WO2020002590A1 - Polyuréthanes fonctionnalisés par un groupement organosilane et compositions les comprenant - Google Patents

Polyuréthanes fonctionnalisés par un groupement organosilane et compositions les comprenant Download PDF

Info

Publication number
WO2020002590A1
WO2020002590A1 PCT/EP2019/067312 EP2019067312W WO2020002590A1 WO 2020002590 A1 WO2020002590 A1 WO 2020002590A1 EP 2019067312 W EP2019067312 W EP 2019067312W WO 2020002590 A1 WO2020002590 A1 WO 2020002590A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
composition
weight
chosen
diol
Prior art date
Application number
PCT/EP2019/067312
Other languages
English (en)
Inventor
Henri Samain
Pascal Giustiniani
Julien PORTAL
Original Assignee
L' Oreal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1856004A external-priority patent/FR3083237B1/fr
Priority claimed from FR1906711A external-priority patent/FR3097437B1/fr
Application filed by L' Oreal filed Critical L' Oreal
Publication of WO2020002590A1 publication Critical patent/WO2020002590A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/87Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/004Preparations used to protect coloured hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3893Low-molecular-weight compounds having heteroatoms other than oxygen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6648Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate

Definitions

  • compositions including them
  • the present invention relates to a particular polyurethane functionalized with at least one organosilane group as well as to compositions comprising it.
  • the present invention also relates to a process for treating keratin fibers, in particular human keratin fibers such as the hair, comprising the application of one or more polyurethane (s) particu Iier (s) functionalized (s) by at least one organosilane group or of a composition I e (s) comprising and optionally one or more pigments.
  • keratin fibers in particular human keratin fibers such as the hair
  • one or more polyurethane (s) particu Iier (s) functionalized (s) by at least one organosilane group or of a composition I e (s) comprising and optionally one or more pigments comprising the application of one or more polyurethane (s) particu Iier (s) functionalized (s) by at least one organosilane group or of a composition I e (s) comprising and optionally one or more pigments.
  • compositions generally comprise one or more fixing film-forming polymers, in a cosmetically acceptable medium. These polymers allow the formation of a sheathing film on the hair, or the formation of microwelds between the hair, thus ensuring the maintenance of the hairstyle.
  • Styling products are generally in the form of hairsprays, mousse or even gel.
  • styling gels are often used to achieve high fixations of the hairstyle.
  • Styling gels are compositions of one or more fixing film-forming polymers, thickened or gelled by one or more thickening polymers.
  • styling / styling product is intended to mean a product which provides performance in terms of discipline, corporalisation, definition of curl, volume control, shine, which facilitates shaping by natural drying, brushing and / or flat tweezers. , styling. In addition, the product must not generate static electricity.
  • Non-permanent coloring or direct coloring consists in dyeing the keratin fibers with dye compositions containing direct dyes. These dyes are colored and coloring molecules with an affinity for keratin fibers. They are applied to the keratin fibers for a time necessary to obtain the desired coloration, then rinsed off.
  • Another coloring method is to use pigments.
  • the use of pigment on the surface of keratinous fibers generally makes it possible to obtain colorings visible on dark hair since the surface pigment masks the natural color of the fiber.
  • the use of pigment for coloring keratin fibers is for example described in patent application FR 2 741 530, which recommends the use for the temporary coloring of keratin fibers of a composition comprising at least one dispersion of particles of film-forming polymer comprising at least one acid function and at least one pigment dispersed in the continuous phase of said dispersion.
  • the colorings obtained by this mode of coloring have the disadvantage of being eliminated from the first shampoo.
  • compositions for coloring keratin fibers in particular human keratin fibers such as the hair, which in particular make it possible to obtain homogeneous colorings, having good resistance to external agents (light, bad weather, brushing), and in particular good afterglow to shampoos.
  • Shaping keratin fibers in particular human keratin fibers such as the hair, easily and durably,
  • compositions for dyeing keratin fibers in particular human keratin fibers such as the hair, which in particular make it possible to obtain homogeneous dyes, having good resistance to external agents (light, bad weather, brushing), and in particular good afterglow to shampoos, while respecting keratin fibers.
  • the present invention which relates to a process for treating keratin fibers, in particular the hair, from at least one particular polyurethane, functionalized with at least one organosilane group.
  • the present invention also relates to a functionalized polyurethane resulting from the reaction of:
  • Ri represents a bivalent radical of a hydrophilic compound chosen from carboxylic acids
  • R 2 represents a radical of a polyisocyanate
  • R 3 represents a radical of a polyhydroxy compound selected from lactone polyols, their adducts of alkylene oxide and mixtures thereof,
  • n an integer ranging from 1 to 5
  • R 4 represents a hydrogen atom or a hydrocarbon chain C 4 to C 4, linear or branched,
  • R 5 represents a C 4 to C 22 , in particular C 4 to C 20 , linear or branched, saturated or unsaturated, cyclic or acyclic hydrocarbon chain, which can be interrupted by a heteroatom (O, S, NH) or a group carbonyl (CO), R 5 being linked to the silicon atom directly via a carbon atom;
  • R 6 and R 7, identical or different, represent an alkyl group, linear or branched comprising from 1 to 6 carbon atoms,
  • x denotes an integer ranging from 0 to 2
  • the present invention also relates to a composition comprising one or more functionalized polyurethanes as defined above, and optionally one or more pigments.
  • the polymer of the invention makes it possible to obtain keratin fibers that are respectful of the fiber.
  • these compositions make it possible to obtain a residual form of at least one shampoo.
  • the composition according to the invention makes it possible to space out the shampoos by limiting the regreasing of the treated hair, gives better control of the volume, a reduction in frizz and a gain in discipline.
  • the hair thus shaped also exhibits good properties of
  • the composition applied to the keratin fibers comprises the functionalized polyurethane (s) as defined above and one or more pigments
  • the keratin fibers, in particular the hair are dyed in a remanent manner with at least one shampoo , and this without degradation of the keratin fibers.
  • a coloration is thus obtained which is less insensitive to external aggressions such as washing and which remains tenacious over time.
  • Hair thus colored also has good conditioning properties, in particular in terms of cladding and individualization.
  • the invention also relates to a process for treating keratin fibers, in particular human keratin fibers such as the hair, comprising the application of the polyurethane (s) as defined above or of a composition as defined above.
  • the method according to the invention can involve a natural drying step and / or optionally a step of applying heat to the keratin fibers using a heating tool, the application of heat being able to intervene. during or after application of the composition, preferably after.
  • keratin fibers are meant human keratin fibers such as the hair and the eyelashes, and more particularly the hair.
  • the functionalized polyurethane according to the invention is obtained from at least one prepolymer of formula (A), as defined above, that is to say resulting from the polymerization reaction of at least one polyisocyanate monomer, and at least one polyhydroxylated monomer (or compound) chosen from lactone polyols, their alkylene oxide adducts and their mixtures.
  • the polyisocyanates represented by R2 in formula (A) above, are preferably chosen from diisocyanates, and more preferably from those represented by general formula R (NCO) 2 , in which R represents a divalent aliphatic hydrocarbon group having from 4 to 18 carbon atoms, a divalent cycloaliphatic hydrocarbon group having from 5 to 15 carbon atoms, a divalent araliphatic hydrocarbon group having from 7 to 15 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 15 carbon atoms.
  • R represents a divalent aliphatic hydrocarbon group having from 4 to 18 carbon atoms, a divalent cycloaliphatic hydrocarbon group having from 5 to 15 carbon atoms, a divalent araliphatic hydrocarbon group having from 7 to 15 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 15 carbon atoms.
  • the diisocyanate (s) which can be used in the present invention are advantageously chosen from tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, 1,3-diisocyanatocyclohexane, 1,4-diisocyanatocyclohexane, isocyanate 3-isocyanatomethyl-3,5,5- trimethylcyclohexane (isophorone diisocyanate or I PDI), bis- (4-isocyanatocyclohexyl) -methane, 1,3-bis (isocyanatomethyl) -cyclohexane (isocyanatomethyl) -cycloh exan e, bis- (4-isocyanato-3-methyl-cyclohexyl) -methane, isomers of toluene diisocyanate (TDI) such as 2,4-toluene diisocyanate, 2,6-
  • the diisocyanates are aliphatic and cycloaliphatic diisocyanates.
  • polyisocyanate is 3-isocyanatomethyl-3,5,5-trimethylcyclohexane isocyanate.
  • the polyhydroxy compounds, represented by R 3 in formula (A) above are chosen from lactone diols, their alkylene oxide adducts and their mixtures.
  • diol is intended to include mixtures of diols as well as mixtures containing low levels of triols or tetrols which do not excessively affect the properties of the final product.
  • alkylene oxides which can be used according to the present invention, mention may, for example, be made of ethylene oxide, 1,2-epoxypropane, 1,2-epoxybutane, 2,3-epoxybutane, oxide isobutylene, epichlorohydrin, and mixtures thereof.
  • Lactone polyols can be prepared by reacting a lactone, such as epsilon-caprolactone or a mixture of epsilon-caprolactone and an alkylene oxide, with a polyfunctional initiator such as a polyhydric alcohol.
  • a lactone such as epsilon-caprolactone or a mixture of epsilon-caprolactone and an alkylene oxide
  • a polyfunctional initiator such as a polyhydric alcohol.
  • lactone polyol also includes various copolymers such as lactone copolyesters, lactone polyester / polycarbonates, polyester / lactone polyethers, and polyester / polyether / lactone polycarbonate / polycarbonate.
  • the polyhydroxy compound is the caprolactone diol.
  • the weight ratio between the quantity of the polyhydroxylated compound (s), chosen from lactone polyols, their alkylene oxide adducts and their mixtures, and the quantity of the polyisocyanate (s) is preferably greater than or equal to 1, and more preferably between 1 and 5.
  • the functionalized polyurethane according to the invention is obtained from at least one prepolymer resulting from the polymerization reaction of at least one polyisocyanate chosen from aliphatic diisocyanates, cycloaliphatic diisocyanates and mixtures thereof, and at least one polyhydroxy compound chosen from lactone polyols, their alkylene oxide adducts and their mixtures.
  • the prepolymer is preferably of formula (A) in which R 2 represents a polyisocyanate chosen from aliphatic diisocyanates, cycloaliphatic diisocyanates and their mixtures, and R 3 represents a polyhydroxylated compound chosen from lactone polyols, their alkylene oxide adducts and their mixtures.
  • the prepolymer results from the reaction of 3-isocyanatomethyl-3,5,5-trimethylcyclohexane isocyanate and of the caprolactone diol.
  • the prepolymer is more preferably of formula (A) in which R 2 represents a 3-isocyanatomethyl-3,5,5-trimethylcyclohexane radical and R 3 represents a diol radical of caprolactone.
  • hydrophilic compound (or monomer), represented by R x in the formula (A) above is chosen from the compounds of formula (II) below:
  • R represents a linear or branched, saturated or unsaturated C j to Cm alkyl chain, substituted by one or more hydroxy group.
  • R represents a branched alkyl chain, saturated in C 1 to C 10 , better still in C j to C 6 , substituted by one or more hydroxy groups.
  • the hydrophilic compound is 2,2-bis (hydroxymethyl) propionic acid.
  • the prepolymer of formula (A) according to the invention can be neutralized with a base, for example a primary, secondary or tertiary amine, the amine possibly or not containing (hydroxyl) substituents, such as amino-2-methyl- 2-propanol, and the salified or quaternized forms thereof. More particularly, the prepolymer is neutralized with a tertiary amine such as diisopropylethylamine.
  • bases can be used such as potash, soda or ammonia.
  • the carboxylic groups can be neutralized before or after the formation of the prepolymer of formula (A).
  • the neutralization can be carried out before or after the addition of the polyisocyanate monomer (s).
  • the prepolymer of formula (A) is extended with at least one chain extender.
  • the chain extenders which can be used according to the present invention are preferably chosen from low molecular weight diols.
  • low molecular weight diol is meant, according to the present invention, a diol having a molecular weight of about 62 to 700, and preferably from 62 to 200.
  • These diols can comprise aliphatic, alicyclic or aromatic groups. Preferably, they only include aliphatic groups.
  • the chain extenders are chosen from low molecular weight diols having less than 20 carbon atoms, and more preferably chosen from ethylene glycol, diethylene glycol, propane 1,2-diol, propane 1 , 3-diol, butane 1,4-diol, pentane 1,5-diol, butylene 1,3-glycol, neopentyl glycol, butethylethylpropane diol, cyclohexane diol, 1,4- cyclohexane dimethanol, hexane 1,6-diol, bisphenol A (2,2-bis (4-hydroxyphenyl) propane), bisphenol A hydrogenated (2,2-bis (4-hydroxycyclohexyl) propane), and mixtures thereof .
  • the polyurethane After reaction with the chain extender, the polyurethane is functionalized with at least one monomer of the organosilane type of formula (I) as defined above.
  • the organosilane type monomer (s) are chosen from the compounds of formula (I) for which R 6 represents an alkyl group comprising from 1 to 4 carbon atoms and / or R 7 represents an alkyl group comprising from 1 to 4 carbon atoms.
  • R 6 represents a linear alkyl group comprising from 1 to 4 carbon atoms.
  • R 6 represents the ethyl group.
  • R 7 represents a linear alkyl group comprising from 1 to 4 carbon atoms.
  • R 7 represents the methyl or ethyl group.
  • R 4 represents a hydrogen atom.
  • R 5 is a linear or branched, saturated or unsaturated acyclic C j to C 6 hydrocarbon chain. More preferably, R 5 is a linear and saturated C hydrocarbon chain ! to C 6 , and better yet. R 5 is a linear and saturated C 2 to C 4 hydrocarbon chain. Preferably, R 5 is a linear and saturated C j to C 6 hydrocarbon chain, R 4 represents a hydrogen atom, R 6 represents an alkyl group comprising from 1 to 4 carbon atoms, and R 7 represents an alkyl group comprising from 1 to 4 carbon atoms.
  • z is equal to 3.
  • the organosilane type monomer (s) of formula (I) are advantageously chosen from 3-aminopropyltriethoxysilane (APTES), 3-aminoethyltriethoxysilane (AETES), 3-aminopropylmethyldiethoxysilane, N- (2-aminoethyl) -3 - aminopropyltriethoxysilane, 3- (m-aminophenoxy) propyltrimethoxysilane, p- aminophenyltrimethoxysilane, N- (2- aminoethylaminomethyphenethyltrimethoxysilane, and their mixtures, and more preferably among 3-aminopropyltriethoxysilane ETTES) , 3-aminopropylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane and their mixtures.
  • APTES 3-aminopropyltri
  • the organosilane type monomer of formula (I) is 3-aminopropyl triethoxysilane (APTES).
  • the monomer (s) of organosilane type represents (s) from 1 to 20% by weight, and more preferably from 2 to 15% by weight, relative to the total weight of the polyurethane.
  • polyurethanes of the invention are preferably obtained by the following process:
  • the prepolymer of formula (A) is previously synthesized by reaction of the polyisocyanate monomer (s), and of the polyhydroxylated monomer (s) chosen from lactone polyols, their adducts alkylene oxide and their mixtures, in the presence of a catalyst, and preferably a tin-based catalyst such as tin ethyl-2-hexanoate. Hydrophilic monomers are also added to the reaction medium, and their acid functions are neutralized by the addition of at least one organic base as defined above. This polymerization step is preferably carried out in a solvent, and more particularly in acetone or methyl ethyl ketone.
  • This polymerization step is preferably carried out at a temperature between 50 and 90 ° C, and more preferably between 50 and 85 ° C.
  • the prepolymer thus formed is then lengthened by adding the extender (s) chain before being functionalized using organosilane compounds.
  • the solvent can be totally or partially removed by distillation.
  • One or more organic solvents can then be added to the composition containing the polymers and optionally water.
  • the aqueous dispersion thus obtained is a latex.
  • the functionalized polyurethane particles can have an average diameter of up to about 1000 nm, for example from about 30 nm to about 500 nm. These particle sizes can be measured with a laser particle sizer (eg Brookhaven B 190).
  • a laser particle sizer eg Brookhaven B 190.
  • composition useful according to the invention is preferably a composition for treating keratin fibers, in particular human keratin fibers such as the hair.
  • composition used according to the invention comprises at least one particular polyurethane, functionalized with at least one organosilane group as defined above.
  • the content of the functionalized polyurethane (s) present in the composition according to the invention preferably ranges from 1 to 30% by weight, and more preferably from 5 to 25% by weight, relative the total weight of the composition.
  • composition according to the present invention further comprises one or more pigments.
  • pigment - is meant all the pigments bringing color to the keratin materials. Their solubility in water at 25 ° C and at atmospheric pressure (760 mmHg) is less than 0.05% by weight, and preferably less than 0.01%.
  • the pigments which can be used are in particular chosen from the organic and / or mineral pigments known in the art, in particular those which are described in the encyclopedia of chemical technology of Kirk-Othmer and in the encyclopedia of industrial chemistry of Ullmann.
  • These pigments can be in the form of powder or pigment paste. They can be coated or uncoated.
  • the pigments can for example be chosen from mineral pigments, organic pigments, lacquers, pigments with special effects such as nacres or glitter, and mixtures thereof.
  • the pigment may preferably be an inorganic pigment.
  • “Mineral pigment” means any pigment that meets the definition of the Ullmann encyclopedia in the chapter on inorganic pigment. Mention may be made, among the mineral pigments useful in the present invention, of iron or chromium oxides, manganese violet, ultramarine blue, chromium hydrate, ferric blue and titanium oxide.
  • the pigment may preferably be an organic pigment.
  • organic pigment is meant any pigment that meets the definition of the Ullmann encyclopedia in the chapter on organic pigment.
  • the organic pigment can in particular be chosen from the compounds nitroso, nitro, azo, xanthene, quinoline, anthraquinone, phthalocyanine, of the metal complex type, isoindolinone, isoindoline, quinacridone, perinone, perylene, diketopyrrolopyrrole, thioindigo, dioxazine, triphenylmethane, quinophthalone.
  • the white or colored organic pigments can be chosen from carmine, carbon black, aniline black, azo yellow, quinacridone, phthalocyanine blue, sorghum red, blue pigments coded in the Color Index under the references Cl 42090, 69800, 69825, 73000, 74100, 74160, the yellow pigments codified in the Color Index under the references Cl 11680, 11710, 15985, 19140, 20040, 21100, 21108, 47000, 47005, the green pigments codified in the Color Index under the references Cl 61565, 61570, 74260, the orange pigments codified in the Color Index under the references Cl 11725, 15510, 45370, 71105, the red pigments codified in the Color Index under the references Cl 12085, 12120 , 12370, 12420, 12490, 14700, 15525, 15580, 15620, 15630, 15800, 15850, 15865, 15880, 17200, 26100, 45380, 45410
  • the pigments in accordance with the invention may also be in the form of composite pigments as described in patent EP 1 184 426.
  • These composite pigments can be composed in particular of particles comprising an inorganic core, at least one binder ensuring the fixing organic pigments on the core, and at least one organic pigment at least partially covering the core.
  • the organic pigment can also be a lacquer.
  • lacquer is meant the dyes adsorbed on insoluble particles, the assembly thus obtained remaining insoluble during use.
  • the inorganic substrates on which the dyes are adsorbed are, for example, alumina, silica, calcium and sodium borosilicate or calcium and aluminum borosilicate, and aluminum.
  • D & C Red 21 (Cl 45 380), D & C Orange 5 (Cl 45 370), D & C Red 27 (Cl 45 410), D & C Orange 10 (Cl 45 425), D & C Red 3 (Cl 45 430), D & C Red 4 (Cl 15 510), D & C Red 33 (Cl 17 200), D & C Yellow 5 (Cl 19 140), D & C Yellow 6 (Cl 15 985), D & C Green (Cl 61 570), D & C Yellow 1 O (Cl 77 002), D & C Green 3 (Cl 42 053), D & C Blue 1 ( Cl 42,090).
  • lacquers examples include the product known under the following name: D & C Red 7 (Cl 15 850: 1).
  • the pigment can also be a special effect pigment.
  • special effect pigments is meant pigments which generally create a colored appearance (characterized by a certain shade, a certain liveliness and a certain clarity) which is non-uniform and changeable according to the conditions of observation (light , temperature, angles of observation ⁇ ⁇ ⁇ ) ⁇ They therefore oppose the colored pigments which provide a uniform opaque, semi-transparent or transparent classic shade.
  • pigments with special effects those with a low refractive index such as fluorescent, photochromic or thermochromic pigments, and those with a high refractive index such as nacres or flakes.
  • pigments with special effects include pearlescent pigments such as titanium mica coated with an iron oxide, mica coated with an iron oxide, mica coated with bismuth oxychloride, mica titanium coated with chromium oxide, titanium mica coated with an organic dye, in particular of the aforementioned type as well as pearlescent pigments based on bismuth oxychloride. It can also be mica particles on the surface of which are superimposed at least two successive layers of metal oxides and / or organic coloring matters.
  • the nacres can more particularly have a yellow or pink, red, bronze, orange, brown, gold and / or coppery color or reflection.
  • nacres which can be used in the context of the present invention, mention may be made in particular of the gold-colored nacres sold in particular by the company ENGELHARD under the name Gold 222C (Cloisonne), Sparkle gold (Timica), Gold 4504 (Chromalite) and Monarch gold 233X (Cloisonne); the bronze nacres sold in particular by the company MERCK under the name Fine bronze (17384) (Colorona) and Bronze (17353) (Colorona), by the company Eckart under the
  • pigments with an interference effect which are not fixed on a substrate such as liquid crystals (Helicones HC from Wacker), holographic interference flakes (Geometry Pigments or Spectra f / x from Spectratek).
  • Special effect pigments also include fluorescent pigments, whether they are substances which fluoresce in daylight or which produce ultraviolet fluorescence, phosphorescent pigments, photochromic pigments, pigments
  • thermochromic and quantum dots sold for example by the company Quantum Dots Corporation.
  • pigments which can be used in the present invention makes it possible to obtain a rich palette of colors, as well as specific optical effects such as metallic, interference effects.
  • the size of the pigment used in the cosmetic composition according to the present invention is generally between 10 nm and 200 m m, preferably between 20 nm and 80 m m, and more preferably between 30 nm and 50 m m.
  • the pigments can preferably be dispersed in the product using a dispersing agent.
  • the dispersing agent serves to protect the dispersed particles against their agglomeration or flocculation.
  • This dispersing agent can be a surfactant, an oligomer, a polymer or a mixture of several of them, carrying one or more functionalities having a strong affinity for the surface of the particles to be dispersed. In particular, they can physically or chemically cling to the surface of the pigments.
  • These dispersants also have at least one functional group which is compatible or soluble in the continuous medium.
  • the esters of 12-hydroxy stearic acid in particular and of C 8 to C 20 fatty acid and of polyol such as glycerol, diglycerin, such as poly (12-hydroxystearic acid stearate) are used.
  • dispersant which can be used in the compositions of the invention, mention may be made of quaternary ammonium derivatives of polycondensed fatty acids such as Solsperse 17,000 sold by the company Avecia, mixtures of poly dimethylsiloxane / oxypropylene such as those sold by the company Dow Corning under the references DC2-5185, DC2-5225 C.
  • the pigments which can be used in the cosmetic composition according to the invention can be surface-treated with an organic agent.
  • the pigments previously treated on the surface that can be used in the context of the invention are pigments which have undergone totally or partially a surface treatment of chemical, electronic, electro-chemical, mechanical-chemical or mechanical nature, with an organic agent such as those described in particular in Cosmetics and Toiletries, February 1990, Vol. 105, p. 53-64 before being dispersed in the composition according to the invention.
  • organic agents can, for example, be chosen from amino acids; waxes, for example carnauba wax and beeswax; fatty acids, fatty alcohols and their derivatives, such as stearic acid, hydroxystearic acid, stearyl alcohol, hydroxystearyl alcohol, lauric acid and their derivatives; anionic surfactants; lecithins; sodium, potassium, magnesium, iron, titanium, zinc or aluminum salts of fatty acids, for example aluminum stearate or laurate; metal alkoxides; polysaccharides, for example chitosan, cellulose and its derivatives; polyethylene; polymers
  • (meth) acrylics for example polymethylmethacrylates; polymers and
  • alkoxysilanes alkylsilanes, siloxy-silicates; fluorinated organic compounds, for example perfluoroalkyl ethers; fluoro-silicone compounds.
  • the surface-treated pigments usable in the cosmetic composition according to the invention may also have been treated with a mixture of these compounds and / or have undergone several surface treatments.
  • the surface-treated pigments that can be used in the context of the present invention can be prepared according to surface treatment techniques well known to those skilled in the art or found as such in the trade.
  • the surface-treated pigments are covered with an organic layer.
  • the organic agent with which the pigments are treated can be deposited on the pigments by evaporation of solvent, chemical reaction between the molecules of the surfactant or creation of a covalent bond between the surfactant and the pigments.
  • the surface treatment can thus be carried out for example by chemical reaction of a surfactant with the surface of the pigments and creation of a covalent bond between the surfactant and the pigments or the fillers. This method is described in particular in US patent 4,578,266.
  • an organic agent linked to the pigments will be used covalently.
  • the agent for the surface treatment may preferably represent from 0.1 to 50% by weight of the total weight of the pigments treated on the surface, more preferably from 0.5 to 30% by weight, and better still from 1 to 10%. in weight.
  • the surface treatments of the pigments are chosen from the following treatments:
  • Dimethicone treatment such as the Covasil 3.05 surface treatment marketed by LCW;
  • Dimethicone / Trimethylsiloxysilicate treatment such as the Covasil 4.05 surface treatment sold by LCW;
  • Lauroyl Lysine treatment such as the LL surface treatment marketed by LCW;
  • Lauroyl Lysine Dimethicone treatment such as the LL / SI surface treatment marketed by LCW;
  • a Perfluoropolymethyl isopropyl ether treatment such as the FHC surface treatment marketed by LCW
  • an Isostearyl Sebacate treatment such as the HS surface treatment marketed by Miyoshi
  • a Perfluoropolymethyl isopropyl ether treatment such as the FHC surface treatment marketed by LCW
  • an Isostearyl Sebacate treatment such as the HS surface treatment marketed by Miyoshi
  • Disodium Stearoyl Glutamate treatment such as the NAI surface treatment marketed by Miyoshi;
  • Perfluoroalkyl phosphate treatment such as the PF surface treatment marketed by Daito;
  • an acrylate / dimethicone copolymer and perfluoalkyl phosphate treatment such as the FSA surface treatment marketed by Daito;
  • Lauryl Lysine / Aluminum Tristearate treatment such as the LL-StAI surface treatment marketed by Daito;
  • an Octyltriethylsilane treatment such as the OTS surface treatment marketed by Daito;
  • an Octyltriethylsilane / Perfluoroalkyl phosphate treatment such as the FOTS surface treatment marketed by Daito;
  • an Isopropyl Titanium Triisostearate treatment such as the ITT surface treatment marketed by Daito;
  • Microcrystalline Cellulose and Carboxymethyl Cellulose treatment such as the AC surface treatment marketed by Daito;
  • an acrylate copolymer treatment such as the APD surface treatment marketed by Daito;
  • composition according to the present invention can optionally further comprise one or more pigments which are not surface treated.
  • the pigment or pigments are mineral pigments. According to another particular mode of the invention, the pigment or pigments are chosen from pearlescent agents.
  • the amount of the pigment (s) present in the coloring composition according to the invention preferably ranges from 0.5 to 40% by weight, and more preferably from 1 to 20% by weight, relative to the total weight of the coloring composition.
  • the weight ratio between the quantity of functionalized polyurethane (s) and the quantity of pigment (s) present in the composition according to the invention is greater than or equal to 1, more preferably greater or equal to 1.5, and better still this weight ratio goes from 1.5 to 10.
  • composition according to the invention comprises functionalized polyurethane (s) in solution or in the form of a dispersion.
  • composition according to the present invention can comprise water.
  • the water content is greater than or equal to 30% by weight, relative to the total weight of the composition.
  • the water content, present in the composition of the invention ranges from 30 to 80% by weight, and more preferably from 50 to 75% by weight, relative to the total weight of the composition.
  • composition according to the present invention can optionally comprise one or more organic solvents, or mixtures thereof.
  • organic solvent there may be mentioned, for example, alkanols, linear or branched, C 2 to C 4 , such as ethanol and isopropanol; glycerol; polyols and polyol ethers such as 2-butoxyethanol, propylene glycol, hexylene glycol, dipropylene glycol, propylene glycol monomethyl ether, monoethyl ether and monomethyl ether of diethylene glycol, as well as aromatic alcohols or ethers such as benzyl alcohol or phenoxyethanol, and mixtures thereof.
  • alkanols linear or branched, C 2 to C 4
  • glycerol such as 2-butoxyethanol, propylene glycol, hexylene glycol, dipropylene glycol, propylene glycol monomethyl ether, monoethyl ether and monomethyl ether of diethylene glycol, as well as aromatic alcohols or ethers such as benzyl alcohol or phenoxyethanol, and mixtures thereof.
  • solvents can also be used such as acetone, butyl acetate or methyl ethyl ketone.
  • the particular polyurethane (s) of the invention are obtained by the following process and then used in the useful composition of the shaping process:
  • (D-) The prepolymer of formula (A) is previously synthesized by reaction of the polyisocyanate monomer (s), and of the polyhydroxylated monomer (s) chosen from lactone polyols, their adducts alkylene oxide and their mixtures, in the presence of a catalyst, and preferably a tin-based catalyst such as tin ethyl-2-hexanoate.
  • Hydrophilic monomers are also added to the reaction medium, and their acid functions are neutralized by the addition of at least one organic base as defined above.
  • This polymerization step is preferably carried out in a solvent, and more particularly in acetone or methyl ethyl ketone. This polymerization step is preferably carried out at a temperature between 50 and 90 ° C, and more preferably between 50 and 85 ° C.
  • the particular polyurethane (s) of the invention are obtained in the form of an aqueous dispersion and used as such in the useful composition of the shaping process.
  • the particular polyurethane (s) of the invention are obtained by the following process and then used in the useful composition of the shaping process:
  • the prepolymer of formula (A) is previously synthesized by reaction of the polyisocyanate monomer (s), and of the polyhydroxylated monomer (s) chosen from lactone polyols, their adducts alkylene oxide and their mixtures, in the presence of a catalyst, and preferably a tin-based catalyst such as tin ethyl-2-hexanoate. Hydrophilic monomers are also added to the reaction medium, and their acid functions are neutralized by the addition of at least one organic base as defined above. This polymerization step is preferably carried out in a solvent, and more particularly in acetone or methyl ethyl ketone.
  • This polymerization step is preferably carried out at a temperature between 50 and 90 ° C, and more preferably between 50 and 85 ° C.
  • the prepolymer thus formed is then lengthened by adding the chain extender (s) before being functionalized using organosilane compounds.
  • the particular polyurethane (s) of the invention are obtained in the form of a solution in a solvent, at a concentration preferably of 20 to 70% by weight, and used as such in the useful composition of the shaping process.
  • the composition is in the form of a dispersion, in particular a dispersion in water.
  • the composition is in the form of a dispersion in water, and may contain an organic solvent (s) chosen from acetone, butyl acetate, methyl ethyl ketone and their mixtures in contents in particular from 0.0001% to 5% by weight relative to the total weight of the composition.
  • organic solvent chosen from acetone, butyl acetate, methyl ethyl ketone and their mixtures in contents in particular from 0.0001% to 5% by weight relative to the total weight of the composition.
  • organic solvents When present, organic solvents usually represent
  • composition according to the present invention may optionally further comprise one or more additives, different from the compounds of the invention and among which mention may be made of cationic, anionic, nonionic, amphoteric or
  • zwitterionics anionic, nonionic, amphoteric polymers or their mixtures, dandruff agents, antiseborrhoeic agents, hair loss and / or regrowth agents, vitamins and pro-vitamins including panthenol, organic sunscreens, dyes direct, dye precursors such as oxidation bases and couplers, sequestering agents, plasticizing agents, solubilizing agents, acidifying agents, mineral or organic thickening agents, in particular polymeric thickening agents, anti-aging agents oxidants, hydroxy acids, fragrances, preservatives and ceramides.
  • the above additives can generally be present in an amount for each of them between 0 and 20% by weight, relative to the total weight of the composition.
  • the present invention also relates to a method for treating keratin fibers, in particular human keratin fibers such as the hair, comprising (i) the application to the keratin fibers of the polyurethane (s) or of a composition as defined above.
  • composition described above can be used on dry or wet keratin fibers as well as on all types of light or dark fibers, natural or colored, permed, discolored or straightened.
  • the composition useful in the process according to the invention is used on wet keratin fibers.
  • the fibers are washed before application of the composition described above.
  • composition of the invention to keratin fibers can be carried out for example by means of a comb, of a brush, with the aid of a brush or with the fingers.
  • composition of the invention to keratin fibers can also be implemented for example by means of a spray.
  • the process of the invention may contain a step (ii) of shaping the keratin fibers.
  • the keratin fibers can be shaped for example with a comb, a brush or with a finger, or even be held by pliers, curlers or any other means intended to maintain the fibers in a particular form or to their give a particular shape.
  • the process of the invention is a process for dyeing keratin fibers, in particular the hair.
  • the method according to the invention may involve a natural drying step and / or optionally a step of applying heat to the keratin fibers using a heating tool.
  • the step of applying heat can take place during or after the step of applying the composition.
  • the heat application stage occurs after the application of the composition or of the polyurethane (s) particu I i er (s) of the invention.
  • the application of the composition is then followed by drying at a temperature preferably above 40 ° C., more preferably greater than 45 ° C, and better still, this temperature is greater than 45 ° C and less than 220 ° C.
  • This drying can be carried out immediately after the application of the composition or after an exposure time which can range from 1 to 30 minutes, without an intermediate rinsing step.
  • the keratin fibers are dried, in addition to providing heat, with a flow of air.
  • This air flow during drying improves the individualization of keratin fibers, in particular human keratin fibers such as the hair.
  • the drying step of the process of the invention can optionally be carried out with a helmet, a hair dryer, a straightening iron or a climazon.
  • the heat application step can be performed using any heating device.
  • One or more heating tools can be applied individually or successively to the hair.
  • the heating tool can be a straightening iron, a curling iron, a crimping iron, a stirring iron, a helmet, a hair dryer, an infrared heating system, a heated curler.
  • the heating tool is a straightening iron or a hair dryer.
  • the drying temperature is preferably between 40 and 110 ° C, and more preferably between 50 and 90 ° C.
  • a straightening iron can also be used, the drying temperature is then preferably between 110 and 220 ° C, and more preferably between 140 and 200 ° C.
  • the fibers can be shaped by a mechanical action exerted on the fibers such as combing, brushing, or the passage of the fingers.
  • the present invention also relates to the use of one or more polyurethane (s) as defined above for the shaping of keratin fibers, in particular human keratin fibers such as the hair.
  • the present invention further relates to the use of a composition as defined above for the shaping of keratin fibers, in particular human keratin fibers such as the hair.
  • Example 1 synthesis of polyurethane-f-APTES containing 6% by weight of APTES monomers, dispersed in water
  • Acetone (90g), caprolactone diol (CAPA 2200 - 82g), 2,2-bis (hydroxymethyl) propionic acid (8g) are introduced into a 1 liter reactor, under an argon atmosphere. , diisopropyl ethylamine (7g), in order to neutralize 90% of the acid units, and a catalyst (2-ethyl tin hexanoate - 25 ppm).
  • the medium is heated to a temperature between 55 and 60 ° C.
  • the dispersion in water is carried out the following day by adding drop by drop 345 g of water to the synthesis solution with stirring at 350 rpm. The acetone is then removed by distillation and a pale pale yellow solution is obtained.
  • the polyurethane-f-APTES thus formed is found in a dry extract of 30% by weight in water.
  • Example 2 synthesis of polyurethane-f-APTES containing 14% by weight of APTES monomers, dispersed in water
  • Acetone (90g), caprolactone diol (CAPA 2200 - 82g), 2,2-bis (hydroxymethyl) propionic acid (8g) are introduced into a 1 liter reactor, under an argon atmosphere. , diisopropyl ethylamine (7g), in order to neutralize 90% of the acid units, and a catalyst (2-ethyl tin hexanoate - 25 ppm).
  • the medium is heated to a temperature between 55 and 60 ° C.
  • the dispersion in water is carried out the next day by adding 400 g of water drop by drop to the synthesis solution with stirring at 350 rpm.
  • the acetone is then removed by distillation and a turbid white solution is obtained.
  • the polyurethane-f-APTES thus formed is found in a dry extract of 30% by weight in water.
  • Example 3 synthesis of polyurethane-f-APTES containing 6% by weight of APTES monomers, dispersed in water
  • methyl ethyl ketone 90g
  • caprolactone diol CAPA 2200 - 80g
  • 2,2-bis (hydroxymethyl) propionic acid 8g
  • diisopropyl ethylamine 7g
  • a catalyst 2 ethyl ethyl hexanoate - 25ppm
  • methyl ethyl ketone then, drop by drop 542g of water in the synthesis solution with stirring at 350 rpm.
  • the acetone is then removed by distillation and a bluish, bluish solution is obtained.
  • the polyurethane-f-APTES thus formed is found in a dry extract of 24% by weight in water.
  • Example 4 synthesis of polyurethane-f-APTES containing 14% by weight of APTES monomers, dispersed in water In a 1 liter reactor, under an argon atmosphere, is introduced
  • methyl ethyl ketone 90g
  • caprolactone diol CAPA 2200 - 50g
  • 2,2-bis (hydroxymethyl) propionic acid 7g
  • diisopropyl ethylamine 6.2g
  • a catalyst 2 ethyl ethyl hexanoate - 25ppm
  • the dispersion in water is carried out the following day by adding drop by drop 490g of water to the synthesis solution with stirring at 350 rpm.
  • the methyl ethyl ketone is then removed by distillation and a bluish, bluish solution is obtained.
  • the polyurethane-f-APTES thus formed is found in a dry extract of 30% by weight in water.
  • Example 5 synthesis of polyurethane-f-APTES containing 6% by weight of APTES monomers, soluble in acetone
  • the polyurethane-f-APTES thus formed is in a dry extract of 60% by weight in acetone.
  • Example 6 _synthesis of polyurethane-f-APTES containing 6% by weight of APTES monomers, dispersed in water In a one liter reactor, under an argon atmosphere, acetone (61g), caprolactone diol (CAPA 2200 - 55.2g), 2.2-bis (hydroxymethyl) propionic acid ( 5.4 g), diisopropyl ethylamine (4.7 g), in order to neutralize 90% of the acid units, and a catalyst (2-ethyl tin hexanoate - 25 ppm). The medium is heated to a temperature between 55 and 60 ° C.
  • the dispersion in water is carried out the next day by adding drop by drop 232 g of water to the synthesis solution with stirring at 350 rpm.
  • the acetone is then removed by distillation and a turbid white solution is obtained.
  • the polyurethane-f-APTES thus formed is found in a dry extract of 30% by weight in water.
  • Example 7 _synthesis of polyurethane-f-APTES containing 13% by weight of APTES monomers, dispersed in water
  • Acetone (61g), caprolactone diol (CAPA 2200 - 48.5g), 2,2-bis (hydroxymethyl) propionic acid (in a argon atmosphere, under an argon atmosphere) are introduced.
  • diisopropyl ethylamine (4.1 g) in order to neutralize 90% of the acid units, and a catalyst (2-ethyl tin hexanoate - 22 ppm).
  • the medium is heated to a temperature between 55 and 60 ° C.
  • the dispersion in water is carried out the following day by adding drop by drop 237 g of water to the synthesis solution with stirring at 350 rpm. The acetone is then removed by distillation and a turbid white solution is obtained.
  • polyurethane-f-APTES thus formed is found in a dry extract of 30% by weight in water.
  • Example 8 Effect of polyurethane-f-APTES dispersed in water on the shaping of the hair
  • compositions (A1) to (A8) according to the invention were prepared from the ingredients, the contents of which, expressed as a percentage by mass of active material, relative to the total weight of each composition, are mentioned in the table below.
  • compositions (A1) to (A8) thus obtained were applied to locks of hair at 90% natural, previously washed and dried, in an amount of 0.5 g of composition per lock of hair (from 2, 7g).
  • the locks were then dried either in the open air or using a hair dryer with brushing.
  • the remanence of the shaping was evaluated after a shampoo according to the following protocol: the locks were rinsed with lukewarm water by rubbing them 5 times from root to tip; then washed with Garnier UltraDoux shampoo, rubbing them 10 times from root to tip; then rinsed with lukewarm water, rubbing them 15 times from root to tip; then wrung in absorbent paper; then dried in the open air.
  • the fixation is evaluated at the end of each protocol by a score of 0 to 5 (0: no fixation; 5: very fixing).
  • compositions according to the invention (A1) to (A8) comprising a polyurethane according to the invention make it possible to obtain keratin fiber shaping.
  • compositions (A2), (A5) and (A6) make it possible to obtain a residual form after shampooing.
  • Example 9 Composition of polyurethane-f-APTES dispersed in water and containing pigments
  • compositions (A9) and (A10) according to the invention were prepared from the ingredients, the contents of which, expressed as a percentage by mass, relative to the total weight of each composition, are mentioned in the table below. [Table 4]
  • compositions (A9), (A10) thus obtained were applied to locks of hair containing 90% natural hair at the rate of 0.5 g of composition per lock of hair.
  • the locks were then dried with a hair dryer, then left to stand for 24 hours at room temperature.
  • L * represents the intensity, the lower the value of L *, the more intense the coloration obtained. Chromaticity is measured by the values a * and b *, a * representing the red / green axis and b * the yellow / blue axis
  • L * represents the intensity a * and b *
  • the chromaticity of the hair after rinsing and L 0 * represents the intensity and a 0 * and b 0 * the chromaticity of the hair before rinsing.
  • the resistance of the color is higher the lower the DE.
  • compositions (A9) and (A10) are resistant to water.
  • Example 10 composition of polyurethane-f-APTES solubilized in acetone and pigments
  • composition (Garlic) according to the invention was prepared from the ingredients, the contents of which, expressed as a percentage by mass, relative to the total weight of each composition, are mentioned in the table below. [Table 6]
  • composition (Garlic) thus obtained in the form of a solution was applied to locks of hair containing 90% natural hair at the rate of 0.5 g of composition per lock of hair.
  • the locks were then dried with a hair dryer and disentangled, before being left to stand for 24 hours at room temperature.
  • L * represents the intensity a * and b *
  • the chromaticity of the hair after rinsing or after washing
  • L 0 * represents the intensity and a 0 * and b 0 * the chromaticity of the hair before rinsing and washing .
  • composition comprising the functionalized polyurethane of the invention, results in colorings which are not only resistant to water, but also persistent in at least five shampoos.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention porte, sur un polyuréthane particulier, fonctionnalisé par au moins un groupement organosilane ainsi que sur des compositions le comprenant. La présente invention a également pour objet un procédé de traitement des fibres kératiniques, en particulier des fibres kératiniques humaines telles que les cheveux, comprenant lʼapplication dʼun ou plusieurs polyuréthane(s) particulier(s) fonctionnalisé(s) par au moins un groupement organosilane ou dʼune composition le(s) comprenant.

Description

Description
Titre : Polyuréthanes fonctionnalisés par un groupement organosilane et
compositions les comprenant
La présente invention porte, sur un polyuréthane particulier, fonctionnalisé par au moins un groupement organosilane ainsi que sur des compositions le comprenant.
La présente invention a également pour objet un procédé de traitement des fibres kératiniques, en particulier des fibres kératiniques humaines telles que les cheveux, comprenant l’application d’un ou plusieurs polyuréthane(s) particu I ier(s) fonctionnalisé(s) par au moins un groupement organosilane ou d’une composition I e (s) comprenant et optionnellement un ou plusieurs pigments.
De nombreuses technologies non invasives existent aujourd’hui pour répondre aux besoins du styling/coiffage. Les produits de coiffage sont habituellement utilisés pour construire, structurer la coiffure et lui apporter une tenue durable. Ces compositions comprennent généralement un ou plusieurs polymères filmogènes fixants, dans un milieu cosmétiquement acceptable. Ces polymères permettent la formation d’un film gainant sur les cheveux, ou la formation de microsoudures entre les cheveux assurant ainsi le maintien de la coiffure.
Les produits de coiffage se présentent généralement sous la forme de laques, de mousse ou encore de gel. En particulier, les gels de coiffage sont souvent utilisés afin d’obtenir des fixations élevées de la coiffure. Les gels coiffants sont des compositions d'un ou de plusieurs polymères filmogènes fixants, épaissies ou gélifiées par un ou plusieurs polymères épaississants.
Or, les effets apportés par ces technologies disparaissent lors du premier shampooing et il est nécessaire de réappliquer les produits de coiffage pour pouvoir obtenir à nouveau l’effet souhaité. Cela impose à nouveau au consommateur une routine plus ou moins longue et fastidieuse. Par exemple, pour un produit de brushing pour cheveux frisés, après application du spray coiffant, il faut répartir le produit uniformément sur l’ensemble de la chevelure puis faire un brushing, ce qui peut aller de 5 à 45 min en fonction du résultat souhaité. A l’inverse les produits de forme durable permettent de modifier de façon définitive la structure de la fibre par rupture (réduction) des liaisons disulfures qui imposent la forme originale du cheveu puis re-pontage (ex : oxydation des cystéines en cystine après une action mécanique telle que la pose de bigoudis dans le cas des permanentes). Ces produits doivent cependant être réappliqués en racine dès la repousse pour conserver un résultat homogène. Les résultats sont irréversibles et peuvent générer des dommages au cheveu. La superposition de produits de défrisage par exemple peut entraîner des inconforts et, à terme, provoquer de réelles dégradations de la fibre pouvant aller jusqu’à la casse.
Il existe donc un réel besoin de produit de styling/coiffage semi permament, c’est-à-dire dont l’effet est rémanent à au moins un shampooing et qui ne dégrade pas les fibres kératiniques traitées, qui respecte leur intégrité.
Par produit de styling/coiffage, on entend un produit qui apporte des performances de discipline, de corporisation, de définition de boucle, de maîtrise du volume, de brillance, qui facilite la mise en forme par séchage naturel, brushing et/ou pinces plates, mise en plis. De plus, le produit ne doit pas générer d’électricité statique.
Dans le domaine de la coloration des fibres kératiniques, il est déjà connu de colorer des fibres kératiniques par différentes techniques à partir de colorants directs pour des colorations non permanentes ou de précurseurs de colorants pour des colorations permanentes.
La coloration non permanente ou coloration directe consiste à teindre les fibres kératiniques avec des compositions tinctoriales contenant des colorants directs. Ces colorants sont des molécules colorées et colorantes ayant une affinité pour les fibres kératiniques. Ils sont appliqués sur les fibres kératiniques pendant un temps nécessaire à l'obtention de la coloration désirée, puis rincés.
Pour être visibles sur cheveux foncés, ces techniques de coloration nécessitent très souvent une décoloration préalable ou simultanée des fibres kératiniques. Cette étape de décoloration mise en oeuvre avec un agent oxydant tel que le peroxyde d’hydrogène ou des persels entraîne une dégradation non négligeable des fibres kératiniques ce qui altère leurs propriétés cosmétiques. Les cheveux ont alors tendance à devenir rêches, plus difficilement démêlables et plus fragiles.
Une autre méthode de coloration consiste à utiliser des pigments. En effet, l’utilisation de pigment à la surface des fibres kératiniques permet en général d’obtenir des colorations visibles sur cheveux foncés puisque le pigment en surface masque la couleur naturelle de la fibre. L’utilisation de pigment pour colorer des fibres kératiniques est par exemple décrite dans la demande de brevet FR 2 741 530, qui préconise l'utilisation pour la coloration temporaire des fibres kératiniques d'une composition comprenant au moins une dispersion de particules de polymère filmogène comportant au moins une fonction acide et au moins un pigment dispersé dans la phase continue de ladite dispersion.
Les colorations obtenues par ce mode de coloration présentent l'inconvénient de s’éliminer dès le premier shampooing.
Il est par ailleurs connu de la demande de brevet FR 2 907 678 d’effectuer des gainages colorés des cheveux à partir d’une composition comprenant un copolymère bloc polysiloxane / polyurée et un pigment. Cependant, avec une telle composition, les gainages obtenus ne sont pas toujours très homogènes et l’individualisation des cheveux n’est pas toujours très bonne.
Ainsi, il existe un réel besoin de développer des compositions de coloration de fibres kératiniques, en particulier des fibres kératiniques humaines telles que les cheveux, qui permettent notamment d’obtenir des colorations homogènes, présentant une bonne résistance aux agents extérieurs (lumière, intempéries, brossage), et notamment une bonne rémanence aux shampoings.
Il existe donc un besoin pour un procédé de traitement cosmétique des fibres
kératiniques notamment humaines telles que les cheveux qui réponde aux critères suivants :
Effet perceptible après application et après un ou plusieurs shampooings,
Mise en forme des fibres kératiniques en particulier des fibres kératiniques humaines telles que les cheveux facilement et durablement,
Apport de bonnes qualités cosmétiques,
Simple d’utilisation sans risque d’abimer le cheveu,
Compatible avec les traitements capillaires classiquement utilisés (shampooings, après-shampooings, colorations) mais aussi avec le sébum.
Il existe aussi un réel besoin de développer des compositions de coloration de fibres kératiniques, en particulier des fibres kératiniques humaines telles que les cheveux, qui permettent notamment d’obtenir des colorations homogènes, présentant une bonne résistance aux agents extérieurs (lumière, intempéries, brossage), et notamment une bonne rémanence aux shampoings, en respectant les fibres kératiniques.
Ainsi, ce but est atteint avec la présente invention qui a pour objet un procédé de traitement des fibres kératiniques, notamment les cheveux à partir d’au moins un polyuréthane particulier, fonctionnalisé par au moins un groupement organosilane.
La présente invention a aussi pour objet un polyuréthane fonctionnalisé issu de la réaction de :
- au moins un prépolymère de formule (A) suivante :
Figure imgf000005_0001
dans laquelle,
•Ri représente un radical bivalent d’un composé hydrophile choisi parmi les acides carboxyliques,
R2 représente un radical d’un polyisocyanate,
R3 représente un radical d’un composé polyhydroxylé choisi parmi les polyols de lactone, leurs adduits d’oxyde d’alkylène et leurs mélanges,
n représente un entier allant de 1 à 5, et
•m est supérieur à 1,
- au moins un extendeur de chaîne, et
- au moins un monomère de type organosilane de formule (I) suivante
R4-NH-R5Si(OR6)z(R7)x (I)
dans laquelle,
R4 représente un atome d’hydrogène ou une chaîne hydrocarbonée en C4 à C4, linéaire ou ramifiée,
R5 représente une chaîne hydrocarbonée en C4 à C22, notamment en C4 à C20, linéaire ou ramifiée, saturée ou insaturée, cyclique ou acyclique, pouvant être interrompue par un hétéroatome (O, S, NH) ou un groupement carbonyle (CO), R5 étant lié à l’atome de silicium directement via un atome de carbone ;
R6 et R7, identiques ou différents, représentent un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 6 atomes de carbone,
z désigne un nombre entier allant de 1 à 3, et
x désigne un nombre entier allant de 0 à 2,
avec z+x=3. La présente invention a également pour objet une composition comprenant un ou plusieurs polyuréthanes fonctionnalisé(s) tel (s) que défini(s) précédemment, et optionnellement un ou plusieurs pigments.
Le polymère de l’invention permet d’obtenir une mise en forme des fibres kératiniques respectueux de la fibre. En outre, ces compositions permettent d’obtenir une mise en forme rémanente à au moins un shampooing. En outre, la composition selon l’invention permet d’espacer les shampoings en limitant le regraissage des cheveux traités, confère une meilleure maîtrise du volume, une diminution des frisottis et un gain en discipline.
Les cheveux ainsi mis en forme présentent en outre de bonnes propriétés de
conditionnement, notamment en terme d’individualisation.
Lorsque la composition appliquée sur les fibres kératiniques comprend le ou les polyuréthane(s) fonctionnalisé(s) tels que défini(s) précédemment et un ou plusieurs pigments, les fibres kératiniques, notamment les cheveux sont colorés de façon rémanente à au moins un shampoing, et ceci sans dégradation des fibres kératiniques.
On obtient ainsi une coloration moins insensible aux agressions extérieures telles que le lavage et qui reste tenace dans le temps.
Les cheveux ainsi colorés présentent en outre de bonnes propriétés de conditionnement, notamment en termes de gainage et d’individualisation.
L’invention a également pour objet un procédé de traitement des fibres kératiniques, en particulier des fibres kératiniques humaines telles que les cheveux, comprenant l’application du ou des polyuréthanes tels que définis précédemment ou d’une composition telle que définie précédemment.
En outre, le procédé selon l’invention peut faire intervenir une étape de séchage naturel et/ou éventuellement une étape d’application de chaleur sur les fibres kératiniques à l’aide d’un outil chauffant, l’application de la chaleur pouvant intervenir pendant ou après l’application de la composition, de préférence après.
D'autres objets, caractéristiques, aspects et avantages de l'invention apparaîtront encore plus clairement à la lecture de la description et des exemples qui suivent.
L’invention n’est pas limitée aux exemples illustrés. Les caractéristiques des différents exemples peuvent notamment se combiner au sein de variantes non illustrées. Dans ce qui va suivre, et à moins d’une autre indication, les bornes d’un domaine de valeurs sont comprises dans ce domaine, notamment dans les expressions « compris entre » et « allant de à ··· ».
Par ailleurs, l’expression « au moins un » utilisée dans la présente description est équivalente à l’expression « un ou plusieurs ».
Par « fibres kératiniques » selon la présente demande, on désigne les fibres kératiniques humaines telles que les cheveux et les cils, et plus particulièrement les cheveux.
Sauf indication contraire, lorsque les composés sont mentionnés dans la présente demande, on entend également leurs isomères optiques, leurs isomères géométriques, leurs tautomères, leurs sels ou leurs solvatés, seuls ou en mélange.
Les polyuréthanes fonctionnalisés
Le polyuréthane fonctionnalisé selon l’invention est obtenu à partir d’au moins un prépolymère de formule (A), telle que définie précédemment, c’est-à-dire résultant de la réaction de polymérisation d’au moins un monomère polyisocyanate, et d’au moins un monomère (ou composé) polyhydroxylé choisi parmi les polyols de lactone, leurs adduits d’oxyde d’alkylène et leurs mélanges.
Les polyisocyanates, représentés par R2 dans la formule (A) ci-dessus, sont de préférence choisis parmi les diisocyanates, et plus préférentiellement parmi ceux représentés par la formule générale R(NCO)2, dans laquelle R représente un groupe hydrocarboné aliphatique divalent ayant de 4 à 18 atomes de carbone, un groupe hydrocarboné cycloaliphatique divalent ayant de 5 à 15 atomes de carbone, un groupe hydrocarboné araliphatique divalent ayant de 7 à 15 atomes de carbone ou un groupe hydrocarboné aromatique divalent ayant 6 à 15 atomes de carbone.
Le ou les diisocyanates utilisables dans la présente invention sont avantageusement choisis parmi le diisocyanate de tétraméthylène, le diisocyanate de 1,6-hexaméthylène, le diisocyanate de dodécaméthylène, le 1,3-diisocyanatocyclohexane, le 1,4- diisocyanatocyclohexane, l’isocyanate de 3-isocyanatométhyle-3,5,5- triméthylcyclohexane (diisocyanate d'isophorone ou I PDI), le bis- (4- isocyanatocyclohexyl)-méthane, le l,3-bis(isocyanatométhyl)-cyclohexane, le 1,4- bis(isocyanatométhyl) -cycloh exan e, le bis-(4-isocyanato-3-méthyl-cyclohexyl)-méthane, les isomères du diisocyanate de toluène (TDI) tels que le 2,4-diisocyanate de toluène, le 2,6-diisocyanate de toluène et leurs mélanges, le diisocyanate de toluène hydrogéné, le 4,4’-diisocyanate diphényl méthane et les mélanges avec ses isomères 2,4-diisocyanate de diphénylméthane et éventuellement 2,2'-diisocyanate de diphénylméthane, diisocyanate-1,5 de naphthalène, et leurs mélanges.
De préférence, les diisocyanates sont des diisocyanates aliphatiques et cycloaliphatiques.
Plus particulièrement, le polyisocyanate est l’isocyanate de 3-isocyanatométhyle-3,5,5- triméthylcyclohexane.
De préférence, les composés polyhydroxylés, représentés par R3 dans la formule (A) ci- dessus, sont choisis parmi les diols de lactone, leurs adduits d’oxyde d’alkylène et leurs mélanges.
Le terme « diol » est destiné à inclure des mélanges de diols ainsi que des mélanges contenant de faibles taux de triols ou de tétrols qui n'affectent pas excessivement les propriétés du produit final.
A titre d’oxydes d'alkylène utilisables selon la présente invention, on peut par exemple citer l'oxyde d'éthylène, le 1,2-époxypropane, le 1,2-époxybutane, le 2,3-époxybutane, l'oxyde d'isobutylène, l'épichlorhydrine, et leurs mélanges.
Les polyols de lactone peuvent être préparés en faisant réagir une lactone, telle que l'epsilon-caprolactone ou un mélange d'epsilon-caprolactone et d'un oxyde d'alkylène, avec un initiateur polyfonctionnel tel qu'un alcool polyhydrique.
Le terme « polyol de lactone » comprend également les divers copolymères tels que les copolyesters de lactone, les polyester/ polycarbonates de lactone, les polyester/ polyéthers de lactone, et le polyester/ polyéther/ polycarbonate de lactone / polycarbonate.
De préférence, le composé polyhydroxylé est le diol de caprolactone.
Le rapport pondéral entre la quantité du ou des composé(s) polyhydroxylé(s), choisi(s) parmi les polyols de lactone, leurs adduits d’oxyde d’alkylène et leurs mélanges, et la quantité du ou des polyisocyanate(s) est de préférence supérieur ou égal 1, et plus préférentiellement compris entre 1 et 5.
Le rapport molaire entre les fonctions isocyanates et la somme des fonctions alcools et amines (c’est-à-dire fonctions alcools + amines) va de préférence de 0,8 à 1,5. Selon un mode de réalisation particulièrement préféré, le polyuréthane fonctionnalisé selon l’invention est obtenu à partir d’au moins un prépolymère résultant de la réaction de polymérisation d’au moins un polyisocyanate choisi parmi les diisocyanates aliphatiques, les diisocyanates cycloaliphatiques et leurs mélanges, et d’au moins un composé polyhydroxylé choisi parmi les polyols de lactone, leurs adduits d’oxyde d’alkylène et leurs mélanges. En d’autres termes, le prépolymère est de préférence de formule (A) dans laquelle R2 représente un polyisocyanate choisi parmi les diisocyanates aliphatiques, les diisocyanates cycloaliphatiques et leurs mélanges, et R3 représente un composé polyhydroxylé choisi parmi les polyols de lactone, leurs adduits d’oxyde d’alkylène et leurs mélanges.
Plus préférentiellement, le prépolymère résulte de la réaction de l’isocyanate de 3- isocyanatométhyle-3,5,5-triméthylcyclohexane et du diol de caprolactone. En d’autres termes, le prépolymère est plus préférentiellement de formule (A) dans laquelle R2 représente un radical 3-isocyanatométhyle-3,5,5-triméthylcyclohexane et R3 représente un radical diol de caprolactone.
De préférence, le composé (ou monomère) hydrophile, représenté par Rx dans la formule (A) ci-dessus, est choisi parmi les composés de formule (II) suivante :
R-C(0)-0H (II)
dans laquelle, R représente une chaîne alkyle linéaire ou ramifiée, saturée ou insaturée en Cj à Cm, substituée par un ou plusieurs groupement hydroxy.
Plus préférentiellement, R représente une chaîne alkyle ramifiée, saturée en Ci à C10, mieux encore en Cj à C6, substituée par un ou plusieurs groupements hydroxy.
De préférence, le composé hydrophile est l’acide 2,2-bis(hydroxyméthyl)propionique.
Le prépolymère de formule (A) selon l'invention peut être neutralisé par une base, par exemple une amine primaire, secondaire ou tertiaire, l’amine pouvant comporter ou non des substituants (hydroxyle), comme l’amino-2-méthyl-2-propanol, et les formes salifiées ou quaternisées de ceux-ci. Plus particulièrement, le prépolymère est neutralisé par une amine tertiaire telle que la diisopropyléthylamine. D’autres bases peuvent être utilisées comme la potasse, la soude ou l’ammoniaque.
Les groupes carboxyliques peuvent être neutralisés avant ou après la formation du prépolymère de formule (A). En d’autres termes, la neutralisation peut être effectuée avant ou après l’ajout du ou des monomères polyisocyanates. Une fois formé, le prépolymère de formule (A) est allongé avec au moins un extendeur de chaîne.
Les extendeurs de chaîne utilisables selon la présente invention sont de préférence choisis parmi les diols à bas poids moléculaires.
Par « diol à bas poids moléculaire », on entend, selon la présente invention, un diol ayant un poids moléculaire d’environ 62 à 700, et de préférence de 62 à 200. Ces diols peuvent comprendre des groupes aliphatiques, alicycliques ou aromatiques. De préférence, ils ne comprennent que des groupes aliphatiques.
De préférence, les extendeurs de chaîne sont choisis parmi les diols à bas poids moléculaire, ayant moins de 20 atomes de carbone, et plus préférentiellement choisi parmi l'éthylène glycol, le diéthylène glycol, le propane 1,2-diol, le propane 1,3-diol, le butane 1,4-diol, le pentane 1,5-diol, le butylène 1,3-glycol, le néopentyl glycol, le buthyl- éthyl-propane diol, le cyclohexane diol, le 1,4-cyclohexane diméthanol, l'hexane 1,6-diol, le bisphénol A (2,2-bis(4-hydroxyphényle)propane), le bisphénol A hydrogéné (2,2-bis (4- hydroxycyclohexyle)propane), et leurs mélanges.
Après réaction avec l’extendeur de chaîne, le polyuréthane est fonctionnalisé avec au moins un monomère de type organosilane de formule (I) telle que définie précédemment.
De préférence, le ou les monomères de type organosilanes sont choisis parmi les composés de formule (I) pour lesquels R6 représente un groupe alkyle comprenant de 1 à 4 atomes de carbone et/ou R7 représente un groupe alkyle comprenant de 1 à 4 atomes de carbone.
Selon un mode de réalisation particulier préféré, R6 représente un groupe alkyle linéaire comprenant de 1 à 4 atomes de carbone. De préférence, R6 représente le groupe éthyle.
Selon un autre mode de réalisation préféré, R7 représente un groupe alkyle linéaire comprenant de 1 à 4 atomes de carbone. De préférence, R7 représente le groupe méthyle ou éthyle.
De préférence, R4 représente un atome d’hydrogène.
Avantageusement, R5 est une chaîne hydrocarbonée acyclique en Cj à C6, linéaire ou ramifiée, saturée ou insaturée. Plus préférentiellement, R5 est une chaîne hydrocarbonée linéaire et saturée en C! à C6, et mieux encore. R5 est une chaîne hydrocarbonée linéaire et saturée en C2 à C4. De préférence, R5 est une chaîne hydrocarbonée linéaire et saturée en Cj à C6, R4 représente un atome d’hydrogène, R6 représente un groupe alkyle comprenant de 1 à 4 atomes de carbone, et R7 représente un groupe alkyle comprenant de 1 à 4 atomes de carbone.
De préférence z est égal à 3.
Le ou les monomère(s) de type organosilane de formule (I) sont avantageusement choisis parmi le 3-aminopropyltriéthoxysilane (APTES), le 3-aminoéthyltriéthoxysilane (AETES), le 3-aminopropylméthyldiéthoxysilane, le N-(2-aminoéthyl)-3- aminopropyltriéthoxysilane, le 3-(m-aminophénoxy)propyltriméthoxysilane, le p- aminophényltriméthoxysilane, le N-(2- aminoéthylaminométhy phénéthyltriméthoxysilane, et leurs mélanges , et plus préférentiellement parmi le 3-aminopropyltriéthoxysilane (APTES), le 3- aminoéthyltriéthoxysilane (AETES), le 3-aminopropylméthyldiéthoxysilane, le N-(2- aminoéthyl)-3-aminopropyltriéthoxysilane et leurs mélanges.
Mieux encore, le monomère de type organosilane de formule (I) est le 3-aminopropyl triéthoxysilane (APTES).
De préférence, le ou les monomères de type organosilane représente(nt) de 1 à 20% en poids, et plus préférentiellement de 2 à 15% en poids, par rapport au poids total du polyuréthane.
Les polyuréthanes de l’invention sont de préférence obtenus par le procédé suivant :
(D- Le prépolymère de formule (A) est préalablement synthétisé par réaction du ou des monomères polyisocyanate(s), et du ou des monomère(s) polyhydroxylé(s) choisi(s) parmi les polyols de lactone, leurs adduits d’oxyde d’alkylène et leurs mélanges, en présence d’un catalyseur, et de préférence un catalyseur à base d’étain tel que l’éthyl-2- hexanoate d’étain. Les monomères hydrophiles sont également ajoutés au milieu réactionnel, et leurs fonctions acides sont neutralisées par l’ajout d’au moins une base organique telle que définie précédemment. Cette étape de polymérisation est de préférence effectuée dans un solvant, et plus particulièrement dans l’acétone ou la méthyléthylcétone. Cette étape de polymérisation est de préférence effectuée à une température comprise entre 50 et 90° C, et plus préférentiellement entre 50 et 85° C. (2)- Le prépolymère ainsi formé est alors allongé par ajout du ou des extendeurs de chaîne avant d’être fonctionnalisé à l’aide des composés organosilanes.
(3)- De l’eau est éventuellement ajoutée,
(4)- Le solvant peut être éliminé totalement ou partiellement par distillation.
(5)- Un ou plusieurs solvants organiques peuvent ensuite être ajoutés à la composition contenant les polymères et éventuellement l’eau.
Ainsi, il est possible d’obtenir une dispersion aqueuse de particules de polyuréthane(s) fonctionnalisé(s) tel (s) que défini(s) selon la présente invention. De préférence, la dispersion aqueuse ainsi obtenue est un latex.
Les particules de polyuréthane fonctionnalisé peuvent avoir un diamètre moyen allant jusqu'à environ 1000 nm, par exemple d'environ 30 nm à environ 500 nm. Ces tailles de particules peuvent être mesurées avec un granulomètre laser (par exemple Brookhaven B 190) .
La teneur en polyuréthane fonctionnalisé (matière sèche), présent dans la solution finale (acétone, méthyléthylcétone ou dispersion aqueuse), va de préférence de 20 à 70% en poids, par rapport au poids total de la solution.
Composition
La composition utile selon l’invention est de préférence une composition de traitement des fibres kératiniques, en particulier des fibres kératiniques humaines telles que les cheveux.
La composition utilisée selon l’invention comprend au moins un polyuréthane particulier, fonctionnalisé par au moins un groupement organosilane tels que définis précédemment.
La teneur du ou des polyuréthane(s) fonctionnalisé(s), présent(s) dans la composition selon l’invention, va de préférence de 1 à 30% en poids, et plus préférentiellement de 5 à 25% en poids, par rapport au poids total de la composition.
Selon un mode de réalisation, la composition selon la présente invention comprend en outre un ou plusieurs pigments.
Par « pigment -», on entend tous les pigments apportant de la couleur aux matières kératiniques. Leur solubilité dans l’eau à 25° C et à pression atmosphérique (760 mmHg) est inférieure à 0,05% en poids, et de préférence inférieure à 0,01%. Les pigments qui peuvent être utilisés sont notamment choisis parmi les pigments organiques et/ou minéraux connus de la technique, notamment ceux qui sont décrits dans l'encyclopédie de technologie chimique de Kirk-Othmer et dans l'encyclopédie de chimie industrielle de Ullmann.
Ces pigments peuvent se présenter sous forme de poudre ou de pâte pigmentaire. Ils peuvent être enrobés ou non enrobés.
Les pigments peuvent par exemple être choisis parmi les pigments minéraux, les pigments organiques, les laques, les pigments à effets spéciaux tels que les nacres ou les paillettes, et leurs mélanges.
Le pigment peut de préférence être un pigment minéral. Par « pigment minéral », on entend tout pigment qui répond à la définition de l’encyclopédie Ullmann dans le chapitre pigment inorganique. On peut citer, parmi les pigments minéraux utiles dans la présente invention, les oxydes de fer ou de chrome, le violet de manganèse, le bleu outremer, l’hydrate de chrome, le bleu ferrique et l’oxyde de titane.
Le pigment peut de préférence être un pigment organique. Par « pigment organique », on entend tout pigment qui répond à la définition de l’encyclopédie Ullmann dans le chapitre pigment organique. Le pigment organique peut notamment être choisi parmi les composés nitroso, nitro, azo, xanthène, quinoléine, anthraquinone, phtalocyanine, de type complexe métallique, isoindolinone, isoindoline, quinacridone, périnone, pérylène, dicétopyrrolopyrrole, thioindigo, dioxazine, triphénylméthane, quinophtalone.
En particulier, les pigments organiques blancs ou colorés peuvent être choisis parmi le carmin, le noir de carbone, le noir d’aniline, le jaune azo, la quinacridone, le bleu de phtalocyanine, le rouge sorgho, les pigments bleus codifiés dans le Color Index sous les références Cl 42090, 69800, 69825, 73000, 74100, 74160, les pigments jaunes codifiés dans le Color Index sous les références Cl 11680, 11710, 15985, 19140, 20040, 21100, 21108, 47000, 47005, les pigments verts codifiés dans le Color Index sous les références Cl 61565, 61570, 74260, les pigments oranges codifiés dans le Color Index sous les réfénces Cl 11725, 15510, 45370, 71105, les pigments rouges codifiés dans le Color Index sous les références Cl 12085, 12120, 12370, 12420, 12490, 14700, 15525, 15580, 15620, 15630, 15800, 15850, 15865, 15880, 17200, 26100, 45380, 45410, 58000, 73360, 73915, 75470, les pigments obtenus par polymérisation oxydante de dérivés indoliques, phénoliques tels qu’ils sont décrits dans le brevet FR 2 679 771. Les pigments conformes à l'invention peuvent aussi être sous forme de pigments composites tels qu’ils sont décrits dans le brevet EP 1 184 426. Ces pigments composites peuvent être composés notamment de particules comportant un noyau inorganique, au moins un liant assurant la fixation des pigments organiques sur le noyau, et au moins un pigment organique recouvrant au moins partiellement le noyau.
Le pigment organique peut aussi être une laque. Par « laque », on entend les colorants adsorbés sur des particules insolubles, l’ensemble ainsi obtenu restant insoluble lors de l’utilisation.
Les substrats inorganiques sur lesquels sont adsorbés les colorants sont par exemple l’alumine, la silice, le borosilicate de calcium et de sodium ou le borosilicate de calcium et d’aluminium, et l’aluminium.
Parmi les colorants, on peut citer le carmin de cochenille. On peut également citer les colorants connus sous les dénominations suivantes : D & C Red 21 (Cl 45 380), D & C Orange 5 (Cl 45 370), D & C Red 27 (Cl 45 410), D & C Orange 10 (Cl 45 425), D & C Red 3 (Cl 45 430), D & C Red 4 (Cl 15 510), D & C Red 33 (Cl 17 200), D & C Yellow 5 (Cl 19 140), D & C Yellow 6 (Cl 15 985), D & C Green (Cl 61 570), D & C Yellow 1 O (Cl 77 002), D & C Green 3 (Cl 42 053), D & C Blue 1 (Cl 42 090).
A titre d’exemples de laques, on peut citer le produit connu sous la dénomination suivante : D & C Red 7 (Cl 15 850:1).
Le pigment peut aussi être un pigment à effets spéciaux. Par « pigments à effets spéciaux », on entend les pigments qui créent d’une manière générale une apparence colorée (caractérisée par une certaine nuance, une certaine vivacité et une certaine clarté) non uniforme et changeante en fonction des conditions d’observation (lumière, température, angles d’observation · · ·)· Us s’opposent par-là même aux pigments colorés qui procurent une teinte uniforme opaque, semi-transparente ou transparente classique.
I l existe plusieurs types de pigments à effets spéciaux, ceux à faible indice de réfraction tels que les pigments fluorescents, photochromes ou thermochromes, et ceux à plus fort indice de réfraction tels que les nacres ou les paillettes.
A titre d'exemples de pigments à effets spéciaux, on peut citer les pigments nacrés tels que le mica titane recouvert avec un oxyde de fer, le mica recouvert avec un oxyde de fer, le mica recouvert d’oxychlorure de bismuth, le mica titane recouvert avec de l’oxyde de chrome, le mica titane recouvert avec un colorant organique notamment du type précité ainsi que les pigments nacrés à base d’oxychlorure de bismuth. Il peut également s’agir de particules de mica à la surface desquelles sont superposées au moins deux couches successives d’oxydes métalliques et/ou de matières colorantes organiques.
Les nacres peuvent plus particulièrement posséder une couleur ou un reflet jaune, rose, rouge, bronze, orangé, brun, or et/ou cuivré.
A titre illustratif des nacres pouvant être mises en oeuvre dans le cadre de la présente invention, on peut notamment citer les nacres de couleur or notamment commercialisées par la société ENGELHARD sous le nom Gold 222C (Cloisonne), Sparkle gold (Timica), Gold 4504 (Chromalite) et Monarch gold 233X (Cloisonne) ; les nacres bronzes notamment commercialisées par la société MERCK sous la dénomination Bronze fine (17384) (Colorona) et Bronze (17353) (Colorona), par la société Eckart sous la
dénomination Prestige Bronze et par la société ENGELHARD sous la dénomination Super bronze (Cloisonne) ; les nacres oranges notamment commercialisées par la société ENGELHARD sous la dénomination Orange 363C (Cloisonne) et Orange MCR 101 (Cosmica) et par la société MERCK sous la dénomination Passion orange (Colorona) et Matte orange (17449) (Microna) ; les nacres de teinte brune notamment
commercialisées par la société ENGELHARD sous la dénomination Nu-antique copper 340XB (Cloisonne) et Brown CL4509 (Chromalite) ; les nacres à reflet cuivre notamment commercialisées par la société ENGELHARD sous la dénomination Copper 340A (Timica) et par la société Eckart sous la dénomination Prestige Copper ; les nacres à reflet rouge notamment commercialisées par la société MERCK sous la dénomination Sienna fine (17386) (Colorona) ; les nacres à reflet jaune notamment commercialisées par la société ENGELHARD sous la dénomination Yellow (4502) (Chromalite) ; les nacres de teinte rouge à reflet or notamment commercialisées par la société ENGELHARD sous la dénomination Sunstone G012 (Gemtone) ; les nacres noires à reflet or notamment commercialisées par la société ENGELHARD sous la dénomination Nu antique bronze 240 AB (Timica), les nacres bleues notamment commercialisées par la société MERCK sous la dénomination Matte blue (17433) (Microna), Dark Blue (117324) (Colorona), les nacres blanches à reflet argenté notamment commercialisées par la société MERCK sous la dénomination Xirona Silver et les nacres orangées rosées vert doré notamment commercialisées par la société MERCK sous la dénomination Indian summer (Xirona) et leurs mélanges. En plus des nacres sur un support mica, on peut envisager les pigments multicouches basés sur des substrats synthétiques comme l’alumine, la silice, le borosilicate de calcium et de sodium ou le borosilicate de calcium et d’aluminium, et l’aluminium.
On peut également citer les pigments à effet interférentiel non fixés sur un substrat comme les cristaux liquides (Helicones HC de Wacker), les paillettes holographiques interférentiel les (Géométrie Pigments ou Spectra f/x de Spectratek). Les pigments à effets spéciaux comprennent aussi les pigments fl uorescents, que ce soit les substances fluorescentes à la lumière du jour ou qui produisent une fluorescence ultraviolette, les pigments phosphorescents, les pigments photochromiques, les pigments
thermochromiques et les quantum dots, commercialisés par exemple par la société Quantum Dots Corporation.
La variété des pigments qui peuvent être utilisés dans la présente invention permet d'obtenir une riche palette de couleurs, ainsi que des effets optiques particuliers tels que des effets métalliques, interférentiels.
La taille du pigment utilisé dans la composition cosmétique selon la présente invention est généralement comprise entre 10 nm et 200 m m, de préférence entre 20 nm et 80 m m, et plus préférentiellement entre 30 nm et 50 m m.
Les pigments peuvent de préférence être dispersés dans le produit grâce à un agent dispersant.
L’agent dispersant sert à protéger les particules dispersées contre leur agglomération ou floculation. Cet agent dispersant peut être un tensioactif, un oligomère, un polymère ou un mélange de plusieurs d’entre eux, portant une ou des fonctionnalités ayant une affinité forte pour la surface des particules à disperser. En particulier, ils peuvent s’accrocher physiquement ou chimiquement à la surface des pigments. Ces dispersants présentent, en outre, au moins un groupe fonctionnel compatible ou soluble dans le milieu continu. En particulier, on utilise les esters de l’acide hydroxy-12 stéarique en particulier et d’acide gras en C8 à C20 et de polyol comme le glycérol, la diglycérine, tel que le stéarate d’acide poly(12-hydroxystéarique) de poids moléculaire d’environ 750 g/mole tel que cel ui vendu sous le nom de Solsperse 21 000 par la société Avecia, le polygycéryl-2 dipolyhydroxystéarate (nom CTFA) vendu sous la référence Dehymyls PGPH par la société Henkel ou encore l’acide polyhydroxystéarique tel que celui vendu sous la référence Arlacel P100 par la société Uniqema et leurs mélanges. Comme autre dispersant utilisable dans les compositions de l’invention, on peut citer les dérivés ammonium quaternaire d’acides gras polycondensés comme le Solsperse 17 000 vendu par la société Avecia, les mélanges de poly diméthylsiloxane/oxypropylène tels que ceux vendus par la société Dow Corning sous les références DC2-5185, DC2-5225 C.
Les pigments utilisables dans la composition cosmétique selon l’invention peuvent être traités en surface par un agent organique.
Ainsi les pigments préalablement traités en surface utilisables dans le cadre de l’invention sont des pigments qui ont subi totalement ou partiellement un traitement de surface de nature chimique, électronique, électro-chimique, mécano-chimique ou mécanique, avec un agent organique tel que ceux qui sont décrits notamment dans Cosmetics and Toiletries, Février 1990, Vol. 105, p. 53-64 avant d’être dispersés dans la composition conforme à l’invention. Ces agents organiques peuvent être par exemple choisis parmi les acides aminés ; les cires, par exemple la cire de carnauba et la cire d’abeille ; les acides gras, les alcools gras et leurs dérivés, tels que l’acide stéarique, l’acide hydroxystéarique, l’alcool stéarylique, l’alcool hydroxystéarylique, l’acide laurique et leurs dérivés ; les tensio-actifs anioniques ; les lécithines ; les sels de sodium, potassium, magnésium, fer, titane, zinc ou aluminium d’acides gras, par exemple le stéarate ou laurate d’aluminium ; les alcoxydes métalliques ; les polysaccharides, par exemple le chitosane, la cellulose et ses dérivés ; le polyéthylène ; les polymères
(méth)acryliques, par exemple les polyméthylmethacrylates ; les polymères et
copolymères contenant des motifs acrylates ; les protéines ; les alcanoamines ; les composés siliconés, par exemple les silicones, les polydiméthylsiloxanes, les
alcoxysilanes, les alkylsilanes, les siloxy-silicates ; les composés organiques fluorés, par exemple les perfl uoroalkyle éthers ; les composés fluoro-siliconés.
Les pigments traités en surface utilisables dans la composition cosmétique selon l’invention peuvent aussi avoir été traités par un mélange de ces composés et/ou avoir subi pl usieurs traitements de surface.
Les pigments traités en surface util isables dans le cadre de la présente invention peuvent être préparés selon des techniques de traitement de surface bien connues de l’homme de l’art ou trouvés tels quels dans le commerce.
De préférence, les pigments traités en surface sont recouverts par une couche organique. L’agent organique avec lequel sont traités les pigments peut être déposé sur les pigments par évaporation de solvant, réaction chimique entre les molécules de l’agent de surface ou création d’une liaison covalente entre l’agent de surface et les pigments.
Le traitement en surface peut ainsi être réalisé par exemple par réaction chimique d’un agent de surface avec la surface des pigments et création d’une liaison covalente entre l’agent de surface et les pigments ou les charges. Cette méthode est notamment décrite dans le brevet US 4 578 266.
De préférence, on utilisera un agent organique lié aux pigments de manière covalente.
L’agent pour le traitement de surface peut de préférence représenter de 0,1 à 50% en poids du poids total des pigments traités en surface, plus préférentiellement de 0,5 à 30% en poids, et mieux encore de 1 à 10% en poids.
De préférence, les traitements en surface des pigments sont choisis parmi les traitements suivants :
- un traitement PEG-Silicone comme le traitement de surface AQ commercialisé par LCW
- un traitement Chitosane comme le traitement de surface CTS commercialisé par LCW ;
- un traitement Triéthoxycaprylylsilane comme le traitement de surface AS
commercialisé par LCW ;
- un traitement Méthicone comme le traitement de surface SI commercialisé par LCW ;
- un traitement Diméthicone comme le traitement de surface Covasil 3.05 commercialisé par LCW ;
- un traitement Diméthicone / Triméthylsiloxysilicate comme le traitement de surface Covasil 4.05 commercialisé par LCW ;
- un traitement Lauroyl Lysine comme le traitement de surface LL commercialisé par LCW ;
- un traitement Lauroyl Lysine Diméthicone comme le traitement de surface LL / SI commercialisé par LCW ;
- un traitement Myristate de Magnésium comme le traitement de surface M M
commercialisé par LCW ;
- un traitement Dimyristate d’Aluminium comme le traitement de surface M l
commercialisé par Miyoshi ;
- un traitement Perfluoropolyméthyl isopropyl éther comme le traitement de surface FHC commercialisé par LCW ; - un traitement Isostéaryl Sébacate comme le traitement de surface HS commercialisé par Miyoshi ;
- un traitement Disodium Stéaroyl Glutamate comme le traitement de surface NAI commercialisé par Miyoshi ;
- un traitement Diméthicone / Disodium Stéaroyl Glutamate comme le traitement de surface SA / NAI commercialisé par Miyoshi ;
- un traitement Phosphate de Perfluoroalkyle comme le traitement de surface PF commercialisé par Daito ;
- un traitement Copolymère acrylate / Diméthicone et Phosphate de Perfluoalkyle comme le traitement de surface FSA commercialisé par Daito ;
- un traitement Polyméthylhydrogène siloxane / Phosphate de Perfluoroalkyle comme le traitement de surface FS01 commercialisé par Daito ;
- un traitement Lauryl Lysine / Aluminium Tristéarate comme le traitement de surface LL-StAI commercialisé par Daito ;
- un traitement Octyltriéthylsilane comme le traitement de surface OTS commercialisé par Daito ;
- un traitement Octyltriéthylsilane / Phosphate de Perfluoroalkyle comme le traitement de surface FOTS commercialisé par Daito ;
- un traitement Copolymère Acrylate / Diméthicone comme le traitement de surface ASC commercialisé par Daito ;
- un traitement Isopropyl Titanium Triisostéarate comme le traitement de surface ITT commercialisé par Daito ;
- un traitement Cellulose Microcrystalline et Carboxyméthyl Cellulose comme le traitement de surface AC commercialisé par Daito ;
- un traitement Cellulose comme le traitement de surface C2 commercialisé par Daito ;
- un traitement copolymère Acrylate comme le traitement de surface APD commercialisé par Daito ; et
-un traitement Phosphate de Perfluoroalkyle / Isopropyl Titanium Triisostéarate comme le traitement de surface PF + ITT commercialisé par Daito.
La composition selon la présente invention peut éventuellement comprendre en outre un ou plusieurs pigments non traités en surface.
Selon un mode de réalisation particulier de l’invention, le ou les pigments sont des pigments minéraux. Selon un autre mode particulier de l’invention, le ou les pigments sont choisis parmi les nacres.
La quantité du ou des pigments, présent(s) dans la composition colorante selon l’invention, va de préférence de 0,5 à 40% en poids, et plus préférentiellement de 1 à 20% en poids, par rapport au poids total de la composition colorante.
Le rapport pondéral entre la quantité du ou des polyuréthane(s) fonctionnalisé(s) et la quantité du ou des pigment(s), présent(s) dans la composition selon l’invention, est supérieur ou égal à 1, plus préférentiellement supérieur ou égal à 1,5, et mieux encore ce rapport pondéral va de 1,5 à 10.
La composition selon l’invention comprend I e (s) polyuréthane(s) fonctionnalisé(s) en solution ou sous forme de dispersion.
La composition selon la présente invention peut comprendre de l’eau. De préférence, la teneur en eau est supérieure ou égale à 30% en poids, par rapport au poids total de la composition.
De préférence, la teneur en eau, présente dans la composition de l’invention, va de 30 à 80% en poids, et plus préférentiellement de 50 à 75% en poids, par rapport au poids total de la composition.
La composition selon la présente invention peut éventuellement comprendre un ou plusieurs solvants organiques, ou leurs mélanges.
A titre de solvant organique, on peut par exemple citer, les alcanols, linéaires ou ramifiés, en C2 à C4, tels que l'éthanol et l'isopropanol ; le glycérol ; les polyols et éthers de polyols comme le 2-butoxyéthanol, le propylèneglycol, l’hexylène glycol, le dipropylèneglycol, le monométhyléther de propylèneglycol, le monoéthyléther et le monométhyléther du diéthylèneglycol, ainsi que les alcools ou éthers aromatiques comme l'alcool benzylique ou le phénoxyéthanol, et leurs mélanges.
D’autres solvants peuvent également être utilisés tels que l’acétone, l’acétate de butyle ou la méthyléthylcétone.
Selon une forme préférée de l’invention, le ou les polyuréthanes particuliers de l’invention sont obtenus par le procédé suivant puis mis en oeuvre dans la composition utile du procédé de mise en forme : (D- Le prépolymère de formule (A) est préalablement synthétisé par réaction du ou des monomères polyisocyanate(s), et du ou des monomère(s) polyhydroxylé(s) choisi(s) parmi les polyols de lactone, leurs adduits d’oxyde d’alkylène et leurs mélanges, en présence d’un catalyseur, et de préférence un catalyseur à base d’étain tel que l’éthyl-2- hexanoate d’étain. Les monomères hydrophiles sont également ajoutés au milieu réactionnel, et leurs fonctions acides sont neutralisées par l’ajout d’au moins une base organique telle que définie précédemment. Cette étape de polymérisation est de préférence effectuée dans un solvant, et plus particulièrement dans l’acétone ou la méthyléthylcétone. Cette étape de polymérisation est de préférence effectuée à une température comprise entre 50 et 90° C, et plus préférentiellement entre 50 et 85° C.
(2)- Le prépolymère ainsi formé est alors allongé par ajout du ou des extendeurs de chaîne avant d’être fonctionnalisé à l’aide des composés organosilanes.
(3)- De l’eau est ajoutée,
(4) le solvant est éliminé totalement par distillation.
Autrement dit, selon cette forme préférée de l’invention, le ou les polyuréthanes particuliers de l’invention sont obtenus sous forme de dispersion aqueuse et mis en oeuvre tel quel dans la composition utile du procédé de mise en forme.
Selon un autre mode de réalisation de l’invention, le ou les polyuréthanes particuliers de l’invention sont obtenus par le procédé suivant puis mis en oeuvre dans la composition utile du procédé de mise en forme :
(D- Le prépolymère de formule (A) est préalablement synthétisé par réaction du ou des monomères polyisocyanate(s), et du ou des monomère(s) polyhydroxylé(s) choisi(s) parmi les polyols de lactone, leurs adduits d’oxyde d’alkylène et leurs mélanges, en présence d’un catalyseur, et de préférence un catalyseur à base d’étain tel que l’éthyl-2- hexanoate d’étain. Les monomères hydrophiles sont également ajoutés au milieu réactionnel, et leurs fonctions acides sont neutralisées par l’ajout d’au moins une base organique telle que définie précédemment. Cette étape de polymérisation est de préférence effectuée dans un solvant, et plus particulièrement dans l’acétone ou la méthyléthylcétone. Cette étape de polymérisation est de préférence effectuée à une température comprise entre 50 et 90° C, et plus préférentiellement entre 50 et 85° C. (2)- Le prépolymère ainsi formé est alors allongé par ajout du ou des extendeurs de chaîne avant d’être fonctionnalisé à l’aide des composés organosilanes.
(4) le solvant est éliminé partiellement par distillation.
Autrement dit, selon cette forme particulière de l’invention, le ou les polyuréthanes particuliers de l’invention sont obtenus sous forme de solution dans un solvant, à une concentration de préférence de 20 à 70% en poids, et mis en oeuvre tel quel dans la composition utile du procédé de mise en forme.
De préférence, la composition est sous forme de dispersion, en particulier de dispersion dans l’eau.
Plus préférentiellement, la composition est sous forme de dispersion dans l’eau, et pouvant contenir un(des) solvant(s) organique(s) choisi parmi l’acétone, l’acétate de butyle, la méthyléthylcétone et leurs mélanges en des teneurs notamment de 0,0001% à 5% en poids par rapport au poids total de la composition.
Lorsqu’ils sont présents, les solvants organiques représentent habituellement de
0,0001% à 40% en poids, plus préférentiellement de 50 à 85% en poids, par rapport au poids total de la composition.
La composition selon la présente invention peut éventuellement comprendre en outre un ou plusieurs additifs, différents des composés de l’invention et parmi lesquels on peut citer les tensioactifs cationiques, anioniques, non-ioniques, amphotères ou
zwittérioniques, les polymères anioniques, non-ioniques, amphotères ou leurs mélanges, les agents antipelliculaires, les agents antiséborrhéïques, les agents antichute et/ou repousse des cheveux, les vitamines et pro-vitamines dont le panthénol, les filtres solaires organiques, les colorants directs, des précurseurs de colorant tels que les bases d’oxydation et les coupleurs, les agents séquestrants, les agents plastifiants, les agents solubilisants, les agents acidifiants, les agents épaississants minéraux ou organiques, notamment les agents épaississants polymériques, les agents anti-oxydants, les hydroxyacides, les parfums, les agents conservateurs et les céramides.
Les additifs ci-dessus peuvent être en général présents en une quantité comprise pour chacun d’entre eux entre 0 et 20% en poids, par rapport au poids total de la composition.
Procédé de traitement La présente invention concerne également un procédé de traitement des fibres kératiniques, en particulier des fibres kératiniques humaines telles que les cheveux, comprenant (i) l’application sur les fibres kératiniques du ou des polyuréthanes ou d’une composition tels que définis précédemment.
La composition décrite ci-dessus peut être mise en oeuvre sur fibres kératiniques sèches ou humides ainsi que sur tous types de fibres claires ou foncées, naturelles ou colorées, permanentées, décolorées ou défrisées. De préférence, la composition utile dans le procédé selon l’invention est mise en oeuvre sur fibres kératiniques humides.
Selon un mode de réalisation particulier du procédé de l’invention, les fibres sont lavées avant application de la composition décrite ci-dessus.
L’application de la composition de l’invention sur fibres kératiniques peut être mise en oeuvre par exemple au moyen d’un peigne, d’un pinceau, à l’aide d’une brosse ou aux doigts.
L’application de la composition de l’invention sur fibres kératiniques peut également être mise en oeuvre par exemple au moyen d’un spray.
Le procédé de l’invention peut contenir une étape (ii) de mise en forme des fibres kératiniques. Selon cette étape, les fibres kératiniques peuvent être mises en forme par exemple avec un peigne, une brosse ou au doigt, ou encore être maintenues par des pinces, des bigoudis ou tout autre moyen destiné à maintenir les fibres dans une forme particulière ou à leur donner une forme particulière.
Lorsque la composition de l’invention contient un ou plusieurs pigments, le procédé de l’invention est un procédé de coloration des fibres kératiniques, en particulier les cheveux.
En outre, le procédé selon l’invention peut faire intervenir une étape de séchage naturel et/ou éventuellement une étape d’application de chaleur sur les fibres kératiniques à l’aide d’un outil chauffant.
L’étape d’application de la chaleur peut intervenir pendant ou après l’étape d’application de la composition. De préférence, l’étape d’application de la chaleur intervient après l’application de la composition ou du ou des polyuréthane(s) particu I i er (s) de l’invention.
Selon un mode de réalisation particulier de l’invention, l’application de la composition est ensuite suivie d’un séchage à une température de préférence supérieure à 40° C, plus préférentiellement supérieure à 45° C, et mieux encore, cette température est supérieure à 45° C et inférieure à 220° C.
Ce séchage peut être réalisé immédiatement après l’application de la composition ou après un temps de pose pouvant aller de 1 à 30 minutes, sans étape de rinçage intermédiaire.
De préférence, les fibres kératiniques sont séchées, en plus d’un apport de chaleur, avec un flux d’air. Ce flux d’air pendant le séchage permet d’améliorer l’individualisation des fibres kératiniques, en particulier des fibres kératiniques humaines telles que les cheveux.
L’étape de séchage du procédé de l’invention peut éventuellement être mise en oeuvre avec un casque, un sèche-cheveux, un fer à lisser ou un climazon.
L’étape d’application de la chaleur peut être effectuée au moyen de tout dispositif chauffant.
Un ou plusieurs outils chauffants peuvent être appliqués de façon unique ou successive sur les cheveux.
L’outil chauffant peut être un fer à lisser, un fer à friser, un fer à cranter, un fer vagueur, un casque, un sèche-cheveux, un système de chauffage infra-rouge, un bigoudi chauffant.
De préférence, l’outil chauffant est un fer à lisser ou un sèche-cheveux.
Lorsque l’étape de séchage est mise en oeuvre avec un casque ou un sèche-cheveux, la température du séchage est de préférence comprise entre 40 et 110° C, et plus préférentiellement entre 50 et 90° C.
Un fer à lisser peut également être utilisé, la température du séchage est alors de préférence comprise entre 110 et 220° C, et plus préférentiellement entre 140 et 200° C.
Une fois le séchage terminé, un rinçage ou un shampooing terminal peut éventuellement être réalisé.
Durant le séchage, la mise en forme des fibres peut être réalisée par une action mécanique exercée sur les fibres telle qu’un peignage, un brossage, ou le passage des doigts. La présente invention porte également sur l’utilisation d’un ou plusieurs polyuréthane(s) tel (s) que défini(s) précédemment pour la mise en forme des fibres kératiniques, en particulier des fibres kératiniques humaines telles que les cheveux.
La présente invention porte en outre sur l’utilisation d’une composition telle que définie précédemment pour la mise en forme des fibres kératiniques, en particulier des fibres kératiniques humaines telles que les cheveux.
Les exemples suivants servent à illustrer l’invention sans toutefois présenter un caractère limitatif.
Exemples
- Exemple 1 : synthèse du polyuréthane-f-APTES contenant 6% en poids de monomères APTES, dispersé dans l’eau
Dans un réacteur de 1 litre, sous atmosphère d’argon, on introduit de l’acétone (90g), de la caprolactone diol (CAPA 2200 - 82g), de l’acide 2,2-bis(hydroxyméthyl)propionique (8g), de la diisopropyl éthylamine (7g), afin de neutraliser 90% des motifs acides, et un catalyseur (éthyl-2 hexanoate d’étain - 25ppm). Le milieu est chauffé à une température comprise entre 55 et 60° C.
Lorsque la température est atteinte et que la solution est homogène, 38,9g de diisocyanate d’isophorone sont ajoutés petit à petit. Après 2h30 de réaction, 3,5g de 1,5- pentane diol sont ajoutés. On laisse réagir 3 heures avant d’abaisser la température à 40° C.
9g de (3-aminopropyl)triéthoxysilane sont ensuite ajoutés au milieu et l’agitation est maintenue pendant 2 heures.
La dispersion dans l’eau est effectuée le lendemain en ajoutant gouttes à gouttes 345g d’eau dans la solution de synthèse sous agitation à 350 tr/min. L’acétone est ensuite éliminée par distillation et une solution jaune pâle turpide est obtenue.
Le polyuréthane-f-APTES ainsi formé se trouve à un extrait sec de 30% en poids dans l’eau.
- Exemple 2 : synthèse du polyuréthane-f-APTES contenant 14% en poids de monomères APTES, dispersé dans l’eau
Dans un réacteur de 1 litre, sous atmosphère d’argon, on introduit de l’acétone (90g), de la caprolactone diol (CAPA 2200 - 82g), de l’acide 2,2-bis(hydroxyméthyl)propionique (8g), de la diisopropyl éthylamine (7g), afin de neutraliser 90% des motifs acides, et un catalyseur (éthyl-2 hexanoate d’étain - 25ppm). Le milieu est chauffé à une température comprise entre 55 et 60° C.
Lorsque la température est atteinte et que la solution est homogène, 48g de diisocyanate d’isophorone sont ajoutés petit à petit. Après 2h30 de réaction, 1,5g de 1,5-pentane diol sont ajoutés. On laisse réagir 3 heures avant d’abaisser la température à 40° C.
22,5g de (3-aminopropyl)triéthoxysilane sont ensuite ajoutés au milieu et l’agitation est maintenue pendant 2 heures.
La dispersion dans l’eau est effectuée le lendemain en ajoutant gouttes à gouttes 400g d’eau dans la solution de synthèse sous agitation à 350 tr/min. L’acétone est ensuite éliminée par distillation et une solution blanche turpide est obtenue.
Le polyuréthane-f-APTES ainsi formé se trouve à un extrait sec de 30% en poids dans l’eau.
- Exemple 3 : synthèse du polyuréthane-f-APTES contenant 6% en poids de monomères APTES, dispersé dans l’eau
Dans un réacteur de 1 litre, sous atmosphère d’argon, on introduit de la
méthyléthylcétone (90g), de la caprolactone diol (CAPA 2200 - 80g), de l’acide 2,2- bis(hydroxyméthyl)propionique (8g), de la diisopropyl éthylamine (7g), afin de neutraliser 90% des motifs acides, et un catalyseur (éthyl-2 hexanoate d’étain - 25ppm). Le milieu est chauffé à une température comprise entre 80 et 85° C.
Lorsque la température est atteinte et que la solution est homogène, 47g de diisocyanate d’isophorone sont ajoutés petit à petit. Après 2h30 de réaction, 2g de 1,5-pentane diol sont ajoutés. On laisse réagir 3 heures avant d’abaisser la température à 40° C.
9g de (3-aminopropyl)triéthoxysilane sont ensuite ajoutés au milieu et l’agitation est maintenue pendant 2 heures.
La dispersion dans l’eau est effectuée le lendemain en ajoutant 200g de la
méthyléthylcétone puis, gouttes à gouttes 542g d’eau dans la solution de synthèse sous agitation à 350 tr/min. L’acétone est ensuite éliminée par distillation et une solution bleutée turpide est obtenue.
Le polyuréthane-f-APTES ainsi formé se trouve à un extrait sec de 24% en poids dans l’eau.
- Exemple 4 : synthèse du polyuréthane-f-APTES contenant 14% en poids de monomères APTES, dispersé dans l’eau Dans un réacteur de 1 litre, sous atmosphère d’argon, on introduit de la
méthyléthylcétone (90g), de la caprolactone diol (CAPA 2200 - 50g), de l’acide 2,2- bis(hydroxyméthyl)propionique (7g), de la diisopropyl éthylamine (6,2g), afin de neutraliser 90% des motifs acides, et un catalyseur (éthyl-2 hexanoate d’étain - 25ppm). Le milieu est chauffé à une température comprise entre 80 et 85° C.
Lorsque la température est atteinte et que la solution est homogène, 44,4g de diisocyanate d’isophorone sont ajoutés petit à petit. Après 2h30 de réaction, 3,1g de 1,5- pentane diol sont ajoutés. On laisse réagir 3 heures avant d’abaisser la température à 40° C.
17,2g de (3-aminopropyl)triéthoxysilane sont ensuite ajoutés au milieu et l’agitation est maintenue pendant 2 heures.
La dispersion dans l’eau est effectuée le lendemain en ajoutant gouttes à gouttes 490g d’eau dans la solution de synthèse sous agitation à 350 tr/min. La méthyléthylcétone est ensuite éliminée par distillation et une solution bleutée turpide est obtenue.
Le polyuréthane-f-APTES ainsi formé se trouve à un extrait sec de 30% en poids dans l’eau.
- Exemple 5 : synthèse du polyuréthane-f-APTES contenant 6% en poids de monomères APTES, soluble dans l’acétone
Dans un réacteur de un litre, sous atmosphère d’argon, on introduit de l’acétone (61g), de la caprolactone diol (CAPA 2200 - 55,2g), de l’acide 2,2- bis(hydroxyméthyl)propionique (5,4g), de la diisopropyl éthylamine (4,7g), afin de neutraliser 90% des motifs acides, et un catalyseur (éthyl-2 hexanoate d’étain - 25ppm). Le milieu est chauffé à une température comprise entre 55 et 60° C.
Lorsque la température est atteinte et que la solution est homogène, 26,3g de diisocyanate d’isophorone sont ajoutés petit à petit. Après 2h30 de réaction, 2,4g de 1,5- pentane diol sont ajoutés. On laisse réagir 3 heures avant d’abaisser la température à 40° C.
6,1g de (3-aminopropyl)triéthoxysilane sont ensuite ajoutés au milieu et l’agitation est maintenue pendant 2 heures.
A l’issue de la réaction, le polyuréthane-f-APTES ainsi formé se trouve à un extrait sec de 60% en poids dans l’acétone.
- Exemple 6 :_synthèse du polyuréthane-f-APTES contenant 6% en poids de monomères APTES, dispersé dans l’eau Dans un réacteur de un litre, sous atmosphère d’argon, on introduit de l’acétone (61g), de la caprolactone diol (CAPA 2200 - 55,2g), de l’acide 2,2- bis(hydroxyméthyl)propionique (5,4g), de la diisopropyl éthylamine (4,7g), afin de neutraliser 90% des motifs acides, et un catalyseur (éthyl-2 hexanoate d’étain - 25ppm). Le milieu est chauffé à une température comprise entre 55 et 60° C.
Lorsque la température est atteinte et que la solution est homogène, 26,3g de diisocyanate d’isophorone sont ajoutés petit à petit. Après 2h30 de réaction, 2,4g de 1,5- pentane diol sont ajoutés. On laisse réagir 3 heures avant d’abaisser la température à 40° C.
6,1g de (3-aminopropyl)triéthoxysilane sont ensuite ajoutés au milieu et l’agitation est maintenue pendant 2 heures.
La dispersion dans l’eau est effectuée le lendemain en ajoutant gouttes à gouttes 232g d’eau dans la solution de synthèse sous agitation à 350 tr/min. L’acétone est ensuite éliminée par distillation et une solution blanche turpide est obtenue.
Le polyuréthane-f-APTES ainsi formé se trouve à un extrait sec de 30% en poids dans l’eau.
- Exemple 7 :_synthèse du polyuréthane-f-APTES contenant 13% en poids de monomères APTES, dispersé dans l’eau
Dans un réacteur de un litre, sous atmosphère d’argon, on introduit de l’acétone (61g), de la caprolactone diol (CAPA 2200 - 48,5g), de l’acide 2,2- bis(hydroxyméthyl)propionique (4,7g), de la diisopropyl éthylamine (4,1g), afin de neutraliser 90% des motifs acides, et un catalyseur (éthyl-2 hexanoate d’étain - 22ppm). Le milieu est chauffé à une température comprise entre 55 et 60° C.
Lorsque la température est atteinte et que la solution est homogène, 28,4g de diisocyanate d’isophorone sont ajoutés petit à petit. Après 2h30 de réaction, 0,9g de 1,5- pentane diol sont ajoutés. On laisse réagir 3 heures avant d’abaisser la température à 40° C.
13,3g de (3-aminopropyl)triéthoxysilane sont ensuite ajoutés au milieu et l’agitation est maintenue pendant 2 heures.
La dispersion dans l’eau est effectuée le lendemain en ajoutant gouttes à gouttes 237g d’eau dans la solution de synthèse sous agitation à 350 tr/min. L’acétone est ensuite éliminée par distillation et une solution blanche turpide est obtenue.
Le polyuréthane-f-APTES ainsi formé se trouve à un extrait sec de 30% en poids dans l’eau. - Exemple 8 : Effet du polyuréthane-f-APTES dispersé dans l’eau sur la mise en forme des cheveux
(a) Les compositions
Les compositions (Al) à (A8) selon l’invention ont été préparées à partir des ingrédients dont les teneurs, exprimées en pourcentage massique de matière active, par rapport au poids total de chaque composition, sont mentionnées dans le tableau ci-dessous.
[Table 1]
Figure imgf000029_0001
(b) Mode opératoire Les compositions (Al) à (A8) ainsi obtenues ont été appliquées sur des mèches de cheveux à 90% naturels, préalablement lavées et séchées, à raison de 0,5g de composition par mèche de cheveux (de 2,7g). Les mèches ont ensuite été séchées soit à l’air libre, soit à l’aide d’un sèche-cheveux avec brushing. La rémanence de la mise en forme a été évaluée après un shampoing selon le protocole suivant : les mèches ont été rincées à l’eau tiède en les frottant 5 fois de la racine à la pointe ; puis lavées avec le shampoing UltraDoux de Garnier en les frottant 10 fois de la racine à la pointe ; puis rincées à l’eau tiède en les frottant 15 fois de la racine à la pointe ; puis essorées dans du papier absorbant ; puis séchées à l’air libre.
La fixation est évaluée à la fin de chaque protocole par une note de 0 à 5 (0 : pas de fixation ; 5 : très fixant).
(c) Résultats
Les valeurs des notes pour chacune des compositions (Al) à (A8) sont données dans le tableau ci-dessous.
[Table 2]
Figure imgf000030_0001
Les résultats ci-dessus montrent que les compositions selon l’invention (Al) à (A8) comprenant un polyuréthane selon l’invention permettent d’obtenir une mise en forme des fibres kératiniques.
[Table 3]
Figure imgf000031_0001
En outre, les résultats ci-dessus montrent que les compositions (A2), (A5) et (A6) permettent d’obtenir une mise en forme rémanente après un shampoing.
- Exemple 9 : Composition de polyuréthane-f-APTES dispersé dans l’eau et contenant des pigments
(a) Les compositions
Les compositions (A9) et (A10) selon l’invention ont été préparées à partir des ingrédients dont les teneurs, exprimées en pourcentage massique, par rapport au poids total de chaque composition, sont mentionnées dans le tableau ci-dessous. [Table 4]
Figure imgf000031_0002
ma : matière active (b) Mode opératoire
Les compositions (A9), (A10) ainsi obtenues ont été appliquées sur des mèches de cheveux à 90% naturels à raison de 0,5g de composition par mèche de cheveux. Les mèches ont ensuite été séchées au sèche-cheveux, puis laissées poser 24 heures à température ambiante.
A l’issue de ces 24 heures, les mèches ont été rincées à l’eau.
La ténacité de la coloration a été évaluée avec un spectrophotomètre Konica Minolta CL- 3610A® dans le système L*a*b*. Dans ce système, L* représente l’intensité, plus la valeur de L* est faible, plus la coloration obtenues est intense. La chromaticité est mesurée par les valeurs a* et b*, a* représentant l’axe rouge/vert et b* l’axe jaune/bleu
DE permet de mesurer la variation de la couleur au moment de l’application et après 24 h et rinçage à l’eau selon la formule :
Figure imgf000032_0001
dans laquelle, L* représente l’intensité a* et b*, la chromaticité des cheveux après rinçage et L0* représente l’intensité et a0* et b0* la chromaticité des cheveux avant rinçage. La résistance de la couleur est d’autant plus élevée que le DE est faible.
(c) Résultats
Les valeurs colorimétriques obtenues pour chacune des compositions (A9) et (A10) sont données dans le tableau ci-dessous. [Table 5]
Figure imgf000032_0002
Les résultats ci-dessus montrent que les colorations obtenues à partir des compositions (A9) et (A10), sont résistantes à l’eau.
- Exemple 10 : composition de polyuréthane-f-APTES solubilisée dans l’acétone et de pigments
(a) Les compositions
La composition (Ail) selon l’invention a été préparée à partir des ingrédients dont les teneurs, exprimées en pourcentage massique, par rapport au poids total de chaque composition, sont mentionnées dans le tableau ci-dessous. [Table 6]
Figure imgf000033_0001
ma : matière active
(b) Mode opératoire
La composition (Ail) ainsi obtenue sous forme de solution a été appliquée sur des mèches de cheveux à 90% naturels à raison de 0,5g de composition par mèche de cheveux. Les mèches ont ensuite été séchées au sèche-cheveux et démêlées, avant d’être laissées poser 24 heures à température ambiante.
A l’issue de ces 24 heures, les mèches ont été rincées à l’eau, puis lavées avec un shampoing.
La ténacité de la coloration a été évaluée dans le système L*a*b* selon le mode opératoire de l’exemple 9. Dans cet exemple 10, L* représente l’intensité a* et b*, la chromaticité des cheveux après rinçage ou après lavage et L0* représente l’intensité et a0* et b0* la chromaticité des cheveux avant rinçage et lavage.
La résistance de la couleur est d’autant plus élevée que le DE est faible. (c) Résultats
Les valeurs colorimétriques obtenues pour la composition (Ail) sont données dans le tableau ci-dessous.
[Table 7]
Figure imgf000034_0001
Les résultats ci-dessus montrent que la composition (Ail), comprenant le polyuréthane fonctionnalisé de l’invention, conduit à des colorations qui sont non seulement résistantes à l’eau, mais également rémanentes à au moins cinq shampoings.

Claims

Revendications
[Revendication 1] Polyuréthane fonctionnalisé issu de la réaction de :
- au moins un prépolymère de formule (A) suivante :
Figure imgf000035_0001
dans laquelle,
•Ri représente un radical bivalent d’un composé hydrophile choisi parmi les acides carboxyliques,
•R2 représente un radical d’un polyisocyanate,
•R3 représente un radical d’un composé polyhydroxylé choisi parmi les polyols de lactone, leurs adduits d’oxyde d’alkylène et leurs mélanges,
•n représente un entier allant de 1 à 5, et
•m est supérieur à 1,
- au moins un extendeur de chaîne, et
- au moins un monomère de type organosilane de formule (I) suivante
R4-NH-R5Si(OR6)z(R7)x (I)
dans laquelle,
R4 représente un atome d’hydrogène ou une chaîne hydrocarbonée en C4 à C4, linéaire ou ramifiée,
R5 représente une chaîne hydrocarbonée en C4 à C22, notamment en C4 à C20, linéaire ou ramifiée, saturée ou insaturée, cyclique ou acyclique, pouvant être interrompue par un hétéroatome (O, S, NH) ou un groupement carbonyle (CO), R5 étant lié à l’atome de silicium directement via un atome de carbone ;
R6 et R7, identiques ou différents, représentent un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 6 atomes de carbone,
z désigne un nombre entier allant de 1 à 3, et
•x désigne un nombre entier allant de 0 à 2,
avec z+x=3.
[Revendication 2] Polyuréthane selon la revendication précédente, caractérisée en ce que le polyisocyanate est choisi parmi les diisocyanates
[Revendication 3] Composition selon la revendication 1 ou 2, caractérisée en ce que le polyisocyanate est choisi parmi les diisocyanates représentés par la formule générale R(NCO)2, dans laquelle R représente un groupe hydrocarboné
aliphatique divalent ayant de 4 à 18 atomes de carbone, un groupe hydrocarboné cycloaliphatique divalent ayant de 5 à 15 atomes de carbone, un groupe hydrocarboné araliphatique divalent ayant de 7 à 15 atomes de carbone ou un groupe hydrocarboné aromatique divalent ayant 6 à 15 atomes de carbone.
[Revendication 4] Polyuréthane selon l’une quelconque des revendications
précédentes, caractérisée en ce que le polyisocyanate est l’isocyanate de 3- isocyanatométhyle-3,5,5-triméthylcyclohexane.
[Revendication 5] Polyuréthane selon l’une quelconque des revendications
précédentes, caractérisée en ce que le composé polyhydroxylé est choisi parmi les diols de lactone, leurs adduits d’oxyde d’alkylène et leurs mélanges.
[Revendication 6] Polyuréthane selon l’une quelconque des revendications
précédentes, caractérisée en ce que le composé polyhydroxylé est le diol de caprolactone.
[Revendication 7] Polyuréthane selon l’une quelconque des revendications
précédentes, caractérisée en ce que le rapport pondéral entre la quantité du ou des composé(s) polyhydroxylé(s), choisi(s) parmi les polyols de lactone, leurs adduits d’oxyde d’alkylène et leurs mélanges, et la quantité du ou des
polyisocyanate(s) est supérieur ou égal 1, et de préférence compris entre 1 et 5.
[Revendication 8] Polyuréthane selon l’une quelconque des revendications
précédentes, caractérisée en ce que le composé hydrophile est choisi parmi les composés de formule (II) suivante :
R-C(0)-0H (II)
dans laquelle, R représente une chaîne alkyle linéaire ou ramifiée, saturée ou insaturée en Cj à C10, substituée par un ou plusieurs groupement hydroxy, de préférence R représente une chaîne alkFyle ramifiée, saturée en Ci à C10, mieux encore en Ci à C6, substituée par un ou plusieurs groupements hydroxy.
[Revendication 9] Polyuréthane selon l’une quelconque des revendications
précédentes, caractérisée en ce que le ou les extendeur(s) de chaîne sont choisis parmi les diols à bas poids moléculaire, ayant moins de 20 atomes de carbones, et de préférence parmi l'éthylène glycol, le diéthylène glycol, le propane 1,2-diol, le propane 1,3-diol, le butane 1,4-diol, le pentane 1,5-diol, le butylène 1,3-glycol, le néopentyl glycol, le buthyl-éthyl-propane diol, le cyclohexane diol, le 1,4- cyclohexane diméthanol, l'hexane 1,6-diol, le bisphénol A (2,2- bis (4- hydroxyphényle)propane), le bisphénol A hydrogéné (2,2-bis(4- hydroxycyclohexyle)propane), et leurs mélanges.
[Revendication 10] Polyuréthane selon l’une quelconque des revendications
précédentes, caractérisée en ce que le ou les monomère(s) de type organosilane sont choisis parmi le 3-aminopropyltriéthoxysilane (APTES), le 3- aminoéthyltriéthoxysilane (AETES), le 3-aminopropylméthyldiéthoxysilane, le N- (2-aminoéthyl) -3-aminopropyltriéthoxysilane, le 3-(m-aminophénoxy)
propyltriméthoxysilane, le p-aminophényltriméthoxysilane, le N-(2- aminoéthylaminométhy phénéthyltriméthoxysilane, et leurs mélanges , de préférence parmi le 3-aminopropyltriéthoxysilane (APTES), le 3- aminoéthyltriéthoxysilane (AETES), le 3-aminopropylméthyldiéthoxysilane, le N- (2-aminoéthyl)-3-aminopropyltriéthoxysilane et leurs mélanges, et plus
préférentiellement le monomère de type organosilane est le 3-aminopropyl triéthoxysilane.
[Revendication 1 1] Polyuréthane selon l’une quelconque des revendications
précédentes, caractérisée en ce que le ou les monomères de type organosilane représente(nt) de 1 à 20% en poids, et de préférence de 2 à 15% en poids, par rapport au poids total du polyuréthane.
[Revendication 12] Composition comprenant un ou plusieurs polyuréthane(s) fonctionnalisé(s) tel (s) que défini(s) à l’une quelconque des revendications 1 à 11.
[Revendication 13] Composition selon la revendication 12 comprenant un ou plusieurs pigment(s).
[Revendication 14] Composition selon la revendications 12 ou 13, caractérisée en ce que la quantité totale du ou des polyuréthane(s) fonctionnalisé(s) va de 1 à 30% en poids, et de préférence de 5 à 25% en poids, par rapport au poids total de la composition.
[Revendication 15] Composition selon la revendication 13 ou 14, caractérisée en ce que la quantité totale du ou des pigment(s) va de 0,5 à 40% en poids, et plus préférentiellement de 1 à 20% en poids, par rapport au poids total de la composition.
[Revendication 16] Composition selon l’une quelconque des revendications 12 à 15, sous forme de dispersion dans l’eau.
[Revendication 17] Procédé de traitement des fibres kératiniques comprenant
(i.) l’application sur les fibres kératiniques du ou des polyuréthanes tels que définis à l’une quelconque des revendications 1 à 11 ou d’une composition telle que définie à l’une quelconque des revendications 12 à 16 précédentes.
[Revendication 18] Procédé selon la revendication précédente, qui comprend (ii.) la mise en forme des fibres kératiniques.
[Revendication 19] Procédé selon l’une quelconque des revendications
précédentes, caractérisé en ce qu’il fait intervenir une étape de séchage naturel et/ou éventuellement une étape d’application de la chaleur sur les fibres kératiniques à l’aide d’un outil chauffant. [Revendication 20] Procédé selon l’une quelconque des revendications 17 à 19 qui est un procédé de coloration des cheveux dans lequel la composition appliquée contient un ou plusieurs pigments.
PCT/EP2019/067312 2018-06-29 2019-06-28 Polyuréthanes fonctionnalisés par un groupement organosilane et compositions les comprenant WO2020002590A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1856004A FR3083237B1 (fr) 2018-06-29 2018-06-29 Polyurethanes fonctionnalises par un groupement organosilane et composition colorante les comprenant
FR1856004 2018-06-29
FR1906711A FR3097437B1 (fr) 2019-06-21 2019-06-21 Procédé de mise en forme des fibres kératiniques comprenant l’application d’un ou plusieurs Polyuréthanes Fonctionnalisés par un Groupement Organosilane
FR1906711 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020002590A1 true WO2020002590A1 (fr) 2020-01-02

Family

ID=68986712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/067312 WO2020002590A1 (fr) 2018-06-29 2019-06-28 Polyuréthanes fonctionnalisés par un groupement organosilane et compositions les comprenant

Country Status (1)

Country Link
WO (1) WO2020002590A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578266A (en) 1983-07-29 1986-03-25 Revlon, Inc. Silicone-based cosmetic products containing pigment
FR2679771A1 (fr) 1991-08-01 1993-02-05 Oreal Utilisation pour la teinture temporaire des fibres keratiniques d'un pigment insoluble obtenu par polymerisation oxydante de derives indoliques.
FR2741530A1 (fr) 1995-11-23 1997-05-30 Oreal Utilisation pour la coloration temporaire des cheveux ou poils d'animaux d'une composition a base d'une dispersion de polymere filmogene et d'un pigment non-melanique
US5919860A (en) * 1997-12-17 1999-07-06 Bayer Corporation Aqueous polyurethane/urea dispersions containing alkoxysilane groups
EP1184426A2 (fr) 2000-09-01 2002-03-06 Toda Kogyo Corporation Particules composites, procédé de préparation, pigment et peinte, et composition de résine les utilisants
US20020146382A1 (en) * 2001-01-26 2002-10-10 3M Innovative Properties Company Silylated polyurethane-urea compositions for use in cosmetic applications
FR2907678A1 (fr) 2006-10-25 2008-05-02 Oreal Composition de coloration des fibres keratiniques comprenant un copolymere bloc polysiloxane/polyuree

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578266A (en) 1983-07-29 1986-03-25 Revlon, Inc. Silicone-based cosmetic products containing pigment
FR2679771A1 (fr) 1991-08-01 1993-02-05 Oreal Utilisation pour la teinture temporaire des fibres keratiniques d'un pigment insoluble obtenu par polymerisation oxydante de derives indoliques.
FR2741530A1 (fr) 1995-11-23 1997-05-30 Oreal Utilisation pour la coloration temporaire des cheveux ou poils d'animaux d'une composition a base d'une dispersion de polymere filmogene et d'un pigment non-melanique
US5919860A (en) * 1997-12-17 1999-07-06 Bayer Corporation Aqueous polyurethane/urea dispersions containing alkoxysilane groups
EP1184426A2 (fr) 2000-09-01 2002-03-06 Toda Kogyo Corporation Particules composites, procédé de préparation, pigment et peinte, et composition de résine les utilisants
US20020146382A1 (en) * 2001-01-26 2002-10-10 3M Innovative Properties Company Silylated polyurethane-urea compositions for use in cosmetic applications
FR2907678A1 (fr) 2006-10-25 2008-05-02 Oreal Composition de coloration des fibres keratiniques comprenant un copolymere bloc polysiloxane/polyuree

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COSMETICS AND TOILETRIES, vol. 105, February 1990 (1990-02-01), pages 53 - 64

Similar Documents

Publication Publication Date Title
EP2168633B1 (fr) Composition cosmétique comprenant un composé organique du silicium comportant au moins une fonction basique, un polymère filmogène hydrophobe, un pigment et un solvant volatil
FR3103384A1 (fr) Procédé de traitement des fibres kératiniques comprenant un composé (poly)carbodiimide, une dispersion aqueuse de particules de polymère(s) et un agent colorant
FR3103385A1 (fr) Composition comprenant un composé (poly)carbodiimide et un agent colorant
FR3068247B1 (fr) Composition de coloration a base de copolymeres d' acide crotonique ou derive d’ ester de vinyle, et de silicone
FR2910299A1 (fr) Traitement de fibres capillaires a partir d'une composition comprenant des pigments et des composes silicones reactifs
EP3621698B1 (fr) Composition colorante à base de copolymères issus de la polymérisation d'au moins un monomère d'acide crotonique ou d'un dérivé d'acide crotonique et d'au moins un polymère épaississant portant des unité(s) d'acide (méth)acrylique, et procédé de coloration de fibres de kératine l'utilisant
FR3007287A1 (fr) Composition comprenant l'association d'un polymere acrylique et d'une silicone aminee
FR3066112A1 (fr) Utilisation d’une composition de coloration a base de copolymeres issu de la polymerisation d’au moins un monomere acide crotonique ou derive d’acide crotonique pour limiter le transfert
FR3097439A1 (fr) Composition comprenant au moins un alcoxysilane, au moins une silicone non aminée et de l’eau, le ratio massique d’alcoxysilane/silicone non aminée variant de 95 :5 à 5 :95
FR3090368A1 (fr) Composition de coloration des fibres kératiniques comprenant au moins un copolymère acrylique siliconé, au moins une résine siliconée et au moins un pigment
FR3066109A1 (fr) Composition de coloration a base de copolymeres issu de la polymerisation d'au moins un monomere acide crotonique ou derive d'acide crotonique et d'au moins un monomere ester de vinyle et de corps gras non silicone, procede de coloration des fibres keratiniques la mettant en œuvre
WO2020002590A1 (fr) Polyuréthanes fonctionnalisés par un groupement organosilane et compositions les comprenant
FR3109529A1 (fr) Composition comprenant au moins un alcoxysilane de formule (I), au moins une silicone non aminée de formule (II) et au moins un agent colorant
EP1844756A1 (fr) Produit cosmétique comprenant au moins un monomère cyanoacrylate et au moins un polyuréthane non-ionique.
FR3104431A1 (fr) Procédé de coloration mettant en œuvre au moins une silicone comprenant au moins un groupement anhydride d’acide carboxylique, au moins une silicone aminée et au moins un pigment et/ou colorant direct
FR3075625A1 (fr) Composition comprenant une dispersion aqueuse de particules de polyurethane et un tensioactif cationique
FR3075626A1 (fr) Composition comprenant une dispersion aqueuse de particules de polyurethane et un compose silicone particulier
FR3083237A1 (fr) Polyurethanes fonctionnalises par un groupement organosilane et composition colorante les comprenant
FR3143996A1 (fr) Procédé de coloration des cheveux comprenant l’application d’un traitement avec un agent réducteur et d’une composition comprenant un composé (poly)carbodiimide et un agent colorant
FR3143994A1 (fr) Procédé de coloration des cheveux comprenant l’application d’un traitement avec un agent alcalin et d’une composition comprenant un composé (poly)carbodiimide et un agent colorant
FR3143987A1 (fr) Procédé de coloration des cheveux comprenant l’application d’un composé (poly)carbodiimide, d’un composé ayant au moins un groupement acide carboxylique, d’une silicone aminée et d’un agent colorant
FR3143992A1 (fr) Procédé de coloration des cheveux comprenant l’application d’une composition T comprenant un acide aminé et l’application d’un composé (poly)carbodiimide et d’un agent colorant
FR3143981A1 (fr) Procédé de coloration des cheveux comprenant l’application d’un traitement avec un alcool et d’une composition comprenant un composé (poly)carbodiimide spécifique et un agent colorant
FR3143986A1 (fr) Procédé de coloration des cheveux comprenant l’application d’un composé (poly)carbodiimide et d’un agent colorant, l’application de vapeur d’eau et la mise en forme à une température particulière
FR3137285A1 (fr) Procédé pour retirer la couleur de fibres kératiniques capillaires préalablement colorées

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19733796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19733796

Country of ref document: EP

Kind code of ref document: A1