WO2020003427A1 - 電力量設定装置、電力量設定方法、及び、プログラム - Google Patents

電力量設定装置、電力量設定方法、及び、プログラム Download PDF

Info

Publication number
WO2020003427A1
WO2020003427A1 PCT/JP2018/024473 JP2018024473W WO2020003427A1 WO 2020003427 A1 WO2020003427 A1 WO 2020003427A1 JP 2018024473 W JP2018024473 W JP 2018024473W WO 2020003427 A1 WO2020003427 A1 WO 2020003427A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power amount
individual
subsystems
amount
Prior art date
Application number
PCT/JP2018/024473
Other languages
English (en)
French (fr)
Inventor
知晃 行田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/045,927 priority Critical patent/US11349337B2/en
Priority to CN201880094667.9A priority patent/CN112335150A/zh
Priority to PCT/JP2018/024473 priority patent/WO2020003427A1/ja
Priority to JP2020526796A priority patent/JP6949224B2/ja
Priority to EP18924555.8A priority patent/EP3817183A4/en
Publication of WO2020003427A1 publication Critical patent/WO2020003427A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1951Control of temperature characterised by the use of electric means with control of the working time of a temperature controlling device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D25/00Control of light, e.g. intensity, colour or phase
    • G05D25/02Control of light, e.g. intensity, colour or phase characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • H02J13/00026Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission involving a local wireless network, e.g. Wi-Fi, ZigBee or Bluetooth
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00028Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment involving the use of Internet protocols
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/52The controlling of the operation of the load not being the total disconnection of the load, i.e. entering a degraded mode or in current limitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/244Home appliances the home appliances being or involving heating ventilating and air conditioning [HVAC] units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the present invention relates to a power amount setting device, a power amount setting method, and a program.
  • the demand response is a mechanism in which a consumer adjusts power consumption in a demand area in response to an adjustment request from a power company.
  • the adjustment request is mainly a request for suppressing power consumption in a demand area.
  • the adjustment request is notified to, for example, a control device that controls the equipment in the demand area.
  • Patent Literature 1 discloses a technique of operating each load facility so as not to exceed a suppliable upper limit power value specified by a demand response in a demand area having a plurality of types of load facilities such as an air conditioner and a lighting device. Has been described.
  • distributed power is allocated to each load facility so as not to exceed the upper limit of the power that can be consumed, and each load facility is operated within the allocated distributed power.
  • Patent Literature 1 As a method of reducing a risk that a power consumption value in a demand area exceeds a consumable upper limit power value, for example, a power value provided between a total value of distributed power and a consumable upper limit power value is used. There is a way to increase the margin. In other words, this method is a method of increasing the margin of the amount of power provided between the total value of the distributed power amount corresponding to the distributed power and the consumable upper limit power amount corresponding to the consumable upper limit power value.
  • this method is a method of increasing the margin of the amount of power provided between the total value of the distributed power amount corresponding to the distributed power and the consumable upper limit power amount corresponding to the consumable upper limit power value.
  • the margin of the electric energy is increased, the possibility that convenience or comfort is reduced increases. For this reason, there is a demand for a technique that appropriately sets a margin for the amount of power and appropriately responds to the instruction to reduce the amount of power.
  • the present invention has been made in view of the above problems, and has as its object to provide a power amount setting device, a power amount setting method, and a program that appropriately respond to a power amount reduction instruction.
  • an electric energy setting device includes: Reduction instruction receiving means for receiving an instruction to reduce the amount of power for the entire plurality of subsystems each including equipment and a control device for controlling the equipment,
  • Reduction instruction receiving means for receiving an instruction to reduce the amount of power for the entire plurality of subsystems each including equipment and a control device for controlling the equipment,
  • the total value of the individual target power amounts which are the target values of the power consumption amounts of the plurality of subsystems, is equal to the target value of the power consumption amount of the plurality of subsystems as a whole.
  • the total value of the individual target power amounts and the total target power amount as the correlation between the power consumption amounts of the plurality of subsystems is smaller than the total target power amount which is a value.
  • Power amount setting means for setting the individual target power amount for each of the plurality of subsystems so that the surplus power amount is increased
  • Control instruction transmitting means for transmitting, to the control device, control instruction information for instructing to control the equipment based on the individual target electric energy set by the electric energy setting means.
  • the total value of the individual target power amounts and the total target power amount become smaller as the correlation between the power consumption amounts of the plurality of subsystems is higher than the total value of the individual target power amounts.
  • the individual target power amount is set such that the total surplus power amount, which is the difference between. Therefore, according to the present invention, it is possible to appropriately respond to the power amount reduction instruction.
  • Configuration diagram of a control system according to Embodiment 1 of the present invention Configuration diagram of the electric energy setting device according to the first embodiment of the present invention
  • Functional configuration diagram of an electric energy setting device according to Embodiment 1 of the present invention Diagram showing power amount history information 4 is a flowchart illustrating a power amount setting process executed by the power amount setting device according to the first embodiment of the present invention.
  • Configuration diagram of a control system according to Embodiment 2 of the present invention Functional configuration diagram of a power amount setting device according to a second embodiment of the present invention 9 is a flowchart illustrating a power amount setting process performed by the power amount setting device according to the second embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a power amount setting process performed by the power amount setting device according to the third embodiment of the present invention.
  • Functional configuration diagram of a power amount setting device according to a fourth embodiment of the present invention 9 is a flowchart illustrating a power amount setting process executed by the power amount setting device according to the fourth embodiment of the present invention.
  • Functional configuration diagram of a power amount setting device according to a fifth embodiment of the present invention 9 is a flowchart illustrating a power amount setting process executed by the power amount setting device according to the fifth embodiment of the present invention.
  • the control system 1000 is, for example, a system including a plurality of subsystems including equipment and a control device.
  • the control system 1000 includes a power amount setting device 100, an air conditioning system 210, a lighting system 220, and a power measurement device 400.
  • the air conditioning system 210 includes an air conditioning control device 211, an air conditioner 212, and an air conditioner 213.
  • the lighting system 220 includes a lighting control device 221, a lighting device 222, and a lighting device 223.
  • the power amount setting device 100 and the server 500 are connected to each other via a communication network 610.
  • the communication network 610 is, for example, the Internet.
  • the electric energy setting device 100, the air conditioning control device 211, and the lighting control device 221 are mutually connected via a communication network 620.
  • the communication network 620 is, for example, a wireless LAN (Local Area Network) built in a building.
  • the power setting device 100 When receiving the instruction to reduce the total power consumption, which is the power consumption of the entire control system 1000, the power setting device 100 sets various power amounts so that the total power consumption is appropriately reduced. Device. Proper reduction in the total power consumption means that the reduction in the total power consumption falls within an appropriate range, for example. If the amount of reduction of the total power consumption is too large, it is considered that the comfort or convenience is reduced. If the amount of reduction of the total power consumption is too small, it is considered that the reduction instruction is violated.
  • the power consumption in the present embodiment is basically a power consumption per a predetermined time (for example, one hour or 30 minutes).
  • the power amount setting device 100 receives from the server 500 a reduction instruction by a demand response designating the overall target power amount.
  • the overall target power amount is a target value of the power consumption amount of the entire control system 1000, that is, a target value of the power consumption amount of the plurality of subsystems included in the control system 1000.
  • the power amount setting device 100 sets the individual target power amount so that the total value of the individual target power amounts is smaller than the overall target power amount.
  • the individual target power amount is a target value of the power consumption amount for each of the plurality of subsystems.
  • the power consumption setting apparatus 100 immediately does not cause the power consumption of the entire control system 1000 to exceed the total target power. In this way, the power amount is given a margin.
  • the power setting device 100 increases the overall surplus power as the correlation between the power consumptions of the plurality of subsystems increases.
  • the total surplus power is a difference between the total value of the individual target powers and the total target power.
  • the individual power amount history is a history of the power consumption amount for each of the plurality of subsystems, and is time-series data of the measured value of the power consumption amount for each of the plurality of subsystems.
  • the higher the correlation between the plurality of subsystems the larger the margin. This is because the higher the correlation, the more easily the power consumption of the plurality of subsystems is linked, and the more the power consumption of the control system 1000 exceeds the total target power.
  • the power setting device 100 includes a processor 11, a flash memory 12, a touch screen 13, a first communication interface 14, and a second communication interface 15.
  • the processor 11 controls the overall operation of the power amount setting device 100.
  • the processor 11 is, for example, a CPU (Central Processing Unit) incorporating a ROM (Read Only Memory), a RAM (Random Access Memory), an RTC (Real Time Clock), and the like.
  • the CPU operates according to a basic program stored in a ROM, for example, and uses a RAM as a work area.
  • the flash memory 12 is a nonvolatile memory for storing various information.
  • the flash memory 12 stores, for example, a program executed by the processor 11.
  • the touch screen 13 detects an operation performed by the user, and supplies a signal indicating a result of the detection to the processor 11.
  • the touch screen 13 displays information according to the control of the processor 11.
  • the first communication interface 14 is a communication interface for connecting the power setting device 100 to the communication network 610.
  • the second communication interface 15 is a communication interface for connecting the power amount setting device 100 to the communication network 620.
  • the air conditioning control device 211 controls the air conditioner 212 and the air conditioner 213.
  • the air conditioning control device 211 controls the air conditioners 212 and 213 so that the power consumption of the air conditioning system 210 becomes the individual target power amount.
  • the control instruction information is information including the individual target power amount, and is information for instructing to control the equipment based on the individual target power amount.
  • the power consumption of the air conditioning system 210 is basically the sum of the power consumption of the air conditioner 212 and the power consumption of the air conditioner 213.
  • the air conditioning control device 211 has a function of connecting to the communication network 620.
  • the lighting control device 221 controls the lighting device 222 and the lighting device 223.
  • the lighting control device 221 controls the lighting devices 222 and 223 such that the power consumption of the lighting system 220 becomes the individual target power amount.
  • the power consumption of the lighting system 220 is basically the sum of the power consumption of the lighting device 222 and the power consumption of the lighting device 223.
  • the lighting control device 221 has a function of connecting to the communication network 620.
  • the power measuring device 400 measures the power consumption of the air conditioning system 210 at a predetermined cycle, and measures the power consumption of the air conditioning system 210 for each predetermined period. In addition, the power measuring device 400 measures the power consumption of the lighting system 220 at a predetermined cycle, and measures the power consumption of the lighting system 220 at regular intervals.
  • the power measuring device 400 transmits power consumption information indicating the identification information of the air conditioning system 210 and the power consumption of the air conditioning system 210 to the power setting device 100. In addition, the power measuring device 400 transmits to the power setting device 100 power consumption information indicating the identification information of the lighting system 220 and the power consumption of the lighting system 220.
  • the power measuring device 400 has a function of connecting to the communication network 620.
  • the power measuring device 400 includes, for example, a current transformer.
  • the server 500 instructs the customer to reduce the amount of power based on the power supply and demand situation. For example, the server 500 transmits, via the communication network 610, reduction instruction information indicating an instruction to reduce the amount of power specifying the overall target power to the power setting device 100.
  • the server 500 is, for example, a server owned by a power company or an aggregator.
  • the server 500 has a function of connecting to the communication network 610.
  • the power amount setting device 100 functionally includes a reduction instruction receiving unit 101, a power amount setting unit 102, a control instruction transmitting unit 103, a power consumption receiving unit 104, A history storage unit 105 and a correlation coefficient calculation unit 106 are provided.
  • the reduction instruction receiving unit corresponds to, for example, the reduction instruction receiving unit 101.
  • the power amount setting unit corresponds to, for example, the power amount setting unit 102.
  • the control instruction transmitting unit corresponds to, for example, the control instruction transmitting unit 103.
  • the power consumption receiving unit corresponds to, for example, the power consumption receiving unit 104.
  • the power amount history storage unit corresponds to, for example, the power amount history storage unit 105.
  • the correlation coefficient calculation unit corresponds to, for example, the correlation coefficient calculation unit 106.
  • the reduction instruction receiving unit 101 receives an instruction to reduce the amount of electric power for a plurality of subsystems each including an equipment and a control device that controls the equipment.
  • the air conditioning system 210 and the lighting system 220 are subsystems.
  • the air conditioner 212, the air conditioner 213, the lighting device 222, and the lighting device 223 are facility devices.
  • the air conditioning control device 211 and the lighting control device 221 are control devices.
  • the reduction instruction receiving unit 101 receives, for example, a power amount reduction instruction from the server 500. That is, the reduction instruction receiving unit 101 receives the reduction instruction information from the server 500. Note that the overall target power amount is specified by the reduction instruction.
  • the function of the reduction instruction receiving unit 101 is realized by, for example, the function of the first communication interface 14 or the function of the touch screen 13.
  • the power amount setting unit 102 sets the individual target power amounts for each of the plurality of subsystems so as to satisfy the first condition and the second condition.
  • the first condition is that the total value of the individual target power amounts is smaller than the overall target power amount.
  • the second condition is that the higher the correlation between the amounts of power consumption of a plurality of subsystems, the greater the overall surplus power amount.
  • the function of the power amount setting unit 102 is realized by, for example, the function of the processor 11.
  • the control instruction transmitting unit 103 transmits control instruction information for instructing to control the equipment based on the individual target power amount set by the power amount setting unit 102 to the control device. That is, the control instruction transmitting unit 103 transmits control instruction information for instructing to control the air conditioners 212 and 213 based on the individual target power amounts set for the air conditioning system 210 via the communication network 620 to the air conditioning. It is transmitted to the control device 211. In addition, the control instruction transmitting unit 103 illuminates, via the communication network 620, control instruction information for instructing to control the lighting devices 222 and 223 based on the individual target power amounts set for the lighting system 220. Transmit to the control device 221.
  • the function of the control instruction transmitting unit 103 is realized by, for example, cooperation between the processor 11 and the second communication interface 15.
  • the power amount setting unit 102 controls the plurality of subsystems so that the total value of the individual target power amounts decreases as the correlation coefficient between the individual power amount histories, which is the history of the power consumption amount of each of the plurality of subsystems, increases.
  • the individual target electric energy of is set.
  • the power amount setting unit 102 calculates a total value of the individual actual power amounts in a combination of subsystems in which the correlation coefficient between the individual power amount histories among the plurality of subsystems is equal to or greater than a predetermined threshold value, A value obtained by multiplying the maximum value of the individual actual power amounts of the plurality of subsystems by a predetermined coefficient is set as the overall surplus power amount.
  • the individual actual power amount is an actual value of the power consumption amount for each of the plurality of subsystems.
  • the actual value is an average value, but the actual value may be, for example, a median value, a maximum value, a mode value, or a minimum value.
  • the power amount setting unit 102 regards a combination of subsystems having a correlation coefficient equal to or larger than a threshold value and each of the plurality of subsystems as a power consumption source, and specifies a maximum power consumption source.
  • the largest power consumption source is the power consumption source with the largest actual power amount.
  • the actual electric energy is the total value of the individual actual electric energy or the individual actual electric energy.
  • the power amount setting unit 102 sets a value obtained by multiplying the actual power amount at the maximum power consumption source by a predetermined coefficient as the overall surplus power amount. Then, the power amount setting unit 102 sets an individual target power amount based on the overall target power amount and the overall margin power amount.
  • the power amount setting unit 102 sets, as the individual target power amount, a value obtained by subtracting the individual margin power amount from the reference individual target power amount for each of the plurality of subsystems.
  • the reference individual target power amount is a value obtained by multiplying the actual power amount ratio by the overall target power amount.
  • the actual power consumption ratio is a ratio of the individual actual power consumption to the total actual power consumption, which is the total value of the individual actual power consumptions of the plurality of subsystems.
  • the power consumption receiving unit 104 receives power consumption information indicating the identification information of the subsystem and the measured power consumption from the power measurement device 400 that measures the power consumption for each of the plurality of subsystems.
  • the function of the power consumption receiving unit 104 is realized by, for example, the function of the second communication interface 15.
  • the power history storage unit 105 generates power history information based on the power consumption information received by the power consumption receiving unit 104, and stores the generated power history information.
  • the power amount history information is information indicating an individual power amount history, which is a history of the power consumption amount in a latest predetermined period, for each of a plurality of subsystems.
  • the function of the power amount history storage unit 105 is realized by, for example, cooperation between the processor 11 and the flash memory 12.
  • the power amount history information is information indicating, for each subsystem, the power consumption amount for each period of a predetermined length within the latest predetermined period.
  • individual power amount histories which are the power consumption amounts of the air conditioning system 210 every 30 minutes during the last month, are Wa1, Wa2,..., Wa1440. ., Wb1440, the individual power amount history, which is the power consumption amount of the lighting system 220 of FIG.
  • the correlation coefficient calculation unit 106 calculates a correlation coefficient between the individual power amount histories based on the power amount history information stored in the power amount history storage unit 105.
  • the function of the correlation coefficient calculation unit 106 is realized by, for example, the function of the processor 11.
  • the first individual power history which is time-series data of the power consumption of the air conditioning system 210 and the second individual power history which is the time-series data of the power consumption of the lighting system 220 include n elements.
  • the correlation coefficient r is, for example, x i for the ith element included in the first individual power history, y i for the ith element included in the second individual power history, and the first individual power history.
  • mean values m x n elements included in the electric energy history, an average value of n of elements in the second individual electric energy history as m y, can be expressed by equation (1).
  • the air conditioning system 210 is provided as a subsystem in which the type of equipment is an air conditioner
  • the lighting system 220 is provided as a subsystem in which the type of equipment is lighting.
  • the power amount setting process is executed, for example, in response to the power amount setting device 100 receiving the reduction instruction information from the server 500.
  • the processor 11 acquires an overall target power amount (step S101). For example, the processor 11 acquires the total target power amount specified by the reduction instruction information.
  • the processor 11 acquires power amount history information (step S102). For example, the processor 11 acquires power amount history information stored in the flash memory 12.
  • the processor 11 calculates an individual actual power amount (step S103). For example, the processor 11 calculates an individual actual power amount based on the power amount history information.
  • the processor 11 calculates a reference individual target power amount (step S104).
  • the processor 11 obtains a total actual electric energy from the individual actual electric energy, obtains an actual electric energy ratio from the total actual electric energy and the individual actual electric energy, and multiplies the actual electric energy ratio by the overall target electric energy.
  • the reference individual target electric energy is obtained.
  • step S105 the processor 11 calculates a correlation coefficient. For example, the processor 11 calculates a correlation coefficient between individual power amount histories for all combinations of two subsystems included in the plurality of subsystems based on the power amount history information.
  • step S106 the processor 11 specifies a combination whose correlation coefficient is equal to or greater than a threshold. This combination is a combination of two or more subsystems. This threshold is, for example, 0.5.
  • the processor 11 calculates the total value of the individual actual power amounts for each combination (Step S107).
  • the processor 11 specifies the largest power consumption source (step S108). For example, the processor 11 identifies the power consumption source having the larger actual power amount among the combination having the maximum total individual actual power amount and the subsystem having the maximum individual actual power amount.
  • the actual electric energy is the total value of the individual actual electric energy or the individual actual electric energy.
  • the processor 11 calculates the total surplus power amount (step S109). For example, the processor 11 sets a value obtained by multiplying the actual power amount at the maximum power consumption source by a predetermined coefficient as the overall surplus power amount. This coefficient is, for example, 0.1.
  • step S110 the processor 11 calculates the individual margin power (step S110). For example, the processor 11 calculates, for each subsystem, a value obtained by multiplying the actual power amount ratio and the total surplus power amount as the individual surplus power amount.
  • step S111 the processor 11 calculates, as the individual target power, a value obtained by subtracting the individual margin power from the reference individual target power.
  • the processor 11 calculates a reduction rate for each subsystem (step S112). For example, the processor 11 calculates a value obtained by dividing the difference between the average power consumption and the individual target power by the average power consumption as the reduction rate.
  • the processor 11 can calculate the average power consumption based on the power history information, for example. It is preferable that the individual actual power consumption is the average power consumption.
  • the processor 11 transmits control instruction information to the control device (step S113).
  • the processor 11 transmits control instruction information for instructing to control the equipment based on the individual target electric energy to the air conditioning control device 211 and the lighting control device 221.
  • controlling the equipment based on the individual target electric energy is basically the same as controlling the equipment based on the reduction rate.
  • the set temperature is increased by 2 degrees when the reduction rate is 0% to 30%, and the upper limit of the cooling capacity is set to 50% when the reduction rate is 31% to 50%.
  • the reduction rate is 51% to 80%
  • the air blowing operation is executed instead of the cooling operation, and when the reduction rate is 81% to 100%, the operation is stopped.
  • the processor 11 completes the power amount setting process.
  • the average power consumption of the air conditioning system 210 is 7 kWh
  • the average power consumption of the lighting system 220 is 3 kWh
  • the total target power consumption is 8 kWh
  • the individual power consumption histories of the air conditioning system 210 and the lighting system 220 are 0.7.
  • the combination of the air conditioning system 210 and the lighting system 220 is the largest power consumption source.
  • the coefficient is 0.1
  • the total surplus power is 0.8 kWh.
  • the average power consumption of the air conditioning system 210 is 7 kWh
  • the average power consumption of the lighting system 220 is 3 kWh
  • the total target power is 8 kWh
  • the correlation coefficient between the air conditioning system 210 and the lighting system 220 is Is 0.2.
  • the reference individual target power of the air conditioning system 210 is 5.6 kWh
  • the reference individual target power of the lighting system 220 is 2.4 kWh
  • the air conditioning system 210 is the largest power consumption source.
  • the average power consumption of the largest power consumption source is 5.6 kWh.
  • the coefficient is 0.1
  • the total surplus power becomes 0.56 kWh.
  • the total target power is specified by the reduction instruction, and the larger the correlation coefficient between the individual power histories of the plurality of subsystems, the smaller the total value of the individual target power becomes. Then, an individual target power amount for each of the plurality of subsystems is set. Therefore, according to the present embodiment, it is possible to appropriately reduce the amount of power.
  • Embodiment 2 In the first embodiment, an example has been described in which a plurality of subsystems are provided for each type of equipment. In the present embodiment, an example will be described in which a plurality of subsystems are provided for each installation area of equipment.
  • the installation area is defined by, for example, a building or a floor of the building.
  • the control system 1100 includes an electric energy setting device 100, a building system 310, a building system 320, and a building system 330.
  • the building system 310 includes a device control device 311, an air conditioning system 230, a lighting system 240, and a power measurement device 401.
  • the air conditioning system 230 includes an air conditioning control device 231, an air conditioner 232, and an air conditioner 233.
  • the lighting system 240 includes a lighting control device 241, a lighting device 242, and a lighting device 243.
  • the building system 320 includes a device control device 321, an air conditioning system 250, a lighting system 260, and a power measurement device 402.
  • the air conditioning system 250 includes an air conditioning control device 251, an air conditioner 252, and an air conditioner 253.
  • the lighting system 260 includes a lighting control device 261, a lighting device 262, and a lighting device 263.
  • the building system 330 includes a device control device 331, an air conditioning system (not shown), a lighting system (not shown), and a power measurement device 403.
  • the power setting device 100, the device control device 311, the device control device 321, and the device control device 331 are mutually connected via the communication network 630.
  • the communication network 630 is, for example, a wide area network provided in a specific area.
  • the device control device 311, the air conditioning system 230, the lighting system 240, and the power measurement device 401 are mutually connected via a communication network 621.
  • the communication network 621 is, for example, a wireless LAN built in a building.
  • the device control device 321, the air conditioning system 250, the lighting system 260, and the power measurement device 402 are mutually connected via a communication network 622.
  • the communication network 622 is, for example, a wireless LAN built in a building.
  • the building system 310, the building system 320, and the building system 330 are subsystems, and the device control device 311, the device control device 321, and the device control device 331 are control devices. Also in the present embodiment, the overall target power amount is specified by the reduction instruction. Next, the function of the power amount setting device 100 will be described with reference to FIG.
  • the power consumption receiving unit 104 receives, from the power measurement device 401, power consumption information indicating the identification information of the building system 310 and the power consumption of the building system 310.
  • the power consumption receiving unit 104 receives, from the power measurement device 402, power consumption information indicating the identification information of the building system 320 and the power consumption of the building system 320.
  • the power consumption receiving unit 104 receives, from the power measurement device 403, power consumption information indicating the identification information of the building system 330 and the power consumption of the building system 330.
  • the power setting unit 102 sets the individual power index value such that the larger the correlation coefficient between the individual power histories with other subsystems, the larger the individual power index value for each of the plurality of subsystems.
  • the individual power amount index value is a value representing an index of the magnitude of power consumption when a power consumption source centering on each subsystem is assumed. Further, the power amount setting unit 102 sets a value obtained by multiplying the maximum value among the individual power amount index values by a predetermined coefficient as the overall margin power amount. Then, the power amount setting unit 102 sets an individual target power amount based on the overall target power amount and the overall margin power amount.
  • the power setting unit 102 sets a value obtained by subtracting the individual margin power from the reference individual target power for each of the plurality of subsystems as the individual target power.
  • the reference individual target electric energy is a value obtained by multiplying the actual electric energy ratio, which is the ratio of the individual actual electric energy to the total actual electric energy, which is the total value of the individual actual electric energy for each of the subsystems, and the overall target electric energy. is there.
  • the individual surplus power is a value obtained by multiplying the index value ratio, which is the ratio of the individual power index value to the total power index value, which is the total value of the individual power index values for a plurality of subsystems, by the total surplus power. It is.
  • the individual power index value of the first subsystem among the plurality of subsystems is determined by the plurality of subsystems until all subsystems other than the first subsystem are selected as the second subsystem. This is the sum of the total value of the corrected power amount and the individual actual power amount of the first subsystem when the second subsystem is selected and the corrected power amount is obtained.
  • the corrected power amount is a product of a correlation coefficient between power consumption histories between the first subsystem and the second subsystem and an individual actual power amount of the second subsystem.
  • the control instruction transmitting unit 103 transmits, via the communication network 630, control instruction information for instructing to control the equipment based on the individual target power amounts set for the building system 310 to the equipment control device 311.
  • the control instruction transmitting unit 103 transmits, via the communication network 630, control instruction information for instructing to control the equipment based on the individual target power amounts set for the building system 320 to the equipment control device 321.
  • the control instruction transmitting unit 103 transmits, via the communication network 630, control instruction information for instructing to control the equipment based on the individual target electric energy set for the building system 330 to the equipment control device 331.
  • step S201 to step S205 is the same as the processing from step S101 to step S105, and a description thereof will be omitted.
  • step S206 the processor 11 calculates a corrected power amount. For example, the processor 11 calculates a corrected power amount for each subsystem based on the individual actual power amount and the correlation coefficient.
  • step S207 the processor 11 calculates an individual power amount index value (step S207). For example, the processor 11 calculates an individual power amount index value for the first subsystem based on the total value of the corrected power amounts and the individual actual power amount of the first subsystem.
  • step S208 specifies the maximum individual power amount index value (step S208).
  • step S208 the processor 11 calculates the total available power (step S209). For example, the processor 11 calculates the overall margin power based on the maximum individual power index value and a predetermined coefficient. After completing the process in step S209, the processor 11 calculates the individual margin power (step S210). For example, the processor 11 calculates the individual margin power amount based on the index value ratio which is the ratio of the individual power amount index value to the total power amount index value, and the overall margin power amount.
  • the processing from step S211 to step S213 is the same as the processing from step S111 to step S113, the description is omitted.
  • the average power consumption of the building system 310 is 7 kWh
  • the average power consumption of the building system 320 is 3 kWh
  • the average power consumption of the building system 330 is 2 kWh
  • the total target power consumption is 8 kWh.
  • the correlation coefficient between the building system 310 and the building system 320 is 0.7
  • the correlation coefficient between the building system 310 and the building system 330 is 0.0
  • the correlation coefficient between the building system 320 and the building system 330. Is 0.0. In the following calculations, approximate values are used as appropriate.
  • the maximum individual power index value is 6.10 kWh.
  • the overall surplus power is 0.61 kWh.
  • the average power consumption of the building system 310 is 7 kWh
  • the average power consumption of the building system 320 is 3 kWh
  • the average power consumption of the building system 330 is 2 kWh
  • the total target power consumption is 8 kWh.
  • the correlation coefficient between the building system 310 and the building system 320 is 0.2
  • the correlation coefficient between the building system 310 and the building system 330 is 0.0
  • the correlation between the building system 320 and the building system 330 A case where the number is 0.0 will be described.
  • the reference individual target power of the building system 310 is 4.7 kWh
  • the reference individual target power of the building system 320 is 2.0 kWh
  • the reference individual target power of the building system 330 is 1.3 kWh.
  • the maximum individual power index value is 5.10 kWh.
  • the total surplus electric energy is 0.51 kWh.
  • the correlation coefficient is processed continuously without being divided by the threshold value. Therefore, according to the present embodiment, an appropriate reduction in the amount of power can be expected.
  • the power setting unit 102 determines a phase relationship of the plurality of subsystems as a whole based on the correlation coefficient between the individual power histories among the plurality of subsystems and the actual power ratio in each of the plurality of subsystems. Find the overall correlation coefficient, which is a number.
  • the actual power consumption ratio is a ratio of the individual actual power consumption to the total actual power consumption that is the total value of the individual actual power consumptions that are the actual power consumption values of the plurality of subsystems.
  • Power amount setting section 102 sets a product of the overall correlation coefficient, the overall target power amount, and a predetermined coefficient as the overall margin power amount.
  • the power amount setting unit 102 sets an individual target power amount for each of a plurality of subsystems based on the overall target power amount and the overall surplus power amount.
  • the overall correlation coefficient is the phase of the individual energy histories between the first subsystem and each of the plurality of subsystems until all of the subsystems are selected as the first subsystem. This is the total value of the product when the product of the average value of the number of relations and the actual power consumption ratio of the first subsystem is obtained.
  • step S301 to step S305 is the same as the processing from step S201 to step S205, and a description thereof will be omitted.
  • step S305 the processor 11 calculates the total actual power amount (step S306). After completing the process in step S306, the processor 11 calculates the actual power amount ratio (step S307). After completing the process in step S307, the processor 11 calculates an overall correlation coefficient (step S308). After completing the process in step S308, the processor 11 calculates the total surplus power (step S309). After completing the process in step S309, the processor 11 calculates the individual margin power (step S310). Note that the processing from step S311 to step S313 is the same as the processing from step S211 to step S213, and a description thereof will be omitted.
  • the overall correlation coefficient is, for example, (correlation coefficient between building system 310 and building system 310 ⁇ power consumption rate of building system 310 + correlation coefficient between building system 310 and building system 320 ⁇ power consumption rate of building system 310). + Correlation coefficient between building system 310 and building system 330 x power consumption rate of building system 310 + correlation coefficient between building system 320 and building system 310 x power consumption rate of building system 320 + building system 320 and building system 320 X power consumption rate of building system 320 + correlation coefficient between building system 320 and building system 330 x power consumption rate of building system 320 + correlation coefficient between building system 330 and building system 310 x building system.
  • various amounts of power are set by the overall correlation coefficient.
  • the individual target power is set such that the larger the overall correlation coefficient is, the larger the total margin power and the individual margin power are. Therefore, according to the present embodiment, an appropriate reduction in the amount of power can be expected.
  • the power amount setting device 110 further includes an overall target power amount transmission unit 107.
  • the overall target power transmission unit corresponds to, for example, the overall target power transmission unit 107.
  • the reduction instruction receiving unit 101 receives reduction instruction information indicating a reduction instruction from the server 500.
  • the overall target power is not specified by this reduction instruction.
  • the power amount setting unit 102 sets the overall target power amount such that the larger the correlation coefficient between the individual power amount histories, which is the history of the power consumption amount for each of the plurality of subsystems, the greater the overall marginal power amount.
  • the overall target power transmission unit 107 transmits to the server 500 total target power information indicating the total target power set by the power setting unit 102.
  • the function of the overall target power transmission unit 107 is realized by, for example, cooperation between the processor 11 and the first communication interface 14.
  • the power setting unit 102 sets a first individual estimated power, which is an estimated power when a predetermined power saving control is performed, as an individual target power for each of the plurality of subsystems.
  • the power amount setting unit 102 selects a combination of subsystems in which the correlation coefficient between the individual power amount results is equal to or more than a predetermined threshold from a plurality of subsystems, and calculates the total value of the individual target power amounts in the selected combination.
  • a value obtained by multiplying the maximum value of the individual target power amounts for each of the plurality of subsystems by a predetermined coefficient is set as the overall surplus power amount.
  • the power amount setting unit 102 sets a value obtained by adding the total surplus power amount to the total value of the individual target power amounts in each of the plurality of subsystems as the total target power amount.
  • the processor 11 acquires power amount history information (step S401). After completing the process in step S401, the processor 11 calculates a first individual estimated power amount (step S402). When completing the process of step S402, the processor 11 sets the first individual estimated power amount as the individual target power amount (step S403). After completing the process in step S403, the processor 11 calculates the total value of the individual target power amounts for each of the plurality of subsystems (step S404). After completing the process in step S404, the processor 11 calculates a correlation coefficient (step S405). After completing the process in step S405, the processor 11 specifies a combination whose correlation coefficient is equal to or greater than a threshold (step S406).
  • the processor 11 calculates the total value of the individual target power amounts for each combination (step S407).
  • the processor 11 specifies the largest power consumption source (step S408).
  • the largest power consumption source is the power consumption source with the larger target power amount among the combination having the maximum individual target power amount and the subsystem having the maximum individual target power amount.
  • the target power amount is a total value of the individual target power amounts or the individual target power amount.
  • the processor 11 calculates the total margin power (step S409).
  • the total surplus power is the target power of the largest power consumption source.
  • step S410 the processor 11 calculates an overall target power amount (step S410).
  • the total target power amount is the sum of the total value of the individual target power amounts calculated in step S404 and the total surplus power amount calculated in step S409.
  • the processor 11 transmits the overall target power amount information to the server 500 (step S411).
  • the processor 11 transmits control instruction information to the control device (step S412).
  • This control instruction information is information that instructs to control the equipment based on the individual target power amount that is the first individual estimated power amount. That is, the control instruction information is information that instructs to control the equipment by the above-described power saving control.
  • the overall surplus power is set according to the correlation coefficient between the subsystems, and the overall target power is set based on the overall surplus power. Therefore, according to the present embodiment, it is expected that the amount of power can be appropriately reduced.
  • the power amount setting device 120 further includes the reduced power amount transmitting unit 108.
  • the reduced power transmission unit corresponds to, for example, the reduced power transmission unit 108.
  • the reduction instruction receiving unit 101 receives reduction instruction information indicating a reduction instruction from the server 500.
  • the total target power amount and the total target reduction power amount are not specified by this reduction instruction.
  • the power amount setting unit 102 sets the total target power reduction amount such that the larger the correlation coefficient between the individual power amount histories that are the power consumption histories of the plurality of subsystems, the smaller the overall target reduction power amount.
  • the overall target reduction power amount is a target value of the reduction amount of the power consumption amount of the plurality of subsystems as a whole.
  • the reduced power transmission unit 108 transmits to the server 500 reduced power information indicating the overall target reduced power set by the power setting unit 102.
  • the function of the reduced power transmission unit 108 is realized by, for example, cooperation between the processor 11 and the first communication interface 14.
  • the power amount setting unit 102 sets, as an individual target power amount, a first individual estimated power amount, which is an estimated power amount when a predetermined power saving control is performed, for each of the plurality of subsystems. Then, a value obtained by subtracting the first individual estimated power amount from the second individual estimated power amount, which is the estimated power amount in the case where the above is not performed, is set as the individual estimated reduced power amount.
  • the power amount setting unit 102 selects a combination of subsystems in which the correlation coefficient between the individual power amount results is equal to or greater than a predetermined threshold from a plurality of subsystems, and calculates the total value of the individual estimated reduced power amounts in the selected combination.
  • a value obtained by multiplying the maximum value of the individual estimated reduced power amounts for each of the plurality of subsystems by a predetermined coefficient is set as the overall surplus power amount.
  • the power amount setting unit 102 sets a value obtained by subtracting the total available power amount from the total value of the individual estimated reduced power amounts in each of the plurality of subsystems as the total target reduced power amount.
  • the processor 11 acquires power amount history information (step S501). After completing the process in step S501, the processor 11 calculates a first individual estimated power amount (step S502). After completing the process in step S502, the processor 11 calculates a second individual estimated power amount (step S503). When completing the process in step S503, the processor 11 calculates the individual estimated reduced power amount (step S504).
  • the first individual estimated power amount is an estimated power amount when power saving control predetermined for each subsystem is executed.
  • the first individual estimated power amount is estimated based on, for example, the power consumption amount in the past power saving control in which the environment such as the outside air temperature, the date, or the day of the week is similar.
  • the second individual estimated power amount is an estimated power amount when power saving control predetermined for each subsystem is not performed.
  • the second individual estimated power amount is estimated, for example, based on the power consumption amount during the past normal control in which the environment such as the outside air temperature, the date, or the day of the week is similar.
  • the individual estimated reduced power amount is a difference between the second individual estimated power amount and the first individual estimated power amount.
  • the processor 11 calculates the total value of the individual estimated power savings for each combination (step S507). After completing the process in step S507, the processor 11 specifies the largest power consumption source (step S508). After completing the process in step S508, the processor 11 calculates the total surplus power (step S509). After completing the process in step S509, the processor 11 calculates the total target power reduction amount (step S510). Upon completing the process in step S510, the processor 11 transmits the reduced power amount information to the server 500 (step S511). After completing the process in step S511, the processor 11 sets the first individual estimated power amount as the individual target power amount (step S512). Upon completing the process in step S512, the processor 11 transmits control instruction information to the control device (step S513).
  • the total surplus power is set according to the correlation coefficient between the subsystems, and the total target power and the total target reduction power are set based on the total surplus power.
  • the total target reduced power amount is set and notified to the server 500 such that the larger the correlation coefficient between the individual power histories of each subsystem is, the smaller the total target reduced power amount is. That is, when the power consumption cannot be reduced more than expected in a certain subsystem, the server 500 is notified of a smaller estimated reduction as the possibility that another subsystem cannot compensate for the reduction is higher. Therefore, according to the present embodiment, it is expected that the amount of power can be appropriately reduced.
  • the overall target power is specified by the reduction instruction.
  • the overall target power amount is responded has been described.
  • the total target reduction power amount is returned has been described.
  • whether or not the total target power amount or the total target reduced power amount is designated by the reduction instruction is arbitrary.
  • the reduction target does not specify the total target power amount or the total target reduction power amount, which of the total target power amount and the total target reduction power amount is to be responded is arbitrary.
  • the total target reduction power amount may be specified by the reduction instruction.
  • the higher the correlation between the power consumption amounts of the plurality of subsystems is, the larger the total surplus power amount is set.
  • the setting of the total surplus power is set to be large when the total value of the individual target powers is set smaller than the predetermined total target power, or the total of the predetermined individual target powers is set. This means that the overall target power amount is set to be larger than the value.
  • the higher the correlation between the power consumption amounts of a plurality of subsystems is, the smaller the total target reduction power amount is set.
  • Setting the total target reduction power amount to be smaller means that the total value of the individual target reduction power amounts is set to be larger than the predetermined total target reduction power amount, or that the predetermined individual target reduction amount is set. This means that the total target reduction power amount is set smaller than the total value of the power amounts. According to such a configuration, it is possible to reduce a risk that the user cannot respond to the reduction instruction while suppressing a decrease in user comfort or convenience.
  • the configuration of the system to which the power amount setting devices 100, 110, and 120 are applied is not limited to the configuration described in the embodiment 1-5.
  • the power measurement device 400 may be provided in each of the air conditioning system 210 and the lighting system 220.
  • the power measuring devices 401, 402, and 403 may be integrated into one power measuring device.
  • the power setting device 100, the building system 310, the building system 320, and the building system 330 may be connected to each other by the communication network 610.
  • the method of obtaining the individual target power amount from the overall target power amount is not limited to the configuration described in the embodiment 1-5.
  • the method of distributing the total surplus power to a plurality of subsystems does not have to be a method according to the actual power ratio.
  • coefficients used in various calculations can be adjusted as appropriate.
  • the power consumption when the power saving control is performed or the power consumption when the normal control is performed may be estimated without using the power history information.
  • these power consumptions may be estimated by a calculation formula defined by a power company or an aggregator. This calculation formula is, for example, a formula using the system configuration and the skeleton information as parameters.
  • the system configuration is defined, for example, by the number of equipment and the rated power of the equipment.
  • the skeleton information is, for example, information indicating the heat insulation performance of the wall of the floor on which the subsystem is constructed, the area of the floor, and the number of OA (Office Automation) devices.
  • the personal computer or the like can also function as the electric energy setting device 100 according to the present invention. It is possible.
  • the distribution method of such a program is arbitrary.
  • the program is stored and distributed on a computer-readable recording medium such as a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and a memory card. Or may be distributed via a communication network such as the Internet.
  • the present invention is applicable to a control system including a plurality of subsystems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

削減指示受付部(101)は、サーバ(500)から電力量の削減指示を受け付ける。電力量設定部(102)は、削減指示受付部(101)により削減指示が受け付けられた場合、複数のサブシステム毎の消費電力量の目標値である個別目標電力量の合計値が複数のサブシステム全体の消費電力量の目標値である全体目標電力量よりも小さく、且つ、複数のサブシステム毎の消費電力量同士の相関が高いほど個別目標電力量の合計値と全体目標電力量との差である全体余裕電力量が大きくなるように、複数のサブシステム毎に個別目標電力量を設定する。制御指示送信部(103)は、設定された個別目標電力量に基づいて設備機器を制御することを指示する制御指示情報を空調制御装置(211)と照明制御装置(221)とに送信する。

Description

電力量設定装置、電力量設定方法、及び、プログラム
 本発明は、電力量設定装置、電力量設定方法、及び、プログラムに関する。
 近年、電力の受給のバランスを保つ仕組みとして、デマンドレスポンスが検討されている。デマンドレスポンスは、需要家が電力事業者からの調整要求に応じて需要地における消費電力を調整する仕組みである。調整要求は、主に、需要地における消費電力を抑制することの要求である。調整要求は、例えば、需要地内において設備機器を制御する制御装置に通知される。
 例えば、特許文献1には、空調機及び照明機器などの複数種類の負荷設備を有する需要地において、デマンドレスポンスにより指定された消費可能上限電力値を超えないように各負荷設備を運用する技術が記載されている。特許文献1に記載された技術では、消費可能上限電力値を超えないように各負荷設備に分配電力を割り振り、割り振られた分配電力内で各負荷設備を運用する。
国際公開第2013/121700号
 特許文献1に記載された技術において、需要地における消費電力値が消費可能上限電力値を超えるリスクを減らす方法として、例えば、分配電力の合計値と消費可能上限電力値との間に設ける電力値の余裕を大きくする方法がある。この方法は、言い換えれば、分配電力に対応する分配電力量の合計値と消費可能上限電力値に対応する消費可能上限電力量との間に設ける電力量の余裕を大きくする方法である。しかしながら、電力量の余裕を大きくするほど、利便性又は快適性が低下する可能性が高くなる。このため、電力量の余裕を適切に設定し、電力量の削減指示に適切に応じる技術が望まれている。
 本発明は、上記問題に鑑みてなされたものであり、電力量の削減指示に適切に応じる電力量設定装置、電力量設定方法、及び、プログラムを提供することを目的とする。
 上記目的を達成するために、本発明に係る電力量設定装置は、
 それぞれが設備機器と前記設備機器を制御する制御装置とを備える複数のサブシステム全体に対する電力量の削減指示を受け付ける削減指示受付手段と、
 前記削減指示受付手段により前記削減指示が受け付けられた場合、前記複数のサブシステム毎の消費電力量の目標値である個別目標電力量の合計値が前記複数のサブシステム全体の消費電力量の目標値である全体目標電力量よりも小さく、且つ、前記複数のサブシステム毎の消費電力量同士の相関が高いほど前記個別目標電力量の前記合計値と前記全体目標電力量との差である全体余裕電力量が大きくなるように、前記複数のサブシステム毎に前記個別目標電力量を設定する電力量設定手段と、
 前記電力量設定手段により設定された前記個別目標電力量に基づいて前記設備機器を制御することを指示する制御指示情報を前記制御装置に送信する制御指示送信手段と、を備える。
 本発明では、個別目標電力量の合計値が全体目標電力量よりも小さく、且つ、複数のサブシステム毎の消費電力量同士の相関が高いほど個別目標電力量の合計値と全体目標電力量との差である全体余裕電力量が大きくなるように、個別目標電力量が設定される。従って、本発明によれば、電力量の削減指示に適切に応じることができる。
本発明の実施形態1に係る制御システムの構成図 本発明の実施形態1に係る電力量設定装置の構成図 本発明の実施形態1に係る電力量設定装置の機能構成図 電力量履歴情報を示す図 本発明の実施形態1に係る電力量設定装置が実行する電力量設定処理を示すフローチャート 本発明の実施形態2に係る制御システムの構成図 本発明の実施形態2に係る電力量設定装置の機能構成図 本発明の実施形態2に係る電力量設定装置が実行する電力量設定処理を示すフローチャート 本発明の実施形態3に係る電力量設定装置が実行する電力量設定処理を示すフローチャート 本発明の実施形態4に係る電力量設定装置の機能構成図 本発明の実施形態4に係る電力量設定装置が実行する電力量設定処理を示すフローチャート 本発明の実施形態5に係る電力量設定装置の機能構成図 本発明の実施形態5に係る電力量設定装置が実行する電力量設定処理を示すフローチャート
(実施形態1)
 まず、図1を参照して、本発明の実施形態1に係る制御システム1000の構成について説明する。制御システム1000は、例えば、設備機器と制御装置とを備えるサブシステムを複数個含むシステムである。図1に示すように、制御システム1000は、電力量設定装置100と、空調システム210と、照明システム220と、電力計測装置400と、を備える。空調システム210は、空調制御装置211と、空調機212と、空調機213と、を備える。照明システム220は、照明制御装置221と、照明機器222と、照明機器223と、を備える。電力量設定装置100とサーバ500とは、通信ネットワーク610を介して相互に接続される。通信ネットワーク610は、例えば、インターネットである。電力量設定装置100と空調制御装置211と照明制御装置221とは、通信ネットワーク620を介して相互に接続される。通信ネットワーク620は、例えば、ビル内に構築された無線LAN(Local Area Network)である。
 電力量設定装置100は、制御システム1000全体の消費電力量である総消費電力量の削減指示を受け付けた場合に、総消費電力量が適切に削減されるように、各種の電力量を設定する装置である。総消費電力量が適切に削減されることは、例えば、総消費電力量の削減量が適切な範囲に収まることを意味する。なお、総消費電力量の削減量が多すぎると快適性又は利便性が低下すると考えられ、総消費電力量の削減量が少なすぎると削減指示に反すると考えられる。本実施形態における消費電力量は、基本的に、予め定められた時間(例えば、1時間、又は30分)当たりの消費電力量である。
 本実施形態では、電力量設定装置100は、全体目標電力量を指定するデマンドレスポンスによる削減指示をサーバ500から受け付けるものとする。全体目標電力量は、制御システム1000全体の消費電力量の目標値、つまり、制御システム1000が備える複数のサブシステム全体の消費電力量の目標値である。ここで、電力量設定装置100は、個別目標電力量の合計値が全体目標電力量よりも小さくなるように、個別目標電力量を設定する。個別目標電力量は、複数のサブシステム毎の消費電力量の目標値である。このように、電力量設定装置100は、何らかの理由で特定のサブシステムの消費電力量が個別目標電力量を超えても、直ちに、制御システム1000全体の消費電力量が全体目標電力量を超えないように、電力量に余裕を持たせる。
 また、電力量設定装置100は、複数のサブシステム毎の消費電力量同士の相関が高いほど全体余裕電力量が大きくなるようにする。全体余裕電力量は、個別目標電力量の合計値と全体目標電力量との差である。具体的には、個別電力量履歴同士の相関係数が大きいほど全体余裕電力量が大きくなるようにする。個別電力量履歴は、複数のサブシステム毎の消費電力量の履歴であり、複数のサブシステム毎の消費電力量の測定値の時系列データである。このように、消費電力量に関して、複数のサブシステム間の相関が高いほど、余裕幅を大きくする。この理由は、相関が高いほど、複数のサブシステムの消費電力量が連動しやすく、制御システム1000全体の消費電力量が全体目標電力量を超えやすいためである。
 以下、図2を参照して、電力量設定装置100の構成について説明する。図2に示すように、電力量設定装置100は、プロセッサ11と、フラッシュメモリ12と、タッチスクリーン13と、第1通信インターフェース14と、第2通信インターフェース15と、を備える。プロセッサ11は、電力量設定装置100の全体の動作を制御する。プロセッサ11は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、RTC(Real Time Clock)などを内蔵したCPU(Central Processing Unit)である。なお、CPUは、例えば、ROMに格納されている基本プログラムに従って動作し、RAMをワークエリアとして使用する。
 フラッシュメモリ12は、各種の情報を記憶する不揮発性メモリである。フラッシュメモリ12は、例えば、プロセッサ11が実行するプログラムを記憶する。タッチスクリーン13は、ユーザによりなされた操作を検知し、検知の結果を示す信号をプロセッサ11に供給する。また、タッチスクリーン13は、プロセッサ11による制御に従って、情報を表示する。第1通信インターフェース14は、電力量設定装置100を通信ネットワーク610に接続するための通信インターフェースである。第2通信インターフェース15は、電力量設定装置100を通信ネットワーク620に接続するための通信インターフェースである。
 空調制御装置211は、空調機212と空調機213とを制御する。空調制御装置211は、電力量設定装置100から制御指示情報を受信した場合、空調システム210の消費電力量が個別目標電力量になるように、空調機212と空調機213とを制御する。制御指示情報は、個別目標電力量を含む情報であり、個別目標電力量に基づいて設備機器を制御することを指示する情報である。空調システム210の消費電力量は、基本的に、空調機212の消費電力量と空調機213の消費電力量との合計値である。空調制御装置211は、通信ネットワーク620に接続する機能を有する。
 照明制御装置221は、照明機器222と照明機器223とを制御する。照明制御装置221は、電力量設定装置100から制御指示情報を受信した場合、照明システム220の消費電力量が個別目標電力量になるように照明機器222と照明機器223とを制御する。照明システム220の消費電力量は、基本的に、照明機器222の消費電力量と照明機器223の消費電力量との合計値である。照明制御装置221は、通信ネットワーク620に接続する機能を有する。
 電力計測装置400は、空調システム210の消費電力を予め定められた周期で計測し、空調システム210の一定期間毎の消費電力量を計測する。また、電力計測装置400は、照明システム220の消費電力を予め定められた周期で計測し、照明システム220の一定期間毎の消費電力量を計測する。電力計測装置400は、空調システム210の識別情報と空調システム210の消費電力量とを示す消費電力量情報を電力量設定装置100に送信する。また、電力計測装置400は、照明システム220の識別情報と照明システム220の消費電力量とを示す消費電力量情報を電力量設定装置100に送信する。電力計測装置400は、通信ネットワーク620に接続する機能を有する。電力計測装置400は、例えば、カレントトランスを備える。
 サーバ500は、電力需給状況に基づいて、需要家に電力量の削減を指示する。例えば、サーバ500は、通信ネットワーク610を介して、全体目標電力量を指定する電力量の削減指示を示す削減指示情報を電力量設定装置100に送信する。サーバ500は、例えば、電力会社又はアグリゲータが有するサーバである。サーバ500は、通信ネットワーク610に接続する機能を有する。
 次に、図3を参照して、電力量設定装置100の機能について説明する。図3に示すように、電力量設定装置100は、機能的には、削減指示受付部101と、電力量設定部102と、制御指示送信部103と、消費電力量受信部104と、電力量履歴記憶部105と、相関係数算出部106と、を備える。削減指示受付手段は、例えば、削減指示受付部101に対応する。電力量設定手段は、例えば、電力量設定部102に対応する。制御指示送信手段は、例えば、制御指示送信部103に対応する。消費電力量受信手段は、例えば、消費電力量受信部104に対応する。電力量履歴記憶手段は、例えば、電力量履歴記憶部105に対応する。相関係数算出手段は、例えば、相関係数算出部106に対応する。
 削減指示受付部101は、それぞれが設備機器と設備機器を制御する制御装置とを備える複数のサブシステム全体に対する電力量の削減指示を受け付ける。空調システム210と照明システム220とは、サブシステムである。空調機212と空調機213と照明機器222と照明機器223とは、設備機器である。空調制御装置211と照明制御装置221とは、制御装置である。削減指示受付部101は、例えば、サーバ500から電力量の削減指示を受け付ける。つまり、削減指示受付部101は、サーバ500から削減指示情報を受信する。なお、全体目標電力量は、削減指示により指定される。削減指示受付部101の機能は、例えば、第1通信インターフェース14の機能、又は、タッチスクリーン13の機能により実現される。
 電力量設定部102は、削減指示受付部101により削減指示が受け付けられた場合、第1の条件と第2の条件とを満たすように、複数のサブシステム毎に個別目標電力量を設定する。第1の条件は、個別目標電力量の合計値が全体目標電力量よりも小さいことである。第2の条件は、複数のサブシステム毎の消費電力量同士の相関が高いほど全体余裕電力量が大きくなることである。電力量設定部102の機能は、例えば、プロセッサ11の機能により実現される。
 制御指示送信部103は、電力量設定部102により設定された個別目標電力量に基づいて設備機器を制御することを指示する制御指示情報を制御装置に送信する。つまり、制御指示送信部103は、空調システム210について設定された個別目標電力量に基づいて空調機212と空調機213とを制御することを指示する制御指示情報を、通信ネットワーク620を介して空調制御装置211に送信する。また、制御指示送信部103は、照明システム220について設定された個別目標電力量に基づいて照明機器222と照明機器223とを制御することを指示する制御指示情報を、通信ネットワーク620を介して照明制御装置221に送信する。制御指示送信部103の機能は、例えば、プロセッサ11と第2通信インターフェース15とが協働することにより実現される。
 ここで、全体目標電力量は、上記削減指示により指定される。電力量設定部102は、複数のサブシステム毎の消費電力量の履歴である個別電力量履歴同士の相関係数が大きいほど個別目標電力量の合計値が小さくなるように、複数のサブシステム毎の個別目標電力量を設定する。
 具体的には、電力量設定部102は、複数のサブシステムのうち個別電力量履歴同士の相関係数が予め定められた閾値以上であるサブシステムの組み合わせにおける個別実績電力量の合計値と、複数のサブシステム毎の個別実績電力量とのうちの最大値に予め定められた係数を乗じた値を全体余裕電力量として設定する。個別実績電力量は、複数のサブシステム毎の消費電力量の実績値である。本実施形態では、実績値は、平均値であるが、実績値は、例えば、中央値、最大値、最頻値、又は、最小値などであってもよい。電力量設定部102は、相関係数が閾値以上であるサブシステムの組み合わせと複数のサブシステムのそれぞれとを電力消費源としてみなし、最大の電力消費源を特定する。最大の電力消費源は、実績電力量が最大である電力消費源である。実績電力量は、個別実績電力量の合計値又は個別実績電力量である。そして、電力量設定部102は、最大の電力消費源における実績電力量に、予め定められた係数を乗じた値を全体余裕電力量として設定する。そして、電力量設定部102は、全体目標電力量と全体余裕電力量とから個別目標電力量を設定する。
 ここで、電力量設定部102は、複数のサブシステムのそれぞれについて、基準個別目標電力量から個別余裕電力量を減じた値を、個別目標電力量として設定する。基準個別目標電力量は、実績電力量割合と全体目標電力量とを乗じた値である。実績電力量割合は、複数のサブシステム毎の個別実績電力量の合計値である合計実績電力量に対する個別実績電力量の割合である。
 消費電力量受信部104は、複数のサブシステム毎に消費電力量を計測する電力計測装置400から、サブシステムの識別情報と計測された消費電力量とを示す消費電力量情報を受信する。消費電力量受信部104の機能は、例えば、第2通信インターフェース15の機能により実現される。
 電力量履歴記憶部105は、消費電力量受信部104により受信された消費電力量情報に基づいて、電力量履歴情報を生成し、生成した電力量履歴情報を記憶する。電力量履歴情報は、複数のサブシステム毎に、直近の予め定められた期間における消費電力量の履歴である個別電力量履歴を示す情報である。電力量履歴記憶部105の機能は、例えば、プロセッサ11とフラッシュメモリ12とが協働することにより実現される。
 図4を参照して、電力量履歴情報について説明する。電力量履歴情報は、直近の予め定められた期間内における、予め定められた長さの期間毎の消費電力量を、サブシステム毎に示す情報である。図4には、直近の1ヶ月間における30分毎の空調システム210の消費電力量である個別電力量履歴が、Wa1、Wa2、・・・Wa1440であり、直近の1ヶ月間における30分毎の照明システム220の消費電力量である個別電力量履歴が、Wb1、Wb2、・・・Wb1440であることを示している。
 相関係数算出部106は、電力量履歴記憶部105に記憶された電力量履歴情報に基づいて、個別電力量履歴同士の相関係数を求める。相関係数算出部106の機能は、例えば、プロセッサ11の機能により実現される。
 空調システム210の消費電力量の時系列データである第1個別電力量履歴と、照明システム220の消費電力量の時系列データである第2個別電力量履歴とが、n個の要素を含む場合を想定する。この場合、相関係数であるrは、例えば、第1個別電力量履歴に含まれるi番目の要素をx、第2個別電力量履歴に含まれるi番目の要素をy、第1個別電力量履歴に含まれるn個の要素の平均値をm、第2個別電力量履歴に含まれるn個の要素の平均値をmとして、式(1)により表すことができる。
Figure JPOXMLDOC01-appb-M000001
 なお、本実施形態では、複数のサブシステムは、設備機器の種類毎に設けられる。つまり、設備機器の種類が空調機であるサブシステムとして空調システム210が設けられ、設備機器の種類が照明機器であるサブシステムとして照明システム220が設けられる。
 次に、図5のフローチャートを参照して、電力量設定装置100が実行する電力量設定処理について説明する。電力量設定処理は、例えば、電力量設定装置100がサーバ500から削減指示情報を受信したことに応答して実行される。
 まず、プロセッサ11は、全体目標電力量を取得する(ステップS101)。例えば、プロセッサ11は、削減指示情報により指定された全体目標電力量を取得する。プロセッサ11は、ステップS101の処理を完了すると、電力量履歴情報を取得する(ステップS102)。例えば、プロセッサ11は、フラッシュメモリ12に記憶された電力量履歴情報を取得する。プロセッサ11は、ステップS102の処理を完了すると、個別実績電力量を算出する(ステップS103)。例えば、プロセッサ11は、電力量履歴情報に基づいて個別実績電力量を求める。プロセッサ11は、ステップS103の処理を完了すると、基準個別目標電力量を算出する(ステップS104)。例えば、プロセッサ11は、個別実績電力量から合計実績電力量を求め、合計実績電力量と個別実績電力量とから実績電力量割合を求め、実績電力量割合と全体目標電力量とを乗じることにより基準個別目標電力量を求める。
 プロセッサ11は、ステップS104の処理を完了すると、相関係数を算出する(ステップS105)。例えば、プロセッサ11は、電力量履歴情報に基づいて、複数のサブシステムに含まれる全ての2つのサブシステムの組み合わせについて、個別電力量履歴同士の相関係数を算出する。プロセッサ11は、ステップS105の処理を完了すると、相関係数が閾値以上である組み合わせを特定する(ステップS106)。この組み合わせは、2つ以上のサブシステムの組み合わせである。この閾値は、例えば、0.5である。
 プロセッサ11は、ステップS106の処理を完了すると、組み合わせ毎に個別実績電力量の合計値を算出する(ステップS107)。プロセッサ11は、ステップS107の処理を完了すると、最大の電力消費源を特定する(ステップS108)。例えば、プロセッサ11、個別実績電力量の合計値が最大である組み合わせと個別実績電力量が最大であるサブシステムとのうち実績電力量が大きい方の電力消費源を特定する。実績電力量は、個別実績電力量の合計値又は個別実績電力量である。プロセッサ11は、ステップS108の処理を完了すると、全体余裕電力量を算出する(ステップS109)。例えば、プロセッサ11は、最大の電力消費源における実績電力量に予め定められた係数を乗じた値を全体余裕電力量として設定する。この係数は、例えば、0.1である。
 プロセッサ11は、ステップS109の処理を完了すると、個別余裕電力量を算出する(ステップS110)。例えば、プロセッサ11は、サブシステム毎に、実績電力量割合と全体余裕電力量とを乗じた値を個別余裕電力量として算出する。プロセッサ11は、ステップS110の処理を完了すると、個別目標電力量を算出する(ステップS111)。例えば、プロセッサ11は、基準個別目標電力量から個別余裕電力量を減じた値を個別目標電力量として算出する。
 プロセッサ11は、ステップS111の処理を完了すると、サブシステム毎に削減率を算出する(ステップS112)。例えば、プロセッサ11は、平均消費電力量と個別目標電力量との差を平均消費電力量で除算した値を削減率として算出する。プロセッサ11は、例えば、電力量履歴情報に基づいて、平均消費電力量を求めることができる。なお、個別実績電力量は、この平均消費電力量とすることが好適である。
 プロセッサ11は、ステップS112の処理を完了すると、制御指示情報を制御装置に送信する(ステップS113)。例えば、プロセッサ11は、個別目標電力量に基づいて設備機器を制御することを指示する制御指示情報を空調制御装置211と照明制御装置221とに送信する。なお、個別目標電力量に基づいて設備機器を制御することは、基本的に、削減率に基づいて設備機器を制御することと同義である。
 例えば、空調システム210が冷房運転している場合、削減率が0%~30%の場合に設定温度を2度上げ、削減率が31%~50%の場合に冷房能力の上限を50%に抑え、削減率が51%~80%の場合に冷房運転に代えて送風運転を実行し、削減率が81%~100%の場合に運転を停止する。プロセッサ11は、ステップS113の処理を完了すると、電力量設定処理を完了する。
 以下、空調システム210の平均消費電力量が7kWhであり、照明システム220の平均消費電力量が3kWhであり、全体目標電力量が8kWhであり、空調システム210と照明システム220との個別電力量履歴同士の相関係数(以下、適宜、単に「相関係数」という。)が0.7である場合について説明する。
 この場合、空調システム210の基準個別目標電力量は8kWh×7kWh/(7kWh+3kWh)=5.6kWhとなり、照明システム220の基準個別目標電力量は8kWh×3kWh/(7kWh+3kWh)=2.4kWhとなる。そして、空調システム210と照明システム220との組み合わせが最大の電力消費源となる。そして、最大の電力消費源の平均消費電力量は5.6kWh+2.4kWh=8.0kWhとなる。ここで、係数を0.1とすると、全体余裕電力量は、0.8kWhとなる。また、空調システム210の個別余裕電力量は0.8kWh×7kWh/(7kWh+3kWh)=0.56kWhとなり、照明システム220の個別余裕電力量は0.8kWh×3kWh/(7kWh+3kWh)=0.24kWhとなる。
 そして、空調システム210の削減量は、7kWh-(5.6kWh-0.56kWh)=1.96kWhとなる。空調システム210の削減率は、1.96kWh/7kW=28%となる。照明システム220の削減量は、3kWh-(2.4kWh-0.24kWh)=0.84kWhとなる。照明システム220の削減率は、0.84kWh/3kW=28%となる。
 次に、空調システム210の平均消費電力量が7kWhであり、照明システム220の平均消費電力量が3kWhであり、全体目標電力量が8kWhであり、空調システム210と照明システム220との相関係数が0.2である場合について説明する。
 この場合、空調システム210の基準個別目標電力量は5.6kWhとなり、照明システム220の基準個別目標電力量は2.4kWhとなる。そして、空調システム210が最大の電力消費源となる。そして、最大の電力消費源の平均消費電力量は5.6kWhとなる。ここで、係数を0.1とすると、全体余裕電力量は、0.56kWhとなる。また、空調システム210の個別余裕電力量は0.56kWh×7kWh/(7kWh+3kWh)=0.392kWhとなり、照明システム220の個別余裕電力量は0.56kWh×3kWh/(7kWh+3kWh)=0.168kWhとなる。
 そして、空調システム210の削減量は、7kWh-(5.6kWh-0.392kWh)=1.792kWhとなる。空調システム210の削減率は、1.792kWh/7kW=25.6%となる。照明システム220の削減量は、3kWh-(2.4kWh-0.168kWh)=0.768kWhとなる。照明システム220の削減率は、0.768kWh/3kW=25.6%となる。
 以上説明したように、本実施形態では、サブシステム間で消費電力履歴の相関が高いほど、電力量の余裕が大きく設定される。具体的には、本実施形態では、全体目標電力量が削減指示により指定され、複数のサブシステム毎の個別電力量履歴同士の相関係数が大きいほど個別目標電力量の合計値が小さくなるように、複数のサブシステム毎の個別目標電力量が設定される。従って、本実施形態によれば、適切に、電力量を削減することができる。
(実施形態2)
 実施形態1では、複数のサブシステムが、設備機器の種類毎に設けられる例について説明した。本実施形態では、複数のサブシステムが、設備機器の設置領域毎に設けられる例について説明する。この設置領域は、例えば、ビル又はビルのフロアにより定義される。
 まず、図6を参照して、本発明の実施形態2に係る制御システム1100の構成について説明する。図6に示すように、制御システム1100は、電力量設定装置100と、ビルシステム310と、ビルシステム320と、ビルシステム330と、を備える。ビルシステム310は、機器制御装置311と、空調システム230と、照明システム240と、電力計測装置401と、を備える。空調システム230は、空調制御装置231と、空調機232と、空調機233と、を備える。照明システム240は、照明制御装置241と、照明機器242と、照明機器243と、を備える。
 ビルシステム320は、機器制御装置321と、空調システム250と、照明システム260と、電力計測装置402と、を備える。空調システム250は、空調制御装置251と、空調機252と、空調機253と、を備える。照明システム260は、照明制御装置261と、照明機器262と、照明機器263と、を備える。ビルシステム330は、機器制御装置331と、図示しない空調システムと、図示しない照明システムと、電力計測装置403と、を備える。
 電力量設定装置100と機器制御装置311と機器制御装置321と機器制御装置331とは、通信ネットワーク630を介して相互に接続される。通信ネットワーク630は、例えば、特定のエリアに設けられた広域ネットワークである。機器制御装置311と空調システム230と照明システム240と電力計測装置401とは、通信ネットワーク621を介して相互に接続される。通信ネットワーク621は、例えば、ビル内に構築された無線LANである。機器制御装置321と空調システム250と照明システム260と電力計測装置402とは、通信ネットワーク622を介して相互に接続される。通信ネットワーク622は、例えば、ビル内に構築された無線LANである。
 本実施形態では、ビルシステム310とビルシステム320とビルシステム330とがサブシステムであり、機器制御装置311と機器制御装置321と機器制御装置331とが制御装置である。本実施形態においても、全体目標電力量は、削減指示により指定される。次に、図7を参照して、電力量設定装置100の機能について説明する。
 消費電力量受信部104は、電力計測装置401から、ビルシステム310の識別情報とビルシステム310の消費電力量とを示す消費電力量情報を受信する。消費電力量受信部104は、電力計測装置402から、ビルシステム320の識別情報とビルシステム320の消費電力量とを示す消費電力量情報を受信する。消費電力量受信部104は、電力計測装置403から、ビルシステム330の識別情報とビルシステム330の消費電力量とを示す消費電力量情報を受信する。
 電力量設定部102は、複数のサブシステムのそれぞれについて、他のサブシステムとの間で個別電力量履歴同士の相関係数が大きいほど個別電力量指標値が大きくなるように個別電力量指標値を設定する。個別電力量指標値は、各サブシステムを中心とする電力消費源を想定した場合における消費電力量の大きさの指標を表す値である。また、電力量設定部102は、個別電力量指標値のうち最大値に予め定められた係数を乗じた値を全体余裕電力量として設定する。そして、電力量設定部102は、全体目標電力量と全体余裕電力量とから個別目標電力量を設定する。
 また、電力量設定部102は、複数のサブシステムのそれぞれについて、基準個別目標電力量から個別余裕電力量を減じた値を、個別目標電力量として設定する。基準個別目標電力量は、複数のサブシステム毎の個別実績電力量の合計値である合計実績電力量に対する個別実績電力量の割合である実績電力量割合と全体目標電力量とを乗じた値である。個別余裕電力量は、複数のサブシステム毎の個別電力量指標値の合計値である合計電力量指標値に対する個別電力量指標値の割合である指標値割合と全体余裕電力量とを乗じた値である。
 ここで、複数のサブシステムのうち第1のサブシステムの個別電力量指標値は、第1のサブシステム以外の全てのサブシステムが第2のサブシステムとして選択されるまで、複数のサブシステムから第2のサブシステムを選択するとともに補正電力量を求めた場合における、補正電力量の合計値と第1のサブシステムの個別実績電力量との和である。補正電力量は、第1のサブシステムと第2のサブシステムとの間における消費電力量履歴同士の相関係数と第2のサブシステムの個別実績電力量との積である。
 制御指示送信部103は、ビルシステム310について設定された個別目標電力量に基づいて設備機器を制御することを指示する制御指示情報を、通信ネットワーク630を介して機器制御装置311に送信する。制御指示送信部103は、ビルシステム320について設定された個別目標電力量に基づいて設備機器を制御することを指示する制御指示情報を、通信ネットワーク630を介して機器制御装置321に送信する。制御指示送信部103は、ビルシステム330について設定された個別目標電力量に基づいて設備機器を制御することを指示する制御指示情報を、通信ネットワーク630を介して機器制御装置331に送信する。
 次に、図8のフローチャートを参照して、電力量設定装置100が実行する電力量設定処理について説明する。なお、ステップS201からステップS205までの処理は、ステップS101からステップS105までの処理と同様であるため、説明を省略する。
 プロセッサ11は、ステップS205の処理を完了すると、補正電力量を算出する(ステップS206)。例えば、プロセッサ11は、サブシステム毎に、個別実績電力量と相関係数とに基づいて、補正電力量を算出する。プロセッサ11は、ステップS206の処理を完了すると、個別電力量指標値を算出する(ステップS207)。例えば、プロセッサ11は、第1のサブシステムについて、補正電力量の合計値と第1のサブシステムの個別実績電力量とに基づいて、個別電力量指標値を算出する。プロセッサ11は、ステップS207の処理を完了すると、最大の個別電力量指標値を特定する(ステップS208)。
 プロセッサ11は、ステップS208の処理を完了すると、全体余裕電力量を算出する(ステップS209)。例えば、プロセッサ11は、最大の個別電力量指標値と予め定められた係数とに基づいて、全体余裕電力量を算出する。プロセッサ11は、ステップS209の処理を完了すると、個別余裕電力量を算出する(ステップS210)。例えば、プロセッサ11は、合計電力量指標値に対する個別電力量指標値の割合である指標値割合と、全体余裕電力量とに基づいて、個別余裕電力量を算出する。以下、ステップS211からステップS213までの処理は、ステップS111からステップS113までの処理と同様であるため、説明を省略する。
 以下、ビルシステム310の平均消費電力量が7kWhであり、ビルシステム320の平均消費電力量が3kWhであり、ビルシステム330の平均消費電力量が2kWhであり、全体目標電力量が8kWhであり、ビルシステム310とビルシステム320との相関係数が0.7であり、ビルシステム310とビルシステム330との相関係数が0.0であり、ビルシステム320とビルシステム330との相関係数が0.0である場合について説明する。以下の計算においては、適宜、概算値を用いる。
 この場合、ビルシステム310の基準個別目標電力量は8kWh×7kWh/(7kWh+3kWh+2kWh)=4.7kWhとなり、ビルシステム320の基準個別目標電力量は8kWh×3kWh/(7kWh+3kWh+2kWh)=2.0kWhとなり、ビルシステム330の基準個別目標電力量は8kWh×2kWh/(7kWh+3kWh+2kWh)=1.3kWhとなる。ビルシステム310の個別電力量指標値は、4.7kWh+0.7×2.0kWh+0.0×1.3kWh=6.10kWhとなる。ビルシステム320の個別電力量指標値は、2.0kWh+0.7×4.7kWh+0.0×1.3kWh=5.29kWhとなる。ビルシステム330の個別電力量指標値は、1.3kWh+0.0×2.0kWh+0.0×4.7kWh=1.30kWhとなる。
 最大の個別電力量指標値は6.10kWhとなる。ここで、係数を0.1とすると、全体余裕電力量は、0.61kWhとなる。ビルシステム310の個別余裕電力量は0.61kWh×6.1kWh/(6.1kWh+5.29kWh+1.3kWh)=0.29kWhとなり、ビルシステム320の個別余裕電力量は0.61kWh×5.29kWh/(6.1kWh+5.29kWh+1.3kWh)=0.26kWhとなり、ビルシステム330の個別余裕電力量は0.61kWh×1.3kWh/(6.1kWh+5.29kWh+1.3kWh)=0.06kWhとなる。ビルシステム310の削減率は、(7kWh-(4.7kWh-0.29kWh))/7kWh=37.0%となる。ビルシステム320の削減率は、(3kWh-(2.0kWh-0.26kWh))/3kWh=42.0%となる。ビルシステム330の削減率は、(2kWh-(1.3kWh-0.06kWh))/2kWh=38.0%となる。
 次に、ビルシステム310の平均消費電力量が7kWhであり、ビルシステム320の平均消費電力量が3kWhであり、ビルシステム330の平均消費電力量が2kWhであり、全体目標電力量が8kWhであり、ビルシステム310とビルシステム320との相関係数が0.2であり、ビルシステム310とビルシステム330との相関係数が0.0であり、ビルシステム320とビルシステム330との相関係数が0.0である場合について説明する。
 この場合、ビルシステム310の基準個別目標電力量は4.7kWhとなり、ビルシステム320の基準個別目標電力量は2.0kWhとなり、ビルシステム330の基準個別目標電力量は1.3kWhとなる。ビルシステム310の個別電力量指標値は、4.7kWh+0.2×2.0kWh+0.0×1.3kWh=5.10kWhとなる。ビルシステム320の個別電力量指標値は、2.0kWh+0.2×4.7kWh+0.0×1.3kWh=2.94kWhとなる。ビルシステム330の個別電力量指標値は、1.3kWh+0.0×2.0kWh+0.0×4.7kWh=1.30kWhとなる。
 最大の個別電力量指標値は5.10kWhとなる。ここで、係数を0.1とすると、全体余裕電力量は、0.51kWhとなる。ビルシステム310の個別余裕電力量は0.51kWh×5.10kWh/(5.10kWh+2.94kWh+1.30kWh)=0.28kWhとなり、ビルシステム320の個別余裕電力量は0.51kWh×2.94kWh/(5.10kWh+2.94kWh+1.30kWh)=0.16kWhとなり、ビルシステム330の個別余裕電力量は0.51kWh×1.30kWh/(5.10kWh+2.94kWh+1.30kWh)=0.07kWhとなる。ビルシステム310の削減率は、(7kWh-(4.7kWh-0.28kWh))/7kWh=36.8%となる。ビルシステム320の削減率は、(3kWh-(2.0kWh-0.16kWh))/3kWh=38.6%となる。ビルシステム330の削減率は、(2kWh-(1.3kWh-0.07kWh))/2kWh=38.5%となる。
 本実施形態では、相関係数が閾値で切り分けられず連続的に処理される。従って、本実施形態によれば、適切な電力量の削減が期待できる。
(実施形態3)
 本実施形態では、全体相関係数という概念を用いて、各種の電力量が設定される例について説明する。
 電力量設定部102は、複数のサブシステム間における個別電力量履歴同士の相関係数と、複数のサブシステムのそれぞれにおける実績電力量割合と、に基づいて、複数のサブシステム全体としての相関係数である全体相関係数を求める。実績電力量割合は、複数のサブシステム毎の消費電力量の実績値である個別実績電力量の合計値である合計実績電力量に対する個別実績電力量の割合である。電力量設定部102は、全体相関係数と全体目標電力量と予め定められた係数との積を全体余裕電力量として設定する。電力量設定部102は、全体目標電力量と全体余裕電力量とから複数のサブシステム毎の個別目標電力量を設定する。
 全体相関係数は、複数のサブシステムから全てのサブシステムが第1のサブシステムとして選択されるまで、第1のサブシステムと複数のサブシステムのそれぞれとの間における個別電力量履歴同士の相関係数の平均値と第1のサブシステムの実績電力量割合との積を求めた場合における、積の合計値である。
 次に、図9のフローチャートを参照して、電力量設定装置100が実行する電力量設定処理について説明する。なお、ステップS301からステップS305までの処理は、ステップS201からステップS205までの処理と同様であるため、説明を省略する。
 プロセッサ11は、ステップS305の処理を完了すると、合計実績電力量を算出する(ステップS306)。プロセッサ11は、ステップS306の処理を完了すると、実績電力量割合を算出する(ステップS307)。プロセッサ11は、ステップS307の処理を完了すると、全体相関係数を算出する(ステップS308)。プロセッサ11は、ステップS308の処理を完了すると、全体余裕電力量を算出する(ステップS309)。プロセッサ11は、ステップS309の処理を完了すると、個別余裕電力量を算出する(ステップS310)。なお、ステップS311からステップS313までの処理は、ステップS211からステップS213までの処理と同様であるため、説明を省略する。
 全体相関係数は、例えば、(ビルシステム310とビルシステム310との相関係数×ビルシステム310の消費電力率+ビルシステム310とビルシステム320との相関係数×ビルシステム310の消費電力率+ビルシステム310とビルシステム330との相関係数×ビルシステム310の消費電力率+ビルシステム320とビルシステム310との相関係数×ビルシステム320の消費電力率+ビルシステム320とビルシステム320との相関係数×ビルシステム320の消費電力率+ビルシステム320とビルシステム330との相関係数×ビルシステム320の消費電力率+ビルシステム330とビルシステム310との相関係数×ビルシステム330の消費電力率+ビルシステム330とビルシステム320との相関係数×ビルシステム330の消費電力率+ビルシステム330とビルシステム330との相関係数×ビルシステム330の消費電力率)/サブシステムの個数により定義される。
 本実施形態では、全体相関係数により、各種の電力量が設定される。具体的には、全体相関係数が大きいほど、全体余裕電力量と個別余裕電力量とが大きくなるように、個別目標電力量が設定される。従って、本実施形態によれば、適切な電力量の削減が期待できる。
(実施形態4)
 実施形態1では、削減指示により全体目標電力量が指定される例について説明した。本実施形態では、削減指示により全体目標電力量が指定されない例について説明する。つまり、本実施形態では、サブシステム間の相関係数に応じた全体余裕電力量を設定し、この全体余裕電力量に基づいて全体目標電力量を設定する例について説明する。
 まず、図10を参照して、電力量設定装置110の機能について説明する。電力量設定装置110は、全体目標電力量送信部107を更に備える。全体目標電力量送信手段は、例えば、全体目標電力量送信部107に対応する。
 削減指示受付部101は、サーバ500から削減指示を示す削減指示情報を受信する。全体目標電力量は、この削減指示により指定されない。電力量設定部102は、複数のサブシステム毎の消費電力量の履歴である個別電力量履歴同士の相関係数が大きいほど全体余裕電力量が大きくなるように、全体目標電力量を設定する。
 全体目標電力量送信部107は、電力量設定部102により設定された全体目標電力量を示す全体目標電力量情報をサーバ500に送信する。全体目標電力量送信部107の機能は、例えば、プロセッサ11と第1通信インターフェース14とが協働することにより実現される。
 電力量設定部102は、複数のサブシステムのそれぞれについて、予め定められた節電制御を実行した場合における推定電力量である第1の個別推定電力量を個別目標電力量として設定する。電力量設定部102は、複数のサブシステムから個別電力量実績同士の相関係数が予め定められた閾値以上であるサブシステムの組み合わせを選択し、選択した組み合わせにおける個別目標電力量の合計値と複数のサブシステム毎の個別目標電力量とのうちの最大値に予め定められた係数を乗じた値を全体余裕電力量として設定する。電力量設定部102は、複数のサブシステムのそれぞれにおける個別目標電力量の合計値に全体余裕電力量を加えた値を、全体目標電力量として設定する。
 次に、図11のフローチャートを参照して、電力量設定装置110が実行する電力量設定処理について説明する。
 まず、プロセッサ11は、電力量履歴情報を取得する(ステップS401)。プロセッサ11は、ステップS401の処理を完了すると、第1の個別推定電力量を算出する(ステップS402)。プロセッサ11は、ステップS402の処理を完了すると、第1の個別推定電力量を個別目標電力量として設定する(ステップS403)。プロセッサ11は、ステップS403の処理を完了すると、複数のサブシステム毎の個別目標電力量の合計値を算出する(ステップS404)。プロセッサ11は、ステップS404の処理を完了すると、相関係数を算出する(ステップS405)。プロセッサ11は、ステップS405の処理を完了すると、相関係数が閾値以上である組み合わせを特定する(ステップS406)。
 プロセッサ11は、ステップS406の処理を完了すると、組み合わせ毎に個別目標電力量の合計値を算出する(ステップS407)。プロセッサ11は、ステップS407の処理を完了すると、最大の電力消費源を特定する(ステップS408)。最大の電力消費源は、個別目標電力量の合計値が最大である組み合わせと、個別目標電力量が最大であるサブシステムとのうち、目標電力量が大きい方の電力消費源である。この目標電力量は、個別目標電力量の合計値又は個別目標電力量である。プロセッサ11は、ステップS408の処理を完了すると、全体余裕電力量を算出する(ステップS409)。全体余裕電力量は、最大の電力消費源の目標電力量である。
 プロセッサ11は、ステップS409の処理を完了すると、全体目標電力量を算出する(ステップS410)。全体目標電力量は、ステップS404で算出された個別目標電力量の合計値とステップS409で算出された全体余裕電力量との和である。プロセッサ11は、ステップS410の処理を完了すると、全体目標電力量情報をサーバ500に送信する(ステップS411)。プロセッサ11は、ステップS411の処理を完了すると、制御指示情報を制御装置に送信する(ステップS412)。この制御指示情報は、第1の個別推定電力量である個別目標電力量に基づいて設備機器を制御することを指示する情報である。つまり、制御指示情報は、上述した節電制御により設備機器を制御することを指示する情報である。
 本実施形態では、サブシステム間の相関係数に応じた全体余裕電力量が設定され、この全体余裕電力量に基づいて全体目標電力量が設定される。従って、本実施形態によれば、電力量を適切に削減することが期待できる。
(実施形態5)
 実施形態4では、削減指示により全体目標電力量が指定されない場合において、全体目標電力量をサーバ500に通知する例について説明した。本実施形態では、削減指示により全体目標電力量が指定されない場合において、全体目標削減電力量をサーバ500に通知する例について説明する。つまり、本実施形態では、サブシステム間の相関係数に応じた全体余裕電力量を設定し、この全体余裕電力量に基づいて全体目標電力量及び全体目標削減電力量を設定する例について説明する。
 まず、図12を参照して、電力量設定装置120の機能について説明する。電力量設定装置120は、削減電力量送信部108を更に備える。削減電力量送信手段は、例えば、削減電力量送信部108に対応する。
 削減指示受付部101は、サーバ500から削減指示を示す削減指示情報を受信する。全体目標電力量及び全体目標削減電力量は、この削減指示により指定されない。電力量設定部102は、複数のサブシステム毎の消費電力量の履歴である個別電力量履歴同士の相関係数が大きいほど、全体目標削減電力量が小さくなるように、全体目標削減電力量を設定する。全体目標削減電力量は、複数のサブシステム全体の消費電力量の削減量の目標値である。
 削減電力量送信部108は、電力量設定部102により設定された全体目標削減電力量を示す削減電力量情報をサーバ500に送信する。削減電力量送信部108の機能は、例えば、プロセッサ11と第1通信インターフェース14とが協働することにより実現される。
 電力量設定部102は、複数のサブシステムのそれぞれについて、予め定められた節電制御を実行した場合における推定電力量である第1の個別推定電力量を個別目標電力量として設定するとともに、節電制御をしない場合における推定電力量である第2の個別推定電力量から第1の個別推定電力量を減じた値を個別推定削減電力量として設定する。電力量設定部102は、複数のサブシステムから個別電力量実績同士の相関係数が予め定められた閾値以上であるサブシステムの組み合わせを選択し、選択した組み合わせにおける個別推定削減電力量の合計値と複数のサブシステム毎の個別推定削減電力量とのうちの最大値に予め定められた係数を乗じた値を全体余裕電力量として設定する。電力量設定部102は、複数のサブシステムのそれぞれにおける個別推定削減電力量の合計値から全体余裕電力量を減じた値を、全体目標削減電力量として設定する。
 次に、図13のフローチャートを参照して、電力量設定装置120が実行する電力量設定処理について説明する。
 まず、プロセッサ11は、電力量履歴情報を取得する(ステップS501)。プロセッサ11は、ステップS501の処理を完了すると、第1の個別推定電力量を算出する(ステップS502)。プロセッサ11は、ステップS502の処理を完了すると、第2の個別推定電力量を算出する(ステップS503)。プロセッサ11は、ステップS503の処理を完了すると、個別推定削減電力量を算出する(ステップS504)。
 第1の個別推定電力量は、サブシステム毎に予め定められた節電制御を実行した場合における推定電力量である。第1の個別推定電力量は、例えば、外気温、日付、又は、曜日などの環境が類似する過去の節電制御時における消費電力量に基づいて推定される。第2の個別推定電力量は、サブシステム毎に予め定められた節電制御を実行しない場合における推定電力量である。第2の個別推定電力量は、例えば、外気温、日付、又は、曜日などの環境が類似する過去の通常制御時における消費電力量に基づいて推定される。個別推定削減電力量は、第2の個別推定電力量と第1の個別推定電力量との差である。プロセッサ11は、ステップS504の処理を完了すると、相関係数を算出する(ステップS505)。プロセッサ11は、ステップS505の処理を完了すると、相関係数が閾値以上である組み合わせを特定する(ステップS506)。
 プロセッサ11は、ステップS506の処理を完了すると、組み合わせ毎に個別推定削減電力量の合計値を算出する(ステップS507)。プロセッサ11は、ステップS507の処理を完了すると、最大の電力消費源を特定する(ステップS508)。プロセッサ11は、ステップS508の処理を完了すると、全体余裕電力量を算出する(ステップS509)。プロセッサ11は、ステップS509の処理を完了すると、全体目標削減電力量を算出する(ステップS510)。プロセッサ11は、ステップS510の処理を完了すると、削減電力量情報をサーバ500に送信する(ステップS511)。プロセッサ11は、ステップS511の処理を完了すると、第1の個別推定電力量を個別目標電力量として設定する(ステップS512)。プロセッサ11は、ステップS512の処理を完了すると、制御指示情報を制御装置に送信する(ステップS513)。
 本実施形態では、サブシステム間の相関係数に応じた全体余裕電力量が設定され、この全体余裕電力量に基づいて全体目標電力量及び全体目標削減電力量が設定される。具体的には、サブシステム毎の個別電力履歴同士の相関係数が大きいほど、全体目標削減電力量が小さくなるように、全体目標削減電力量が設定され、サーバ500に通知される。つまり、あるサブシステムにおいて想定よりも消費電力量が削減できない場合において、他のサブシステムで削減量を補えない可能性が高いほど、小さく見積もられた削減量がサーバ500に通知される。従って、本実施形態によれば、電力量を適切に削減することが期待できる。
(変形例)
 以上、本発明の実施形態を説明したが、本発明を実施するにあたっては、種々の形態による変形及び応用が可能である。
 本発明において、上記実施形態において説明した構成、機能、動作のどの部分を採用するのかは任意である。また、本発明において、上述した構成、機能、動作のほか、更なる構成、機能、動作が採用されてもよい。また、上記実施形態において説明した構成、機能、動作は、自由に組み合わせることができる。
 実施形態1-3では、削減指示により全体目標電力量が指定される例について説明した。また、実施形態4では、全体目標電力量を応答する例について説明した。また、実施形態5では、全体目標削減電力量を応答する例について説明した。本発明において、削減指示により全体目標電力量又は全体目標削減電力量が指定されるか否かは任意である。また、本発明において、削減指示により全体目標電力量又は全体目標削減電力量が指定されない場合において、全体目標電力量と全体目標削減電力量とのいずれを応答するのかも任意である。例えば、削減指示により全体目標削減電力量が指定されてもよい。
 いずれの場合においても、複数のサブシステム毎の消費電力量同士の相関が高いほど、全体余裕電力量が大きく設定されることが好適である。全体余裕電力量が大きく設定されることは、予め定められた全体目標電力量に対して個別目標電力量の合計値がより小さく設定されること、又は、予め定められた個別目標電力量の合計値に対して全体目標電力量がより大きく設定されることを意味する。同様に、複数のサブシステム毎の消費電力量同士の相関が高いほど、全体目標削減電力量が小さく設定されることが好適である。全体目標削減電力量が小さく設定されることは、予め定められた全体目標削減電力量に対して個別目標削減電力量の合計値がより大きく設定されること、又は、予め定められた個別目標削減電力量の合計値に対して全体目標削減電力量がより小さく設定されることを意味する。かかる構成によれば、ユーザの快適性又は利便性の低下を抑制しつつ、削減指示に応答できないリスクを減らすことが期待できる。
 電力量設定装置100,110,120が適用されるシステムの構成が、実施形態1-5で説明した構成に限定されないことは勿論である。例えば、実施形態1において、電力計測装置400が、空調システム210と照明システム220とのそれぞれに設けられてもよい。また、実施形態2において、電力計測装置401,402,403が1つの電力計測装置に統合されていてもよい。また、実施形態2において、電力量設定装置100とビルシステム310とビルシステム320とビルシステム330とが、通信ネットワーク610により相互に接続されていてもよい。
 また、全体目標電力量から個別目標電力量を求める手法が、実施形態1-5で説明した構成に限定されないことは勿論である。例えば、全体余裕電力量を複数のサブシステムに分配する方法は、実績電力量割合に応じた方法でなくてもよい。また、各種の計算で用いる係数は、適宜、調整することができる。また、節電制御をした場合における消費電力量又は通常制御をした場合における消費電力量は、電力量履歴情報に基づかずに推定されてもよい。例えば、電力会社又はアグリゲータが規定する計算式により、これらの消費電力量が推定されてもよい。この計算式は、例えば、システム構成と躯体情報とをパラメータとした式である。システム構成は、例えば、設備機器の個数と設備機器の定格電力とにより規定される。躯体情報は、例えば、サブシステムが構築されたフロアの壁の断熱性能と、フロアの面積と、OA(Office Automation)機器の個数とを示す情報である。
 本発明に係る電力量設定装置100の動作を規定する動作プログラムを既存のパーソナルコンピュータ又は情報端末装置に適用することで、当該パーソナルコンピュータ等を本発明に係る電力量設定装置100として機能させることも可能である。また、このようなプログラムの配布方法は任意であり、例えば、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、メモリカードなどのコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、インターネットなどの通信ネットワークを介して配布してもよい。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本発明は、複数のサブシステムを備える制御システムに適用可能である。
11 プロセッサ、12 フラッシュメモリ、13 タッチスクリーン、14 第1通信インターフェース、15 第2通信インターフェース、100,110,120 電力量設定装置、101 削減指示受付部、102 電力量設定部、103 制御指示送信部、104 消費電力量受信部、105 電力量履歴記憶部、106 相関係数算出部、107 全体目標電力量送信部、108 削減電力量送信部、210,230,250 空調システム、220,240,260 照明システム、310,320,330 ビルシステム、311,321,331 機器制御装置、400,401,402,403 電力計測装置、500 サーバ、610,620,621,622,630 通信ネットワーク、1000,1100 制御システム

Claims (18)

  1.  それぞれが設備機器と前記設備機器を制御する制御装置とを備える複数のサブシステム全体に対する電力量の削減指示を受け付ける削減指示受付手段と、
     前記削減指示受付手段により前記削減指示が受け付けられた場合、前記複数のサブシステム毎の消費電力量の目標値である個別目標電力量の合計値が前記複数のサブシステム全体の消費電力量の目標値である全体目標電力量よりも小さく、且つ、前記複数のサブシステム毎の消費電力量同士の相関が高いほど前記個別目標電力量の前記合計値と前記全体目標電力量との差である全体余裕電力量が大きくなるように、前記複数のサブシステム毎に前記個別目標電力量を設定する電力量設定手段と、
     前記電力量設定手段により設定された前記個別目標電力量に基づいて前記設備機器を制御することを指示する制御指示情報を前記制御装置に送信する制御指示送信手段と、を備える、
     電力量設定装置。
  2.  前記全体目標電力量は、前記削減指示により指定され、
     前記電力量設定手段は、前記複数のサブシステム毎の消費電力量の履歴である個別電力量履歴同士の相関係数が大きいほど前記個別目標電力量の前記合計値が小さくなるように、前記複数のサブシステム毎の前記個別目標電力量を設定する、
     請求項1に記載の電力量設定装置。
  3.  前記電力量設定手段は、前記複数のサブシステムのうち前記個別電力量履歴同士の相関係数が予め定められた閾値以上であるサブシステムの組み合わせにおける、前記複数のサブシステム毎の消費電力量の実績値である個別実績電力量の合計値と、前記複数のサブシステム毎の前記個別実績電力量とのうちの最大値に予め定められた係数を乗じた値を前記全体余裕電力量として設定し、前記全体目標電力量と前記全体余裕電力量とから前記複数のサブシステム毎の前記個別目標電力量を設定する、
     請求項2に記載の電力量設定装置。
  4.  前記電力量設定手段は、前記複数のサブシステムのそれぞれについて、前記複数のサブシステム毎の前記個別実績電力量の合計値である合計実績電力量に対する前記個別実績電力量の割合である実績電力量割合と前記全体目標電力量とを乗じた値である基準個別目標電力量から、前記実績電力量割合と前記全体余裕電力量とを乗じた値である個別余裕電力量を減じた値を、前記個別目標電力量として設定する、
     請求項3に記載の電力量設定装置。
  5.  前記電力量設定手段は、前記複数のサブシステムのそれぞれについて、他のサブシステムとの間で前記個別電力量履歴同士の相関係数が大きいほど個別電力量指標値が大きくなるように前記個別電力量指標値を設定し、前記複数のサブシステムのそれぞれについて設定した前記個別電力量指標値のうち最大値に予め定められた係数を乗じた値を前記全体余裕電力量として設定し、前記全体目標電力量と前記全体余裕電力量とから前記複数のサブシステム毎の前記個別目標電力量を設定する、
     請求項2に記載の電力量設定装置。
  6.  前記電力量設定手段は、前記複数のサブシステムのそれぞれについて、前記複数のサブシステム毎の消費電力量の実績値である個別実績電力量の合計値である合計実績電力量に対する前記個別実績電力量の割合である実績電力量割合と前記全体目標電力量とを乗じた値である基準個別目標電力量から、前記複数のサブシステム毎の前記個別電力量指標値の合計値である合計電力量指標値に対する前記個別電力量指標値の割合である指標値割合と前記全体余裕電力量とを乗じた値である個別余裕電力量を減じた値を、前記個別目標電力量として設定する、
     請求項5に記載の電力量設定装置。
  7.  前記複数のサブシステムのうち第1のサブシステムの前記個別電力量指標値は、前記第1のサブシステム以外の全てのサブシステムが第2のサブシステムとして選択されるまで、前記複数のサブシステムから前記第2のサブシステムを選択するとともに前記第1のサブシステムと前記第2のサブシステムとの間における前記個別電力量履歴同士の相関係数と前記第2のサブシステムの前記個別実績電力量との積である補正電力量を求めた場合における、前記補正電力量の合計値と前記第1のサブシステムの前記個別実績電力量との和である、
     請求項6に記載の電力量設定装置。
  8.  前記電力量設定手段は、前記複数のサブシステム間における前記個別電力量履歴同士の相関係数と、前記複数のサブシステムのそれぞれにおける、前記複数のサブシステム毎の消費電力量の実績値である個別実績電力量の合計値である合計実績電力量に対する前記個別実績電力量の割合である実績電力量割合と、に基づいて、前記複数のサブシステム全体としての相関係数である全体相関係数を求め、前記全体相関係数と前記全体目標電力量と予め定められた係数との積を前記全体余裕電力量として設定し、前記全体目標電力量と前記全体余裕電力量とから前記複数のサブシステム毎の前記個別目標電力量を設定する、
     請求項2に記載の電力量設定装置。
  9.  前記全体相関係数は、前記複数のサブシステムから全てのサブシステムが第1のサブシステムとして選択されるまで、前記第1のサブシステムと前記複数のサブシステムのそれぞれとの間における前記個別電力量履歴同士の相関係数の平均値と前記第1のサブシステムの前記実績電力量割合との積を求めた場合における、前記積の合計値である、
     請求項8に記載の電力量設定装置。
  10.  前記削減指示受付手段は、サーバから前記削減指示を示す削減指示情報を受信し、
     前記電力量設定手段は、前記複数のサブシステム毎の消費電力量の履歴である個別電力量履歴同士の相関係数が大きいほど前記全体余裕電力量が大きくなるように、前記全体目標電力量を設定し、
     前記電力量設定手段により設定された前記全体目標電力量を示す全体目標電力量情報を前記サーバに送信する全体目標電力量送信手段を更に備える、
     請求項1に記載の電力量設定装置。
  11.  前記電力量設定手段は、前記複数のサブシステムのそれぞれについて、予め定められた節電制御を実行した場合における推定電力量である第1の個別推定電力量を前記個別目標電力量として設定し、前記複数のサブシステムから前記個別電力量履歴同士の相関係数が予め定められた閾値以上であるサブシステムの組み合わせを選択し、選択した組み合わせにおける前記個別目標電力量の合計値と前記複数のサブシステム毎の前記個別目標電力量とのうちの最大値に予め定められた係数を乗じた値を前記全体余裕電力量として設定し、前記複数のサブシステムのそれぞれにおける前記個別目標電力量の合計値に前記全体余裕電力量を加えた値を、前記全体目標電力量として設定する、
     請求項10に記載の電力量設定装置。
  12.  前記削減指示受付手段は、サーバから前記削減指示を示す削減指示情報を受信し、
     前記電力量設定手段は、前記複数のサブシステム毎の消費電力量の履歴である個別電力量履歴同士の相関係数が大きいほど、前記複数のサブシステム全体の消費電力量の削減量の目標値である全体目標削減電力量が小さくなるように、前記全体目標削減電力量を設定し、
     前記電力量設定手段により設定された前記全体目標削減電力量を示す削減電力量情報を前記サーバに送信する削減電力量送信手段を更に備える、
     請求項1に記載の電力量設定装置。
  13.  前記電力量設定手段は、前記複数のサブシステムのそれぞれについて、予め定められた節電制御を実行した場合における推定電力量である第1の個別推定電力量を前記個別目標電力量として設定するとともに、前記節電制御をしない場合における推定電力量である第2の個別推定電力量から前記第1の個別推定電力量を減じた値を個別推定削減電力量として設定し、前記複数のサブシステムから前記個別電力量履歴同士の相関係数が予め定められた閾値以上であるサブシステムの組み合わせを選択し、選択した組み合わせにおける前記個別推定削減電力量の合計値と前記複数のサブシステム毎の前記個別推定削減電力量とのうちの最大値に予め定められた係数を乗じた値を前記全体余裕電力量として設定し、前記複数のサブシステムのそれぞれにおける前記個別推定削減電力量の合計値から前記全体余裕電力量を減じた値を、前記全体目標削減電力量として設定する、
     請求項12に記載の電力量設定装置。
  14.  前記複数のサブシステム毎に消費電力量を計測する電力計測装置から、サブシステムの識別情報と計測された前記消費電力量とを示す消費電力量情報を受信する消費電力量受信手段と、
     前記消費電力量受信手段により受信された前記消費電力量情報に基づいて、前記複数のサブシステム毎に直近の予め定められた期間における前記消費電力量の履歴を示す電力量履歴情報を生成し、生成した前記電力量履歴情報を記憶する電力量履歴記憶手段と、
     前記電力量履歴記憶手段に記憶された前記電力量履歴情報に基づいて、前記複数のサブシステム毎の消費電力量の履歴である個別電力量履歴同士の相関係数を求める相関係数算出手段と、を更に備える、
     請求項1から13のいずれか1項に記載の電力量設定装置。
  15.  前記複数のサブシステムは、前記設備機器の種類毎に設けられる、
     請求項1から14のいずれか1項に記載の電力量設定装置。
  16.  前記複数のサブシステムは、前記設備機器の設置領域毎に設けられる、
     請求項1から14のいずれか1項に記載の電力量設定装置。
  17.  それぞれが設備機器と前記設備機器を制御する制御装置とを備える複数のサブシステム全体に対する電力量の削減指示を受け付け、
     前記削減指示が受け付けられた場合、前記複数のサブシステム毎の消費電力量の目標値である個別目標電力量の合計値が前記複数のサブシステム全体の消費電力量の目標値である全体目標電力量よりも小さく、且つ、前記複数のサブシステム毎の消費電力量同士の相関が高いほど前記個別目標電力量の前記合計値と前記全体目標電力量との差である全体余裕電力量が大きくなるように、前記複数のサブシステム毎に前記個別目標電力量を設定する、
     電力量設定方法。
  18.  コンピュータを、
     それぞれが設備機器と前記設備機器を制御する制御装置とを備える複数のサブシステム全体に対する電力量の削減指示を受け付ける削減指示受付手段、
     前記削減指示受付手段により前記削減指示が受け付けられた場合、前記複数のサブシステム毎の消費電力量の目標値である個別目標電力量の合計値が前記複数のサブシステム全体の消費電力量の目標値である全体目標電力量よりも小さく、且つ、前記複数のサブシステム毎の消費電力量同士の相関が高いほど前記個別目標電力量の前記合計値と前記全体目標電力量との差である全体余裕電力量が大きくなるように、前記複数のサブシステム毎に前記個別目標電力量を設定する電力量設定手段、
     前記電力量設定手段により設定された前記個別目標電力量に基づいて前記設備機器を制御することを指示する制御指示情報を前記制御装置に送信する制御指示送信手段、として機能させる、
     プログラム。
PCT/JP2018/024473 2018-06-27 2018-06-27 電力量設定装置、電力量設定方法、及び、プログラム WO2020003427A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/045,927 US11349337B2 (en) 2018-06-27 2018-06-27 Energy setting device, energy setting method, and recording medium
CN201880094667.9A CN112335150A (zh) 2018-06-27 2018-06-27 电量设定装置、电量设定方法以及程序
PCT/JP2018/024473 WO2020003427A1 (ja) 2018-06-27 2018-06-27 電力量設定装置、電力量設定方法、及び、プログラム
JP2020526796A JP6949224B2 (ja) 2018-06-27 2018-06-27 電力量設定装置、電力量設定方法、及び、プログラム
EP18924555.8A EP3817183A4 (en) 2018-06-27 2018-06-27 DEVICE, METHOD AND PROGRAM FOR ADJUSTING THE POWER LEVEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024473 WO2020003427A1 (ja) 2018-06-27 2018-06-27 電力量設定装置、電力量設定方法、及び、プログラム

Publications (1)

Publication Number Publication Date
WO2020003427A1 true WO2020003427A1 (ja) 2020-01-02

Family

ID=68985510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024473 WO2020003427A1 (ja) 2018-06-27 2018-06-27 電力量設定装置、電力量設定方法、及び、プログラム

Country Status (5)

Country Link
US (1) US11349337B2 (ja)
EP (1) EP3817183A4 (ja)
JP (1) JP6949224B2 (ja)
CN (1) CN112335150A (ja)
WO (1) WO2020003427A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102544265B1 (ko) * 2019-01-09 2023-06-16 삼성전자주식회사 전자 장치 및 그 제어 방법
US12007734B2 (en) 2022-09-23 2024-06-11 Oracle International Corporation Datacenter level power management with reactive power capping
US20240154417A1 (en) * 2022-11-08 2024-05-09 Oracle International Corporation Techniques for orchestrated load shedding
WO2024112979A1 (en) * 2022-11-23 2024-05-30 University Of South Africa Green energy and grid network management

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051463A (ja) * 2000-08-01 2002-02-15 Hitachi Ltd 電力負荷制御システム
WO2013121700A1 (ja) 2012-02-15 2013-08-22 三菱電機株式会社 需要家内電力分配システムおよび需要家内電力分配方法
JP2015154580A (ja) * 2014-02-14 2015-08-24 三菱電機ビルテクノサービス株式会社 デマンド制御装置及びプログラム
JP2016131420A (ja) * 2015-01-13 2016-07-21 パナソニックIpマネジメント株式会社 電力管理装置、およびプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2538484T3 (es) * 2003-01-21 2015-06-22 Whirlpool Corporation Un proceso para gestionar y reducir la demanda de potencia de electrodomésticos y componentes de los mismos, y sistema que utiliza dicho proceso
US7562234B2 (en) * 2005-08-25 2009-07-14 Apple Inc. Methods and apparatuses for dynamic power control
US8006108B2 (en) * 2007-11-08 2011-08-23 International Business Machines Corporation Dynamic selection of group and device power limits
US8160753B2 (en) * 2008-07-31 2012-04-17 Microsemi Corp.—Analog Mixed Signal Group Ltd. Time integrated guard band
US9201481B2 (en) * 2011-02-09 2015-12-01 Panasonic Intellectual Property Management Co., Ltd. Power supply distribution system and power supply distribution method
US8843772B2 (en) * 2012-05-22 2014-09-23 Dell Products Lp Systems and methods for dynamic power allocation in an information handling system environment
JP5826714B2 (ja) * 2012-06-15 2015-12-02 三菱電機ビルテクノサービス株式会社 電力制御システム及び電力監視装置
US9841201B2 (en) * 2013-12-12 2017-12-12 Khalifa University Of Science, Technology And Research Method and system for limiting consumption
JP2016140230A (ja) * 2014-09-19 2016-08-04 Jxエネルギー株式会社 サンプル抽出装置、サンプル抽出方法、及びサンプル抽出プログラム
JP6280485B2 (ja) 2014-10-07 2018-02-14 株式会社日立製作所 省エネルギ支援システムおよび省エネルギ支援方法
JP6456183B2 (ja) * 2015-02-24 2019-01-23 シャープ株式会社 制御装置、通信システム、および消費電力制御方法
JP6617476B2 (ja) 2015-08-31 2019-12-11 住友電気工業株式会社 需要電力予測装置、需要電力予測方法及びコンピュータプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051463A (ja) * 2000-08-01 2002-02-15 Hitachi Ltd 電力負荷制御システム
WO2013121700A1 (ja) 2012-02-15 2013-08-22 三菱電機株式会社 需要家内電力分配システムおよび需要家内電力分配方法
JP2015154580A (ja) * 2014-02-14 2015-08-24 三菱電機ビルテクノサービス株式会社 デマンド制御装置及びプログラム
JP2016131420A (ja) * 2015-01-13 2016-07-21 パナソニックIpマネジメント株式会社 電力管理装置、およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3817183A4

Also Published As

Publication number Publication date
CN112335150A (zh) 2021-02-05
US11349337B2 (en) 2022-05-31
EP3817183A4 (en) 2021-06-30
US20210313831A1 (en) 2021-10-07
JPWO2020003427A1 (ja) 2020-12-17
EP3817183A1 (en) 2021-05-05
JP6949224B2 (ja) 2021-10-13

Similar Documents

Publication Publication Date Title
WO2020003427A1 (ja) 電力量設定装置、電力量設定方法、及び、プログラム
JP6272761B2 (ja) 分散負荷制御に基づく適応型需要応答の提供
JP5643791B2 (ja) 電力需給制御装置及び電力需給制御方法
EP3067840A1 (en) Energy control unit, energy control system, and energy management method
US20150338869A1 (en) Demand response control method and demand response control device
JP5895246B2 (ja) 制御装置および制御方法
WO2015064641A1 (ja) 電力制御システム、電力制御方法および記録媒体
US20140088782A1 (en) Energy-saving apparatus and energy-saving system
EP2874263A1 (en) Server device, electrical power control device, and electrical power control system
US10352581B2 (en) Control apparatus for controlling an electric facility device installed at a property
JP5656921B2 (ja) 電力融通装置、電力融通システム、電力融通方法及びプログラム
JP6250077B2 (ja) 判定装置、判定システム、判定方法、及び、プログラム
JP6289759B2 (ja) 制御装置、制御システム、制御方法、及び、プログラム
WO2014192849A1 (ja) 空調機制御装置、空調機制御方法及びプログラム
JPWO2014115247A1 (ja) システムコントローラ、設備管理システム、デマンド制御方法及びプログラム
US20160241033A1 (en) Control device, control method, and program
JP2013169039A (ja) 需要電力量制御システム、需要電力量制御方法及びプログラム
EP3508799B1 (en) Hot water supply control system, server, hot water supply control method and program
WO2017109957A1 (ja) 電力管理装置、サーバ、電力管理システム、電力管理方法、及び、プログラム
JP6778891B2 (ja) 電力管理システム、電力管理方法及びプログラム
JP6010682B2 (ja) 電力需給制御装置及び電力需給制御方法
JP2022552796A (ja) Hvac制御システムおよび方法
WO2017109971A1 (ja) 制御装置、制御システム、制御方法、及び、プログラム
JP6328323B2 (ja) 制御装置、制御方法、及び、プログラム
JP2018011395A (ja) 制御装置、制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526796

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018924555

Country of ref document: EP

Effective date: 20210127