WO2020003385A1 - Mounter and mounting system - Google Patents

Mounter and mounting system Download PDF

Info

Publication number
WO2020003385A1
WO2020003385A1 PCT/JP2018/024224 JP2018024224W WO2020003385A1 WO 2020003385 A1 WO2020003385 A1 WO 2020003385A1 JP 2018024224 W JP2018024224 W JP 2018024224W WO 2020003385 A1 WO2020003385 A1 WO 2020003385A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
component
rotary head
components
flatness
Prior art date
Application number
PCT/JP2018/024224
Other languages
French (fr)
Japanese (ja)
Inventor
雅史 天野
貴紘 小林
勇太 横井
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2018/024224 priority Critical patent/WO2020003385A1/en
Priority to JP2020526758A priority patent/JP7095089B2/en
Priority to CN201880094885.2A priority patent/CN112314065B/en
Publication of WO2020003385A1 publication Critical patent/WO2020003385A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present disclosure relates to a mounting machine for obtaining flatness and a mounting system including the mounting machine.
  • the mounting machine described in Patent Literature 1 is provided with a floating presence / absence detection device that detects the presence / absence of floating of each of a plurality of lead wires of one component held by the component holder of the head.
  • a floating presence / absence detection device that detects the presence / absence of floating of each of a plurality of lead wires of one component held by the component holder of the head.
  • some of the plurality of lead wires irradiated with slit light from the slit light source are imaged by the camera, and based on the captured image. Thus, the presence or absence of each of the plurality of lead wires is detected.
  • the subject of the present disclosure is to efficiently obtain the flatness of each of a plurality of components.
  • two or more of a plurality of components held by the rotary head are irradiated with a pattern and imaged, and some of the components are based on the captured image.
  • the flatness of each of the two or more parts is obtained.
  • pattern irradiation and imaging are performed on each of the components, and the flatness is determined based on the captured image.
  • the flatness of two or more components can be acquired more efficiently than when acquired. Note that, in Patent Literature 1, two or more components of a plurality of components held by a rotary head are imaged by an imaging device, and the flatness of the two or more components is determined based on the captured image. It is not stated that it will be obtained.
  • FIG. 3 is a plan view (conceptual diagram) of the imaging unit. It is a figure which shows notionally the periphery of the control apparatus of the said mounting machine.
  • 4 is a flowchart illustrating a flatness acquisition program stored in a storage unit of the control device. It is a flowchart showing the optimization program memorize
  • FIG. 3 is a conceptual diagram of a component held by the rotary head as viewed from below.
  • FIG. 3 is a diagram conceptually showing a relative positional relationship between the rotary head and an imaging unit.
  • FIG. 12A is a diagram illustrating a change in an irradiation angle of a pattern accompanying rotation of a component held by the rotary head.
  • FIG. 12B is a diagram illustrating a change in an irradiation angle when the another pattern is irradiated. It is a figure which shows notionally another relative positional relationship between the said rotary head and an imaging unit.
  • FIG. 12A is a diagram illustrating a change in an irradiation angle of a pattern accompanying rotation of a component held by the rotary head.
  • FIG. 12B is a diagram illustrating a change in an irradiation angle when the another pattern is irradiated. It is a figure which shows notionally another relative positional relationship between the said rotary head and an imaging unit.
  • FIG. 14A is a diagram illustrating a change in the angle of a pattern irradiated on a component by the projector 150 due to the rotation of the rotary head.
  • (14B) It is a figure showing the change of the angle of the pattern irradiated to a component by the projector 151.
  • FIG. 4 is a diagram illustrating a change in the angle of a pattern irradiated on a component as the rotary head rotates at a first relative position.
  • FIG. 9 is a diagram illustrating a change in the angle of a pattern irradiated on a component as the rotary head rotates at a second relative position.
  • FIG. 17A is a diagram illustrating components held by the rotary head when optimization is performed by the host PC.
  • FIG. 17B is a diagram showing components held by the rotary head when optimization has not been performed by the host PC.
  • (18A), (18B), (18C) are views showing work target components in the mounting machine.
  • the mounting system 2 includes (a) a plurality of mounting machines 4A, 4B,..., (B) a host computer (hereinafter abbreviated as host PC) 6, (d) a bus 8, and the like.
  • host PC host computer
  • a bus 8 a bus 8
  • control devices 10A, 10B,... Provided in each of the plurality of mounting machines 4A, 4B,.
  • symbols A, B,... are omitted.
  • the plurality of mounting machines 4 mount electronic components (hereinafter, abbreviated as components) on a circuit board S (hereinafter, abbreviated as a board S). (See FIG. 6), and includes a board transfer support device 12, a component supply device 14, a component mounting device 16, an imaging unit 18, and the like.
  • the substrate transport and support device 12 transports and holds the substrate S.
  • X is the direction in which the substrate S is transported by the substrate transport and support device 12
  • Y is the width direction of the substrate S.
  • Z is the thickness direction of the substrate S.
  • Y is the front-back direction of the mounting machine 4
  • Z is the up-down direction, and these X direction, Y direction, and Z direction are orthogonal to each other.
  • the component supply device 14 supplies a component to be mounted on the board S to the component mounting device 16 in a state where it can be delivered.
  • the component supply device 14 includes the tape feeder 22 that supplies a plurality of components using a tape.
  • the component supply device 14 may include a plurality of trays.
  • the component supplied by the component supply device 14 is a component 30 including a component main body 26 and a plurality of solder balls 28 as electrode portions formed on the component main body 26.
  • a BGA (Ball Grid Array), as shown in FIGS. 10 and 18B, includes a component body 32 and a plurality of lead wires 34 extending from the side surface of the component body 32 and serving as J-shaped electrode portions.
  • FIGS. 10, 17A and 17B show components 30, 36 and 38 as viewed from the bottom.
  • the component mounting device 16 picks up and holds the component supplied by the component supply device 14 and mounts the component on the substrate S transported and held by the substrate transport and support device 12.
  • the component mounting device 16 includes a rotary head 40, a head moving device 42 that moves the rotary head 40, and the like.
  • the head moving device 42 includes a head horizontal moving device 44 for moving the rotary head 40 in the x direction and the y direction, a head rotating device 46 for rotating the rotary head 40 around a central axis of the head (indicated by Lh in FIG. 3), and the like. including.
  • the head horizontal moving device 44 includes an X direction moving device 50 and a Y direction moving device 52 as shown in FIG.
  • the X-direction moving device 50 includes an X-slider 54, an X-motor 56 as a driving source, a motion conversion mechanism 58 for converting the rotation of the X-motor 56 into a linear motion and transmitting the linear motion to the X-slider 54.
  • the Y-direction moving device 52 is provided on the X slider 54, and converts the rotation of the Y slider 62, the Y motor 64 serving as a driving source, and the Y motor 64 into a linear motion and transmits the linear motion to the Y slider 62 (see FIG. 3). ) Etc.
  • the rotary head 40 is held by the Y slider 62 so as to be rotatable around its own central axis Lh by the head rotating device 46.
  • the rotary head 40 includes a head body 78 and a plurality of (for example, three or more, in this embodiment, eight) suction nozzles 80a, 80b,...
  • the head main body 78 includes a rotation shaft 84 and a nozzle holder 86 provided so as to be integrally rotatable with each other.
  • the suction nozzles 80a, 80b,... Are held by nozzle bodies 87a, 87b,.
  • the suction nozzles 80a, 80b,... Suck and hold components by negative pressure, and hold components by supplying negative pressure from a negative pressure source (not shown).
  • a negative pressure source not shown.
  • the head rotation device 46 rotates the head main body 78 by rotating the rotation shaft 84, and transmits a rotation of the head rotation motor 88 as a driving source and the rotation of the head rotation motor 88 to the rotation shaft 84 (not shown). And a rotation transmitting mechanism.
  • the rotation shaft 84 that is, the head main body 78 (the rotary head 40) is rotated around the head center axis Lh.
  • the Y slider 62 is provided with a nozzle rotating device 94 as a holder rotating device, a nozzle lifting device 96 for lifting and lowering the suction nozzle 80, and the like.
  • the nozzle rotation device 94 is integrally formed with a rotation motor 130 provided as a drive source provided on the Y slider 62, a rotation drive shaft 132 provided rotatably with respect to the rotation shaft 84 of the rotary head 40, and a nozzle body 87. And a rotatable member 134 rotatably provided.
  • the rotation motor 130, the rotation drive shaft 132, and the rotating body 134 are engaged with each other so that rotation can be transmitted.
  • the rotation of the rotation motor 130 is transmitted to the rotating body 134 via the rotation drive shaft 132, and the plurality of suction nozzles 80 are simultaneously rotated around the nozzle center axis Ln.
  • the nozzle lifting / lowering device 96 includes a lifting / lowering motor 140 as a driving source provided on the Y slider 62, a lifting / lowering driving member 142 engageable with a nozzle main body 87 at a predetermined position of the nozzle holder 86, And a motion conversion mechanism 144 that converts the rotation of the rotation into a linear motion and transmits the linear motion to the lifting drive member 142.
  • the imaging unit 18 acquires the three-dimensional shape of the component held by the suction nozzle 80 positioned above, and as shown in FIGS. 4 and 5, two projectors 150 and 151 and a camera as an imaging device 152 and a three-dimensional shape acquisition unit 154 that mainly controls a computer, controls the projectors 150 and 152, and the camera 152, and acquires the three-dimensional shape of the component.
  • the camera 152 is an image pickup device having an image pickup device such as a CCD (Charge Coupled Device) and a CMOS (Complementary Metal Oxide Semiconductor).
  • the camera 152 is provided so that the axis Lz extends in the Z direction, and the projectors 150 and 151 are provided at positions separated by 90 degrees around the axis Lz.
  • the projector 150 irradiates a pattern N that spreads in a plane in which the intensity changes sinusoidally in the direction of arrow Fa, and the projector 151 moves in the direction of arrow Fb as shown in FIG. 12B.
  • a pattern N that spreads in a plane shape whose intensity changes sinusoidally is irradiated. Further, these patterns N are irradiated in a direction inclined with respect to the Z direction and the X and Y directions, and strike the components from obliquely below.
  • the imaging region Rc which is a region where the camera 152 can capture an image
  • the components irradiated with the patterns by the projectors 150 and 151 are imaged by the camera 152, and the three-dimensional shape acquisition unit 154 acquires the three-dimensional shape of the component based on the acquired image by the phase shift method. Is done.
  • the three-dimensional shape of the component located inside the two-dimensionally spread common region Rc is acquired.
  • the projectors 150 and 151 irradiate a pattern whose intensity changes sinusoidally in one direction Fa and Fb a plurality of times with a phase shift, and each time the pattern is illuminated, the camera 152 irradiates the pattern in the imaging region Rc.
  • a captured image which is an image, is obtained.
  • the three-dimensional shape obtaining unit 154 obtains the luminance of each of the pixels constituting the captured image, and obtains the phase of the pixel based on the luminance value of the same pixel in the plurality of captured images. Is done. Then, by connecting pixels having the same phase, an equal phase line is obtained.
  • the irradiation angle of the light of the phase one line forming the pattern
  • the position of the pixel on the image sensor of the camera 152 the optical and geometric parameters of the image pickup unit 18 (the optical center coordinates of the projectors 150 and 151, Based on the optical center coordinates of the camera 152, the focal length, and the like, the distance from the image sensor of the camera 152 to the point on the component corresponding to each of the pixels connected by the equiphase lines is obtained.
  • the three-dimensional shape of the component is obtained based on the distance of each of the plurality of points on the component from the image sensor.
  • the method of acquiring the three-dimensional shape and the pattern irradiated by the projectors 150 and 151 are not limited.
  • the three-dimensional shape can be obtained not only by the phase shift method but also by a pattern projection method.
  • the three-dimensional shape of the part located in the predetermined two-dimensionally (planarly) set area may be obtained, and for example, the stereo image method may be used.
  • the stereo image method is used, a projector is unnecessary, and a three-dimensional shape of a component located in the imaging region Rc is obtained based on images captured by a plurality of cameras.
  • the control device 10 mainly includes a computer, and includes an execution unit 180, a storage unit 182, an input / output unit 184, and the like, as shown in FIG.
  • the shape acquisition unit 154 is connected, and the substrate transport support device 12, the component supply device 14, the component mounting device 16, and the like are connected via the drive circuit 190.
  • a host PC 6 is connected to the control device 10.
  • the host PC 6 includes an execution unit 200, a storage unit 202, an input / output unit 204, and the like, as shown in FIG.
  • the device 206 and the like are connected.
  • the operation of the mounting machine 4 will be described first.
  • the rotary head 40 is moved above the imaging unit 18, and the portions of the plurality of components held by the rotary head 40 to be mounted on the substrate S (the side held by the suction nozzle 80
  • the three-dimensional shape of the target portion is acquired, and the flatness of the virtual plane is acquired based on the three-dimensional shape.
  • the target part is a part including at least a part of the electrode part of the component. For example, in the component 30 shown in FIG.
  • a portion including the plurality of solder balls 28 is set as the target portion Ta, and based on a three-dimensional shape of the target portion Ta, a set of tips (points) of the plurality of solder balls 28 is formed.
  • the flatness of the formed virtual plane Pa is obtained.
  • a portion of the plurality of lead wires 34 including a portion extending to the bottom surface of the component body 32 is set as the target portion Tb, and based on the three-dimensional shape of the target portion Tb, the plurality of lead wires 34
  • the flatness of the virtual plane Pb formed by a set of predetermined points on the side surface (bottom surface) of the portion of the component body 32 extending to the bottom surface side of the component 34 is acquired.
  • a part of the solder ball 28 may be missing or the lead wire 34 may be bent due to a manufacturing defect or a trouble during transportation.
  • a problem such as the occurrence of poor current supply to the components 30 and 36 occurs. . Therefore, in the present embodiment, the flatness of the target portion of the components 30 and 36 is obtained, and the components 30 and 36 are checked.
  • the component 38 shown in FIG. 18C it is not necessary to obtain the flatness of the electrode portion 37.
  • the components 30 and 36 are the target components for acquiring the flatness (hereinafter, may be simply referred to as target components), and the component 38 is not a target component.
  • the flatness of a virtual plane formed by a set of predetermined points of the electrode portion of the target portion of the component may be simply referred to as the flatness of the component.
  • the common area Rc is smaller than the area including all eight components held by the rotary head 40. Therefore, it is not possible to acquire a captured image including all eight components held by the rotary head 40.
  • the three-dimensional shape of the component is acquired in a state where the pattern N is irradiated from a plurality of different directions by the projector. This is because, depending on the direction of the pattern N irradiated to the component, there may be a portion where the pattern does not hit in the component, and it may be difficult to accurately obtain a three-dimensional shape.
  • the rotary head 40 is moved by the head horizontal moving device 44, and the relative position between the rotary head 40 and the imaging unit 18 is changed to all the suction nozzles 80 provided on the rotary head 40.
  • the two or more components held by some of the suction nozzles 80 are set to the first relative position located inside the common region Rc.
  • the pattern N is irradiated while the rotary head 40 is intermittently rotated by the set rotation angle by the head rotation device 46 to image the component.
  • the three-dimensional shape of each of the components is obtained based on the obtained captured image.
  • the first relative position is, specifically, the three components 36 (1) , 36 (2 ) held by the three suction nozzles 80a, 80b, 80c located inside the first region R1 of the rotary head 40.
  • ) , 30 (3) are relative positions located inside the common region Rc.
  • the first region R1 is a region defined by the central angle of the rotary head 40. When the position closest to the x slider 54 is 0 °, the first region R1 is located in a region from 0 ° to 90 ° (set central angle range).
  • the area includes the three components held by the three suction nozzles 80 to be processed.
  • the pattern N is irradiated on the component from different angles.
  • the projector 150 irradiates the pattern N in the direction indicated by the arrow Fa.
  • the component N held in the suction nozzle 80a (hereinafter, may be referred to as the first component) 36 (1)
  • the irradiation angle may be simply referred to as an angle) is set to 0 °
  • the component held by the suction nozzle 80b hereinafter, may be referred to as a second component) 36
  • the angle of the pattern N irradiated to the component (2) Is 45 °
  • the angle of the pattern N irradiated on the component (sometimes referred to as the third component) 30 (3) held by the suction nozzle 80c is 90 °.
  • the captured image captured by the camera 152 includes images of three components 36 (1) , 36 (2) , and 30 (3) , and a pattern is formed from an angle of 0 ° based on the captured image.
  • the three-dimensional shape of the part 30 (3) is obtained.
  • the projector 151 irradiates the pattern N in the direction indicated by the arrow Fb.
  • the first component 36 (1) is irradiated with the pattern N from an angle of 90 ° in a plan view
  • the second component 36 (2) is irradiated with the pattern N from an angle of 135 °
  • the third component 30 (3) Is irradiated with the pattern N from an angle of 180 °.
  • the tertiary order when the pattern N is irradiated from the angles 90 °, 135 °, and 180 ° in plan view for each of the components 36 (1) , 36 (2) , and 30 (3) The original shape is obtained.
  • the rotary head 40 is rotated around the head central axis Lh by 45 ° as a set rotation angle.
  • the component held by the suction nozzle 80h (sometimes referred to as the eighth component) 30 (8) , the first component 36 (1) , and the second component 36 (2) are located inside the common area Rc.
  • the third component 30 (3) deviates from the common area Rc.
  • the pattern N is formed by the projector 150 from angles of 0 °, 45 °, and 90 ° in plan view.
  • the pattern N is radiated from the projector 151 at angles of 90 °, 135 °, and 180 ° in plan view, and a three-dimensional shape is obtained.
  • the rotary head 40 is rotated by 45 °, and a three-dimensional shape is obtained for each of the three components located inside the common region Rc.
  • the set rotation angle (45 °) that is one rotation angle of the rotary head 40 is smaller than the set center angle range (90 °) that defines the first region R1. Therefore, when the rotary head 40 is rotated once, all the components belonging to the first region R1, that is, the common region Rc when the rotary head 40 and the imaging unit 18 are at the first relative position may change. And at least one remains.
  • the set rotation angle of the rotary head 40 and the set center angle that defines the first region R1 are defined by two or more components located inside the common region Rc by one rotation of the rotary head 40. Are deviated from the common region Rc, and the remaining part is determined to remain inside the common region Rc.
  • the first component 36 When attention is paid to one component, for example, the first component 36 (1) , as shown in FIG. 12A, the first component 36 is rotated by rotating the rotary head 40 by 0 °, 45 °, and 90 °.
  • the pattern N is emitted from the projector 150 at angles of 0 °, 45 °, and 90 ° in plan view, and as shown in FIG. 12B, the projector 151 outputs 90 °, 135 °, and 180 ° in plan view.
  • the pattern N is irradiated from an angle.
  • the pattern N is irradiated from the angles of 0 °, 45 °, 90 °, 135 °, and 180 ° for the first component 36 (1).
  • the three-dimensional shape of each case is acquired.
  • the pattern is formed from angles of 0 °, 45 °, 90 °, 135 ° and 180 ° in plan view with the rotation of the rotary head 40 by 45 °.
  • a captured image when N is irradiated is acquired, and a three-dimensional shape is acquired, respectively.
  • the inside of the first component 36 (1) is indicated by an arrow. This orientation change of the part 36 with the rotation of the rotary head 40 (1), in order to clearly show the change in angle of the pattern N irradiated to part 36 (1).
  • FIG. 12 the inside of the first component 36 (1) is indicated by an arrow.
  • FIG. 15 shows the rotation angle of the rotary head 40 and the irradiation angle of the pattern N on each of the components in this case.
  • the components located inside the common region Rc change, and the angle of the pattern N irradiated on the components in plan view also changes.
  • the first component is described as component 1. The same applies to the following components.
  • the rotary head 40 is moved by the head horizontal moving device 44, and the relative position between the rotary head 40 and the imaging unit 18 is different from the first region R1 of the rotary head 40.
  • the fifth component 36 (5) , the sixth component 30 (6) , and the seventh component 30 (7) held by the suction nozzles 80 e, 80 f, and 80 g located inside the two regions R2 are connected to the imaging unit 18. Is a second relative position located within the common region Rc.
  • the second region R2 is a region to which three components held by three suction nozzles located at a central angle of 180 ° to 270 ° of the rotary head 40 belong.
  • the first region R1 and the second region R2 have the same area size, but different relative positions to the x slider 54. Then, at the second relative position of the rotary head 40, similarly, while the rotary head 40 is intermittently rotated by 45 °, the three components are irradiated with the pattern N by the projectors 150 and 151, respectively. Three parts are imaged by the camera 152.
  • the component 36 (5) When attention is paid to one fifth component 36 (5) , as shown in FIG. 14A, by rotating the rotary head 40 by 0 °, 45 °, and 90 °, the component 36 (5) is flattened by the projector 150.
  • the captured image is acquired by the camera 152 while the pattern N is irradiated from the angles of 180 °, 225 °, and 270 ° in visual observation.
  • FIG. 14B a captured image is acquired while the pattern N is irradiated on the component 36 (5) from the angles of 270 °, 315 °, and 360 ° in plan view by the projector 151.
  • FIG. 14A When attention is paid to one fifth component 36 (5) , as shown in FIG. 14A, by rotating the rotary head 40 by 0 °, 45 °, and 90 °, the component 36 (5) is flattened by the projector 150.
  • the captured image is acquired by the camera 152 while the pattern N is irradiated from the angles of 180
  • the angles 180 °, 225 °, 270 °, and 315 ° are respectively associated with the rotation of the rotary head 40.
  • the pattern N is irradiated from 360 °, a captured image is obtained, and a three-dimensional shape is obtained.
  • all of the eight parts held by the rotary head 40 are A three-dimensional shape when the pattern N is illuminated from angles 0 °, 45 °, 90 °, 135 °, 180 °, 225 °, 270 °, and 315 ° in plan view is acquired.
  • the flatness acquisition program in that case will be described based on the flowchart of FIG.
  • This program is executed by the control device 10 and outputs a three-dimensional shape acquisition command to the three-dimensional shape acquisition unit 154 every time the rotary head 40 is rotated by 45 °.
  • a pattern is emitted by the projectors 150 and 151, and a captured image is acquired by the camera 152. Then, a three-dimensional shape is obtained based on the captured image and supplied to the control device 10.
  • step 1 hereinafter abbreviated as S1; the same applies to other steps
  • a count value n of a counter for counting the number of rotations is initialized (set to 0), and in S2, the rotary head 40 is moved to the first position.
  • the imaging unit 18 It moves to the relative position, and outputs a three-dimensional shape acquisition command to the imaging unit 18 in S3.
  • the acquired three-dimensional shape of the three parts 36 (1) , 36 (2) , and 30 (3) is supplied to the control device 10 and stored.
  • the rotary head 40 is rotated by 45 ° around the head center axis Lh.
  • the count value of the number counter is incremented by 1, and in S6, it is determined whether the count value is greater than 7. If the determination is NO, S3 to S6 are repeatedly executed. While the rotary head 40 is intermittently rotated by 45 °, the three-dimensional shape of each of the three parts is acquired as shown in FIG.
  • the rotary head 40 is rotated 360 °, and if the determination in S6 is YES, the count value is reset to 0 in S7, and the rotary head 40 is moved to the second relative position in S8. Thereafter, in S9, a command to acquire a three-dimensional shape is output to the three-dimensional shape acquisition unit 154, and thereafter, S9 to S12 are executed in the same manner as S3 to S6. At the second relative position, while the rotary head 40 is intermittently rotated by 45 °, the three-dimensional shape of each of three parts is acquired as shown in FIG.
  • each of the eight parts held by the rotary head 40 is separated from each other by 45 °.
  • the flatness of the virtual planes Pa and Pb is obtained based on information representing a plurality of three-dimensional shapes when the pattern N is irradiated from different directions.
  • an optimal three-dimensional shape that most appropriately represents the actual three-dimensional shape of the part is acquired, and a virtual plane based on the optimal three-dimensional shape is acquired.
  • the flatness is obtained.
  • an optimal three-dimensional shape can be obtained by statistically processing information representing a plurality of three-dimensional shapes.
  • the flatness of a plurality of parts is obtained while rotating the rotary head 40 around the head center axis Lh. Therefore, the flatness of all the components can be acquired more efficiently, that is, in a shorter time than when the flatness is acquired while rotating each of the components around the nozzle center axis Ln.
  • the flatness of each of the parts is different from the three-dimensional shape obtained when the rotary head 40 is at the first relative position and the three-dimensional shape obtained when the rotary head 40 is at the second relative position.
  • the host PC 6 based on component information, which is information on components to be worked on one or more of the mounting machines 4 input by the operator, the optimum arrangement of the mounting machines 4A, 4B,. The optimal allocation and the like of the parts held in 40 are determined.
  • the component information also includes information on the target components 30, 36 for which flatness is to be obtained.
  • the imaging unit 18 is not always provided in all the mounting machines 4A, 4B,. Further, it takes a long time to obtain the flatness. Therefore, it is desirable that a mounting machine for acquiring flatness is arranged in the latter half of a series of operations. In the rotary head 40, for example, as shown in FIG. 17B, when the target components 30, 36 are held at distant positions, it is inefficient to obtain the flatness of the target components 30, 36. .
  • the optimal arrangement of the mounting machines 4A, 4B,... Is determined, and the optimal allocation of components in the rotary head 40 is determined.
  • the optimization program represented by the flowchart in FIG. 8 is executed before a series of operations is started in the mounting machines 4A, 4B,.
  • component information including target component information is acquired.
  • processing of component information and the like are performed.
  • the position of the mounting machine 4 from which flatness is acquired is determined.
  • allocation of a plurality of components in the rotary head 40 is determined.
  • the mounting machines 4A, 4B,... are arranged, and in the mounting machine 4 in which the flatness is acquired, components are allocated to each of the plurality of suction nozzles 80 of the rotary head 40 in accordance with the determination in S24.
  • components are allocated to each of the plurality of suction nozzles 80 of the rotary head 40 in accordance with the determination in S24.
  • target components 36 (1) , 36 (2) , and 30 (3) are held by suction nozzles 80a, 80b, and 80c adjacent to each other. Therefore, it is not necessary to acquire a three-dimensional shape when the rotation angle of the rotary head 40 is between 135 ° and 225 °.
  • the flatness acquisition program executed in that case is shown in the flowchart of FIG.
  • the same steps as those of the flatness acquisition program shown in the flowchart of FIG. In S1 to S5, the rotary head 40 is rotated by 45 ° at the first relative position.
  • S31 it is determined whether the number of rotations of the rotary head 40 has exceeded 2, that is, whether the rotation angle has reached 135 °. It is determined whether or not. If the determination is YES, in S32, it is determined whether the number of rotations is smaller than 6, that is, whether the rotation angle is smaller than 270 °.
  • the rotation angle of the rotary head 40 is 270 °, since the component 30 (3) is located in the common region Rc, the three-dimensional shape of the component 30 (3) is obtained, and the rotation angle of the rotary head 40 is reduced. If it is 315 °, the three-dimensional shape of the parts 30 (3) and 36 (2) is obtained. Thereafter, when the determination in S33 is YES, the flatness is acquired in S13. After the determination in S33 becomes YES, the rotary head 40 can be moved to the second relative position to obtain a three-dimensional shape in the same manner, but it is indispensable to do so. is not.
  • the control device 10 stores a flatness acquisition program represented by the flowcharts of FIGS. 7 and 9, the three-dimensional shape acquisition unit 154 acquires a three-dimensional shape, and the like.
  • a flatness acquisition unit is configured, and a portion for storing and executing S2 of the control device 10 constitutes a first head horizontal movement control unit, and a portion for storing and executing S8 is used for horizontal movement of the second head.
  • a control unit is configured. Further, the first head horizontal movement control unit, the second head horizontal movement control unit, a part for storing S4 and S10, and a part for executing the same constitute a head movement control unit.
  • a part for storing S3 and S9, a part for executing S3, and the like constitute an imaging control unit.
  • a work control device is constituted by the host PC 6, and an optimization work control unit is constituted by a portion of the host PC 6 which stores and executes an optimization program represented by the flowchart of FIG.
  • An allocation determining unit is configured by a part that stores 24, an execution part, and the like.
  • the common area Rc does not include a part of the components held by the rotary head 40
  • the eight components held by the rotary head 40 are all included in the common area Rc.
  • the same can be applied to the case where it is located inside.
  • the three-dimensional shape is acquired while the rotary head 40 is rotated around the head center axis Lh, so that the flatness of each of the eight parts can be acquired more accurately.
  • the flatness of the eight components can be obtained more efficiently than when a three-dimensional shape is obtained while each of the suction nozzles 80 is rotated around the nozzle center axis Ln.
  • the flatness is acquired based on the plurality of three-dimensional shapes when the pattern N is irradiated from different angles with respect to each of the plurality of components has been described.
  • Acquisition is not indispensable, and an optimal three-dimensional shape can be acquired as flatness.
  • the imaging unit 18 acquire a three-dimensional shape, but the height of each of the points of the tip of the plurality of solder balls 28 of the target portion of the component from the imaging element of the camera 152 and the plurality of leads The height or the like of each of the predetermined points of the line 34 from the image sensor can be obtained. Based on these heights, the flatness of the virtual planes Pa and Pb can be obtained.
  • the host computer 6 is not indispensable, and the control device 10 of the mounting machine 4 can execute the optimization program.
  • the present invention is not limited to the rotation of the rotary head 40 about the head center axis Lh, and the three-dimensional shape of the component can be obtained while rotating the suction nozzle 80 about the nozzle center axis Ln.
  • the present invention can be implemented in various modified forms based on the knowledge of those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

The problem addressed by the present disclosure is to efficiently acquire the flatness of a component. In a mounter of a mounting system according to the present disclosure, captured images are acquired that include images of two or more of a plurality of components held by a rotary head, and the flatness of each of the two or more components is acquired on the basis of the captured images. In this manner, because the flatness of each of the two or more components is acquired on the basis of the captured images, it is possible to efficiently acquire the flatness of the two or more components compared with a case in which a captured image is acquired for each component and the flatness is acquired for each captured image.

Description

実装機および実装システムMounting machine and mounting system
 本開示は、平坦度が取得される実装機、実装機を備えた実装システムに関するものである。 The present disclosure relates to a mounting machine for obtaining flatness and a mounting system including the mounting machine.
 特許文献1に記載の実装機には、ヘッドの部品保持具に保持された1つの部品の複数のリード線の各々の浮き上がりの有無を検出する浮き上がり有無検出装置が設けられている。浮き上がり有無検出装置においては、部品保持具に保持された部品の複数のリード線のうち、スリット光源からスリット光が照射された一部の複数のリード線がカメラによって撮像されて、撮像画像に基づいて、一部の複数のリード線の各々の浮き上がりの有無が検出される。 The mounting machine described in Patent Literature 1 is provided with a floating presence / absence detection device that detects the presence / absence of floating of each of a plurality of lead wires of one component held by the component holder of the head. In the lifting presence / absence detection device, among the plurality of lead wires of the component held by the component holder, some of the plurality of lead wires irradiated with slit light from the slit light source are imaged by the camera, and based on the captured image. Thus, the presence or absence of each of the plurality of lead wires is detected.
特開2008-288336号JP 2008-288336 A
本開示が解決しようとする課題Problems to be solved by the present disclosure
 本開示の課題は、複数の部品の各々の平坦度を効率よく取得することである。 The subject of the present disclosure is to efficiently obtain the flatness of each of a plurality of components.
課題を解決するための手段、作用および効果Means, actions and effects for solving the problem
 本開示に係る実装機システムの実装機においては、ロータリヘッドに保持された複数の部品のうちの一部の2つ以上にパターンが照射されるとともに撮像され、その撮像画像に基づいて一部の2つ以上の部品の各々の平坦度が取得される。このように、撮像画像に基づいて2つ以上の部品の各々の平坦度が取得されるため、部品1つずつに、パターンの照射、撮像が行われて、その撮像画像に基づいて平坦度が取得される場合に比較して、2つ以上の部品の平坦度を効率よく取得することができる。なお、特許文献1には、ロータリヘッドに保持された複数の部品のうちの一部の2つ以上の部品が撮像装置によって撮像されて、撮像画像に基づいて2つ以上の部品の平坦度が取得されることは記載されていない。 In the mounting machine of the mounting machine system according to the present disclosure, two or more of a plurality of components held by the rotary head are irradiated with a pattern and imaged, and some of the components are based on the captured image. The flatness of each of the two or more parts is obtained. As described above, since the flatness of each of the two or more components is obtained based on the captured image, pattern irradiation and imaging are performed on each of the components, and the flatness is determined based on the captured image. The flatness of two or more components can be acquired more efficiently than when acquired. Note that, in Patent Literature 1, two or more components of a plurality of components held by a rotary head are imaged by an imaging device, and the flatness of the two or more components is determined based on the captured image. It is not stated that it will be obtained.
本実施形態に係る実装システムを概念的に示す図である。It is a figure which shows the mounting system concerning this embodiment notionally. 上記実装システムの実装機の平面図である。It is a top view of a mounting machine of the above-mentioned mounting system. 上記実装機の部品装着装置のロータリヘッドの周辺を概念的に示す図である。It is a figure which shows notionally the periphery of the rotary head of the component mounting apparatus of the said mounting machine. 上記実装機の撮像ユニットの正面図である。It is a front view of the imaging unit of the above-mentioned mounting machine. 上記撮像ユニットの平面図(概念図)である。FIG. 3 is a plan view (conceptual diagram) of the imaging unit. 上記実装機の制御装置の周辺を概念的に示す図である。It is a figure which shows notionally the periphery of the control apparatus of the said mounting machine. 上記制御装置の記憶部に記憶された平坦度取得プログラムを表すフローチャートである。4 is a flowchart illustrating a flatness acquisition program stored in a storage unit of the control device. 上記実装システムのホストPCの記憶部に記憶された最適化プログラムを表すフローチャートである。It is a flowchart showing the optimization program memorize | stored in the memory | storage part of the host PC of the said mounting system. 上記制御装置の記憶部に記憶された別の平坦度取得プログラムを表すフローチャートである。It is a flowchart showing another flatness acquisition program stored in the storage unit of the control device. 上記ロータリヘッドに保持された部品を下方から見た概念図である。FIG. 3 is a conceptual diagram of a component held by the rotary head as viewed from below. 上記ロータリヘッドと撮像ユニットとの相対位置関係を概念的に示す図である。FIG. 3 is a diagram conceptually showing a relative positional relationship between the rotary head and an imaging unit. (12A)上記ロータリヘッドに保持された部品の回転に伴うパターンの照射角度の変化を表す図である。(12B)上記別のパターンが照射される場合の照射角度の変化を表す図である。FIG. 12A is a diagram illustrating a change in an irradiation angle of a pattern accompanying rotation of a component held by the rotary head. FIG. 12B is a diagram illustrating a change in an irradiation angle when the another pattern is irradiated. 上記ロータリヘッドと撮像ユニットとの別の相対位置関係を概念的に示す図である。It is a figure which shows notionally another relative positional relationship between the said rotary head and an imaging unit. (14A)上記ロータリヘッドの回転に伴うプロジェクタ150によって部品に照射されるパターンの角度の変化を表す図である。(14B)プロジェクタ151によって部品に照射されるパターンの角度の変化を表す図である。FIG. 14A is a diagram illustrating a change in the angle of a pattern irradiated on a component by the projector 150 due to the rotation of the rotary head. (14B) It is a figure showing the change of the angle of the pattern irradiated to a component by the projector 151. 第1相対位置における上記ロータリヘッドの回転に伴って部品に照射されるパターンの角度の変化を表す図である。FIG. 4 is a diagram illustrating a change in the angle of a pattern irradiated on a component as the rotary head rotates at a first relative position. 第2相対位置における上記ロータリヘッドの回転に伴って部品に照射されるパターンの角度の変化を表す図である。FIG. 9 is a diagram illustrating a change in the angle of a pattern irradiated on a component as the rotary head rotates at a second relative position. (17A)上記ホストPCによって最適化が図られた場合に上記ロータリヘッドに保持された部品を示す図である。(17B)上記ホストPCによって最適化が図られていない場合に上記ロータリヘッドに保持された部品を示す図である。FIG. 17A is a diagram illustrating components held by the rotary head when optimization is performed by the host PC. FIG. 17B is a diagram showing components held by the rotary head when optimization has not been performed by the host PC. (18A),(18B),(18C)上記実装機における作業対象部品を表す図である。(18A), (18B), (18C) are views showing work target components in the mounting machine.
開示を実施するための形態Forms for implementing disclosure
 以下、本開示の一実施形態である実装機システムについて、図面に基づいて詳細に説明する。 Hereinafter, a mounting machine system according to an embodiment of the present disclosure will be described in detail with reference to the drawings.
 本実装システム2は、図1に示すように、(a)複数の実装機4A,4B・・・・、(b)ホストコンピュータ(以下、ホストPCと略称する)6、(d)バス8等を含み、複数の実装機4A,4B・・・の各々が備えた複数の制御装置10A,10B・・・の各々とホストPC6とがバス8を介して互いに通信可能に連結される。複数の実装機4A,4B・・・、制御装置10A,10B・・・の各々を区別する場合には、符号A,B,・・・を付して区別する。総称する場合等区別する必要がない場合には、符号A,B,・・・等を省略する。 As shown in FIG. 1, the mounting system 2 includes (a) a plurality of mounting machines 4A, 4B,..., (B) a host computer (hereinafter abbreviated as host PC) 6, (d) a bus 8, and the like. Are respectively connected to a plurality of control devices 10A, 10B,... Provided in each of the plurality of mounting machines 4A, 4B,. When the plurality of mounting machines 4A, 4B,... And the control devices 10A, 10B,. In cases where it is not necessary to distinguish them, such as when they are collectively referred to, symbols A, B,... Are omitted.
 複数の実装機4は、図2に示すように、電子部品(以下、部品と略称する)を回路基板S(以後、基板Sと略称する)に装着するものであり、それぞれ、上記制御装置10(図6参照)、基板搬送支持装置12,部品供給装置14,部品装着装置16,撮像ユニット18等を含む。
 基板搬送支持装置12は、基板Sを搬送して保持するものである。図2において、Xは基板搬送支持装置12による基板Sの搬送方向であり、Yは基板Sの幅方向である。また、図3,4において、Zは基板Sの厚み方向である。Yは実装機4の前後方向、Zは上下方向であり、これら、X方向、Y方向、Z方向は互いに直交する。
As shown in FIG. 2, the plurality of mounting machines 4 mount electronic components (hereinafter, abbreviated as components) on a circuit board S (hereinafter, abbreviated as a board S). (See FIG. 6), and includes a board transfer support device 12, a component supply device 14, a component mounting device 16, an imaging unit 18, and the like.
The substrate transport and support device 12 transports and holds the substrate S. In FIG. 2, X is the direction in which the substrate S is transported by the substrate transport and support device 12, and Y is the width direction of the substrate S. 3 and 4, Z is the thickness direction of the substrate S. Y is the front-back direction of the mounting machine 4, Z is the up-down direction, and these X direction, Y direction, and Z direction are orthogonal to each other.
 部品供給装置14は、基板Sに装着される部品を、部品装着装置16に受け渡し可能な状態で供給するものである。本実施例において、部品供給装置14は、複数の部品をテープを利用して供給するテープフィーダ22を含むものであるが、複数のトレイを含むもの等とすることもできる。
 部品供給装置14によって供給される部品には、図10、図18Aに示すように、部品本体26と、部品本体26に形成された電極部としての複数のはんだボール28とを含む部品30であるBGA(Ball Grid Array)、図10、図18Bに示すように、部品本体32と、その部品本体32の側面から延び出し、J字状に曲げられた電極部としての複数のリード線34を含むリード部品36であるSOJ(Small Out Line J Lead)、図17A,17B,図18Cに示すように、両端部に電極部37を有するチップ状の部品38であるCSP(Chip Size Package)等が含まれる。なお、図10,17A,17Bは、部品30,36,38を底部から見た状態を示す。
The component supply device 14 supplies a component to be mounted on the board S to the component mounting device 16 in a state where it can be delivered. In the present embodiment, the component supply device 14 includes the tape feeder 22 that supplies a plurality of components using a tape. However, the component supply device 14 may include a plurality of trays.
As shown in FIGS. 10 and 18A, the component supplied by the component supply device 14 is a component 30 including a component main body 26 and a plurality of solder balls 28 as electrode portions formed on the component main body 26. A BGA (Ball Grid Array), as shown in FIGS. 10 and 18B, includes a component body 32 and a plurality of lead wires 34 extending from the side surface of the component body 32 and serving as J-shaped electrode portions. 17A, 17B, and 18C, a CSP (Chip Size Package) that is a chip-shaped component 38 having electrode portions 37 at both ends, and the like. It is. FIGS. 10, 17A and 17B show components 30, 36 and 38 as viewed from the bottom.
 部品装着装置16は、部品供給装置14によって供給された部品をピックアップして保持して、基板搬送支持装置12によって搬送されて保持された基板Sに装着するものである。部品装着装置16は、図2,3に示すように、ロータリヘッド40、ロータリヘッド40を移動させるヘッド移動装置42等を含む。ヘッド移動装置42は、ロータリヘッド40を、x方向、y方向に移動させるヘッド水平移動装置44、ロータリヘッド40をヘッド中心軸線(図3において符号Lhで示す)回りに回転させるヘッド回転装置46等を含む。ヘッド水平移動装置44は、図2に示すように、X方向移動装置50およびY方向移動装置52を含む。X方向移動装置50は、Xスライダ54、駆動源たるXモータ56、Xモータ56の回転を直線移動に変換してXスライダ54に伝達する運動変換機構58等を含む。Y方向移動装置52はXスライダ54に設けられ、Yスライダ62、駆動源たるYモータ64、Yモータ64の回転を直線運動に変換してYスライダ62に伝達する運動変換機構66(図3参照)等を含む。 The component mounting device 16 picks up and holds the component supplied by the component supply device 14 and mounts the component on the substrate S transported and held by the substrate transport and support device 12. As shown in FIGS. 2 and 3, the component mounting device 16 includes a rotary head 40, a head moving device 42 that moves the rotary head 40, and the like. The head moving device 42 includes a head horizontal moving device 44 for moving the rotary head 40 in the x direction and the y direction, a head rotating device 46 for rotating the rotary head 40 around a central axis of the head (indicated by Lh in FIG. 3), and the like. including. The head horizontal moving device 44 includes an X direction moving device 50 and a Y direction moving device 52 as shown in FIG. The X-direction moving device 50 includes an X-slider 54, an X-motor 56 as a driving source, a motion conversion mechanism 58 for converting the rotation of the X-motor 56 into a linear motion and transmitting the linear motion to the X-slider 54. The Y-direction moving device 52 is provided on the X slider 54, and converts the rotation of the Y slider 62, the Y motor 64 serving as a driving source, and the Y motor 64 into a linear motion and transmits the linear motion to the Y slider 62 (see FIG. 3). ) Etc.
 一方、ロータリヘッド40は、Yスライダ62に、ヘッド回転装置46により自身のヘッド中心軸線Lhの回りに回転可能に保持される。ロータリヘッド40は、ヘッド本体78と、複数(例えば、3本以上、本実施例においては8本)の部品保持具としての吸着ノズル80a、80b・・・とを含む。ヘッド本体78は、互いに一体的に回転可能に設けられた回転軸84とノズル保持体86とを含む。吸着ノズル80a、80b・・・は、それぞれノズル本体87a、87b・・・に保持される。ノズル本体87a、87b・・・は、それぞれ、ノズル保持体86の、ヘッド中心軸線Lhを中心とする一円周上の、互いに中心角45°ずつ隔たった位置に、相対回転可能かつ昇降可能に、保持される。吸着ノズル80a、80b・・・は負圧により部品を吸着して保持するものであり、負圧源(図示省略)から負圧が供給されることにより、部品が保持される。以下、吸着ノズル80a、80b・・・、ノズル本体87a、87b・・・等を個別に区別する場合には添え字a、b、c・・・を付すが、総称する場合等区別する必要がない場合には、添え字a、b、c・・・を省略する。 On the other hand, the rotary head 40 is held by the Y slider 62 so as to be rotatable around its own central axis Lh by the head rotating device 46. The rotary head 40 includes a head body 78 and a plurality of (for example, three or more, in this embodiment, eight) suction nozzles 80a, 80b,... The head main body 78 includes a rotation shaft 84 and a nozzle holder 86 provided so as to be integrally rotatable with each other. The suction nozzles 80a, 80b,... Are held by nozzle bodies 87a, 87b,. The nozzle bodies 87a, 87b,... Are relatively rotatable and vertically movable at positions separated by a central angle of 45 ° on one circumference of the nozzle holding body 86 around the head center axis Lh. , Will be retained. The suction nozzles 80a, 80b,... Suck and hold components by negative pressure, and hold components by supplying negative pressure from a negative pressure source (not shown). In the following, when the suction nozzles 80a, 80b,..., The nozzle bodies 87a, 87b, etc. are individually distinguished, suffixes a, b, c,. If not, the subscripts a, b, c,... Are omitted.
 ヘッド回転装置46は、回転軸84を回転させることによりヘッド本体78を回転させるものであり、駆動源たるヘッド回転用モータ88と、ヘッド回転用モータ88の回転を回転軸84に伝達する図示しない回転伝達機構とを含む。回転用モータ88の回転により、回転軸84、すなわち、ヘッド本体78(ロータリヘッド40)がヘッド中心軸線Lhの回りに回転させられる。 The head rotation device 46 rotates the head main body 78 by rotating the rotation shaft 84, and transmits a rotation of the head rotation motor 88 as a driving source and the rotation of the head rotation motor 88 to the rotation shaft 84 (not shown). And a rotation transmitting mechanism. By the rotation of the rotation motor 88, the rotation shaft 84, that is, the head main body 78 (the rotary head 40) is rotated around the head center axis Lh.
 Yスライダ62には、保持具自転装置としてのノズル回転装置94、吸着ノズル80を昇降させるノズル昇降装置96等が設けられる。ノズル回転装置94は、Yスライダ62に設けられた駆動源たる回転用モータ130と、ロータリヘッド40の回転軸84に対して相対回転可能に設けられた回転駆動軸132と、ノズル本体87と一体的に回転可能に設けられた被回転体134とを含む。回転用モータ130、回転駆動軸132、被回転体134は、互いに、回転を伝達可能な状態で係合させられる。回転用モータ130の回転は回転駆動軸132を介して被回転体134に伝達され、複数の吸着ノズル80がそれぞれノズル中心軸線Lnの回りに一斉に回転させられる。ノズル昇降装置96は、Yスライダ62に設けられた駆動源たる昇降用モータ140、ノズル保持体86の予め定められた位置にあるノズル本体87に係合可能な昇降駆動部材142、昇降用モータ140の回転を直線運動に変換して昇降駆動部材142に伝達する運動変換機構144等を含む。 The Y slider 62 is provided with a nozzle rotating device 94 as a holder rotating device, a nozzle lifting device 96 for lifting and lowering the suction nozzle 80, and the like. The nozzle rotation device 94 is integrally formed with a rotation motor 130 provided as a drive source provided on the Y slider 62, a rotation drive shaft 132 provided rotatably with respect to the rotation shaft 84 of the rotary head 40, and a nozzle body 87. And a rotatable member 134 rotatably provided. The rotation motor 130, the rotation drive shaft 132, and the rotating body 134 are engaged with each other so that rotation can be transmitted. The rotation of the rotation motor 130 is transmitted to the rotating body 134 via the rotation drive shaft 132, and the plurality of suction nozzles 80 are simultaneously rotated around the nozzle center axis Ln. The nozzle lifting / lowering device 96 includes a lifting / lowering motor 140 as a driving source provided on the Y slider 62, a lifting / lowering driving member 142 engageable with a nozzle main body 87 at a predetermined position of the nozzle holder 86, And a motion conversion mechanism 144 that converts the rotation of the rotation into a linear motion and transmits the linear motion to the lifting drive member 142.
 撮像ユニット18は、上方に位置する吸着ノズル80によって保持された部品の三次元形状を取得するものであり、図4,5に示すように、2つのプロジェクタ150,151と、撮像装置としてのカメラ152と、コンピュータを主体とし、プロジェクタ150,152、カメラ152を制御するとともに、部品の三次元形状を取得する三次元形状取得部154とを含む。 The imaging unit 18 acquires the three-dimensional shape of the component held by the suction nozzle 80 positioned above, and as shown in FIGS. 4 and 5, two projectors 150 and 151 and a camera as an imaging device 152 and a three-dimensional shape acquisition unit 154 that mainly controls a computer, controls the projectors 150 and 152, and the camera 152, and acquires the three-dimensional shape of the component.
 カメラ152は、CCD(Charge Coupled Device),CMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を有する撮像装置である。カメラ152は、軸線LzがZ方向に延びた姿勢で設けられ、プロジェクタ150,151は、軸線Lzの回りに90°隔たった位置に設けられる。プロジェクタ150は、図12Aに示すように、矢印Faの方向に正弦波的に強度が変化する平面状に広がるパターンNを照射し、プロジェクタ151は、図12Bに示すように、矢印Fbの方向に正弦波的に強度が変化する平面状に広がるパターンNを照射する。また、これらパターンNは、Z方向およびX,Y方向に対して傾いた向きに照射されるのであり、部品には斜め下方から当たる。 The camera 152 is an image pickup device having an image pickup device such as a CCD (Charge Coupled Device) and a CMOS (Complementary Metal Oxide Semiconductor). The camera 152 is provided so that the axis Lz extends in the Z direction, and the projectors 150 and 151 are provided at positions separated by 90 degrees around the axis Lz. As shown in FIG. 12A, the projector 150 irradiates a pattern N that spreads in a plane in which the intensity changes sinusoidally in the direction of arrow Fa, and the projector 151 moves in the direction of arrow Fb as shown in FIG. 12B. A pattern N that spreads in a plane shape whose intensity changes sinusoidally is irradiated. Further, these patterns N are irradiated in a direction inclined with respect to the Z direction and the X and Y directions, and strike the components from obliquely below.
 また、カメラ152によって画像を撮像可能な領域である撮像領域Rcは、プロジェクタ150,151によってパターンが照射される領域である照射領域Rpに含まれる。そのため、本実施例においては、撮像領域Rcと照射領域Rpとが重なる共通領域は、撮像領域(=共通領域)Rcと同じとなる。 {Circle around (1)} The imaging region Rc, which is a region where the camera 152 can capture an image, is included in the irradiation region Rp, which is a region where the patterns are irradiated by the projectors 150 and 151. Therefore, in the present embodiment, the common region where the imaging region Rc and the irradiation region Rp overlap is the same as the imaging region (= common region) Rc.
 撮像ユニット18において、プロジェクタ150,151によってパターンが照射された部品がカメラ152によって撮像され、三次元形状取得部154によって、取得された撮像画像に基づいて部品の三次元形状が位相シフト法により取得される。また、本撮像ユニット18においては、二次元的に広がった共通領域Rcの内側に位置する部品の三次元形状が取得されるのである。 In the imaging unit 18, the components irradiated with the patterns by the projectors 150 and 151 are imaged by the camera 152, and the three-dimensional shape acquisition unit 154 acquires the three-dimensional shape of the component based on the acquired image by the phase shift method. Is done. In the imaging unit 18, the three-dimensional shape of the component located inside the two-dimensionally spread common region Rc is acquired.
 プロジェクタ150,151によって、それぞれ、一方向Fa、Fbに正弦波的に強度が変化するパターンが、位相をずらして複数回照射され、パターンが照射される毎に、カメラ152によって撮像領域Rc内の画像である撮像画像が取得される。三次元形状取得部154において、撮像画像の各々において、撮像画像を構成する画素の各々における輝度が取得され、複数の撮像画像における同一の画素における輝度の値に基づいて、その画素における位相が取得される。そして、位相が同じ画素を連結することにより等位相線が得られる。一方、その位相の光(パターンを構成する1ライン)の照射角度、カメラ152の撮像素子上の画素の位置、撮像ユニット18の光学的、幾何学的パラメータ(プロジェクタ150,151の光学中心座標、カメラ152の光学中心座標、焦点距離)等に基づいて、カメラ152の撮像素子からその等位相線で連結された画素の各々に対応する部品上の点までの距離がそれぞれ取得される。そして、これら部品上の複数の点の各々の撮像素子からの距離に基づいて部品の三次元形状が取得されるのである。 The projectors 150 and 151 irradiate a pattern whose intensity changes sinusoidally in one direction Fa and Fb a plurality of times with a phase shift, and each time the pattern is illuminated, the camera 152 irradiates the pattern in the imaging region Rc. A captured image, which is an image, is obtained. In each of the captured images, the three-dimensional shape obtaining unit 154 obtains the luminance of each of the pixels constituting the captured image, and obtains the phase of the pixel based on the luminance value of the same pixel in the plurality of captured images. Is done. Then, by connecting pixels having the same phase, an equal phase line is obtained. On the other hand, the irradiation angle of the light of the phase (one line forming the pattern), the position of the pixel on the image sensor of the camera 152, the optical and geometric parameters of the image pickup unit 18 (the optical center coordinates of the projectors 150 and 151, Based on the optical center coordinates of the camera 152, the focal length, and the like, the distance from the image sensor of the camera 152 to the point on the component corresponding to each of the pixels connected by the equiphase lines is obtained. Then, the three-dimensional shape of the component is obtained based on the distance of each of the plurality of points on the component from the image sensor.
 なお、三次元形状の取得方法、プロジェクタ150,151によって照射されるパターンは、限定されない。例えば、位相シフト法に限らず広くパターン投影法により三次元形状が取得されるようにすることもできる。また、本実施例においては、予め定められた二次元的(平面的)に広がる設定領域内に位置する部品の三次元形状が取得されればよいのであり、例えば、ステレオ画像法によることもできる。ステレオ画像法を利用する場合には、プロジェクタは不要であり、複数のカメラによる撮像画像に基づいて、撮像領域Rc内に位置する部品の三次元形状が取得される。 The method of acquiring the three-dimensional shape and the pattern irradiated by the projectors 150 and 151 are not limited. For example, the three-dimensional shape can be obtained not only by the phase shift method but also by a pattern projection method. Further, in the present embodiment, the three-dimensional shape of the part located in the predetermined two-dimensionally (planarly) set area may be obtained, and for example, the stereo image method may be used. . When the stereo image method is used, a projector is unnecessary, and a three-dimensional shape of a component located in the imaging region Rc is obtained based on images captured by a plurality of cameras.
 制御装置10は、コンピュータを主体とするものであり、図6に示すように、実行部180、記憶部182、入出力部184等を含み、入出力部184には、撮像ユニット18の三次元形状取得部154が接続されるとともに、駆動回路190を介して基板搬送支持装置12、部品供給装置14、部品装着装置16等が接続される。また、制御装置10にはホストPC6が接続されるが、ホストPC6は、図1に示すように、実行部200、記憶部202、入出力部204等を含み、入出力部204には外部入力装置206等が接続される。 The control device 10 mainly includes a computer, and includes an execution unit 180, a storage unit 182, an input / output unit 184, and the like, as shown in FIG. The shape acquisition unit 154 is connected, and the substrate transport support device 12, the component supply device 14, the component mounting device 16, and the like are connected via the drive circuit 190. A host PC 6 is connected to the control device 10. The host PC 6 includes an execution unit 200, a storage unit 202, an input / output unit 204, and the like, as shown in FIG. The device 206 and the like are connected.
 以上のように構成された実装システムにおいて、実装機4における作動について最初に説明する。
 実装機4おいて、ロータリヘッド40が撮像ユニット18の上方に移動させられ、ロータリヘッド40に保持された複数の部品の、基板Sに装着される部分(吸着ノズル80によって保持される側とは反対側)である対象部の三次元形状が取得され、三次元形状に基づいて仮想平面の平坦度が取得される。対象部は、部品の電極部の少なくとも一部を含む部分である。
 例えば、図18Aに示す部品30においては、複数のはんだボール28を含む部分が対象部Taとされ、対象部Taの三次元形状に基づいて、複数のはんだボール28の先端(点)の集合によって形成される仮想平面Paの平坦度が取得される。図18Bに示す部品36においては、複数のリード線34の、部品本体32の底面に伸びた部分を含む部分が対象部Tbとされ、対象部Tbの三次元形状に基づいて、複数のリード線34の部品本体32の底面側に延び出した部分の側面(底面)の予め定められた点の集合によって形成される仮想平面Pbの平坦度が取得される。
In the mounting system configured as described above, the operation of the mounting machine 4 will be described first.
In the mounting machine 4, the rotary head 40 is moved above the imaging unit 18, and the portions of the plurality of components held by the rotary head 40 to be mounted on the substrate S (the side held by the suction nozzle 80 The three-dimensional shape of the target portion (opposite side) is acquired, and the flatness of the virtual plane is acquired based on the three-dimensional shape. The target part is a part including at least a part of the electrode part of the component.
For example, in the component 30 shown in FIG. 18A, a portion including the plurality of solder balls 28 is set as the target portion Ta, and based on a three-dimensional shape of the target portion Ta, a set of tips (points) of the plurality of solder balls 28 is formed. The flatness of the formed virtual plane Pa is obtained. In the component 36 shown in FIG. 18B, a portion of the plurality of lead wires 34 including a portion extending to the bottom surface of the component body 32 is set as the target portion Tb, and based on the three-dimensional shape of the target portion Tb, the plurality of lead wires 34 The flatness of the virtual plane Pb formed by a set of predetermined points on the side surface (bottom surface) of the portion of the component body 32 extending to the bottom surface side of the component 34 is acquired.
 一方、製造上の欠陥、搬送中のトラブルにより、はんだボール28の一部が欠けていたり、リード線34が曲がっていたりする場合がある。このように、はんだボール28の一部が欠けた部品30やリード線34が曲がった部品36が基板Sに装着された場合には、部品30,36への通電不良が生じる等の問題が生じる。そこで、本実施例においては、部品30,36の対象部の平坦度が取得され、部品30,36についてのチェックが行われるのである。それに対して、図18Cに示す部品38については、電極部37の平坦度を取得する必要性は低い。そのため、本実施例においては、部品30,36が平坦度の取得対象部品(以下、単に対象部品と称する場合がある)とされ、部品38は対象部品とされない。なお、以下、部品の対象部の電極部の予め定められた点の集合によって形成される仮想平面の平坦度を単に部品の平坦度と称する場合がある。 On the other hand, a part of the solder ball 28 may be missing or the lead wire 34 may be bent due to a manufacturing defect or a trouble during transportation. As described above, when the component 30 in which a part of the solder ball 28 is missing or the component 36 in which the lead wire 34 is bent is mounted on the substrate S, a problem such as the occurrence of poor current supply to the components 30 and 36 occurs. . Therefore, in the present embodiment, the flatness of the target portion of the components 30 and 36 is obtained, and the components 30 and 36 are checked. On the other hand, for the component 38 shown in FIG. 18C, it is not necessary to obtain the flatness of the electrode portion 37. For this reason, in the present embodiment, the components 30 and 36 are the target components for acquiring the flatness (hereinafter, may be simply referred to as target components), and the component 38 is not a target component. Hereinafter, the flatness of a virtual plane formed by a set of predetermined points of the electrode portion of the target portion of the component may be simply referred to as the flatness of the component.
 一方、図4に示すように、本実施例に係る撮像ユニット18において、共通領域Rcが、ロータリヘッド40に保持された8個の部品すべてを含む領域より狭い。そのため、ロータリヘッド40に保持された8個の部品すべてを含む撮像画像を取得することができない。 On the other hand, as shown in FIG. 4, in the imaging unit 18 according to the present embodiment, the common area Rc is smaller than the area including all eight components held by the rotary head 40. Therefore, it is not possible to acquire a captured image including all eight components held by the rotary head 40.
 また、部品の三次元形状は、プロジェクタによってパターンNが互いに異なる複数の方向から照射された状態で取得されることが望ましい。部品に照射されるパターンNの向きによって、部品においてパターンが当たらない部分が存在し、三次元形状を精度よく取得することが困難となる場合があるからである。 三 Further, it is desirable that the three-dimensional shape of the component is acquired in a state where the pattern N is irradiated from a plurality of different directions by the projector. This is because, depending on the direction of the pattern N irradiated to the component, there may be a portion where the pattern does not hit in the component, and it may be difficult to accurately obtain a three-dimensional shape.
 そこで、例えば、図11に示すように、ロータリヘッド40がヘッド水平移動装置44により移動させられ、ロータリヘッド40と撮像ユニット18との相対位置が、ロータリヘッド40に設けられたすべての吸着ノズル80のうちの一部の吸着ノズル80に保持された2つ以上の部品が共通領域Rcの内側に位置する第1相対位置とされる。そして、この第1相対位置において、ロータリヘッド40をヘッド回転装置46により設定回転角度ずつ間欠的に回転させつつ、パターンNを照射して、部品を撮像する。そして、取得された撮像画像に基づいて部品の各々の三次元形状が取得されるようにしたのである。なお、第1相対位置は、具体的には、ロータリヘッド40の第1領域R1の内側に位置する3つの吸着ノズル80a、80b、80cに保持された3つの部品36(1)、36(2)、30(3)が共通領域Rcの内側に位置する相対位置である。第1領域R1は、ロータリヘッド40の中心角で規定される領域であり、xスライダ54に最も近い位置を0°とした場合、0°以上90°以下の領域(設定中心角範囲)に位置する3つの吸着ノズル80によって保持された3つの部品が含まれる領域とされる。また、ロータリヘッド40の回転に伴って部品が回転させられることにより、部品に互いに異なる角度からパターンNが照射される。 Therefore, for example, as shown in FIG. 11, the rotary head 40 is moved by the head horizontal moving device 44, and the relative position between the rotary head 40 and the imaging unit 18 is changed to all the suction nozzles 80 provided on the rotary head 40. The two or more components held by some of the suction nozzles 80 are set to the first relative position located inside the common region Rc. Then, at this first relative position, the pattern N is irradiated while the rotary head 40 is intermittently rotated by the set rotation angle by the head rotation device 46 to image the component. Then, the three-dimensional shape of each of the components is obtained based on the obtained captured image. The first relative position is, specifically, the three components 36 (1) , 36 (2 ) held by the three suction nozzles 80a, 80b, 80c located inside the first region R1 of the rotary head 40. ) , 30 (3) are relative positions located inside the common region Rc. The first region R1 is a region defined by the central angle of the rotary head 40. When the position closest to the x slider 54 is 0 °, the first region R1 is located in a region from 0 ° to 90 ° (set central angle range). The area includes the three components held by the three suction nozzles 80 to be processed. In addition, when the component is rotated with the rotation of the rotary head 40, the pattern N is irradiated on the component from different angles.
 本実施例においては、図11に示すように、ロータリヘッド40と撮像ユニット18との第1相対位置において、プロジェクタ150が矢印Faに示す方向にパターンNを照射する。その場合において、吸着ノズル80aに保持された部品(以下、1番の部品と称する場合がある)36(1)に照射される(当たる)パターンNの平面視における照射角度(以下、平面視における照射角度を単に角度と略称する場合がある)を0°とし、吸着ノズル80bに保持された部品(以下、2番の部品と称する場合がある)36(2)に照射されるパターンNの角度を45°、吸着ノズル80cによって保持された部品(3番の部品と称する場合がある)30(3)に照射されるパターンNの角度を90°とする。この状態で、カメラ152によって撮像された撮像画像には、3つの部品36(1)、36(2)、30(3)の画像が含まれ、その撮像画像に基づいて、角度0°からパターンNが照射された場合の部品36(1)の三次元形状、角度45°からパターンNが照射された場合の部品36(2)の三次元形状、角度90°からパターンNが照射された場合の部品30(3)の三次元形状が取得される。 In the present embodiment, as shown in FIG. 11, at a first relative position between the rotary head 40 and the imaging unit 18, the projector 150 irradiates the pattern N in the direction indicated by the arrow Fa. In this case, the component N held in the suction nozzle 80a (hereinafter, may be referred to as the first component) 36 (1) The irradiation angle in the plan view (hereinafter referred to as the plan view) of the pattern N irradiating (hitting) (1) The irradiation angle may be simply referred to as an angle) is set to 0 °, and the component held by the suction nozzle 80b (hereinafter, may be referred to as a second component) 36 (2) The angle of the pattern N irradiated to the component (2) Is 45 °, and the angle of the pattern N irradiated on the component (sometimes referred to as the third component) 30 (3) held by the suction nozzle 80c is 90 °. In this state, the captured image captured by the camera 152 includes images of three components 36 (1) , 36 (2) , and 30 (3) , and a pattern is formed from an angle of 0 ° based on the captured image. The three-dimensional shape of the component 36 (1) when N is irradiated, the three-dimensional shape of the component 36 (2) when the pattern N is irradiated from an angle of 45 °, and the case where the pattern N is irradiated from an angle of 90 ° The three-dimensional shape of the part 30 (3) is obtained.
 次に、プロジェクタ151がパターンNを矢印Fbが示す方向に照射する。1番の部品36(1)には平面視において角度90°からパターンNが照射され、2番の部品36(2)には角度135°からパターンNが照射され、3番の部品30(3)には角度180°からパターンNが照射される。この場合の撮像画像に基づいて、部品36(1)、36(2)、30(3)の各々について、平面視における角度90°、135°、180°からパターンNが照射された場合の三次元形状が取得される。 Next, the projector 151 irradiates the pattern N in the direction indicated by the arrow Fb. The first component 36 (1) is irradiated with the pattern N from an angle of 90 ° in a plan view, the second component 36 (2) is irradiated with the pattern N from an angle of 135 °, and the third component 30 (3) ) Is irradiated with the pattern N from an angle of 180 °. Based on the captured image in this case, the tertiary order when the pattern N is irradiated from the angles 90 °, 135 °, and 180 ° in plan view for each of the components 36 (1) , 36 (2) , and 30 (3) The original shape is obtained.
 その後、ロータリヘッド40をヘッド中心軸線Lhの回りに設定回転角度として45°回転させる。吸着ノズル80hによって保持された部品(8番の部品と称する場合がある)30(8)、1番の部品36(1)、2番の部品36(2)が共通領域Rcの内側に位置し、3番の部品30(3)が共通領域Rcから外れる。8番目の部品30(8)、1番の部品36(1)、2番の部品36(2)には、プロジェクタ150によってそれぞれ平面視において0°、45°、90°の角度からパターンNが照射され、プロジェクタ151によって平面視において90°、135°、180°の角度からパターンNが照射されて、それぞれ、三次元形状が取得される。以下、同様に、ロータリヘッド40が45°ずつ回転させられて、共通領域Rcの内側に位置する3つの部品の各々について、それぞれ、三次元形状が取得される。このように、ロータリヘッド40の1回の回転角度である設定回転角度(45°)は、第1領域R1を規定する設定中心角度範囲(90°)より小さい角度である。そのため、ロータリヘッド40が1回回転させられた場合に、第1領域R1、すなわち、ロータリヘッド40と撮像ユニット18とが第1相対位置にある場合における共通領域Rcに属する部品がすべて変わるのではなく、少なくとも1つは残る。換言すれば、ロータリヘッド40の設定回転角度と、第1領域R1を規定する設定中心角度とは、ロータリヘッド40の1回の回転により共通領域Rcの内側に位置する2つ以上の部品のうちの一部が共通領域Rcから外れ、残りの一部が共通領域Rcの内側に残るように決定されるのである。 Thereafter, the rotary head 40 is rotated around the head central axis Lh by 45 ° as a set rotation angle. The component held by the suction nozzle 80h (sometimes referred to as the eighth component) 30 (8) , the first component 36 (1) , and the second component 36 (2) are located inside the common area Rc. The third component 30 (3) deviates from the common area Rc. For the eighth component 30 (8) , the first component 36 (1) , and the second component 36 (2) , the pattern N is formed by the projector 150 from angles of 0 °, 45 °, and 90 ° in plan view. The pattern N is radiated from the projector 151 at angles of 90 °, 135 °, and 180 ° in plan view, and a three-dimensional shape is obtained. Hereinafter, similarly, the rotary head 40 is rotated by 45 °, and a three-dimensional shape is obtained for each of the three components located inside the common region Rc. As described above, the set rotation angle (45 °) that is one rotation angle of the rotary head 40 is smaller than the set center angle range (90 °) that defines the first region R1. Therefore, when the rotary head 40 is rotated once, all the components belonging to the first region R1, that is, the common region Rc when the rotary head 40 and the imaging unit 18 are at the first relative position may change. And at least one remains. In other words, the set rotation angle of the rotary head 40 and the set center angle that defines the first region R1 are defined by two or more components located inside the common region Rc by one rotation of the rotary head 40. Are deviated from the common region Rc, and the remaining part is determined to remain inside the common region Rc.
 1つの部品、例えば、1番の部品36(1)に着目した場合において、図12Aに示すように、ロータリヘッド40が0°、45°、90°回転させられることにより、1番の部品36(1)にはプロジェクタ150により平面視において0°、45°、90°の角度からパターンNが照射され、図12Bに示すように、プロジェクタ151により平面視において90°、135°、180°の角度からパターンNが照射される。そのため、ロータリヘッド40が0°から90°まで回転させられることにより、1番の部品36(1)については、パターンNが0°、45°、90°、135°、180°の角度から照射された場合の各々の三次元形状が取得される。同様に、ロータリヘッド40に保持された8個の部品すべてについて、ロータリヘッド40の45°ずつの回転に伴って、平面視において0°、45°、90°、135°180°の角度からパターンNが照射された場合の撮像画像が取得され、それぞれ、三次元形状が取得されるのである。なお、図12において、1番の部品36(1)の内部を矢印で表した。これは、ロータリヘッド40の回転に伴う部品36(1)の向きの変化、部品36(1)に照射されるパターンNの角度の変化を明確に示すためである。図14においても同様である。 When attention is paid to one component, for example, the first component 36 (1) , as shown in FIG. 12A, the first component 36 is rotated by rotating the rotary head 40 by 0 °, 45 °, and 90 °. In (1) , the pattern N is emitted from the projector 150 at angles of 0 °, 45 °, and 90 ° in plan view, and as shown in FIG. 12B, the projector 151 outputs 90 °, 135 °, and 180 ° in plan view. The pattern N is irradiated from an angle. Therefore, by rotating the rotary head 40 from 0 ° to 90 °, the pattern N is irradiated from the angles of 0 °, 45 °, 90 °, 135 °, and 180 ° for the first component 36 (1). The three-dimensional shape of each case is acquired. Similarly, with respect to all eight parts held by the rotary head 40, the pattern is formed from angles of 0 °, 45 °, 90 °, 135 ° and 180 ° in plan view with the rotation of the rotary head 40 by 45 °. A captured image when N is irradiated is acquired, and a three-dimensional shape is acquired, respectively. In FIG. 12, the inside of the first component 36 (1) is indicated by an arrow. This orientation change of the part 36 with the rotation of the rotary head 40 (1), in order to clearly show the change in angle of the pattern N irradiated to part 36 (1). The same applies to FIG.
 この場合におけるロータリヘッド40の回転角度と、部品の各々へのパターンNの照射角度とを図15に示す。図15に示すように、ロータリヘッド40の回転に伴って、共通領域Rcの内側に位置する部品が変わり、部品に照射されるパターンNの平面視における角度も変わる。なお、図15において、1番の部品を部品1と記載した。以下の部品についても同様とする。 FIG. 15 shows the rotation angle of the rotary head 40 and the irradiation angle of the pattern N on each of the components in this case. As shown in FIG. 15, as the rotary head 40 rotates, the components located inside the common region Rc change, and the angle of the pattern N irradiated on the components in plan view also changes. In FIG. 15, the first component is described as component 1. The same applies to the following components.
 次に、図13に示すように、ロータリヘッド40がヘッド水平移動装置44によって移動させられ、ロータリヘッド40と撮像ユニット18との相対位置が、ロータリヘッド40の第1領域R1とは別の第2領域R2の内側に位置する吸着ノズル80e、80f、80gに保持された5番の部品36(5)、6番の部品30(6)、7番の部品30(7)が、撮像ユニット18の共通領域Rc内に位置する第2相対位置とされる。本実施例において、第2領域R2は、ロータリヘッド40の中心角180°以上270°以下の範囲に位置する3つの吸着ノズルに保持された3つの部品が属する領域である。第1領域R1と第2領域R2とで、領域の広さは同じであるが、xスライダ54に対する相対位置が異なる。そして、ロータリヘッド40の第2相対位置において、同様に、ロータリヘッド40が45°ずつ間欠的に回転させられつつ、3つずつの部品に、それぞれ、プロジェクタ150,151によってパターンNが照射され、3つずつの部品がカメラ152によって撮像される。 Next, as shown in FIG. 13, the rotary head 40 is moved by the head horizontal moving device 44, and the relative position between the rotary head 40 and the imaging unit 18 is different from the first region R1 of the rotary head 40. The fifth component 36 (5) , the sixth component 30 (6) , and the seventh component 30 (7) held by the suction nozzles 80 e, 80 f, and 80 g located inside the two regions R2 are connected to the imaging unit 18. Is a second relative position located within the common region Rc. In the present embodiment, the second region R2 is a region to which three components held by three suction nozzles located at a central angle of 180 ° to 270 ° of the rotary head 40 belong. The first region R1 and the second region R2 have the same area size, but different relative positions to the x slider 54. Then, at the second relative position of the rotary head 40, similarly, while the rotary head 40 is intermittently rotated by 45 °, the three components are irradiated with the pattern N by the projectors 150 and 151, respectively. Three parts are imaged by the camera 152.
 1つの5番の部品36(5)に着目した場合において、図14Aに示すように、ロータリヘッド40の0°、45°、90°の回転により、部品36(5)にはプロジェクタ150により平面視において180°、225°、270°の角度からパターンNが照射されつつカメラ152によって撮像画像が取得される。また、図14Bに示すように、部品36(5)にはプロジェクタ151によって平面視において270°、315°、360°の角度からパターンNが照射されつつ撮像画像が取得される。同様に、ロータリヘッド40に保持された8個の部品の各々について、それぞれ、図16に示すように、ロータリヘッド40の回転に伴って、それぞれ、角度180°、225°、270°、315°、360°からパターンNが照射され、撮像画像が取得され、それぞれ三次元形状が取得される。 When attention is paid to one fifth component 36 (5) , as shown in FIG. 14A, by rotating the rotary head 40 by 0 °, 45 °, and 90 °, the component 36 (5) is flattened by the projector 150. The captured image is acquired by the camera 152 while the pattern N is irradiated from the angles of 180 °, 225 °, and 270 ° in visual observation. Further, as shown in FIG. 14B, a captured image is acquired while the pattern N is irradiated on the component 36 (5) from the angles of 270 °, 315 °, and 360 ° in plan view by the projector 151. Similarly, with respect to each of the eight parts held by the rotary head 40, as shown in FIG. 16, the angles 180 °, 225 °, 270 °, and 315 ° are respectively associated with the rotation of the rotary head 40. The pattern N is irradiated from 360 °, a captured image is obtained, and a three-dimensional shape is obtained.
 以上のように、ロータリヘッド40の第1相対位置、第2相対位置の各々において、ロータリヘッド40を45°ずつ回転させることにより、ロータリヘッド40に保持された8個の部品すべてについて、それぞれ、パターンNが平面視における角度0°、45°、90°、135°、180°、225°、270°、315°から照射された場合の三次元形状が取得される。 As described above, by rotating the rotary head 40 by 45 ° at each of the first relative position and the second relative position of the rotary head 40, all of the eight parts held by the rotary head 40 are A three-dimensional shape when the pattern N is illuminated from angles 0 °, 45 °, 90 °, 135 °, 180 °, 225 °, 270 °, and 315 ° in plan view is acquired.
 その場合の平坦度取得プログラムを図7のフローチャートに基づいて説明する。本プログラムは、制御装置10において実行され、ロータリヘッド40が45°ずつ回転させられる毎に、三次元形状取得部154に、三次元形状の取得指令が出力される。撮像ユニット18において、プロジェクタ150,151によってパターンが照射され、カメラ152によって撮像画像が取得される。そして、撮像画像に基づいて三次元形状が取得され、制御装置10に供給される。
 ステップ1(以下、S1と略称する。他のステップについても同様とする)において、回転回数をカウントするカウンタのカウント値nが初期化(0とされ)され、S2において、ロータリヘッド40を第1相対位置へ移動させ、S3において、撮像ユニット18に三次元形状取得指令を出力する。撮像ユニット18においては取得された3つの部品36(1)、36(2)、30(3)の三次元形状が制御装置10に供給されて、記憶される。次に、S4において、ロータリヘッド40をヘッド中心軸線Lhの回りに45°回転させる。S5において、回数カウンタのカウント値が1増加させられ、S6において、カウント値が7より大きいか否かが判定される。判定がNOである場合には、S3~6が繰り返し実行される。ロータリヘッド40が45°ずつ間欠的に回転させられつつ、図15に示すように、3つずつの部品の三次元形状が取得される。
The flatness acquisition program in that case will be described based on the flowchart of FIG. This program is executed by the control device 10 and outputs a three-dimensional shape acquisition command to the three-dimensional shape acquisition unit 154 every time the rotary head 40 is rotated by 45 °. In the imaging unit 18, a pattern is emitted by the projectors 150 and 151, and a captured image is acquired by the camera 152. Then, a three-dimensional shape is obtained based on the captured image and supplied to the control device 10.
In step 1 (hereinafter abbreviated as S1; the same applies to other steps), a count value n of a counter for counting the number of rotations is initialized (set to 0), and in S2, the rotary head 40 is moved to the first position. It moves to the relative position, and outputs a three-dimensional shape acquisition command to the imaging unit 18 in S3. In the imaging unit 18, the acquired three-dimensional shape of the three parts 36 (1) , 36 (2) , and 30 (3) is supplied to the control device 10 and stored. Next, in S4, the rotary head 40 is rotated by 45 ° around the head center axis Lh. In S5, the count value of the number counter is incremented by 1, and in S6, it is determined whether the count value is greater than 7. If the determination is NO, S3 to S6 are repeatedly executed. While the rotary head 40 is intermittently rotated by 45 °, the three-dimensional shape of each of the three parts is acquired as shown in FIG.
 そして、ロータリヘッド40が360°回転させられ、S6の判定がYESとなると、S7において、カウント値が0にリセットされて、S8において、ロータリヘッド40を第2相対位置へ移動させる。その後、S9において、三次元形状取得部154に、三次元形状の取得指令が出力されるのであり、以下、S9~S12が、S3~S6と同様に実行される。第2相対位置において、ロータリヘッド40が45°ずつ間欠的に回転させられつつ、図16に示すように、それぞれ、3つずつの部品の三次元形状が取得される。そして、ロータリヘッド40が360°回転させられ、S12の判定がYESになった場合には、S13において、ロータリヘッド40に保持された8個の部品の各々について、それぞれ、45°ずつ隔たった互いに異なる向きからパターンNが照射された場合の複数の三次元形状を表す情報に基づいて仮想平面Pa、Pbの平坦度が取得される。本実施例においては、複数の三次元形状を表す情報に基づいて、部品の実際の三次元形状を最も適切に表す最適な三次元形状が取得され、最適な三次元形状に基づいて仮想平面の平坦度が取得される。例えば、最適な三次元形状は、複数の三次元形状を表す情報を統計的に処理して求めることができる。 Then, the rotary head 40 is rotated 360 °, and if the determination in S6 is YES, the count value is reset to 0 in S7, and the rotary head 40 is moved to the second relative position in S8. Thereafter, in S9, a command to acquire a three-dimensional shape is output to the three-dimensional shape acquisition unit 154, and thereafter, S9 to S12 are executed in the same manner as S3 to S6. At the second relative position, while the rotary head 40 is intermittently rotated by 45 °, the three-dimensional shape of each of three parts is acquired as shown in FIG. Then, when the rotary head 40 is rotated by 360 ° and the determination in S12 is YES, in S13, each of the eight parts held by the rotary head 40 is separated from each other by 45 °. The flatness of the virtual planes Pa and Pb is obtained based on information representing a plurality of three-dimensional shapes when the pattern N is irradiated from different directions. In the present embodiment, based on information representing a plurality of three-dimensional shapes, an optimal three-dimensional shape that most appropriately represents the actual three-dimensional shape of the part is acquired, and a virtual plane based on the optimal three-dimensional shape is acquired. The flatness is obtained. For example, an optimal three-dimensional shape can be obtained by statistically processing information representing a plurality of three-dimensional shapes.
 このように、複数の部品の平坦度が、ロータリヘッド40をヘッド中心軸線Lh回りに回転させつつ取得される。そのため、部品の各々をノズル中心軸線Ln回りに回転させつつ平坦度が取得される場合より、全ての部品の平坦度を、効率よく、すなわち、短い時間で取得することができる。 Thus, the flatness of a plurality of parts is obtained while rotating the rotary head 40 around the head center axis Lh. Therefore, the flatness of all the components can be acquired more efficiently, that is, in a shorter time than when the flatness is acquired while rotating each of the components around the nozzle center axis Ln.
 なお、上記実施例においては、部品の各々の平坦度が、ロータリヘッド40が第1相対位置にある場合において取得された三次元形状と、第2相対位置にある場合において取得された三次元形状との両方に基づいて取得されるようにされていたが、第1相対位置にある場合と第2相対位置にある場合とのいずれか一方において取得された三次元形状に基づいて取得されるようにすることができる。例えば、S1~6、13または、S7~13のいずれか一方が実行されるだけでもよいのである。 In the above-described embodiment, the flatness of each of the parts is different from the three-dimensional shape obtained when the rotary head 40 is at the first relative position and the three-dimensional shape obtained when the rotary head 40 is at the second relative position. Was obtained based on both the three-dimensional shape obtained at one of the first relative position and the second relative position. Can be For example, only one of S1 to 6, 13 or S7 to 13 may be executed.
 次に、ホストPC6において、1つ以上の実装機4の作業の最適化が図られる場合について説明する。ホストPC6においては、作業者によって入力された1つ以上の実装機4の作業対象の部品に関する情報である部品情報に基づいて、実装機4A,4B・・・の各々の最適な配置、ロータリヘッド40に保持される部品の最適な割り付け等が決定される。また、部品情報には、平坦度の取得の対象である対象部品30,36に関する情報も含まれる。 Next, a case where the work of one or more mounting machines 4 is optimized in the host PC 6 will be described. In the host PC 6, based on component information, which is information on components to be worked on one or more of the mounting machines 4 input by the operator, the optimum arrangement of the mounting machines 4A, 4B,. The optimal allocation and the like of the parts held in 40 are determined. The component information also includes information on the target components 30, 36 for which flatness is to be obtained.
 例えば、撮像ユニット18はすべての実装機4A,4B・・・に設けられるとは限らない。また、平坦度の取得には長時間を要する。そのため、一連の作業の後半に、平坦度を取得する実装機が配置されることが望ましい。また、ロータリヘッド40において、例えば、図17Bに示すように、対象部品30,36が、離れた位置に保持された場合には、対象部品30,36の平坦度を取得するのに効率が悪い。 For example, the imaging unit 18 is not always provided in all the mounting machines 4A, 4B,. Further, it takes a long time to obtain the flatness. Therefore, it is desirable that a mounting machine for acquiring flatness is arranged in the latter half of a series of operations. In the rotary head 40, for example, as shown in FIG. 17B, when the target components 30, 36 are held at distant positions, it is inefficient to obtain the flatness of the target components 30, 36. .
 そこで、本実施例においては、ホストPC6において、実装機4A,4B・・・の最適な配置が決定され、ロータリヘッド40における部品の最適な割り付けが決定される。ホストPC6においては、図8のフローチャートで表される最適化プログラムが、実装機4A,4B・・・において一連の作業が開始される前に実行される。S21において、対象部品情報を含む部品情報が取得される。S22において、部品情報の処理等が行われ、S23において、平坦度の取得が行われる実装機4の位置が決定され、S24において、ロータリヘッド40における複数の部品の割り付けが決定される。 Therefore, in this embodiment, in the host PC 6, the optimal arrangement of the mounting machines 4A, 4B,... Is determined, and the optimal allocation of components in the rotary head 40 is determined. In the host PC 6, the optimization program represented by the flowchart in FIG. 8 is executed before a series of operations is started in the mounting machines 4A, 4B,. In S21, component information including target component information is acquired. In S22, processing of component information and the like are performed. In S23, the position of the mounting machine 4 from which flatness is acquired is determined. In S24, allocation of a plurality of components in the rotary head 40 is determined.
 そして、S23の決定に従って、実装機4A,4B・・・が配置され、平坦度が取得される実装機4において、S24の決定に従って、ロータリヘッド40の複数の吸着ノズル80の各々に部品が割り付けられる。本実施例においては、図17Aに示すように、互いに隣接する吸着ノズル80a、80b、80cに対象部品36(1),36(2),30(3)が保持される。そのため、ロータリヘッド40の回転角度が135°から225°までの間、三次元形状を取得する必要がなくなる。 In accordance with the determination in S23, the mounting machines 4A, 4B,... Are arranged, and in the mounting machine 4 in which the flatness is acquired, components are allocated to each of the plurality of suction nozzles 80 of the rotary head 40 in accordance with the determination in S24. Can be In this embodiment, as shown in FIG. 17A, target components 36 (1) , 36 (2) , and 30 (3) are held by suction nozzles 80a, 80b, and 80c adjacent to each other. Therefore, it is not necessary to acquire a three-dimensional shape when the rotation angle of the rotary head 40 is between 135 ° and 225 °.
 その場合に実行される平坦度取得プログラムを図9のフローチャートで表す。
 図9のフローチャートにおいて、図7のフローチャートで表される平坦度取得プログラムと同様の実行が行われるステップについては同じステップ番号を付して説明を省略する。S1~5において、第1相対位置においてロータリヘッド40が45°ずつ回転させられるが、S31において、ロータリヘッド40の回転回数が2を越えたか否か、すなわち、回転角度が135°に達したか否かが判定される。判定がYESである場合には、S32において、回転回数が6より小さいか否か、すなわち、回転角度が270°より小さいか否かが判定される。判定がYESである場合には、S4,5,31,32が繰り返し実行されるのであり、ロータリヘッド40が45°回転させられつつ回転回数カウンタのカウント値が1増加させられる。カメラ152による撮像領域Ra内に対象部品は存在しないため、プロジェクタ150,151によってパターンNが照射されることも、カメラ152によって画像の撮像が行われることもないのであり、三次元形状が取得されることはない。そして、S32の判定がNOとなった場合には、S33において、回転回数が7を超えたか否かが判定される。S33の判定がNOである場合には、S3~5が実行され、共通領域Rc内に存在する部品について三次元形状が取得される。ロータリヘッド40の回転角度が270°である場合には、共通領域Rc内に部品30(3)が位置するため、部品30(3)の三次元形状が取得され、ロータリヘッド40の回転角度が315°である場合には、部品30(3)、36(2)の三次元形状が取得される。その後、S33の判定がYESになった場合には、S13において、平坦度が取得される。なお、S33の判定がYESになった後に、ロータリヘッド40を第2相対位置へ移動させることにより、同様に三次元形状が取得されるようにすることができるが、そのようにすることは不可欠ではない。
The flatness acquisition program executed in that case is shown in the flowchart of FIG.
In the flowchart of FIG. 9, the same steps as those of the flatness acquisition program shown in the flowchart of FIG. In S1 to S5, the rotary head 40 is rotated by 45 ° at the first relative position. In S31, it is determined whether the number of rotations of the rotary head 40 has exceeded 2, that is, whether the rotation angle has reached 135 °. It is determined whether or not. If the determination is YES, in S32, it is determined whether the number of rotations is smaller than 6, that is, whether the rotation angle is smaller than 270 °. If the determination is YES, S4, 5, 31, and 32 are repeatedly executed, and the count value of the rotation number counter is increased by 1 while the rotary head 40 is rotated by 45 °. Since the target component does not exist in the imaging region Ra of the camera 152, the pattern N is not irradiated by the projectors 150 and 151, and no image is captured by the camera 152, and the three-dimensional shape is acquired. Never. If the determination in S32 is NO, it is determined in S33 whether the number of rotations has exceeded seven. If the determination in S33 is NO, S3 to S5 are executed, and a three-dimensional shape is obtained for the component existing in the common area Rc. When the rotation angle of the rotary head 40 is 270 °, since the component 30 (3) is located in the common region Rc, the three-dimensional shape of the component 30 (3) is obtained, and the rotation angle of the rotary head 40 is reduced. If it is 315 °, the three-dimensional shape of the parts 30 (3) and 36 (2) is obtained. Thereafter, when the determination in S33 is YES, the flatness is acquired in S13. After the determination in S33 becomes YES, the rotary head 40 can be moved to the second relative position to obtain a three-dimensional shape in the same manner, but it is indispensable to do so. is not.
 このように、平坦度取得の対象部品が、ロータリヘッド40の互いに隣接する位置にある吸着ノズル80によって保持される場合には、平坦度取得に要する時間を短くすることができる。 {Circle around (4)} As described above, when the flatness acquisition target components are held by the suction nozzles 80 at positions adjacent to each other on the rotary head 40, the time required for flatness acquisition can be shortened.
 以上のように構成された実装システムにおいて、制御装置10の図7,9のフローチャートで表される平坦度取得プログラムを記憶する部分、三次元形状取得部154の三次元形状を取得する部分等により平坦度取得部が構成され、制御装置10のS2を記憶する部分、実行する部分等により第1ヘッド水平移動制御部が構成され、S8を記憶する部分、実行する部分等により第2ヘッド水平移動制御部が構成される。また、これら第1ヘッド水平移動制御部、第2ヘッド水平移動制御部、S4,10を記憶する部分、実行する部分等によりヘッド移動制御部が構成される。さらに、S3,9を記憶する部分、実行する部分等により撮像制御部が構成される。一方、ホストPC6により作業制御装置が構成され、ホストPC6の図8のフローチャートで表される最適化プログラムを記憶する部分、実行する部分等により最適化作業制御部が構成され、そのうちの、S22,24を記憶する部分、実行する部分等により割り付け決定部が構成される。 In the mounting system configured as described above, the control device 10 stores a flatness acquisition program represented by the flowcharts of FIGS. 7 and 9, the three-dimensional shape acquisition unit 154 acquires a three-dimensional shape, and the like. A flatness acquisition unit is configured, and a portion for storing and executing S2 of the control device 10 constitutes a first head horizontal movement control unit, and a portion for storing and executing S8 is used for horizontal movement of the second head. A control unit is configured. Further, the first head horizontal movement control unit, the second head horizontal movement control unit, a part for storing S4 and S10, and a part for executing the same constitute a head movement control unit. Further, a part for storing S3 and S9, a part for executing S3, and the like constitute an imaging control unit. On the other hand, a work control device is constituted by the host PC 6, and an optimization work control unit is constituted by a portion of the host PC 6 which stores and executes an optimization program represented by the flowchart of FIG. An allocation determining unit is configured by a part that stores 24, an execution part, and the like.
 なお、上記実施例においては、共通領域Rcにロータリヘッド40に保持された部品の一部が含まれない場合について説明したが、ロータリヘッド40に保持された8個の部品がすべて共通領域Rcの内部に位置する場合にも、同様に実行することができる。ロータリヘッド40がヘッド中心軸線Lh回りに回転させられつつ三次元形状が取得されるようにすることにより、8個の部品の各々の平坦度をより正確に取得することができる。また、吸着ノズル80の各々がノズル中心軸線Ln回りに回転させられつつ三次元形状が取得される場合に比較して、8個の部品の平坦度を効率よく取得することができる。 In the above embodiment, the case where the common area Rc does not include a part of the components held by the rotary head 40 has been described. However, the eight components held by the rotary head 40 are all included in the common area Rc. The same can be applied to the case where it is located inside. The three-dimensional shape is acquired while the rotary head 40 is rotated around the head center axis Lh, so that the flatness of each of the eight parts can be acquired more accurately. In addition, the flatness of the eight components can be obtained more efficiently than when a three-dimensional shape is obtained while each of the suction nozzles 80 is rotated around the nozzle center axis Ln.
 また、本実施例においては、複数の部品の各々について、互いに異なる角度からパターンNが照射された場合の複数の三次元形状に基づいて平坦度が取得される場合について説明したが、平坦度を取得することは不可欠ではなく、最適な三次元形状を平坦度として取得することもできる。さらに、撮像ユニット18において、三次元形状が取得されることは不可欠ではなく、部品の対象部の複数のはんだボール28の先端の点の各々のカメラ152の撮像素子からの高さ、複数のリード線34の予め定められた点の各々の撮像素子からの高さ等が取得されるようにすることができる。これら高さに基づけば、仮想平面Pa,Pbの平坦度を取得することができる。 Further, in the present embodiment, the case where the flatness is acquired based on the plurality of three-dimensional shapes when the pattern N is irradiated from different angles with respect to each of the plurality of components has been described. Acquisition is not indispensable, and an optimal three-dimensional shape can be acquired as flatness. Further, it is not essential that the imaging unit 18 acquire a three-dimensional shape, but the height of each of the points of the tip of the plurality of solder balls 28 of the target portion of the component from the imaging element of the camera 152 and the plurality of leads The height or the like of each of the predetermined points of the line 34 from the image sensor can be obtained. Based on these heights, the flatness of the virtual planes Pa and Pb can be obtained.
 さらに、ホストコンピュータ6は不可欠ではなく、実装機4の制御装置10において最適化プログラムが実行されるようにすることができる。 Further, the host computer 6 is not indispensable, and the control device 10 of the mounting machine 4 can execute the optimization program.
 また、ロータリヘッド40のヘッド中心軸線Lh回りの回転に限らず、吸着ノズル80をノズル中心軸線Lnの回りに回転させつつ部品の三次元形状が取得されるようにすることができる等、その他、本発明は、当業者の知識に基づいて種々の変更を施した態様で実施することができる。 Further, the present invention is not limited to the rotation of the rotary head 40 about the head center axis Lh, and the three-dimensional shape of the component can be obtained while rotating the suction nozzle 80 about the nozzle center axis Ln. The present invention can be implemented in various modified forms based on the knowledge of those skilled in the art.
 2:実装システム 4:実装機 6:ホストPC 10:制御装置 18:撮像ユニット 40:ロータリヘッド 42:ヘッド移動装置 44:ヘッド水平移動装置 46:ヘッド回転装置 80:吸着ノズル 150,151:プロジェクタ 152:カメラ 154:三次元形状取得部 2: mounting system $ 4: mounting machine $ 6: host PC $ 10: control device $ 18: imaging unit $ 40: rotary head $ 42: head moving device $ 44: head horizontal moving device $ 46: head rotating device $ 80: suction nozzle $ 150, 151: projector $ 152 : Camera # 154: 3D shape acquisition unit

Claims (10)

  1.  間隔を隔てて設けられた複数の部品保持具を備えたロータリヘッドを含み、前記ロータリヘッドに備えられた複数の部品保持具に保持された前記複数の部品を回路基板に装着する実装機であって、
     当該実装機が、
     予め定められた照射領域にパターンを照射するプロジェクタと、予め定められた撮像領域の画像を取得する撮像装置とを備えた撮像ユニットと
     前記ロータリヘッドの前記複数の部品保持具の各々に保持された複数の部品のうち、前記照射領域と前記撮像領域とが重なる共通領域内に位置する2つ以上の部品の平坦度を、前記撮像ユニットにおいて得られた前記2つ以上の部品の撮像画像に基づいて取得する平坦度取得部と
    を含む実装機。
    A mounting machine comprising: a rotary head having a plurality of component holders provided at intervals; and mounting the plurality of components held by the plurality of component holders provided on the rotary head to a circuit board. hand,
    The mounting machine is
    A projector that irradiates a pattern onto a predetermined irradiation area, an imaging unit that includes an imaging device that obtains an image of the predetermined imaging area, and an image pickup unit that is held by each of the plurality of component holders of the rotary head. Of the plurality of components, the flatness of two or more components located in a common region where the irradiation region and the imaging region overlap each other is determined based on the captured images of the two or more components obtained in the imaging unit. And a flatness acquiring unit for acquiring the flatness.
  2.  当該実装機が、前記ロータリヘッドを移動させるヘッド移動装置と、そのヘッド移動装置を制御することにより前記ロータリヘッドを移動させるヘッド移動制御部を含み、
     前記平坦度取得部が、前記ロータリヘッドが前記ヘッド移動制御部によって前記撮像ユニットに対して相対移動させられる状態で、前記撮像装置に前記2つ以上の部品を撮像させる撮像制御部を含む請求項1に記載の実装機。
    The mounting machine includes a head moving device that moves the rotary head, and a head movement control unit that moves the rotary head by controlling the head moving device,
    The said flatness acquisition part contains the imaging control part which makes the said imaging device image the two or more components in the state which the said rotary head was relatively moved with respect to the said imaging unit by the said head movement control part. 2. The mounting machine according to 1.
  3.  前記ヘッド移動装置が、前記ロータリヘッドをヘッド中心軸線回りに回転させるヘッド回転装置を含み、
     前記撮像制御部が、前記ロータリヘッドが、前記ヘッド移動制御部によって、前記ロータリヘッドと前記撮像ユニットとの予め定められた相対位置において前記ヘッド中心軸線回りに回転させられる状態で、前記撮像装置に前記2つ以上の部品を撮像させるものである請求項2に記載の実装機。
    The head moving device includes a head rotating device that rotates the rotary head around a head central axis,
    The imaging control unit is configured such that the rotary head is rotated around the head center axis at a predetermined relative position between the rotary head and the imaging unit by the head movement control unit. The mounting machine according to claim 2, wherein the mounting unit is configured to image the two or more components.
  4.  前記ヘッド移動装置が、前記ロータリヘッドを水平方向に移動させるヘッド水平移動装置を含み、
     前記ヘッド移動制御部が、前記ヘッド水平移動装置を制御することにより、前記ロータリヘッドを、前記撮像ユニットの前記共通領域内に、前記複数の部品保持具のうちの前記ロータリヘッドの予め定められた第1領域内に位置する2つ以上の前記部品保持具に保持された2つ以上の部品が位置する第1相対位置に移動させる第1ヘッド水平移動制御部を含む請求項2または3に記載の実装機。
    The head moving device includes a head horizontal moving device for moving the rotary head in a horizontal direction,
    The head movement control unit controls the head horizontal movement device to move the rotary head in the common area of the imaging unit, and the predetermined rotation of the rotary head among the plurality of component holders is performed. 4. The apparatus according to claim 2, further comprising a first head horizontal movement control unit configured to move to a first relative position where two or more components held by the two or more component holders located in the first area are located. 5. Mounting machine.
  5.  前記ヘッド移動制御部が、前記ヘッド水平移動装置を制御することにより、前記ロータリヘッドを、前記撮像ユニットの前記共通領域内に、前記複数の部品保持具のうちの前記第1領域とは別の第2領域内に位置する2つ以上の前記部品保持具に保持された2つ以上の部品が位置する第2相対位置に移動させる第2ヘッド水平移動制御部を含む請求項4に記載の実装機。 The head movement control unit controls the head horizontal movement device to move the rotary head in the common area of the imaging unit, separately from the first area of the plurality of component holders. The mounting according to claim 4, further comprising a second head horizontal movement control unit configured to move to a second relative position where two or more components held by the two or more component holders located in the second area are located. Machine.
  6.  前記部品が、部品本体と、その部品本体に設けられた複数の電極部とを含み、
     前記平坦度取得部が、前記撮像画像に基づいて前記部品の前記複数の電極部の予め定められた点の集合によって形成される仮想平面の平坦度を取得するものである請求項1ないし5のいずれか1つに記載の実装機。
    The component includes a component body and a plurality of electrode units provided on the component body,
    6. The flatness acquisition unit according to claim 1, wherein the flatness acquisition unit acquires flatness of a virtual plane formed by a set of predetermined points of the plurality of electrode units of the component based on the captured image. The mounting machine according to any one of the above.
  7.  前記平坦度取得部による前記平坦度の取得の対象となる2つ以上の対象部品が、前記ロータリヘッドの前記複数の部品保持具のうちの互いに隣接する2つ以上の部品保持具に保持された請求項1ないし6のいずれか1つに記載の実装機。 Two or more target components for which the flatness is to be obtained by the flatness obtaining unit are held by two or more adjacent component holders among the plurality of component holders of the rotary head. The mounting machine according to any one of claims 1 to 6.
  8.  前記実装機が、前記回路基板を搬送して支持する基板搬送支持装置と、複数の前記部品を前記ロータリヘッドに受け渡し可能な状態で供給する部品供給装置とを含む請求項1ないし7のいずれか1つに記載の実装機。 8. The mounting machine according to claim 1, further comprising: a board transfer support device configured to transfer and support the circuit board; and a component supply device configured to supply the plurality of components in a state capable of being delivered to the rotary head. 9. The mounting machine according to one of the above.
  9.  1つ以上の前記請求項1ないし9のいずれか1つに記載の実装機と、前記1つ以上の実装機の各々における作業を制御する作業制御装置とを含む実装システムであって、
     前記作業制御装置が、前記1つ以上の実装機において作業が行われる複数の部品に関する情報である部品情報に基づいて前記1つ以上の実装機の作業の最適化を図る最適化作業制御部を含み、
     前記部品情報が、前記複数の部品のうちの2つ以上の、前記平坦度取得部による前記平坦度の取得の対象となる部品である対象部品に関する情報を含み、
     前記最適化作業制御部が、前記ロータリヘッドに備えられた前記複数の部品保持具と、前記2つ以上の前記対象部品を含む複数の部品との割り付けを行う割り付け部を含む実装システム。
    A mounting system comprising: one or more mounting machines according to any one of claims 1 to 9; and a work control device configured to control a work in each of the one or more mounting machines.
    The work control device includes an optimization work control unit that optimizes the work of the one or more mounting machines based on component information that is information on a plurality of components on which the work is performed in the one or more mounting machines. Including
    The component information includes information about two or more of the plurality of components, a target component that is a component to be acquired for the flatness by the flatness acquisition unit,
    A mounting system, wherein the optimization work control unit includes an allocation unit that allocates the plurality of component holders provided on the rotary head and a plurality of components including the two or more target components.
  10.  前記割り付け部が、前記ロータリヘッドの前記複数の部品保持具のうち互いに隣接するものに、前記2つ以上の前記対象部品を割り付ける請求項9に記載の実装システム。
     
    The mounting system according to claim 9, wherein the allocating unit allocates the two or more target components to ones adjacent to each other among the plurality of component holders of the rotary head.
PCT/JP2018/024224 2018-06-26 2018-06-26 Mounter and mounting system WO2020003385A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/024224 WO2020003385A1 (en) 2018-06-26 2018-06-26 Mounter and mounting system
JP2020526758A JP7095089B2 (en) 2018-06-26 2018-06-26 Mounting machine and mounting system
CN201880094885.2A CN112314065B (en) 2018-06-26 2018-06-26 Mounting machine and mounting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024224 WO2020003385A1 (en) 2018-06-26 2018-06-26 Mounter and mounting system

Publications (1)

Publication Number Publication Date
WO2020003385A1 true WO2020003385A1 (en) 2020-01-02

Family

ID=68986883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024224 WO2020003385A1 (en) 2018-06-26 2018-06-26 Mounter and mounting system

Country Status (3)

Country Link
JP (1) JP7095089B2 (en)
CN (1) CN112314065B (en)
WO (1) WO2020003385A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001939A (en) * 2012-06-15 2014-01-09 Juki Corp Component checkup apparatus
JP2014154750A (en) * 2013-02-12 2014-08-25 Fuji Mach Mfg Co Ltd Assembly machine
JP2014165209A (en) * 2013-02-21 2014-09-08 Panasonic Corp Component mounting device and component mounting method
WO2015011850A1 (en) * 2013-07-25 2015-01-29 パナソニックIpマネジメント株式会社 Electronic component mounting apparatus and electronic component mounting method
WO2015019447A1 (en) * 2013-08-07 2015-02-12 富士機械製造株式会社 Electronic component mounting machine and transfer confirmation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5524495B2 (en) * 2009-03-10 2014-06-18 富士機械製造株式会社 Imaging system and electronic circuit component mounting machine
WO2014141380A1 (en) * 2013-03-12 2014-09-18 富士機械製造株式会社 Component recognition system for component mounting machine
CN106030769B (en) * 2014-02-19 2019-07-12 株式会社富士 To operation system of substrate and the method for managing the erection sequence to the element of operation system of substrate
WO2016194030A1 (en) * 2015-05-29 2016-12-08 富士機械製造株式会社 Optimized program and mounting work machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001939A (en) * 2012-06-15 2014-01-09 Juki Corp Component checkup apparatus
JP2014154750A (en) * 2013-02-12 2014-08-25 Fuji Mach Mfg Co Ltd Assembly machine
JP2014165209A (en) * 2013-02-21 2014-09-08 Panasonic Corp Component mounting device and component mounting method
WO2015011850A1 (en) * 2013-07-25 2015-01-29 パナソニックIpマネジメント株式会社 Electronic component mounting apparatus and electronic component mounting method
WO2015019447A1 (en) * 2013-08-07 2015-02-12 富士機械製造株式会社 Electronic component mounting machine and transfer confirmation method

Also Published As

Publication number Publication date
CN112314065A (en) 2021-02-02
JPWO2020003385A1 (en) 2021-07-08
CN112314065B (en) 2022-03-18
JP7095089B2 (en) 2022-07-04

Similar Documents

Publication Publication Date Title
KR101793366B1 (en) Bonding apparatus and bonding method
KR101605587B1 (en) Die bonder, bond head device thereof and method of adjusting collet position
JP6310058B2 (en) Image processing apparatus and substrate production system
JP6190229B2 (en) Component mounting equipment
JP2004276151A (en) Transfer robot and teaching method for transfer robot
JP6411663B2 (en) Component mounting equipment
JP6147016B2 (en) Assembly machine
JP6116583B2 (en) Component mounter
JP7181292B2 (en) Flatness acquisition system and mounter
WO2017081773A1 (en) Image processing device and image processing method for base plate
WO2017126025A1 (en) Mounting apparatus and image processing method
WO2020003385A1 (en) Mounter and mounting system
JP5600705B2 (en) Component mounting equipment
JP5988839B2 (en) Component mounter
JP6475264B2 (en) Component mounter
JP6403434B2 (en) Component mounting method and component mounting apparatus
JP2014165209A (en) Component mounting device and component mounting method
JP6338169B2 (en) Recognition apparatus, recognition method, mounting apparatus, and mounting method
JP6236307B2 (en) Component mounter
JP6139833B2 (en) Component mounting apparatus and method for assigning components to head in component mounting apparatus
JP6759450B2 (en) Parts mounting machine, parts recognition method, appearance inspection machine, appearance inspection method
JP7128362B2 (en) work machine
CN117322151A (en) Component mounting machine and electronic component photographing method
JP2023084391A (en) Component recognition device and component mounting machine
CN117280885A (en) Identification device and identification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923943

Country of ref document: EP

Kind code of ref document: A1