaced with a heat insulating material having a square planar shape. The plane size of each heat insulating material 110 is not limited, but is desirably 500 μm square or less.
 各断熱材110の厚さは、制限されないが、望ましくは100μm以下であり、さらに望ましくは80μm以下である。 厚 The thickness of each heat insulating material 110 is not limited, but is preferably 100 μm or less, and more preferably 80 μm or less.
 複数の断熱材110は、平面上に配列される。各断熱材110は、各断熱材110に隣接する断熱材110との間に隙間120を有する。 The plurality of heat insulating materials 110 are arranged on a plane. Each heat insulator 110 has a gap 120 between itself and the heat insulator 110 adjacent to each heat insulator 110.
 シート112は、樹脂からなり、可撓性を有する。樹脂からなるシート112が、樹脂とは異なる材質からなるシートに置き換えられてもよい。例えば、樹脂からなるシート112が、紙、金属箔等からなるシートに置き換えられてもよい。 The sheet 112 is made of resin and has flexibility. The sheet 112 made of resin may be replaced with a sheet made of a different material from resin. For example, the sheet 112 made of resin may be replaced with a sheet made of paper, metal foil, or the like.
 シート112の一方の主面は、粘着性を有する。シート112の一方の主面には、複数の断熱材110が固定される。 One main surface of the sheet 112 has adhesiveness. A plurality of heat insulating materials 110 are fixed to one main surface of the sheet 112.
 3 断熱膜の基材の表面上への成膜
 図2は、第1実施形態の断熱材を備える断熱膜の基材の表面への成膜の手順を模式的に図示する斜視図である。
3. Film Formation of Heat Insulating Film on Surface of Substrate FIG. 2 is a perspective view schematically illustrating a procedure of forming a heat insulating film provided with the heat insulating material of the first embodiment on the surface of the substrate.
 断熱膜200の基材202の表面への成膜においては、図2(a)に図示されるように、上述したシート付き断熱材100が準備され、基材202が準備される。基材202は、断熱の対象となる物体である。また、基材202の表面に接着剤が塗布される。これにより、基材202の表面に硬化前の接着剤層204が形成される。基材202は、エンジン等である。基材202の表面は、エンジンの燃焼室を囲む内面等である。 (2) When forming the heat insulating film 200 on the surface of the base material 202, as shown in FIG. 2A, the above-described heat insulating material with sheet 100 is prepared, and the base material 202 is prepared. The substrate 202 is an object to be thermally insulated. Further, an adhesive is applied to the surface of the base material 202. As a result, the adhesive layer 204 before curing is formed on the surface of the substrate 202. The base 202 is an engine or the like. The surface of the base member 202 is an inner surface or the like surrounding the combustion chamber of the engine.
 続いて、硬化前の接着剤層204に複数の断熱材110が押し付けられ、図2(b)に図示されるように、硬化前の接着剤層204が硬化させられ接着剤層206に変化させられ、複数の断熱材110からシート112が剥離される。これにより、複数の断熱材110がシート112の一方の主面から基材202の表面に転写され、複数の断熱材110からなる断熱膜200が形成され、断熱膜200、接着剤層206及び基材202を備える断熱構造210が作製される。断熱構造210においては、断熱膜200が接着剤層206を介して基材202の表面に接着されている。 Subsequently, the plurality of heat insulating materials 110 are pressed against the adhesive layer 204 before curing, and the adhesive layer 204 before curing is cured and changed to the adhesive layer 206 as shown in FIG. Then, the sheet 112 is peeled from the plurality of heat insulating materials 110. As a result, the plurality of heat insulating materials 110 are transferred from one main surface of the sheet 112 to the surface of the substrate 202, and the heat insulating film 200 including the plurality of heat insulating materials 110 is formed. A heat insulating structure 210 including the material 202 is manufactured. In the heat insulating structure 210, the heat insulating film 200 is bonded to the surface of the base 202 via the adhesive layer 206.
 各断熱材110は、各断熱材110に隣接する断熱材110との間に隙間120を有する。また、シート112は、可撓性を有する。このため、断熱膜200は、曲面に成膜することもできる。また、複数の断熱材110は、一定の厚さを有する。このため、断熱膜200の表面は、小さな凹凸しか有しない。 Each heat insulator 110 has a gap 120 between the heat insulator 110 and the heat insulator 110 adjacent to each heat insulator 110. Further, the sheet 112 has flexibility. For this reason, the heat insulating film 200 can be formed on a curved surface. Further, the plurality of heat insulating materials 110 have a certain thickness. Therefore, the surface of the heat insulating film 200 has only small irregularities.
 特許文献1に記載された断熱膜は、多孔質材料をマトリックスに均一に分散させることが困難であるために熱伝導率を低くすることに限界があるという問題を有していたが、断熱膜200は、この問題を解決することができる。 The heat insulating film described in Patent Literature 1 has a problem that it is difficult to uniformly disperse a porous material in a matrix, so that there is a limit in reducing thermal conductivity. 200 can solve this problem.
 複数の断熱材110がシート112の一方の主面を経由せずに基材202の表面に直接的に接着されてもよい。また、1個の断熱材110のみが基材202の表面に接着されてもよい。また、板状の形状とは異なる形状を有する断熱材が基材202の表面に接着されてもよい。例えば、ブロック状の形状を有する断熱材が基材202の表面に接着されてもよい。複数の断熱材110及びマトリックスを備え複数の断熱材110がマトリックスに分散した断熱膜が基材202の表面に接着されてもよい。 The plurality of heat insulating materials 110 may be directly bonded to the surface of the base 202 without passing through one main surface of the sheet 112. Further, only one heat insulating material 110 may be bonded to the surface of the base 202. Further, a heat insulating material having a shape different from the plate shape may be bonded to the surface of the base 202. For example, a heat insulating material having a block shape may be adhered to the surface of the base 202. A heat insulating film including a plurality of heat insulating materials 110 and a matrix and in which the plurality of heat insulating materials 110 are dispersed in the matrix may be bonded to the surface of the base 202.
 4 断熱構造
 図3は、第1実施形態の断熱材を備える断熱構造を模式的に図示する断面図である。
4. Thermal insulation structure FIG. 3 is a cross-sectional view schematically illustrating a thermal insulation structure including the thermal insulation according to the first embodiment.
 断熱構造210は、図3に図示されるように、上述した断熱膜200、接着剤層206及び基材202を備える。断熱膜200は、上述した複数の断熱材110を備える。 (3) As shown in FIG. 3, the heat insulating structure 210 includes the above-described heat insulating film 200, the adhesive layer 206, and the base material 202. The heat insulating film 200 includes the plurality of heat insulating materials 110 described above.
 各断熱材110は、多孔質材料300及び緻密層302を備える。 Each heat insulator 110 includes a porous material 300 and a dense layer 302.
 多孔質材料300には、多数の細孔が形成されている。多孔質材料300の一方の主面は、接着剤層206を介して基材202の表面に接着されている。多孔質材料300の他方の主面は、緻密層302により覆われる。緻密層302により、気体、液体又は固体が多孔質材料300に侵入することを抑制することができる。例えば、断熱膜200がエンジンの燃焼室を囲む内面に成膜される場合は、緻密層302により、燃焼ガス、燃料の液滴、燃料の燃えかす等が多孔質材料300に侵入することを抑制することができる。気体、液体又は固体が多孔質材料300に侵入する恐れがない場合は、緻密層302が省略されてもよい。 多数 A large number of pores are formed in the porous material 300. One main surface of the porous material 300 is adhered to the surface of the base 202 via an adhesive layer 206. The other main surface of the porous material 300 is covered with the dense layer 302. The dense layer 302 can prevent gas, liquid, or solid from entering the porous material 300. For example, when the heat insulating film 200 is formed on the inner surface surrounding the combustion chamber of the engine, the dense layer 302 prevents the combustion gas, fuel droplets, fuel cinders, and the like from entering the porous material 300. can do. If there is no possibility that a gas, liquid or solid enters the porous material 300, the dense layer 302 may be omitted.
 5 多孔質材料の微構造
 図4は、第1実施形態の多孔質材料の第1の微構造例を模式的に図示する図である。図5は、第1実施形態の多孔質材料の第2の微構造例を模式的に図示する図である。
5 Microstructure of Porous Material FIG. 4 is a diagram schematically illustrating a first microstructure example of the porous material according to the first embodiment. FIG. 5 is a diagram schematically illustrating a second microstructure example of the porous material according to the first embodiment.
 図4に図示される第1の微構造例、及び図5に図示される第2の微構造例のいずれにおいても、多孔質材料300は、骨格400を備える。骨格400は、複数の粒子を備え、3次元網目構造を有する。多孔質材料300においては、骨格400が占める空間以外の空間が空隙となっている。このため、多孔質材料300には、空隙を構成する複数の気孔402が形成されている。 多孔 In both the first example of the microstructure illustrated in FIG. 4 and the second example of the microstructure illustrated in FIG. 5, the porous material 300 includes the skeleton 400. The skeleton 400 includes a plurality of particles and has a three-dimensional network structure. In the porous material 300, spaces other than the space occupied by the skeleton 400 are voids. For this reason, a plurality of pores 402 that form voids are formed in the porous material 300.
 6 骨格を構成する粒子
 図4に図示される第1の微構造例、及び図5に図示される第2の微構造例のいずれにおいても、骨格400は、複数のジルコニア粒子410を備える。図4に図示される第1の微構造例においては、骨格400は、複数の異種材料粒子412をさらに備える。
6. Particles Constituting Skeleton In both the first microstructure example illustrated in FIG. 4 and the second microstructure example illustrated in FIG. 5, the skeleton 400 includes a plurality of zirconia particles 410. In the first example of the microstructure illustrated in FIG. 4, the skeleton 400 further includes a plurality of dissimilar material particles 412.
 複数のジルコニア粒子410は、ジルコニアからなる。複数の異種材料粒子412は、ジルコニアとは異なる異種材料からなる。 The plurality of zirconia particles 410 are made of zirconia. The plurality of different material particles 412 are made of a different material different from zirconia.
 複数のジルコニア粒子410に含まれる各ジルコニア粒子410は、1個の結晶粒からなる単結晶粒子であってもよいし、2個以上の結晶粒からなる多結晶粒子であってもよい。複数の異種材料粒子412に含まれる各異種材料粒子412も、1個の結晶粒からなる単結晶粒子であってもよいし、2個以上の結晶粒からなる多結晶粒子であってもよい。 Each zirconia particle 410 included in the plurality of zirconia particles 410 may be a single crystal particle composed of one crystal grain, or may be a polycrystalline particle composed of two or more crystal grains. Each of the different material particles 412 included in the plurality of different material particles 412 may be a single crystal particle composed of one crystal grain, or may be a polycrystalline particle composed of two or more crystal grains.
 骨格400が、複数のジルコニア粒子410及び複数の異種材料粒子412とは異なる粒子を備えてもよい。この場合は、骨格400に備えられる複数の粒子が占める体積に対する複数のジルコニア粒子410及び複数の異種材料粒子412が占める体積の比を示すジルコニア粒子410及び異種材料粒子412の含有割合が望ましくは90%以上とされる。これにより、ジルコニアが本来有する高い耐熱性及び高い強度を発現させることができる。 The skeleton 400 may include particles different from the plurality of zirconia particles 410 and the plurality of dissimilar material particles 412. In this case, the content ratio of the zirconia particles 410 and the foreign material particles 412 indicating the ratio of the volume occupied by the plurality of zirconia particles 410 and the plurality of different material particles 412 to the volume occupied by the plurality of particles provided in the skeleton 400 is desirably 90. % Or more. Thereby, high heat resistance and high strength inherent to zirconia can be exhibited.
 7 ジルコニア粒子と異種材料粒子との関係
 図4に図示される第1の微構造例においては、複数の異種材料粒子412に含まれる各異種材料粒子412が、複数のジルコニア粒子410に含まれる少なくとも1個のジルコニア粒子410の表面に接触する。このため、各異種材料粒子412と各異種材料粒子412が接触する少なくとも1個のジルコニア粒子410との粒界においてフォノンが散乱する。これにより、多孔質材料300の熱伝導率を低くすることができる。
7 Relationship Between Zirconia Particles and Dissimilar Material Particles In the first microstructure example illustrated in FIG. 4, each dissimilar material particle 412 included in the plurality of dissimilar material particles 412 is at least included in the plurality of zirconia particles 410. It contacts the surface of one zirconia particle 410. Therefore, phonons are scattered at a grain boundary between each of the different material particles 412 and at least one zirconia particle 410 in contact with each of the different material particles 412. Thereby, the thermal conductivity of the porous material 300 can be reduced.
 異種材料粒子412が少なくとも1個のジルコニア粒子410の表面に接触することは、図4に図示されるように、異種材料粒子412が異種材料粒子412を挟む2個のジルコニア粒子410の表面に接触することを含む。各異種材料粒子412が2個のジルコニア粒子410の表面に接触する場合は、フォノンの散乱が増加し、多孔質材料300の熱伝導率をさらに小さくすることができる。 The contact between the foreign material particles 412 and the surface of the at least one zirconia particle 410 may be caused by the contact between the foreign material particles 412 and the surface of the two zirconia particles 410 sandwiching the foreign material particle 412 as shown in FIG. Including doing. When each dissimilar material particle 412 contacts the surface of two zirconia particles 410, phonon scattering increases, and the thermal conductivity of the porous material 300 can be further reduced.
 異種材料粒子412が少なくとも1個のジルコニア粒子410の表面に接触することは、異種材料粒子412がただ1個のジルコニア粒子410の表面に接触すること、異種材料粒子412が2個のジルコニア粒子410が接触するネックの表面に接触すること等を含む。 The fact that the foreign material particles 412 contact the surface of at least one zirconia particle 410 means that the foreign material particles 412 contact the surface of only one zirconia particle 410, Contacting the surface of the neck with which it contacts.
 8 ジルコニア粒子及び異種材料粒子を構成する材料
 複数のジルコニア粒子410を構成するジルコニアは、Zrの酸化物(ZrO)、及びZrを含む2種以上の元素の複合酸化物からなる群より選択される少なくとも1種の酸化物である。Zrを含む2種以上の元素においては、Zrが主成分となっている。Zrを含む2種以上の元素に含まれるZr以外の少なくとも1種の元素は、安定化ジルコニア又は部分安定化ジルコニアを形成するMg、Ca、Y等であってもよいし、下述する異種材料を構成する少なくとも1種の元素、すなわちSi、Ti、La、Al、Sr、Gd、Nb及びYからなる群より選択される少なくとも1種の元素と同様の少なくとも1種の元素であってもよい。Zr以外の少なくとも1種の元素は、ジルコニアのZrサイトに入る。Zr以外の少なくとも1種の元素がジルコニアのZrサイトに入っていることは、TEMによる元素分析、及びX線回折法による結晶構造解析を行うことにより確認することができる。
8 Materials Constituting Zirconia Particles and Dissimilar Material Particles The zirconia constituting the plurality of zirconia particles 410 is selected from the group consisting of oxides of Zr (ZrO 2 ) and composite oxides of two or more elements including Zr. At least one oxide. Among two or more elements including Zr, Zr is a main component. The at least one element other than Zr included in the two or more elements including Zr may be Mg, Ca, Y or the like that forms stabilized zirconia or partially stabilized zirconia, or a different material described below. Or at least one element similar to at least one element selected from the group consisting of Si, Ti, La, Al, Sr, Gd, Nb and Y. . At least one element other than Zr enters the Zr site of zirconia. Whether at least one element other than Zr is present in the Zr site of zirconia can be confirmed by performing elemental analysis by TEM and crystal structure analysis by X-ray diffraction.
 図4に図示される第1の微構造例においては、複数の異種材料粒子412を構成する異種材料は、Zr以外の元素の酸化物、Zr以外の2種以上の元素の複合酸化物、及びZrを含む2種以上の元素の複合酸化物からなる群より選択される少なくとも1種の酸化物である。Zrを含む2種以上の元素においては、Zr以外の少なくとも1種の元素が主成分となっている。Zr以外の元素は、Si、Ti、La、Al、Sr、Gd、Nb又はYである。Zr以外の2種以上の元素は、Si、Ti、La、Al、Sr、Gd、Nb及びYからなる群より選択される2種以上の元素である。Zrを含む2種以上の元素に含まれるZr以外の少なくとも1種の元素は、Si、Ti、La、Al、Sr、Gd、Nb及びYからなる群より選択される少なくとも1種の元素である。 In the first microstructure example illustrated in FIG. 4, the heterogeneous material constituting the plurality of heterogeneous material particles 412 is an oxide of an element other than Zr, a composite oxide of two or more elements other than Zr, and At least one oxide selected from the group consisting of composite oxides of two or more elements containing Zr. Among two or more elements including Zr, at least one element other than Zr is a main component. Elements other than Zr are Si, Ti, La, Al, Sr, Gd, Nb or Y. The two or more elements other than Zr are two or more elements selected from the group consisting of Si, Ti, La, Al, Sr, Gd, Nb, and Y. At least one element other than Zr included in the two or more elements including Zr is at least one element selected from the group consisting of Si, Ti, La, Al, Sr, Gd, Nb, and Y. .
 異種材料は、望ましくは2種以上の酸化物を含む。これにより、フォノンの散乱が増加し、多孔質材料300の熱伝導率をさらに低くすることができる。 The dissimilar material desirably includes two or more oxides. Accordingly, phonon scattering increases, and the thermal conductivity of the porous material 300 can be further reduced.
 異種材料が第1の酸化物及び第2の酸化物からなる2種の酸化物からなる場合は、第1の酸化物が占める体積に対する第2の酸化物が占める体積の比を示す体積比は、望ましくは1/9以上9以下である。体積比がこの範囲内である場合は、多孔質材料300の熱伝導率をさらに小さくすることができる。しかし、体積比がこの範囲外である場合は、多孔質材料300の熱伝導率をさらに小さくすることが困難になる傾向があらわれる。 When the dissimilar material is composed of two kinds of oxides, that is, a first oxide and a second oxide, the volume ratio indicating the ratio of the volume occupied by the second oxide to the volume occupied by the first oxide is: , Preferably 1/9 or more and 9 or less. When the volume ratio is within this range, the thermal conductivity of the porous material 300 can be further reduced. However, when the volume ratio is out of this range, it tends to be difficult to further reduce the thermal conductivity of the porous material 300.
 複数のジルコニア粒子410及び複数の異種材料粒子412が占める体積に対する複数の異種材料粒子412が占める体積の比を示す異種材料粒子412の含有割合は、望ましくは0.1体積%以上30体積%以下であり、さらに望ましくは0.5体積%以上20体積%以下であり、特に望ましくは1体積%以上18体積%以下である。異種材料粒子412の含有割合がこれらの範囲内である場合は、多孔質材料300の熱伝導率をさらに小さくすることができる。また、ジルコニアが本来有する高い耐熱性及び高い強度を発現させることができる。しかし、異種材料粒子412の含有割合がこれらの範囲より小さい場合は、多孔質材料300の熱伝導率をさらに小さくすることが困難になる傾向があらわれる。また、異種材料粒子412の含有割合がこれらの範囲より大きい場合は、ジルコニアが本来有する高い耐熱性及び高い強度を発現させることが困難になる傾向があらわれる。 The content ratio of the different material particles 412 indicating the ratio of the volume occupied by the plurality of different material particles 412 to the volume occupied by the plurality of zirconia particles 410 and the plurality of different material particles 412 is preferably 0.1% by volume or more and 30% by volume or less. And more preferably 0.5% by volume or more and 20% by volume or less, particularly preferably 1% by volume or more and 18% by volume or less. When the content ratio of the foreign material particles 412 is within these ranges, the thermal conductivity of the porous material 300 can be further reduced. Further, high heat resistance and high strength inherently possessed by zirconia can be exhibited. However, when the content ratio of the heterogeneous material particles 412 is smaller than these ranges, it tends to be difficult to further reduce the thermal conductivity of the porous material 300. When the content ratio of the different kind of material particles 412 is larger than these ranges, it tends to be difficult to develop the inherently high heat resistance and high strength of zirconia.
 ジルコニア粒子410及び異種材料粒子412の存否、ジルコニア粒子410及び異種材料粒子412に含まれる元素、並びに異種材料粒子412の含有割合は、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)又は電界放出型走査型電子顕微鏡(FE-SEM)を用いて多孔質材料300を観察し、電界放出型電子線マイクロアナライザ(FE-EPMA)、エネルギー分散型X線分光法(TEM-EDX)等を用いて元素分析を行うことにより確認される。 The presence or absence of the zirconia particles 410 and the foreign material particles 412, the elements contained in the zirconia particles 410 and the foreign material particles 412, and the content ratio of the foreign material particles 412 are determined by a transmission electron microscope (TEM), a scanning electron microscope (SEM), or The porous material 300 is observed using a field emission scanning electron microscope (FE-SEM), and a field emission electron beam microanalyzer (FE-EPMA), energy dispersive X-ray spectroscopy (TEM-EDX), or the like is used. It is confirmed by performing elemental analysis using the same.
 9 複数の気孔の気孔径分布
 図6は、第1実施形態の多孔質材料に形成される複数の気孔の気孔径分布をあらわすグラフを示す図である。
9 Pore size distribution of a plurality of pores FIG. 6 is a graph showing a pore size distribution of a plurality of pores formed in the porous material of the first embodiment.
 図6にあらわされる複数の気孔402の気孔径分布は、気孔径によるlog微分気孔容積の変化を示す。図6においては、横軸に気孔径がとられ、縦軸にlog微分気孔体積がとられている。図6においては、横軸が対数軸となっており、縦軸が線形軸となっている。 気 The pore size distribution of the plurality of pores 402 shown in FIG. 6 indicates a change in log differential pore volume depending on the pore size. In FIG. 6, the horizontal axis represents the pore diameter, and the vertical axis represents the log differential pore volume. In FIG. 6, the horizontal axis is a logarithmic axis, and the vertical axis is a linear axis.
 複数の気孔402は、二峰性の気孔径分布を有する。このため、複数の気孔402は、気孔径が第1の気孔径P1となった場合にlog微分気孔容積が第1のピーク値V1に達し、気孔径が第1の気孔径P1より大きい第2の気孔径P2となった場合にlog微分気孔容積が第2のピーク値V2に達する気孔径分布を有する。第1の気孔径P1は、0.05μm以上2μm以下である。第2の気孔径P2は、0.2μm以上50μm以下である。 The plurality of pores 402 have a bimodal pore diameter distribution. Therefore, when the pore diameter becomes the first pore diameter P1, the log differential pore volume of the plurality of pores 402 reaches the first peak value V1, and the pore diameter of the second pores 402 is larger than the first pore diameter P1. Has a pore diameter distribution in which the log differential pore volume reaches the second peak value V2 when the pore diameter becomes P2. The first pore diameter P1 is 0.05 μm or more and 2 μm or less. The second pore diameter P2 is 0.2 μm or more and 50 μm or less.
 この複数の気孔402の気孔径分布によれば、複数の気孔402が、0.05μm以上2μm以下である第1の気孔径P1に近い気孔径を有する小気孔を多く含み、0.2μm以上50μm以下である第2の気孔径P2に近い気孔径を有する大気孔を多く含む。小気孔は、多孔質材料300の熱伝導率を低くすることに寄与する。また、大気孔は、多孔質材料300の熱容量を低くすることに寄与する。これにより、低い熱伝導率及び低い熱容量を有する多孔質材料300を提供することができる。 According to the pore diameter distribution of the plurality of pores 402, the plurality of pores 402 include many small pores having a pore diameter close to the first pore diameter P1 of 0.05 μm or more and 2 μm or less, and 0.2 μm or more and 50 μm or less. Many pores having pore diameters close to the following second pore diameter P2 are included. The small pores contribute to lowering the thermal conductivity of the porous material 300. In addition, the air holes contribute to lowering the heat capacity of the porous material 300. Thereby, the porous material 300 having low heat conductivity and low heat capacity can be provided.
 複数の気孔402の気孔径分布は、水銀ポロシメータを用いて水銀圧入法により測定される。水銀ポロシメータとしては、マイクロメリティック・インスツルメント社(Micromeritics Instrument Corporation)製のオートポアIV 9520(AutoPore IV 9520)が好適に用いられる。この点は、下述する水銀ポロシメータについても同様である。 気 The pore size distribution of the plurality of pores 402 is measured by a mercury porosimetry using a mercury porosimeter. As the mercury porosimeter, AutoPore IV 9520 manufactured by Micromeritics Instrument Corporation is preferably used. This is the same for the mercury porosimeter described below.
 10 多孔質材料の気孔率
 多孔質材料300の気孔率は、望ましくは20%以上80%以下であり、さらに望ましくは20%以上70%以下であり、より望ましくは40%以上70%以下であり、特に望ましくは50%以上70%以下である。多孔質材料300の気孔率がこれらの範囲内である場合は、多孔質材料300の熱伝導率をさらに小さくすることができる。また、多孔質材料300の強度を高くすることができる。しかし、多孔質材料300の気孔率がこれらの範囲より小さい場合は、多孔質材料300の熱伝導率をさらに小さくすることが困難になる傾向があらわれる。多孔質材料300の気孔率がこれらの範囲より大きい場合は、多孔質材料300の強度を高くすることが困難になる傾向があらわれる。
10 Porosity of Porous Material The porosity of the porous material 300 is desirably from 20% to 80%, more desirably from 20% to 70%, and desirably from 40% to 70%. It is particularly preferably 50% or more and 70% or less. When the porosity of the porous material 300 is within these ranges, the thermal conductivity of the porous material 300 can be further reduced. Further, the strength of the porous material 300 can be increased. However, when the porosity of the porous material 300 is smaller than these ranges, it tends to be difficult to further reduce the thermal conductivity of the porous material 300. If the porosity of the porous material 300 is larger than these ranges, it tends to be difficult to increase the strength of the porous material 300.
 多孔質材料300の気孔率は、水銀ポロシメータを用いて水銀圧入法により測定される。 気 The porosity of the porous material 300 is measured by a mercury porosimetry using a mercury porosimeter.
 11 ジルコニア粒子の粒径
 複数のジルコニア粒子410の平均粒径は、望ましくは70nm以下である。複数のジルコニア粒子410の平均粒径がこの範囲内である場合は、多孔質材料300の熱伝導率をさらに小さくすることができる。
11 Particle Size of Zirconia Particles The average particle size of the plurality of zirconia particles 410 is desirably 70 nm or less. When the average particle size of the plurality of zirconia particles 410 is within this range, the thermal conductivity of the porous material 300 can be further reduced.
 複数のジルコニア粒子410の最小粒径は、望ましくは約10nmである。また、複数のジルコニア粒子410の最大粒径は、望ましくは約100nmである。 最小 The minimum particle size of the plurality of zirconia particles 410 is desirably about 10 nm. The maximum particle size of the plurality of zirconia particles 410 is desirably about 100 nm.
 複数のジルコニア粒子410が数100nm以上の粒径を有する大きな粒子をわずかに含んでもよい。大きな粒子は、多孔質材料300中に散在する。 The plurality of zirconia particles 410 may slightly include large particles having a particle size of several hundred nm or more. Large particles are scattered throughout the porous material 300.
 複数のジルコニア粒子410の粒径の測定においては、多孔質材料300から薄片状の試料が作製される。また、作製された試料が透過型電子顕微鏡(TEM)により観察される。これにより、複数のジルコニア粒子410の像を含むTEM画像が得られる。視野及び観察条件は、各ジルコニア粒子410及び各気孔402を明確に識別することができるように選択される。得られたTEM画像に対しては、パーソナルコンピューター(PC)を用いた画像処理が行われる。これにより、得られたTEM画像において各ジルコニア粒子410の像が占める面積が計算される。また、計算された面積から各ジルコニア粒子410の粒径が計算される。計算される粒径は、各ジルコニア粒子410の像が占める面積と同じ面積を占める像を形成する球の直径である。このような計算が行われるのは、各ジルコニア粒子410が球状の形状を有するためである。複数のジルコニア粒子410の平均粒径は、複数のジルコニア粒子410の粒径の平均値である。複数のジルコニア粒子410の最小粒径及び最大粒径は、それぞれ複数のジルコニア粒子410の粒径の最小値及び最大値である。 In measuring the particle size of the plurality of zirconia particles 410, a flaky sample is prepared from the porous material 300. The prepared sample is observed with a transmission electron microscope (TEM). Thereby, a TEM image including images of the plurality of zirconia particles 410 is obtained. The field of view and observation conditions are selected so that each zirconia particle 410 and each pore 402 can be clearly identified. The obtained TEM image is subjected to image processing using a personal computer (PC). Thereby, the area occupied by the image of each zirconia particle 410 in the obtained TEM image is calculated. Further, the particle size of each zirconia particle 410 is calculated from the calculated area. The calculated particle size is the diameter of a sphere that forms an image that occupies the same area as the image of each zirconia particle 410. This calculation is performed because each zirconia particle 410 has a spherical shape. The average particle size of the plurality of zirconia particles 410 is an average value of the particle sizes of the plurality of zirconia particles 410. The minimum particle size and the maximum particle size of the plurality of zirconia particles 410 are the minimum value and the maximum value of the particle size of the plurality of zirconia particles 410, respectively.
 12 異種材料粒子の粒径
 複数の異種材料粒子412の平均粒径は、望ましくは0.1nm以上300nm以下であり、さらに望ましくは0.1nm以上100nm以下であり、特に望ましくは0.1nm以上50nm以下である。複数の異種材料粒子412の平均粒径がこれらの範囲内である場合は、多孔質材料300を低コストで作製することができる。また、ジルコニアが本来有する高い耐熱性及び高い強度を発現させることができる。しかし、複数の異種材料粒子412の平均粒径がこれらの範囲より小さい場合は、多孔質材料300を低コストで作製することが困難になる傾向があらわれる。また、複数の異種材料粒子412の平均粒径がこれらの範囲より大きい場合は、ジルコニアが本来有する高い耐熱性及び高い強度を発現させることが困難になる傾向があらわれる。
12 Particle Size of Different Material Particles The average particle size of the plurality of different material particles 412 is preferably 0.1 nm or more and 300 nm or less, more preferably 0.1 nm or more and 100 nm or less, and particularly preferably 0.1 nm or more and 50 nm or less. It is as follows. When the average particle size of the plurality of different material particles 412 is within these ranges, the porous material 300 can be manufactured at low cost. Further, high heat resistance and high strength inherently possessed by zirconia can be exhibited. However, when the average particle size of the plurality of different material particles 412 is smaller than these ranges, it tends to be difficult to produce the porous material 300 at low cost. When the average particle size of the plurality of different material particles 412 is larger than these ranges, it tends to be difficult to develop the inherent high heat resistance and high strength of zirconia.
 複数の異種材料粒子412の平均粒径は、望ましくは複数のジルコニア粒子410の平均粒径より小さくされる。これにより、ジルコニアが本来有する高い耐熱性及び高い強度を発現させることができる。 平均 Desirably, the average particle size of the plurality of different material particles 412 is smaller than the average particle size of the plurality of zirconia particles 410. Thereby, high heat resistance and high strength inherent to zirconia can be exhibited.
 複数の異種材料粒子412の粒径の測定は、複数のジルコニア粒子410の粒径の測定と同様に行うことができる。 Measurement of the particle size of the plurality of different material particles 412 can be performed in the same manner as measurement of the particle size of the plurality of zirconia particles 410.
 13 多孔質材料の熱伝導率及び熱容量
 多孔質材料300の熱伝導率は、望ましくは1.5W/mk以下であり、さらに望ましくは1W/mK以下であり、特に望ましくは0.3W/mKである。
13 Thermal conductivity and heat capacity of porous material The thermal conductivity of the porous material 300 is desirably 1.5 W / mk or less, more desirably 1 W / mK or less, particularly desirably 0.3 W / mK. is there.
 多孔質材料300の熱容量は、望ましくは2000kJ/mKであり、さらに望ましくは1500kJ/mK以下である。 The heat capacity of the porous material 300 is preferably 2000 kJ / m 3 K, and more preferably 1500 kJ / m 3 K or less.
 多孔質材料300の熱伝導率は、多孔質材料300の密度、比熱及び熱拡散率の積である。密度は、水銀ポロシメータを用いて測定される。比熱は、示差走査熱量測定(DSC)により測定される。熱拡散率は、光交流法により測定される。 熱 The thermal conductivity of the porous material 300 is a product of the density, specific heat and thermal diffusivity of the porous material 300. Density is measured using a mercury porosimeter. Specific heat is measured by differential scanning calorimetry (DSC). The thermal diffusivity is measured by an optical alternating current method.
 14 シート付き断熱材の製造
 以下では、シート付き断熱材100の製造の手順が説明される。以下で説明される手順とは異なる手順によりシート付き断熱材100が製造されてもよい。
14 Production of Heat Insulation Material with Sheet In the following, a procedure for producing the heat insulation material with a sheet 100 will be described. The heat insulating material with a sheet 100 may be manufactured by a procedure different from the procedure described below.
 まず、成形用スラリーが調製される。 First, a molding slurry is prepared.
 図4に図示される微構造を有する多孔質材料300が作製される場合は、成形用スラリーが調製される際に、ジルコニア粉末、少なくとも1種の異種材料粉末、造孔材、バインダ、可塑剤及び分散媒が互いに混合される。これにより、ジルコニア粉末、少なくとも1種の異種材料粉末、造孔材、バインダ、可塑剤及び分散媒を含み、ジルコニア粉末、少なくとも1種の異種材料粉末、造孔材、バインダ及び可塑剤が分散媒に分散した成形用スラリーが調製される。成形用スラリーがジルコニア粉末、少なくとも1種の異種材料粉末、造孔材、バインダ、可塑剤及び分散媒以外の成分を含んでもよい。例えば、成形用スラリーが分散剤等を含んでもよい。 When the porous material 300 having the microstructure shown in FIG. 4 is produced, the zirconia powder, at least one kind of dissimilar material powder, the pore former, the binder, the plasticizer are used when the molding slurry is prepared. And the dispersion medium are mixed with each other. Thereby, the zirconia powder, at least one kind of different material powder, a pore former, a binder, a plasticizer and a dispersion medium are included, and the zirconia powder, at least one kind of different material powder, the pore former, the binder and the plasticizer are dispersed medium. A slurry for molding is prepared. The molding slurry may contain components other than zirconia powder, at least one kind of different material powder, a pore former, a binder, a plasticizer, and a dispersion medium. For example, the molding slurry may include a dispersant or the like.
 図5に図示される微構造を有する多孔質材料300が作製される場合は、成形用スラリーが調製される際に、ジルコニア粉末、造孔材、バインダ、可塑剤及び分散媒が互いに混合される。これにより、ジルコニア粉末、造孔材、バインダ、可塑剤及び分散媒を含み、ジルコニア粉末、造孔材、バインダ及び可塑剤が分散媒に分散した成形用スラリーが調製される。成形用スラリーがジルコニア粉末、造孔材、バインダ、可塑剤及び分散媒以外の成分を含んでもよい。例えば、成形用スラリーが分散剤等を含んでもよい。 When the porous material 300 having the microstructure illustrated in FIG. 5 is manufactured, the zirconia powder, the pore former, the binder, the plasticizer, and the dispersion medium are mixed with each other when the molding slurry is prepared. . Thus, a molding slurry containing the zirconia powder, the pore former, the binder, the plasticizer, and the dispersion medium, and the zirconia powder, the pore former, the binder, and the plasticizer dispersed in the dispersion medium is prepared. The molding slurry may contain components other than the zirconia powder, the pore former, the binder, the plasticizer, and the dispersion medium. For example, the molding slurry may include a dispersant or the like.
 少なくとも1種の異種材料粉末は、SiO、TiO、La、Al、SrO、Gd、Nb及びYからなる群より選択される少なくとも1種の酸化物の粉末である。少なくとも1種の酸化物の粉末に含まれる各酸化物の粉末が、成形体が焼成される際に各酸化物の粉末に変化する前駆体の粉末に置き換えられてもよい。例えば、各酸化物の粉末が、炭酸塩、水酸化物、シュウ酸塩等の粉末に置き換えられてもよい。 At least one heterologous material powder is at least selected from the group consisting of SiO 2, TiO 2, La 2 O 3, Al 2 O 3, SrO, Gd 2 O 3, Nb 2 O 5 and Y 2 O 3 1 Seed oxide powder. The powder of each oxide included in the powder of at least one oxide may be replaced with a powder of a precursor that changes to a powder of each oxide when the molded body is fired. For example, the powder of each oxide may be replaced with a powder of carbonate, hydroxide, oxalate, or the like.
 造孔材は、成形体が焼成される際に消失する材料からなる。造孔材は、カーボンブラック、ラテックス粒子、メラミン樹脂粒子、ポリメチルメタクリレート(PMMA)粒子、ポリエチレン粒子、ポリスチレン粒子、発泡樹脂、吸水性樹脂等からなり、望ましくカーボンブラックからなる。造孔材がカーボンブラックからなることが望ましいのは、カーボンブラックは小さな粒子径を有するため、造孔材がカーボンブラックからなる場合は小さな気孔径を有する複数の気孔402を多孔質材料300に形成することができるためである。 孔 The pore former is made of a material that disappears when the molded body is fired. The pore-forming material is made of carbon black, latex particles, melamine resin particles, polymethyl methacrylate (PMMA) particles, polyethylene particles, polystyrene particles, a foamed resin, a water-absorbing resin, and preferably carbon black. It is desirable that the pore former is made of carbon black because the carbon black has a small particle diameter, so that when the pore former is made of carbon black, a plurality of pores 402 having a small pore diameter are formed in the porous material 300. This is because you can do it.
 バインダは、ポリビニルブチラール樹脂(PVB)、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、ポリアクリル樹脂等からなる。 The binder is made of polyvinyl butyral resin (PVB), polyvinyl alcohol resin, polyvinyl acetate resin, polyacryl resin, or the like.
 可塑剤は、フタル酸ジブチル(DBP)、フタル酸ジオクチル(DOP)等からなる。 Plasticizer is composed of dibutyl phthalate (DBP), dioctyl phthalate (DOP) and the like.
 分散媒は、キシレン、1-ブタノール等からなる。 The dispersion medium is made of xylene, 1-butanol, or the like.
 成形用スラリー中のジルコニア粉末の含有割合は、望ましくは5体積%以上20体積%以下である。成形用スラリー中の少なくとも1種の異種材料粉末の含有割合は、0.1体積%以上5体積%以下である。成形用スラリー中の造孔材の含有割合は、望ましくは0体積%以上20体積%以下である。成形用スラリー用の残余の成分の含有割合は、望ましくは70体積%以上90体積%以下である。 含有 The content ratio of the zirconia powder in the molding slurry is desirably 5% by volume or more and 20% by volume or less. The content ratio of at least one kind of different material powder in the molding slurry is 0.1% by volume or more and 5% by volume or less. The content ratio of the pore-forming material in the molding slurry is desirably from 0% by volume to 20% by volume. The content ratio of the remaining components for the molding slurry is desirably 70% by volume to 90% by volume.
 造孔材の粒度分布その他の性状は、多孔質材料300に形成される複数の気孔402の気孔径分布に影響する。このため、造孔材の粒度分布その他の性状は、上述した気孔径分布を有する複数の気孔402が多孔質材料300に形成されるように選択される。 粒度 The particle size distribution and other properties of the pore former affect the pore size distribution of the plurality of pores 402 formed in the porous material 300. For this reason, the particle size distribution and other properties of the pore former are selected so that the plurality of pores 402 having the pore size distribution described above are formed in the porous material 300.
 続いて、調製された成形用スラリーに対して粘度調整が行われる。これにより、粘度調整済の成形用スラリーが得られる。 Subsequently, the viscosity of the prepared molding slurry is adjusted. As a result, a molding slurry whose viscosity has been adjusted is obtained.
 成形用スラリーに対して粘度調整が行われる際には、成形用スラリーに対して真空脱泡処理等が行われる。粘度調整済の成形用スラリーの粘度は、望ましくは0.1Pa・s以上10Pa・s以下である。 粘度 When the viscosity of the molding slurry is adjusted, vacuum defoaming treatment or the like is performed on the molding slurry. The viscosity of the molding slurry whose viscosity has been adjusted is desirably from 0.1 Pa · s to 10 Pa · s.
 続いて、成形体が作製される。 Subsequently, a molded body is manufactured.
 成形体は、テープ成形により作製される。成形体が作製される際には、得られた粘度調整済の成形用スラリーがポリエステルフィルムの主面に塗布される。これにより、粘度調整済の成形用スラリーからなる塗布膜がポリエステルフィルムの主面に形成される。塗布膜が形成される際には、ドクターブレード等により塗布膜の厚さが調整される。塗布膜の厚さは、上述した多孔質材料300の厚さに相当する厚さを有する焼結体が作製されるように調整される。形成された塗布膜からは、分散媒等からなる揮発分が揮発する。これにより、ジルコニア粉末、少なくとも1種の異種材料粉末、造孔材、バインダ等からなる固形分からなる成形体がポリエステルフィルムの主面に形成される。形成される成形体は、シート状の成形体である。形成された成形体は、ポリエステルフィルムから剥離される。ポリエステルからなるポリエステルフィルムがポリエステルとは異なる材質からなるフィルムに置き換えられてもよい。 The molded body is produced by tape molding. When a molded article is produced, the obtained viscosity-adjusted molding slurry is applied to the main surface of the polyester film. Thus, a coating film made of the viscosity-adjusted molding slurry is formed on the main surface of the polyester film. When the coating film is formed, the thickness of the coating film is adjusted by a doctor blade or the like. The thickness of the coating film is adjusted so that a sintered body having a thickness corresponding to the thickness of the porous material 300 described above is manufactured. Volatile components, such as a dispersion medium, volatilize from the formed coating film. As a result, a molded body made of a solid content composed of zirconia powder, at least one kind of different material powder, a pore former, a binder, and the like is formed on the main surface of the polyester film. The formed body is a sheet-shaped body. The formed molded body is peeled from the polyester film. The polyester film made of polyester may be replaced with a film made of a material different from polyester.
 テープ成形とは異なる成形方法により成形体が作製されてもよい。例えば、押し出し成形、プレス成形、射出成形、鋳込み成形等により成形体が作製されてもよい。テープ成形とは異なる成形方法により成形体が作製される場合は、上述した成形用スラリーに代えて、成形方法に適した成形用スラリー、坏土等が準備される。 成形 A molded article may be produced by a molding method different from tape molding. For example, a molded body may be produced by extrusion molding, press molding, injection molding, cast molding, or the like. When a molded body is produced by a molding method different from tape molding, a molding slurry, a clay, or the like suitable for the molding method is prepared instead of the molding slurry described above.
 続いて、焼結体が作製される。 Subsequently, a sintered body is manufactured.
 焼結体が作製される際には、剥離された成形体が焼成される。これにより、焼結体が作製される。作製される焼結体は、板状の焼結体である。成形体は、望ましくは800℃以上2000℃以下の焼成温度で0.5時間以上20時間以下の時間をかけて焼成され、さらに望ましくは800℃以上1800℃以下の焼成温度で0.5時間以上15時間以下の時間をかけて焼成され、特に望ましくは800℃以上1300℃以下の焼成温度で0.5時間以上10時間以下の時間をかけて焼成される。 際 When the sintered body is manufactured, the exfoliated molded body is fired. Thus, a sintered body is manufactured. The produced sintered body is a plate-shaped sintered body. The molded body is preferably fired at a firing temperature of 800 ° C. or more and 2000 ° C. or less for 0.5 hours or more and 20 hours or less, more preferably at a firing temperature of 800 ° C. or more and 1800 ° C. or less and 0.5 hours or more. The firing is performed for a time of 15 hours or less, particularly preferably at a firing temperature of 800 ° C. to 1300 ° C. for a time of 0.5 to 10 hours.
 成形体が焼成される際には、造孔材が消失する。これにより、作製される焼結体には、複数の気孔402が形成される。 孔 The pore former disappears when the molded body is fired. Thereby, a plurality of pores 402 are formed in the manufactured sintered body.
 また、成形体が焼成される際には、ジルコニア粉末から複数のジルコニア粒子410が生成し、少なくとも1種の異種材料粉末から複数の異種材料粒子412が生成する。少なくとも1種の異種材料粉末が、成形体が焼成される際に互いに反応する2種以上の酸化物粉末を含む場合は、成形体が焼成される際に2種以上の酸化物粉末から複合酸化物の粒子が生成し、複数の異種材料粒子412が生成した複合酸化物の粒子を含むようになる。少なくとも1種の異種材料粉末が、成形体が焼成される際にジルコニア粉末と反応する少なくとも1種の酸化物粉末を含む場合は、成形体が焼成される際に少なくとも1種の酸化物粉末及びジルコニア粉末からZrを多く含む複合酸化物の粒子、及びZr以外の元素を多く含む複合酸化物の粒子が生成し、生成したZrを多く含む複合酸化物の粒子を複数のジルコニア粒子410が含むようになり、生成したZr以外の元素を多く含む複合酸化物の粒子の粒子を複数の異種材料粒子412が含むようになる。成形体が焼成される際に複合酸化物の粒子を生成することに代えて、成形用スラリーに含まれる少なくとも1種の異種材料粉末に当該複合酸化物の粉末を含めてもよい。 (4) When the compact is fired, a plurality of zirconia particles 410 are generated from the zirconia powder, and a plurality of different material particles 412 are generated from at least one kind of different material powder. When at least one kind of different material powder contains two or more kinds of oxide powders that react with each other when the molded body is fired, the composite oxide is formed from the two or more kinds of oxide powders when the molded body is fired. Particles are generated, and the plurality of different material particles 412 include the generated composite oxide particles. When the at least one heterogeneous material powder includes at least one oxide powder that reacts with the zirconia powder when the molded body is fired, at least one oxide powder when the molded body is fired; From the zirconia powder, particles of the complex oxide containing a large amount of Zr and particles of the complex oxide containing a large amount of elements other than Zr are generated, and the plurality of zirconia particles 410 contain the generated particles of the complex oxide containing a large amount of Zr. Thus, the plurality of different material particles 412 include particles of the generated composite oxide particles containing a large amount of elements other than Zr. Instead of producing the particles of the composite oxide when the molded body is fired, the powder of the composite oxide may be included in at least one kind of different material powder included in the slurry for molding.
 続いて、緻密層が作製される。 Subsequently, a dense layer is produced.
 緻密層は、金属元素及びSiからなる群より選択される少なくとも1種の元素の酸化物を含み、望ましくはSiの酸化物を主成分として含む。緻密層に含まれる酸化物は、多孔質材料を構成する酸化物と同様の酸化物であってもよいし、多孔質材料を構成する酸化物と異なる酸化物であってもよい。 The dense layer contains an oxide of at least one element selected from the group consisting of a metal element and Si, and desirably contains an oxide of Si as a main component. The oxide contained in the dense layer may be the same oxide as the oxide constituting the porous material, or may be an oxide different from the oxide constituting the porous material.
 緻密層が作製される際には、作製された焼結体の一方の主面に緻密層の原料液が塗布される。これにより、緻密層の原料液からなる塗布膜が焼結体の一方の主面に形成される。緻密層の原料液は、ディッピング、スプレー、スピンコーティング、ロールコーティング等により塗布される。形成された塗布膜に対しては、焼成等が行われる。これにより、塗布膜において架橋、焼結、重合等が進行し、焼結体の一方の主面上に緻密層が形成され、焼結体及び緻密層を備え焼結体及び緻密層が積層された積層体が作製される。 際 When a dense layer is produced, a raw material liquid for the dense layer is applied to one main surface of the produced sintered body. Thereby, a coating film made of the raw material liquid for the dense layer is formed on one main surface of the sintered body. The raw material liquid for the dense layer is applied by dipping, spraying, spin coating, roll coating, or the like. The formed coating film is fired or the like. Thereby, cross-linking, sintering, polymerization, etc. in the coating film proceed, a dense layer is formed on one main surface of the sintered body, and the sintered body and the dense layer are provided with the sintered body and the dense layer. A laminated body is produced.
 焼結体及び緻密層が並行して作製されてもよい。 The sintered body and the dense layer may be produced in parallel.
 続いて、シート付き積層体が作製される。 Subsequently, a laminate with a sheet is manufactured.
 シート付き積層体が作製される際には、作製された積層体の一方の主面がシート112の一方の主面に貼りつけられる。これにより、シート付き積層体が作製される。 に は When a laminated body with a sheet is manufactured, one main surface of the manufactured laminated body is attached to one main surface of the sheet 112. Thereby, a laminated body with a sheet is produced.
 続いて、シート付き断熱材100が完成させられる。 Next, the heat insulating material with sheet 100 is completed.
 シート付き断熱材100が完成させられる際には、作製されたシート付き積層体に備えられる積層体が複数の断熱材110に分割される。積層体の複数の断熱材110への分割は、積層体を切断することにより行われてもよいし、積層体の少なくとも一方の主面に溝を形成し、溝が形成された積層体を溝に沿って割ることにより行われてもよい。テープ成形とは異なる成形方法により成形体が作製される場合は、分割を行うことが不要である場合もある。 積 層 When the heat-insulating material with sheet 100 is completed, the laminate provided in the manufactured laminate with the sheet is divided into a plurality of heat-insulating materials 110. The division of the laminated body into the plurality of heat insulating materials 110 may be performed by cutting the laminated body, or forming a groove on at least one main surface of the laminated body, and dividing the laminated body having the groove into a groove. May be performed by dividing along. When a molded article is produced by a molding method different from tape molding, division may not be necessary in some cases.
 15 試作例
 図7は、第1実施形態の多孔質材料の第1の試作品をTEMにより観察することにより得られたTEM画像を示す図である。図8は、図7に示されるTEM画像を二値化することにより得られた二値化画像を示す図である。図8に示される二値化画像は、閲覧環境の制約により図7に図示されるTEM画像を鮮明に見ることができない場合に備えて提供されている。
15 Prototype Example FIG. 7 is a diagram showing a TEM image obtained by observing a first prototype of the porous material of the first embodiment by TEM. FIG. 8 is a diagram showing a binarized image obtained by binarizing the TEM image shown in FIG. The binarized image shown in FIG. 8 is provided in case the TEM image shown in FIG. 7 cannot be clearly seen due to the restriction of the viewing environment.
 第1の試作品においては、図7に図示されるように、多孔質材料300が骨格400を備える。骨格400は、複数の粒子を備え、3次元網目構造を有する。多孔質材料300においては、骨格400が占める空間以外の空間が空隙となっている。このため、多孔質材料300には、空隙を構成する複数の気孔402が形成されている。 に お い て In the first prototype, the porous material 300 has a skeleton 400 as shown in FIG. The skeleton 400 includes a plurality of particles and has a three-dimensional network structure. In the porous material 300, spaces other than the space occupied by the skeleton 400 are voids. For this reason, a plurality of pores 402 that form voids are formed in the porous material 300.
 図9は、第1実施形態の多孔質材料の第2の試作品に形成された複数の気孔の気孔径分布をあらわすグラフを示す図である。図10は、第1実施形態の多孔質材料の第2の試作品をSEMにより観察することにより得られたSEM画像を示す図である。 FIG. 9 is a graph showing a pore size distribution of a plurality of pores formed in a second prototype of the porous material of the first embodiment. FIG. 10 is a diagram showing an SEM image obtained by observing a second prototype of the porous material of the first embodiment by SEM.
 図11は、第1実施形態の多孔質材料の第3の試作品に形成された複数の気孔の気孔径分布をあらわすグラフを図示する図である。 FIG. 11 is a diagram illustrating a graph showing the pore size distribution of a plurality of pores formed in a third prototype of the porous material of the first embodiment.
 図9及び図11からは、複数の気孔402が二峰性の気孔径分布を有することを確認することができる。また、複数の気孔402が、気孔径が0.05μm以上2μm以下である第1の気孔径P1となった場合にlog微分気孔容積が第1のピーク値V1に達し、気孔径が第1の気孔径P1より大きく0.2μm以上50μm以下である第2の気孔径P2となった場合にlog微分気孔容積が第2のピーク値V2に達する気孔径分布を有することを確認することができる。また、図10からは、複数の粒子が数100nm以上の粒径を有する大きな粒子を含むことを確認することができる。 及 び From FIGS. 9 and 11, it can be confirmed that the plurality of pores 402 have a bimodal pore diameter distribution. When the plurality of pores 402 have a first pore diameter P1 having a pore diameter of 0.05 μm or more and 2 μm or less, the log differential pore volume reaches the first peak value V1, and the pore diameter becomes the first peak value V1. It can be confirmed that when the second pore diameter P2 is larger than the pore diameter P1 and is not less than 0.2 μm and not more than 50 μm, the log differential pore volume has a pore diameter distribution reaching the second peak value V2. Further, from FIG. 10, it can be confirmed that the plurality of particles include large particles having a particle diameter of several hundred nm or more.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that numerous modifications that are not illustrated can be envisaged without departing from the scope of the present invention.
 100 シート付き断熱材
 110 断熱材
 112 シート
 200 断熱膜
 202 基材
 204 硬化前の接着剤層
 206 接着剤層
 210 断熱構造
 300 多孔質材料
 302 緻密層
 400 骨格
 402 複数の気孔
 410 ジルコニア粒子
 412 異種材料粒子
REFERENCE SIGNS LIST 100 heat insulating material with sheet 110 heat insulating material 112 sheet 200 heat insulating film 202 base material 204 adhesive layer before curing 206 adhesive layer 210 heat insulating structure 300 porous material 302 dense layer 400 skeleton 402 plural pores 410 zirconia particles 412 heterogeneous material particles

Claims (4)

  1.  ジルコニアからなる複数のジルコニア粒子を備える骨格を備え、
     気孔径が第1の気孔径となった場合にlog微分気孔容積が第1のピーク値に達し、前記気孔径が前記第1の気孔径より大きい第2の気孔径となった場合に前記log微分気孔容積が第2のピーク値に達し、前記第1の気孔径が0.05μm以上2μm以下であり、前記第2の気孔径が0.2μm以上50μm以下である気孔径分布を有する複数の気孔が形成された
    多孔質材料。
    With a skeleton comprising a plurality of zirconia particles made of zirconia,
    When the pore diameter becomes the first pore diameter, the log differential pore volume reaches the first peak value, and when the pore diameter becomes the second pore diameter larger than the first pore diameter, the log becomes Differential pore volume reaches a second peak value, the first pore diameter is 0.05 μm or more and 2 μm or less, and the plurality of pores having a pore diameter distribution wherein the second pore diameter is 0.2 μm or more and 50 μm or less. Porous material with pores formed.
  2.  前記骨格は、ジルコニアとは異なる異種材料からなる複数の異種材料粒子をさらに備え、
     前記複数の異種材料粒子に含まれる各異種材料粒子は、前記複数のジルコニア粒子に含まれる少なくとも1個のジルコニア粒子の表面に接触する
    請求項1の多孔質材料。
    The skeleton further includes a plurality of different material particles made of a different material different from zirconia,
    2. The porous material according to claim 1, wherein each of the different material particles included in the plurality of different material particles contacts a surface of at least one zirconia particle included in the plurality of zirconia particles. 3.
  3.  前記異種材料は、Zr以外の元素の酸化物、Zr以外の2種以上の元素の複合酸化物、及びZrを含む2種以上の元素の複合酸化物からなる群より選択される少なくとも1種の酸化物であり、
     Zr以外の元素は、Si、Ti、La、Al、Sr、Gd、Nb又はYであり、
     Zr以外の2種以上の元素は、Si、Ti、La、Al、Sr、Gd、Nb及びYからなる群より選択される2種以上の元素であり、
     Zrを含む2種以上の元素に含まれるZr以外の元素は、Si、Ti、La、Al、Sr、Gd、Nb及びYからなる群より選択される少なくとも1種の元素である
    請求項1又は2の多孔質材料。
    The different material is at least one selected from the group consisting of oxides of elements other than Zr, composite oxides of two or more elements other than Zr, and composite oxides of two or more elements including Zr. Oxides,
    Elements other than Zr are Si, Ti, La, Al, Sr, Gd, Nb or Y,
    The two or more elements other than Zr are two or more elements selected from the group consisting of Si, Ti, La, Al, Sr, Gd, Nb, and Y,
    The element other than Zr included in the two or more elements including Zr is at least one element selected from the group consisting of Si, Ti, La, Al, Sr, Gd, Nb, and Y. 2 porous material.
  4.  請求項1から3までのいずれかの多孔質材料を備える断熱材。 (4) A heat insulating material comprising the porous material according to any one of (1) to (3).
PCT/JP2018/025358 2018-07-04 2018-07-04 Porous material and heat insulation material WO2020008561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025358 WO2020008561A1 (en) 2018-07-04 2018-07-04 Porous material and heat insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025358 WO2020008561A1 (en) 2018-07-04 2018-07-04 Porous material and heat insulation material

Publications (1)

Publication Number Publication Date
WO2020008561A1 true WO2020008561A1 (en) 2020-01-09

Family

ID=69060479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025358 WO2020008561A1 (en) 2018-07-04 2018-07-04 Porous material and heat insulation material

Country Status (1)

Country Link
WO (1) WO2020008561A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067531A (en) * 2020-10-15 2020-12-11 西安特种设备检验检测院 Porous material pore size distribution testing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102801A1 (en) * 2007-02-21 2008-08-28 National Institute Of Advanced Industrial Science And Technology Ceramic porous body with communication macropores and process for producing the ceramic porous body
JP2009500286A (en) * 2005-07-11 2009-01-08 リフラクトリー・インテレクチュアル・プロパティー・ゲー・エム・ベー・ハー・ウント・コ・カーゲー Fired refractory ceramic product
JP2016117622A (en) * 2014-12-22 2016-06-30 クアーズテック株式会社 Heat insulation material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500286A (en) * 2005-07-11 2009-01-08 リフラクトリー・インテレクチュアル・プロパティー・ゲー・エム・ベー・ハー・ウント・コ・カーゲー Fired refractory ceramic product
WO2008102801A1 (en) * 2007-02-21 2008-08-28 National Institute Of Advanced Industrial Science And Technology Ceramic porous body with communication macropores and process for producing the ceramic porous body
JP2016117622A (en) * 2014-12-22 2016-06-30 クアーズテック株式会社 Heat insulation material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067531A (en) * 2020-10-15 2020-12-11 西安特种设备检验检测院 Porous material pore size distribution testing method

Similar Documents

Publication Publication Date Title
JP6562841B2 (en) Porous plate filler
EP2865722B1 (en) Porous plate-shaped filler, coating composition, heat-insulating film, and heat-insulating film structure
CN105764872B (en) Porous material and heat insulating film
KR101749883B1 (en) Inorganic oxide powder, slurry containing same, nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
US9764990B2 (en) Honeycomb structure
WO2015159838A1 (en) Porous plate-like filler, heat insulation film and method for producing porous plate-like filler
JP2023510157A (en) High green density ceramics for batteries
US20210341234A1 (en) Heat dissipation member
US20180141872A1 (en) Porous ceramic structure
CN104659397A (en) Zirconium Oxide Sheet Used For Solid Oxide Type Fuel Cell And Solid Oxide Type Fuel Cell Monocell Comprising Same
WO2020008561A1 (en) Porous material and heat insulation material
US6551369B1 (en) Ceramic flat membrane and method for producing the same
US20160096775A1 (en) Heat-resistant member and method for producing the same
WO2020008562A1 (en) Porous material and heat insulation material
WO2015115668A1 (en) Porous plate-shaped filler and thermal insulation film
JP5877821B2 (en) Composite fireproof insulation
WO2015087888A1 (en) Porous plate-shaped filler and heat-insulating film
JP6453234B2 (en) Insulation film
US10590004B2 (en) Porous ceramic particles
US20220149412A1 (en) Electrolyte sheet for solid oxide fuel battery, production method of electrolyte sheet for solid oxide fuel battery, and single cell for solid oxide fuel battery
WO2015163249A1 (en) Porous plate-shaped filler, method for producing same, and heat insulation film
CN109642696B (en) Heat insulation component
MX2008008875A (en) Fuel cell components having porous electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP