JP5877821B2 - Composite fireproof insulation - Google Patents

Composite fireproof insulation Download PDF

Info

Publication number
JP5877821B2
JP5877821B2 JP2013167263A JP2013167263A JP5877821B2 JP 5877821 B2 JP5877821 B2 JP 5877821B2 JP 2013167263 A JP2013167263 A JP 2013167263A JP 2013167263 A JP2013167263 A JP 2013167263A JP 5877821 B2 JP5877821 B2 JP 5877821B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
less
pore
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013167263A
Other languages
Japanese (ja)
Other versions
JP2015036346A (en
Inventor
宗子 赤嶺
宗子 赤嶺
藤田 光広
光広 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to JP2013167263A priority Critical patent/JP5877821B2/en
Publication of JP2015036346A publication Critical patent/JP2015036346A/en
Application granted granted Critical
Publication of JP5877821B2 publication Critical patent/JP5877821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、耐火材と断熱特性に優れた多孔質セラミックスからなる断熱材とを一体化させた複合耐火断熱材に関する。   The present invention relates to a composite refractory heat insulating material in which a refractory material and a heat insulating material made of porous ceramics having excellent heat insulating properties are integrated.

多孔質セラミックスは、緻密なセラミックスに比べて嵩密度及び熱伝導率が低いことから、断熱材として広く用いられている。   Porous ceramics are widely used as heat insulating materials because they have lower bulk density and thermal conductivity than dense ceramics.

例えば、特許文献1には、超微細ヒュームド酸化物を主原料とし、その他にセラミック超微粉又はセラミックファイバーのいずれか少なくとも一種を含む原料を圧縮成形してなる断熱材であって、細孔径分布のグラフ上において、細孔径の大きさが0.01〜0.1μmの範囲及び10〜1000μmの範囲にはそれぞれ山形のピークが存在するが、細孔径の大きさが0.1〜10μmの範囲内には山形のピークがない細孔分布を示す粒子構造を有する高性能断熱材が開示されている。   For example, Patent Document 1 discloses a heat insulating material obtained by compression molding a raw material containing ultrafine fumed oxide as a main raw material and at least one of ceramic ultrafine powder and ceramic fiber, and having a pore size distribution. On the graph, there are peak peaks in the pore size range of 0.01 to 0.1 μm and in the range of 10 to 1000 μm, but the pore size size is in the range of 0.1 to 10 μm. Discloses a high-performance heat insulating material having a particle structure exhibiting a pore distribution without a peak of a mountain shape.

しかしながら、特許文献1の断熱材は、超微細ヒュームド酸化物を主原料としているため、1000℃未満の温度では相応の断熱材として使用できるものの、1000℃以上、特に1300℃以上の高温域では粒成長が生じ、細孔の減少による気孔率の低下や細孔径分布の変化により熱伝導率が上昇するため、当該温度領域での断熱性は決して十分と言えるものではなかった。また、高温域で生じる細孔の減少は、断熱材の変形や収縮を招来するため、当該温度領域において断熱材としての使用が困難となるおそれがある。   However, since the heat insulating material of Patent Document 1 uses an ultrafine fumed oxide as a main raw material, it can be used as a corresponding heat insulating material at a temperature of less than 1000 ° C. Since the growth occurred and the thermal conductivity increased due to the decrease in porosity due to the decrease in pores and the change in the pore diameter distribution, the heat insulation in the temperature region was never sufficient. Moreover, since the reduction | decrease of the pore which arises in a high temperature range causes the deformation | transformation and shrinkage | contraction of a heat insulating material, there exists a possibility that the use as a heat insulating material may become difficult in the said temperature range.

これに対して、本願出願人は、1000℃以上、特に1300℃以上の高温域で熱伝導率の温度依存性が小さい多孔質セラミックスを提案した(特願2012−43847)。   On the other hand, the applicant of the present application has proposed porous ceramics having a low temperature dependence of thermal conductivity in a high temperature range of 1000 ° C. or higher, particularly 1300 ° C. or higher (Japanese Patent Application No. 2012-43847).

特開2011−1204号公報JP 2011-1204 A

しかしながら、前記多孔質セラミックスは、断熱性に優れた材料ではあるものの、強度に劣り、大型の構造体を設計することが困難であるという課題を有していた。このため、各種補強材料を用いることも試みたが、ほとんどの場合、前記多孔質セラミックスの優れた断熱性が損なわれる結果となった。   However, although the porous ceramics is a material having excellent heat insulation properties, it has a problem that it is inferior in strength and it is difficult to design a large structure. For this reason, attempts were made to use various reinforcing materials, but in most cases, the excellent heat insulating properties of the porous ceramics were impaired.

本発明は、上記技術的課題に鑑みてなされたものであり、特に高温域での熱伝導率の温度依存性が小さい、断熱材として好適な材料である多孔質セラミックスの特性を発揮することができ、かつ、高強度で耐熱性にも優れた複合耐火断熱材を提供することを目的とするものである。   The present invention has been made in view of the above technical problem, and exhibits the characteristics of porous ceramics, which is a material suitable as a heat insulating material, which has a small temperature dependency of thermal conductivity particularly in a high temperature range. An object of the present invention is to provide a composite refractory heat insulating material that is high in strength and excellent in heat resistance.

本発明に係る複合耐火断熱材は、多孔質セラミックスからなる断熱材と、前記多孔質セラミックスよりも圧縮強度が大きい耐火材とからなり、前記多孔質セラミックスは、気孔率が65vol%以上90vol%以下であり、化学式MgAl24で表されるスピネル質で、孔径が1000μmより大きい粗大気孔が全気孔容積の25vol%以下であり、孔径0.45μm以下の微小気孔が孔径1000μm以下の気孔の容積のうちの5vol%以上40vol%以下を占め、孔径0.14μm以上10μm以下の範囲内に気孔径分布ピークを少なくとも1つ有し、算出平均粒径が0.04μm以上1μm以下であるセラミックス粒子からなることを特徴とする。
上記のような多孔質セラミックスは、断熱性に優れており、より強度の高い耐火材と一体化させることにより、断熱性を損なうことなく、高強度で耐熱性に優れた複合耐火断熱材を得ることができる。
The composite refractory heat insulating material according to the present invention includes a heat insulating material made of porous ceramics and a refractory material having a compressive strength higher than that of the porous ceramics, and the porous ceramic has a porosity of 65 vol% or more and 90 vol% or less. , and the in spinel represented by the chemical formula Mg Al 2 O 4, and the pore size is 1000μm larger coarse pores less 25 vol% of the total pore volume, the following micro-pore size 0.45μm is below a pore size of 1000μm pores Ceramics that occupy 5 vol% or more and 40 vol% or less of the volume, have at least one pore size distribution peak in a range of pore sizes of 0.14 μm or more and 10 μm or less, and a calculated average particle size of 0.04 μm or more and 1 μm or less It consists of particles.
The porous ceramics as described above have excellent heat insulation properties, and by integrating with a stronger refractory material, a composite refractory heat insulation material having high strength and excellent heat resistance is obtained without impairing the heat insulation properties. be able to.

前記複合耐火断熱材は、前記断熱材が全体積の90vol%以上を占めることが好ましい。前記断熱材の割合が上記範囲であれば、特に優れた断熱性を保持することができる。   In the composite fireproof heat insulating material, the heat insulating material preferably occupies 90 vol% or more of the total volume. If the ratio of the said heat insulating material is the said range, the outstanding heat insulation can be hold | maintained.

前記耐火材は、気孔率が20vol%以下の緻密体であることが好ましい。高強度及び優れた耐熱性を得る観点から、前記耐火材は気孔率が低い緻密体であることが好ましい。   The refractory material is preferably a dense body having a porosity of 20 vol% or less. From the viewpoint of obtaining high strength and excellent heat resistance, the refractory material is preferably a dense body having a low porosity.

また、前記耐火材は、前記断熱材と同じ材質であることが好ましい。前記耐火材と前記断熱材とが同じ材質であれば、複合材として両者を一体化させやすい。   Moreover, it is preferable that the said refractory material is the same material as the said heat insulating material. If the refractory material and the heat insulating material are the same material, it is easy to integrate both as a composite material.

一方、前記断熱材を構成する多孔質セラミックスは、孔径0.14μm以上0.45μm未満の範囲内に少なくとも1つの気孔径分布ピークを有し、かつ、孔径0.45μm以上10μm以下の範囲内に少なくとも1つの気孔径分布ピークを有していることが好ましい。
また、孔径10μm超1000μm以下の範囲内に、さらに少なくとも1つの気孔径分布ピークを有していることが好ましい。このような特定の気孔径分布を示す多孔質セラミックスであれば、断熱性により優れた複合耐火断熱材を構成することができる。
On the other hand, the porous ceramic constituting the heat insulating material has at least one pore size distribution peak in the range of pore diameters of 0.14 μm or more and less than 0.45 μm, and in the range of pore diameters of 0.45 μm or more and 10 μm or less. It preferably has at least one pore size distribution peak.
Moreover, it is preferable to have at least one pore size distribution peak in the range of more than 10 μm and 1000 μm or less. If it is the porous ceramics which show such a specific pore diameter distribution, the composite fireproof heat insulating material which was excellent by heat insulation can be comprised.

本発明によれば、1000℃以上、特に1300℃以上の高温域での熱伝導率の温度依存性が小さく、断熱性に優れた所定の多孔質セラミックスの特性を損なうことなく、高強度かつ耐熱性に優れた複合耐火断熱材を提供することができる。   According to the present invention, the temperature dependence of the thermal conductivity in the high temperature range of 1000 ° C. or higher, particularly 1300 ° C. or higher is small, and the strength and heat resistance are not impaired without impairing the properties of the predetermined porous ceramics excellent in heat insulation. It is possible to provide a composite refractory heat insulating material having excellent properties.

断熱材を構成する多孔質セラミックスの断面の走査型電子顕微鏡(SEM)写真画像の一例である。It is an example of the scanning electron microscope (SEM) photograph image of the cross section of the porous ceramics which comprises a heat insulating material. 図1のSEM写真画像の粒子の外縁をマーキングした写真である。It is the photograph which marked the outer edge of the particle | grains of the SEM photograph image of FIG.

以下、本発明を、より詳細に説明する。
本発明に係る複合耐火断熱材は、多孔質セラミックスからなる断熱材と、前記多孔質セラミックスよりも圧縮強度が大きい耐火材とからなるものである。
前記多孔質セラミックスは、気孔率が65vol%以上90vol%以下であり、化学式XAl24で表されるスピネル質で、前記化学式中のXがZn、Fe、Mg、Ni及びMnのうちのいずれかであり、孔径が1000μmより大きい粗大気孔が全気孔容積の25vol%以下であり、孔径0.45μm以下の微小気孔が孔径1000μm以下の気孔の容積のうちの5vol%以上40vol%以下を占め、孔径0.14μm以上10μm以下の範囲内に気孔径分布ピークを少なくとも1つ有し、算出平均粒径が0.04μm以上1μm以下であるセラミックス粒子からなるものである。この多孔質セラミックスは、本願出願人が特願2012−43847において提案した断熱性に優れた多孔質セラミックスである。
したがって、このような多孔質セラミックスと、より強度の高い耐火材と一体化させることにより、該多孔質セラミックスの優れた断熱性を損なうことなく、高強度で耐熱性に優れた複合耐火断熱材を構成することができる。
Hereinafter, the present invention will be described in more detail.
The composite refractory heat insulating material according to the present invention includes a heat insulating material made of porous ceramics and a refractory material having a compressive strength higher than that of the porous ceramics.
The porous ceramic has a porosity of 65 vol% or more and 90 vol% or less, and is a spinel represented by the chemical formula XAl 2 O 4 , wherein X is any of Zn, Fe, Mg, Ni, and Mn. The coarse pores having a pore diameter of more than 1000 μm are 25 vol% or less of the total pore volume, and the micropores having a pore diameter of 0.45 μm or less occupy 5 vol% or more and 40 vol% or less of the pore volume of 1000 μm or less, It consists of ceramic particles having at least one pore size distribution peak in the range of pore size of 0.14 μm or more and 10 μm or less, and having a calculated average particle size of 0.04 μm or more and 1 μm or less. This porous ceramic is a porous ceramic excellent in heat insulation proposed by the present applicant in Japanese Patent Application No. 2012-43847.
Therefore, by integrating such porous ceramics with a refractory material having higher strength, a composite refractory heat insulating material having high strength and excellent heat resistance can be obtained without impairing the excellent heat insulation properties of the porous ceramic. Can be configured.

前記断熱材を構成する多孔質セラミックスは、気孔率が65vol%以上90vol%以下である。
前記気孔率が65vol%未満では、多孔質セラミックス中における基材部の占める割合が高いため、固体伝熱が増加し、低い熱伝導率を得るには不十分である。気孔率が高いほど、固体伝熱の影響が小さくなり、熱伝導率を低くすることができるが、前記気孔率が90vol%を超えると、多孔質セラミックス中における基材部の占める割合が相対的に低下し、脆弱となり、断熱材としての使用に耐えられなくなる。
なお、前記気孔率は、JIS R 2614「耐火断熱れんがの比重及び真気孔率の測定方法」にて算出されるものである。
The porous ceramic constituting the heat insulating material has a porosity of 65 vol% or more and 90 vol% or less.
When the porosity is less than 65 vol%, the ratio of the base material portion in the porous ceramics is high, so that the solid heat transfer increases and it is insufficient to obtain a low thermal conductivity. The higher the porosity, the smaller the effect of solid heat transfer and the lower the thermal conductivity. However, when the porosity exceeds 90 vol%, the proportion of the base material portion in the porous ceramics is relative. It becomes fragile and becomes unusable for use as a heat insulating material.
The porosity is calculated according to JIS R 2614 “Method for measuring specific gravity and true porosity of refractory heat-insulating brick”.

前記多孔質セラミックスは、化学式MgAl24で表される化学組成からなるスピネル質である。MgAl24、すなわち、マグネシアスピネル、高温での強度に優れていることから好ましい。
このようなスピネル質の多孔質セラミックスは、耐熱性が高く、高温での強度に優れているため、粒成長や粒界の結合によって生じる気孔の形状や大きさの変動の影響を低減させることができ、熱伝導率の温度依存性の抑制効果を長期間維持することができる。
したがって、1000℃以上、特に1300℃以上の高温域での構造安定性が高く、等方的な結晶構造を有するため、高温に曝された場合でも、特異な収縮を示さないため、高温用の断熱材として適している。
なお、前記化学組成及びスピネル質の構造は、例えば、粉末X線回折法により測定及び同定することができる。
The porous ceramic is a spinel material having a chemical composition represented by the chemical formula Mg 2 Al 2 O 4 . M Gal 2 O 4, i.e., magnesia spinel, preferred because of its excellent strength at high temperatures.
Since such spinel porous ceramics have high heat resistance and excellent strength at high temperatures, it is possible to reduce the effects of fluctuations in pore shape and size caused by grain growth and grain boundary bonding. It is possible to maintain the effect of suppressing the temperature dependence of the thermal conductivity for a long period of time.
Therefore, it has a high structural stability at a high temperature range of 1000 ° C. or higher, particularly 1300 ° C. or higher, and has an isotropic crystal structure. Therefore, even when exposed to high temperatures, it does not show any specific shrinkage. Suitable as heat insulating material.
The chemical composition and the spinel structure can be measured and identified by, for example, a powder X-ray diffraction method.

前記多孔質セラミックスの気孔は、孔径が1000μmより大きい粗大気孔が全気孔容積の25vol%以下であり、孔径0.45μm以下の微小気孔が孔径1000μm以下の気孔の容積のうちの5vol%以上40vol%以下を占めている。
孔径が1000μmより大きい粗大気孔が全気孔容積の25vol%を超えると、赤外線の散乱効果が低い粗大気孔が増加することによって輻射の影響が大きくなり、断熱効果が不十分となり、また、強度が著しく低下する。
As for the pores of the porous ceramics, coarse pores having a pore diameter larger than 1000 μm are 25 vol% or less of the total pore volume, and micropores having a pore diameter of 0.45 μm or less are 5 vol% or more and 40 vol% of the pore volume having a pore diameter of 1000 μm or less. It occupies the following.
If the coarse pores having a pore diameter of more than 1000 μm exceed 25 vol% of the total pore volume, the influence of radiation increases due to an increase in the coarse pores with low infrared scattering effect, the heat insulation effect becomes insufficient, and the strength is remarkable. descend.

また、孔径0.45μm以下の微小気孔を有することで、単位体積あたりの気孔数を多くすることができ、このような微小気孔数が多くなることにより、赤外線の散乱効果を高めることができる。これは、特に、高温時の熱伝導率に大きな影響を与える輻射伝熱の抑制に有効であり、熱伝導率の温度依存性を小さくすることができる。
前記微小気孔が孔径1000μm以下の気孔の容積に占める割合が5vol%未満であると、単位体積あたりの気孔数が少なく、赤外線散乱効果が十分に得られない。一方、前記微小気孔が孔径1000μm以下の気孔の容積に占める割合が40vol%を超えると、該多孔質セラミックスの気孔率を65vol%以上にすることが困難となり、熱伝導率を低下させる効果が得られない。
Further, by having micropores having a pore diameter of 0.45 μm or less, the number of pores per unit volume can be increased, and by increasing the number of such micropores, the infrared scattering effect can be enhanced. This is particularly effective in suppressing radiant heat transfer that has a large effect on the thermal conductivity at high temperatures, and the temperature dependence of the thermal conductivity can be reduced.
When the proportion of the fine pores in the volume of pores having a pore diameter of 1000 μm or less is less than 5 vol%, the number of pores per unit volume is small, and the infrared scattering effect cannot be sufficiently obtained. On the other hand, when the proportion of the micropores in the pore volume with a pore diameter of 1000 μm or less exceeds 40 vol%, it becomes difficult to increase the porosity of the porous ceramic to 65 vol% or more, and the effect of reducing the thermal conductivity is obtained. I can't.

なお、孔径1000μm以下の気孔容積は、JIS R 1655「ファインセラミックスの水銀圧入法による成形体気孔径分布試験方法」により測定されるものである。また、孔径が1000μmより大きい気孔の割合は、上述した「耐火断熱れんがの比重及び真気孔率の測定方法」にて算出した気孔率から、「ファインセラミックスの水銀圧入法による成形体気孔径分布試験方法」にて測定を行った孔径1000μm以下の気孔率を差し引いた値として求められるものである。   The pore volume with a pore diameter of 1000 μm or less is measured according to JIS R 1655 “Method for testing pore size distribution of compacts by mercury intrusion method of fine ceramics”. In addition, the ratio of pores having a pore diameter of more than 1000 μm is calculated based on the porosity calculated in the above-mentioned “Method for measuring specific gravity and true porosity of refractory heat-insulating bricks”. It is obtained as a value obtained by subtracting the porosity having a pore diameter of 1000 μm or less measured by “Method”.

また、前記多孔質セラミックスは、孔径0.14μm以上10μm以下の範囲内に気孔径分布ピークを少なくとも1つ有している。
このような気孔径分布を有していることにより、赤外線の散乱による輻射伝熱抑制効果がより高まり、熱伝導率の温度依存性を小さくすることができる。
上記孔径範囲内の気孔径分布ピークは、1つであってもよく、あるいは、2つ以上あってもよい。
Further, the porous ceramic has at least one pore size distribution peak within a pore size range of 0.14 μm to 10 μm.
By having such a pore size distribution, the effect of suppressing radiant heat transfer due to infrared scattering can be further increased, and the temperature dependence of the thermal conductivity can be reduced.
The pore size distribution peak within the pore size range may be one, or two or more.

前記多孔質セラミックスは、好ましくは、孔径0.14μm以上0.45μm未満の範囲内に少なくとも1つの気孔径分布ピークを有し、かつ、孔径0.45μm以上10μm以下の範囲内に少なくとも1つの気孔径分布ピークを有している。
これにより、孔径0.45μm以下の微小気孔を含みつつ、かつ、気孔率を容易に増加させることができる。
The porous ceramic preferably has at least one pore size distribution peak in the range of pore diameters of 0.14 μm or more and less than 0.45 μm and at least one pore in the range of pore diameters of 0.45 μm or more and 10 μm or less. It has a pore size distribution peak.
Thereby, the porosity can be easily increased while including micropores having a pore diameter of 0.45 μm or less.

さらに、孔径10μm超1000μm以下の範囲内にも、気孔径分布ピークを有していることが、より好ましい。
このような気孔径分布を有していることにより、強度を維持しつつ、該多孔質セラミックス全体の気孔率がより高くなるため、より軽量で、固体伝熱の寄与が小さい低熱伝導率の断熱材が得られる。
上記のような特定の気孔径分布ピークを有する多孔質セラミックスを用いることにより、断熱性により優れた複合耐火断熱材を構成することができる。
Furthermore, it is more preferable to have a pore size distribution peak in the range of more than 10 μm and 1000 μm or less.
By having such a pore size distribution, the porosity of the entire porous ceramic becomes higher while maintaining the strength. Therefore, the heat insulation is lighter and has a low thermal conductivity that contributes less to solid heat transfer. A material is obtained.
By using porous ceramics having a specific pore size distribution peak as described above, a composite refractory heat insulating material superior in heat insulating properties can be configured.

また、前記多孔質セラミックスは、算出平均粒径が0.04μm以上1μm以下であるセラミックス粒子からなる。
このような粒子で構成することにより、単位体積当たりの粒界数を多くし、フォノンの粒界散乱効果を高めることができ、熱伝導率を低くすることができる。
The porous ceramic is made of ceramic particles having a calculated average particle size of 0.04 μm or more and 1 μm or less.
By comprising such particles, the number of grain boundaries per unit volume can be increased, the phonon grain boundary scattering effect can be increased, and the thermal conductivity can be lowered.

前記算出平均粒径が0.04μm未満では、高温での使用時に粒成長が起こり、気孔が塞がれて、微小気孔が減少する傾向にあり、輻射伝熱を抑制する効果が不十分となる。一方、前記算出平均粒径が1μmを超えると、粒界の結合が強化され、固体伝熱の影響が大きくなり、熱伝導率が高くなる。   When the calculated average particle size is less than 0.04 μm, grain growth occurs during use at a high temperature, pores are blocked, and micropores tend to decrease, and the effect of suppressing radiant heat transfer becomes insufficient. . On the other hand, when the calculated average particle size exceeds 1 μm, the bonding of the grain boundaries is strengthened, the influence of solid heat transfer is increased, and the thermal conductivity is increased.

ここで、前記算出平均粒径は、次のようにして求めたものである。まず、多孔質セラミックスの任意の断面で顕微鏡画像撮影を行い、この断面画像内から、長径と短径の計測が可能である粒子を100個無作為抽出する。そして、画像の濃淡からこれらの粒子の外縁をマーキングして、長径と短径を画像にて計測する。1個の粒子についての長径と短径の平均値を該粒子の粒径とみなし、粒子100個の平均値を求め、これを算術平均直径とする。
なお、前記顕微鏡画像撮影の方法は、特に限定されないが、解析の容易さを考慮すると、走査型電子顕微鏡(SEM)を用いることが好ましい。
図1に、SEM写真画像の一例を示し、図2に、図1のSEM写真画像の粒子の外縁を上述した手法によりマーキングしたものを示す。
Here, the calculated average particle diameter is obtained as follows. First, a microscopic image is taken at an arbitrary cross section of the porous ceramic, and 100 particles capable of measuring a major axis and a minor axis are randomly extracted from the cross-sectional image. Then, the outer edges of these particles are marked from the density of the image, and the major axis and the minor axis are measured with the image. The average value of the major axis and the minor axis for one particle is regarded as the particle size of the particle, the average value of 100 particles is obtained, and this is defined as the arithmetic average diameter.
The method for taking a microscope image is not particularly limited, but it is preferable to use a scanning electron microscope (SEM) in consideration of the ease of analysis.
FIG. 1 shows an example of an SEM photographic image, and FIG. 2 shows an example in which the outer edges of the particles of the SEM photographic image of FIG. 1 are marked by the method described above.

本発明に係る複合耐火断熱材は、優れた断熱性を保持する観点から、上記のような多孔質セラミックスからなる断熱材が全体積の90vol%以上を占めていることが好ましい。
ただし、前記断熱材の体積割合は、該断熱体と一体化する耐火材によって複合体化断熱材として使用可能な程度に補強される範囲内とする。
In the composite refractory heat insulating material according to the present invention, from the viewpoint of maintaining excellent heat insulating properties, it is preferable that the heat insulating material made of porous ceramic as described above occupies 90 vol% or more of the total volume.
However, the volume ratio of the heat insulating material is within a range in which the heat insulating material is reinforced to such an extent that the heat insulating material can be used as a composite heat insulating material.

前記耐火材は、一般的な耐火れんがや不定形耐火物、耐火モルタル等を用いることができ、その形態は特に限定されないが、前記断熱材と同じ材質であることが好ましい。
前記耐火材と前記断熱材とが同じ材質であれば、複合材として両者を一体化させる際、剥離や分離等を生じにくく、材料の取扱い便宜上も好ましい。
As the refractory material, a general refractory brick, an irregular refractory material, a refractory mortar, or the like can be used, and the form thereof is not particularly limited, but is preferably the same material as the heat insulating material.
If the refractory material and the heat insulating material are the same material, when the two are integrated as a composite material, peeling and separation are unlikely to occur, which is also preferable for the convenience of handling the material.

前記耐火材は、気孔率が20vol%以下の緻密体であることが好ましい。
前記耐火材は、前記多孔質セラミックスからなる断熱材を補強し、また、耐熱性を向上させる役割を担うことから、緻密体であることが好ましい。
前記気孔率が20vol%未満では、前記断熱材に対して、上記のような補強及び耐熱性向上効果を十分に得られないおそれがある。
The refractory material is preferably a dense body having a porosity of 20 vol% or less.
The refractory material is preferably a dense body because it plays a role of reinforcing the heat insulating material made of the porous ceramic and improving heat resistance.
When the porosity is less than 20 vol%, the above-described reinforcement and heat resistance improvement effects may not be sufficiently obtained with respect to the heat insulating material.

また、前記耐火材は、前記断熱材に比べて熱伝導率が高いため、伝熱方向を遮断する位置に組み込むようにして、前記断熱材と一体化させることが好ましい。前記断熱材と前記耐火材との複合形態は、特に限定されるものではなく、様々な形態とすることができる。   Moreover, since the said refractory material has high heat conductivity compared with the said heat insulating material, it is preferable to integrate with the said heat insulating material so that it may incorporate in the position which interrupts | blocks a heat transfer direction. The composite form of the said heat insulating material and the said refractory material is not specifically limited, It can be set as various forms.

以下に、具体的な複合形態を例示する。
例えば、複合耐火断熱材をブロック状に形成する場合、前記断熱材を内側に配置するような態様としては、前記耐火材で所定サイズの型枠を形成し、その中に、前記断熱材の複数の小片ブロックを密に詰めるようにして一体化させることができる。また、前記断熱材の表面を前記耐火材の皮膜で被覆するような構成とすることができる。
あるいはまた、前記耐火材材料に小さい塊状又は粒子状の前記断熱材を分散させて焼成し、前記耐火材の内部に前記断熱材が分散した状態のブロック状の複合耐火断熱材を形成してもよい。
また、前記耐火材を内側に配置するような態様としては、前記断熱材材料に複数の柱状の前記耐火材を均等に配置して焼成し、前記断熱材の内部に前記耐火材が芯材として組み込まれた状態で形成することができる。
さらにまた、前記耐火材材料を接着剤として前記断熱材の複数の小片ブロックを接合して焼成し、前記耐火材を前記断熱材の間の目地として介在させてもよい。
複合耐火断熱材を上記のような態様で形成することにより、前記断熱材による伝熱の遮断効果と前記耐火材による強度向上及び優れた耐熱性を得ることができる。
Below, a specific composite form is illustrated.
For example, when forming a composite refractory heat insulating material in a block shape, as an aspect in which the heat insulating material is arranged inside, a mold having a predetermined size is formed with the refractory material, and a plurality of the heat insulating materials are formed therein. The small piece blocks can be integrated so as to be closely packed. Moreover, it can be set as the structure which coat | covers the surface of the said heat insulating material with the film | membrane of the said refractory material.
Alternatively, the block-shaped composite refractory heat insulating material in which the heat insulating material is dispersed inside the refractory material may be formed by dispersing the small block or particulate heat insulating material in the refractory material material and firing it. Good.
Moreover, as an aspect which arrange | positions the said refractory material inside, the said pillar-shaped refractory material is equally arrange | positioned and baked to the said heat insulating material, and the said refractory material becomes a core material inside the said heat insulating material. It can be formed in an assembled state.
Furthermore, a plurality of small blocks of the heat insulating material may be joined and fired using the refractory material as an adhesive, and the refractory material may be interposed as a joint between the heat insulating materials.
By forming the composite refractory heat insulating material in the above-described manner, it is possible to obtain a heat transfer blocking effect by the heat insulating material, strength improvement by the refractory material, and excellent heat resistance.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.

[実施例1]
水硬性アルミナ粉末(BK−112;住友化学株式会社製)11molに対して、酸化マグネシウム粉末(MGO11PB;株式会社高純度化学研究所製)9molの割合で混合し、純水を加えてスラリーを調製した。これに、造孔材として直径10μmのアクリル樹脂をスラリーに対して50vol%加えて混合し、水硬にて所定形状に成形し、大気中、1500℃で3時間焼成し、多孔質セラミックスを得た。
そして、前記多孔質セラミックスを50mm×70mm×20mmのブロック状に加工した2つの断熱材を用意した。
[Example 1]
A slurry is prepared by adding pure water to 11 mol of hydraulic alumina powder (BK-112; manufactured by Sumitomo Chemical Co., Ltd.) at a ratio of 9 mol of magnesium oxide powder (MGO11PB; manufactured by Kojundo Chemical Laboratory Co., Ltd.). did. An acrylic resin having a diameter of 10 μm as a pore former is added to and mixed with 50 vol% of the slurry, molded into a predetermined shape by hydraulic, and fired at 1500 ° C. for 3 hours in the atmosphere to obtain porous ceramics. It was.
And the two heat insulating materials which processed the said porous ceramics into the block shape of 50 mm x 70 mm x 20 mm were prepared.

一方、前記多孔質セラミックスを粉砕し、粒子径3mm以上が5重量%未満、0.2mm以上3mm未満が80重量%以上、0.2mm未満が15重量%未満である細骨材を作製した。
そして、前記細骨材75重量%、水硬性アルミナ粉末(BK−112;住友化学株式会社製)20重量%、酸化マグネシウム粉末(MGO11PB;株式会社高純度化学研究所製)5重量%を配合し、前記水硬性アルミナ粉末に対して200重量%の純水を加えて、耐火モルタルを調製した。
On the other hand, the porous ceramic was pulverized to produce a fine aggregate having a particle diameter of 3 mm or more and less than 5% by weight, 0.2 mm or more and less than 3 mm being 80% by weight or more, and less than 0.2 mm being less than 15% by weight.
Then, 75% by weight of the fine aggregate, 20% by weight of hydraulic alumina powder (BK-112; manufactured by Sumitomo Chemical Co., Ltd.) and 5% by weight of magnesium oxide powder (MGO11PB; manufactured by Kojundo Chemical Laboratory Co., Ltd.) are blended. A refractory mortar was prepared by adding 200% by weight of pure water to the hydraulic alumina powder.

上記において用意した2つの断熱材のブロックの50mm×20mmの面に、厚さ3mmで前記耐火モルタルを塗布して貼り合わせ、1000℃で3時間焼成し、モルタルを硬化させ、耐火材を断熱材の間の目地として介在させた態様の複合耐火断熱材を作製した。   The above-mentioned refractory mortar is applied to and bonded to a 50 mm × 20 mm surface of the two heat insulation blocks prepared above and bonded together, and baked at 1000 ° C. for 3 hours to cure the mortar. A composite refractory heat insulating material having an intervening shape as a joint was prepared.

なお、上記において得られた多孔質セラミックスについて、X線回折(X線源:CuKα、電圧:40kV、電流:0.3A、走査速度:0.06°/s)にて結晶相を同定したところ、マグネシアスピネル相が観察された。
また、気孔率は78%であり、孔径が1000μmより大きい粗大気孔が全気孔容積の1vol%未満であり、孔径0.45μm以下の微小気孔が孔径1000μm以下の気孔の容積のうちの17vol%を占め、また、気孔径分布におけるピーク位置が孔径0.20μmと孔径3.80μmであった。セラミックス粒子の算出平均粒径は0.21μmであった。
The crystalline phase of the porous ceramic obtained above was identified by X-ray diffraction (X-ray source: CuKα, voltage: 40 kV, current: 0.3 A, scanning speed: 0.06 ° / s). A magnesia spinel phase was observed.
The porosity is 78%, the coarse pores having a pore diameter of more than 1000 μm are less than 1 vol% of the total pore volume, and the micropores having a pore diameter of 0.45 μm or less account for 17 vol% of the pore volume having a pore diameter of 1000 μm or less. The peak position in the pore size distribution was 0.20 μm pore size and 3.80 μm pore size. The calculated average particle size of the ceramic particles was 0.21 μm.

[実施例2]
水硬性アルミナ粉末(BK−112;住友化学株式会社製)11molに対して、酸化マグネシウム粉末(MGO11PB;株式会社高純度化学研究所製)9molの割合で混合し、純水を加えてスラリーを調製した。これに、造孔材として直径10μmのアクリル樹脂をスラリーに対して50vol%加えて混合し、水硬にて20mm×20mm×10mmに成形し、大気中、600℃で3時間焼成し、多孔質セラミックス前駆体を得た。
この前駆体に、真空チャンバ内で10Pa以下の減圧下、Y23を溶射し、1550℃で焼成して、Y23緻密膜からなる耐火材で断熱材表面を被覆した態様の複合耐火断熱材を作製した。
[Example 2]
A slurry is prepared by adding pure water to 11 mol of hydraulic alumina powder (BK-112; manufactured by Sumitomo Chemical Co., Ltd.) at a ratio of 9 mol of magnesium oxide powder (MGO11PB; manufactured by Kojundo Chemical Laboratory Co., Ltd.). did. To this, 50 vol% of an acrylic resin having a diameter of 10 μm as a pore forming material is added to and mixed with the slurry, formed into 20 mm × 20 mm × 10 mm by hydraulic, and baked at 600 ° C. for 3 hours in the atmosphere. A ceramic precursor was obtained.
A composite in which the precursor is sprayed with Y 2 O 3 under a reduced pressure of 10 Pa or less in a vacuum chamber, fired at 1550 ° C., and the surface of the heat insulating material is covered with a refractory material made of a dense Y 2 O 3 film. A refractory insulation was made.

上記実施例で作製した各複合耐火断熱材について、熱伝導率、圧縮強度及び耐熱性について評価を行った。
熱伝導率は、JIS R 2252−1「耐火物の熱伝導率の試験方法−第1部:熱線法(直交法)」に準じて、熱線に白金ロジウム合金線(87%Pt、13%Rh)を用い、R熱電対を使用して、1500℃まで測定した。
また、圧縮強度は、JIS R 2615「耐火断熱れんがの圧縮強さ試験方法」により評価した。
About each composite fireproof heat insulating material produced in the said Example, it evaluated about thermal conductivity, compressive strength, and heat resistance.
In accordance with JIS R 2252-1 “Testing method for thermal conductivity of refractories—Part 1: Hot wire method (orthogonal method)”, the heat conductivity is changed to platinum rhodium alloy wire (87% Pt, 13% Rh). ) And measured up to 1500 ° C. using an R thermocouple.
The compressive strength was evaluated according to JIS R 2615 “Testing method for compressive strength of fireproof insulating brick”.

上記評価の結果、実施例の複合耐火断熱材はいずれも、1300℃以上においても、熱伝導率が0.3W/(m・K)以下であり、前記断熱材のみの場合よりも高強度であることが認められた。   As a result of the above evaluation, the composite fireproof heat insulating materials of the examples all have a thermal conductivity of 0.3 W / (m · K) or lower even at 1300 ° C. or higher, and higher strength than the case of only the heat insulating material. It was recognized that there was.

なお、上記実施例は、断熱材が、MgAl24からなるスピネル質セラミックスの場合であるが、上述したとおり、本発明では、ZnAl24、FeAl24、NiAl24、MnAl24のいずれかのスピネル質セラミックスでも、同様の効果が得られる。これらは、順に、ZnO+Al23、Fe23+Al23、NiO+Al23、MnO+Al23の組み合わせによる多孔質セラミックス原料を用いること以外は、上述したMgAl24とほぼ同様にして製造することができる。 The above embodiments, thermal insulation, is the case of the spinel ceramics consisting of MgAl 2 O 4, as described above, in the present invention, ZnAl 2 O 4, FeAl 2 O 4, NiAl 2 O 4, MnAl Similar effects can be obtained with any spinel ceramic of 2 O 4 . These are substantially the same as MgAl 2 O 4 described above except that in order, porous ceramic raw materials are used in combination of ZnO + Al 2 O 3 , Fe 2 O 3 + Al 2 O 3 , NiO + Al 2 O 3 , MnO + Al 2 O 3. Can be manufactured.

Claims (6)

多孔質セラミックスからなる断熱材と、前記多孔質セラミックスよりも圧縮強度が大きい耐火材とからなり、
前記多孔質セラミックスは、気孔率が65vol%以上90vol%以下であり、化学式MgAl24で表されるスピネル質で、孔径が1000μmより大きい粗大気孔が全気孔容積の25vol%以下であり、孔径0.45μm以下の微小気孔が孔径1000μm以下の気孔の容積のうちの5vol%以上40vol%以下を占め、孔径0.14μm以上10μm以下の範囲内に気孔径分布ピークを少なくとも1つ有し、算出平均粒径が0.04μm以上1μm以下であるセラミックス粒子からなることを特徴とする複合耐火断熱材。
It consists of a heat insulating material made of porous ceramics and a refractory material having a compressive strength greater than that of the porous ceramics,
Wherein the porous ceramic has a porosity of not more than 65 vol% or more 90 vol%, with spinel represented by the chemical formula Mg Al 2 O 4, pore size is 1000μm larger coarse pores be less 25 vol% of the total pore volume The micropores having a pore diameter of 0.45 μm or less occupy 5 vol% or more and 40 vol% or less of the pore volume having a pore diameter of 1000 μm or less, and have at least one pore diameter distribution peak within the pore diameter range of 0.14 μm or more and 10 μm or less. A composite refractory heat insulating material comprising ceramic particles having a calculated average particle diameter of 0.04 μm or more and 1 μm or less.
前記断熱材が全体積の90vol%以上を占めることを特徴とする請求項1記載の複合耐火断熱材。   The composite refractory heat insulating material according to claim 1, wherein the heat insulating material occupies 90 vol% or more of the total volume. 前記耐火材は、気孔率が20vol%以下の緻密体であることを特徴とする請求項1又は2に記載の複合耐火断熱材。    The composite refractory heat insulating material according to claim 1 or 2, wherein the refractory material is a dense body having a porosity of 20 vol% or less. 前記耐火材が、前記断熱材と同じ材質であることを特徴とする請求項1〜3のいずれか1項に記載の複合耐火断熱材。   The said fireproof material is the same material as the said heat insulating material, The composite fireproof heat insulating material of any one of Claims 1-3 characterized by the above-mentioned. 前記断熱材を構成する多孔質セラミックスは、孔径0.14μm以上0.45μm未満の範囲内に少なくとも1つの気孔径分布ピークを有し、かつ、孔径0.45μm以上10μm以下の範囲内に少なくとも1つの気孔径分布ピークを有していることを特徴とする請求項1〜4のいずれか1項に記載の複合耐火断熱材。   The porous ceramic constituting the heat insulating material has at least one pore size distribution peak in a range of pore diameters of 0.14 μm or more and less than 0.45 μm, and at least 1 in a range of pore diameters of 0.45 μm or more and 10 μm or less. 5. The composite refractory heat insulating material according to claim 1, having two pore size distribution peaks. 前記断熱材を構成する多孔質セラミックスは、孔径10μm超1000μm以下の範囲内に、さらに少なくとも1つの気孔径分布ピークを有していることを特徴とする請求項1〜5のいずれか1項に記載の複合耐火断熱材。   The porous ceramic constituting the heat insulating material further has at least one pore size distribution peak in a range of a pore diameter of more than 10 μm to 1000 μm or less. The composite fireproof insulation described.
JP2013167263A 2013-08-12 2013-08-12 Composite fireproof insulation Active JP5877821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013167263A JP5877821B2 (en) 2013-08-12 2013-08-12 Composite fireproof insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013167263A JP5877821B2 (en) 2013-08-12 2013-08-12 Composite fireproof insulation

Publications (2)

Publication Number Publication Date
JP2015036346A JP2015036346A (en) 2015-02-23
JP5877821B2 true JP5877821B2 (en) 2016-03-08

Family

ID=52686984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013167263A Active JP5877821B2 (en) 2013-08-12 2013-08-12 Composite fireproof insulation

Country Status (1)

Country Link
JP (1) JP5877821B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6211479B2 (en) * 2014-07-30 2017-10-11 クアーズテック株式会社 Composite insulation
JP7145076B2 (en) * 2016-10-12 2022-09-30 日本碍子株式会社 intermediate member
CN112778015B (en) * 2021-01-08 2022-06-14 武汉科技大学 Lightweight periclase-spinel-carbon refractory material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131587A (en) * 1978-04-04 1979-10-12 Toyoda Chuo Kenkyusho Kk Carrier and its manufacture
CA1236491A (en) * 1984-10-09 1988-05-10 Alan J. Cisar Low density phosphate bonded spinel refractories

Also Published As

Publication number Publication date
JP2015036346A (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5752101B2 (en) Porous ceramics
KR101506083B1 (en) Heat-insulating material
US9188397B2 (en) Dense composite material, method for producing the same, and component for semiconductor production equipment
JP5881174B2 (en) Oriented MAX phase ceramic and method for producing the same
KR100756619B1 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
WO2015159838A1 (en) Porous plate-like filler, heat insulation film and method for producing porous plate-like filler
JP5877821B2 (en) Composite fireproof insulation
US20170336014A1 (en) Heat insulator
WO2011145387A1 (en) Si-SiC-BASED COMPOSITE MATERIAL AND PROCESS FOR PRODUCTION THEREOF, HONEYCOMB STRUCTURE, HEAT-CONDUCTIVE MATERIAL, AND HEAT EXCHANGER
US9938195B2 (en) Heat insulating material containing a porous sintered body formed of MgAl2O4
JP6319769B2 (en) Insulation
JP2016030710A (en) Insulating fire brick
JP6319909B2 (en) Insulation
JP6320872B2 (en) Hollow particles and thermal insulation containing hollow particles
KR101850585B1 (en) Heat insulator
Eom et al. Processing of Vermiculite-Silica Composites with Prefer-Oriented Rod-Like Pores
JP6214514B2 (en) Insulation
JP6188027B2 (en) Indefinite refractory
JP6214518B2 (en) Insulation
JP6211479B2 (en) Composite insulation
Li et al. Fabrication and thermal properties of Al2TiO5/Al2O3 composites
Akamine et al. Heat insulating material containing a porous sintered body formed of MgAl 2 O 4
JP6453234B2 (en) Insulation film
JP2017149632A (en) Reflector
KR20160000435A (en) Heat insulating material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160126

R150 Certificate of patent or registration of utility model

Ref document number: 5877821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350