WO2019244939A1 - 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法、ジアミン化合物 - Google Patents

液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法、ジアミン化合物 Download PDF

Info

Publication number
WO2019244939A1
WO2019244939A1 PCT/JP2019/024329 JP2019024329W WO2019244939A1 WO 2019244939 A1 WO2019244939 A1 WO 2019244939A1 JP 2019024329 W JP2019024329 W JP 2019024329W WO 2019244939 A1 WO2019244939 A1 WO 2019244939A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
diamine
aligning agent
agent according
Prior art date
Application number
PCT/JP2019/024329
Other languages
English (en)
French (fr)
Inventor
政太郎 大田
雄介 山本
里枝 軍司
美希 豊田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN201980041244.5A priority Critical patent/CN112352191A/zh
Priority to JP2020525775A priority patent/JP7401853B2/ja
Priority to KR1020217001148A priority patent/KR20210022649A/ko
Publication of WO2019244939A1 publication Critical patent/WO2019244939A1/ja
Priority to JP2023123504A priority patent/JP2023156374A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, a liquid crystal display device using the same, and a method for manufacturing the liquid crystal display device.
  • a liquid crystal aligning agent suitable for a VA type liquid crystal display element in which liquid crystal molecules oriented vertically to a substrate respond by an electric field a liquid crystal alignment film, the liquid crystal display element using the same, and a liquid crystal display element related to the manufacturing method
  • Liquid crystal display devices are widely used in personal computers, mobile phones, smartphones, televisions, etc. 2. Description of the Related Art In recent years, liquid crystal display elements have been frequently used under high temperature and high humidity, such as car navigation systems mounted on vehicles and display units of industrial equipment and measuring instruments installed outdoors.
  • this type of liquid crystal display device controls a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode for applying an electric field to the liquid crystal layer, and controls the orientation of liquid crystal molecules in the liquid crystal layer.
  • the liquid crystal display device includes a liquid crystal alignment film, a thin film transistor (TFT) for switching an electric signal supplied to a pixel electrode, and the like.
  • a liquid crystal layer sandwiched between a pixel electrode and a common electrode functions as a liquid crystal cell.
  • VHR voltage holding ratio
  • display contrast is reduced or flickering (flickering) occurs in display due to use under high temperature and high humidity, long-term use, or the like, making display difficult to see.
  • One of the driving methods of such a liquid crystal display element is a method in which liquid crystal molecules vertically aligned with a substrate respond by an electric field (also referred to as a vertical alignment (VA) method).
  • a vertical alignment type liquid crystal display device a photopolymerizable compound is added to a liquid crystal composition in advance, and a vertical alignment film such as a polyimide is used.
  • PSA Polymer Sustained Alignment
  • the present invention has been made in view of the above, and a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal alignment film capable of obtaining a liquid crystal alignment film capable of securing a high voltage holding ratio over a long period of time even under high temperature and high humidity.
  • An object of the present invention is to provide a liquid crystal display device using the same and a method for manufacturing the liquid crystal display device.
  • A is a single bond or a divalent organic group
  • R 1 , R 2 , and R 3 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • liquid crystal alignment agent of the present invention it is possible to provide a liquid crystal alignment film capable of securing a high voltage holding ratio over a long period of time even under high temperature and high humidity, and a liquid crystal display device using the liquid crystal alignment film.
  • the liquid crystal aligning agent of the present invention comprises a specific diamine having a structure of formula (1) and a diamine (v) having at least one selected from the group consisting of side chain structures represented by formulas (S1) to (S3). It contains a diamine component and at least one polymer (P) selected from the group consisting of a polyimide precursor obtained from a tetracarboxylic acid component and polyimide.
  • the specific diamine used in the liquid crystal aligning agent of the present invention has a structure represented by the following formula (1).
  • A is a single bond or a divalent organic group
  • R 1 , R 2 , and R 3 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • A is a single bond or a divalent organic group.
  • the structure of the divalent organic group is represented, for example, by the following formula (12).
  • B is a divalent linking group
  • R 5 and R 6 are each independently a single bond or a divalent hydrocarbon group having 1 to 20, preferably 1 to 10 carbon atoms.
  • R 7 , R 8 , R 9 , R 10 and R 11 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • the monovalent hydrocarbon group includes an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, and a decyl group; and a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group.
  • a cycloalkyl group such as a bicyclohexyl group; an alkenyl group such as a vinyl group, a 1-propenyl group, a 2-propenyl group, an isopropenyl group, and a hexenyl group; an aryl group such as a phenyl group, a xylyl group, a biphenyl group, and a naphthyl group;
  • An aralkyl group such as a benzyl group, a phenylethyl group, and a phenylcyclohexyl group.
  • hydrogen atoms of these monovalent hydrocarbon groups may be halogen atoms, hydroxyl groups, thiol groups, carboxyl groups, thioester groups, amide groups, alkyl groups, cycloalkyl groups, bicycloalkyl groups, alkenyl groups. , An aryl group, an aralkyl group and the like.
  • R 7 , R 8 , R 9 , R 10 , and R 11 have a bulky structure such as an aromatic ring or an alicyclic structure, the solubility of the polymer may be reduced.
  • a group, an alkyl group such as a propyl group and a butyl group, or a hydrogen atom is preferred, and a hydrogen atom is more preferred.
  • R 1 , R 2 and R 3 in the formula (1) are each independently a hydrogen atom or a monovalent organic group having 1 to 20, preferably 1 to 10, and more preferably 1 to 6 carbon atoms.
  • the monovalent organic group include a monovalent hydrocarbon group, a hydroxyl group, a thiol group, an ester group, a carboxyl group, a thioester group, an amide group, an organooxy group, an organosilyl group, an organothio group, and an acyl group.
  • a monovalent hydrocarbon group is preferable from the viewpoint of high resistance to high temperature and high humidity. Specific examples of the monovalent hydrocarbon group include the examples of the above-mentioned monovalent hydrocarbon.
  • Some or all of the hydrogen atoms of these monovalent hydrocarbon groups are the same as those of the above-described R 7 , R 8 , R 9 , and R 10 , and may be substituted with a group such as a pyrrole group, an imidazole group, or a pyrazole group.
  • R 1 and R 2 are preferably an alkyl group such as a methyl group, an ethyl group, a propyl group, or a butyl group, or a hydrogen atom, and more preferably a hydrogen atom, from the viewpoint of high resistance to high temperature and humidity.
  • R 3 is preferably an alkyl group such as a methyl group, an ethyl group, a propyl group, or a butyl group, or a hydrogen atom, and more preferably a hydrogen atom, from the viewpoint of high resistance to high temperature and high humidity.
  • N1, n2, n3, n4, n5, and n6 each independently represent an integer of 1 to 10.
  • the specific diamine is preferably a diamine represented by the following formula (M1) from the viewpoint of high resistance to high temperature and high humidity of the liquid crystal alignment film.
  • the specific diamine can be used alone or in combination of two or more.
  • Z 1 is a substituent having a structure represented by the above formula (1), and n is an integer of 1 to 4.
  • Y 1 is an (n + 2) -valent organic group having 5 to 40 carbon atoms.
  • Examples of the (n + 2) -valent organic group having 5 to 40 carbon atoms in Y 1 include a hydrocarbon group such as a chain hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group, and a hydrocarbon group in the hydrocarbon group.
  • each of these groups may have a substituent such as a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like), an alkoxy group and the like.
  • a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like
  • the (n + 2) -valent chain hydrocarbon group is a group obtained by removing (n + 1) hydrogen atoms from the monovalent alkyl group in R 7 , R 8 , R 9 , R 10 , and R 11 . And groups obtained by removing (n + 1) hydrogen atoms from the monovalent alkenyl group.
  • Examples of the (n + 2) -valent alicyclic hydrocarbon group include groups obtained by removing (n + 1) hydrogen atoms from the monovalent cycloalkyl group in R 7 , R 8 , R 9 , R 10 , and R 11 . Examples thereof include groups in which (n + 1) hydrogen atoms have been removed from the monovalent bicycloalkyl group.
  • Examples of the (n + 2) -valent aromatic hydrocarbon group include groups obtained by removing (n + 1) hydrogen atoms from the monovalent aryl group in R 7 , R 8 , R 9 , R 10 , and R 11 . And a group obtained by removing (n + 1) hydrogen atoms from a valent aralkyl group.
  • divalent heterocyclic ring examples include a divalent pyrrole ring, a divalent thiophene ring, a divalent furan ring, a 5-membered heterocyclic ring such as a pyrrolidinylene group, a piperidinylene group, a piperazinylene group, a pyridinylene group, a pyridazinylene group, Examples include a 6-membered heterocyclic ring such as a pyrimidinylene group.
  • the steroid skeleton has a skeleton represented by the following formula (st) in which three 6-membered rings and one 5-membered ring are bonded.
  • Y 1 is preferably an (n + 2) -valent organic group having 5 to 40 carbon atoms and having an aromatic ring from the viewpoint of high resistance to high temperature and high humidity of the liquid crystal alignment film.
  • It is preferably a group into which a functional group such as a divalent heterocycle or a divalent group having a steroid skeleton is introduced, or a (n + 2) -valent group having an aromatic heterocycle.
  • the aromatic heterocyclic ring is preferably a ring moiety is a nitrogen-containing aromatic heterocyclic ring having a nitrogen atom.
  • Specific examples include a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, a triazine ring and the like, and a pyridine ring, a pyrimidine ring or a triazine ring is more preferable.
  • Y 1 is preferably an (n + 2) -valent aromatic hydrocarbon group having 5 to 40 carbon atoms from the viewpoint of a high voltage holding ratio, and has a carbon number having a structure represented by the following formula (Ar 1 ). It is preferably a group having a valence of (n + 2) of 5 to 40.
  • a 1 represents a single bond or a divalent organic group having an aromatic ring.
  • Z 1 is a structure represented by the above formula (1), c is an integer of 1 to 4, d and e are integers of 1 to 2, and n is an integer of 2 to 6.
  • the specific diamine is preferably at least one selected from the group consisting of diamines represented by the following formulas (M-1) to (M-6).
  • N1, n2, n3, n4, n5 and n6 each independently represent an integer of 1 to 10.
  • the content of the specific diamine is preferably 5 to 95 mol%, more preferably 5 to 85 mol%, and more preferably 5 to 70 mol%, based on the entire diamine component, from the viewpoint of imparting liquid crystal orientation. More preferred.
  • the diamine (v) of the present invention has at least one selected from the group consisting of structures represented by the following formulas (S1) to (S3).
  • X 1 and X 2 are each independently a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON ( CH 3 ) —, —NH—, —O—, —COO—, —OCO— or — ((CH 2 ) a1 —A 1 ) m1 —.
  • a plurality of a1 are each independently an integer of 1 to 15, a plurality of A 1 each independently represent an oxygen atom or —COO—, and m 1 is 1 to 2.
  • X 1 and X 2 are each independently a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O —, —CH 2 O— or —COO— is preferable, and a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO— is More preferred.
  • G 1 and G 2 each independently represent a divalent cyclic group selected from a divalent aromatic group having 6 to 12 carbon atoms or a divalent alicyclic group having 3 to 8 carbon atoms.
  • Any hydrogen atom on the cyclic group may be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Or it may be substituted by a fluorine atom.
  • m and n are each independently an integer of 0 to 3, and the total of m and n is 1 to 4.
  • R 1 represents alkyl having 1 to 20 carbons, alkoxy having 1 to 20 carbons or alkoxyalkyl having 2 to 20 carbons. Any hydrogen forming R 1 may be replaced by fluorine.
  • examples of the divalent aromatic group having 6 to 12 carbon atoms include phenylene, biphenylene, and naphthalene.
  • examples of the divalent alicyclic group having 3 to 8 carbon atoms include cyclopropylene and cyclohexylene.
  • R 1 is an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms
  • X p is — (CH 2 ) a- (a Is an integer of 1 to 15), —CONH—, —NHCO—, —CON (CH 3 ) —, —NH—, —O—, —CH 2 O—, —CH 2 OCO—, —COO—, Or —OCO—
  • a 1 represents an oxygen atom or —COO- * (provided that a bond with “*” is bonded to (CH 2 ) a 2 )
  • a 2 is an oxygen atom or * —COO -(Where the bond with “*” bonds to (CH 2 ) a2 )
  • a 1 and a 3 are each independently an integer of 0 or 1 and a 2 is 1 to An integer of 10
  • Cy is a 1,4-cycl
  • X 3 represents a single bond, —CONH—, —NHCO—, —CON (CH 3 ) —, —NH—, —O—, —CH 2 O—, —COO—, or —OCO—.
  • -CONH-, -NHCO-, -O-, -CH 2 O-, -COO- or -OCO- are preferable from the viewpoint of liquid crystal alignment.
  • R 2 represents alkyl having 1 to 20 carbons or alkoxyalkyl having 2 to 20 carbons, and any hydrogen forming R 2 may be substituted with fluorine. Among them, from the viewpoint of liquid crystal alignment, alkyl having 3 to 20 carbons or alkoxyalkyl having 2 to 20 carbons is preferable.
  • X 4 represents —CONH—, —NHCO—, —O—, —COO—, or —OCO—.
  • R 3 represents a structure having a steroid skeleton, and specific examples thereof include a structure having a skeleton represented by the formula (st).
  • Examples of the above formula (S3) include, but are not limited to, the following formula (S3-x).
  • X represents the above formula (X1) or (X2).
  • Col represents at least one selected from the group consisting of the above formulas (Col1) to (Col4), and
  • G represents the above formula (G1) or (G2). * Represents a site bonded to another group.
  • More preferable structures of the formula (S3) include structures represented by the following formulas (S3-1) to (S3-6).
  • * indicates a bonding position
  • the diamine (v) is preferably a diamine represented by the following formula (v1).
  • the diamine (v) can be used alone or in combination of two or more.
  • Y 2 is a structure represented by the following formula (Ar2), and Z 2 is a substituent having a group selected from the group consisting of formulas (S-1) to (S-3). n represents an integer of 1 to 2.
  • a 2 represents a single bond or a divalent organic group having an aromatic group.
  • Examples of the divalent organic group having an aromatic group in Ar 2 include a structure represented by the following formula (R).
  • X is a single bond, —O—, —C (CH 3 ) 2 —, —NH—, —CO—, —NHCO—, —COO—, — (CH 2 ) m —, —SO 2 —, —O— (CH2) m -O -, - O-C (CH 3) 2 -, - CO- (CH 2) m -, - NH- (CH 2) m -, - SO 2 - (CH 2) m -, -CONH- (CH 2) m -, - CONH- (CH 2) m -NHCO -, - COO- (CH 2) but m -OCO- like, without limitation.
  • Q include an aromatic hydrocarbon group having 6 to 20 carbon atoms such as a benzene ring and a naphthyl ring.
  • m is an integer of 1 to 8.
  • diamine (v) examples include structures represented by the following formulas (1-S1) to (1-S3) or (2-S1) to (2-S3).
  • X 1 , X 2 , G 1 , G 2 , R 1 , m and n are the same as those in the above formula (S1).
  • X 3 and R 2 are the same as those in the above formula (S2).
  • X 4 and R 3 are the same as those in the above formula (S3).
  • X has the same meaning as X in the above formula (R).
  • diamine (v) examples include diamines represented by the following formulas (V-1) to (V-13).
  • X v1 to X v4 and X p1 to X p8 each independently represent-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-,- CON (CH 3) -, - NH -, - O -, - CH 2 O -, - CH 2 OCO -, - COO-, or -OCO- indicates,
  • X v5 is -O -, - CH 2 O- , —CH 2 OCO—, —COO—, or —OCO—
  • X V6 to X V7 and X s1 to X s4 each independently represent —O—, —COO—, or —OCO—.
  • X a to X f represent a single bond, —O—, —NH—, —O— (CH 2 ) m —O—, and R v1 to R v4 and R 1a to R 1h each independently represent carbon An alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms.
  • m represents an integer of 1 to 8.
  • the content of the diamine (v) is preferably 5 to 95 mol%, more preferably 5 to 90 mol%, and more preferably 5 to 80 mol%, based on the entire diamine component, from the viewpoint of imparting liquid crystal orientation. % Is more preferred.
  • the diamine component of this embodiment includes, as other diamines, a diamine having a function of polymerizing or generating a radical by light irradiation, a diamine described in paragraph [0169] of International Publication WO2015 / 046374, and paragraphs [0171] to [0172].
  • the diamine having a carboxyl group or a hydroxyl group described in [1173] the diamine having a nitrogen-containing heterocycle described in paragraphs [0173] to [0188], and the nitrogen-containing structure described in paragraph [0050] of JP-A-2016-218149.
  • Diamine 1,3-bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane, 1,3-bis (4-aminobutyl) -1,1,3,3-tetramethyl
  • organosiloxane-containing diamine such as disiloxane
  • Preferred specific examples of other diamines include m-phenylenediamine, p-phenylenediamine, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, and 3,3′-difluoro-4.
  • diamine compounds in which these amino groups are secondary amino groups are secondary amino groups.
  • Examples of the diamine having a function of polymerizing by light irradiation include, for example, a diamine in which a structure represented by the following formulas [p1] to [p7] is bonded to an aromatic ring such as a benzene ring directly or via a linking group. be able to.
  • the bonding positions of the two amino groups (—NH 2 ) in the formulas [Pa] and [Pb] are not limited, but from the viewpoint of the reactivity of the diamine, the positions at the 2,4 position and the 2,5 position Or the positions at the 3rd and 5th positions are preferred. Taking into account the easiness in synthesizing the diamine, the positions at the 2,4 position or the 3,5 position are more preferable.
  • R 8 is a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 )-, -CON (CH 3 )-or -N (CH 3 ) CO-, which is a single bond, -O-, -COO-, -NHCO-, or -CONH- in view of ease of synthesis. Is more preferred.
  • R 9 represents a single bond, an alkylene group having 1 to 20 carbon atoms which may be substituted by a fluorine atom, a divalent group selected from aromatic rings having 6 to 12 carbon atoms such as a benzene ring and a naphthalene ring, cyclohexane; 5- or more-membered ring of a divalent alicyclic group having 3 to 8 carbon atoms such as a ring, pyrrole, imidazole, pyridine, pyrimidine, pyrazine, pyridazine, triazine, indole, quinoline, carbazole, thiazole, purine, tetrahydrofuran, thiophene, etc.
  • k represents an integer of 0 to 4.
  • R 10 represents a structure selected from the above formulas [p1] to [p7]. From the viewpoint of photoreactivity, [p1], [p2], and [p4] are preferable.
  • Y 1 and Y 3 each independently represent —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, or Represents -CO-.
  • Y 2 and Y 5 each independently have the same meaning as R 9 in the above [Pa].
  • Y 4 represents a cinnamoyl group.
  • Y 6 represents a structure selected from the above formulas [p1] to [p7]. From the viewpoint of photoreactivity, [p1], [p2], and [p4] are preferable.
  • m represents 0 or 1.
  • Diamine having the function of polymerizing by light irradiation depends on properties such as liquid crystal alignment when forming a liquid crystal alignment film, pretilt angle, voltage holding characteristics, accumulated charge, etc., and response speed of liquid crystal when forming a liquid crystal display element.
  • properties such as liquid crystal alignment when forming a liquid crystal alignment film, pretilt angle, voltage holding characteristics, accumulated charge, etc., and response speed of liquid crystal when forming a liquid crystal display element.
  • One type or a mixture of two or more types can be used.
  • the content of the diamine having a function of polymerizing by light irradiation is preferably 5 to 70 mol%, more preferably 5 to 60 mol%, and particularly preferably 5 to 50 mol%, based on the whole diamine component.
  • Examples of the diamine having a function of generating a radical by light irradiation include a diamine having, in a side chain, a site having a radical generating structure capable of decomposing and generating a radical by irradiation with ultraviolet light. No.
  • Ar, R 1 , R 2 , T 1 , T 2 , S and Q in the above formula (R) have the following definitions. That is, Ar represents an aromatic hydrocarbon group selected from phenylene, naphthylene, and biphenylene, which may be substituted with an organic group, and a hydrogen atom may be substituted with a halogen atom.
  • R 1 and R 2 are each independently an alkyl group or an alkoxy group having 1 to 10 carbon atoms.
  • T 1 and T 2 are each independently a single bond or —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, and —N (CH 3 ) CO—.
  • S has the same meaning as R 9 in the above [Pa].
  • Q is a structure selected from the following formulas [q-1] to [q-4] (in the structural formula, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 3 represents -CH 2 -,- NR-, -O-, or -S-).
  • * indicates a bonding position
  • Ar having a carbonyl bonded thereto is preferably a structure having a long conjugate length such as naphthylene or biphenylene from the viewpoint of efficient absorption of ultraviolet rays.
  • Ar may be substituted with a substituent, and such a substituent is preferably an electron-donating organic group such as an alkyl group, a hydroxyl group, an alkoxy group, and an amino group. If the wavelength of the ultraviolet light is in the range of 250 nm to 380 nm, sufficient characteristics can be obtained even with a phenyl group, so that a phenyl group is most preferable.
  • R 1 and R 2 are each independently an alkyl group, an alkoxy group, a benzyl group, or a phenethyl group having 1 to 10 carbon atoms. In the case of an alkyl group or an alkoxy group, R 1 and R 2 represent a ring. May be formed.
  • Q is more preferably a hydroxyl group or an alkoxyl group.
  • the diaminobenzene in the formula (R) may have any structure of o-phenylenediamine, m-phenylenediamine, or p-phenylenediamine.
  • m-phenylenediamine has a high reactivity with a tetracarboxylic acid component.
  • p-phenylenediamine is preferred.
  • n is an integer of 2 to 8.
  • the content of the diamine having a function of generating a radical by light irradiation is preferably 5 to 70 mol%, more preferably 5 to 60 mol%, from the viewpoint of increasing the voltage holding ratio, based on the entire diamine component. And particularly preferably 5 to 50 mol%.
  • tetracarboxylic acid component examples include tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic dihalide, tetracarboxylic dialkyl ester or tetracarboxylic dialkyl ester dihalide. In the present invention, these are collectively referred to as a tetracarboxylic acid component.
  • tetracarboxylic acid component tetracarboxylic dianhydride or a derivative thereof, tetracarboxylic acid, tetracarboxylic dihalide, tetracarboxylic dialkyl ester, or tetracarboxylic dialkyl ester dihalide (collectively, (Referred to as the first tetracarboxylic acid component).
  • tetracarboxylic dianhydride examples include 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4 ′ -Benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1, 1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsi
  • X represents a structure selected from the following (x-1) to (x-11).
  • * 1 is a bond bonded to one acid anhydride group
  • * 2 is a bond bonded to the other acid anhydride group
  • R 1 to R 4 represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a benzene ring, which may be the same or different.
  • Preferred specific examples of (x-1) include a structure represented by the following formula (x1-1) or (x1-2).
  • * 1 is a bond bonded to one acid anhydride group
  • * 2 is a bond bonded to the other acid anhydride group
  • Z 5 and Z 6 represent a hydrogen atom or a methyl group, and may be the same or different.
  • the formulas (x-1), (x-3) to (x) -7) or a tetracarboxylic dianhydride having a structure represented by the formula (x-11) and a tetracarboxylic acid derivative thereof are preferable.
  • the content of the tetracarboxylic dianhydride represented by the formula (4) in the polymer of the present invention is preferably 10 mol% or more based on the whole tetracarboxylic acid component from the viewpoint of increasing the solubility of the polymer. preferable. Especially, it is preferable that it is 15 mol% or more, and more preferable that it is 20 mol% or more.
  • the tetracarboxylic acid compound of the present invention has properties such as solubility of the polymer of the present invention in a solvent, applicability of a liquid crystal aligning agent, liquid crystal alignment when forming a liquid crystal alignment film, voltage holding ratio, and accumulated charge. Accordingly, one kind or a mixture of two or more kinds can be used.
  • the polyimide precursor used in the present invention includes polyamic acid and polyamic acid ester.
  • all of the structural units of the polyamic acid ester may have an amic acid ester structure, or a part of the polyamic acid ester may have an amic acid structure.
  • the polyamic acid used in the present invention can be obtained by reacting the diamine component with the tetracarboxylic dianhydride, but the method is not limited.
  • the polyamic acid can be reacted by mixing in a solvent to obtain a polyamic acid, and the solvent used at this time is not particularly limited as long as the generated polyimide precursor is dissolved.
  • the solvent here include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide or 1,3- Dimethyl-imidazolidinone and the like.
  • Specific methods for producing the polyamic acid ester of the present invention include: (1) a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine; A polycondensation of a dialkyl esterified or dihalogenated tetracarboxylic acid dialkyl dihalide with a primary or secondary diamine, or (3) a method of converting a carboxy group of a polyamic acid into an ester. Methods can be mentioned. The production method of the above (2) or (3) is preferable for the polyamic acid alkyl ester.
  • the polyimide used in the present invention can be obtained by dehydrating and ring closing the above polyimide precursor.
  • the ring closure ratio also referred to as imidation ratio
  • the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyimide precursor solution.
  • the liquid crystal aligning agent of the present invention contains one or more of the above polymers (P). Further, other polymers other than the polymer (P) may be contained. Examples of the form of the polymer include polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or a derivative thereof, poly (styrene-phenylmaleimide) derivative, and poly (meth) acrylate. And the like. When the liquid crystal aligning agent of the present invention contains another polymer, the ratio of the specific polymer to all polymer components is preferably 5% by mass or more, for example, 5 to 95% by mass.
  • the liquid crystal aligning agent generally takes the form of a coating liquid from the viewpoint of forming a uniform thin film.
  • the liquid crystal aligning agent of the present invention is also preferably a coating liquid containing the polymer component and an organic solvent that dissolves the polymer component.
  • the concentration of the polymer in the liquid crystal aligning agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, the amount is preferably 1% by mass or more, and from the viewpoint of storage stability of the solution, the amount is preferably 10% by mass or less. A particularly preferred concentration of the polymer is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as the polymer component is uniformly dissolved.
  • Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, dimethylsulfoxide, ⁇ - Butyrolactone, ⁇ -valerolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide , 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monomethyl ether, butyl lactate, butyl acetate, methyl-3-methoxypropionate, ethyl-3-ethoxypropionate, ethylene glycol
  • the organic solvent used in the liquid crystal aligning agent of the present invention preferably contains at least one selected from the group consisting of the above specific solvents, and more preferably N-methyl-, from the viewpoint of improving printability.
  • the organic solvent used in the liquid crystal aligning agent of the present invention more preferably contains the specific organic solvent (1) in an amount of 5 to 95% by weight, preferably 10 to 95% by weight, based on the total amount of the organic solvent. It is more preferable to include them.
  • the organic solvent used in the liquid crystal aligning agent of the present invention preferably contains the specific organic solvent (2) in an amount of 5 to 95% by weight, preferably 5 to 90% by weight, based on the total amount of the organic solvent. Is more preferred.
  • the liquid crystal aligning agent of the present invention may additionally contain components other than the polymer component and the organic solvent.
  • additional components include a crosslinkable compound that is a compound that crosslinks the polymer (P), a compound (B) for adjusting the dielectric constant and electric resistance of the liquid crystal alignment film, and adhesion between the liquid crystal alignment film and the substrate. And an adhesion aid for enhancing the adhesion between the liquid crystal alignment film and the sealant.
  • Crosslinkable compound examples include an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a blocked isocyanate group, a crosslinkable compound having at least one substituent selected from a hydroxyl group and an alkoxyl group, and a polymerizable unsaturated group. It is preferable to introduce at least one compound selected from the group consisting of crosslinkable compounds having the compound. In addition, it is preferable to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound from the viewpoint of enhancing crosslinkability.
  • crosslinkable compound examples include compounds having an epoxy group or an isocyanate group, compounds having an oxetane group, hydroxyl groups, alkoxyl groups and lower compounds described in paragraphs [0169] to [0190] of WO 2011/132751.
  • Amino resins having an alkoxyalkyl group, benzene or phenolic compounds having a hydroxyl group or an alkoxyl group, compounds having a cyclocarbonate group described in paragraphs [0103] to [0112] of WO2012 / 014898, WO Compounds having a hydroxyalkylamide group described in 2015/072554 and compounds having a blocked isocyanate group described in International Publication No. 2015/141598 are exemplified.
  • the content of the crosslinkable compound is preferably 0.1 to 100 parts by weight based on 100 parts by weight of all the polymers of the present invention, and more preferably 0.1 to 100 parts by weight from the viewpoint of enhancing the orientation of the liquid crystal.
  • the amount is 1 to 50 parts by weight, more preferably 1 to 50 parts by weight.
  • the compound (B) has one amino group (—NH 2 ) and a nitrogen-containing aromatic heterocycle in the molecule from the viewpoint of obtaining vertical alignment and high voltage holding characteristics, and the amino group is It is preferable that the amine compound is bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group. Specifically, an amine compound represented by the following formula (B-1) can be given.
  • X 1 is a divalent organic group having an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group, and X 2 is a nitrogen-containing aromatic heterocyclic ring.
  • Examples of the aliphatic hydrocarbon group for X 1 include a linear alkyl group having 1 to 20 carbon atoms, an alkyl group having a branched structure, and a hydrocarbon group having an unsaturated bond.
  • Examples of the non-aromatic cyclic hydrocarbon group include a non-aromatic cyclic hydrocarbon group having 3 to 20 carbon atoms such as a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, and a cyclohexane ring.
  • -CH 2-in any aliphatic hydrocarbon group or non-aromatic cyclic hydrocarbon group not adjacent to the amino group is -O-, -NH-, -CO-O-, -O-CO- , -CO-NH-, -NH-CO-, -CO-, -S-, -S (O) 2- , -CF 2- , -C (CF 3 ) 2- , -C (CH 3 ) 2 —, —Si (CH 3 ) 2 —, —O—Si (CH 3 ) 2 —, —Si (CH 3 ) 2 —O—, —O—Si (CH 3 ) 2 —O—, cyclic hydrocarbon group And a nitrogen-containing heterocycle.
  • the hydrogen atom bonded to an arbitrary carbon atom includes a linear or branched alkyl group having 1 to 20 carbon atoms, a cyclic hydrocarbon group, a fluorine-containing alkyl group having 1 to 10 carbon atoms, a nitrogen-containing heterocyclic ring, It may be replaced by an atom or a hydroxyl group.
  • nitrogen-containing heterocyclic ring examples include pyrrole ring, imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, pyridazine ring, triazine ring, triazole ring, pyrazine ring, benzimidazole ring, benzimidazole ring, quinoxaline ring, azepine ring, Examples thereof include a diazepine ring, a naphthyridine ring, a phenazine ring, and a phthalazine ring.
  • the compound (B) include the compounds described in paragraphs [0194] to [0200] of WO2011 / 132751. More preferred specific examples include structures represented by the following formulas (B-1) to (B-41).
  • the content of the compound (B) is preferably from 0.1 to 50 parts by weight based on 100 parts by weight of all the polymers of the present invention, and more preferably 0 from the viewpoint of enhancing the orientation of the liquid crystal. It is 1 to 40 parts by weight, more preferably 1 to 30 parts by weight.
  • the liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention can be used for a horizontal alignment type or a vertical alignment type liquid crystal alignment film, and is particularly suitable for a vertical alignment type liquid crystal display device such as a VA mode or a PSA mode. Since it is a liquid crystal alignment film, a high voltage holding ratio can be secured over a long period of time even under high temperature and high humidity.
  • it is suitable as a liquid crystal alignment film used in a PSA mode liquid crystal display element, since a decrease in voltage holding ratio due to impurities contained in a liquid crystal composition can be suppressed.
  • a liquid crystal display device of the present invention includes the above liquid crystal alignment film.
  • the liquid crystal display device of the present invention can be manufactured, for example, by a method including the following steps (1) to (3) or steps (1) to (4).
  • the liquid crystal alignment agent of the present invention is applied, for example, by a roll coater method, a spin coating method, a printing method, or an inkjet method. It is applied by an appropriate application method such as a coating method.
  • the substrate is not particularly limited as long as it is a substrate having high transparency, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate and a silicon nitride substrate.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used for the electrode.
  • preheating is preferably performed for the purpose of preventing the applied aligning agent from dripping.
  • the prebaking temperature is preferably from 30 to 200 ° C, more preferably from 40 to 150 ° C, and particularly preferably from 40 to 100 ° C.
  • the pre-bake time is preferably from 0.25 to 10 minutes, more preferably from 0.5 to 5 minutes.
  • a heating (post-bake) step is preferably further performed.
  • the post bake temperature is preferably from 80 to 300 ° C, more preferably from 120 to 250 ° C.
  • the post-bake time is preferably from 5 to 200 minutes, more preferably from 10 to 100 minutes.
  • the thickness of the film thus formed is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the coating film formed in the above step (1) can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment.
  • the orientation imparting treatment includes a rubbing treatment in which the coating film is rubbed in a certain direction with a roll wrapped with a cloth made of, for example, nylon, rayon, cotton, or the like, and a light alignment in which the coating film is irradiated with polarized or unpolarized radiation. Processing.
  • the radiation for irradiating the coating film for example, an ultraviolet ray and a visible ray including light having a wavelength of 150 to 800 nm can be used.
  • the radiation when the radiation is polarized, it may be linearly polarized or partially polarized.
  • the irradiation may be performed in a direction perpendicular to the substrate surface, may be performed in an oblique direction, or may be performed in combination.
  • the irradiation direction is an oblique direction.
  • the first method is a conventionally known method. First, two substrates are opposed to each other via a gap (cell gap) so that the liquid crystal alignment films face each other. Next, the peripheral portions of the two substrates are bonded to each other using a sealant, and the liquid crystal composition is injected and filled into the substrate surface and a cell gap defined by the sealant to come into contact with the film surface. Stop.
  • the second method is a method called ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • an ultraviolet curable sealant is applied to a predetermined location on one of the two substrates on which the liquid crystal alignment film is formed, and a liquid crystal composition is further applied to predetermined locations on the liquid crystal alignment film surface. Is dropped.
  • the other substrate is attached so that the liquid crystal alignment film is opposed to the liquid crystal composition, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
  • the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
  • it is desirable that the liquid crystal composition used is further heated to a temperature at which the liquid crystal composition takes an isotropic phase and then gradually cooled to room temperature to remove the flow orientation at the time of filling the liquid crystal.
  • the liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates obtained in (3-2).
  • the voltage applied here can be, for example, 5 to 50 V DC or AC.
  • the light to be irradiated for example, ultraviolet light including light having a wavelength of 150 to 800 nm and visible light can be used, and ultraviolet light including light having a wavelength of 300 to 400 nm is preferable.
  • a light source of the irradiation light for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
  • the light irradiation amount is preferably from 1,000 to 200,000 J / m 2 , and more preferably from 1,000 to 100,000 J / m 2 .
  • a liquid crystal display device can be obtained by attaching a polarizing plate to the outer surface of the liquid crystal cell.
  • a polarizing plate As the polarizing plate to be bonded to the outer surface of the liquid crystal cell, a polarizing plate called "H film" in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between a cellulose acetate protective film or the H film itself. Can be mentioned.
  • the liquid crystal display device of the present invention can be effectively applied to various devices, for example, a clock, a portable game, a word processor, a notebook computer, a car navigation system, a camcorder, a PDA, a digital camera, a mobile phone, a smartphone, It can be used for various display devices such as various monitors, liquid crystal televisions, and information displays.
  • the molecular weight of the polyimide in the synthesis example was determined as follows using a room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Kagaku Co., Ltd. and columns (KD-803, KD-805) manufactured by Shodex. It was measured.
  • GPC room temperature gel permeation chromatography
  • the imidation ratio of the polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder is placed in an NMR sample tube (manufactured by Kusano Kagaku, NMR sampling tube standard ⁇ 5), 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture) is added, and ultrasonic waves are applied. And completely dissolved.
  • NMR sample tube manufactured by Kusano Kagaku, NMR sampling tube standard ⁇ 5
  • DMSO-d 6 deuterated dimethyl sulfoxide
  • NMP (41.54 g) was added to this polyamic acid solution (20.0 g) and diluted to 6.5% by mass. Then, acetic anhydride (4.06 g) and pyridine (1.26 g) were added as imidation catalysts. The reaction was performed at 80 ° C. for 3 hours. This reaction solution was poured into methanol (233.98 g), and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and dried at 60 ° C. under reduced pressure to obtain a polyimide powder (A) of Synthesis Example 1. The imidation ratio of this polyimide was 83%, the number average molecular weight was 11,600 and the weight average molecular weight was 32,200.
  • Synthesis Examples 2 to 7 In accordance with the method of Synthesis Example 1, the materials and proportions were changed as shown in Tables 1 and 2, and polyimide powders (BG) of Synthesis Examples 2 to 7 were obtained.
  • NMP (41.54 g) was added to this polyamic acid solution (20.0 g) and diluted to 6.5% by mass. Then, acetic anhydride (3.48 g) and pyridine (1.08 g) were added as imidation catalysts. The reaction was performed at 100 ° C. for 3 hours. This reaction solution was poured into methanol (231.35 g), and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and dried at 60 ° C. under reduced pressure to obtain a polyimide powder (H) of Synthesis Example 8. The imidation ratio of this polyimide was 75%, the number average molecular weight was 11,100 and the weight average molecular weight was 40,600.
  • Synthesis Example 9 According to the method of Synthesis Example 8, the materials and proportions were changed as shown in Tables 1 and 2, and a polyimide powder (I) of Synthesis Example 9 was obtained.
  • NMP (41.54 g) was added to this polyamic acid solution (20.0 g) and diluted to 6.5% by mass. Then, acetic anhydride (4.63 g) and pyridine (1.43 g) were added as imidation catalysts. The reaction was performed at 80 ° C. for 3 hours. This reaction solution was poured into methanol (236.60 g), and the obtained precipitate was separated by filtration. The precipitate was washed with methanol and dried at 60 ° C. under reduced pressure to obtain a polyimide powder (K) of Comparative Synthesis Example 1. The imidation ratio of this polyimide was 73%, the number average molecular weight was 11,100, and the weight average molecular weight was 29,100.
  • Example 1 NMP (54.0 g) was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1 and dissolved by stirring at 70 ° C. for 40 hours. BCS (40.0 g) was added to this solution, and the mixture was stirred for 5 hours to obtain a liquid crystal aligning agent [1] of Example 1. No abnormality such as turbidity or precipitation was observed in the liquid crystal alignment agent, and it was confirmed that the resin component was uniformly dissolved.
  • Examples 2 to 5 In accordance with the method of Example 1, the polyimide materials were changed as shown in Table 3, and the alignment treatment agents [2] to [5] of Examples 2 to 5 were obtained. No abnormality such as turbidity or precipitation was observed in these liquid crystal aligning agents, and it was confirmed that the resin component was uniformly dissolved.
  • thermosetting sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was applied from above.
  • the other substrate was bonded to the previous substrate with the surface on the side where the liquid crystal alignment film was formed facing inside, and then the sealant was cured to produce an empty cell.
  • a liquid crystal MLC-3023 containing a polymerizable compound for PSA (trade name, manufactured by Merck) was injected into the empty cell by a reduced pressure injection method to produce a liquid crystal cell. The voltage holding ratio of this liquid crystal cell was measured.
  • UV-MO3A manufactured by ORC.
  • a UV (UV lamp: FLR40SUV32 / A-1) was irradiated for 30 minutes (referred to as secondary PSA treatment). Thereafter, the voltage holding ratio was measured.
  • thermo-hygrostat PR-2KP manufactured by Espec Corporation
  • VHR change amount The difference between the measured voltage holding ratio and the voltage holding ratio after the secondary PSA processing was defined as the VHR change amount.
  • a liquid crystal alignment film formed using the liquid crystal alignment agents [1] to [5] of Examples 1 to 5, and a liquid crystal display element obtained by the liquid crystal alignment film are mounted on a vehicle, for example. It can be said that a high voltage holding ratio can be secured for a long period of time even when used under high temperature and high humidity, such as a car navigation system and a meter, and a display section of an industrial device or a measuring device installed outdoors.
  • a liquid crystal alignment film formed using the liquid crystal alignment agents [1] to [5] of Examples 1 to 5, and a liquid crystal display element obtained by the liquid crystal alignment film are subjected to high temperature and high humidity. Even if not, a high voltage holding ratio can be secured for a long period of time.
  • the liquid crystal alignment films formed by using the liquid crystal alignment agents [1] to [5] of Examples 1 to 5, and the liquid crystal display device obtained by the liquid crystal alignment films are those of the comparative example. It can be seen that the initial voltage holding ratio is higher than that of the above, that is, high driving reliability can be secured.
  • the present invention provides a liquid crystal alignment agent capable of obtaining a liquid crystal alignment film capable of securing a high voltage holding ratio over a long period of time even under high temperature and high humidity, a liquid crystal alignment film and a liquid crystal display device using the same, and A liquid crystal display element manufacturing method has been realized, and the liquid crystal display element can be used for personal computers, mobile phones, smartphones, televisions, car navigation systems installed in vehicles, display units of industrial equipment and measuring instruments installed outdoors, etc. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

下記式(1)の構造を有するジアミン及び下記式(S1)~(S3)で表される構造からなる群より選ばれる少なくとも1種を有するジアミン(v)を含有するジアミン成分と、テトラカルボン酸成分から得られるポリイミド前駆体及びポリイミドから群より選ばれる少なくとも1種の重合体(P)を含有する液晶配向剤。 式中の記号の定義は、明細書記載の通りである。

Description

[規則37.2に基づきISAが決定した発明の名称] 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法、ジアミン化合物
 本発明は、液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法に関する。特に、基板に対して垂直に配向している液晶分子を電界によって応答させるVA方式の液晶表示素子に好適な液晶配向剤、液晶配向膜及びそれを用いた該液晶表示素子並びに該液晶表示素子の製造方法に関する。
 液晶表示素子は、パソコン、携帯電話、スマートフォン、テレビ等に幅広く用いられている。近年、車両に搭載されるカーナビ、屋外に設置される産業機器や計測機器の表示部等、高温・高湿下で液晶表示素子が使用される機会も多くなっている。
 この種の液晶表示素子は、一般に、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する液晶配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。
 液晶表示素子では、液晶層を画素電極及び共通電極で挟持させたものが液晶セルとして機能する。液晶セルでは、その電圧保持率(VHR)が低いと、電圧を印加しても液晶分子に十分な電圧がかかり難くなる。そのため、高温・高湿下での使用や長期使用等により、表示コントラストが低下したり、表示にフリッカー(ちらつき)が生じたりして表示が見難くなる。
 このような液晶表示素子の駆動方式の一つに、基板に対して垂直に配向している液晶分子を電界によって応答させる方式(垂直配向(VA)方式ともいう)がある。垂直配向方式の液晶表示素子では、予め液晶組成物中に光重合性化合物を添加し、かつポリイミド系などの垂直配向膜を用い、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くする技術(PSA(Polymer Sustained Alignment)方式素子、例えば、特許文献1及び非特許文献1参照。)が知られている。
特開2003-307720号公報
K.Hanaoka,SID 04 DIGEST、P1200-1202
 しかしながら、近年、液晶表示素子の高性能化に伴い、液晶配向膜に期待される特性も厳しくなっている。そのため、従来の技術では、近年の高性能化に伴う液晶配向膜や液晶表示素子の特性に対する期待に応えることが難しかった。
 本発明は上記に鑑みてなされたもので、高温・高湿下であっても長期に渡って高い電圧保持率を確保できる液晶配向膜を得ることができる液晶配向剤、該液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法を提供することを目的とする。
1.下記式(1)の構造を有するジアミン(以下、特定ジアミンとも称する)及び下記式(S1)~(S3)で表される構造からなる群より選ばれる少なくとも1種を有するジアミン(v)を含有するジアミン成分と、テトラカルボン酸成分から得られるポリイミド前駆体及びポリイミドから群より選ばれる少なくとも1種の重合体(P)を含有する液晶配向剤。
Figure JPOXMLDOC01-appb-C000013
 式中、Aは単結合又は2価の有機基であり、R、R、及びRはそれぞれ独立して水素原子又は炭素数1~20の1価の有機基である。
 本発明の液晶配向剤によれば、高温・高湿下であっても長期に渡って高い電圧保持率を確保できる液晶配向膜及び該液晶配向膜を用いた液晶表示素子を提供できる。
 本発明の液晶配向剤は、式(1)の構造を有する特定ジアミン及び式(S1)~(S3)で表される側鎖構造からなる群より選ばれる少なくとも1種を有するジアミン(v)を含有するジアミン成分と、テトラカルボン酸成分から得られるポリイミド前駆体及びポリイミドから群より選ばれる少なくとも1種の重合体(P)を含有する。
<特定ジアミン>
 本発明の液晶配向剤に用いられる特定ジアミンは、下記式(1)の構造を有する。
Figure JPOXMLDOC01-appb-C000014
 式中、Aは単結合又は2価の有機基であり、R、R、及びRはそれぞれ独立して水素原子又は炭素数1~20の1価の有機基である。
 前記式(1)において、Aは単結合又は2価の有機基である。2価の有機基としては、その構造は例えば、下記式(12)で表される。
Figure JPOXMLDOC01-appb-C000015
 式中、Bは2価の連結基であり、R及びRはそれぞれ独立して単結合又は炭素数1~20、好ましくは1~10の2価の炭化水素基である。Bの具体的な例としては、-CH-、-CHR-、-CR-、-CR=CR-、-C≡C-、-O-、-S-、-NR-、-C(=O)O-、-OC(=O)-、-C(=O)NR10-、-NR10C(=O)-、-NR10C(=O)NR11-が挙げられるが、これに限定されない。
 上記R、R、R、R10、及びR11は、それぞれ独立して水素原子又は炭素数1~20の1価の炭化水素基である。ここで、1価の炭化水素基は、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビシクロヘキシル基等のビシクロアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、ヘキセニル基等のアルケニル基;フェニル基、キシリル基、ビフェニル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルシクロヘキシル基等のアラルキル基などが挙げられる。
 なお、これらの1価の炭化水素基の水素原子の一部又は全部は、ハロゲン原子、水酸基、チオール基、カルボキシル基、チオエステル基、アミド基、アルキル基、シクロアルキル基、ビシクロアルキル基、アルケニル基、アリール基、アラルキル基などで置換されていてもよい。
 R、R、R、R10、及びR11が芳香環や脂環構造などの嵩高い構造であると重合体の溶解性を低下させたりする可能性があるため、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、又は水素原子が好ましく、水素原子がより好ましい。
 式(1)におけるR、R及びRは、それぞれ独立して水素原子又は炭素数1~20、好ましくは1~10、より好ましくは1~6の1価の有機基である。1価の有機基としては、1価の炭化水素基、水酸基、チオール基、エステル基、カルボキシル基、チオエステル基、アミド基、オルガノオキシ基、オルガノシリル基、オルガノチオ基、アシル基などが挙げられる。1価の有機基としては、高温高湿耐性が高い観点から、1価の炭化水素基が好ましい。1価の炭化水素基の具体例としては、前記1価の炭化水素の例を挙げることができ、これらの1価の炭化水素基の水素原子の一部又は全部は、前記R、R、R、R10で例示した置換可能な基の他、ピロール基、イミダゾール基、ピラゾール基などの基で置換されていてもよい。
 R及びRとしては、高温高湿耐性が高い観点からメチル基、エチル基、プロピル基、ブチル基などのアルキル基、又は水素原子が好ましく、水素原子がより好ましい。
 Rとしては、高温高湿耐性が高い観点から、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、又は水素原子が好ましく、水素原子がより好ましい。
 式(1)で表される構造の具体的な例としては、下記式(H-1)~(H-6)の構造が特に好ましい。
Figure JPOXMLDOC01-appb-C000016
 n1、n2、n3、n4、n5、n6はそれぞれ独立して、1~10の整数を表す。
 前記特定ジアミンは、液晶配向膜の高温高湿耐性が高い観点から下記式(M1)で表されるジアミンであることが好ましい。特定ジアミンは1種単独又は2種以上混合して用いることができる。
Figure JPOXMLDOC01-appb-C000017
 Zは上記式(1)で表される構造を有する置換基であり、nは1~4の整数である。Yは炭素数5~40の(n+2)価の有機基である。
 前記Yにおける炭素数5~40の(n+2)価の有機基としては、例えば鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基といった炭化水素基や、当該炭化水素基における炭素-炭素結合間に、-O-、-COO-、-OCO-、-CO-、-NHCO-、-S-、-NH-、2価の複素環、又はステロイド骨格を含む2価の基などの官能基が導入されてなる基、(n+2)価の複素環などが挙げられる。また、これらの各基は、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子など)、アルコキシ基等の置換基を有していてもよい。
 ここで、(n+2)価の鎖状炭化水素基としては、R、R、R、R10、及びR11における前記1価のアルキル基から(n+1)個の水素原子を取り除いた基、前記1価のアルケニル基から(n+1)個の水素原子を取り除いた基などを挙げることができる。(n+2)価の脂環式炭化水素基としては、R、R、R、R10、及びR11における前記1価のシクロアルキル基から(n+1)個の水素原子を取り除いた基、前記1価のビシクロアルキル基から(n+1)個の水素原子を除いた基などを挙げることができる。(n+2)価の芳香族炭化水素基としては、R、R、R、R10、及びR11における前記1価のアリール基から(n+1)個の水素原子を除いた基、前記1価のアラルキル基から(n+1)個の水素原子を除いた基などを挙げることができる。
 上記2価の複素環としては、2価のピロール環、2価のチオフェン環、2価のフラン環、ピロリジニレン基等の5員環の複素環、ピペリジニレン基、ピペラジニレン基、ピリジニレン基、ピリダジニレン基、ピリミジニレン基等の6員環の複素環等が挙げられる。
 前記ステロイド骨格は、3つの6員環及び1つの5員環が結合した下記式(st)で表される骨格を有する。
Figure JPOXMLDOC01-appb-C000018
 Yは、液晶配向膜の高温高湿耐性が高い観点で、芳香環を有する炭素数5~40の(n+2)価の有機基であることが好ましく、具体的には炭素数5~40の(n+2)価の芳香族炭化水素基、当該炭化水素基における炭素-炭素結合間に、-O-、-COO-、-OCO-、-CO-、-NHCO-、-S-、-NH-、2価の複素環、又はステロイド骨格を含む2価の基などの官能基が導入されてなる基、芳香族複素環を有する(n+2)価の基であることが好ましい。
 Yにおける芳香族複素環を有する(n+2)価の基において、芳香族複素環としては、環部分に窒素原子を有する窒素含有芳香族複素環であることが好ましい。具体的には、例えばピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環などを挙げることができ、ピリジン環、ピリミジン環又はトリアジン環であることがより好ましい。
 Yとしては、電圧保持率が高い観点で、炭素数5~40の(n+2)価の芳香族炭化水素基であることが好ましく、下記式(Ar)で表される構造を有する炭素数5~40の(n+2)価の基であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 Aは単結合又は芳香環を有する2価の有機基を表す。
 前記式(M1)のより好ましい具体例として、下記式(M1-1)~(M1-13)を挙げることができる。
Figure JPOXMLDOC01-appb-C000020
 Zは上記式(1)で表される構造であり、cは、1~4の整数であり、d及びeは、1~2の整数であり、nは2~6の整数である。
 垂直配向性を高める観点から、前記特定ジアミンは下記式(M-1)~(M-6)で表されるジアミンからなる群より選ばれる少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 n1、n2、n3、n4、n5、n6はそれぞれ独立して1~10の整数を示す。
 前記特定ジアミンの含有量は、液晶配向性を付与する観点から、ジアミン成分全体に対して、5~95モル%であることが好ましく、5~85モル%がより好ましく、5~70モル%がより好ましい。
<ジアミン(v)>
 本発明のジアミン(v)は、下記式(S1)~(S3)で表される構造からなる群より選ばれる少なくとも1種を有する。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 式(S1)において、X及びXはそれぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数であり、複数のAはそれぞれ独立して酸素原子又は-COO-を表し、mは1~2である。原料の入手性や合成の容易さの点からは、X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又は-COO-が好ましく、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又は-COO-がより好ましい。
 G及びGは、それぞれ独立して、炭素数6~12の2価の芳香族基又は炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。該環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。m及びnは、それぞれ独立して、0~3の整数であって、m及びnの合計は1~4である。
 Rは、炭素数1~20のアルキル、炭素数1~20のアルコキシ又は炭素数2~20のアルコキシアルキルを表す。Rを形成する任意の水素はフッ素で置換されていてもよい。このうち、炭素数6~12の2価の芳香族基の例としては、フェニレン、ビフェニレン、ナフタレン等が挙げられる。また、炭素数3~8の2価の脂環式基の例としては、シクロプロピレン、シクロヘキシレン等が挙げられる。
 従って、上記式(S1)の好ましい具体例として、下記式(S1-x1)~(S1-x7)があげられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000025
 式中、Rは炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、または炭素数2~20のアルコキシアルキル基であり、Xは、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-CHOCO-、-COO-、又は-OCO-を示し、Aは、酸素原子又は-COO-*(ただし、「*」を付した結合手が(CHa2と結合する)、Aは、酸素原子または*-COO-(ただし、「*」を付した結合手が(CHa2と結合する)であり、a、aは、それぞれ独立して、0または1の整数であり、aは1~10の整数であり、Cyは1,4-シクロへキシレン基または1,4-フェニレン基である。
 式(S2)において、Xは単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。その中でも液晶配向性の観点から、-CONH-、-NHCO-、-O-、-CHO-、-COO-または-OCO-が好ましい。
 Rは炭素数1~20のアルキル又は炭素数2~20のアルコキシアルキルを表し、Rを形成する任意の水素はフッ素で置換されていてもよい。その中でも液晶配向性の観点から、炭素数3~20のアルキルまたは炭素数2~20のアルコキシアルキルが好ましい。
 式(S3)において、Xは-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。
 Rはステロイド骨格を有する構造を表し、具体例として前記式(st)で表される骨格を有する構造を挙げることができる。
 上記式(S3)の例として下記式(S3-x)が挙げられるが、これに限定されない。
Figure JPOXMLDOC01-appb-C000026
 Xは、上記式(X1)又は(X2)を表す。また、Colは、上記式(Col1)~(Col4)からなる群から選ばれる少なくとも1種を表し、Gは、上記式(G1)又は(G2)を表す。*は他の基に結合する部位を表す。
 式(S3)のより好ましい構造として、下記式(S3-1)~(S3-6)で示される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000027
 式中、*は結合位置を示す。
 前記ジアミン(v)は、重合反応性が高い観点から、下記式(v1)のジアミンが好ましい。ジアミン(v)は1種単独又は2種以上混合して用いることができる。
Figure JPOXMLDOC01-appb-C000028
 Yは、下記式(Ar2)で表される構造であり、Zは前記式(S-1)~(S-3)からなる群より選ばれる基を有する置換基である。nは1~2の整数を示す。
Figure JPOXMLDOC01-appb-C000029
 Aは単結合又は芳香族基を有する2価の有機基を表す。
 Arにおける芳香族基を有する2価の有機基としては、例えば、下記式(R)の構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000030
 Xは単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、-O-(CH2)-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、-COO-(CH-OCO-等が挙げられるが、これらに限定されない。Qとしては、ベンゼン環、ナフチル環などの炭素数6~20の芳香族炭化水素基を挙げることができる。mは1~8の整数である。
 ジアミン(v)のより好ましい具体例として、下記式(1-S1)~(1-S3)又は(2-S1)~(2-S3)で表される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000031
 上記式(1-S1)又は(2-S1)中、X、X、G、G、R、m及びnは、上記式(S1)における場合と同様である。上記式(1-S2)又は(2-S2)中、X及びRは、上記式(S2)における場合と同様である。上記式(1-S3)又は(2-S3)中、X及びRは、上記式(S3)における場合と同様である。Xは上記式(R)におけるXと同義である。
 ジアミン(v)の具体例を挙げると、下記式(V-1)~(V-13)のジアミンを挙げることが出来る。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 式中、Xv1~Xv4、Xp1~Xp8は、はそれぞれ独立して、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-CHOCO-、-COO-、又は-OCO-を示し、Xv5は-O-、-CHO-、-CHOCO-、-COO-、又は-OCO-を示し、XV6~XV7、Xs1~Xs4はそれぞれ独立して、-O-、-COO-又は-OCO-を示す。X~Xは、単結合、-O-、-NH-、-O-(CH-O-を示し、Rv1~Rv4、R1a~R1hはそれぞれ独立して、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基または炭素数2~20のアルコキシアルキル基を示す。mは1~8の整数を表す。
 前記ジアミン(v)の含有量は、液晶配向性を付与する観点から、ジアミン成分全体に対して、5~95モル%であることが好ましく、5~90モル%がより好ましく、5~80モル%がより好ましい。
<その他のジアミン:上記以外のジアミン>
 本実施形態のジアミン成分は、その他のジアミンとして、光照射により重合若しくはラジカルを発生する機能を有するジアミンや国際公開公報WO2015/046374の段落[0169]に記載のジアミン、段落[0171]~[0172]に記載のカルボキシル基や水酸基を有するジアミン、段落[0173]~[0188]に記載の窒素含有複素環を有するジアミンや特開2016-218149号公報の段落[0050]に記載の窒素含有構造を有するジアミン、1,3-ビス(3-アミノプロピル)-1,1,3,3-テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)-1,1,3,3-テトラメチルジシロキサン等のオルガノシロキサン含有ジアミンを挙げることができる。これらの中でも、PSA(Polymer Sustained Alignment)方式の液晶表示素子を作製する場合においては、応答速度を高める観点から、光照射により重合若しくはラジカルを発生する機能を有するジアミンを用いることが好ましい。
 その他のジアミンの好ましい具体例として、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,6-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス(4-アミノフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、ビス(4-アミノシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、4,4’-ジアミノジフェニルエタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、下記式(D-2-1)~式(D-2-8)のそれぞれで表される化合物、
Figure JPOXMLDOC01-appb-C000034
 さらには、これらのアミノ基が2級のアミノ基であるジアミン化合物を挙げることができる。
 光照射により重合する機能を有するジアミンとしては、例えば下記式[p1]~[p7]で表される構造が直接または連結基を介してベンゼン環等の芳香族環に結合しているジアミンを挙げることができる。
Figure JPOXMLDOC01-appb-C000035
 具体例として、下記式[P-a]又は[P-b]で示されるジアミンを挙げることができる。
Figure JPOXMLDOC01-appb-C000036
 式[P-a]、式[P-b]における二つのアミノ基(-NH)の結合位置は限定されないが、ジアミンの反応性の観点から、2,4位の位置、2,5位の位置、又は3,5位の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4位の位置、又は3,5位の位置がより好ましい。
 式[P-a]中、Rは、単結合、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、合成の容易性から、単結合、-O-、-COO-、-NHCO-、又は-CONH-である方が好ましい。
 Rは、単結合、フッ素原子で置換されていてもよい炭素数1~20のアルキレン基、ベンゼン環、ナフタレン環などの炭素数6~12の芳香族環から選ばれる2価の基、シクロヘキサン環などの炭素数3~8の2価の脂環式基、ピロール、イミダゾール、ピリジン、ピリミジン、ピラジン、ピリダジン、トリアジン、インドール、キノリン、カルバゾール、チアゾール、プリン、テトラヒドロフラン、チオフェンなどの5員環以上の複素環から選ばれる2価の環状基を表す。ここで、アルキレン基の-CH-は、-CF-又は-CH=CH-で任意に置換されていてもよい。合成の容易性から、単結合又は炭素数1~12のアルキレン基が好ましい。kは0~4の整数を表す。
10は、上記式[p1]~[p7]から選ばれる構造を表す。光反応性の観点から、[p1]、[p2]、[p4]が好ましい。
 式[P-b]中、Y、Yは、それぞれ独立して、-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、又は-CO-を表す。Y、Yは、それぞれ独立して、上記[P-a]中のRと同義である。Yはシンナモイル基を表す。Yは、上記式[p1]~[p7]から選ばれる構造を表す。光反応性の観点から、[p1]、[p2]、[p4]が好ましい。mは0又は1を表す。
 光照射により重合する機能を有するジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性、液晶表示素子とした際の液晶の応答速度などに応じて、1種類又は2種類以上を混合して使用できる。
 光照射により重合する機能を有するジアミンの含有量は、ジアミン成分全体に対して5~70モル%を用いることが好ましく、より好ましくは5~60モル%、特に好ましくは5~50モル%である。
 光照射によりラジカルを発生する機能を有するジアミンとしては、例えば紫外線照射により分解しラジカルを発生するラジカル発生構造を有する部位を側鎖に有するジアミンが挙げられ、例えば下記式(R)で示すジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000037
 上記式(R)におけるAr、R、R、T、T、S及びQは、以下の定義を有する。即ち、Arはフェニレン、ナフチレン、及びビフェニレンから選ばれる芳香族炭化水素基を示し、それらには有機基が置換していても良く、水素原子はハロゲン原子に置換していても良い。R1、Rはそれぞれ独立して炭素原子数1~10のアルキル基もしくはアルコキシ基である。T、Tはそれぞれ独立して、単結合又は-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、-N(CH)CO-の結合基である。Sは上記[P-a]中のRと同義である。Qは下記式[q-1]~[q-4]から選ばれる構造(構造式中、Rは水素原子又は炭素原子数1~4のアルキル基を表し、Rは-CH-、-NR-、-O-、又は-S-を表す。)を表す。
Figure JPOXMLDOC01-appb-C000038
 式中、*は結合位置を示す。
 上記式(R)において、カルボニルが結合しているArは紫外線の吸収を効率的にする観点から、ナフチレンやビフェニレンのような共役長の長い構造が好ましい。また、Arには置換基が置換していても良く、かかる置換基は、アルキル基、ヒドロキシル基、アルコキシ基、アミノ基などのような電子供与性の有機基が好ましい。紫外線の波長が250nm~380nmの範囲であればフェニル基でも十分な特性が得られるため、フェニル基が最も好ましい。
 また、R、Rは、それぞれ独立して炭素原子数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R、Rで環を形成していてもよい。
 特定重合体を製造しやすい観点から、Qはより好ましくはヒドロキシル基又はアルコキシル基である。
 式(R)におけるジアミノベンゼンは、o-フェニレンジアミン、m-フェニレンジアミン、又はp-フェニレンジアミンのいずれの構造でもよいが、テトラカルボン酸成分との反応性が高い点で、m-フェニレンジアミン、又はp-フェニレンジアミンが好ましい。
 具体的には、合成の容易さ、汎用性の高さ、特性などの点から、下記式[R-1]~[R-4]で表される構造が最も好ましい。なお、式中、nは2~8の整数である。
Figure JPOXMLDOC01-appb-C000039
 光照射によりラジカルを発生する機能を有するジアミンの含有量は、ジアミン成分全体に対して5~70モル%を用いることが好ましく、電圧保持率を高める観点からより好ましくは5~60モル%であり、特に好ましくは5~50モル%である。
<テトラカルボン酸成分>
 重合体(P)を得るためのテトラカルボン酸成分の例としては、テトラカルボン酸、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライドが挙げられ、本発明では、これらを総称してテトラカルボン酸成分とも称する。
 テトラカルボン酸成分としては、テトラカルボン酸二無水物や、その誘導体である、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライド(これらを総称して、第1のテトラカルボン酸成分と称する)を用いることもできる。
 テトラカルボン酸二無水物の具体例として、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸または1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸などのテトラカルボン酸から得られる酸二無水物、下記式[4]で示されるテトラカルボン酸二無水物、又はその誘導体であるテトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物またはテトラカルボン酸ジアルキルエステルジハライド化合物を挙げることができる。中でも液晶配向膜の高温高湿耐性が高い観点から、前記テトラカルボン酸成分が、下記式(4)で表されるテトラカルボン酸二無水物(T)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000040
 Xは下記(x-1)~(x-11)から選ばれる構造を示す。
Figure JPOXMLDOC01-appb-C000041
 式中、*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。
 式(x-1)中、R~Rは水素原子、メチル基、エチル基、プロピル基、塩素原子またはベンゼン環を示し、それぞれ同じであっても異なってもよい。(x-1)の好ましい具体例として、下記式(x1-1)又は(x1-2)の構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000042
 式中、*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。
 式(x-7)中、ZおよびZは水素原子またはメチル基を示し、それぞれ同じであっても異なってもよい。
 式(4)中のZのなかで、合成の容易さや重合体を製造する際の重合反応性のし易さの点から、式(x-1)、式(x-3)~式(x-7)または式(x-11)で示される構造のテトラカルボン酸二無水物およびそのテトラカルボン酸誘導体が好ましい。
 本発明の重合体における式(4)で示されるテトラカルボン酸二無水物の含有量は、テトラカルボン酸成分全体に対して、10モル%以上であることが重合体の溶解性を高める観点で好ましい。なかでも、15モル%以上であることが好ましく、より好ましいのは、20モル%以上である。
 本発明のテトラカルボン酸化合物は、本発明の重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。
 本発明に用いるポリイミド前駆体は、ポリアミド酸、ポリアミド酸エステルが挙げられる。尚、ポリアミド酸エステルは、構成単位の全てがアミド酸エステル構造であってもよいが、一部にアミド酸構造を含んでいてもよい。
<ポリアミド酸>
 本発明に用いるポリアミド酸は、上記ジアミン成分と上記テトラカルボン酸二無水物とを反応させて得ることができるが、この方法は限定されない。一般的には、溶媒中で混合することにより反応させてポリアミド酸とすることができ、その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。ここでの溶媒の例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノン等が挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテルで表される溶媒等を用いることができる。
<ポリアミド酸エステル>
 本発明のポリアミド酸エステルを製造するための具体的な方法として、(1)カルボン酸基をジアルキルエステル化したテトラカルボン酸と1級又は2級のジアミンとを重縮合させる方法、(2)カルボン酸基をジアルキルエステル化若しくはジハロゲン化したテトラカルボン酸ジアルキルジハライドと1級又は2級のジアミンとを重縮合させる方法、又は(3)ポリアミド酸のカルボキシ基をエステルに変換する方法、の3つの方法を挙げることができる。ポリアミド酸アルキルエステルは、上記(2)又は(3)の製造方法が好ましい。
<ポリイミド>
  本発明に用いるポリイミドは、上記ポリイミド前駆体を脱水閉環することにより得ることができる。ここでいうポリイミドは、アミド酸基又はアミド酸エステル基の閉環率(イミド化率ともいう)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
<液晶配向剤>
 本発明の液晶配向剤は、上記の重合体(P)を1種又は2種以上を含有する。また、重合体(P)以外のその他の重合体を含有していてもよい。重合体の形式としては、ポリアミド酸、ポリイミド、ポリアミド酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレート等が挙げられる。本発明の液晶配向剤がその他の重合体を含有する場合、全重合体成分に対する特定重合体の割合は5質量%以上が好ましく、例えば5~95質量%が挙げられる。
 液晶配向剤は、均一な薄膜を形成させるという点から、一般的には塗布液の形態をとる。本発明の液晶配向剤も、上記重合体成分と、この重合体成分を溶解させる有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更できる。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノメチルエーテル、乳酸ブチル、酢酸ブチル、メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、プロピレンカーボネート(以下、これらを「特定溶媒」ともいう。)の他、国際公開公報WO2014/171493の段落[0105]~[0107]に記載の溶媒等である。
 本発明の液晶配向剤に使用される有機溶媒としては、印刷性を改善する観点から、上記特定溶媒よりなる群から選ばれる少なくとも1種を含むものであることが好ましく、より好ましくは、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、γ-ブチロラクトン、γ-バレロラクトン、シクロヘキサノン、シクロペンタノン、エチレンカーボネート、プロピレンカーボネート及び1,3-ジメチル-2-イミダゾリンよりなる群から選択される少なくとも1種(以下、「特定有機溶媒(1)」という。)と、ブチルセロソルブ、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、ジアセトンアルコール、プロピレンカーボネート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテルおよびエチル-3-エトキシプロピオネートよりなる群から選択される少なくとも1種(以下、「特定有機溶媒(2)」という。)であることが好ましい。
 本発明の液晶配向剤に使用される有機溶媒は、さらに好ましくは上記特定有機溶媒(1)を、有機溶媒の全量に対して、5~95重量%含むものであることが好ましく、10~95重量%含むものであることがより好ましい。本発明の液晶配向剤に使用される有機溶媒は、上記特定有機溶媒(2)を、有機溶媒の全量に対して、5~95重量%含むものであることが好ましく、5~90重量%含むものであることがより好ましい。
 本発明の液晶配向剤は、重合体成分及び有機溶媒以外の成分を追加的に含有してもよい。このような追加成分としては、重合体(P)を架橋する化合物である架橋性化合物、液晶配向膜の誘電率や電気抵抗を調整するための化合物(B)、液晶配向膜と基板との密着性や、液晶配向膜とシール剤との密着性を高めるための密着助剤等が挙げられる。
(架橋性化合物)
 架橋性化合物としては、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシル基及びアルコキシル基から選ばれる少なくとも1種の置換基を有する架橋性化合物、並びに重合性不飽和基を有する架橋性化合物からなる群から選ばれる少なくとも1種の化合物を導入することが好ましい。なお、これらの置換基や、重合性不飽和結合は、架橋性化合物中に、2個以上有することが架橋性を高める観点から好ましい。架橋性化合物の具体例としては、国際公開公報2011/132751号の段落[0169]~[0190]に記載のエポキシ基又はイソシアネート基を有する化合物、オキセタン基を有する化合物、ヒドロキシル基、アルコキシル基又は低級アルコキシアルキル基を有するアミノ樹脂、ヒドロキシル基又はアルコキシル基を有するベンゼン又はフェノール性化合物、国際公開公報2012/014898号の段落[0103]~[0112]に記載のシクロカーボネート基を有する化合物、国際公開公報2015/072554号に記載のヒドロキシアルキルアミド基を有する化合物、国際公開公報2015/141598に記載のブロックイソシアネート基を有する化合物などが挙げられる。
 より好ましい架橋性化合物の具体例としては、下記式(CL-1)~(CL-11)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000043
 上記架橋性化合物の含有量は、本発明の全ての重合体100重量部に対して、0.1~100重量部であることが好ましく、液晶の配向性を高める観点から、より好ましくは0.1~50重量部であり、さらに好ましくは、1~50重量部である。
(化合物(B))
 化合物(B)としては、垂直配向性と高い電圧保持特性を得る観点から、分子内にアミノ基(-NH)を1個と窒素含有芳香族複素環とを有し、かつ前記アミノ基が脂肪族炭化水素基又は非芳香族系環式炭化水素基に結合しているアミン化合物であることが好ましい。具体的には、下記式(B-1)で示されるアミン化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000044
 Xは脂肪族炭化水素基又は非芳香族環式炭化水素基を有する2価の有機基であり、Xは窒素含有芳香族複素環である。
 Xの脂肪族炭化水素基としては、炭素数1~20の直鎖状アルキル基、分岐構造を有するアルキル基、不飽和結合を有する炭化水素基等を挙げることができる。非芳香族環式炭化水素基としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環等の炭素数3~20の非芳香族環式炭化水素基を挙げることができる。また、アミノ基に隣接しない任意の脂肪族炭化水素基又は非芳香族環式炭化水素基中の-CH-は、-O-、-NH-、-CO-O-、-O-CO-、-CO-NH-、-NH-CO-、-CO-、-S-、-S(O)-、-CF-、-C(CF-、-C(CH-、-Si(CH-、-O-Si(CH-、-Si(CH-O-、-O-Si(CH-O-、環状炭化水素基および窒素含有複素環で置き換えられてもよい。また、任意の炭素原子に結合している水素原子は、炭素数1~20の直鎖又は分岐アルキル基、環状炭化水素基、炭素数1~10のフッ素含有アルキル基、窒素含有複素環、フッ素原子、水酸基で置き換えられてもよい。
 窒素含有複素環の具体例としてはピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、トリアジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環、キノキサリン環、アゼピン環、ジアゼピン環、ナフチリジン環、フェナジン環、フタラジン環などを挙げることができる。
 化合物(B)の好ましい具体例として、国際公開公報2011/132751号の段落[0194]~[0200]に記載の化合物を挙げることができる。より好ましい具体例は、下記式(B-1)~(B-41)で表される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000045
 上記化合物(B)の含有量は、本発明の全ての重合体100重量部に対して、0.1~50重量部であることが好ましく、液晶の配向性を高める観点から、より好ましくは0.1~40重量部であり、さらに好ましくは、1~30重量部である。
<液晶配向膜>
 本発明の液晶配向膜は、上記液晶配向剤から得られる。本発明の液晶配向剤から得られる液晶配向膜は、水平配向型若しくは垂直配向型の液晶配向膜に用いることができるが、中でもVA方式又はPSAモード等の垂直配向型の液晶表示素子に好適な液晶配向膜であり、高温・高湿下であっても長期に渡って高い電圧保持率を確保できる。特に、液晶組成物に含まれる不純物に由来する電圧保持率の低下を抑制できる点で、PSAモードの液晶表示素子に用いられる液晶配向膜として好適である。
<液晶表示素子及びその製造方法>
 本発明の液晶表示素子は、上記液晶配向膜を具備するものである。本発明の液晶表示素子は、例えば以下の工程(1)~(3)又は工程(1)~(4)を含む方法により製造することができる。
(1)液晶配向剤を基板上に塗布する工程
 パターニングされた透明導電膜が設けられている基板の一面に、本発明の液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布する。ここで基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。
(2)塗膜を焼成する工程
 液晶配向剤塗布後、塗布した配向剤の液垂れ防止等の目的で、好ましくは先ず予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、より好ましくは40~150℃であり、特に好ましくは40~100℃である。プレベーク時間は好ましくは0.25~10分であり、より好ましくは0.5~5分である。そして溶剤を完全に除去した後、さらに加熱(ポストベーク)工程が実施されることが好ましい。このポストベーク温度は好ましくは80~300℃であり、より好ましくは120~250℃である。ポストベーク時間は好ましくは5~200分であり、より好ましくは10~100分である。このようにして形成される膜の膜厚は、5~300nmが好ましく、10~200nmがより好ましい。
 上記工程(1)で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。配向能付与処理としては、塗膜を例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。
 光配向処理において、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合には、照射の方向は斜め方向とする。
(3)液晶層を形成する工程
(3-1)VA型液晶表示素子の場合
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置する。具体的には以下の2つの方法が挙げられる。第一の方法は、従来から知られている方法である。先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
(3-2)PSA型液晶表示素子を製造する場合
 重合性化合物を含有する液晶組成物を注入又は滴下する点以外は上記(3-1)と同様にする。
(4)紫外線を照射する工程
 上記(3-2)で得られた一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。光の照射量としては、好ましくは1,000~200,000J/mであり、より好ましくは1,000~100,000J/mである。
 光重合性基を有する化合物(重合体又は添加剤)を含む液晶配向剤を用いて基板上に塗膜を形成した場合、上記(3-1)と同様にした後、一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する工程を経ることにより液晶表示素子を製造する方法を採用してもよい。この方法によれば、PSAモードのメリットを、少ない光照射量で実現可能である。
 そして、液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。
 本発明の液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明は、これらに限定して解釈されるものではない。使用した化合物は、以下の通りである。
(ジアミン成分)
 下記式[DA―1]~[DA―11]で表される化合物
 DA―1:式[DA―1]で表される化合物
 DA―2:式[DA―2]で表される化合物
 DA―3:式[DA―3]で表される化合物
 DA―4:式[DA―4]で表される化合物
 DA―5:式[DA―5]で表される化合物
 DA―6:式[DA―6]で表される化合物
 DA―7:式[DA―7]で表される化合物(特定ジアミン)
 DA―8:式[DA―8]で表される化合物(特定ジアミン)
 DA―9:式[DA―9]で表される化合物(特定ジアミン)
 DA―10:式[DA―10]で表される化合物(特定ジアミン)
 DA―11:式[DA―11]で表される化合物(特定ジアミン)
Figure JPOXMLDOC01-appb-C000046
(新規ジアミン成分)
 下記式[DA-9]~[DA-11]で表される化合物[W―A1]~[W―A3]の合成例を詳述する。
 下記合成例1~7に記載の生成物は1H-NMR分析により同定した(分析条件は下記の通り)。
装置:Varian NMR System 400 NB (400 MHz)
測定溶媒:CDCl3、DMSO-d
基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for H)
以下において、略号はそれぞれ以下の意味を示す。
THF:テトラヒドロフラン
DMAc:N,N-ジメチルアセトアミド
Figure JPOXMLDOC01-appb-C000047
<<化合物合成例1 DA-9の合成>> 
Figure JPOXMLDOC01-appb-C000048
<化合物[1]の合成>
 テトラヒドロフラン(160g)中、2-アミノエタノール(40.0g、655mmol)を仕込み、窒素雰囲気下氷冷条件にて撹拌した。テトラヒドロフラン(150g)に溶解させた二炭酸ジ-tert-ブチル(150g、687mmol)を発熱に注意しながら1時間かけて滴下し、発熱しなくなったところで室温条件にて2時間撹拌した。撹拌を停止し16時間静置後、発生した白色沈殿を濾過により分離し、濾液を濃縮し、乾燥させ、化合物[1]の粗物を得た(収量:117g)。得られた化合物は、そのまま次の工程に使用した。
 H-NMR(400MHz) in CDCl:5.04ppm(br,1H)、 3.72-3.68ppm(m,2H)、 3.31-3.27ppm(m,2H)、 2.78ppm(br,1H)、 1.45ppm(s,9H)
<化合物[2]の合成>
 テトラヒドロフラン(190g)中、化合物[1]粗物(60.4g)、トリエチルアミン(42.5g、420mmol)を仕込み、窒素雰囲気下50℃条件でテトラヒドロフラン(59.2g)に溶解させた2,4-ジニトロフルオロベンゼン(60.4g、325mmol)を滴下し、25時間撹拌した後、さらにテトラヒドロフラン(30.0g)に溶解させた化合物[1]粗物(26.0g)、トリエチルアミン(16.3g、161mmol)を追加添加し3時間反応させた。その後、さらにテトラヒドロフラン(30.0g)に溶解させた化合物[1]粗物(30.0g)を添加し、16時間反応させて反応を完結させた。反応液に酢酸エチル(208g)を加え、純水(153g×3回)で分液洗浄した。有機相を回収後、減圧濃縮し、析出した結晶をメタノール(180g)にてスラリー洗浄後、濾過して得られた結晶をメタノール(60.0g×3回)でケーキ洗浄し、乾燥させ、化合物[2]を得た(収量:52.8g,161mmol)。
 H-NMR(400MHz) in CDCl:8.80ppm(d,1H,J=2.8Hz), 8.45ppm(dd,1H,J=9.2Hz,2.8Hz)、 7.23ppm(d,1H,J=9.2Hz)、 5.06ppm(br,1H)、 4.31ppm(t,2H,J=5.0Hz)、 3.63ppm(dd,2H,J=11.2Hz,4.8Hz)、 1.45ppm(s,9H)
<DA-9の合成>
 テトラヒドロフラン(264g)及びメタノール(106g)中、化合物[2](52.8g,162mmol)、5%パラジウムカーボン(含水品)(4.23g)を仕込み、水素雰囲気下室温条件で約5日間撹拌した。反応終了後、濾過することでパラジウムカーボンを除去し、減圧濃縮した。濃縮粗物に酢酸エチル(398g)を加えて溶解し、ヘキサン(367g)を加えて結晶を析出させ、室温条件下で撹拌後、濾過した。得られた結晶をヘキサン(106g×2回)でケーキ洗浄し、乾燥させ、DA-9を得た(収量:37.3g,140mmol)。
 H-NMR(400MHz) in CDCl:6.60ppm(d,1H,J=8.4Hz), 6.14ppm(d,1H,J=2.8Hz)、 6.05ppm(dd,1H,J=8.4Hz,2.8Hz)、 5.07ppm(br,1H)、 3.97ppm(t,2H,J=5.0Hz)、 3.76ppm(br,2H)、 3.49ppm(m,2H)、 3.38ppm(br,2H)、 1.44ppm(s,9H)
<<化合物合成例2 DA-10の合成>>
Figure JPOXMLDOC01-appb-C000049
<化合物[3]の合成>
  メタノール(204g)中、2-クロロエチルアミン塩酸塩(51.9g,447mmol)、トリエチルアミン(49.6g、490mmol)を仕込み、窒素雰囲気下氷冷条件にて撹拌した。メタノール(102g)に溶解させた二炭酸ジ-tert-ブチル(117g、536mmol)を発熱に注意しながら1時間かけて滴下し、発熱しなくなったところで室温条件にて15時間撹拌した。反応終了後、4-ジメチルアミノピリジン(0.543g、4.44mmol)を加え、60℃で1時間撹拌し、過剰な二炭酸ジ-tert-ブチルをメタノールと反応させて除去し、反応液を減圧濃縮した。濃縮粗物に酢酸エチル(300g)を加え、純水(300g×3回)で分液洗浄し、有機相を減圧濃縮し、乾燥させ、化合物[3]粗物を得た(収量:77.8g)。得られた化合物[3]は、そのまま次の工程に使用した。
 H-NMR(400MHz) in DMSO-d:7.08ppm(br,1H)、 3.57-3.54ppm(m,2H)、 3.25-3.20ppm(m,2H)、 1.38ppm(s,9H)
<化合物[4]の合成>
  N,N-ジメチルアセトアミド(210g)中、2-アミノ-5-ニトロフェノール(54.8g,356mmol)、炭酸カリウム(54.9g、397mmol)、ヨウ化カリウム(5.90g、35.5mmol)を仕込み100℃に昇温した。その後、N,N-ジメチルアセトアミド(70.0g)に溶解させた化合物[3]粗物(70.0g)を滴下し、4時間撹拌した。その後さらに、炭酸カリウム(6.85g,49.6mmol)、化合物[3]粗物(7.78g)を追加添加し、17時間撹拌して反応を完結させた。反応液に酢酸エチル(280g)および純水(280g)を加え、析出した結晶を濾過により分離し、化合物[4]粗物を得た。また、濾液を濃縮し、酢酸エチル(90.0g)およびメタノール(340g)を加えて撹拌し結晶を析出させた後、濾過した。得られた結晶をメタノール(140g)でケーキ洗浄し、化合物[4]粗物を得た。上記2通りで得た粗物を合わせて、酢酸エチル(480g)およびトルエン(480g)によって晶析後、濾過し、得られた結晶を乾燥させ、化合物[4]を得た(収量:63.3g,213mmol)。
 H-NMR(400MHz) in DMSO-d:7.74ppm(dd,1H,J=8.8Hz,2.4Hz)、 7.53ppm(d,1H,J=2.4Hz)、 6.64ppm(d,1H,J=8.8Hz),7.20ppm(t,1H,J=6.0Hz)、 4.00-3.97ppm(m,2H)、 6.54ppm(br,2H)、 3.39-3.34ppm(m,2H)、 1.93ppm(s,9H)
<DA-10の合成>
 テトラヒドロフラン(240g)及びメタノール(60.0g)中、化合物[4](60.0g,202mmol)と5%パラジウムカーボン(含水品)(2.40g)を仕込み、水素雰囲気下室温条件で30時間撹拌した。反応終了後、濾過によりパラジウムカーボンを除去し、濾液を減圧濃縮し、赤紫色の液状粗物を得た。粗物に酢酸エチル(120g)およびヘキサン(360g)を加えて撹拌し結晶を析出させた後、濾過し、得られた結晶を乾燥させ、DA-10を得た(収量:16.5g,61.7mmol)。
 H-NMR(400MHz) in DMSO-d:7.11ppm(t,1H,J=6.0Hz), 6.35ppm(d,1H,J=8.0Hz)、 6.13ppm(d,1H,J=2.4Hz)、 5.97ppm(dd,1H,J=8.0Hz,2.0Hz)、 4.24(br,2H), 4.00(br,2H)、 3.76ppm(t,2H,J=5.2Hz)、 3.35-3.27ppm(m,2H)、 1.39ppm(s,9H)
<<化合物合成例3 DA-11の合成>>
Figure JPOXMLDOC01-appb-C000050
<化合物[5]の合成>
  トルエン(325g)中、6-アミノ-1-ヘキサノール(66.0g,563mmol)を仕込み、氷冷下でトルエン(90.0g)に溶解した塩化チオニル(79.8g,671mmol)を仕込み、70℃条件にて5時間加熱撹拌した。反応終了後、反応液を減圧濃縮し、化合物[5]粗物を得た(収量:98.9g)。得られた化合物は、そのまま次の工程に使用した。
 H-NMR(400MHz) in CDCl:5.58ppm(br,3H)、 3.56-3.53ppm(m,2H)、 3.01-2.98ppm(m,2H)、 1.83-1.76ppm(m,4H)、 1.53-1.40ppm(m,4H)
<化合物[6]の合成>
  メタノール(310g)中、化合物[5]粗物(98.9g)、トリエチルアミン(64.0g,632mmol)を仕込み、窒素雰囲気下氷冷条件にて撹拌した。メタノール(60.7g)に溶解させた二炭酸ジ-tert-ブチル(151g,692mmol)を発熱に注意しながら1時間かけて滴下し、発熱しなくなったところで室温条件にて24時間撹拌した。反応終了後、4-ジメチルアミノピリジン(0.700g,5.73mmol)を加え、60℃、1時間撹拌することで過剰な二炭酸ジ-tert-ブチルをメタノールと反応させて除去した。反応液に酢酸エチル(328g)を加え、純水(300g×2回)で分液洗浄し、有機相を減圧濃縮し、乾燥させ、化合物[6]粗物を得た。また、分液した水相について再度酢酸エチル(320g)を加え、純水(300g×2回)で分液洗浄し、有機相を減圧濃縮し、乾燥させ、化合物[6]粗物を得た。上記2通りの化合物[6]粗物を合計(収量:129g)して得られた化合物は、そのまま次の工程に使用した。
 H-NMR(400MHz) in CDCl:4.54ppm(br,1H)、 3.55-3.52ppm(m,2H)、 3.16-3.09ppm(m,2H)、 1.81-1.74ppm(m,2H)、 1.53-1.37ppm(m,13H)、 1.37-1.30ppm(m,2H)
<化合物[7]の合成>
  N,N-ジメチルアセトアミド(270g)中、2-アミノ-5-ニトロフェノール(67.2g,436mmol)、炭酸カリウム(72.3g,523mmol)、ヨウ化カリウム(7.26g,43.7mmol)を仕込み、100℃に昇温させた後、N,N-ジメチルアセトアミド(90.0g)に溶解させた化合物[6](粗物)(90.7g)を滴下した後4時間撹拌した。さらに、炭酸カリウム(25.9g,187mmol)、化合物[6](粗物)(22.5g)を追加し、18時間撹拌して反応を完結させた。反応液に酢酸エチル(450g)を加え、純水(300g×6回)で分液洗浄し、有機相を減圧濃縮した。得られた濃縮粗物について、シリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン=1/2混合溶媒)により精製を行い、減圧濃縮し、乾燥させ、化合物[7]を得た(収量:146g,413mmol)。
 H-NMR(400MHz) in DMSO-d:7.73ppm(dd,1H,J=8.8Hz,2.4Hz)、 7.55-7.54ppm(d,1H,J=2.4Hz)、 6.79ppm(t,1H,J=6.0Hz)、 6.67ppm(d,1H,J=8.8Hz)、 6.37ppm(br,2H)、 2.94-2.90ppm(m,2H)、 1.77-1.73ppm(m,2H)、 1.47-1.40ppm(m,6H)、 1.37ppm(s,9H)、 1.36-1.28ppm(m,2H)
<DA-11の合成>
 酢酸エチル(658g)中、化合物[7](82.0g,232mmol)、10wt%塩化アンモニウム水溶液(372g)、還元鉄(粉末)(64.8g,1.16mol)を仕込み、70℃で24時間加熱撹拌した。その後、さらに10wt%塩化アンモニウム水溶液(248g)、還元鉄(粉末)(51.8g,927mmol)を追加し、3日間撹拌して反応を完結させた。反応終了後、濾過により鉄粉を除去し、酢酸エチル(200g)を加えた濾液を飽和炭酸水素ナトリウム水溶液(328g×3回)にて分液洗浄し、有機相を減圧濃縮した。得られた濃縮粗物にテトラヒドロフラン(174g)、特製白鷺活性炭(4.10g)を加え60℃で2時間撹拌し、濾過によって活性炭を除去した後、濾液を減圧濃縮した。得られた濃縮粗物について、シリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル)により精製を行い、減圧濃縮し、乾燥させ、DA-11を得た(収量:39.2g,121mmol)。
 H-NMR(400MHz) in DMSO-d:6.79ppm(t,1H,J=6.0Hz)、 6.38ppm(d,1H,J=8.0Hz)、 6.17ppm(d,1H,J=2.4Hz)、 5.97ppm(dd,1H,J=8.4Hz,2.0Hz)、 4.24(br,2H)、 3.82(br,2H)、 3.82(m,2H)、 2.93-2.88ppm(m,2H)、 1.70-1.67ppm(m,2H)、 1.42-1.37ppm(m,4H)、 1.37ppm(s,9H)、 1.32-1.27ppm(m,2H)
(テトラカルボン酸成分)
 下記式[D1]~[D2]で表される化合物
 D1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 D2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
 D3:2,3,5-トリカルボキシシクロペンチル酢酸二無水物
Figure JPOXMLDOC01-appb-C000051
(溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル
<ポリイミドの分子量測定>
 合成例におけるポリイミドの分子量は、(株)センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
カラム温度:50℃
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約9000,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
<イミド化率の測定>
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(草野科学製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。
 この溶液を日本電子データム(株)製NMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い、以下の計算式によって求めた。
イミド化率(%)=(1-α・x/y)×100
<ポリイミド系重合体の合成>
<合成例1>
 テトラカルボン酸二無水物であるD2(5.00g、全ジアミンに対するモル比0.5mol)、ジアミン成分であるDA-1(4.57g、全ジアミン中のモル比0.3mol)、DA-7(6.64g、全ジアミン中のモル比0.7mol)を、溶媒NMP(表1のN1:64.86g)中で混合し、60℃で3時間反応させた後、D1(3.84g、全ジアミンに対するモル比0.49mol)及びNMP(表1のN2:15.37g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMP(41.54g)を加え、6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.06g)、ピリジン(1.26g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(233.98g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥し、合成例1のポリイミド粉末(A)を得た。このポリイミドのイミド化率は83%であり、数平均分子量は11,600、重量平均分子量は32,200であった。
<合成例2~7>
 合成例1の手法に沿って、材料や割合を表1及び2の通りに変更し、合成例2~7のポリイミド粉末(B~G)を得た。
<合成例8>
 テトラカルボン酸二無水物であるD3(7.63g、全ジアミンに対するモル比0.99mol)、ジアミン成分であるDA-2(5.21g、全ジアミン中のモル比0.2mol)、DA-3(2.84g、全ジアミン中のモル比0.25mol)、DA-7(4.49g、全ジアミン中のモル比0.55mol)を、溶媒NMP(表1のN1:80.70g)中で混合し、60℃で6時間反応させポリアミド酸溶液を得た。 
 このポリアミド酸溶液(20.0g)にNMP(41.54g)を加え、6.5質量%に希釈した後、イミド化触媒として無水酢酸(3.48g)、ピリジン(1.08g)を加え、100℃で3時間反応させた。この反応溶液をメタノール(231.35g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥し、合成例8のポリイミド粉末(H)を得た。このポリイミドのイミド化率は75%であり、数平均分子量は11,100、重量平均分子量は40,600であった。
<合成例9>
 合成例8の手法に沿って、材料や割合を表1及び2の通りに変更し、合成例9のポリイミド粉末(I)を得た。
<比較合成例1>
 テトラカルボン酸二無水物であるD2(6.13g、全ジアミンに対するモル比0.5mol)、ジアミン成分であるDA-1(5.59g、全ジアミン中のモル比0.3mol)、DA-5(3.71g、全ジアミン中のモル比0.7mol)をNMP61.73g中で混合し、60℃で3時間反応させた後、D1(4.71g、全ジアミンに対するモル比0.49mol)とNMP18.83gを加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液20.0gにNMP41.54gを加え、6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.94g)、ピリジン(1.53g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(238.05g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥し、比較合成例1のポリイミド粉末(J)を得た。このポリイミドのイミド化率は54%であり、数平均分子量は7,700、重量平均分子量は17,900であった。
<比較合成例2>
 テトラカルボン酸二無水物であるD2(6.01g、全ジアミンに対するモル比0.5mol)、ジアミン成分であるDA-1(5.48g、全ジアミン中のモル比0.3mol)、DA-4(2.39g、全ジアミン中のモル比0.2mol)、DA-5(2.60g、全ジアミン中のモル比0.5mol)をNMP(65.90g)中で混合し、60℃で3時間反応させた後、D1(4.47g、全ジアミンに対するモル比0.475mol)とNMP(17.88g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMP(41.54g)を加え、6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.63g)、ピリジン(1.43g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(236.60g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥し、比較合成例1のポリイミド粉末(K)を得た。このポリイミドのイミド化率は73%であり、数平均分子量は11,100、重量平均分子量は29,100であった。
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
<実施例1>
 合成例1で得たポリイミド粉末(A)(6.0g)にNMP(54.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(40.0g)を加え、5時間攪拌することで、実施例1の液晶配向剤[1]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<実施例2~5>
 実施例1の手法に沿って、ポリイミド材料を表3の通りに変更し、実施例2~5の配向処理剤[2]~[5]を得た。これらの液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<比較例1、2>
 実施例1の手法に沿って、ポリイミド材料を表3の通りに変更し、比較例1の配向処理剤[6]および比較例2の配向処理剤[7]を得た。これらの液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<液晶セルの作製>
 上記で得た実施例1~5及び比較例1の液晶配向剤を、それぞれ、3×4cmITO付きガラス基板のITO面にスピンコートし、70℃で1分30秒間ホットプレートにて焼成した後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚100nmのポリイミド塗布基板を作製した。
 上記方法でポリイミド塗布基板を二枚作製し、一方の基板の液晶配向膜面上に4μmのビーズスペーサを散布した後、その上から熱硬化性シール剤(協立化学社製 XN-1500T)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルにPSA用重合性化合物含有液晶MLC-3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作製した。この液晶セルの電圧保持率を測定した。
 次に、この液晶セルに15VのDC電圧を印加した状態で、この液晶セルの外側から325nmカットフィルターを通したUVを10J/cm照射(1次PSA処理とも称する)した。なお、UVの照度は、ORC社製UV-MO3Aを用いて測定した。
 その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射(2次PSA処理と称する)した。その後、電圧保持率の測定を行った。
<電圧保持率の評価>
 上記で作製した液晶セルを用い、60℃の熱風循環オーブン中で1Vの電圧を60μs間印加し、その後1667msec後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。電圧保持率の測定には、東陽テクニカ社製のVHR-1を使用した。
<高温高湿耐性の評価>
 上記で作製した液晶セルを温度85℃、湿度85%の状態にした恒温恒湿器(エスペック社製PR-2KP)内に7日間静置した後、電圧保持率の測定を行った。ここで測定した電圧保持率と2次PSA処理後の電圧保持率の差分をVHR変化量とした。
Figure JPOXMLDOC01-appb-T000054
 表3に示されるように、比較例1では高温・高湿下に液晶セルを置くことにより、VHR変化量が59%と大幅に変化しているが、実施例1~5ではVHR変化量40%以下と少ない変化量にすることができることが確認された。
 上記より、実施例1~5の液晶配向剤[1]~[5]を用いて形成されてなる液晶配向膜、また該液晶配向膜により得られてなる液晶表示素子は、例えば、車両に搭載されるカーナビやメーター、屋外に設置される産業機器や計測機器の表示部等、高温・高湿下での使用であっても、長期に渡って高い電圧保持率を確保できると言える。
 もちろん、実施例1~5の液晶配向剤[1]~[5]を用いて形成されてなる液晶配向膜、また該液晶配向膜により得られてなる液晶表示素子は、高温・高湿下でなくても、長期に渡って高い電圧保持率を確保できる。上記の通り、実施例1~5の液晶配向剤[1]~[5]を用いて形成されてなる液晶配向膜、また該液晶配向膜により得られてなる液晶表示素子は、比較例のものに比べて、初期の電圧保持率も高く、すなわち高い駆動信頼性も確保できていることが分かる。
 本発明は、高温・高湿下であっても長期に渡って高い電圧保持率を確保できる液晶配向膜を得ることができる液晶配向剤、該液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法を実現し、液晶表示素子は、パソコン、携帯電話、スマートフォン、テレビ、車両に搭載されるカーナビ、屋外に設置される産業機器や計測機器の表示部等に使用することができる。

Claims (17)

  1. 下記式(1)の構造を有する特定ジアミン及び下記式(S1)~(S3)で表される構造からなる群より選ばれる少なくとも1種を有するジアミン(v)を含有するジアミン成分と、テトラカルボン酸成分から得られるポリイミド前駆体及びポリイミドから群より選ばれる少なくとも1種の重合体(P)を含有する液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    式中、Aは単結合又は2価の有機基であり、R、R、及びRはそれぞれ独立して水素原子又は炭素数1~20の1価の有機基である。
    Figure JPOXMLDOC01-appb-C000002
    及びXはそれぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数であり、複数のAはそれぞれ独立して酸素原子又は-COO-を表し、mは1~2である。G及びGはそれぞれ独立して、炭素数6~12の2価の芳香族基又は炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子からなる群から選ばれる少なくとも1種で置換されていてもよい。m及びnはそれぞれ独立して0~3の整数であって、m及びnの合計は1~4である。Rは炭素数1~20のアルキル、炭素数1~20のアルコキシ、又は炭素数2~20のアルコキシアルキルを表し、Rを形成する任意の水素はフッ素で置換されていてもよい。
    Figure JPOXMLDOC01-appb-C000003
    は単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。Rは炭素数1~20のアルキル又は炭素数2~20のアルコキシアルキルを表し、Rを形成する任意の水素はフッ素で置換されていてもよい。
    Figure JPOXMLDOC01-appb-C000004
    は-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。Rはステロイド骨格を有する構造を表す。
  2. ジアミン成分全体に対して、前記特定ジアミンの含有量が5~95モル%である請求項1に記載の液晶配向剤。
  3. ジアミン成分全体に対して、前記ジアミン(v)の含有量が5~95モル%である請求項1~2のいずれか一項に記載の液晶配向剤。
  4. 前記特定ジアミンが下記式(M1)で表されるジアミンである請求項1~3のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    は上記式(1)で表される構造を有する置換基であり、nは1~4の整数である。Yは炭素数5~40の(n+2)価の有機基である。
  5. 前記式(1)のRが水素原子である請求項1~4のいずれか一項に記載の液晶配向剤。
  6. 前記式(1)の構造が、下記式(H-1)~(H-6)で表される構造からなる群より選ばれる、請求項1~5のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    n1、n2、n3、n4、n5、n6はそれぞれ独立して、1~10の整数を表す。
  7. 前記特定ジアミンが下記式(M1-1)~(M1-6)で表されるジアミンからなる群より選ばれる少なくとも1種である、請求項1~6のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000007
    n1、n2、n3、n4、n5、n6はそれぞれ独立して1~10の整数を示す。
  8. 前記ジアミン(v)が、下記式(v1)で表されるジアミンである請求項1~7のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    は、下記式(Ar)で表される構造であり、Zは前記式(S-1)~(S-3)からなる群より選ばれる基を有する置換基である。nは1~2の整数を示す。
    Figure JPOXMLDOC01-appb-C000009
    は単結合又は芳香族基を有する2価の有機基を表す。
  9. 前記テトラカルボン酸成分が、下記式(4)で表されるテトラカルボン酸二無水物(T)を含む請求項1~8のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000010
    Xは下記(x-1)~(x-11)から選ばれる構造を示す。
    Figure JPOXMLDOC01-appb-C000011
    式中、*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。
  10. テトラカルボン酸成分全体に対して、前記テトラカルボン酸二無水物(T)の含有量が10モル%以上である請求項1~9のいずれか一項に記載の液晶配向剤。
  11. さらに、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシル基及びアルコキシル基から選ばれる少なくとも1種の置換基を有する架橋性化合物、並びに重合性不飽和基を有する架橋性化合物からなる群から選ばれる少なくとも1種の化合物を含む、請求項1~10のいずれか一項に記載の液晶配向剤。
  12. さらに、分子内にアミノ基(-NH)を1個と窒素含有芳香族複素環とを有し、かつ前記アミノ基が脂肪族炭化水素基又は非芳香族系環式炭化水素基に結合しているアミン化合物を含有する請求項1~11のいずれか1項に記載の液晶配向剤。
  13. 請求項1~12のいずれか一項に記載の液晶配向剤を用いて形成されてなることを特徴とする液晶配向膜。
  14. 請求項13に記載の液晶配向膜を具備することを特徴とする液晶表示素子。
  15. 請求項1から請求項12のいずれか一項に記載の液晶配向剤を基板上に塗布して塗膜を形成する工程と、前記塗膜を焼成する工程と、得られた焼成膜に液晶組成物を接触させて液晶層を形成する工程とを含む、液晶表示素子の製造方法。
  16. 請求項1から請求項12のいずれか一項に記載の液晶配向剤を基板上に塗布して塗膜を形成する工程と、前記塗膜を焼成する工程と、得られた焼成膜に重合性化合物を含有する液晶組成物を接触させて液晶層を形成する工程と、前記液晶層に紫外線を照射する工程とを含む、液晶表示素子の製造方法。
  17. 下記式[W-A1]~[W-A3]で表されるジアミン。
    Figure JPOXMLDOC01-appb-C000012
PCT/JP2019/024329 2018-06-19 2019-06-19 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法、ジアミン化合物 WO2019244939A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980041244.5A CN112352191A (zh) 2018-06-19 2019-06-19 液晶取向剂、液晶取向膜和使用了其的液晶表示元件、以及该液晶表示元件的制造方法、二胺化合物
JP2020525775A JP7401853B2 (ja) 2018-06-19 2019-06-19 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法
KR1020217001148A KR20210022649A (ko) 2018-06-19 2019-06-19 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자 그리고 그 액정 표시 소자의 제조 방법, 디아민 화합물
JP2023123504A JP2023156374A (ja) 2018-06-19 2023-07-28 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018116471 2018-06-19
JP2018-116471 2018-06-19

Publications (1)

Publication Number Publication Date
WO2019244939A1 true WO2019244939A1 (ja) 2019-12-26

Family

ID=68983679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024329 WO2019244939A1 (ja) 2018-06-19 2019-06-19 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法、ジアミン化合物

Country Status (5)

Country Link
JP (2) JP7401853B2 (ja)
KR (1) KR20210022649A (ja)
CN (1) CN112352191A (ja)
TW (1) TW202000738A (ja)
WO (1) WO2019244939A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154000A1 (ja) * 2021-01-14 2022-07-21 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132751A1 (ja) * 2010-04-22 2011-10-27 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
US20120107248A1 (en) * 2009-07-08 2012-05-03 Mayo Foundation For Medical Education And Research Imaging gastrointestinal volumes and motility
JP5642963B2 (ja) * 2006-06-30 2014-12-17 スネシス ファーマシューティカルズ,インコーポレイティド ピリジノニルpdk1阻害剤
JP2016138236A (ja) * 2014-12-26 2016-08-04 Jsr株式会社 組成物、液晶配向剤、液晶配向膜及び液晶表示素子
JP2017102350A (ja) * 2015-12-03 2017-06-08 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子、重合体及び化合物
JP2017181965A (ja) * 2016-03-31 2017-10-05 日産化学工業株式会社 液晶配向剤、液晶配向膜および液晶表示素子
WO2018062353A1 (ja) * 2016-09-29 2018-04-05 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JP2018054761A (ja) * 2016-09-27 2018-04-05 Jsr株式会社 液晶素子及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4175826B2 (ja) 2002-04-16 2008-11-05 シャープ株式会社 液晶表示装置
WO2015012316A1 (ja) 2013-07-24 2015-01-29 日産化学工業株式会社 液晶配向剤及びそれを用いた液晶配向膜
WO2015199149A1 (ja) * 2014-06-25 2015-12-30 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP6852347B2 (ja) * 2016-01-29 2021-03-31 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642963B2 (ja) * 2006-06-30 2014-12-17 スネシス ファーマシューティカルズ,インコーポレイティド ピリジノニルpdk1阻害剤
US20120107248A1 (en) * 2009-07-08 2012-05-03 Mayo Foundation For Medical Education And Research Imaging gastrointestinal volumes and motility
WO2011132751A1 (ja) * 2010-04-22 2011-10-27 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP2016138236A (ja) * 2014-12-26 2016-08-04 Jsr株式会社 組成物、液晶配向剤、液晶配向膜及び液晶表示素子
JP2017102350A (ja) * 2015-12-03 2017-06-08 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子、重合体及び化合物
JP2017181965A (ja) * 2016-03-31 2017-10-05 日産化学工業株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JP2018054761A (ja) * 2016-09-27 2018-04-05 Jsr株式会社 液晶素子及びその製造方法
WO2018062353A1 (ja) * 2016-09-29 2018-04-05 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154000A1 (ja) * 2021-01-14 2022-07-21 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Also Published As

Publication number Publication date
CN112352191A (zh) 2021-02-09
TW202000738A (zh) 2020-01-01
JPWO2019244939A1 (ja) 2021-07-15
JP7401853B2 (ja) 2023-12-20
JP2023156374A (ja) 2023-10-24
KR20210022649A (ko) 2021-03-03

Similar Documents

Publication Publication Date Title
JP6561833B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP5387793B2 (ja) 液晶配向剤
JP6635272B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6864271B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
CN111386493A (zh) 液晶取向剂、液晶取向膜、液晶取向膜的制造方法和液晶表示元件
CN110192148B (zh) 液晶表示元件的制造方法以及液晶表示元件用基板和液晶表示元件组装体
JP2023156374A (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法
JP7347410B2 (ja) 新規な液晶配向剤、液晶配向膜及び液晶表示素子
KR102611592B1 (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자
JP7243705B2 (ja) 液晶表示素子の製造方法
JP7472799B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7375766B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7161147B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶配向膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525775

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217001148

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19822239

Country of ref document: EP

Kind code of ref document: A1