WO2020004619A1 - Sputter deposition device - Google Patents

Sputter deposition device Download PDF

Info

Publication number
WO2020004619A1
WO2020004619A1 PCT/JP2019/025800 JP2019025800W WO2020004619A1 WO 2020004619 A1 WO2020004619 A1 WO 2020004619A1 JP 2019025800 W JP2019025800 W JP 2019025800W WO 2020004619 A1 WO2020004619 A1 WO 2020004619A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering
target
magnet
film forming
forming apparatus
Prior art date
Application number
PCT/JP2019/025800
Other languages
French (fr)
Japanese (ja)
Inventor
弘敏 阪上
哲宏 大野
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201980006240.3A priority Critical patent/CN111417741B/en
Priority to KR1020207015923A priority patent/KR102351170B1/en
Priority to JP2020527680A priority patent/JP6959447B2/en
Publication of WO2020004619A1 publication Critical patent/WO2020004619A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3441Dark space shields

Definitions

  • the present invention relates to a sputtering apparatus, and more particularly, to a technique of a sputtering film forming apparatus for forming a film by magnetron sputtering.
  • a magnetic field generated on a sputtering target (hereinafter, appropriately referred to as a “target”) is not uniform due to the structure of a magnet apparatus for generating a magnetic field. Is concentrated, and there is a problem that the portion is cut faster than a portion having a low magnetic flux density.
  • the present invention has been made in view of such problems of the related art, and has as its object to suppress the generation of a non-erosion region in the outer peripheral portion of a sputtering target when performing film formation by magnetron sputtering. It is to provide a technology that can do it.
  • the present invention made to achieve the above object is a sputter film forming apparatus that forms a film on one film formation object by a magnetron sputtering method in a vacuum, and a sputtering surface is formed on one sputtering target.
  • the magnet device for magnetron generation which is arranged on the opposite side and moves in the direction along the sputtering surface of the sputtering target at the time of discharge, and the inner shield portion which is arranged close to the periphery of the outer periphery of the sputtering target and has a floating potential
  • This is a sputter film forming apparatus having an outer shield portion provided around the inner shield portion and made of a conductive material at a ground potential.
  • the present invention is the sputter film forming apparatus, wherein the inner shield portion is provided with an overlapping portion that covers the sputtering surface of the sputtering target.
  • the present invention is the sputtering film forming apparatus, wherein the overlapping portion of the inner shield portion is provided over the entire outer peripheral portion of the sputtering surface of the sputtering target.
  • the present invention is the sputter film forming apparatus, wherein the overlapping portion of the inner shield portion is provided so as to overlap a pair of corners of the sputtering target formed in a rectangular shape.
  • the present invention is the sputter film forming apparatus, wherein the inner shield part is provided with a protruding part protruding in a direction of a sputter surface of the sputtering target.
  • the present invention is the sputter film forming apparatus, wherein the overhang portion of the inner shield portion is provided over the entire outer peripheral portion of the sputtering surface of the sputtering target.
  • the present invention is the sputter film forming apparatus, wherein the overhanging portion of the inner shield portion is provided at a pair of opposed corners of the rectangularly formed sputtering target.
  • the present invention is the sputtering film forming apparatus, wherein the sputtering target is formed so that its outer diameter is larger than the outer diameter of the object to be formed.
  • the plasma generated at the time of discharge and captured by the magnetic field of the magnet device is blocked by the inner shield portion which is disposed close to the outer periphery of the target and has a floating potential, so that the periphery of the inner shield portion is And is prevented from reaching and contacting the outer shield portion made of a conductive material set to the ground potential.
  • the disappearance of the plasma due to the charge of the ions in the plasma coming into contact with the outer shield portion at the ground potential is avoided, so that the plasma reaches the outer peripheral portion of the sputtering surface of the target. Accordingly, the generation of a non-erosion region in the outer peripheral portion of the sputtering surface of the target can be suppressed, so that a decrease in film-forming characteristics due to the separation of sputter particles adhered to the non-erosion region of the target can be prevented.
  • the overlapping portion causes the plasma to be generated. Since it is possible to more reliably prevent the non-erosion region from reaching the outer shield portion, it is possible to further suppress the occurrence of a non-erosion region on the outer peripheral portion of the sputtering surface of the target due to the disappearance of the plasma and to reduce the non-erosion region. At the same time, it is possible to prevent the sputtered particles from adhering to the non-erosion region of the target, so that it is possible to further prevent a decrease in the film forming characteristics due to the separation of the sputtered particles.
  • the ability to prevent plasma from reaching the outer shield portion and the non-erosion of sputtered particles of the target Since the ability to prevent adhesion to the region can be improved, the generation of the non-erosion region on the sputtering surface of the target due to the disappearance of the plasma can be suppressed over the entire outer peripheral portion of the target, and the non-erosion region can be reduced. At the same time, the attachment of sputter particles to the non-erosion region of the target can be prevented over the entire outer peripheral portion of the sputtering surface of the target.
  • the overlapping portion of the inner shield portion is provided so as to overlap with a pair of opposing corner portions of the target formed in a rectangular shape, or a pair of opposing portions of the target in which the overhang portion is formed in a rectangular shape.
  • the corner for example, when the trajectory of the plasma partially protrudes from the target at a pair of corners of the target, it is possible to reliably generate the non-erosion region on the outer peripheral portion of the sputtering surface of the target and It can be suppressed more effectively with a small amount of material.
  • FIG. 1A and 1B show a first example of a sputtering film forming apparatus according to the present invention, wherein FIG. 1A is a partial cross-sectional view showing an internal configuration, and FIG. Plan view showing configuration (A) and (b): This shows a second example of the sputter film forming apparatus according to the present invention.
  • FIG. 2 (a) is a partial cross-sectional view showing an internal configuration, and FIG. Plan view showing configuration (A) and (b): diagrams for explaining the purpose of the third example of the sputter film forming apparatus according to the present invention
  • FIG. 4 is a plan view showing an internal configuration of a main part of a third example of the sputtering film forming apparatus.
  • FIG. 5A and 5B show a fourth example of a sputtering film forming apparatus according to the present invention.
  • FIG. 5A is a partial cross-sectional view showing an internal configuration
  • FIG. Plan view showing configuration 5 is a plan view showing the internal configuration of a fifth example of the sputter film forming apparatus according to the present invention.
  • the top view which shows the internal structure of the principal part of the example of the sputter film-forming apparatus using the same several magnet apparatus.
  • FIGS. 1A and 1B show a first example of a sputter film forming apparatus according to the present invention.
  • FIG. 1A is a partial cross-sectional view showing an internal configuration
  • FIG. FIG. 4 is a plan view showing the internal configuration of the unit.
  • the sputter film forming apparatus 1 of this example is of a magnetron sputtering type, and has a vacuum chamber 2 at a ground potential as described later.
  • the vacuum chamber 2 is connected to a vacuum pumping device 3 for evacuating the vacuum chamber 2 and introducing a sputtering gas such as an argon (Ar) gas into the vacuum chamber 2. It is connected to a possible sputtering gas source 4.
  • a sputtering gas such as an argon (Ar) gas
  • a substrate (film formation target) 6 held by a substrate holder 5 is arranged in the vacuum chamber 2, and a target 7 attached to a backing plate 8 is opposed to the substrate 6. Is provided.
  • the target 7 is formed such that its outer diameter is larger than the outer diameter of the substrate 6. Further, the outer diameter of the backing plate 8 is set to be larger than the outer diameter of the target 7.
  • This target 7 is made of, for example, a metal or a metal oxide, and is arranged such that a sputter surface 7 a exposed and sputtered in the vacuum chamber 2 faces the substrate 6.
  • the backing plate 8 is attached to the wall surface of the vacuum chamber 2 via an insulator 8a, whereby the backing plate 8 is electrically insulated from the vacuum chamber 2.
  • the backing plate 8 is electrically connected to the power supply device 9, and is configured to apply a predetermined power (voltage) to the target 7 via the backing plate 8.
  • the type of power applied from the power supply device 9 to the target 7 is not particularly limited, and may be DC or AC (including high-frequency and pulse-like).
  • An inner shield portion 21 and an outer shield portion 22 described below are provided around the outer peripheral portion of the target 7 (backing plate 8).
  • the inner shield part 21 and the outer shield part 22 of this example are provided so as to surround the target 7 and the backing plate 8, respectively.
  • the inner shield portion 21 is made of an insulating material such as aluminum oxide (Al 2 O 3 ) or a conductive metal material such as titanium (Ti), aluminum (Al) or stainless steel. (Backing plate 8).
  • the inner shield part 21 is insulated from other parts in the vacuum chamber 2 and is set so that its potential becomes a floating potential.
  • the inner shield part 21 of this example is formed in a rectangular frame shape (see FIG. 1B), and its tip (the upper part shown in FIG. 1A) is closer to the substrate 6 than the sputtering surface 7a of the target 7. And the distance to the inner wall 2a of the vacuum chamber 2 on the side of the magnet device 10 described later is larger than the distance to the sputtering surface 7a.
  • the outer shield part 22 is made of a material such as a conductive metal such as titanium (Ti), aluminum (Al), and stainless steel, and is provided around the inner shield part 21.
  • the outer shield part 22 of the present example is formed in a rectangular frame shape (see FIG. 1B), and its tip (the upper part shown in FIG. 1A) is closer to the substrate than the sputtering surface 7a of the target 7.
  • the distance from the vacuum chamber 2 to the inner wall 2a of the vacuum chamber 2 on the side of the magnet device 10 described later is greater than the distance to the sputtering surface 7a.
  • the outer shield part 22 is set to a ground potential together with, for example, the vacuum chamber 2 and serves as a so-called earth shield for guiding sputtered particles to the substrate 6.
  • a magnet device 10 is provided on the back side of the backing plate 8. As shown in FIGS. 1A and 1B and FIG. 3A to be described later, a magnet device 10 includes a center magnet 11 installed in a direction for generating a magnetic field on a sputtering surface 7 a of a target 7, and a center magnet 11. And an outer peripheral magnet 12 installed in a continuous shape around the periphery 11.
  • the center magnet 11 is disposed, for example, in a rectangular shape on a magnet fixing plate 13 parallel to the backing plate 8, and the outer peripheral magnet 12 is formed in an annular shape on the magnet fixing plate 13 at a predetermined distance from the periphery of the center magnet 11. It is arranged so as to surround the center magnet 11.
  • the annular outer peripheral magnet 12 surrounding the center magnet 11 does not necessarily mean one seamless annular shape. That is, as long as the shape surrounds the periphery of the center magnet 11, it may be composed of a plurality of components, or may have a linear shape at a certain portion. Further, it may be a closed ring or a shape in which the ring is deformed while being closed (in this example, a rectangular shape is shown).
  • the dimensions of the magnet device 10 of the present embodiment are set such that the outer diameter of the outer peripheral magnet 12 (magnet fixing plate 13) is smaller than the outer diameter of the target 7.
  • the outer peripheral magnet 12 and the center magnet 11 are arranged with magnetic poles of different polarities facing each other. That is, the center magnet 11 and the outer peripheral magnet 12 are arranged so that magnetic poles having different polarities are directed to the sputtering surface 7 a of the target 7.
  • a moving device 14 such as an XY stage is disposed on the back side of the magnet fixing plate 13 of the magnet device 10, and the magnet device 10 is attached to the moving device 14.
  • the moving device 14 is connected to the control unit 15, and in accordance with a control signal from the control unit 15, moves the magnet device 10 in a direction orthogonal to the direction (longitudinal direction) in which the center magnet 11 extends along the sputter surface 7 a of the target 7. It is configured to reciprocate.
  • control unit 15 controls the magnet device 10 to position the entire outer peripheral portion of the outer peripheral magnet 12 inside the outer peripheral portion of the sputtering surface 7a of the target 7 and a part of the outer peripheral portion of the outer peripheral magnet 12 (this example). in portions 12 1 and 12 2 in the movement direction of the magnet system 10) is configured to reciprocally move between a position protruding outside the outer peripheral portion of the sputtering surface 7a of the target 7 (FIGS. 1 (a) reference).
  • the magnet device 10 is configured such that the entire outer peripheral part of the outer peripheral magnet 12 is located inside the inner peripheral part of the inner shield part 21 surrounding the periphery of the sputtering surface 7 a of the target 7. And a position where a part of the outer peripheral portion of the outer peripheral magnet 12 (parts 12 1 and 12 2 on the movement direction side of the magnet device 10 in this example) protrudes outward from the inner peripheral portion of the inner shield portion 21. It is configured to move between and.
  • the inside of the vacuum chamber 2 is evacuated, a sputtering gas is introduced into the vacuum chamber 2, and the backing A predetermined negative voltage is applied to the target 7 via the plate 8.
  • the magnet device 10 is moved to a position where the entire outer peripheral portion of the outer peripheral magnet 12 enters the inner peripheral portion of the inner shield portion 21 surrounding the periphery of the sputtering surface 7a of the target 7, and Is reciprocated between a position where a part of the outer peripheral portion protrudes from the inner peripheral portion of the inner shield portion 21 toward the outer peripheral portion.
  • a negative voltage is applied to the target 7, and ions of the sputtering gas collide with the sputtering surface 7 a of the target 7 having a negative potential and repel particles of the target material (sputter particles).
  • the sputtered particles reach and adhere to the surface of the substrate 6 described above, and a film of a target material is formed on the substrate 6.
  • the plasma of the sputter gas generated at the time of discharge and captured by the magnetic field by the magnet device 10 is disposed close to the periphery of the outer periphery of the target 7 and has a floating potential. Since the inner shield portion 21 is cut off, the outer shield portion 22 formed around the inner shield portion 21 and made of a conductive material set to the ground potential is prevented from reaching and contacting.
  • the disappearance of the plasma due to the contact of the charges of the ions in the plasma with the outer shield portion 22 at the ground potential is avoided, so that the plasma reaches the outer peripheral portion of the sputtering surface 7a of the target 7.
  • it is possible to suppress the generation of a non-erosion region in the outer peripheral portion of the sputtering surface 7a of the target 7, and to prevent a decrease in film forming characteristics due to the separation of sputter particles attached to the non-erosion region of the target 7. can do.
  • FIG. 2 (a) and 2 (b) show a second example of the sputter film forming apparatus according to the present invention.
  • FIG. 2 (a) is a partial sectional view showing the internal configuration
  • FIG. FIG. 3 is a plan view showing the internal configuration of the unit.
  • portions corresponding to those in the first example are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the sputter film forming apparatus 1A of the present example has an inner shield portion 21A provided with an overlapping portion 21a that covers the sputter surface 7a of the target 7. I have.
  • the overlapping portion 21a of the inner shield portion 21A is formed in a rectangular frame shape having a slight gap with respect to the sputtering surface 7a of the target, and the edge 21b of the opening has an inner diameter slightly smaller than the outer diameter of the target 7. It is comprised so that it may have.
  • the overlapping portion 21a of the inner shield portion 21A of this example is formed so as to cover the entire outer peripheral portion of the sputtering surface 7a of the target 7.
  • the plasma reaches the outer shield portion 22 by the overlapping portion 21a of the inner shield portion 21A provided over the entire outer peripheral portion of the target 7 over the entire inner peripheral portion thereof. Therefore, the generation of the non-erosion region on the outer peripheral portion of the sputtering surface 7a of the target 7 due to the disappearance of the plasma can be suppressed over the entire outer peripheral portion of the target 7 to reduce the non-erosion region. . Further, since the attachment of the sputtered particles to the non-erosion region of the target 7 can be prevented over the entire outer peripheral portion of the sputtered surface 7a of the target 7, the deterioration of the film forming characteristics due to the separation of the sputtered particles is further prevented. can do.
  • FIGS. 3A and 3B are diagrams for explaining the purpose of the third example of the sputter film forming apparatus according to the present invention.
  • FIG. 4 is a plan view showing an internal configuration of a main part of a third example of the sputtering film forming apparatus.
  • portions corresponding to the first and second examples are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • ions in the plasma generated by the discharge at the time of sputtering are captured by the magnetic field tracks generated by the magnet device 10 and correspond to the magnet device 10. Move in orbit.
  • the magnet device 10 is formed in a rectangular shape, the generated magnetic field track also has a shape close to a rectangle.
  • ions in the plasma 30 generated by the discharge are, for example, from the short side 12 s to the long side 12 l of the outer magnet 12 of the magnet device 10.
  • the angle at which ions change direction and move from the short side 12s to the long side 12l of the outer magnet 12 of the magnet device 10 because the plasma density of the plasma 30 increases when moving in a different direction.
  • FIG. 4 shows a means for solving the above-mentioned problem.
  • the overlapping portion 21c overlaps the pair of opposed corner portions 7c and 7d of the target 7 formed in a rectangular shape. , 21d.
  • FIG. a a pair of opposed corner portions 7c and 7d of the target 7 corresponding to the portions 31 and 32 of the shape protruding outside the plasma 30 described above, that is, FIG. a) Corners 7c, 7d of the target 7 corresponding to corners 12c, 12d in which ions change their directions from the short side 12s to the long side 12l of the outer magnet 12 of the magnet device 10 shown in (b), respectively. And overlapping portions 21c and 21d are provided so as to overlap.
  • FIGS. 5A and 5B show a fourth example of a sputter film forming apparatus according to the present invention.
  • FIG. 5A is a partial cross-sectional view showing an internal configuration
  • FIG. FIG. 3 is a plan view showing the internal configuration of the unit.
  • FIG. 6 is a plan view showing the internal configuration of a fifth example of the sputter film forming apparatus according to the present invention.
  • portions corresponding to those in the first example are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the sputter film forming apparatus 1C of the present example has an inner shield portion 23 provided with an overhang portion 23a that extends in the direction of the sputter surface 7a of the target 7. ing.
  • the projecting portion 23a of the inner shield portion 23 is formed in a rectangular frame shape having a slight gap with respect to the sputtering surface 7a of the target 7, and the edge 23b of the opening is slightly larger than the outer diameter of the target 7. It is configured to have a large inner diameter.
  • the overhang portion 23a of the inner shield portion 23 of this example is provided so as not to overlap with the sputtering surface 7a of the target 7, unlike the second example described above.
  • the plasma reaches the outer shield portion 22 over the entire inner peripheral portion by the overhang portion 23 a of the inner shield portion 23 provided over the entire outer peripheral portion of the target 7. Therefore, the generation of the non-erosion region on the outer peripheral portion of the sputtering surface 7a of the target 7 due to the disappearance of the plasma can be suppressed over the entire outer peripheral portion of the target 7 to reduce the non-erosion region. .
  • the parts 31, 32 formed in a rectangular shape and projecting outside the plasma 30 described above.
  • projections 23c, 23d projecting in the direction of the sputtering surface 7a of the target 7 are provided.
  • the overhang portions 23c and 23d are provided so as not to overlap with the sputtering surface 7a of the target 7.
  • the present invention is not limited to the above embodiment, and various changes can be made.
  • the case where one magnet device is used has been described as an example, but the present invention is not limited to this, and is also applicable to a case where a plurality of magnet devices are arranged side by side as described below. be able to.
  • FIG. 7 is a partial cross-sectional view illustrating an example of a sputter film forming apparatus using a plurality of magnet devices
  • FIG. 8 is a plan view illustrating an internal configuration of a main part of the example of the sputter film forming apparatus using the plurality of magnet devices.
  • FIG. 7 is a partial cross-sectional view illustrating an example of a sputter film forming apparatus using a plurality of magnet devices
  • FIG. 8 is a plan view illustrating an internal configuration of a main part of the example of the sputter film forming apparatus using the plurality of magnet devices.
  • the sputter film forming apparatus 1E of the present example has the same inner shield part 21 and outer shield part as the sputter film forming apparatus 1 of the first example shown in FIGS. 1 (a) and 1 (b).
  • the vacuum device 2 includes a vacuum chamber 2 provided with a magnet device 10 a on the back surface of the backing plate 8 in the vacuum chamber 2.
  • the magnet device 10a in this example is provided with a plurality (five in this example) of magnet means 10A to 10E on the magnet fixing plate 13 described above.
  • magnet means 10A to 10E have the same configuration, and are respectively installed on the elongated plate-shaped magnet fixing portion 16a parallel to the backing plate 8 in a direction for generating a magnetic field on the sputtering surface 7a of the target 7. It has a center magnet 11a and an outer peripheral magnet 12a installed in a continuous shape around the center magnet 11a.
  • the center magnet 11a is arranged in an elongated shape, for example, a rectangular shape extending in the same direction as the magnet fixing portion 16a. Moreover, it is arranged so as to surround the center magnet 11a at a predetermined distance from the peripheral portion of the center magnet 11a.
  • the annular outer peripheral magnet 12a surrounding the center magnet 11a does not necessarily mean one seamless annular shape as in the above-described magnet device 10. That is, as long as the shape surrounds the periphery of the center magnet 11a, it may be composed of a plurality of parts, or may have a linear shape at a certain portion. Further, it may be a closed ring or a shape in which the ring is deformed while being closed (in this example, a rectangular shape is shown).
  • the outer peripheral magnet 12a and the center magnet 11a of each of the magnet means 10A to 10E are arranged with magnetic poles having different polarities facing each other, whereby the center magnet 11a and the outer peripheral magnet 12a have different polarities with respect to the sputtering surface 7a of the target 7. Of the magnetic pole.
  • the magnet means 10A to 10E having such a configuration are arranged close to each other in the same direction so that the longitudinal sides of the adjacent outer peripheral magnets 12a face each other.
  • the magnet fixing plate 13 is attached to the moving device 14 described above, and the magnet device 10a It is configured to reciprocate in a direction orthogonal to the direction (longitudinal direction) in which each of the magnet means 10A to 10E extends along the sputtering surface 7a.
  • the magnet units 10A to 10E of the magnet device 10a located on both sides in the moving direction of the magnet device 10a and the portions 12a 1 and 12a of the magnet unit 10E on the moving direction side of the outer magnet 12a.
  • the size and arrangement of each of the magnet means 10A to 10E are set so that the distance between the two edges is smaller than the length between the edges in the moving direction of the target 7 in the moving direction (FIG. 8). reference).
  • the distance between the edges in the direction orthogonal to the moving direction of the magnet device 10a is determined by the movement of the target 7
  • the dimensions and arrangement positions of the magnet units 10A to 10E are set so as to be smaller than the length between the edges in the direction orthogonal to the direction.
  • the magnet device 10a is moved to a position where the entire outer peripheral portion of the outer peripheral magnet 12a enters the outer periphery of the sputtering surface 7a of the target 7 and a part of the outer peripheral portion of the outer peripheral magnet 12a (in this example, the moving direction side of the magnet device 10a).
  • portions 12a 1 and 12a 2) of which is configured to reciprocate between a position protruding outside the outer peripheral portion of the sputtering surface 7a of the target 7.
  • the magnet device 10a is configured such that the entire outer peripheral portion of the outer peripheral magnet 12a is located inside the inner peripheral portion of the inner shield portion 21 surrounding the periphery of the sputtering surface 7a of the target 7. a position to enter (in this example, portions 12a 1 and 12a 2 of the moving direction side) portion of the outer peripheral portion of the peripheral magnet 12a between a position where the protruding on the outer periphery side with respect to the inner peripheral portion of the inner shield part 21 It is configured to move.
  • the plasma of the sputter gas generated at the time of discharge and captured by the magnetic field by each of the magnet units 10A to 10E of the magnet device 10a is disposed close to the periphery of the outer periphery of the target 7. Since the inner shield portion 21 is shielded by the floating potential, it is prevented from reaching and contacting the outer shield portion 22 provided around the inner shield portion 21 and made of a conductive material at the ground potential.
  • the disappearance of the plasma due to the contact of the charges of the ions in the plasma with the outer shield portion 22 at the ground potential is avoided. Since the plasma reaches the outer peripheral portion of the sputtering surface 7a of the target 7, the generation of the non-erosion region in the outer peripheral portion of the sputtering surface 7a of the target 7 can be suppressed, and the plasma adheres to the non-erosion region of the target 7. It is possible to prevent a decrease in film formation characteristics due to separation of sputtered particles.
  • the magnet device 10a having the plurality of magnet means 10A to 10E since the magnet device 10a having the plurality of magnet means 10A to 10E is used, the power concentration on the magnetic field is reduced, and thus the input power can be increased.
  • the present invention is not limited to this, and the present invention is not limited to the case where there are six or more magnet units. Can be applied.
  • the magnet device 10a of the present example can be applied to the sputter film forming apparatuses 1A to 1D of the second to fifth examples described above.
  • ions in the plasma move from the short side to the long side of the outer magnet 12a of each of the magnet means 10A to 10E of the magnet device 10a.
  • the above-described sputter film forming apparatus 1B of the third example and the sputter film forming apparatus 1D of the fifth example are used. It is effective to combine them.
  • the ion is changed from the short side to the long side with respect to each of the magnet means 10A to 10E so that the ions move in the opposite direction to the outside of the plasma as described above.
  • the ions move along the part of the shape to be emitted, the ions in the plasma also cause the ions of the magnet means 10A and 10E at both ends in the moving direction of the magnet apparatus 10a as shown in FIG. This is because the ions come to move along the shape of the shape protruding outside the plasma at the opposing corner portions 12c and 12d where the ions change their directions from the short side to the long side of the outer peripheral magnet 12a. .
  • Sputter film forming apparatus Vacuum chamber 6.
  • Substrate (film forming target) 7 ... Sputtering target 7a ... Sputtered surfaces 7c, 7d ... Corner 7l ... Long side 7s ... Short side 8 ... Backing plate 10 .
  • Magnet device 11 ... Center magnet 12 ; Peripheral magnet 21 ; Inner shield part 22 ; Outer shield part

Abstract

The present invention can suppress the occurrence of an uneroded region at the outer periphery of a sputtering target during film deposition by magnetron sputtering. The present invention is a sputtering deposition device for depositing a film onto a single object for film formation in a vacuum by using a magnetron sputtering method. The present invention has: a magnet device 10 for generating a magnetron beam, which is disposed on the opposite side from a sputtering surface 7a of a single sputtering target 7 and which moves in a direction along the sputtering surface 7a of the sputtering target 7 at the time of discharge; an inner shield section 21 which is disposed around and in close proximity to the outer periphery of the sputtering target 7 and has a floating potential; and an outer shield section 22 which is disposed around the inner shield section 21, has a ground potential, and is made of an electroconductive material.

Description

スパッタ成膜装置Sputter deposition equipment
 本発明は、スパッタリング装置に関し、特にマグネトロンスパッタリングによって成膜を行うスパッタ成膜装置の技術に関する。 The present invention relates to a sputtering apparatus, and more particularly, to a technique of a sputtering film forming apparatus for forming a film by magnetron sputtering.
 従来、マグネトロンスパッタリング装置においては、磁場を発生させる磁石装置の構造上スパッタリングターゲット(以下、適宜「ターゲット」という。)上に生じる磁場が不均一になるため、磁束密度の高い部分にスパッタガスのイオンが集中し、その部分が磁束密度の低い部分に比べて早く削られるという問題がある。 Conventionally, in a magnetron sputtering apparatus, a magnetic field generated on a sputtering target (hereinafter, appropriately referred to as a “target”) is not uniform due to the structure of a magnet apparatus for generating a magnetic field. Is concentrated, and there is a problem that the portion is cut faster than a portion having a low magnetic flux density.
 このようなターゲットが局所的に削られる部分(エロージョン)が生じることを防ぐため、従来より磁石装置を移動させながらスパッタリングを行うようにしている。 (4) In order to prevent such a target portion from being locally cut away (erosion), sputtering has conventionally been performed while moving the magnet device.
 しかし、このような手段を用いてスパッタリングを行うと、放電によって生成され磁石装置による磁場に捕捉されたプラズマが、電気的に接地された導電部材と接触した場合にプラズマ中のイオンの電荷が導電部材を通って接地部位に流れ、プラズマが消失する。このような事態を回避するために外周磁石のリングの外周全体がスパッタ面の外周部より内側に位置する範囲内で磁石装置を移動させる必要がある。 However, when sputtering is performed using such means, when the plasma generated by the discharge and captured by the magnetic field of the magnet device contacts a conductive member that is electrically grounded, the charge of ions in the plasma becomes conductive. The plasma flows through the member to the ground portion, and the plasma disappears. In order to avoid such a situation, it is necessary to move the magnet device within a range in which the entire outer periphery of the ring of the outer peripheral magnet is located inside the outer peripheral portion of the sputtering surface.
 その結果、ターゲットのスパッタ面の外周部にはプラズマが到達せず、スパッタされない非エロージョン領域が残るという問題がある。
 このようなターゲットの非エロージョン領域にスパッタ粒子が付着すると、異常放電などにより剥離しパーティクルの発生原因となるという問題があった。
As a result, there is a problem that the plasma does not reach the outer peripheral portion of the sputtering surface of the target, and a non-erosion region that is not sputtered remains.
When sputtered particles adhere to the non-erosion region of such a target, there is a problem in that the sputtered particles are separated due to abnormal discharge or the like, thereby causing generation of particles.
特開2015-92025号公報JP 2015-92025 A
 本発明は、このような従来の技術の課題を考慮してなされたもので、その目的とするところは、マグネトロンスパッタリングによって成膜を行う際にスパッタリングターゲットの外周部において非エロージョン領域の発生を抑制することができる技術を提供することにある。 The present invention has been made in view of such problems of the related art, and has as its object to suppress the generation of a non-erosion region in the outer peripheral portion of a sputtering target when performing film formation by magnetron sputtering. It is to provide a technology that can do it.
 上記目的を達成するためになされた本発明は、真空中においてマグネトロンスパッタリング法によって一つの成膜対象物に対して成膜を行うスパッタ成膜装置であって、一つのスパッタリングターゲットに対してスパッタ面と反対側に配置され、放電時に当該スパッタリングターゲットのスパッタ面に沿う方向に移動するマグネトロン発生用磁石装置と、前記スパッタリングターゲットの外周部の周囲に近接配置され浮遊電位にされた内側シールド部と、当該内側シールド部の周囲に設けられ接地電位にされた導電性材料からなる外側シールド部とを有するスパッタ成膜装置である。
 本発明は、前記内側シールド部に、前記スパッタリングターゲットのスパッタ面を覆うように重なる重複部が設けられているスパッタ成膜装置である。
 本発明は、前記内側シールド部の重複部が、前記スパッタリングターゲットのスパッタ面の外周部の全域にわたって設けられているスパッタ成膜装置である。
 本発明は、前記内側シールド部の重複部が、矩形状に形成された前記スパッタリングターゲットの対向する一対の角部と重なるように設けられているスパッタ成膜装置である。
 本発明は、前記内側シールド部が、前記スパッタリングターゲットのスパッタ面の方向に張り出した張出部が設けられているスパッタ成膜装置である。
 本発明は、前記内側シールド部の張出部が、前記スパッタリングターゲットのスパッタ面の外周部の全域にわたって設けられているスパッタ成膜装置である。
 本発明は、前記内側シールド部の張出部が、矩形状に形成された前記スパッタリングターゲットの対向する一対の角部に設けられているスパッタ成膜装置である。
 本発明は、前記スパッタリングターゲットは、その外径が前記成膜対象物の外径より大きくなるように形成されているスパッタ成膜装置である。
The present invention made to achieve the above object is a sputter film forming apparatus that forms a film on one film formation object by a magnetron sputtering method in a vacuum, and a sputtering surface is formed on one sputtering target. The magnet device for magnetron generation which is arranged on the opposite side and moves in the direction along the sputtering surface of the sputtering target at the time of discharge, and the inner shield portion which is arranged close to the periphery of the outer periphery of the sputtering target and has a floating potential, This is a sputter film forming apparatus having an outer shield portion provided around the inner shield portion and made of a conductive material at a ground potential.
The present invention is the sputter film forming apparatus, wherein the inner shield portion is provided with an overlapping portion that covers the sputtering surface of the sputtering target.
The present invention is the sputtering film forming apparatus, wherein the overlapping portion of the inner shield portion is provided over the entire outer peripheral portion of the sputtering surface of the sputtering target.
The present invention is the sputter film forming apparatus, wherein the overlapping portion of the inner shield portion is provided so as to overlap a pair of corners of the sputtering target formed in a rectangular shape.
The present invention is the sputter film forming apparatus, wherein the inner shield part is provided with a protruding part protruding in a direction of a sputter surface of the sputtering target.
The present invention is the sputter film forming apparatus, wherein the overhang portion of the inner shield portion is provided over the entire outer peripheral portion of the sputtering surface of the sputtering target.
The present invention is the sputter film forming apparatus, wherein the overhanging portion of the inner shield portion is provided at a pair of opposed corners of the rectangularly formed sputtering target.
The present invention is the sputtering film forming apparatus, wherein the sputtering target is formed so that its outer diameter is larger than the outer diameter of the object to be formed.
 本発明にあっては、放電時に生成され磁石装置による磁場に捕捉されたプラズマが、ターゲットの外周部の周囲に近接配置され浮遊電位にされた内側シールド部によって遮られるため、内側シールド部の周囲に設けられ接地電位にされた導電性材料からなる外側シールド部に到達して接触することが阻止される。 According to the present invention, the plasma generated at the time of discharge and captured by the magnetic field of the magnet device is blocked by the inner shield portion which is disposed close to the outer periphery of the target and has a floating potential, so that the periphery of the inner shield portion is And is prevented from reaching and contacting the outer shield portion made of a conductive material set to the ground potential.
 その結果、本発明によれば、プラズマ中のイオンの電荷が接地電位の外側シールド部に接触することによるプラズマの消失が回避されるため、ターゲットのスパッタ面の外周部にプラズマが到達し、これによりターゲットのスパッタ面の外周部における非エロージョン領域の発生を抑制することができるので、ターゲットの非エロージョン領域に付着したスパッタ粒子の剥離に起因する成膜特性の低下を防止することができる。 As a result, according to the present invention, the disappearance of the plasma due to the charge of the ions in the plasma coming into contact with the outer shield portion at the ground potential is avoided, so that the plasma reaches the outer peripheral portion of the sputtering surface of the target. Accordingly, the generation of a non-erosion region in the outer peripheral portion of the sputtering surface of the target can be suppressed, so that a decrease in film-forming characteristics due to the separation of sputter particles adhered to the non-erosion region of the target can be prevented.
 本発明において、内側シールド部に、スパッタリングターゲットのスパッタ面を覆うように重なる重複部又はスパッタリングターゲットのスパッタ面の方向に張り出した張出部が設けられている場合には、この重複部によってプラズマの外側シールド部への到達をより確実に阻止することができるので、プラズマの消失に起因するターゲットのスパッタ面の外周部における非エロージョン領域の発生をより抑制して非エロージョン領域を小さくすることができるとともに、スパッタ粒子のターゲットの非エロージョン領域への付着を阻止することができるので、スパッタ粒子の剥離に起因する成膜特性の低下をより一層防止することができる。 In the present invention, in the case where the inner shield portion is provided with an overlapping portion that overlaps to cover the sputtering surface of the sputtering target or an overhanging portion that projects in the direction of the sputtering surface of the sputtering target, the overlapping portion causes the plasma to be generated. Since it is possible to more reliably prevent the non-erosion region from reaching the outer shield portion, it is possible to further suppress the occurrence of a non-erosion region on the outer peripheral portion of the sputtering surface of the target due to the disappearance of the plasma and to reduce the non-erosion region. At the same time, it is possible to prevent the sputtered particles from adhering to the non-erosion region of the target, so that it is possible to further prevent a decrease in the film forming characteristics due to the separation of the sputtered particles.
 この場合、内側シールド部の重複部又は張出部が、ターゲットの外周部の全域にわたって設けられている場合には、プラズマの外側シールド部への到達を阻止する能力並びにスパッタ粒子のターゲットの非エロージョン領域への付着阻止能力を向上させることができるので、プラズマの消失に起因するターゲットのスパッタ面の非エロージョン領域の発生をターゲットの外周部の全域にわたって抑制して非エロージョン領域を小さくすることができるとともに、スパッタ粒子のターゲットの非エロージョン領域への付着をターゲットのスパッタ面の外周部の全域にわたって阻止することができる。 In this case, when the overlapping portion or the overhanging portion of the inner shield portion is provided over the entire outer peripheral portion of the target, the ability to prevent plasma from reaching the outer shield portion and the non-erosion of sputtered particles of the target Since the ability to prevent adhesion to the region can be improved, the generation of the non-erosion region on the sputtering surface of the target due to the disappearance of the plasma can be suppressed over the entire outer peripheral portion of the target, and the non-erosion region can be reduced. At the same time, the attachment of sputter particles to the non-erosion region of the target can be prevented over the entire outer peripheral portion of the sputtering surface of the target.
 また、内側シールド部の重複部が、矩形状に形成されたターゲットの対向する一対の角部と重なるように設けられている場合又は張出部が矩形状に形成されたターゲットの対向する一対の角部に設けられている場合には、例えばプラズマの軌道がターゲットの一対の角部において部分的にターゲットからはみ出す場合等において、ターゲットのスパッタ面の外周部における非エロージョン領域の発生を確実で且つ少ない材料でより効果的に抑制することができる。 Further, when the overlapping portion of the inner shield portion is provided so as to overlap with a pair of opposing corner portions of the target formed in a rectangular shape, or a pair of opposing portions of the target in which the overhang portion is formed in a rectangular shape. When provided at the corner, for example, when the trajectory of the plasma partially protrudes from the target at a pair of corners of the target, it is possible to reliably generate the non-erosion region on the outer peripheral portion of the sputtering surface of the target and It can be suppressed more effectively with a small amount of material.
(a)(b):本発明に係るスパッタ成膜装置の第1例を示すもので、図1(a)は、内部構成を示す部分断面図、図1(b)は、要部の内部構成を示す平面図1A and 1B show a first example of a sputtering film forming apparatus according to the present invention, wherein FIG. 1A is a partial cross-sectional view showing an internal configuration, and FIG. Plan view showing configuration (a)(b):本発明に係るスパッタ成膜装置の第2例を示すもので、図2(a)は、内部構成を示す部分断面図、図2(b)は、要部の内部構成を示す平面図(A) and (b): This shows a second example of the sputter film forming apparatus according to the present invention. FIG. 2 (a) is a partial cross-sectional view showing an internal configuration, and FIG. Plan view showing configuration (a)(b):本発明に係るスパッタ成膜装置の第3例の目的を説明するための図(A) and (b): diagrams for explaining the purpose of the third example of the sputter film forming apparatus according to the present invention 同スパッタ成膜装置の第3例の要部の内部構成を示す平面図FIG. 4 is a plan view showing an internal configuration of a main part of a third example of the sputtering film forming apparatus. (a)(b):本発明に係るスパッタ成膜装置の第4例を示すもので、図5(a)は、内部構成を示す部分断面図、図5(b)は、要部の内部構成を示す平面図FIGS. 5A and 5B show a fourth example of a sputtering film forming apparatus according to the present invention. FIG. 5A is a partial cross-sectional view showing an internal configuration, and FIG. Plan view showing configuration 本発明に係るスパッタ成膜装置の第5例の内部構成を示す平面図5 is a plan view showing the internal configuration of a fifth example of the sputter film forming apparatus according to the present invention. 複数の磁石装置を用いたスパッタ成膜装置の例を示す部分断面図Partial sectional view showing an example of a sputtering film forming apparatus using a plurality of magnet devices. 同複数の磁石装置を用いたスパッタ成膜装置の例の要部の内部構成を示す平面図The top view which shows the internal structure of the principal part of the example of the sputter film-forming apparatus using the same several magnet apparatus.
 以下、本発明の実施の形態を図面を参照して詳細に説明する。
 図1(a)(b)は、本発明に係るスパッタ成膜装置の第1例を示すもので、図1(a)は、内部構成を示す部分断面図、図1(b)は、要部の内部構成を示す平面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIGS. 1A and 1B show a first example of a sputter film forming apparatus according to the present invention. FIG. 1A is a partial cross-sectional view showing an internal configuration, and FIG. FIG. 4 is a plan view showing the internal configuration of the unit.
 本例のスパッタ成膜装置1は、マグネトロンスパッタリング方式のもので、後述するように接地電位にされた真空槽2を有している。 ス パ ッ タ The sputter film forming apparatus 1 of this example is of a magnetron sputtering type, and has a vacuum chamber 2 at a ground potential as described later.
 図1(a)に示すように、真空槽2は、真空槽2内の真空排気を行う真空排気装置3に接続されるとともに、真空槽2内にアルゴン(Ar)ガス等のスパッタガスを導入可能なスパッタガス源4に接続されている。 As shown in FIG. 1A, the vacuum chamber 2 is connected to a vacuum pumping device 3 for evacuating the vacuum chamber 2 and introducing a sputtering gas such as an argon (Ar) gas into the vacuum chamber 2. It is connected to a possible sputtering gas source 4.
 真空槽2内には、基板ホルダ5に保持された基板(成膜対象物)6が配置されるようになっており、この基板6と対向するように、バッキングプレート8に取り付けられたターゲット7が設けられている。 A substrate (film formation target) 6 held by a substrate holder 5 is arranged in the vacuum chamber 2, and a target 7 attached to a backing plate 8 is opposed to the substrate 6. Is provided.
 図1(a)(b)に示すように、ターゲット7は、その外径が基板6の外径より大きくなるように形成されている。また、ターゲット7の外径よりバッキングプレート8の外径が大きくなるように設定されている。 タ ー ゲ ッ ト As shown in FIGS. 1A and 1B, the target 7 is formed such that its outer diameter is larger than the outer diameter of the substrate 6. Further, the outer diameter of the backing plate 8 is set to be larger than the outer diameter of the target 7.
 このターゲット7は、例えば金属や金属酸化物からなり、真空槽2内に露出されスパッタリングされるスパッタ面7aが基板6と対向するように配置されている。 This target 7 is made of, for example, a metal or a metal oxide, and is arranged such that a sputter surface 7 a exposed and sputtered in the vacuum chamber 2 faces the substrate 6.
 バッキングプレート8は、絶縁物8aを介して真空槽2の壁面に取り付けられ、これによりバッキングプレート8は真空槽2に対して電気的に絶縁されている。 (4) The backing plate 8 is attached to the wall surface of the vacuum chamber 2 via an insulator 8a, whereby the backing plate 8 is electrically insulated from the vacuum chamber 2.
 バッキングプレート8は電源装置9に電気的に接続され、このバッキングプレート8を介してターゲット7に対して所定の電力(電圧)を印加するように構成されている。 The backing plate 8 is electrically connected to the power supply device 9, and is configured to apply a predetermined power (voltage) to the target 7 via the backing plate 8.
 電源装置9からターゲット7に印加する電力の種類は特に限定されるものではなく、直流、交流(高周波、パルス状のものも含む)のいずれであってもよい。 種類 The type of power applied from the power supply device 9 to the target 7 is not particularly limited, and may be DC or AC (including high-frequency and pulse-like).
 ターゲット7(バッキングプレート8)の外周部の周囲には、以下に説明する内側シールド部21と外側シールド部22が設けられている。 (4) An inner shield portion 21 and an outer shield portion 22 described below are provided around the outer peripheral portion of the target 7 (backing plate 8).
 図1(b)に示すように、本例の内側シールド部21及び外側シールド部22は、それぞれターゲット7及びバッキングプレート8を取り囲むように設けられている。 内側 As shown in FIG. 1B, the inner shield part 21 and the outer shield part 22 of this example are provided so as to surround the target 7 and the backing plate 8, respectively.
 ここで、内側シールド部21は、例えば酸化アルミニウム(Al23)等の絶縁性の材料やチタン(Ti)、アルミニウム(Al)、ステンレス等の導電性の金属材料からなるもので、ターゲット7(バッキングプレート8)の外周部に近接配置されている。 Here, the inner shield portion 21 is made of an insulating material such as aluminum oxide (Al 2 O 3 ) or a conductive metal material such as titanium (Ti), aluminum (Al) or stainless steel. (Backing plate 8).
 そして、この内側シールド部21は、真空槽2内において他の部分に対して絶縁され、その電位が浮遊電位となるように設定されている。 The inner shield part 21 is insulated from other parts in the vacuum chamber 2 and is set so that its potential becomes a floating potential.
 本例の内側シールド部21は、矩形の枠形状に形成され(図1(b)参照)、その先端部(図1(a)中に示す上部)がターゲット7のスパッタ面7aより基板6側に突出して真空槽2の後述する磁石装置10側の内壁2aに対する距離がスパッタ面7aに対する距離より大きくなるように構成されている。 The inner shield part 21 of this example is formed in a rectangular frame shape (see FIG. 1B), and its tip (the upper part shown in FIG. 1A) is closer to the substrate 6 than the sputtering surface 7a of the target 7. And the distance to the inner wall 2a of the vacuum chamber 2 on the side of the magnet device 10 described later is larger than the distance to the sputtering surface 7a.
 一方、外側シールド部22は、例えばチタン(Ti)、アルミニウム(Al)、ステンレス等の導電性の金属等の材料からなり、内側シールド部21の周囲に設けられている。 On the other hand, the outer shield part 22 is made of a material such as a conductive metal such as titanium (Ti), aluminum (Al), and stainless steel, and is provided around the inner shield part 21.
 そして、本例の外側シールド部22は、矩形の枠形状に形成され(図1(b)参照)、その先端部(図1(a)中に示す上部)がターゲット7のスパッタ面7aより基板6側に突出して真空槽2の後述する磁石装置10側の内壁2aに対する距離がスパッタ面7aに対する距離より大きくなるように構成されている。 The outer shield part 22 of the present example is formed in a rectangular frame shape (see FIG. 1B), and its tip (the upper part shown in FIG. 1A) is closer to the substrate than the sputtering surface 7a of the target 7. The distance from the vacuum chamber 2 to the inner wall 2a of the vacuum chamber 2 on the side of the magnet device 10 described later is greater than the distance to the sputtering surface 7a.
 この外側シールド部22は、例えば真空槽2とともに接地電位に設定され、スパッタ粒子を基板6に導くための所謂アースシールドの役割を果たすものである。 The outer shield part 22 is set to a ground potential together with, for example, the vacuum chamber 2 and serves as a so-called earth shield for guiding sputtered particles to the substrate 6.
 バッキングプレート8の裏面側には磁石装置10が設けられている。
 図1(a)(b)及び後述する図3(a)に示すように、磁石装置10は、ターゲット7のスパッタ面7a上に磁場を発生させる向きで設置された中心磁石11と、中心磁石11の周囲に連続的な形状で設置された外周磁石12とを有している。
A magnet device 10 is provided on the back side of the backing plate 8.
As shown in FIGS. 1A and 1B and FIG. 3A to be described later, a magnet device 10 includes a center magnet 11 installed in a direction for generating a magnetic field on a sputtering surface 7 a of a target 7, and a center magnet 11. And an outer peripheral magnet 12 installed in a continuous shape around the periphery 11.
 中心磁石11はバッキングプレート8と平行な磁石固定板13上に例えば長方体形状に配置され、外周磁石12は磁石固定板13上で中心磁石11の周縁部から所定距離をおいて環状に形成され、中心磁石11を取り囲むように配置されている。 The center magnet 11 is disposed, for example, in a rectangular shape on a magnet fixing plate 13 parallel to the backing plate 8, and the outer peripheral magnet 12 is formed in an annular shape on the magnet fixing plate 13 at a predetermined distance from the periphery of the center magnet 11. It is arranged so as to surround the center magnet 11.
 中心磁石11の周囲を取り囲む環状の外周磁石12は、必ずしも一つの継ぎ目のない環形状であることを意味しない。すなわち、中心磁石11の周囲を取り囲む形状であれば、複数の部品から構成されていてもよいし、ある部分に直線的な形状を有していてもよい。また、閉じた円環又は円環を閉じたまま変形させた形状でもよい(本例では、矩形形状のものが示されている。)。
 なお、本例の磁石装置10は、外周磁石12(磁石固定板13)の外径がターゲット7の外径より小さくなるようにその寸法が設定されている。
The annular outer peripheral magnet 12 surrounding the center magnet 11 does not necessarily mean one seamless annular shape. That is, as long as the shape surrounds the periphery of the center magnet 11, it may be composed of a plurality of components, or may have a linear shape at a certain portion. Further, it may be a closed ring or a shape in which the ring is deformed while being closed (in this example, a rectangular shape is shown).
The dimensions of the magnet device 10 of the present embodiment are set such that the outer diameter of the outer peripheral magnet 12 (magnet fixing plate 13) is smaller than the outer diameter of the target 7.
 外周磁石12と中心磁石11は、互いに異なる極性の磁極を対向させて配置されている。すなわち、中心磁石11と外周磁石12はターゲット7のスパッタ面7aに対して互いに異なる極性の磁極を向けるように配置されている。 The outer peripheral magnet 12 and the center magnet 11 are arranged with magnetic poles of different polarities facing each other. That is, the center magnet 11 and the outer peripheral magnet 12 are arranged so that magnetic poles having different polarities are directed to the sputtering surface 7 a of the target 7.
 磁石装置10の磁石固定板13の裏面側には、例えばXYステージ等の移動装置14が配置され、磁石装置10は移動装置14に取り付けられている。
 移動装置14は制御部15に接続され、制御部15からの制御信号によって、磁石装置10をターゲット7のスパッタ面7aに沿って中心磁石11の延びる方向(長手方向)に対して直交する方向に往復移動させるように構成されている。
A moving device 14 such as an XY stage is disposed on the back side of the magnet fixing plate 13 of the magnet device 10, and the magnet device 10 is attached to the moving device 14.
The moving device 14 is connected to the control unit 15, and in accordance with a control signal from the control unit 15, moves the magnet device 10 in a direction orthogonal to the direction (longitudinal direction) in which the center magnet 11 extends along the sputter surface 7 a of the target 7. It is configured to reciprocate.
 本例では、制御部15は、磁石装置10を、外周磁石12の外周部全体がターゲット7のスパッタ面7aの外周部より内側に入る位置と、外周磁石12の外周部の一部(本例では磁石装置10の移動方向側の部分121及び122)がターゲット7のスパッタ面7aの外周部の外側にはみ出る位置との間を往復移動させるように構成されている(図1(a)参照)。 In this example, the control unit 15 controls the magnet device 10 to position the entire outer peripheral portion of the outer peripheral magnet 12 inside the outer peripheral portion of the sputtering surface 7a of the target 7 and a part of the outer peripheral portion of the outer peripheral magnet 12 (this example). in portions 12 1 and 12 2 in the movement direction of the magnet system 10) is configured to reciprocally move between a position protruding outside the outer peripheral portion of the sputtering surface 7a of the target 7 (FIGS. 1 (a) reference).
 そして、上述した内側シールド部21との関係においては、磁石装置10は、外周磁石12の外周部全体がターゲット7のスパッタ面7aの周囲を取り囲む内側シールド部21の内周部に対して内側に入る位置と、外周磁石12の外周部の一部(本例では磁石装置10の移動方向側の部分121及び122)が内側シールド部21の内周部に対して外周部側にはみ出る位置との間で移動するよう構成されている。 Then, in relation to the above-described inner shield part 21, the magnet device 10 is configured such that the entire outer peripheral part of the outer peripheral magnet 12 is located inside the inner peripheral part of the inner shield part 21 surrounding the periphery of the sputtering surface 7 a of the target 7. And a position where a part of the outer peripheral portion of the outer peripheral magnet 12 ( parts 12 1 and 12 2 on the movement direction side of the magnet device 10 in this example) protrudes outward from the inner peripheral portion of the inner shield portion 21. It is configured to move between and.
 このような構成を有する本例において、基板6上にスパッタリングによって成膜を行う場合には、真空槽2内を真空排気するとともに、真空槽2内にスパッタガスを導入し、電源装置9からバッキングプレート8を介してターゲット7に所定の負電圧を印加する。 In the present example having such a configuration, when a film is formed on the substrate 6 by sputtering, the inside of the vacuum chamber 2 is evacuated, a sputtering gas is introduced into the vacuum chamber 2, and the backing A predetermined negative voltage is applied to the target 7 via the plate 8.
 そして、上述したように、磁石装置10を、外周磁石12の外周部全体がターゲット7のスパッタ面7aの周囲を取り囲む内側シールド部21の内周部に対して内側に入る位置と、外周磁石12の外周部の一部が内側シールド部21の内周部に対して外周部側にはみ出る位置との間で往復移動させる。 Then, as described above, the magnet device 10 is moved to a position where the entire outer peripheral portion of the outer peripheral magnet 12 enters the inner peripheral portion of the inner shield portion 21 surrounding the periphery of the sputtering surface 7a of the target 7, and Is reciprocated between a position where a part of the outer peripheral portion protrudes from the inner peripheral portion of the inner shield portion 21 toward the outer peripheral portion.
 以上の動作により、ターゲット7と基板6の間で放電が生じ、ターゲット7上のスパッタガスが電離され、プラズマ化する。
 このプラズマ中に存在するスパッタガスのイオンは、磁石装置10によって発生させた磁場に捕捉される。
By the above operation, discharge occurs between the target 7 and the substrate 6, and the sputtering gas on the target 7 is ionized and turned into plasma.
The ions of the sputtering gas present in the plasma are captured by the magnetic field generated by the magnet device 10.
 本例では、ターゲット7に負電圧が印加されており、スパッタガスのイオンは負電位のターゲット7のスパッタ面7aに衝突し、ターゲット材料の粒子(スパッタ粒子)を弾き飛ばす。
 このスパッタ粒子が、上述した基板6の表面に到達して付着し、ターゲット材料の膜が基板6に形成される。
In this example, a negative voltage is applied to the target 7, and ions of the sputtering gas collide with the sputtering surface 7 a of the target 7 having a negative potential and repel particles of the target material (sputter particles).
The sputtered particles reach and adhere to the surface of the substrate 6 described above, and a film of a target material is formed on the substrate 6.
 一方、ターゲット7のスパッタ面7aから弾き飛ばされたスパッタ粒子の一部は、ターゲット7のスパッタ面7aに再付着することになる。 (4) On the other hand, some of the sputtered particles that have been blown off from the sputter surface 7a of the target 7 will adhere to the sputter surface 7a of the target 7 again.
 以上述べたような本例のスパッタ成膜装置1にあっては、放電時に生成され磁石装置10による磁場に捕捉されたスパッタガスのプラズマが、ターゲット7の外周部の周囲に近接配置され浮遊電位にされた内側シールド部21によって遮られるため、内側シールド部21の周囲に設けられ接地電位にされた導電性材料からなる外側シールド部22に到達して接触することが阻止される。 In the sputter film forming apparatus 1 of the present embodiment as described above, the plasma of the sputter gas generated at the time of discharge and captured by the magnetic field by the magnet device 10 is disposed close to the periphery of the outer periphery of the target 7 and has a floating potential. Since the inner shield portion 21 is cut off, the outer shield portion 22 formed around the inner shield portion 21 and made of a conductive material set to the ground potential is prevented from reaching and contacting.
 その結果、本例によれば、プラズマ中のイオンの電荷が接地電位の外側シールド部22に接触することによるプラズマの消失が回避されるため、ターゲット7のスパッタ面7aの外周部にプラズマが到達し、これによりターゲット7のスパッタ面7aの外周部における非エロージョン領域の発生を抑制することができるので、ターゲット7の非エロージョン領域に付着したスパッタ粒子の剥離に起因する成膜特性の低下を防止することができる。 As a result, according to this example, the disappearance of the plasma due to the contact of the charges of the ions in the plasma with the outer shield portion 22 at the ground potential is avoided, so that the plasma reaches the outer peripheral portion of the sputtering surface 7a of the target 7. In this way, it is possible to suppress the generation of a non-erosion region in the outer peripheral portion of the sputtering surface 7a of the target 7, and to prevent a decrease in film forming characteristics due to the separation of sputter particles attached to the non-erosion region of the target 7. can do.
 図2(a)(b)は、本発明に係るスパッタ成膜装置の第2例を示すもので、図2(a)は、内部構成を示す部分断面図、図2(b)は、要部の内部構成を示す平面図である。以下、上記第1例と対応する部分については同一の符号を付しその詳細な説明を省略する。 2 (a) and 2 (b) show a second example of the sputter film forming apparatus according to the present invention. FIG. 2 (a) is a partial sectional view showing the internal configuration, and FIG. FIG. 3 is a plan view showing the internal configuration of the unit. Hereinafter, portions corresponding to those in the first example are denoted by the same reference numerals, and detailed description thereof is omitted.
 図2(a)(b)に示すように、本例のスパッタ成膜装置1Aは、ターゲット7のスパッタ面7aを覆うように重なる重複部21aが設けられている内側シールド部21Aを有している。 As shown in FIGS. 2A and 2B, the sputter film forming apparatus 1A of the present example has an inner shield portion 21A provided with an overlapping portion 21a that covers the sputter surface 7a of the target 7. I have.
 ここで、内側シールド部21Aの重複部21aは、ターゲットのスパッタ面7aに対して若干の隙間を有する矩形枠状に形成され、その開口部の縁部21bがターゲット7の外径より若干小さい内径を有するように構成されている。 Here, the overlapping portion 21a of the inner shield portion 21A is formed in a rectangular frame shape having a slight gap with respect to the sputtering surface 7a of the target, and the edge 21b of the opening has an inner diameter slightly smaller than the outer diameter of the target 7. It is comprised so that it may have.
 そして、これにより、本例の内側シールド部21Aの重複部21aは、ターゲット7のスパッタ面7aの外周部を全域にわたって覆うように形成されている。 {Circle around (2)} As a result, the overlapping portion 21a of the inner shield portion 21A of this example is formed so as to cover the entire outer peripheral portion of the sputtering surface 7a of the target 7.
 このような構成を有する本例によれば、ターゲット7の外周部の全域にわたって設けられた内側シールド部21Aの重複部21aによってプラズマの外側シールド部22への到達をその内周部の全域にわたって確実に阻止することができるので、プラズマの消失に起因するターゲット7のスパッタ面7aの外周部における非エロージョン領域の発生をターゲット7の外周部の全域にわたって抑制して非エロージョン領域を小さくすることができる。また、スパッタ粒子のターゲット7の非エロージョン領域への付着をターゲット7のスパッタ面7aの外周部の全域にわたって阻止することができるので、スパッタ粒子の剥離に起因する成膜特性の低下をより一層防止することができる。 According to this example having such a configuration, the plasma reaches the outer shield portion 22 by the overlapping portion 21a of the inner shield portion 21A provided over the entire outer peripheral portion of the target 7 over the entire inner peripheral portion thereof. Therefore, the generation of the non-erosion region on the outer peripheral portion of the sputtering surface 7a of the target 7 due to the disappearance of the plasma can be suppressed over the entire outer peripheral portion of the target 7 to reduce the non-erosion region. . Further, since the attachment of the sputtered particles to the non-erosion region of the target 7 can be prevented over the entire outer peripheral portion of the sputtered surface 7a of the target 7, the deterioration of the film forming characteristics due to the separation of the sputtered particles is further prevented. can do.
 その他の作用効果については上述した例と同一であるのでその詳細な説明は省略する。 Other functions and effects are the same as those in the above-described example, and thus detailed description thereof will be omitted.
 図3(a)(b)は、本発明に係るスパッタ成膜装置の第3例の目的を説明するための図である。
 また、図4は、同スパッタ成膜装置の第3例の要部の内部構成を示す平面図である。以下、上記第1、2例と対応する部分については同一の符号を付しその詳細な説明を省略する。
FIGS. 3A and 3B are diagrams for explaining the purpose of the third example of the sputter film forming apparatus according to the present invention.
FIG. 4 is a plan view showing an internal configuration of a main part of a third example of the sputtering film forming apparatus. Hereinafter, portions corresponding to the first and second examples are denoted by the same reference numerals, and detailed description thereof will be omitted.
 この種のマグネトロンスパッタリング装置では、磁石装置として、図3(a)に示す上述した磁石装置10のように、長方体状の中心磁石11と枠状の外周磁石12を組み合わせたものを用いた場合に、以下のような課題がある。 In this type of magnetron sputtering apparatus, a magnet apparatus in which a rectangular parallelepiped center magnet 11 and a frame-shaped outer peripheral magnet 12 are combined as in the above-described magnet apparatus 10 shown in FIG. In such cases, there are the following problems.
 すなわち、このような磁石装置10を用いてスパッタリングを行うと、スパッタ時の放電によって生成されたプラズマ中のイオンは、磁石装置10によって発生させた磁場トラックに捕捉されて、磁石装置10に対応する軌道を描いて運動する。
 この場合、磁石装置10は矩形状に形成されていることから、発生する磁場トラックも矩形に近い形状になる。
That is, when sputtering is performed using such a magnet device 10, ions in the plasma generated by the discharge at the time of sputtering are captured by the magnetic field tracks generated by the magnet device 10 and correspond to the magnet device 10. Move in orbit.
In this case, since the magnet device 10 is formed in a rectangular shape, the generated magnetic field track also has a shape close to a rectangle.
 しかし、実際の装置では、図3(a)(b)に示すように、放電によって生成されたプラズマ30中のイオンは、磁石装置10の例えば外周磁石12の短辺12s側から長辺12l側に方向を変えて移動する際にプラズマ30のプラズマ密度が高くなること等の理由により、磁石装置10の外周磁石12の短辺12s側から長辺12l側にイオンが方向を変えて移動する角部12c、12d(対応するターゲット7の短辺7s側から長辺7l側にイオンが方向を変えて移動する角部7c、7d)において生ずる、プラズマ30の外側に張り出す形状の部分31、32に沿って運動をすることになる。 However, in an actual device, as shown in FIGS. 3A and 3B, ions in the plasma 30 generated by the discharge are, for example, from the short side 12 s to the long side 12 l of the outer magnet 12 of the magnet device 10. The angle at which ions change direction and move from the short side 12s to the long side 12l of the outer magnet 12 of the magnet device 10 because the plasma density of the plasma 30 increases when moving in a different direction. Portions 31 and 32 formed at portions 12c and 12d ( corners 7c and 7d where ions change their directions from the short side 7s side to the long side 7l side of target 7) and protrude outside plasma 30. Exercise along.
 その結果、このようなプラズマ30の外側に張り出す形状の部分31、32に沿ってイオンが運動すると、例えばアースシールド等の接地電位の導電部材に接触するとプラズマ30中のイオンの電荷が導電部材を通って接地部位に流れ、プラズマ30の一部が消失してしまい、ターゲット7のスパッタ面7a(図1a参照)においてスパッタされない非エロージョン領域が残るという課題がある。 As a result, when the ions move along the portions 31 and 32 of the shape protruding outside the plasma 30, when the ions contact a conductive member having a ground potential such as an earth shield, the charge of the ions in the plasma 30 is reduced. Then, a part of the plasma 30 disappears, and a non-erosion region that is not sputtered remains on the sputtering surface 7a of the target 7 (see FIG. 1A).
 図4は、上述した課題を解決するための手段を示すものである。
 図4に示すように、第3例のスパッタ成膜装置1Bにおいては、内側シールド部21Bにおいて、矩形状に形成されたターゲット7の対向する一対の角部7c、7dと重なるように重複部21c、21dを設けるようにしたものである。
FIG. 4 shows a means for solving the above-mentioned problem.
As shown in FIG. 4, in the sputtering film forming apparatus 1B of the third example, in the inner shield portion 21B, the overlapping portion 21c overlaps the pair of opposed corner portions 7c and 7d of the target 7 formed in a rectangular shape. , 21d.
 特に本例の場合は、内側シールド部21Bにおいて、上述したプラズマ30の外側に張り出す形状の部分31、32に対応する、ターゲット7の対向する一対の角部7c、7d、すなわち、図3(a)(b)に示す磁石装置10の外周磁石12の短辺12s側から長辺12l側にイオンが方向を変えて移動する角部12c、12dにそれぞれ対応するターゲット7の角部7c、7dと重なるようにそれぞれ重複部21c、21dが設けられている。 In particular, in the case of the present example, in the inner shield portion 21B, a pair of opposed corner portions 7c and 7d of the target 7 corresponding to the portions 31 and 32 of the shape protruding outside the plasma 30 described above, that is, FIG. a) Corners 7c, 7d of the target 7 corresponding to corners 12c, 12d in which ions change their directions from the short side 12s to the long side 12l of the outer magnet 12 of the magnet device 10 shown in (b), respectively. And overlapping portions 21c and 21d are provided so as to overlap.
 このような構成を有する本例によれば、ターゲット7のスパッタ面7aの外周部における非エロージョン領域の発生を確実で且つ少ない材料でより効果的に抑制することができる。 According to the present example having such a configuration, generation of a non-erosion region in the outer peripheral portion of the sputtering surface 7a of the target 7 can be reliably and more effectively suppressed with a small amount of material.
 図5(a)(b)は、本発明に係るスパッタ成膜装置の第4例を示すもので、図5(a)は、内部構成を示す部分断面図、図5(b)は、要部の内部構成を示す平面図である。 FIGS. 5A and 5B show a fourth example of a sputter film forming apparatus according to the present invention. FIG. 5A is a partial cross-sectional view showing an internal configuration, and FIG. FIG. 3 is a plan view showing the internal configuration of the unit.
 また、図6は、本発明に係るスパッタ成膜装置の第5例の内部構成を示す平面図である。以下、上記第1例と対応する部分については同一の符号を付しその詳細な説明を省略する。 FIG. 6 is a plan view showing the internal configuration of a fifth example of the sputter film forming apparatus according to the present invention. Hereinafter, portions corresponding to those in the first example are denoted by the same reference numerals, and detailed description thereof is omitted.
 図5(a)(b)に示すように、本例のスパッタ成膜装置1Cは、ターゲット7のスパッタ面7aの方向に張り出した張出部23aが設けられている内側シールド部23を有している。 As shown in FIGS. 5A and 5B, the sputter film forming apparatus 1C of the present example has an inner shield portion 23 provided with an overhang portion 23a that extends in the direction of the sputter surface 7a of the target 7. ing.
 ここで、内側シールド部23の張出部23aは、ターゲット7のスパッタ面7aに対して若干の隙間を有する矩形枠状に形成され、その開口部の縁部23bがターゲット7の外径より若干大きい内径を有するように構成されている。 Here, the projecting portion 23a of the inner shield portion 23 is formed in a rectangular frame shape having a slight gap with respect to the sputtering surface 7a of the target 7, and the edge 23b of the opening is slightly larger than the outer diameter of the target 7. It is configured to have a large inner diameter.
 すなわち、本例の内側シールド部23の張出部23aは、上述した第2例と異なり、ターゲット7のスパッタ面7aと重ならないように設けられている。 That is, the overhang portion 23a of the inner shield portion 23 of this example is provided so as not to overlap with the sputtering surface 7a of the target 7, unlike the second example described above.
 このような構成を有する本例においても、ターゲット7の外周部の全域にわたって設けられた内側シールド部23の張出部23aによってプラズマの外側シールド部22への到達をその内周部の全域にわたって確実に阻止することができるので、プラズマの消失に起因するターゲット7のスパッタ面7aの外周部における非エロージョン領域の発生をターゲット7の外周部の全域にわたって抑制して非エロージョン領域を小さくすることができる。 Also in this example having such a configuration, the plasma reaches the outer shield portion 22 over the entire inner peripheral portion by the overhang portion 23 a of the inner shield portion 23 provided over the entire outer peripheral portion of the target 7. Therefore, the generation of the non-erosion region on the outer peripheral portion of the sputtering surface 7a of the target 7 due to the disappearance of the plasma can be suppressed over the entire outer peripheral portion of the target 7 to reduce the non-erosion region. .
 一方、図6に示すように、第5例のスパッタ成膜装置1Dにおいては、内側シールド部23において、矩形状に形成され、かつ、上述したプラズマ30の外側に張り出す形状の部分31、32に対応する、ターゲット7の対向する一対の角部7c、7dの近傍に、ターゲット7のスパッタ面7aの方向に張り出した張出部23c、23dを設けるようにしたものである。
 この場合、張出部23c、23dは、ターゲット7のスパッタ面7aと重ならないように設けられている。
On the other hand, as shown in FIG. 6, in the sputter film forming apparatus 1D of the fifth example, in the inner shield part 23, the parts 31, 32 formed in a rectangular shape and projecting outside the plasma 30 described above. In the vicinity of a pair of opposed corners 7c, 7d of the target 7 corresponding to the above, projections 23c, 23d projecting in the direction of the sputtering surface 7a of the target 7 are provided.
In this case, the overhang portions 23c and 23d are provided so as not to overlap with the sputtering surface 7a of the target 7.
 このような構成を有する第4例及び第5例によれば、ターゲット7のスパッタ面7aの外周部における非エロージョン領域の発生を確実で且つより少ない材料で効果的に抑制することができる。 According to the fourth and fifth examples having such a configuration, generation of a non-erosion region in the outer peripheral portion of the sputtering surface 7a of the target 7 can be reliably and effectively suppressed with a smaller amount of material.
 その他の作用効果については上述した例と同一であるのでその詳細な説明は省略する。 Other functions and effects are the same as those in the above-described example, and thus detailed description thereof will be omitted.
 なお、本発明は上記実施の形態に限られず、種々の変更を行うことができる。例えば、上記実施の形態では一つの磁石装置を用いた場合を例にとって説明したが、本発明はこれに限られず、以下に説明するように、複数の磁石装置を並べて配置する場合にも適用することができる。 The present invention is not limited to the above embodiment, and various changes can be made. For example, in the above embodiment, the case where one magnet device is used has been described as an example, but the present invention is not limited to this, and is also applicable to a case where a plurality of magnet devices are arranged side by side as described below. be able to.
 図7は、複数の磁石装置を用いたスパッタ成膜装置の例を示す部分断面図、図8は、同複数の磁石装置を用いたスパッタ成膜装置の例の要部の内部構成を示す平面図である。以下、上記例と対応する部分については同一の符号を付しその詳細な説明を省略する。 FIG. 7 is a partial cross-sectional view illustrating an example of a sputter film forming apparatus using a plurality of magnet devices, and FIG. 8 is a plan view illustrating an internal configuration of a main part of the example of the sputter film forming apparatus using the plurality of magnet devices. FIG. Hereinafter, portions corresponding to the above-described example are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図7及び図8に示すように、本例のスパッタ成膜装置1Eは、図1(a)(b)に示す第1例のスパッタ成膜装置1と同一の内側シールド部21と外側シールド部22が設けられた真空槽2を有するもので、この真空槽2内のバッキングプレート8の裏面側に、磁石装置10aが設けられている。 As shown in FIGS. 7 and 8, the sputter film forming apparatus 1E of the present example has the same inner shield part 21 and outer shield part as the sputter film forming apparatus 1 of the first example shown in FIGS. 1 (a) and 1 (b). The vacuum device 2 includes a vacuum chamber 2 provided with a magnet device 10 a on the back surface of the backing plate 8 in the vacuum chamber 2.
 本例における磁石装置10aは、上述した磁石固定板13上に、複数個(本例では5個)の磁石手段10A~10Eが設けられている。 磁石 The magnet device 10a in this example is provided with a plurality (five in this example) of magnet means 10A to 10E on the magnet fixing plate 13 described above.
 これら磁石手段10A~10Eは、同一の構成を有し、それぞれバッキングプレート8と平行な細長い板状の磁石固定部16a上に、ターゲット7のスパッタ面7a上に磁場を発生させる向きで設置された中心磁石11aと、中心磁石11aの周囲に連続的な形状で設置された外周磁石12aとを備えている。 These magnet means 10A to 10E have the same configuration, and are respectively installed on the elongated plate-shaped magnet fixing portion 16a parallel to the backing plate 8 in a direction for generating a magnetic field on the sputtering surface 7a of the target 7. It has a center magnet 11a and an outer peripheral magnet 12a installed in a continuous shape around the center magnet 11a.
 中心磁石11aは磁石固定部16aと同一方向に延びる細長の例えば長方体形状に配置され、外周磁石12aは磁石固定部16a上において磁石固定部16aと同一方向に延びる細長の環状に形成され、かつ、中心磁石11aの周縁部に対して所定距離をおいて中心磁石11aを取り囲むように配置されている。 The center magnet 11a is arranged in an elongated shape, for example, a rectangular shape extending in the same direction as the magnet fixing portion 16a. Moreover, it is arranged so as to surround the center magnet 11a at a predetermined distance from the peripheral portion of the center magnet 11a.
 各磁石手段10A~10Eにおいて、中心磁石11aの周囲を取り囲む環状の外周磁石12aは、上述した磁石装置10と同様に、必ずしも一つの継ぎ目のない環形状であることを意味しない。すなわち、中心磁石11aの周囲を取り囲む形状であれば、複数の部品から構成されていてもよいし、ある部分に直線的な形状を有していてもよい。また、閉じた円環又は円環を閉じたまま変形させた形状でもよい(本例では、矩形形状のものが示されている。)。 環状 In each of the magnet units 10A to 10E, the annular outer peripheral magnet 12a surrounding the center magnet 11a does not necessarily mean one seamless annular shape as in the above-described magnet device 10. That is, as long as the shape surrounds the periphery of the center magnet 11a, it may be composed of a plurality of parts, or may have a linear shape at a certain portion. Further, it may be a closed ring or a shape in which the ring is deformed while being closed (in this example, a rectangular shape is shown).
 各磁石手段10A~10Eの外周磁石12aと中心磁石11aは、互いに異なる極性の磁極を対向させて配置され、これにより中心磁石11aと外周磁石12aはターゲット7のスパッタ面7aに対して互いに異なる極性の磁極を向けるように構成されている。 The outer peripheral magnet 12a and the center magnet 11a of each of the magnet means 10A to 10E are arranged with magnetic poles having different polarities facing each other, whereby the center magnet 11a and the outer peripheral magnet 12a have different polarities with respect to the sputtering surface 7a of the target 7. Of the magnetic pole.
 そして、このような構成を有する磁石手段10A~10Eは、隣接する外周磁石12aの長手方向の側部が対向するように同一方向に向けて近接配置されている。 The magnet means 10A to 10E having such a configuration are arranged close to each other in the same direction so that the longitudinal sides of the adjacent outer peripheral magnets 12a face each other.
 本例の磁石装置10aでは、上記第1例の場合と同様に、磁石固定板13が上述した移動装置14に取り付けられており、制御部15からの制御信号によって、磁石装置10aをターゲット7のスパッタ面7aに沿って各磁石手段10A~10Eの延びる方向(長手方向)に対して直交する方向に往復移動させるように構成されている。 In the magnet device 10a of this example, similarly to the case of the first example, the magnet fixing plate 13 is attached to the moving device 14 described above, and the magnet device 10a It is configured to reciprocate in a direction orthogonal to the direction (longitudinal direction) in which each of the magnet means 10A to 10E extends along the sputtering surface 7a.
 そして、本例では、磁石装置10aの磁石手段10A~10Eのうち、磁石装置10aの移動方向の両側に位置する磁石手段10A及び磁石手段10Eにおける外周磁石12aの移動方向側の部分12a1及び12a2の縁部間の距離が、当該移動方向についてのターゲット7の当該移動方向について縁部間の長さより小さくなるように各磁石手段10A~10Eの寸法及び配置位置が設定されている(図8参照)。 In this example, of the magnet units 10A to 10E of the magnet device 10a, the magnet units 10A and 10a located on both sides in the moving direction of the magnet device 10a and the portions 12a 1 and 12a of the magnet unit 10E on the moving direction side of the outer magnet 12a. The size and arrangement of each of the magnet means 10A to 10E are set so that the distance between the two edges is smaller than the length between the edges in the moving direction of the target 7 in the moving direction (FIG. 8). reference).
 なお、本例においては、磁石装置10aの各磁石手段10A~10Eの外周磁石12aのそれぞれについて、磁石装置10aの移動方向に対して直交する方向の縁部間の距離が、ターゲット7の当該移動方向に対して直交する方向の縁部間の長さより小さくなるように各磁石手段10A~10Eの寸法及び配置位置が設定されている。 In this example, for each of the outer magnets 12a of the magnet units 10A to 10E of the magnet device 10a, the distance between the edges in the direction orthogonal to the moving direction of the magnet device 10a is determined by the movement of the target 7 The dimensions and arrangement positions of the magnet units 10A to 10E are set so as to be smaller than the length between the edges in the direction orthogonal to the direction.
 そして、磁石装置10aを、外周磁石12aの外周部全体がターゲット7のスパッタ面7aの外周より内側に入る位置と、外周磁石12aの外周部の一部(本例では磁石装置10aの移動方向側の部分12a1及び12a2)がターゲット7のスパッタ面7aの外周部の外側にはみ出る位置との間を往復移動させるように構成されている。 Then, the magnet device 10a is moved to a position where the entire outer peripheral portion of the outer peripheral magnet 12a enters the outer periphery of the sputtering surface 7a of the target 7 and a part of the outer peripheral portion of the outer peripheral magnet 12a (in this example, the moving direction side of the magnet device 10a). portions 12a 1 and 12a 2) of which is configured to reciprocate between a position protruding outside the outer peripheral portion of the sputtering surface 7a of the target 7.
 一方、上述した内側シールド部21との関係においては、磁石装置10aは、外周磁石12aの外周部全体がターゲット7のスパッタ面7aの周囲を取り囲む内側シールド部21の内周部に対して内側に入る位置と、外周磁石12aの外周部の一部(本例では移動方向側の部分12a1及び12a2)が内側シールド部21の内周部に対して外周部側にはみ出る位置との間で移動するよう構成されている。 On the other hand, in relation to the inner shield portion 21 described above, the magnet device 10a is configured such that the entire outer peripheral portion of the outer peripheral magnet 12a is located inside the inner peripheral portion of the inner shield portion 21 surrounding the periphery of the sputtering surface 7a of the target 7. a position to enter (in this example, portions 12a 1 and 12a 2 of the moving direction side) portion of the outer peripheral portion of the peripheral magnet 12a between a position where the protruding on the outer periphery side with respect to the inner peripheral portion of the inner shield part 21 It is configured to move.
 以上述べた本例のスパッタ成膜装置1Eにおいては、放電時に生成され磁石装置10aの各磁石手段10A~10Eによる磁場に捕捉されたスパッタガスのプラズマが、ターゲット7の外周部の周囲に近接配置され浮遊電位にされた内側シールド部21によって遮られるため、内側シールド部21の周囲に設けられ接地電位にされた導電性材料からなる外側シールド部22に到達して接触することが阻止される。 In the sputtering film forming apparatus 1E of the present embodiment described above, the plasma of the sputter gas generated at the time of discharge and captured by the magnetic field by each of the magnet units 10A to 10E of the magnet device 10a is disposed close to the periphery of the outer periphery of the target 7. Since the inner shield portion 21 is shielded by the floating potential, it is prevented from reaching and contacting the outer shield portion 22 provided around the inner shield portion 21 and made of a conductive material at the ground potential.
 その結果、本例によれば、上述した第1~第4例の場合と同様に、プラズマ中のイオンの電荷が接地電位の外側シールド部22に接触することによるプラズマの消失が回避されるため、ターゲット7のスパッタ面7aの外周部にプラズマが到達し、これによりターゲット7のスパッタ面7aの外周部における非エロージョン領域の発生を抑制することができるので、ターゲット7の非エロージョン領域に付着したスパッタ粒子の剥離に起因する成膜特性の低下を防止することができる。 As a result, according to this example, as in the first to fourth examples described above, the disappearance of the plasma due to the contact of the charges of the ions in the plasma with the outer shield portion 22 at the ground potential is avoided. Since the plasma reaches the outer peripheral portion of the sputtering surface 7a of the target 7, the generation of the non-erosion region in the outer peripheral portion of the sputtering surface 7a of the target 7 can be suppressed, and the plasma adheres to the non-erosion region of the target 7. It is possible to prevent a decrease in film formation characteristics due to separation of sputtered particles.
 さらに、本例においては、複数の磁石手段10A~10Eを有する磁石装置10aを用いていることから、磁場への電力集中が緩和され、これにより投入電力を大きくすることができるという効果がある。 In addition, in this example, since the magnet device 10a having the plurality of magnet means 10A to 10E is used, the power concentration on the magnetic field is reduced, and thus the input power can be increased.
 なお、上述した例では、5個の磁石手段10A~10Eを有する磁石装置10aを設けた場合を例にとって説明したが、本発明はこれに限られず、6個以上の磁石手段を有する場合にも適用することができる。 In the above-described example, the case where the magnet device 10a having the five magnet units 10A to 10E has been described as an example. However, the present invention is not limited to this, and the present invention is not limited to the case where there are six or more magnet units. Can be applied.
 また、本例の磁石装置10aは、上述した第2例~第5例のスパッタ成膜装置1A~1Dにも適用することができる。 磁石 Further, the magnet device 10a of the present example can be applied to the sputter film forming apparatuses 1A to 1D of the second to fifth examples described above.
 特に、本例の磁石装置10aを用いてスパッタリングを行う場合において、プラズマ中のイオンが、磁石装置10aの各磁石手段10A~10Eの外周磁石12aの短辺側から長辺側にイオンが方向を変えて移動する対向する角部において生ずる、プラズマの外側に張り出す形状の部分に沿って運動をするときには、上述した第3例のスパッタ成膜装置1B並びに第5例のスパッタ成膜装置1Dと組み合わせることが有効である。 In particular, when sputtering is performed using the magnet device 10a of the present example, ions in the plasma move from the short side to the long side of the outer magnet 12a of each of the magnet means 10A to 10E of the magnet device 10a. When moving along the part of the shape protruding outside of the plasma, which occurs at the opposing corners that change and move, the above-described sputter film forming apparatus 1B of the third example and the sputter film forming apparatus 1D of the fifth example are used. It is effective to combine them.
 すなわち、本例の磁石装置10aでは、各磁石手段10A~10Eに対して短辺側から長辺側にイオンが方向を変えて移動する対向する角部において、上述したようなプラズマの外側に張り出す形状の部分に沿ってイオンは運動をするが、このプラズマ中のイオンは、磁石装置10aの全体についても、例えば図8に示すように磁石装置10aの移動方向両端の磁石手段10A、10Eの外周磁石12aの短辺側から長辺側にイオンが方向を変えて移動する対向する角部12c、12dにおいて、プラズマの外側に張り出す形状の部分に沿って運動をするようになるからである。 That is, in the magnet device 10a of the present example, the ion is changed from the short side to the long side with respect to each of the magnet means 10A to 10E so that the ions move in the opposite direction to the outside of the plasma as described above. Although the ions move along the part of the shape to be emitted, the ions in the plasma also cause the ions of the magnet means 10A and 10E at both ends in the moving direction of the magnet apparatus 10a as shown in FIG. This is because the ions come to move along the shape of the shape protruding outside the plasma at the opposing corner portions 12c and 12d where the ions change their directions from the short side to the long side of the outer peripheral magnet 12a. .
1……スパッタ成膜装置
2……真空槽
6……基板(成膜対象物)
7……スパッタリングターゲット
7a…スパッタ面
7c、7d…角部
7l…長辺
7s…短辺
8……バッキングプレート
10…磁石装置
11…中心磁石
12…外周磁石
21…内側シールド部
22…外側シールド部 
1. Sputter film forming apparatus 2. Vacuum chamber 6. Substrate (film forming target)
7 ... Sputtering target 7a ... Sputtered surfaces 7c, 7d ... Corner 7l ... Long side 7s ... Short side 8 ... Backing plate 10 ... Magnet device 11 ... Center magnet 12 ... Peripheral magnet 21 ... Inner shield part 22 ... Outer shield part

Claims (8)

  1.  真空中においてマグネトロンスパッタリング法によって一つの成膜対象物に対して成膜を行うスパッタ成膜装置であって、
     一つのスパッタリングターゲットに対してスパッタ面と反対側に配置され、放電時に当該スパッタリングターゲットのスパッタ面に沿う方向に移動するマグネトロン発生用磁石装置と、
     前記スパッタリングターゲットの外周部の周囲に近接配置され浮遊電位にされた内側シールド部と、
     当該内側シールド部の周囲に設けられ接地電位にされた導電性材料からなる外側シールド部とを有するスパッタ成膜装置。
    A sputtering film forming apparatus that forms a film on one film formation object by a magnetron sputtering method in a vacuum,
    A magnetron generating magnet device that is arranged on the side opposite to the sputtering surface with respect to one sputtering target and moves in the direction along the sputtering surface of the sputtering target during discharge,
    An inner shield portion which is disposed close to the periphery of the outer periphery of the sputtering target and has a floating potential,
    A sputter film forming apparatus having an outer shield portion provided around the inner shield portion and made of a conductive material at a ground potential;
  2.  前記内側シールド部に、前記スパッタリングターゲットのスパッタ面を覆うように重なる重複部が設けられている請求項1記載のスパッタ成膜装置。 The sputter film forming apparatus according to claim 1, wherein an overlapping portion is provided on the inner shield portion so as to cover a sputtering surface of the sputtering target.
  3.  前記内側シールド部の重複部が、前記スパッタリングターゲットのスパッタ面の外周部の全域にわたって設けられている請求項2記載のスパッタ成膜装置。 3. The sputter film forming apparatus according to claim 2, wherein the overlapping portion of the inner shield portion is provided over the entire outer peripheral portion of the sputtering surface of the sputtering target.
  4.  前記内側シールド部の重複部が、矩形状に形成された前記スパッタリングターゲットの対向する一対の角部と重なるように設けられている請求項2記載のスパッタ成膜装置。 3. The sputter film forming apparatus according to claim 2, wherein the overlapping portion of the inner shield portion is provided so as to overlap a pair of opposed corner portions of the rectangular sputtering target.
  5.  前記内側シールド部が、前記スパッタリングターゲットのスパッタ面の方向に張り出した張出部が設けられている請求項1記載のスパッタ成膜装置。 2. The sputter film forming apparatus according to claim 1, wherein the inner shield portion is provided with a projecting portion projecting toward a sputtering surface of the sputtering target.
  6.  前記内側シールド部の張出部が、前記スパッタリングターゲットのスパッタ面の外周部の全域にわたって設けられている請求項5記載のスパッタ成膜装置。 6. The sputter film forming apparatus according to claim 5, wherein the overhang portion of the inner shield portion is provided over the entire outer peripheral portion of the sputtering surface of the sputtering target.
  7.  前記内側シールド部の張出部が、矩形状に形成された前記スパッタリングターゲットの対向する一対の角部に設けられている請求項5記載のスパッタ成膜装置。 6. The sputter film forming apparatus according to claim 5, wherein the projecting portion of the inner shield portion is provided at a pair of opposed corners of the rectangularly shaped sputtering target.
  8.  前記スパッタリングターゲットは、その外径が前記成膜対象物の外径より大きくなるように形成されている請求項1乃至7のいずれか1項に記載のスパッタ成膜装置。
     
    The sputtering sputtering apparatus according to any one of claims 1 to 7, wherein the sputtering target is formed so that an outer diameter thereof is larger than an outer diameter of the film-forming target.
PCT/JP2019/025800 2018-06-28 2019-06-28 Sputter deposition device WO2020004619A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980006240.3A CN111417741B (en) 2018-06-28 2019-06-28 Sputtering film forming apparatus
KR1020207015923A KR102351170B1 (en) 2018-06-28 2019-06-28 sputter film forming device
JP2020527680A JP6959447B2 (en) 2018-06-28 2019-06-28 Sputter film forming equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018123681 2018-06-28
JP2018-123681 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020004619A1 true WO2020004619A1 (en) 2020-01-02

Family

ID=68984940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025800 WO2020004619A1 (en) 2018-06-28 2019-06-28 Sputter deposition device

Country Status (5)

Country Link
JP (1) JP6959447B2 (en)
KR (1) KR102351170B1 (en)
CN (1) CN111417741B (en)
TW (1) TWI772656B (en)
WO (1) WO2020004619A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114829681B (en) 2020-11-16 2023-09-05 株式会社荏原制作所 Board, plating device, and board manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072665A (en) * 1996-07-10 1998-03-17 Applied Materials Inc Electrically floating shield in plasma reaction device
JP2001247956A (en) * 2000-03-08 2001-09-14 Ulvac Japan Ltd Vacuum treatment apparatus
WO2008149891A1 (en) * 2007-06-04 2008-12-11 Canon Anelva Corporation Film forming apparatus
JP2010283360A (en) * 2001-11-14 2010-12-16 Applied Materials Inc Method of forming wiring, and plasma sputtering reactor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8696875B2 (en) * 1999-10-08 2014-04-15 Applied Materials, Inc. Self-ionized and inductively-coupled plasma for sputtering and resputtering
KR101305114B1 (en) * 2008-08-01 2013-09-05 샤프 가부시키가이샤 Sputtering device
KR20120130335A (en) 2010-03-01 2012-11-30 가부시키가이샤 알박 Sputtering device
CN102906302B (en) * 2010-06-03 2015-01-28 株式会社爱发科 Sputter deposition device
WO2013099061A1 (en) * 2011-12-27 2013-07-04 キヤノンアネルバ株式会社 Sputtering device
KR102182674B1 (en) * 2013-12-20 2020-11-26 삼성디스플레이 주식회사 Sputtering apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072665A (en) * 1996-07-10 1998-03-17 Applied Materials Inc Electrically floating shield in plasma reaction device
JP2001247956A (en) * 2000-03-08 2001-09-14 Ulvac Japan Ltd Vacuum treatment apparatus
JP2010283360A (en) * 2001-11-14 2010-12-16 Applied Materials Inc Method of forming wiring, and plasma sputtering reactor
WO2008149891A1 (en) * 2007-06-04 2008-12-11 Canon Anelva Corporation Film forming apparatus

Also Published As

Publication number Publication date
KR102351170B1 (en) 2022-01-14
JP6959447B2 (en) 2021-11-02
TWI772656B (en) 2022-08-01
CN111417741A (en) 2020-07-14
JPWO2020004619A1 (en) 2020-12-17
TW202014542A (en) 2020-04-16
KR20200083568A (en) 2020-07-08
CN111417741B (en) 2022-05-10

Similar Documents

Publication Publication Date Title
JP5527894B2 (en) Sputtering equipment
US20130068614A1 (en) Sputter deposition apparatus
JP5319021B2 (en) Thin film forming apparatus and thin film forming method
JPWO2009025258A1 (en) Sputtering method and sputtering apparatus
WO2020004619A1 (en) Sputter deposition device
KR101330651B1 (en) Target assembly and sputtering apparutus having the target assembly
JP2009191340A (en) Film-forming apparatus and film-forming method
US9368331B2 (en) Sputtering apparatus
JP4614936B2 (en) Composite type sputtering apparatus and composite type sputtering method
KR101827472B1 (en) Insulating material target
JP2019090083A (en) Sputtering apparatus and manufacturing method of organic el panel
JP7102260B2 (en) Opposed target type sputtering film deposition equipment
JP2007291477A (en) Sputtering apparatus
JP2013001943A (en) Sputtering apparatus
KR20110122456A (en) Apparatus and method for manufacturing liquid crystal display device
JPH07233473A (en) Magnetron sputtering device
JP4071861B2 (en) Thin film forming equipment
JP5145020B2 (en) Film forming apparatus and film forming method
JPH1192927A (en) Magnetron sputtering device
JPH0159351B2 (en)
CN210341047U (en) Device for preventing non-target material sputtering
KR20230104957A (en) Cathode unit for magnetron sputtering device and magnetron sputtering device
KR20190116078A (en) Sputtering apparatus
KR20200081844A (en) A Sputter Having a Means for Suppressing The Occurrence of An Electrode Plate Etching Phenomenon of A Plasma Source
JP2020186426A (en) Sputter film deposition apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527680

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207015923

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825864

Country of ref document: EP

Kind code of ref document: A1