WO2020003871A1 - 投影装置及びその排気方法 - Google Patents

投影装置及びその排気方法 Download PDF

Info

Publication number
WO2020003871A1
WO2020003871A1 PCT/JP2019/021373 JP2019021373W WO2020003871A1 WO 2020003871 A1 WO2020003871 A1 WO 2020003871A1 JP 2019021373 W JP2019021373 W JP 2019021373W WO 2020003871 A1 WO2020003871 A1 WO 2020003871A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
light
main body
unit
projection device
Prior art date
Application number
PCT/JP2019/021373
Other languages
English (en)
French (fr)
Inventor
宏信 茅野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020527309A priority Critical patent/JP6811358B2/ja
Publication of WO2020003871A1 publication Critical patent/WO2020003871A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a projection device and an exhaust method thereof.
  • a projection device such as a liquid crystal projector includes a light source, a light modulation element that spatially modulates light from the light source, a projection optical system that projects light obtained by modulation by the light modulation element, and a housing that houses these. And an exhaust port for discharging air inside the housing to the outside of the housing.
  • Patent Document 1 describes a projection device that discharges air inside a housing from around a lens device provided in the housing.
  • Patent Documents 2 and 3 disclose a projector in which an exhaust port is provided on a side surface of a housing that is adjacent to a side surface on which an optical system is exposed and that is perpendicular to the side surface.
  • Patent Literature 4 an exhaust port is provided on a side surface of a housing where an optical system is exposed and an opposite surface of the side surface, and an exhaust direction of air in the housing is switched between an image projection side and an opposite side.
  • a projection device that can be used is described.
  • Patent Document 5 describes a projection device that can change the projection direction of an image by 180 °.
  • Patent Document 1 when the air is exhausted in a direction close to the projection direction of the image, the image projected on the screen fluctuates like a flame due to the exhausted air. Therefore, as described in Patent Literature 2 and Patent Literature 3, it is effective to perform exhaust so that the angle between the image projection direction and the exhaust direction is 90 ° or more.
  • Patent Document 4 discloses a configuration in which the exhaust direction can be changed by 180 °, but the projection direction of the image is fixed and not variable.
  • the present invention has been made in view of the above circumstances, and provides a projection apparatus and an exhaust method capable of projecting an image in a plurality of directions while preventing fluctuation of a projected image due to exhaustion of warm air.
  • the purpose is to do.
  • the projection device of the present invention is a projection device that spatially modulates light from a light source and projects the light onto a projection surface, and includes a main body that incorporates the light source, and an outer peripheral member that has a hollow portion connected to the inside of the main body.
  • a projection optical system disposed in the hollow portion for projecting light incident from the main body portion onto the projection surface, and projecting light from the projection optical system by rotating at least a part of the outer peripheral member.
  • An optical system comprising: a rotating mechanism for changing a direction to a plurality of directions; and an exhaust port for discharging air inside the main body formed in a rotated portion of the outer peripheral member rotatable by the rotating mechanism. And a unit, wherein the exhaust port is formed on a surface of the rotated portion that faces in a direction opposite to the projection direction.
  • the exhaust method of the projection device may further include a main body having a light source therein, an outer peripheral member having a hollow portion connected to the inside of the main body, and the hollow for projecting light incident from the main body onto a projection surface.
  • a projection optical system disposed in the section, and an optical unit including a rotation mechanism for rotating at least a part of the outer peripheral member to change a projection direction of light from the projection optical system to a plurality of directions.
  • a method of exhausting a projection apparatus that spatially modulates light from the light source and projects the light onto the projection surface, wherein a surface of a rotated portion of the outer peripheral member rotatable by the rotation mechanism faces in a direction opposite to the projection direction.
  • the air inside the main body is discharged.
  • the present invention it is possible to provide a projection apparatus and an exhaust method capable of projecting an image in a plurality of directions while preventing fluctuation of a projected image due to exhaustion of warm air.
  • FIG. 1 is a schematic diagram illustrating an external configuration of a projector 100 which is an embodiment of a projection device of the present invention.
  • FIG. 2 is a schematic diagram illustrating an example of an internal configuration of a light source unit 11 in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view of an optical unit 6 of the projector 100 shown in FIG.
  • FIG. 4 is a schematic cross-sectional view of a modification of the optical unit 6 of the projector 100 shown in FIG.
  • FIG. 3 is a schematic cross-sectional view of an optical unit 6A which is a modification of the optical unit 6 of the projector 100 shown in FIG.
  • FIG. 1 is a schematic diagram showing an external configuration of a projector 100 which is an embodiment of the projection device of the present invention.
  • FIG. 2 is a schematic diagram illustrating an example of the internal configuration of the light source unit 11 of FIG.
  • FIG. 3 is a schematic sectional view of the optical unit 6 of the projector 100 shown in FIG. FIG. 3 shows a cross section of a surface along the optical path of light emitted from the main body 1.
  • the projector 100 includes a main body 1 and an optical unit 6 protruding from the main body 1.
  • the main body 1 has an opening 14a (see FIG. 3) for transmitting light at a portion connected to the optical unit 6, and a suction port 13 for taking in outside air into the interior at a position different from the opening 14a. It has a housing 14 (see FIG. 3) in which (see FIG. 1) is formed.
  • a light source unit 11 and a light modulation unit 12 including a light modulation element that spatially modulates light emitted from the light source unit 11 based on image data are provided inside a housing 14 of the main body 1.
  • a fan (not shown) for applying air taken in from the air inlet 13 to a heat source including the light source unit 11 and the light modulation unit 12 to cool the heat source.
  • the light source unit 11 includes an R light source 41r that is a red light source that emits red light, a G light source 41g that is a green light source that emits green light, and a B light source that is a blue light source that emits blue light.
  • R light source 41r that is a red light source that emits red light
  • G light source 41g that is a green light source that emits green light
  • B light source that is a blue light source that emits blue light.
  • a collimator lens 42b provided between the prisms 43.
  • the dichroic prism 43 is an optical member for guiding light emitted from each of the R light source 41r, the G light source 41g, and the B light source 41b to the same optical path. That is, the dichroic prism 43 transmits the red light collimated by the collimator lens 42r and emits the red light to the light modulation element 12a of the light modulation unit 12. The dichroic prism 43 reflects the green light collimated by the collimator lens 42g and emits the green light to the light modulation element 12a of the light modulation unit 12. Further, the dichroic prism 43 reflects the blue light collimated by the collimator lens 42b and emits the blue light to the light modulation element 12a of the light modulation unit 12.
  • the optical member having such a function is not limited to the dichroic prism. For example, a cross dichroic mirror may be used.
  • a light emitting element such as a laser or an LED (Light Emitting Diode) is used for each of the R light source 41r, the G light source 41g, and the B light source 41b.
  • the number of light sources included in the light source unit 11 may be one, two, or four or more.
  • the light modulation element 12a included in the light modulation unit 12 for example, a DMD (Digital Micromirror Device) is used in the configuration of the light source unit 11 in FIG.
  • a DMD Digital Micromirror Device
  • an LCOS Liquid Crystal On Silicon
  • MEMS Micro Electro Mechanical Systems
  • a liquid crystal display element or the like can be used.
  • the light spatially modulated by the light modulation unit 12 passes through the opening 14 a of the housing 14 and enters the optical unit 6.
  • the optical unit 6 includes a first member 2 having a hollow portion 2A connected to the inside of the main body 1, a second member 3 having a hollow portion 3A connected to the hollow portion 2A, and a hollow portion 2A.
  • the first unit 20 is disposed, the second unit 30 is disposed in the hollow portion 3A, and the rotating mechanism 4 is provided.
  • the first member 2 is a member that covers the first unit 20.
  • the second member 3 is a member that covers the second unit 30.
  • An outer peripheral member having hollow portions 2A and 3A is constituted by the first member 2 and the second member 3.
  • the first member 2 is a member having a rectangular cross-sectional shape, and the openings 2a and 2b are formed on surfaces perpendicular to each other.
  • the first member 2 is supported by the main body 1 in a state where the opening 2a is arranged at a position facing the opening 14a of the main body 1.
  • Light emitted from the light modulation unit 12 of the main body 1 enters the hollow portion 2A of the first member 2 through the opening 14a and the opening 2a.
  • the incident direction of light incident on the hollow portion 2A from the main body 1 is defined as a direction X1.
  • the first unit 20 disposed in the hollow portion 2A of the first member 2 includes a first reflecting member 22 that reflects light incident from the main body 1 in a direction Z that is a first direction perpendicular to the direction X1.
  • An optical system 21 including at least one lens disposed between the first reflection member 22 and the main body 1, and a housing (not shown) for housing the optical system 21.
  • the first reflection member 22 is constituted by, for example, a half mirror, a beam splitter, a polarizing member, or the like.
  • the rotation mechanism 4 is a mechanism for rotatably connecting the second member 3 to the first member 2.
  • the second member 3 is configured to be rotatable around a rotation axis parallel to the direction Z (specifically, an axis extending in the direction Z passing through the center of the opening 2b).
  • the second member 3 is a member having a substantially L-shaped cross section, and an opening 3 a is formed at a position facing the opening 2 b of the first member 2. Light from the main body 1 passing through the opening 2b of the first member 2 is incident on the hollow portion 3A of the second member 3 through the opening 3a.
  • the second unit 30 arranged in the hollow portion 3A of the second member 3 transmits light (light passing through the first unit 20) incident from the first member 2 in a direction that is a second direction perpendicular to the direction Z.
  • X2 a second reflecting member 32, an optical system 31 including at least one lens disposed between the second reflecting member 32 and the first member 2, and reflected by the second reflecting member 32
  • a lens 34 arranged in a light traveling direction, and light emitted from the lens 34 is projected on a projection surface; and an optical system 33 including at least one lens arranged between the lens 34 and the second reflection member 32.
  • a housing (not shown) for accommodating them. Note that the optical system 33 is not essential and may be omitted.
  • the second reflecting member 32 is constituted by, for example, a half mirror, a beam splitter, a polarizing member, or the like.
  • the lens 34 is disposed so as to close the opening 3b formed in the second member 3, and a part of the lens 34 is exposed to the outside.
  • the light from the main body 1 that has entered the second unit 30 passes through the optical system 31, is reflected by the second reflecting member 32, travels in the direction X2, and then passes through the optical system 33 and passes through the lens 34. Is projected toward the projection plane.
  • the first unit 20 and the second unit 30 constitute a projection optical system for projecting the light incident from the main body 1 onto the projection surface.
  • the lens 34 is a lens disposed at a position closest to the projection plane in the projection optical system.
  • the second member 3 is configured to be rotatable with respect to the first member 2. Therefore, when the second member 3 is at the rotational position shown in FIG. 3, the projection direction (direction X2) of the light projected from the lens 34 is opposite to the direction X1.
  • the projection direction (direction X2) of the light projected from the lens 34 is a direction perpendicular to the direction X1 (the direction of FIG. 3). (Front or back of the paper).
  • the projection direction (direction X2) of the light projected from the lens 34 is the same as the direction X1.
  • the projector 100 causes the rotation mechanism 4 to rotate the second member 3 which is a part of the outer peripheral member, so that the projection direction of light from the projection optical system can be changed in a plurality of directions (in the above example, four directions). ).
  • the second member 3 constitutes a rotated portion of the outer peripheral member rotatable by the rotation mechanism 4.
  • the second member 3 air inside the main body 1 (specifically, the light source unit 11 and the light modulation unit by a fan) An exhaust port 3H for discharging hot air obtained by cooling a heat source including the heat source 12 and the like is formed.
  • the direction opposite to the projection direction of the light from the lens 34 refers to a direction in which the angle with the projection direction (direction X2) exceeds 90 degrees in FIG.
  • the surface 3D of the second member 3 is constituted by an inclined surface 3B inclined toward the lens 34 side (projection direction) with respect to the surface perpendicular to the direction X2 and a surface 3C perpendicular to the direction X2. ing.
  • the inclined surface 3B is located on the back surface of the second reflecting member 32 and is a surface parallel to the light reflecting surface of the second reflecting member 32.
  • An exhaust port 3H is formed on the inclined surface 3B.
  • Hot air which is warm air obtained by cooling the light source unit 11 and the light modulation unit 12 by the fan inside the main body 1, flows through the opening 14 a of the housing 14 of the main body 1 through the hollow portion 2 ⁇ / b> A of the first member 2. , Flows into the hollow portion 3A of the second member 3 and is discharged from the exhaust port 3H.
  • the exhaust port 3H is in a state opposite to the projection direction (X2) regardless of the rotational position of the second member 3. For this reason, in any projection direction, it is possible to prevent the warm air from being discharged in a direction close to the projection direction (a direction formed by the projection direction at an angle of 90 degrees or less) and to cause fluctuations in the projection image. Can be prevented.
  • the warm air inside the main body 1 goes from the first member 2 to the second member 3, the warm air goes in a direction opposite to the vertical direction. According to this configuration, the warm air easily rises, so that the warm air can be efficiently exhausted from the exhaust port 3H, and the exhaust performance can be improved.
  • exhaust port 3H is formed on inclined surface 3B. Since the inclined surface 3B exists so as to intersect with the rising path of the warm air, the warm air can be efficiently discharged, and the exhaust performance can be improved.
  • all of the surfaces 3D may be surfaces perpendicular to the direction X2. Even in this case, since the exhaust port 3H is formed on the vertical surface, the warm air can be discharged in the direction opposite to the projection direction. By making the surface 3D have the inclined surface 3B as shown in FIG. 3, the size of the optical unit 6 can be reduced.
  • an exhaust port 3H may be formed on the surface 3C as shown in FIG. Also in the configuration of FIG. 4, it is possible to discharge warm air in a direction opposite to the projection direction. According to the configuration of FIG. 4, the exhaust can be performed in a direction different from the projection direction by 180 degrees, and the fluctuation of the projection image can be more reliably prevented.
  • the optical unit 6 of the projector 100 bends the light from the main body 1 twice before projecting it on the projection surface. However, the optical unit 6 bends the light from the main body 1 once and projects it on the projection surface. You may do it.
  • FIG. 5 is a schematic cross-sectional view of an optical unit 6A which is a modification of the optical unit 6 of the projector 100 shown in FIG.
  • the optical unit 6A shown in FIG. 5 has the same configuration as the optical unit 6 except that the first member 2 is omitted and the second member 3 is rotatably connected to the main body 1 by the rotating mechanism 4. It is.
  • the second member 3 of the optical unit 6A is configured to be rotatable by the rotation mechanism 4 around a rotation axis parallel to a direction Z which is an incident direction of light incident from the main body 1. That is, the optical unit 6A has a configuration in which the projection direction can be changed to a plurality of directions by rotating the entire outer peripheral member. Even in the projector 100 having the optical unit 6A, since the warm air is discharged in the direction opposite to the projection direction, the fluctuation of the projected image can be prevented.
  • the direction Z is the incident direction of light from the main body 1
  • the direction X2 is the first direction
  • the second reflecting member 32 functions as a first reflecting member.
  • the optical unit 6A does not need to protrude from the main body 1.
  • a configuration in which a concave portion is formed in the housing 14 of the main body 1 and the optical unit 6A is disposed in the concave portion may be employed. According to the configuration in which the optical units 6 and 6A protrude from the main body 1 as shown in FIG. 1 or FIG. 5, the design of the projector 100 becomes easy and the manufacturing cost can be reduced.
  • a projection device that spatially modulates light from a light source and projects the light on a projection surface
  • a main body part incorporating the light source
  • An outer peripheral member having a hollow portion connected to the inside of the main body portion; a projection optical system arranged in the hollow portion for projecting light incident from the main body portion on the projection surface; and at least one of the outer peripheral member.
  • the projection device (2) (1) The projection device according to (1), The projection optical system, the light incident from the main body, the first unit including a first reflecting member that reflects in a first direction perpendicular to the incident direction of the light, and passed through the first unit A second reflecting member that reflects light in a second direction perpendicular to the first direction, and a lens closest to the projection surface disposed in a traveling direction of the light reflected by the second reflecting member. And a second unit, The outer peripheral member is configured by a first member that covers the first unit, and a second member that covers the second unit, The second member and the second unit are configured to be rotatable around a rotation axis parallel to the first direction by the rotation mechanism, The projection device, wherein the exhaust port is formed in the second member.
  • the projection device according to (2), The surface of the second member facing in the opposite direction includes an inclined surface inclined toward the lens with respect to a surface perpendicular to the projection direction, and the projection in which the exhaust port is formed on the inclined surface. apparatus.
  • the projection device is a first reflection member that reflects light incident from the main body in a first direction perpendicular to the incident direction of the light, and a light reflected by the first reflection member.
  • a lens located closest to the projection plane arranged in the traveling direction, The outer peripheral member and the projection optical system are configured to be rotatable around a rotation axis parallel to the incident direction by the rotation mechanism, The projection device, wherein the exhaust port is formed on a back surface of the first reflecting member.
  • a fan for cooling a heat source including the light source included in the main body is provided in the main body, The projection device, wherein the exhaust port discharges air obtained by cooling the heat source by the fan.
  • An exhaust method for the projection device for projecting on the projection surface An exhaust method for a projection device, wherein air inside the main body is exhausted from a surface of a rotated portion of the outer peripheral member rotatable by the rotation mechanism, the surface facing a direction opposite to the projection direction.
  • the present invention is highly convenient and effective when applied to a projector or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

複数の方向に画像を投影可能としながら、温風の排気による投影画像の揺らぎの発生を防ぐことのできる投影装置とその排気方法を提供する。 プロジェクタ(100)は、光源を内蔵する本体部(1)と、本体部(1)の内部と繋がる中空部(2A,3A)を有する外周部材(第一部材(2)、第二部材3)、本体部(1)から入射される光を投影面に投影するための中空部(2A,3A)に配置された投影光学系(第一ユニット(20)、第二ユニット30)、第二部材(3)を回転させて投影光学系からの光の投影方向X2を複数の方向に変えるための回転機構(4)、及び第二部材(3)に形成された排気口(3H)を有する光学ユニット(6)と、を備える。排気口(3H)は、被回転部分である第二部材(3)における投影方向X2の反対方向を向く面(3D)に形成されている。

Description

投影装置及びその排気方法
 本発明は、投影装置及びその排気方法に関する。
 液晶プロジェクタ等の投影装置は、光源と、光源からの光を空間変調する光変調素子と、光変調素子により変調して得られた光を投影する投影光学系と、これらを収容する筐体と、この筐体の内部の空気を筐体の外部に排出するための排気口とを備えるのが一般的である。
 特許文献1には、筐体に設けられたレンズ装置の周囲から筐体内部の空気が排出される投影装置が記載されている。
 特許文献2と特許文献3には、筐体における光学系が露出する側面に隣接し且つこれに垂直な側面に排気口が設けられた投影装置が記載されている。
 特許文献4には、筐体における光学系が露出する側面と、この側面の反対面とに排気口が設けられ、筐体内の空気の排出方向を、画像の投影側とその反対側とで切り替えることのできる投影装置が記載されている。
 特許文献5には、画像の投影方向を180°変えることのできる投影装置が記載されている。
日本国特開2013-120249号公報 日本国特開2001-051349号公報 日本国特開2011-203596号公報 日本国特開2010-271579号公報 日本国特開2012-098506号公報
 特許文献1に記載されているように、画像の投影方向に近い方向に排気がなされると、スクリーンに投影された画像がこの排気された空気によって陽炎のように揺らいでしまう。そのため、特許文献2と特許文献3に記載されているように、画像の投影方向と排気方向とのなす角度が90°以上となるように排気を行うことが有効である。
 しかし、特許文献5に記載されているように画像の投影方向を大きく変えることのできる投影装置を想定した場合には、画像の投影方向がどの方向であっても、投影方向と排気方向とのなす角度が90°以上となるように排気口を設ける必要があり、装置の設計が難しくなる。
 特許文献4には、排気方向を180°変えることのできる構成が開示されているが、画像の投影方向は固定であり、可変とはなっていない。
 本発明は、上記事情に鑑みてなされたものであり、複数の方向に画像を投影可能としながら、温風の排気による投影画像の揺らぎの発生を防ぐことのできる投影装置とその排気方法を提供することを目的とする。
 本発明の投影装置は、光源からの光を空間変調して投影面に投影する投影装置であって、上記光源を内蔵する本体部と、上記本体部の内部と繋がる中空部を有する外周部材と、上記本体部から入射される光を上記投影面に投影するための上記中空部に配置された投影光学系と、上記外周部材の少なくとも一部を回転させて上記投影光学系からの光の投影方向を複数の方向に変えるための回転機構と、上記回転機構によって回転可能な上記外周部材の被回転部分に形成された上記本体部の内部の空気を排出するための排気口と、を有する光学ユニットと、を備え、上記排気口は、上記被回転部分における上記投影方向の反対方向を向く面に形成されているものである。
 本発明の投影装置の排気方法は、光源を内蔵する本体部と、上記本体部の内部と繋がる中空部を有する外周部材、上記本体部から入射される光を投影面に投影するための上記中空部に配置された投影光学系、及び上記外周部材の少なくとも一部を回転させて上記投影光学系からの光の投影方向を複数の方向に変えるための回転機構を含む光学ユニットと、を有し、上記光源からの光を空間変調して上記投影面に投影する投影装置の排気方法であって、上記回転機構によって回転可能な上記外周部材の被回転部分における上記投影方向の反対方向を向く面から、上記本体部の内部の空気を排出させるものである。
 本発明によれば、複数の方向に画像を投影可能としながら、温風の排気による投影画像の揺らぎの発生を防ぐことのできる投影装置とその排気方法を提供することができる。
本発明の投影装置の一実施形態であるプロジェクタ100の外観構成を示す模式図である。 図1の光源ユニット11の内部構成の一例を示す模式図である。 図1に示すプロジェクタ100の光学ユニット6の断面模式図である。 図1に示すプロジェクタ100の光学ユニット6の変形例の断面模式図である。 図1に示すプロジェクタ100の光学ユニット6の変形例である光学ユニット6Aの断面模式図である。
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、本発明の投影装置の一実施形態であるプロジェクタ100の外観構成を示す模式図である。図2は、図1の光源ユニット11の内部構成の一例を示す模式図である。図3は、図1に示すプロジェクタ100の光学ユニット6の断面模式図である。図3は、本体部1から出射される光の光路に沿った面での断面を示している。
 図1に示すように、プロジェクタ100は、本体部1と、本体部1から突出して設けられた光学ユニット6と、を備える。
 本体部1は、光学ユニット6と連結される部分に光を通すための開口14a(図3参照)が形成され、この開口14aとは別の位置に、外気を内部に取り込むための吸気口13(図1参照)が形成された筐体14(図3参照)を有する。
 本体部1の筐体14の内部には、図1に示すように、光源ユニット11と、光源ユニット11から出射される光を画像データに基づいて空間変調する光変調素子を含む光変調ユニット12と、吸気口13から取り込んだ空気を、光源ユニット11及び光変調ユニット12等を含む熱源に当ててこの熱源を冷却するための図示省略のファンと、が設けられている。
 図2に示す例では、光源ユニット11は、赤色光を出射する赤色光源であるR光源41rと、緑色光を出射する緑色光源であるG光源41gと、青色光を出射する青色光源であるB光源41bと、ダイクロイックプリズム43と、R光源41rとダイクロイックプリズム43の間に設けられたコリメータレンズ42rと、G光源41gとダイクロイックプリズム43の間に設けられたコリメータレンズ42gと、B光源41bとダイクロイックプリズム43の間に設けられたコリメータレンズ42bと、を備えている。
 ダイクロイックプリズム43は、R光源41r、G光源41g、及びB光源41bの各々から出射される光を同一光路に導くための光学部材である。すなわち、ダイクロイックプリズム43は、コリメータレンズ42rによって平行光化された赤色光を透過させて光変調ユニット12の光変調素子12aに出射する。また、ダイクロイックプリズム43は、コリメータレンズ42gによって平行光化された緑色光を反射させて光変調ユニット12の光変調素子12aに出射する。さらに、ダイクロイックプリズム43は、コリメータレンズ42bによって平行光化された青色光を反射させて光変調ユニット12の光変調素子12aに出射する。このような機能を持つ光学部材としては、ダイクロイックプリズムに限らない。例えば、クロスダイクロイックミラーを用いてもよい。
 R光源41r、G光源41g、及びB光源41bは、それぞれ、レーザ又はLED(Light Emitting Diode)等の発光素子が用いられる。光源ユニット11に含まれる光源の数は1つ、2つ、又は4つ以上であってもよい。
 光変調ユニット12に含まれる光変調素子12aは、図2の光源ユニット11の構成であればDMD(Digital Micromirror Device)が例えば用いられる。光変調素子12aとしては、LCOS(Liquid crystal on silicon)、MEMS(Micro Electro Mechanical Systems)素子、又は液晶表示素子等を用いることもできる。光変調ユニット12によって空間変調された光は、筐体14の開口14aを通過して光学ユニット6に入射される。
 図3に示すように、光学ユニット6は、本体部1の内部と繋がる中空部2Aを有する第一部材2と、中空部2Aと繋がる中空部3Aを有する第二部材3と、中空部2Aに配置された第一ユニット20と、中空部3Aに配置された第二ユニット30と、回転機構4と、を備える。
 第一部材2は、第一ユニット20を覆う部材である。第二部材3は、第二ユニット30を覆う部材である。第一部材2と第二部材3によって中空部2A,3Aを有する外周部材が構成されている。
 第一部材2は、断面外形が矩形の部材であり、開口2aと開口2bが互いに垂直な面に形成されている。第一部材2は、本体部1の開口14aと対面する位置に開口2aが配置される状態にて、本体部1によって支持されている。本体部1の光変調ユニット12から出射された光は、開口14a及び開口2aを通って第一部材2の中空部2Aに入射される。本体部1から中空部2Aに入射される光の入射方向を方向X1と定義する。
 第一部材2の中空部2Aに配置された第一ユニット20は、本体部1から入射される光を方向X1に垂直な第一の方向である方向Zに反射させる第一の反射部材22と、第一の反射部材22と本体部1の間に配置された少なくとも1つのレンズを含む光学系21と、これらを収容する図示省略の筐体と、を備える。
 第一の反射部材22は、例えばハーフミラー、ビームスプリッター、又は偏光部材等によって構成される。
 本体部1から第一部材2に入射された方向X1に進む光は、光学系21を通過した後、第一の反射部材22によって反射されて方向Zに進む。第一部材2には、第一の反射部材22にて反射した光の光路上に開口2bが形成されており、この反射した光は開口2bを通過して第二部材3の中空部3Aへと進む。
 回転機構4は、第一部材2に対して第二部材3を回転自在に連結する機構である。この回転機構4によって、第二部材3は、方向Zに平行な回転軸(具体的には、開口2bの中心を通る方向Zに延びる軸)の回りに回転自在に構成されている。
 第二部材3は、断面外形が略L字状の部材であり、第一部材2の開口2bと対面する位置に開口3aが形成されている。第一部材2の開口2bを通過した本体部1からの光は、この開口3aを通って第二部材3の中空部3Aに入射される。
 第二部材3の中空部3Aに配置された第二ユニット30は、第一部材2から入射される光(第一ユニット20を通過した光)を方向Zに垂直な第二の方向である方向X2に反射させる第二の反射部材32と、第二の反射部材32と第一部材2の間に配置された少なくとも1つのレンズを含む光学系31と、第二の反射部材32により反射された光の進行方向に配置され、ここから出射される光が投影面に投影されるレンズ34と、レンズ34と第二の反射部材32の間に配置された少なくとも1つのレンズを含む光学系33と、これらを収容する図示省略の筐体と、を備える。なお、光学系33は必須ではなく省略されてもよい。
 第二の反射部材32は、例えばハーフミラー、ビームスプリッター、又は偏光部材等によって構成される。
 レンズ34は、第二部材3に形成された開口3bを塞ぐ形で配置されており、その一部が外部に露出した状態となっている。
 第二ユニット30に入射した本体部1からの光は、光学系31を通過した後、第二の反射部材32にて反射されて方向X2に進み、その後、光学系33を通過してレンズ34から投影面に向けて投影される。
 このように、第一ユニット20と第二ユニット30は、本体部1から入射される光を投影面に投影するための投影光学系を構成している。レンズ34は、この投影光学系のうちの投影面に最も近い位置に配置されたレンズである。
 光学ユニット6では、第二部材3が第一部材2に対して回転自在に構成されている。このため、第二部材3が図3に示す回転位置にあるときには、レンズ34から投影される光の投影方向(方向X2)は、方向X1の反対方向となる。また、第二部材3が、例えば図3の状態に対し90度回転した位置にあるときには、レンズ34から投影される光の投影方向(方向X2)は、方向X1に垂直な方向(図3の紙面の手前方向又は奥方向)となる。また、第二部材3が、例えば図3の状態に対し180度回転した位置にあるときには、レンズ34から投影される光の投影方向(方向X2)は、方向X1と同じ方向となる。
 このように、プロジェクタ100は、回転機構4によって外周部材の一部である第二部材3を回転させることで、投影光学系からの光の投影方向を複数の方向(上記の例では4つの方向)に変えることができるようになっている。第二部材3は、回転機構4によって回転可能な外周部材の被回転部分を構成している。
 第二部材3において、レンズ34からの光の投影方向(方向X2)の反対方向を向く面3Dには、本体部1の内部の空気(具体的には、ファンによって光源ユニット11及び光変調ユニット12等を含む熱源を冷却して得られた温風)を排出するための排気口3Hが形成されている。レンズ34からの光の投影方向の反対方向とは、図3において、投影方向(方向X2)とのなす角度が90度を超える方向のことを言う。
 第二部材3の面3Dは、方向X2に垂直な面を基準としてこの面に対しレンズ34側(投影方向)に向かって傾斜する傾斜面3Bと、方向X2に垂直な面3Cとによって構成されている。
 傾斜面3Bは、第二の反射部材32の背面に位置しており、第二の反射部材32の光反射面に平行な面となっている。この傾斜面3Bに排気口3Hが形成されている。
 以上のように構成されたプロジェクタ100における本体部1の内部の空気の排気動作について説明する。本体部1の内部のファンによって光源ユニット11及び光変調ユニット12を冷却して得られた温かい空気である温風は、本体部1の筐体14の開口14aから第一部材2の中空部2Aを経由して、第二部材3の中空部3Aに流れ込み、排気口3Hから排出される。
 プロジェクタ100では、第二部材3がどの回転位置にあっても、排気口3Hが投影方向(X2)の反対方向を向いた状態となる。このため、どの投影方向であっても、温風が投影方向に近い方向(投影方向とのなす角度が90度以下となる方向)に排出されるのを防いで、投影画像に揺らぎが生じるのを防ぐことができる。
 また、プロジェクタ100によれば、本体部1の内部の温風は、第一部材2から第二部材3に向かうときに、鉛直方向の反対方向に向かう。この構成によれば、温かい空気は上昇しやすいため、排気口3Hから温風を効率よく排気することができ、排気性能を向上させることができる。
 また、プロジェクタ100では、排気口3Hが傾斜面3Bに形成されている。傾斜面3Bは、温風の上昇経路に交差する形で存在するため、温風の排出を効率よく行うことができ、排気性能を向上させることができる。
 なお、プロジェクタ100の光学ユニット6において、面3Dが全て方向X2に垂直な面となっていてもよい。この場合でも、この垂直な面に排気口3Hが形成されることで、投影方向の反対方向に向けて温風の排出を行うことができる。図3に示したように面3Dが傾斜面3Bを有する構成とすることで、光学ユニット6の小型化が可能である。
 また、プロジェクタ100の光学ユニット6において、図4に示すように、面3Cに排気口3Hが形成されていてもよい。図4の構成でも、投影方向の反対方向に向けて温風の排出を行うことができる。図4の構成によれば、投影方向に対して180度方向の異なる方向に排気を行うことができ、投影画像の揺らぎをより確実に防ぐことができる。
 また、プロジェクタ100の光学ユニット6は、本体部1からの光を2回屈曲させてから投影面に投影するものとしたが、本体部1からの光を1回屈曲させてから投影面に投影するものとしてもよい。
 図5は、図1に示すプロジェクタ100の光学ユニット6の変形例である光学ユニット6Aの断面模式図である。図5に示す光学ユニット6Aは、第一部材2が削除され、第二部材3が回転機構4によって本体部1に対し回転自在に連結されている点を除いては、光学ユニット6と同じ構成である。
 この光学ユニット6Aの第二部材3は、回転機構4によって、本体部1から入射される光の入射方向である方向Zに平行な回転軸の回りに回転自在に構成されている。つまり、光学ユニット6Aは、外周部材の全体を回転させて投影方向を複数の方向に変えることのできる構成である。この光学ユニット6Aを有するプロジェクタ100であっても、投影方向と反対方向に温風の排出が行われるため、投影画像の揺らぎを防ぐことができる。光学ユニット6Aにおいては、方向Zが本体部1からの光の入射方向となり、方向X2が第一の方向となり、第二の反射部材32が第一の反射部材として機能する。
 図5に示すような光学ユニット6Aを含むプロジェクタ100では、光学ユニット6Aは本体部1から突出していなくてもよい。例えば、本体部1の筐体14に凹部を形成しておき、この凹部に光学ユニット6Aが配置される構成であってもよい。図1又は図5に示すように光学ユニット6,6Aが本体部1から突出している構成によれば、プロジェクタ100の設計が容易となり、製造コストを下げることができる。
 以上説明してきたように、本明細書には以下の事項が開示されている。
(1)
 光源からの光を空間変調して投影面に投影する投影装置であって、
 上記光源を内蔵する本体部と、
 上記本体部の内部と繋がる中空部を有する外周部材と、上記本体部から入射される光を上記投影面に投影するための上記中空部に配置された投影光学系と、上記外周部材の少なくとも一部を回転させて上記投影光学系からの光の投影方向を複数の方向に変えるための回転機構と、上記回転機構によって回転可能な上記外周部材の被回転部分に形成された上記本体部の内部の空気を排出するための排気口と、を有する光学ユニットと、を備え、
 上記排気口は、上記被回転部分における上記投影方向の反対方向を向く面に形成されている投影装置。
(2)
 (1)記載の投影装置であって、
 上記投影光学系は、上記本体部から入射される光を、上記光の入射方向に垂直な第一の方向に反射させる第一の反射部材を含む第一ユニットと、上記第一ユニットを通過した光を上記第一の方向に垂直な第二の方向に反射させる第二の反射部材及び上記第二の反射部材により反射された光の進行方向に配置された上記投影面に最も近いレンズを含む第二ユニットとにより構成され、
 上記外周部材は、上記第一ユニットを覆う第一部材と、上記第二ユニットを覆う第二部材とにより構成され、
 上記第二部材と上記第二ユニットは、上記回転機構によって、上記第一の方向に平行な回転軸の回りに回転自在に構成されており、
 上記排気口は、上記第二部材に形成されている投影装置。
(3)
 (2)記載の投影装置であって、
 上記第二部材における上記反対方向を向く上記面は、上記投影方向に垂直な面に対して上記レンズ側に向かって傾斜する傾斜面を含み、上記傾斜面に上記排気口が形成されている投影装置。
(4)
 (3)記載の投影装置であって、
 上記傾斜面は、上記第二の反射部材の背面にあり、且つ、上記第二の反射部材における光の反射面に平行である投影装置。
(5)
 (1)記載の投影装置であって、
 上記投影光学系は、上記本体部から入射される光を、上記光の入射方向に垂直な第一の方向に反射させる第一の反射部材と、上記第一の反射部材により反射された光の進行方向に配置された最も上記投影面に近い位置にあるレンズと、を含み、
 上記外周部材と上記投影光学系は、上記回転機構によって、上記入射方向に平行な回転軸の回りに回転自在に構成されており、
 上記排気口は、上記第一の反射部材の背面に形成されている投影装置。
(6)
 (1)から(5)のいずれか1つに記載の投影装置であって、
 上記光学ユニットは、上記本体部から突出して設けられている投影装置。
(7)
 (1)から(6)のいずれか1つに記載の投影装置であって、
 上記本体部に含まれる上記光源を含む熱源を冷却するためのファンを上記本体部に備え、
 上記排気口は、上記ファンによって上記熱源を冷却して得られる空気を排出する投影装置。
(8)
 光源を内蔵する本体部と、上記本体部の内部と繋がる中空部を有する外周部材、上記本体部から入射される光を投影面に投影するための上記中空部に配置された投影光学系、及び上記外周部材の少なくとも一部を回転させて上記投影光学系からの光の投影方向を複数の方向に変えるための回転機構を含む光学ユニットと、を有し、上記光源からの光を空間変調して上記投影面に投影する投影装置の排気方法であって、
 上記回転機構によって回転可能な上記外周部材の被回転部分における上記投影方向の反対方向を向く面から、上記本体部の内部の空気を排出させる投影装置の排気方法。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2018年6月25日出願の日本特許出願(特願2018-120197)に基づくものであり、その内容は本出願の中に参照として援用される。
 本発明は、プロジェクタ等に適用して利便性が高く、有効である。
100 プロジェクタ
1 本体部
2 第一部材
2a,2b 開口
2A 中空部
20 第一ユニット
21 光学系
22 第一の反射部材
3 第二部材
3a,2b 開口
3B 傾斜面
3C,3D 面
3H 排気口
3A 中空部
30 第二ユニット
31,33 光学系
32 第二の反射部材
34 レンズ
4 回転機構
6,6A 光学ユニット
11 光源ユニット
41r R光源
41g G光源
41b B光源
42r、42g、42b コリメータレンズ
43 ダイクロイックプリズム
12 光変調ユニット
12a 光変調素子
13 吸気口
14 筐体
14a 開口

Claims (8)

  1.  光源からの光を空間変調して投影面に投影する投影装置であって、
     前記光源を内蔵する本体部と、
     前記本体部の内部と繋がる中空部を有する外周部材と、前記本体部から入射される光を前記投影面に投影するための前記中空部に配置された投影光学系と、前記外周部材の少なくとも一部を回転させて前記投影光学系からの光の投影方向を複数の方向に変えるための回転機構と、前記回転機構によって回転可能な前記外周部材の被回転部分に形成された前記本体部の内部の空気を排出するための排気口と、を有する光学ユニットと、を備え、
     前記排気口は、前記被回転部分における前記投影方向の反対方向を向く面に形成されている投影装置。
  2.  請求項1記載の投影装置であって、
     前記投影光学系は、前記本体部から入射される光を、前記光の入射方向に垂直な第一の方向に反射させる第一の反射部材を含む第一ユニットと、前記第一ユニットを通過した光を前記第一の方向に垂直な第二の方向に反射させる第二の反射部材及び前記第二の反射部材により反射された光の進行方向に配置された前記投影面に最も近いレンズを含む第二ユニットとにより構成され、
     前記外周部材は、前記第一ユニットを覆う第一部材と、前記第二ユニットを覆う第二部材とにより構成され、
     前記第二部材と前記第二ユニットは、前記回転機構によって、前記第一の方向に平行な回転軸の回りに回転自在に構成されており、
     前記排気口は、前記第二部材に形成されている投影装置。
  3.  請求項2記載の投影装置であって、
     前記第二部材における前記反対方向を向く前記面は、前記投影方向に垂直な面に対して前記レンズ側に向かって傾斜する傾斜面を含み、前記傾斜面に前記排気口が形成されている投影装置。
  4.  請求項3記載の投影装置であって、
     前記傾斜面は、前記第二の反射部材の背面にあり、且つ、前記第二の反射部材における光の反射面に平行である投影装置。
  5.  請求項1記載の投影装置であって、
     前記投影光学系は、前記本体部から入射される光を、前記光の入射方向に垂直な第一の方向に反射させる第一の反射部材と、前記第一の反射部材により反射された光の進行方向に配置された最も前記投影面に近い位置にあるレンズと、を含み、
     前記外周部材と前記投影光学系は、前記回転機構によって、前記入射方向に平行な回転軸の回りに回転自在に構成されており、
     前記排気口は、前記第一の反射部材の背面に形成されている投影装置。
  6.  請求項1から5のいずれか1項記載の投影装置であって、
     前記光学ユニットは、前記本体部から突出して設けられている投影装置。
  7.  請求項1から6のいずれか1項記載の投影装置であって、
     前記本体部に含まれる前記光源を含む熱源を冷却するためのファンを前記本体部に備え、
     前記排気口は、前記ファンによって前記熱源を冷却して得られる空気を排出する投影装置。
  8.  光源を内蔵する本体部と、前記本体部の内部と繋がる中空部を有する外周部材、前記本体部から入射される光を投影面に投影するための前記中空部に配置された投影光学系、及び前記外周部材の少なくとも一部を回転させて前記投影光学系からの光の投影方向を複数の方向に変えるための回転機構を含む光学ユニットと、を有し、前記光源からの光を空間変調して前記投影面に投影する投影装置の排気方法であって、
     前記回転機構によって回転可能な前記外周部材の被回転部分における前記投影方向の反対方向を向く面から、前記本体部の内部の空気を排出させる投影装置の排気方法。
PCT/JP2019/021373 2018-06-25 2019-05-29 投影装置及びその排気方法 WO2020003871A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020527309A JP6811358B2 (ja) 2018-06-25 2019-05-29 投影装置及びその排気方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-120197 2018-06-25
JP2018120197 2018-06-25

Publications (1)

Publication Number Publication Date
WO2020003871A1 true WO2020003871A1 (ja) 2020-01-02

Family

ID=68985601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021373 WO2020003871A1 (ja) 2018-06-25 2019-05-29 投影装置及びその排気方法

Country Status (2)

Country Link
JP (1) JP6811358B2 (ja)
WO (1) WO2020003871A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020262024A1 (ja) * 2019-06-28 2020-12-30

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093655A (ja) * 2002-08-29 2004-03-25 Canon Inc 投射型画像表示装置
JP2007328022A (ja) * 2006-06-06 2007-12-20 Mitsubishi Electric Corp 投写型映像表示装置
JP2010243542A (ja) * 2009-04-01 2010-10-28 Seiko Epson Corp プロジェクター
US20130077054A1 (en) * 2011-09-27 2013-03-28 Samsung Electronics Co., Ltd. Projector and display apparatus having the same
JP2016051121A (ja) * 2014-09-01 2016-04-11 株式会社リコー 投射光学装置及び画像投射装置
WO2016157997A1 (ja) * 2015-03-31 2016-10-06 富士フイルム株式会社 プロジェクタ及びその画像劣化防止方法
WO2017056925A1 (ja) * 2015-09-29 2017-04-06 富士フイルム株式会社 投射レンズ及びプロジェクタ
WO2017169903A1 (ja) * 2016-03-30 2017-10-05 富士フイルム株式会社 プロジェクタ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154249A (ja) * 2010-01-28 2011-08-11 Fujifilm Corp レンズ鏡筒及びこれを備えたプロジェクタ
JP2012098506A (ja) * 2010-11-02 2012-05-24 Seiko Epson Corp プロジェクター

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093655A (ja) * 2002-08-29 2004-03-25 Canon Inc 投射型画像表示装置
JP2007328022A (ja) * 2006-06-06 2007-12-20 Mitsubishi Electric Corp 投写型映像表示装置
JP2010243542A (ja) * 2009-04-01 2010-10-28 Seiko Epson Corp プロジェクター
US20130077054A1 (en) * 2011-09-27 2013-03-28 Samsung Electronics Co., Ltd. Projector and display apparatus having the same
JP2016051121A (ja) * 2014-09-01 2016-04-11 株式会社リコー 投射光学装置及び画像投射装置
WO2016157997A1 (ja) * 2015-03-31 2016-10-06 富士フイルム株式会社 プロジェクタ及びその画像劣化防止方法
WO2017056925A1 (ja) * 2015-09-29 2017-04-06 富士フイルム株式会社 投射レンズ及びプロジェクタ
WO2017169903A1 (ja) * 2016-03-30 2017-10-05 富士フイルム株式会社 プロジェクタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020262024A1 (ja) * 2019-06-28 2020-12-30
WO2020262024A1 (ja) * 2019-06-28 2020-12-30 富士フイルム株式会社 投射装置
JP7113975B2 (ja) 2019-06-28 2022-08-05 富士フイルム株式会社 投射装置

Also Published As

Publication number Publication date
JP6811358B2 (ja) 2021-01-13
JPWO2020003871A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6628940B2 (ja) プロジェクタ
JP6744041B2 (ja) 光源装置、プロジェクター及びスペックル低減方法
JP4650331B2 (ja) プロジェクタ
JPWO2015151180A1 (ja) 光源装置およびプロジェクタ
JP5364997B2 (ja) プロジェクタ
JP4706795B2 (ja) プロジェクタ
JP6232867B2 (ja) プロジェクター
WO2020003871A1 (ja) 投影装置及びその排気方法
WO2016125220A1 (ja) プロジェクタ及び光学ユニット
JPWO2016125220A6 (ja) プロジェクタ及び光学ユニット
WO2016125222A1 (ja) プロジェクタ、機能性フィルタ及び代替用ガラス板
JPWO2016125222A6 (ja) プロジェクタ、機能性フィルタ及び代替用ガラス板
JP7007014B2 (ja) スペックル低減のための画像面モーダル振動を有するプロジェクタ
WO2020003870A1 (ja) 投影装置及びその排気方法
JP5381307B2 (ja) プロジェクター
WO2020017167A1 (ja) 光学ユニット及び投影装置
JP2016167044A (ja) 光源装置、およびプロジェクター
JP6696438B2 (ja) プロジェクタ及び光学ユニット
JP2011209383A (ja) プロジェクター
JP4609423B2 (ja) 投写光学系及びプロジェクタ
JP2008139530A (ja) 投写光学系及びプロジェクタ
JP2007206604A (ja) プロジェクタ
JP5772937B2 (ja) プロジェクター
JP5561404B2 (ja) プロジェクタ
JP2011076734A (ja) 光源装置およびプロジェクター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825764

Country of ref document: EP

Kind code of ref document: A1